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ABSTRACT

We present a complete space-time demodulation scheme
for the Global System for Mobile Communications (GSM)
assuming two antennas at the receiver. The scheme in-
cludes multipath channel estimation using a blind method
(Cross-Relation (CR) with Maximum In-band Energy
(MIE) method), two semi-blind methods (combination of
the training sequence with either the CR method alone or
the CR with MIE method), and a method based on the
training sequence alone. For the equalization we apply a
zero-forcing equalizer, which equalizes only over the band of
the Gaussian Minimum Shift Keying (GMSK) signal. The
demodulation of the equalized GMSK signal is done by an
implementation of the Viterbi-Algorithm employing decision
metrics based on the amplitude of the equalized signal. The
simulation results show that the semi-blind scheme which
is based on the maximum in-band energy method is supe-
rior to the other three methods and therefore outperforms
the approach of solely exploiting the training sequence. The
success of these methods shows that it’s not necessary to
apply the linear approximation of the GMSK signal in the
case of multiple antennas to effect blind and semi-blind chan-
nel identification. Thus, these multiple antenna based algo-
rithms are applicable to non-linear modulation schemes as
well as standard linear modulation schemes.

1. INTRODUCTION

Blind equalization methods [1, 2] usually presume a linear
modulation representation [3] of the desired signal. We use
channel estimation schemes, which only need the informa-
tion of the bandwidth of the signal and the position of the
training symbols in the burst, if training based methods are
used. Although we use a GMSK signal, which is non-linear,
we are able to make a sample-spaced estimation of the multi-
path channel with an estimate of the maximum delay spread
determined through a-priori experimental tesing. We then
design equalization filters using this estimation to obtain
the transmitted GMSK signal, which is demodulated by a
Viterbi Algorithm demodulator [5]. This paper is organized
as follows. In Section 2 we describe the GMSK modula-
tion scheme and the channel model. Then we focus on the
maximum in band energy (MIE) method [2] as an example
for blind channel estimation in Section 3. This method is
based on the cross relation method [1]. Both blind chan-
nel estimation schemes (MIE and cross relation) are used
in combination with the training symbols in our semi-blind
algorithms. The methods which are based on the training
sequence (LS method and the semi-blind methods) are ex-
plained in Section 4. In Section 5 and 6 we present a method
to equalize a signal inside a band and the implementation of
the Viterbi Algorithm, respectively. Finally, Section 7 shows
the simulation results for the BER with respect to the SNR.

2. MODULATION AND CHANNEL MODEL

The bit sequence is modulated by using an integrated pulse
response of a gaussian lowpass filter as the phase function for
the Frequency Shift Keying (FSK). The resulting non-linear
GMSK baseband signal is

y(t) = exp

[
j
π

2

∞∑

k=−∞
skψ(t− kT0)

]

where sk ∈ {−1,+1} is the transmitted binary data, T0 is
the symbol time, and

ψ(t) =

t∫

−∞

q(τ − 2T0)dτ

is the phase function. The integrand q(t) is the convolution
of the gaussian pulse

g(t) = B

√
2π

ln 2
exp

[
−2π2B2t2

ln 2

]

and the rectangular NRZ pulse

rect(t) =
{

1/T0, |t| ≤ T0/2
0, |t| > T0/2.

Note that we set the GMSK parameter BT0 = 0.3 (like in
GSM systems). Hence, we set the time-shift of q(t) in the
integral to 2T0, because this yields an approximately causal
pulse ψ(t). Figures 1 and 2 show plots of the phase function
and the GMSK spectrum for BT0 = 0.3, respectively. For
later purposes we assume that the phase function is zero for
times smaller than 0 and one for times greater than 4T0.
However, for the implementation of the Viterbi Algorithm,
we assume that ψ(t) only changes between T0 and 3T0.

The resulting GMSK signal y(t) is then transmitted over
an unknown static multipath channel hi(t) which may be
expressed as

hi(t) =

P∑

p=1

gipδ(t− τp),

where gip and τp are the complex gain and delay, respec-
tively, and δ(t) is the Dirac delta function. The delay τp
is uniformly spread over the interval [0, τmax]. Thus, the
received signal of the i-th antenna element is

xi(t) = hi(t) ∗ y(t) + wi(t), i = 1, . . . ,M,

where wi(t) is the additive white gaussian noise at the i-th
antenna. The received signal of Ns symbols is sampled at l
times per symbol time T0, so the data sequence used in the
following development

xi[n] = xi(
T0

l
n), n = 0, . . . , lNs − 1.
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3. MAXIMUM IN BAND ENERGY METHOD
FOR BLIND CHANNEL ESTIMATION

In [1] Xu, Liu, Tong, and Kailath presented the cross relation
method for blind channel estimation. The cross relation
(CR) gives the following equation for the noiseless case

hi(t) ∗ xk(t) = hk(t) ∗ xi(t),
where ‘*’ denotes linear convolution. We try to approximate
the unknown multipath channel hi with

ĥi(t) =

Nh−1∑

m=0

ĥi[m]δ(t− T0

l
m),

hence we can replace hi by ĥi in the CR. We set Nh =
τmaxl/T0 in order to cover the whole delay spread. By using
the sampled versions of the received signals we obtain

Nh−1∑

m=0

ĥi[m]xk[n −m]−
Nh−1∑

m=0

ĥk[m]xi[n −m] = 0, ∀n

We assume that only two antennas i = 1, 2 are used, since
all the methods shown in this paper can be easily extended
for more than two antennas. For the case of two antennas
we can derive the following equation system

[X2,−X1]ĥ = 0

with

Xi =




xi[Nh − 1] xi[Nh − 2] . . . xi[0]
xi[Nh] xi[Nh − 1] . . . xi[1]

...
...

. . .
...

xi[lNs − 1] xi[lNs − 2] . . . xi[lNs −Nh]




and

ĥ =
[
ĥ1[0], . . . , ĥ1[Nh − 1], ĥ2[0], . . . , ĥ2[Nh − 1]

]T
.

The solution for this overdetermined equation system is
the “smallest” right singular vector of [X2,−X1].

The cross relation method has a big disadvantage: the
cross relation is also fulfilled if the estimated channels have
highpass characteristics. The received signal is zero outside

the bandwidth of the transmitted signal. If the ĥi(t) are
highpass, then the convolution will also be zero inside the
bandwidth, thus the difference is zero over the whole band.

To avoid these bad estimates Zoltowski and Tseng [2] pro-
posed the Maximum in Band Energy method (MIE). The
idea is to use a solution out of the nullspace of [X2,−X1],
which maximizes the energy inside the bandwidth of the
transmitted signal to avert trivial highpass estimates.

We collect the “smallest” right singular vectors of
[X2,−X1] in the matrix V, then ĥ can be expressed as

ĥ = Vβ. To find a proper linear combination β we maxi-
mize the in-band energy of ĥ with

max
β

∑
i
in-band energy of channel i∑
i
total energy of channel i

.

This formulation leads to the following expression

max
β

βHVHBVβ

βHβ
, B =

[
FGSM 0

0 FGSM

]
,

where

FGSM =

∫ ω0

−ω0

S0(ω)fh(ω)fHh (ω)dω,

fh(ω) = [1, ejω, . . . , ej(Nh−1)ω]T , S0(ω) is the power fre-
quency spectrum of the GMSK signal, and ω0 is the 20 dB
bandwidth (ω0 ≈ 0.5/T0) of S0(ω) (see Figure 2, S0(ω) is
computed numerically [4]).

In order to maximize the in-band energy, we choose β as
the “largest” right singular vector of VHBV. The desired

channel estimation is then ĥ = Vβ. Note that the blind
channel estimation has the ambiguity of one unknown scalar,
because one can multiply the right singular vectors with a
scalar and divide the left singular vectors by the same scalar
and the SVD will remain correct.

4. TRAINING SEQUENCE BASED CHANNEL
ESTIMATION METHODS

Because the GSM standard includes a 26 bit long training
sequence in the middle of the burst, we investigated the
usage of methods which take advantage of the training bits.
The first method relies only on the training bits and solves a
least squares problem (LS method). The other two methods
are semi-blind methods which combine the knowledge of the
training symbols with the cross relation method and with
the maximum in band energy method.

If we use the Nt = 26 training bits, we have to take into
account that the GMSK signal has “memory”. All previ-
ously sent bits have influence on the current phase. How-
ever, after four symbol times the phase portion according to
a particular bit has the constant value ±π/2 (see Figure 1).
Thus, we do not use the samples of the first three symbol
times of the training sequence, because we do not know the
values of the prior bits, hence our actual training sequence
is three bits shorter. So we know the transmitted sequence
and the received signal (to within a ejnπ/2 ambiguity) of the
remaining Nt − 3 bits of the training sequence. That leads
to the following least squares equation system:

Yĥ =
[

Yt 0
0 Yt

]
ĥ = xt,



where the known transmitted data is collected in the convo-
lution matrix

Yt =




yt[Nh + 3l − 1] yt[Nh + 3l − 2] . . . yt[3l]
yt[Nh + 3l] yt[Nh + 3l − 1] . . . yt[3l + 1]

...
...

. . .
...

yt[Ntl − 1] yt[Ntl − 2] . . . yt[Ntl −Nh]




and the received samples are put in the vector xt =
[xTt1,x

T
t2]T , where

xti = [xi[Ntrpos + 3l], . . . , xi[Ntrpos +Ntl −Nh]]T .

Ntrpos is the number of the first received sample that belongs
to the training sequence. The known GMSK modulated
training sequence can be computed as follows:

yt[n] = exp

(
j
π

2

Nt−1∑

m=0

tmψ
(
T0

l
n−mT0

))
,

where tm ∈ {−1,+1} are the known training bits. Note
that we have again an ambiguity of the resulting channel
estimation, because we calculate the reference GMSK sig-
nal yt[n] without the unknown prior bits and each unknown
bit is equal to a multiplication with ±j. Hence, our esti-
mation has to be multiplied with an unknown scalar out of
{+1,−1,+j,−j}.

The solution of the least squares equation is the multipli-
cation with the pseudoinverse of Y, thus

ĥ = Y†xt = (YHY)−1YHxt.

The LS method can be extended by the cross relation
method as presented by Li and Ding in [3]. We just combine
the equations of the CR with the LS method and end up with
the equation of the semi-blind algorithm

Xsĥ =

[
Yt 0
0 Yt

X2 −X1

]
ĥ = xs.

We can use all the samples of one burst for the matrices
X1 and X2 since the knowledge of the corresponding bits is
not necessary. The vector xs is the same as xt, besides the
appropriate number of zeros has to be inserted at the end.
We again solve the equation by using the pseudoinverse, thus

ĥ = X†sxs. Note again, that the solution for ĥ is not unique,
the unknown scalar is taken out of {+1,−1,+j,−j}.

Because the simple combination of the CR with the train-
ing symbols doesn’t improve the channel estimation (cf. Sec-
tion 7), we decided to choose a more sophisticated approach.
Joham, Utschick, Nossek, and Zoltowski [6] developed a
semi-blind method which reduces the solution space by the
cross relation method and then computes the channel esti-
mation by solving the least squares equation of the training
sequence in this reduced space. We here extend this ap-
proach by further reducing the solution space with the max-
imum in band energy method (MIE, [2]) in addition to the
CR.

Recall from Section 3 the cross relation for two receiver
antennas can be written

[X2,−X1]ĥ = 0.

The MIE method exploits the knowledge that ĥ lies in the
nullspace of Xb = [X2,−X1] and gives a channel estimation
which is a linear combination of the “smallest” right singular
vectors (collected in the matrix V) of Xb which maximizes
the energy of the channel estimation inside the bandwidth
of the transmitted signal. The solution is the “largest” right
singular vector of Xmie = VHBV (cf. Section 3).

In our new semi-blind method we first compute the
“smallest” right singular vectors of Xb and put them into
V, and constrain the solution of the channel estimation to
the range of V. This is similar to the method in [6]. To fur-
ther improve the solution space, we follow the MIE approach
and reduce the solution space a second time. To this end,
we collect the “largest” right singular vectors of Xmie in the
matrix Vmie, and assume the wanted channel estimation lies
in the range of Vmie. Thus, we can write

ĥ = Vmiec.

The least squares equation system which we encounter
when we exploit the training sequence may then be ex-
pressed as follows:

Yĥ = YVmiec = Ymiec = xt.

The solution is the pseudoinverse of Ymie. Hence, we get
the semi-blind channel estimation

ĥ = VmieY
†
miext = Vmie(Y

H
mieYmie)

−1YH
miext.

Again, the resulting ĥ has an ambiguity. Since we dropped
the first three training symbols and the previously transmit-
ted data bits are unknown, the estimation has to be multi-
plied with an unknown scalar out of {+1,−1,+j,−j}.

5. IN BAND EQUALIZATION

For the linear Equalization we use the zero forcing multi-
channel equalizer. If the two FIR channels do not share a
common spectral null, two equalizing FIR filters, g1[n] and
g2[n], each of length Ng, may be determined using the fol-
lowing optimization problem, in order to equalize the signal
and suppress the noise:

min
g1,g2

E
{∣∣gH1 n1 + gH2 n2

∣∣2
}

= gH1 g1 + gH2 g2,

subject to: ĥ1[n] ∗ g1[n] + ĥ2 ∗ g2[n] = δ[n−D],

where g1 and g2 are Ng × 1 vectors containing the equalizer
coefficients and D is some delay. The Ng × 1 vectors n1 and
n2 are the noise samples at each antenna. Since we do not
use a matched filter, we can assume, that the autocorrelation
matrix of the noise E

{
n1n

H
1

}
= E

{
n2n

H
2

}
= σ2I (white

noise). By defining

g =
[
gT1 ,g

T
2

]T
and Ĥ =

[
Ĥ1, Ĥ2

]
,

where the convolution matrix Ĥi is shown below

Ĥi =




ĥi[0] 0 . . . 0

ĥi[1] ĥi[0] . . . 0
...

...
. . .

...

0 . . . ĥi[Nh − 1] ĥi[Nh − 2]

0 . . . 0 ĥi[Nh − 1]



,

we get the solution for the equalizer filters

g = ĤH(ĤĤH)−1δ,

where δ is a zero vector except a one at the Dth position.
Since we oversample very much (i.e., l = 5 for the blind
MIE method), the prementioned zero forcing equalizer has
the problem that the channel estimation is very poor outside
the bandwidth. Therefore, the noise gain is large, which
leads to bad bit error rates after the demodulation. Hence,



we use the following expression to equalize the signal only
over the bandwidth:

min
G1,G2

∫ ω0

−ω0

S0(ω)

∣∣∣∣∣
2∑

i=1

Ĥi(ω)Gi(ω)− e−jωD
∣∣∣∣∣

2

dω,

To get more convenient expressions we replace Ĥi(ω) and
Gi(ω) by using

Ĥi(ω) = fHh (ω)ĥi, Gi(ω) = fHg (ω)gi,

where

fh(ω) =
[
1, ejω, . . . , ej(Nh−1)ω

]T
, fg(ω) =

[
1, . . . , ej(Ng−1)ω

]T
,

yielding

min
g1,g2

{∫ ω0

−ω0

S0(ω)

∣∣∣∣∣
2∑

i=1

fHh (ω)ĥif
H
g (ω)gi − e−jωD

∣∣∣∣∣

2

dω + γgHg

}
.

The Nh × 1 vector ĥi and the Ng × 1 vector gi contain the
coefficients of the channel estimation and the equalization
filters for each antenna, respectively. Note that we have
added a term weighted by γ in order to reduce the noise
gain.

After some calculation and the concatenation of g1 and
g2 in g we end up with:

min
g

gHFhhg − fHhhg − gHfhh + γgHg + const,

where

Fhh =
[

Fh1h1 Fh1h2

Fh2h1 Fh2h2

]

and

fhh =
[

Fs 0
0 Fs

] [
ĥ∗1
ĥ∗2

]
,

where (·)∗ denotes the complex conjugate. With the defini-
tion of

f̃s[n] =

∫ ω0

−ω0

ejnωS0(ω)dω

the representation of Fs and Fhihk is simplified as follows:

Fs =




f̃s[−D] f̃s[1 −D] . . . f̃s[Nh − 1−D]
f̃s[1 −D] f̃s[2 −D] . . . f̃s[Nh −D]

...
...

...
f̃s[Ng − 1−D] f̃s[Ng − d] . . . f̃s[Ng +Nh − 2 −D]




and

Fhihk =

Nh−1∑

n=0

Nh−1∑

m=0

ĥk[n]ĥ∗i [m]F[m− n],

where

F[n] =




f̃s[n] f̃s[n− 1] . . . f̃s[n −Ng + 1]
f̃s[n + 1] f̃s[n] . . . f̃s[n −Ng + 2]

...
...

. . .
...

f̃s[n +Ng − 1] f̃s[n +Ng − 2] . . . f̃s[n]


 .

The solution for the equalization only over the bandwidth
is then

g = (Fhh + γI)−1fhh.

6. VITERBI ALGORITHM

After we have equalized the received signal, we can demod-
ulate the GMSK signal with a Viterbi Algorithm (VA) [5]
based method to retrieve the transmitted bit sequence. As
in the VA we have some states at each time step correspond-
ing to the previous bit sequence. Our idea is to assign each
possible combination of the three most recent bits to one
state, thus we have eight states. From one time step to the
next we drop the oldest bit and add a new one. Hence, only
two transitions leave from each state at time step k (the two
possible values of the newest bit) and only two transitions
arrive at one state at time step k+1 (the two possible values
of the bit which is dropped). Therefore, we have 16 transi-
tions between two succeeding time steps. We can code each
of the states per time step with the according three bits and
the transitions are coded with four bits. Figure 3 depicts
the structure of the trellis.
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s
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s
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s
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Figure 3. Viterbi Algorithm trellis

Since we use four bits for each transition and we pretend,
that the phase function ψ(t) (see Figure 1) only changes
over two symbol times, it’s sufficient to observe samples of
only three symbol times, because outside this time period
the phase changes also depend on other bits. One could
claim that the GMSK signal has “memory”, since all prior
transmitted bits have an influence on the current value of
the phase of the GMSK signal, and therefore we have to
consider all previously sent bits. However, the “old” bits
change the phase only by a multiple of π/2, thus the signal
is just multiplied by a scalar out of {+1,+j,−1,−j}. To
avoid this problem we multiply the received sequence with
±j according to the bit which was dropped after the last
transition in the trellis.

To get a measure for the probability of each transition
we make a least squares fit of the received samples over the
three symbol times to a reference sequence, since we pretend
to know the signal for these three symbol times. The ref-
erence sequences can be calculated before the VA is started
and put in a list. The scalar α for which the difference r−αy
is minimized, where r and y are the reference sequence and
the equalized signal, respectively, is a value with a similar
meaning as the logarithm of the probability of the transition
in the trellis. As the VA minimizes the sum of − lnP over
all transitions, we have to maximize the sum of all the tran-
sitions up to the states at the time instant k. So we take
the incoming transition with the greater sum. After having
decoded the Ns symbols of one burst, we encounter eight
bit sequences, one for each state of the last time step. We
then choose the state (bit sequence) with the greatest sum
(greatest probability).

In the case of training sequence based channel estimation
there still exists an unknown phase which results in an un-
known scalar out of {+1,−1,+j,−j}. We observed that if
the reference sequence is multiplied by j, but the unknown
scalar is 1, then the algorithm gives a wrong result. But if
we multiply the reference sequence by −1, then the result-
ing bit sequence is correct. Hence, we multiply the received
signal with 1 and j and run two “parallel” VAs to solve



this problem. At the end we take the bit sequence with the
greater sum (greater probability).

The blind method delivers a channel estimation with a
completely unknown phase. It’s impossible to find the un-
known phase value, but it’s possible to reduce the problem
to the same four discrete values as for the training sequence
methods. First, we do a least squares fit to the reference
sequences (each one is three symbol times long) as it was de-
scribed for the decision process of our VA-implementation.
For every timestep we choose the greatest αi (which mini-

mizes r−αiyi) and compute u =

√(∑Ns
i=1

(−1)i−1α2
i

)
/Ns,

which is an estimate of the scalar to multiply the equalized
signal by to derotate it.

7. MATLAB SIMULATIONS

In our simulations we used a channel with P = 10 un-
known multipaths. The bit sequence and all channel pa-
rameters were chosen randomly for each Monte Carlo run
except g11 = 1 and τ1 = 0. We assumed that the delay
spread τmax is about 10µs, thus we set τmax = 3T0 since
T0 = 3.69µs. The received signal x(t) was sampled l = 3
times per T0 except for the MIE, there we used l = 3, 4, 5.
We exploited the whole GSM burst for the blind and semi-
blind methods, therefore Ns = 142. The length Nh of the
channel estimation ĥi was set to 3l to cover the whole delay
spread. In the equalization algorithm we used Ng = 1.5Nh,
D = Nh, and γ = 1.
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Figure 4. Maximum In Band Energy Method

Figure 4 shows the bit error rate (BER) for the MIE
method of Zoltowski et al. [2]. The plots are the mean
of 10000 Monte Carlo runs where we used an oversampling
factor l = 3, 4, 5. The performance of the method improves
steadily with increasing l, because the maximization inside
the bandwidth is easier for the algorithm then. The MIE
method is compared to the semi-blind method which com-
bines the MIE method with the training sequence.

Figure 5 depicts the results for the channel estimation
algorithms based on the training bits. As a reference we
also show the BER for the AWGN channel. In this case no
channel estimation and equalization is necessary, and the
demodulation is performed by the Viterbi algorithm. The
semi-blind approach of Li et. al. [3] is worse than the al-
gorithm based only on the training data for low SNR. The
explanation lies in the combination of the CR and the train-
ing data in one equation system. Because a least squares
solution is used, the algorithm tries to reduce the error of
both the CR and the training data based equation system.
Thus, the performance can’t be increased for low SNR since
the CR is very sensitive to noise. We also show the results for
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Figure 5. Training Sequence Based Methods

the semi-blind method of Joham et al. [6] which does not
employ the MIE principle. Since the solution space is re-
duced by the cross relation method, this approach improves
the LS method (only training symbols) for SNR values larger
than 2.5 dB. The new semi-blind method presented in this
paper performs better than any of the other methods shown.
The explanation lies in the second step of the MIE method
which averts bad channel estimates. We observe that the
new semi-blind method has the same BER at a SNR lower
than 9 dB as the LS method has at 10 dB. Thus, we gain
more than 1 dB at a SNR of 10 dB.

8. CONCLUSION

A complete channel estimation and equalization scheme for
GSM which doesn’t use a linearized representation of the
GMSK signal was presented. A blind, two semi-blind, and
a training data algorithm were compared. The semi-blind
algorithm which combines exploitation of the training se-
quence with the maximum in band energy method yielded
improved performance relative the channel estimation based
on the training sequence alone.
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