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Abstract— In this article we introduce an improved OFDM
scheme in the frame of linearly precoded OFDM, based on the
long-term properties of the channel. The channel covariance ma-
trix is computed based on the ITU channel model and we show
that the propagation delays represent long-term properties which
leads to correlation between several subchannels. The long-term
channel covariance matrix can be fed back to the transmitter and
the extra knowledge used for prefiltering. We propose a scheme
in which the symbols are linearly prefiltered with the eigenvec-
tors of the channel covariance matrix corresponding to the sig-
nificant eigenvalues and use multistream detection at the receiver
side. The results of the simulations showed that eigenpreprocess-
ing with adaptive bit and power loading and LMMSE detection at
the receiver side provides a significantly lower bit error rate, es-
pecially at high signal to noise ratios compared with other types
of linear prefiltering that do not use knowledge about the channel
covariance matrix.

I. INTRODUCTION

The OFDM system has emerged as a good alternative to mit-
igate the effects of frequency selectivity in wideband mobile
communication systems. The use of a Cyclic Prefix (CP) for
preventing inter-block interference is known to be equivalent
to multiple flat fading parallel transmission channels in the fre-
quency domain [1]. The drawback of this technique is the loss
of diversity, so the symbols which are associated to subcarriers
in fade cannot be recovered anymore, leading to poor perfor-
mance of uncoded OFDM. Several coding schemes have been
proposed to make OFDM more robust to frequency fades. The
most common are convolutional coding, Trellis Coded Modu-
lation (TCM), Turbo-codes, block codes (e.g. Reed-Solomon,
BCH). This systems have shown a good reliability, which have
helped OFDM become a part of several standards and makes it
a strong candidate for the 4th generation of mobile communi-
cations [2].

Another method to reduce the number of errors due to sub-
channels in fade is the combination of the multicarrier (MC)
with the spread spectrum (SS) technique. From the point of
view of the performances in the single user case, [3] and [4]
present results of schemes that imply the linear precoding of
the symbols before transmission. It is shown that this technique

is robust against the frequency fades of the channel and it can
perform even better than COFDM.

Our idea is to introduce the long-time properties of the chan-
nel in a new prefiltering scheme, advantage that will lead to
better performance. We will show how the covariance matrix
can be used to obtain uncorrelated streams and propose a pre-
filtering matrix based on adaptive bit and power loading of the
eigenmodes of the long-term channel covariance matrix. A sim-
ilar approach is presented in the spatial domain in [5], [6], [7].

In Section II we present the OFDM system, in Section III we
compute the long-term covariance matrix and show its prop-
erties, followed by our approach to prefiltering in Section IV,
simulation results in Section V and some conclusions in Sec-
tion VI.

II. SYSTEM MODEL

We start from the standard uncoded OFDM system and as-
sume that the use of cyclic prefix (CP) both preserves the or-
thogonality of the tones and eliminates intersymbol interference
(ISI) between consecutive OFDM symbols. The channel is as-
sumed to be slowly fading, approximated constant during one
OFDM symbol. The number of tones in the system is N which
makes the effective symbol length T = NTS, where TS is the
sampling interval. The length of the cyclic prefix is TG = LTS

and the total symbol length is Tt = T + TG. Since the duration
of the impulse response of the channel is by assumption shorter
than the cyclic prefix, we can describe the system as a set of
parallel Gaussian channels with correlated attenuation hk [1],

hk = H(j2π
k

N
), k = 0..N − 1, (1)

where H(jω)
�
= F{h(τ, t0)} is the channel transfer function

at time t0, i.e. the Fourier transform of the channel impulse
response.

The spreaded OFDM [3] or the linearly precoded OFDM [4]
propose to modify this scheme by linearly precoding the trans-
mitted symbol with a unitary matrix, A, and apply multistream
detection at the receiver side, Figure 1.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 2066



x1

xL

x0
^

x1
^

xL
^

A
ODFM

AD, CP, DFT

D
E

T
E

C
T

IO
N

0
1

L

0
1
2
3

N

0
1

L

0
1
2
3

N

0

IDFT, CP, DA
channel

x

Fig. 1. Linearly prefiltered OFDM system model

We can write the input-output relation before the detector in
matrix form as:

y = HAx + n, (2)

where: y
�
= [y0 y1 . . . yN−1]T is the received signal vector,

H
�
= diag[H(j0) H(j2π 1

N )... H(j2π N−1
N )] is a diagonal ma-

trix with entries equal to the subchannel coefficients in the fre-

quency domain; x
�
= [x0 x1... xL]T is the vector of the trans-

mitted symbols, taken from an alphabet Ψ and with powers pi;

n
�
= [n0 n1... nN−1]T is a vector with the realizations of the

additive white Gaussian noise.
In the sequel we consider the eigenvectors of the frequency

domain channel covariance matrix to apply unitary prefiltering
to OFDM.

III. LONG-TERM PROPERTIES IN OFDM

The sampled Channel Impulse Response (CIR) h(T) ∈
CN is composed of L paths with WSSUS attenuations, i.e.

h(T) ∼ N (0,Σ(T)
h ) where Σ(T)

h

�
= diag

[
σ2

1 , . . . , σ2
M

]
, with

σ2
i1

, . . . , σ2
iL

�= 0 only if τi�
= i� Ts corresponds to any of the

propagation delays of the CIR. Performing IFFT at the trasn-
mitter and FFT at the receiver side we can write the channel as
a diagonal matrix H , with correlated inputs H

(
j2π k

N

)
. We

want to check the validity of the affirmation that the propaga-
tion path delays are long-term properties of the channel, i.e.
the channel covariance matrix remains unmodified over a long
enough period tmax. Computing analytically the covariance
matrix, we get that its general term depends on the propagation
delay through the exponential: e−j2πτ/TS . In order that this
general term not to be modified we must impose the constrain:

∆τmax

TS
	 1, (3)

where ∆τmax is the maximum variation of the propagation de-
lays in the time interval tmax. Considering a maximum speed
of the mobile vmax, the variation in propagation delay due to
variation of distance will be:

∆τmax =
vmaxtmax

c
, (4)

where c is the speed of light.

Introducing in (4) in (3) it results the constrain:

∆τmax

TS
=

vmaxtmax

cTS
	 1 ⇒ tmax 	 cTS

vmax
. (5)

For system parameters conform to actual and proposed wide-
band mobile communication systems (see Table I) and for a
threshold of 1% in the phase variation, we can be confident in
a tmax = 9ms. Equivalently, during N1 = tmax/Tt ≈ 300
OFDM symbols, the channel covariance matrix can be approx-
imated constant. This will represent sufficient time to feed it
back, or more exactly the eigenvectors.

PARAMETER VALUE
System bandwidth B=10MHz
Sampling interval TS=100ns
Carrier frequency f0=5GHz
Maximum delay τmax=2.5µS
Coherence bandwidth BC=400KHz
Maximum speed vmax=120Km/h
Maximum Doppler frequency fDmax=600Hz
Coherence time TC=1.6ms

OFDM symbol duration TO=25.6µS
Guard interval duration TG=3.1µS
Total OFDM symbol duration Tt=28.7 µS
Number subcarriers N = 256
Guard interval length L = 31

TABLE I
RADIO CHANNEL AND SYSTEM PARAMETERS FOR A 4G SYSTEM

The channel is modeled based on the one defined by ITU
in [8], using only the time domain of it, as we have only one
antenna at the transmitter and one antenna at the receiver. We
have computed the channel transfer function covariance matrix
and the eigenvalues to extract the long-term properties of the
channel. One realization of the covariance matrix and the cor-
responding eigenvalues are presented in Figure 2 and 3.

We can observe in Figure 2 the fact that several subchannel
attenuations (not necessarily neighboring) are strongly corre-
lated due to the approximately constant propagation delays and
the ratio between these delays. We can also see from Figure
3 the fact that the covariance matrix is quite low ranked as we
will show in the next section.

IV. EIGENPREPROCESSING

Having the information of the channel long-term covariance
matrix available at the transmitter, we can preprocess the trans-
mitted signal to obtain uncorrelated streams.
We are looking for a precoding matrix A that transforms the
channel into a set of uncorrelated subchannels, to obtain the
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Fig. 2. Channel covariance matrix Σ
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Fig. 3. Eigenvalues in the case N = 64, L = 7

maximum diversity achievable. This means that the covariance

matrix of h
(F),T
A

�
= 1T

NHA,

E{h(F),∗
A h

(F),T
A } = E{AHHH1N1T

NHA} = AHΣ(F )
h A,

(6)

is diagonal.1 Writing the eigenvalue decomposition of the fre-
quency domain long-term covariance matrix Σ(F )

h we get:2

Λ = UHΣ(F )
h U (7)

and, by identification between equation (6) and (7), it results
that A should be the eigenvector matrix of the channel.

1The all ones column vector of length N is denoted by 1N.
2Introducing the unitary discrete Fourier transform matrix F ∈ CN×N ,

the matrix transformation Σ
(F )
h = E{F−1Σ

(T )
h F−H} corresponds to the

discrete transformation of the CIR between its representations in time and fre-
quency domain, i.e. h(F ) = F−1h(T ).

We will compute the rank of the matrix Σ(F )
h which is equal

with the rank of the matrix A to see how many uncorrelated
streams can be used. In [9] it is shown that the dimension of the
space of an essentially time - and band - limited signal is about
2BT + 1, where B is the one-sided bandwidth of the signal
and T is the time interval of the signal. In our case the channel
transfer function is considered bandlimited to B = 1/2TS, via
transmit pulse shaping, and time limited to T0 = LTs, as the
cyclic prefix exceeds the delay spread of the channel, so the
dimension of the channel transfer function should be 2BT0 +
1 = 2 · 1/(2Ts) ·LTs +1 = L+1. This fact was also observed
in Figure 3 where the eigenvalues in a particular realization are
shown.

In order to use only the significant modes for our filtering
we have to truncate the matrix A to the L + 1 eigenvectors
corresponding to the significant eigenvalues:

AL
�
= UN×(L+1), (8)

where UN×(L+1) is the N × (L + 1) dimensional matrix com-
posed of the first L + 1 columns of the eigenvector matrix, U .

We have designed a filtering matrix AL which transfers the
channel in a set of L + 1 uncorrelated subchannels. This re-
sult can be used in designing a scheme in which the frequency
diversity is used.

Considering the fact that the eigenvectors are orthonormal,
we can use the matrix AL to spread the transmitted symbols
over the subcarriers. The received vector will be:

yA = HALxL + n, (9)

each received component being a linear combination of the
transmitted symbols attenuated by the subchannel transfer co-
efficient hk. The transmitted symbols, xL can be now defined
accordingly to adaptive power and bit loading algorithms to be
able to adapt to the channel conditions. To this end we will
choose a variable constellation size for each eigenstream and
will allocate the total power P to the eigenstreams according to
water filling based on the eigenvalues ΛL. At the receiver side
multi-stream detection is needed to take advantage of the di-
versity. Maximum likelihood detection is not a good candidate
because its complexity is growing exponentially with L. This
complexity is not manageable. We consider Channel Inversion
(CI) and Linear Minimum Mean Squared Error (LMMSE) de-
tection. The decision variable in the two cases, for equiproba-
ble symbols and power allocation P = diag[p0, p1, ..., pL], are
given by the expressions:

x̂CI = AH
LH−1yA, (10)

x̂LMMSE = P 1/2AH
LHH(σ2

nIN + HALPAH
LHH)−1yA. (11)

V. SIMULATION RESULTS

To obtain some basic information about the performances of
the system, we have performed computer simulations to com-
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pare the newly developed scheme with the classical OFDM sys-
tem and to highlight the benefits of using the long-term chan-
nel covariance matrix for transmitter processing. We have sup-
posed perfect channel estimation at the receiver side and used
the ITU channel model [8] presented in section III.

Our investigations followed two directions: one to highlight
the benefits of using long-term properties at the transmitter side
and the second to compare our system with one using COFDM.

To have a fair comparison we have aimed at the same bit
throughput in all the compared setups. We have chosen the
design parameters for our system to obtain the same rate as a
convolutionally coded OFDM with code rate 1/2 punctured to
3/4 and using BPSK modulation on all the subcarriers. The
power and bit allocation algorithm must assure an equivalent
load of our system (N1 = 3/4N bits per OFDM symbol with
the same total transmit power), constrain that is similar with the
one solved by the Hughes-Hartogs algorithm presented in [10].
We have used Quadrature Amplitude Modulation (2, 4, 16, 64,
256QAM) and quantized transition power, to get closer to a real
system based on receiver feedback information.

We have simulated also an equivalent linear prefiltered
scheme that uses an arbitrary unitary matrix for prefiltering to
put into evidence the advantages of the long-term information.
In this case, too, we have used a low ranked matrix and in-
creased the modulation order to have the same conditions and
loaded all the streams with the same power and the same num-
ber of bits.

The results of the simulation are presented in Figure 3.
In the case of the random unitary prefiltering with LMMSE

detection we see a faster decreasing slope of the Bit Error Rate
(BER) with the Signal to Noise Ratio (SNR) compared with
standard OFDM and a better performance due, only, to the
spreading of the symbols on several subchannels and use of
the frequency diversity as in [3], [4]. The channel inversion

detection case is even worse due to the noise increase and its
spreading over several symbols. The eigenprocessing system
with LMMSE detection performs much better as it uses the
channel eigenmodes to transmit the symbols. The decreasing
slope of the BER with the SNR is much higher, as the max-
imum frequency diversity is used and adaptive power and bit
loading optimize the transmission scheme.

Compared with convolutionally coded OFDM, we see that at
low SNR our proposed system outperforms COFDM. There is a
cross point at around 17dB from where COFDM shows a lower
BER. The advantage of the eigenpreprocessing is the fact that
it is a linear processing much easier to implement than the non-
linear coding. We see that even in these conditions the perfor-
mances of the linear scheme is better than that of the nonlinear
one for low SNR.

VI. CONCLUSIONS

In this paper we have presented a linearly prefiltered OFDM
scheme which profits from the long-term properties of the chan-
nel. We have showed that for wideband mobile communica-
tions systems the propagation delays represent long-term prop-
erties and for a long enough period the properties of the channel
covariance matrix are directly related to the propagation delay
profile.
Based on the availability of the eigenvectors of the covariance
matrix at the transmitter side, via e.g. feedback, the eigenmodes
of the channel can be used to transmit the symbols, resulting in
maximum diversity.
To test our scheme we have compared it to an equivalent pre-
filtering scheme without using the long term knowledge and
to a COFDM scheme using convolutional codes, providing the
same throughput. We could conclude that the use of the long-
term information at the transmitter brings a large performance
increase, making the eigenprefiltering OFDM similar in per-
formance as COFDM, still using only linear processing. At
low SNR, the eigenpreprocessing OFDM even outperformed
COFDM.
As a future work, it should be interesting to see the evolution
of the cross point in the BER curve for several code rates and
throughput.
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