m INSTITUT FUR INFORMATIK ‘
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Forschungs- und Lehreinheit I
Angewandte Softwaretechnik

Rationale-based Unified Software
Engineering Model

Timo Wolf

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen
Universitidt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten

Priifer der Dissertation: 1. Univ.-Prof. Bernd Bruegge, Ph.D.
2. Univ.-Prof. Dr. Barbara Paech,
Ruprecht-Karls Universitit Heidelberg

Die Dissertation wurde am 11.05.07 bei der Technischen Universitit Miinchen
eingereicht und durch die Fakultit fiir Informatik am 10.07.07 angenommen.

To Eva and Moritz.
-TW.

Acknowledgements

I want to thank Prof. Bernd Briigge, Ph.D. for his great support, recommen-
dations, and visions. This dissertation would not have been possible without him.
I thank Prof. Dr. Barbara Paech for the long-term research collaboration. 1 am
grateful to Allen H. Dutoit, Ph.D. who coached me during my research. I am
thankful to all my colleagues from the Chair of Applied Software Engineering
and in particular to Monika Markl, Helma Schneider, and Uta Weber for the orga-
nizational support. I want to thank my wife Eva and my son Moritz who saw me
rarely while writing this dissertation.

Contents

Abstract
Conventions

1 Introduction
1.1 Artifact inconsistencies
1.2 Distributed collaboration
1.3 Goalandapproach

2 The RUSE Meta-Model
2.1 Requirements o
22 TheMeta-Model,
2.2.1 Theprojectdatamodel
2.2.2 The configuration management model

3 The RUSE Model
3.1 Organizationalmodels
32 Systemmodels
3.2.1 Stakeholder requirements
3.2.2 Requirements analysis
3.2.3 Detailed requirements
324 Hazardanalysis
325 Diagrams
3.2.6 Documentmodel
3.3 Collaboration Models
3.3.1 Informal communication
332 Issuemodel L.
333 Taskmodel

4 RUSE Model usage and views
4.1 Views e
4.1.1 Documentview
4.1.2 Visualizing collaboration artifacts

3

11
11
13
14

17
17
24
25
31

47
47
49
50
52
54
55
57
58
59
60
61
63

Contents

4.1.3 Hyperlinked content area of Model Elements 70
4.1.4 Diagram VIEWSo e e 71
4.1.5 Identifying work and participants 72
4.2 Supporting traceability 73
4.2.1 Traceabilitytree 74
422 Traceabilitytable 75
4.2.3 Traceability graph 75
424 Capturing change impact 77
4.3 Supporting awareness e 78
4.3.1 Subscribing to notifications 78
4.3.2 Disseminating changes 79
The Sysiphus environment 81
5.1 Designgoals. 81
5.1.1 Performance Criteria 82
5.1.2 Dependability Criteria 82
5.1.3 CostCriteria 83
5.1.4 Maintenance Criteria 83
5.2 Subsystem decomposition L. 84
52.1 TheElementStorelLayer 86
522 TheModellayer 88
5.2.3 The Client Application Layer 89
5.3 Hardware/software mapping 91
5.4 Persistent data management L. 94
5.5 Accesscontrol andsecurity 94
5.6 Globalcontrol flow 95
5.6.1 Control Flow in Online Mode 95
5.6.2 Control Flow in OfflineMode 96
5.7 Boundary conditions 96
5.7.1 Configuration, 98
5.7.2 Startup and Shutdown 98
5.7.3 ExceptionHandling 98
Applications and evaluation 101
6.1 Casestudies 102
6.1.1 Cargo & Logistics 103
6.1.2 CampusTV 104
6.1.3 Mobile Sportsman Artifacts 106
6.1.4 Symphonia L 107
6.1.5 Virtual Symphony Orchestra 108
6.1.6 IBM Awareness Mockup 111
6.1.7 JASS . . 112

6.1.8 MOQARE 113

Contents 5

6.1.9 Yieeha 113

6.1.10 TEAM 114

6.2 Teaching software engineering 115
6.2.1 Arena e 115

6.22 Asteroids 116

6.2.3 Software engineering lectures 117

7 Related Work and Previous Research 119
7.1 Research. 119
7.1.1 Rationale and Distributed Work 119

7.1.2 Traceability and Awareness 120

7.1.3 Asynchronous Inspections 121

7.1.4 Versioning of software engineering models. 123

7.2 Commercial Systems 125

8 Conclusion 127
8.1 Summary 127

8.2 Futuredirections 129

A Bibliography 131
B List of Figures 143
C Listings 145
D Glossary 147

Contents

Abstract

This dissertation addresses two problems of distributed software development
projects: Inconsistencies between related artifacts such as documents and mod-
els and the inefficient collaboration of distributed project participants. In partic-
ular informal communication is reduced and project knowledge gets lost. The
interaction and integration of existing methods and modeling tools are currently
insufficient to address these problems.

We claim that a single consistent representation, supporting a unified data
model for all documents and models including collaboration artifacts, helps to
overcome these problems. In existing methods, collaboration artifacts are usually
treated separately and maintained apart from the system model artifacts. As all
artifacts are represented in one unified model, it is possible to implicitly capture
and maintain artifact relationships as dependency traces. The dependency traces
are used to support consistency of related artifacts. Informal collaboration arti-
facts, such as comments, and formal discussions for representing rationale, are
externalized and also part of the unified data model.

This dissertation describes an extendable meta-model as a single consistent
representation. Based on the meta-model we introduce the RUSE model, which
integrates system models, collaboration models and organizational models. The
meta-model and the RUSE model are realized in a tool called Sysiphus. Sysiphus
was used in several academic and industrial software development projects as
well as for teaching software engineering. Selected projects are used to evaluate
the proposed concepts.

Abstract

Diese Dissertation untersucht zwei grofle Probleme in verteilten Software-
Entwicklungsprojekten: Inkonsistenzen zwischen abhingigen Entwicklungsarte-
fakten wie zum Beispiel Dokumenten und Modellen, sowie die ineffiziente Kolla-
boration von verteilten Projektteilnehmern. Insbesondere ist die informelle Kom-
munikation reduziert und implizites Projektwissen geht verloren. Existierende
Methoden und Modellierungswerkzeuge sind derzeit nicht ausreichend integriert
um diese Probleme zu vollstindig 16sen.

Die Hypothese dieser Arbeit ist, dass eine uniforme Reprisentation eines ver-
einigten Datenmodells fiir alle Dokumente, Modelle und Kollaborationselemente
zur Losung dieser Probleme beitréigt. In existierenden Methoden werden die Kol-
laborationselemente in der Regel getrennt von der Entwicklung der Systemmo-
delle behandelt. Da in unserem Ansatz alle Artefakte in einem einzigen vereinig-
ten Modell existieren, konnen Artefaktbeziehungen implizit im Model festgehal-
ten und verwaltet werden. Bei auftretenden Anderungen konnen diese Beziehun-
gen zur Identifikation von transitiv abhiingigen Artefakten verwendet werden und
Mechanismen zur Konsistenzerhaltung unterstiitzt werden. Informelle Kollabora-
tionselemente, wie zum Beispiel Kommentare, und formale Diskussionsmodelle
zur Reprisentation von Begriindungen werden festgehalten und sind auch Teil des
vereinigten Datenmodells.

Die Dissertation beschreibt ein erweiterbares Metamodell zur uniformen Re-
prasentation aller Artefakte. Darauf autbauend wird das RUSE Model beschrie-
ben, das ausgewihlte Systemmodelle, Kollaborationsmodelle und Organisations-
modelle aus der Softwaretechnik integriert. Die Modelle sind in dem Werkzeug
Sysiphus realisiert, das in einer Vielzahl von verschiedenen Projekten im akademi-
schen und industriellen Kontext zur Evaluierung der Konzepte eingesetzt wurde.

Conventions

A sans serif typeface is used to highlight class names, literals and code passages.
While it is customary to avoid spaces in class, object, operation and attribute
names in source code—by beginning the following word with a capital letter right
after the last letter of the preceding word (e.g. ModelElement)—this is unsuit-
able for typesetting in hyphenless justification. Therefore, we opted for a conven-
tion that is more natural for typesetting by introducing spaces between the words,
which allowed for greater flexibility in automatic word wrapping. We hope that
the sans serif typeface is sufficient to recognize the compound code-related names,
such as in Model Element. Multiline code passages are an exception. They are set
in a constant width typeface to preserve the original indentation, also
eliminating the need for adding spaces just for typesetting.

Inline citations are accentuated by “double quotes.” Extensive citations are
additionally set as blocks with a right and a left margin. Should the need arise for
quotations within citations, we occasionally modified the quotes from “double”
to ‘single’ without explicitly showing this change. All other changes to direct
citations are marked within {curly brackets. }

10

0. Conventions

1.1

CHAPTER 1

Introduction

Distributed software development is increasingly common in global companies.
Organizational reasons include global mergers and acquisitions, which keep de-
velopment organizations partitioned along the boundaries of the acquired com-
panies. The claim is a benefit from the variations in labor costs of different geo-
graphical locations and customization and support at the client site. Organizations
increase their pool of skilled and experienced employees. Native employees lo-
cated in the countries of the clients enable the organizations to be more responsive
and to have a shorter time to market [6, 40].

Beside the benefits, distributed development projects have to overcome many
challenges to be successful. This dissertation addresses two challenges: Inconsis-
tencies between related artifacts and inefficient collaboration of distributed project
participants. Maintaining consistency between related artifacts such as documents
and models that are developed by distributed project participants is even more
difficult than in collocated projects. Efficient collaboration and communication
is needed between distributed teams that develop related artifacts. Unfortunately,
collaboration is also hindered by the distribution. In particular informal communi-
cation to overcome urgent issues is reduced. Missing cross-site project knowledge
and awareness of activities and problems from teams located at foreign sites are
problems.

Artifact inconsistencies

Software development projects have to deal with different activities that range
from requirements elicitation, analysis, design, implementation and test to project
management, change management, knowledge management, distributed commu-
nication and collaboration or maintenance management [19]. Depending on the
project needs and the software engineering philosophy and experiences of the
project managers, different techniques are used and different models and doc-

11

12

1. Introduction

uments are created in these activities. For example in requirements elicitation,
goals [2, 3], use cases [68, 93], user stories [7], or structured text are used to rep-
resent the requirements. The different techniques of the activities have different
characteristics and currently there is no evidence which techniques are best capa-
ble for a successful project. But industry and research have recognized that the
different activities and their outcomes are strongly interrelated and impact each
other.

For example, the domain analysis is based and depends on the elicited require-
ments. The system design depends on the requirements, analysis, and defined de-
sign goals. System tests depend on the requirements while unit tests are based
on the object design. When changes occur to any artifact, the change impact to
related and depending artifacts needs to be analyzed, and impacted artifacts need
to be changed accordingly.

Capturing dependency traces between related artifacts facilitates the change
impact analysis. For example, a requirement can be linked to its analyzing models,
the system design elements that realize the requirement and to the related system
test cases. All related artifacts can directly be identified and reviewed when the
requirement is the subject of a change. Moreover, the dependency traces can be
used for quality analysis [9]. For instance, a requirement without any traces to
the system design is probably not addressed. A requirement without traces to test
cases cannot be tested easily.

Unfortunately, different specialized tools are used in software development
projects to create and maintain the system models and documents. For example,
requirements databases such as DOORS [121] or Rational RequisitePro [61] are
used to capture and maintain requirements. UML case tools like Rational Soft-
ware Architect [63], Rational Rose [62] or Together [15] are used to create the
analysis, the system design and the object design. Testing tools such as Mercury
TestDirector [83] are used to specify, execute, and collect the results of test cases.
Word processing tools such as Microsoft Office Word [84] are used to aggregate
and publish the developed models in activity related documents such as the re-
quirements analysis document or the system design document [19]. Change man-
agement tools such as Rational ClearQuest [60] are used to control and manage
changes across all different models and artifacts. Software configuration manage-
ment tools such as Rational ClearCase [59] or Subversion [123] support artifact
versioning and history access.

Each tool provides its own model and the integration of different tools is in-
sufficiently supported, which hinders the interchange of models across tools. In-
tegration solutions are based on export and import mechanisms, which lead to
redundancies in the model representations. Maintaining consistency across re-
dundant models is a problem for large models. The automated management of
dependency traces across different artifacts and tools, as well as a quality analy-
sis among all models is not supported. The models and documents are dispersed
among different tools and media with the problem of fragile or no traces [12, 13].

1.2. Distributed collaboration 13

1.2

Even if the dependency traces exist in one tool, or in a separated file like a spread
sheet (e.g. Microsoft Excel), there is no single view that shows all traceability
relationships and the related artifacts. Changing or deleting artifacts that are ref-
erenced by external dependency traces lead to inconsistencies or even to dangling
links, which need to be manually maintained. Visualizing and tracing through all
dependency traces is crucial for a complete change impact analysis and is needed
to raise the awareness of artifact dependencies across distributed teams.

The problem gets worse, when the different artifacts are developed by dis-
tributed participants and the artifact representation media and tools are geograph-
ically separated. Effective communication and collaboration channels are needed
to maintain consistencies across interdependent models.

Distributed collaboration

Researchers have noted the importance of communication and collaboration in
software development [29, 51, 73, 102]. Curtis et al. [29], in a field study of sev-
eral large projects, observed that documentation does not reduce the need for com-
munication, in particular, during the early phases of the project, when stakehold-
ers create informal communication networks to coordinate their representational
conventions. They also observed that obstacles in informal communication such
as organizational barriers and geographical distance can lead to misunderstand-
ings in design conventions and rationale. Kraut and Streeter [73] note that formal
communication (e.g., structured meetings, specifications, inspections) is useful for
routine coordination while informal communication (e.g., hallway conversations,
telephone calls, workshops) is needed in the face of uncertainty and unanticipated
problems, which are typical of software development. They observed that the need
for informal communication increases dramatically as the size and complexity of
the software increases. Grinter et al. [51] studied several distributed projects that
used different organizational models for coordination. They confirmed the find-
ings of Kraut and Streeter about breakdowns in informal communication for the
distributed case. Moreover, they found that the unequal distribution of participants
and skills across sites and the difficulty in finding experts were recurring issues,
independent of organization. Herbsleb et al. [53] found in a quantitative study
of industry projects that cross-site work takes much longer than single-site work
and requires more people. They also reported a strong relationship between the
delay caused by cross-site work and the degree with which remote colleagues are
perceived to help out when the workload is high.

A recurring theme in these studies is that informal communication is criti-
cal for rapidly disseminating implicit knowledge, in particular, with respect to
change and unforeseen events. During informal conversations, participants learn
of upcoming changes and the potential impact on their work. In global projects,
informal communication is severely hampered, denying this informal knowledge

14

1. Introduction

1.3

to its participants. When a change or an issue is raised through formal chan-
nels, the recipients are often surprised, they do not have access to its underlying
rationale, and they need time to identify and get in touch with the relevant stake-
holders. Given the effort required to communicate across sites, ambiguities are
glossed over, messages are misunderstood, and more issues are introduced into
the project. Under high workloads, the requests from other sites are treated with
a lower priority than those coming from local participants. Relationships between
sites become adversarial, which further hinders collaboration.

Berenbach [11] describes distributed complex projects where the requirements,
the hazard analysis, and threat models are elicited by different geographically dis-
tributed teams or people with different skills. The compartmentalization of re-
quirements gathering can be exacerbated on global projects in several ways. In
the case of product lines and very large projects, requirements gathering may be
broken up among regions and distributed among different business units. Tra-
ditional requirement management techniques tend to fail when the elicitation is
distributed.

For example, some medical system product lines must be analyzed for poten-
tial hazards in order to be sold in certain countries. Once a product feature is
associated with a hazard, requirements are created in order to mitigate the poten-
tial hazard. The requirements and the hazard analysis are created by teams that
are responsible for the product of the related countries. Due to time pressure or
organizational issues, the product teams for other countries have difficulties or
skip reviewing these new requirements and do not analyze how the requirements
impact their product. In the worst case, the different teams do not even know each
other and cross-team relationships are overlooked [10].

Goal and approach

The hypothesis of this dissertation is that the problems described above can
be addressed with an unified model that unifies the system models and documents
with the collaboration artifacts and the organizational model of software devel-
opment projects. By a single consistent representation that supports the unified
model, the dependency traces between the artifacts are no longer fragile, but are,
in fact, implicit in the unified model. Traces between system models and related
collaboration artifacts can be implicitly captured and related stakeholders and ex-
perts can be identified as they are also part of the unified model.

This dissertation provides such a unified model, called rationale-based unified
software engineering model (RUSE), which is defined as follows:

The rationale-based unified software engineering model (RUSE) integrates
selected system models, the collaboration model and the organizational model of
software development projects. It is based on an extendable meta-model that re-
alizes shared requirements of the RUSE model. Traceability across all interrelated

1.3. Goal and approach 15

models is supported and awareness among distributed project participants is in-
creased. The RUSE model is designed to be located in a central repository that is
shared across different distributes sites.

The system models contain all artifacts that describe the system under devel-
opment. The kinds of artifacts depend on the applied process and range from
features, requirements, use cases, design and object models, to dynamic models,
test cases and even all written documents. The system models are usually based on
UML[93] and are extended with new association classes that are used to capture
traceability dependency links.

The collaboration model includes comments, an issue model, and work items.
The comments are used for capturing informal discussion threads. The issue
model is based on Question, Options, Criteria (QOC) [80] and facilitates the cap-
turing of rationale and represent project knowledge. Work items describe the work
to be done and can be assigned to the project participants. By integrating collabo-
ration artifacts with the system models, we ingrain the communication channels in
the system models, thus reducing the participant’s inhibitions to communicate and
to capture raising issues. The collaboration model elements are attached to related
system model elements, which represent the context for the collaboration. Traces
between collaboration model elements and system model elements are captured
and maintained.

The organizational model describes the organizational structure of a software
development project in terms of teams and participants. It depicts the relationships
among participants, and between participants and the system and collaboration
models they create and work with. By making this information explicit, partici-
pants can more easily contact relevant stakeholders and experts and resolve issues
more quickly. By providing mechanisms to raise the awareness of discussions
and issues to potential recipients, participants save time in anticipating issues and
avoid an information overload.

To evaluate the hypothesis, we have developed and evolved Sysiphus [38, 128,
131, 21], a distributed tool suite that implements the RUSE model. Sysiphus pro-
vides a central repository for the RUSE model elements and online access for syn-
chronous collaboration of project participants from distributed sites, as well as
offline workspace support for asynchronous interaction. Sysiphus was used in sev-
eral academic and industrial software development projects as well as for teaching
software engineering.

The novelty of our approach is that system models, collaboration models, and
the organizational model are given equal emphasis, live in a single, shared repos-
itory, and are represented within the same model. The unified representation en-
ables us to provide the same set of traceability and awareness services for and
across all three types of models. The RUSE model is easily extendable by new
model elements while reusing existing services for traceability and awareness.
The challenges of this approach are to capture sufficient information as a side
effect of development while structuring this information for long-term use.

16

1. Introduction

Chapter 2 presents the requirements for the rationale-based unified software
engineering model and describes the RUSE meta-model that meets the require-
ments. Chapter 3 presents the RUSE model that integrates system, collaboration
and organizational models. The model conforms to the meta-model described
in chapter 2. Chapter 4 presents different views and usages of the RUSE model,
including traceability and awareness support. Chapter 5 presents Sysiphus, the
reference implementation of the RUSE model. Chapter 6 describes several appli-
cations of the RUSE model in academic and industrial context and presents the
evaluation of the research. Chapter 7 presents related work and tools. In the last
Chapter 8, we summarize our research and outline future directions.

CHAPTER 2

The RUSE Meta-Model

A model is an abstraction of phenomena of the real world. In this dissertation we
present the RUSE model (see chapter 3) that integrates system models, collabo-
rations models and organizational models to support distributed software devel-
opment projects. In this chapter we present a meta-model for the rationale-based
unified software engineering model. The meta-model addresses all requirements
that the specializing RUSE model elements have in common.

First we introduce the RUSE model properties as a set of requirements. Than
we define a meta-model that meets the requirements. In chapter 3 we define the
RUSE model conforming to the meta-model, thus ensuring to meet all require-
ments. All RUSE model elements, like use cases or nonfunctional requirements
from the system model, comments or issues from the collaboration model or par-
ticipants and teams from the organizational model, extend the meta-model and use
the provided meta-model mechanisms.

2.1 Requirements

We define the following requirements for all model elements of the RUSE
model. By realizing the requirements in the meta-model, we ensure that all model
elements meet the requirements.

Artifact integration

Many related artifacts are created and maintained during software develop-
ment projects. We categorize the artifacts into system models, organizational
models, and collaboration models. The system models describe the system under
development and consist of models and documents. The organizational models
describe the project organization in terms of teams and participants and their roles
in the development project. In project management, the organizational models are

17

18

2. The RUSE Meta-Model

required to allocate activities and tasks to participants, which describe the devel-
opment of the system models. Moreover, the organizational models are needed
to identify experts and stakeholders. The project participants need to collabo-
rate when developing the system models. The collaboration models include the
development tasks that are needed to coordinate the project, informal discussion
threads to rapidly exchange knowledge and to clarify arising problems, as well as
formal collaboration models such as issue models to explore and evaluate the so-
lution space of critical issues and to capture the rationale behind system relevant
decisions.

Unfortunately, the related artifacts are created and maintained in different and
separated models and tools, which make the expression of relations across arti-
facts difficult. Specialized tools are used to create the required system models
and documents. Project management and organizational tools are disconnected
from the system modeling tools and are usually not accessible for all participants.
Collaboration and in particular communication occurs in separated channels and
tools. The identification of system model relevant communication threads, their
rationale, and their relevant participants is generally not supported.

The RUSE model integrates the described artifacts and is based on a meta-
model. Thus, the meta-model must be capable to represent any of these artifacts
and the artifact relations. When all artifacts are represented in one model, a single
model repository can be used to maintain all artifacts and make them accessible
to all project participants located on distributed sites.

Traceability

Software projects need to deal with change. Requirements change when the
problem domain is better understood. The architecture is adapted when new tech-
nology is selected. To maintain consistency among documents and models, im-
pacted elements need to be identified and updated [35]. Moreover, it is often
necessary to identify the stakeholders responsible for these elements, as they may
have implicit knowledge about how or whether the change should be realized.
Tracing forward from requirements to impacted design, implementation, or test
elements is called posttraceability. Tracing back from model elements to their
human sources is called pretraceability [69]. The need for traceability among all
development artifacts is clearly recognized in research [47, 48, 49] and traceability
reference models have been developed [104].

But due to the variety of tools and models, a complete traceability across all
system models, collaboration models and organizational models is not reached.
Even if the dependency traces exist in one tool (for example in DOORS [121]),
or in a separated file like a spread sheet (e.g. Microsoft Excel), there is no single
view that shows all traceability relationships and the related artifacts. Changing
or deleting artifacts that are referenced by external dependency traces lead to in-
consistencies or even to dangling links, which need to be manually maintained. In

2.1. Requirements 19

general, there are two possible approaches to support traceability across all arti-
facts. In the first approach, all used tools must be integrated and know the models
of foreign tools, propagate changes across tools and models, and maintain trace-
ability links. This solution is hardly reachable as long as the tools are produced
by different and possible competing vendors. We follow the second approach,
in which all artifacts are maintained in one model and tool. Integration between
models or tools is not required. The dependency traces are captured within the
model and are maintained automatically.

Nuseibeh et al. [91, 92] found in three case studies that not all inconsisten-
cies can be eliminated in practice. They describe that sometimes the elimination
of inconsistencies are more expensive and not applicable in projects under time
pressure than living with inconsistent models and documents. The participants of
the case studies marked inconsistent models to prevent their usage and the prop-
agation of new subsequent inconsistencies. But Nuseibeh et al. also state that
in some cases the elimination of inconsistencies are necessary. If inconsistencies
must be eliminated or not must be decided by the relevant project participants.
The most important point is the knowledge of existing inconsistencies, which is
prerequisite for the decision if the inconsistencies must be eliminated or not.

We agree with the findings of Nuseibeh et al. and propose traceability links
across all related system models, the organizational models, and the collabora-
tion models to detect arising inconsistencies. When any element is the subject of
change, related and depending elements can be identified by traversing over the
traceability links. The participants can decide if related elements must be changed
accordingly. If the participants are not able to decide due to insufficient knowl-
edge, the traceability links between the system models and the organizational
models facilitates the identification relevant experts or stakeholders. Moreover,
related information and knowledge can be identified by tracing from the relevant
system elements to their rationale and collaboration artifacts like comments, dis-
cussions, or related work items.

If inconsistencies between different models are identified, and the decision for
elimination or not is made, the participants have to change the models accordingly.
If they decided for elimination of the inconsistencies, they have two possibilities:
They can change the models immediately or mark them with new tasks that de-
scribe the inconsistencies. The tasks can then be assigned to other participants
and can be carried out later. If the inconsistencies should not be eliminated, the
relevant models must be marked with a note. The traceability links facilitate the
creation of tasks and notes to all related artifacts automatically.

Accountability and access control

When critical tasks such as the elimination of identified inconsistencies oc-
cur or question to specific model elements arise, the creators or the persons who
modified these elements might have relevant implicit knowledge that is not docu-

2. The RUSE Meta-Model

mented. The identification of these experts is especially in distributed projects a
problem and takes much longer than in collocated projects [54, 85, 53]. To speed
up the identification of experts for the RUSE model elements, all creators, mod-
ifying authors, and the related dates and times must be identifiable for a given
element.

Moreover, access control for the different kinds of model elements must be
configurable for a project. Roles which are allowed to create, read, modify, or
delete a kind of element such as a use case, a requirement or a class can be created
and assigned to the project participants. Typical roles of a software development
project include the requirements engineer, the architect, or the tester [19].

Awareness

A main issue in the collaborative activity in distributed development projects is
awareness. Dourish and Bellotti [36] define awareness as “an understanding of the
activities of others, which provides a context for [one’s] own activity”. Awareness
includes knowing who else is working on the project, what they are doing, which
artifacts they are or were modifying, and how their work may impact other work.
The awareness problem is clearly recognized in research [72, 24, 52,33, 118, 111].

The main prerequisite for supporting awareness in a project is to capture what
the project participants are doing. Therefore, all elements of the RUSE model must
be identifiable that were read, modified, or created by a specific project partic-
ipant. Using this information in combination with the traceability links of the
model elements and their accountability can be used to identify related partici-
pants. For example, when a tester modifies a test case that is related to a use case,
which is related to a feature of the system, the requirements engineer of the fea-
ture can be related to the tester. The transitive relationship can be used to notify
the tester when the feature is manipulated and provide the contact information of
the requirements engineer for requesting additional information.

Consistency of multiple model views

Software development projects use different tools for different tasks. The tools
range from modeling, testing or change tracking tools to word processing or pre-
sentation tools. For instance, a common practice for creating a requirements anal-
ysis document is to use a requirements tool like DOORS [121] in combination
with a UML modeling tool like Rational Software Modeler [64] and a word pro-
cessing tool like Microsoft Word [84]. The required model elements are created
and maintained in their related modeling tools and are than added into documents
and enriched with text to increase the understandability. It is common that model
elements occur multiple times in one or even in many documents. For example,
use cases or classes are presented in multiple use case or class diagrams. The dia-
grams are exported from the modeling tools into images and imported into Word.

2.1. Requirements 21

In addition, the model elements are presented as structured text that describe the
model elements in detail and also the text of the document sections usually refers
to selected model elements.

We call the different occurrences views of a model element, which show the
same model element in different contexts. For example, the exported model im-
ages are views of the model that is maintained in the related modeling tool and
outside of Word. The documents get outdated as soon as the model gets changed.
The images must be exported again, and all diagram occurrences in the documents
must be replaced. Changing a name of a model element requires to update all
name occurrences in the documents. The modeling tools have no support to cap-
ture all external views of their artifacts. Thus, the engineers changing a model in a
modeling tool usually do not know which or how many views of the model must be
updated. This problem gets worse when the views are geographically distributed
and maintained by different participants. Maintaining view consistency between
different tools with redundant information and different persistency mechanisms
by manually reviewing all artifacts is costly for large development projects. Nu-
seibeh et al. [91, 92] describe a case study in which a document contained a dia-
gram and a detailed textual specification of the diagram content. After changing
the textual specification, the diagram was inconsistent with the text. Instead of up-
dating the diagram, the project participants marked the diagram as outdated and
referred to the textual specification.

Different views of the software engineering artifacts represented by the rationale-
based unified software engineering model must always be consistent. This re-
quires that each artifact is represented only once and the model has no redun-
dancies. Formal models and informal text descriptions must be encapsulated in
unique model elements with a unique identifier that can be referred to from any
view. Thus, all views are always consistent as they represent the information of the
same element. When changing an element, all referring views reflect the change
immediately and the model views are kept consistent.

Support for fine-grained search and filter mechanisms

When all software engineering artifacts are represented in one model, the num-
ber of elements in the model become very huge for large projects. Fine-grained
search and filter mechanisms are required to support the tasks of different project
participants. For example, a project manager may be interested in all development
tasks that are not finished and have a certain due date. An analyst would like to
see all documents that contain views of a specific analysis class. A requirements
engineer might be interested in all model elements that contain domain related
words in either the description or in any attribute. Model quality reports might
search for elements according to defined design guidelines and metrics [8, 9]. For
example a quality report on use cases can find all use cases that are not related to

2. The RUSE Meta-Model

any actors. A quality report on classes might find all classes that have no instance
in any sequence diagram or activity diagram [12].

The fine-grained search and filter mechanisms must be able to access and com-
pare all relevant attributes of the different kinds of model elements from the RUSE
model. Moreover, the mechanisms must be able to identify, traverse, and filter
over all kinds of model element associations. At the same time, the mechanisms
must not depend on the kinds of model elements. Otherwise the mechanisms must
be updated or changed whenever a new kind of element is added or an existing is
changed.

To realize such mechanisms, all model elements must have a uniform repre-
sentation that is independent from the way the elements are used. The attributes
and associations of a model element must be discoverable so that the generic
search and filter mechanisms are applicable on all model elements. Therefore,
the meta-model must provide a generic mechanism to store and retrieve any kind
of data and to create associations to other model elements, without requiring any
change. The uniform and generic representation of model elements is also re-
quired for the extendability of the model.

Extendability

This dissertation presents the rationale-based unified software engineering model
that is adequate for executing a range of distributed development projects. How-
ever, the model may need to be changed, customized, tailored or extended, de-
pending to a project needs and the used methodology. Adding new kinds of model
elements and adding new kinds of associations to existing models must not require
any changes in neither the meta-model, nor existing models.

Configuration management

It is widely recognized that software configuration management (SCM) is cru-
cial for maintaining consistency among, and minimizing the risk and cost of
changes to, all artifacts of a software development project [65, 66]. The fact
that SCM is essential for the success of any and specially for distributed develop-
ment projects is also reflected in the Capability Maturity Model Integration [114]
that defines levels to assess the maturity of the software development process in
organizations.

The currently available version control tools such as Subversion [123] or Ra-
tional ClearCase [59] are geared towards supporting textual artifacts such as source
code. These systems are inadequate for many types of models such as require-
ments, use cases, feature models, architectures, class models, test cases or ratio-
nale. These artifacts have complex internal structures and semantic relationships.
These SCM systems treat a software system as a set of files and directories and
manage them in a line oriented way. This creates an impedance mismatch between

2.1. Requirements 23

the simple, flat file-based data models in traditional SCM systems and software
engineering models with complex internal structures and semantic dependencies
[90]. Some specialized repository-based tools such as DOORS [121] for require-
ments provide SCM functionality such as baseline, track, or control changes. But
not all kinds of artifacts such as collaboration artifacts can be integrated in these
tools. Integrating different SCM tools for different kind of artifacts leads also to
numerous problems, as different tools do not share the same version space.

Thus, the meta model must include a configuration management model that,
according to Dart [31, 32] and Estublier et al. [41], supports the SCM categories
versioning, system models and selection and workspace control. Each model ele-
ment conforming the meta model must be part of the configuration management
model that supports a version history, version selection, change tracking, the iden-
tification of differences between versions, workspaces, conflict detection and res-
olution, baselining, branching and merging.

Configurable labeling and categorization

Different organizations and even different projects of the same organization
with different clients have different terminologies for the same software engineer-
ing artifacts. The names of the software engineering artifacts used in a devel-
opment project must conform to the terminology of the project. For instance, a
global nonfunctional requirement that is not directly related to the system under
development, but constrains the way of development is sometimes called pseudo
requirement and sometimes called constraint. We define the name of the artifact
class as label. The label of each model element class must be configurable within
a project at runtime.

Sometimes, specially in large projects, a custom categorization mechanism
is needed to maintain clarity, by clustering a large amount of elements. Just the
label of categorized elements differ, while the element structure - attributes and
associations - remain the same. For example, a common practice is to categorize
the nonfunctional requirements into usability, reliability, performance, and sup-
portability, [50, 67]. The label of the elements should depend on the category
and should not be nonfunctional requirement. A nonfunctional requirement of the
usability category should be labeled as usability nonfunctional requirement. The
model elements must be filterable by their category so that all usability nonfunc-
tional requirement or constraints can be listed. In addition, to visually separate
different categories, a project must allow to configure custom icons for a each
model element categorization. The categories of model element classes must be
dynamically configurable for a project.

24

2. The RUSE Meta-Model

2.2

The Meta-Model

Before defining the meta-model in detail (see sections 2.2.1 and 2.2.2), we
provide a conceptual overview.

" reader / author / creator
User
*
_______ Role subelements
* * *
L 1 1 * OL
Project (@—{ History Project Data (@—— ModelElement parent
2
1 0..1
1.7 1

Branch [@— Version ModelLink

L

HistoryLink

Figure 2.1: Meta-model overview (UML class diagram)

We start the description with the central class Project, which represents a soft-
ware development project, containing all project related entities. It provides ac-
cess to the project data, the history containing different versions and their changes,
as well as to the users that access the project.

Instances of the class User represent persons or external entities, accessing the
project. A User may access many Projects, defined by the Role association.

The Role association class relates many Users with many Projects. The Role de-
fines the user’s role in a project. Typical roles are Project Manager, Requirements
Engineer, Analyst, or Architect [19].

The History class represents the history of the Project. It provides operations for
creating revisions, branches, tags and for accessing specific versions, differences
and history information.

The Branch class represents a branch of concurrent development in the version
space and is composed of all versions that are available in the branch.

Versions represent the data of the Project at a specific state. A Version can have
many successor Versions that are associated with the History Link class. The differ-
ence between two associated Versions is called delta. The Versions and the History
Links represent the version graph of a Project. The data of the Project at a specific

2.2. The Meta-Model 25

2.2.1

Version can either be represented explicitly by a Project Data instance or implicitly
by its position in the version graph and the appropriate deltas, represented by the
Change Packages (see section 2.2.2).

The class Project Data is composed of Model Elements and Model Links, which
associates two Model Elements. The Model Elements and Model Links build a graph
structure. The Project Data class provides operations for accessing, searching and
filtering Model Elements and for traversing over the Model Links.

The class Model Element is the most abstract and generic modeling class that
represents any concept of the software engineering domain. A Model Element can
have many child Model Elements and can be linked by Model Link classes to many
other Model Elements. The Model Element class provides generic methods to store
and retrieve arbitrary data.

The Model Link class is an association class that links two related Model Element
instances. The Model Link class extends the Model Element class and inherits to all
its properties to represent a software engineering concept.

The History Link class defines the successor Versions for a given Version and
represents the edges in the version graph. The History Link has the two subclasses
Revision Link and Variant Link that are defined in 2.2.2. Revision Links represent
changes between two Versions within the same branch, while the Variant Link con-
nects two Versions from different branches.

In the following sections, we define the RUSE meta-model in detail. Sec-
tion 2.2.1 defines the project data model that provides the meta-model entities for
creating software engineering artifacts. Section 2.2.2 discusses different configu-
ration management approaches and leads to the version object model.

The project data model

This sections defines the project data model of the meta-model. The project
data model provides a generic mechanism to create software engineering artifacts
that meets the requirements defined in section 2.1. The main entities of the project
data model are the classes Project Data, Model Element, and Model Link. We also add
and describe the associated classes Project and User, as they provide a good entry
point to the project data model. We describe all entities in detail by natural text,
UML [93] and the Object Constraint Language (OCL) [94]. Figure 2.2 shows a
UML class diagram of the model.

Project

The Project class represents a software development projects and is the base class
of the meta-model for creating and integrating various models. From the Project
class, all project related entities like the History, the Project Datas, the Model Ele-
ments, and generic services for exploring, searching, filtering, and analyzing the
meta-model are accessible. A Project is associated by the Role association class
with many Users and is responsible for a role-based access control. Each Project

2. The RUSE Meta-Model

User * reader
username x
author
1 creator
------------ i
*
_____ Project " * *| subelements
-id:String
+name:String ModelElement
+description:String -id:String
getld(): String -name:String 0.1
+description:String parent
- * | +getld(): String > |
________ ? +getName(): String
ObjectModel +setName(newName:String)
1.*% +isValidName(newName:String): boolean
ProjectData +getCreationDate(): Date
+getModificationDate(): Date
+getME(id:String) ModelElement 1 |*getlabel(): String.
+getMEByName(name:String):ME[*] +setLabel(label:Strin)
+getMEByClass(class:Class):ME[*] +createValidCategory(name:String)
+getMEByClass(class:Class, boolean subelements):ME[*] +deleteValidCategory(t:Category)
+getValidCategories():Category[*]
+getCategory():Category
2 | +setCategory(t:Category)
+delete()
source / target
] 0
he]
=T selected
g
* 0..1
Category Field
+name +name *
+value
* links
ModelLink List
_ _ +name .
+isValidName(newName:String): boolean +add(value-Any)
+delete() +remove(value:Any)
+getValues():Any
Map
+name .

+add(key:String, value:Any)
+remove(key:String)
+get(key:String):Any

Figure 2.2: The project data model

The project data model of the RUSE meta-model and its associated classes Project and User as an
UML class diagram. Note that the association between the Project and Project Data is an association
class that represents the version object model of the meta-model. The association results from

several transitive association of the version object model described in section 2.2.2.

2.2. The Meta-Model 27

instance has a name, a description, and a global unique id, which is not modifiable.
During instantiation, the id and the initial version object model, described in sec-
tion 2.2.2, are created. By traversing associations, a new Project can access one
History, one Branch, the first Version and the initial empty Project Data.

Listing 2.1: OCL constraints of the class Project

context Project inv:
Project.alllnstances ()
—>forAll(pl, p2 | pl<>p2 implies pl.id<>p2.id)

self . history .branch—>size () >= 1
self . history.branch.version —>size () >= 1
self . history .branch. version.projectdata —>size () >= 1

User

The User class represents persons or external entities which have access right on
a Project. Many Users participate in different roles in many Projects. Depending
on their role, the users have different access rights to the Project and its contained
entities like Model Elements. Depending to the project needs, different roles and
role-based access policies must be dynamically defined. The User instances are
identified by a unique username. A User can create, modify and access the Model
Elements of the Project. All these interactions are captured by an association, con-
taining the date and time of the interaction. These associations enable the iden-
tification of all Model Elements accessed by a User, and the identification of all
Users that interacted with a specific Model Element. This information is essential
for supporting awareness and identifying experts in a Project.

Listing 2.2: OCL constraints of the class User

context User inv:
User.alllnstances ()
—>forAll (ul ,u2lul<>u2 implies ul.username<>u2.username)

Project Data
The Project Data class represents the complete data of a project in a specific ver-
sion. It is composed of Model Elements and Model Links, which relates two ele-
ments, thus building a graph structure. A Project has at least one Project Data that
that holds the latest version of the data. The Project Data class provides operations
for accessing, searching and filtering all containing Model Elements. Queries for
searching and filtering are based on the discoverable Field, List, and Map proper-
ties, the Model Link graph structure, the hierarchical subelement structure, as well
as on the class, label, and category information of a model subclass. The Model
Element properties used for queries are defined in detail below.

The field, list, and map values, the subelement and link structures, as well as
the class names of the model classes and links can be used in queries to narrow

28

2. The RUSE Meta-Model

down the search space. As system, collaboration, and organizational models are
part of the same meta-model graph, these services can be used to bridge the gap
between modeling, collaboration, and awareness.

Listing 2.3: OCL constraints of the class ProjectData

context ProjectData inv:
ProjectData . alllnstances()—>size () >= 1

Model Element

The Model Element class is the super class of all model classes and provides the
main meta-model operations. Each Model Element has a unique id in the scope
of its Project Data. Model Elements may have the same id in different Project
Data instances, as different Project Datas represent the same data in different ver-
sions. Each Model Element has a name and a description attribute. The oper-
ation +isValidName(name:String):boolean defines if the provided String parameter
is a valid new name for specific Model Element instance. In the specification of
the Model Element, a valid name is not empty and no other instance of the the
class on which the operation is invoked, has the name. For instance, if +isValid-
Name(newName:String):boolean is invoked on the class Use Case, a model subclass
of Model Element, the name is valid if no other Use Case exist with the newName.
The operation +setName(newName:String) tests if the new name is valid before
changing the name. The operation +isValidName(newName:String):boolean should
be overloaded by subclasses to redefine the valid name specification if needed.
For instance, the name of a class must only be unique within its package and not
among all existing classes (see listing 2.4).

The operation +getLabel():String returns a default end-user readable artifact
name for the Model Element. Subclasses should overwrite the method and return
an appropriate name. For instance, the class Use Case returns “Use Case” and the
class NFR returns “Nonfunctional Requirement”. To conform to the terminology
used in a project, the label can be changed on runtime by the static class oper-
ation +setLabel(label:String). The operation changes the label for all instances of
the same class. For instance, the label of the class NFR can be changed to “Con-
straint”. Moreover, when overwriting the operation +getLabel():String, instances of
a subclass of Model Element can return a label that is based and reflects the state of
the instance. For instance, Briigge and Dutoit [19, p. 498] define the class Action
ltem with subject, description, owner, deadline, and status attributes. The owner is
the person responsible for completing the Action Item. The status of an Action Item
can be todo, notDoable, inProgress, or done. When realizing the class Action Item
within this meta-model, the class Action Item can overwrite the +getLabel():String
operation and return a label that is based on the state. Thus, Action Item instances
with the state todo, can visually be labeled as “ToDos”, while other instances with
a deadline and an owner are labeled as “Action Items”.

2.2. The Meta-Model 29

The Model Element class may be associated with any number of Fields, Lists, or
Maps. In the context of a Model Element instance, each Field, List, and Map instance
has a unique name, which is used to access it. Adding a field, list, or map replaces
an exiting field, list or map, if the name of the new one already exists. A field
is used to store any named value in a Model Element instance. A list is used to
store a set of values referring to the same name. Within a map, any key-value pair
can be stored. Fields, Lists, and Maps are used by subclasses to store any kind of
data. Subclasses should hide the usage of fields, lists and maps by encapsulating
the usage in operations. For instance, the subclass Class, from the system model,
provides the operations +isAbstract():boolean and +setAbstract(abstract:boolean) to
identify and define if the Class instance is abstract or not. The operations use the
provided meta-model mechanism to access and store the boolean value within an
associated Field instance, named “abstract”. The encapsulation of Fields, Lists, and
Maps enables subclasses to provide a clean API for the related modeling domain,
while using the generic mechanism of the Model Element class takes cares about
persistency and provides generic operations to explore the meta-model.

Listing 2.4: OCL constraints of the class ModelElement

context ModelElement inv:
ModelElement . alllnstances()—>forAll(el, e2 |

(el<>e2 implies el.id<>e2.id)

or
(el<>e2 and el .id=e2.id

implies el.projectdata<>e2.projectdata

)

)

field —>forAll(f1, f2 | fl<>f2 implies fl.name<>f2.name)
list >forAll (11, 12 | I1<>12 implies 11 .name<>12.name)
map—>forAll (ml, m2 | ml<>m2 implies ml.name<>m2.name)

context ModelElement:: setName (newName: String)
pre: isValidName (newName)
post: !isValidName (newName)

context ModelElement::isValidName (newName: String): boolean
pre: self.name <> newName
post: result = self.getType (). alllnstances ()
—>forAll(el | el.name <> newName)
and newName—>size ()>0

context ModelElement:: delete ()
post: links —>size ()=0
post: subelements —>size ()=0

30

2. The RUSE Meta-Model

To support a hierarchical structure between Model Elements, each element may
have an arbitrary number of subelements associated, and each element has at most
one associated parent Model Element. The associated subelements are ordered and
the hierarchical structure and order can be dynamically changed. The hierarchical
structure of the meta-model does not implicate a defined meaning. A model of the
meta-model can use the hierarchical structure to realize any required relationship.
The only implicit meaning of the hierarchical subelement relationship comes with
the +delete() operation of the Model Element.

The +delete() operation deletes a Model Element instance from it’s Project Data,
and deletes recursively all associated subelements of the Model Element. There-
fore, the hierarchical subelement association mechanism fits best for a hierarchical
composition relationship, in which the subelements are bound to the existence of
the parent Model Element. Example relationships are the relations between UML
classes and their attributes and operations. A class Class would represent the
parent of the subelement classes Attribute and Operation. Each Attribute and Opera-
tion instance has exactly one parent element Class, while a Class may have many
subelement Attribute and Operation instances. Deleting a Class instance will also
delete all it’s Attribute and Operation instances.

Model Link

The Model Link class is used to associate any related Model Elements. The Model
Link connects two Model Elements, realizing a graph structure in which the Model
Elements are nodes and the Model Links are edges. A Model Element instance may
be associated with any number of Model Link instances, while each Model Link has
exactly two associated Model Elements, called source and a target. The Model Link
extends the Model Element and therefore, it is also a full-fledged Model Element,
which may be used to store any fields, lists, or maps. For example, a Model Link is
used to realize UML associations between UML classes. The data of the associa-
tion like the multiplicities or roles are by the field mechanisms inherited from the
Model Element class. Moreover, a Model Link instance may have any subelements,
as well as links to other Model Element instances.

When a Model Element instance is deleted by it’s +delete() operation, all it’s
associated Model Link instances get deleted too, while the opponents of the Model
Links are not affected. The Model Link refines the +delete() operation to ensure
that source and target Model Elements remove their reference to the link (see list-
ing refocl:ModelLink). As the +delete() operation of the Model Element ensures
that all it’s links are deleted too, the +delete() operation invokes the +delete()
operation of all its Model Links. In addition, the Model Link refines the +isValid-
Name(newName:String):boolean operation. For a Model Link instance, all names are
valid that differs from current name.

Listing 2.5: OCL constraints of the class ModelLink
context ModelLink:: delete ()

2.2. The Meta-Model 31

2.2.2

pre: source . links —>exists (1:ModelLink | link=self)
pre: target.links —>exists (1 : ModelLink | link=self)
post: @pre.source.links —>forAll(link :ModelLink | I<>self)
post: @pre. target.links —>forAll(l:ModelLink | I<>self)

context ModelLink::isValidName (newName: String): boolean
pre: self .name <> newName
post: result = true

To separate between link classes and to ensure type consistency, a model
should realize links between elements by extending the Model Link with a new
link class. While the meta-model provides a generic mechanism for storage and
link traversal, the model subclasses are used for type checking and for providing
the specialized model dependent behavior. The arising link taxonomy can be used
in search queries, and in filtered link traversals. Figure 2.3 shows an example
model, extending the meta-model. The classes Use Case and Actor represent the
UML use case and actor and extend the Model Element class. A use case can be
initiated by one actor, which is represented by the specialized link class Initiatin-
gActorUseCaselLink. The specialized link inherits the ability to link two elements
and validates that the linked element classes are a Use Case and an Actor.

ModelElement

2
ModelLink etamodel
N\

InitiatingAct model
nitiatingActor

UseCaseLink 0.1 1| UseCase

*
1 Actor

Figure 2.3: Example extension of the meta-model

The configuration management model

Software configuration management (SCM) is a well accepted technique for
managing change in software development projects. It is part of the Capabil-
ity Maturity Model Integration [114] that defines levels to assess the maturity of
the software development process in organizations. SCM systems follow different

32

2. The RUSE Meta-Model

approaches concerning delta representation and granularity, version granularity,
the version object model, and the handling of diffing and merging, and conflict
detection and resolution to realize configuration management.

This section discusses and evaluates various SCM techniques to be used for
the RUSE meta-model. We follow Conradi and Westfechtel’s SCM framework the
uniform version model, presented in [26, 27]. The framework provides a common
terminology and classification with which the available alternative approaches for
the SCM design can be uniformly expressed and compared. The terminology is
widely accepted and cited within the SCM community. We extended the catego-
rization of the original framework by adding the aspect of delta representation
since it is highly relevant for fine-grained configuration management of complex
data structures, like the RUSE Model. After evaluating different approaches, we
describe the resulting version object model of the RUSE meta-model.

Delta representation

Deltas are the differences between a configuration item in two different ver-
sions. Deltas can be represented using one of two basic approaches, state-based
deltas or operation-based deltas. The differences between the two approaches are
very subtle in many SCM systems but are highly relevant.

State-based Deltas In the state-based approach, only the state representations
of different versions are stored, possibly using compression or sharing of
common parts. Deltas are reconstructed using a differencing algorithm that
compares the different state representations.

Operation-based Deltas In the operation-based approach, changes are described
by using the original sequence of operations that caused the changes. The
operations are created by the editor application that is used to change data.

With state-based deltas, the semantic context of the original operations that
caused the change has to be recalculated with the deltas. This approach is ex-
pensive and in some cases, it does not work at all [77]. For example, it can be
impossible to unambiguously recalculate the original sequence of change opera-
tions, when the state changes of one operation are partially or completely masked
by those of a later operation. This problem is of particular importance for the
RUSE model, where state of Model Elements is internally represented by the RUSE
meta-model. A single change operation actually results in a non-atomic series of
transformations to that state.

For such multi-level data models that have a complex internal structure, the
state data is often stored in a structured way, e.g. using XML, to preserve more
contextual information to assist in the reconstruction of the original semantic con-
text of the deltas. This approach is used in similar systems described in [96], [82],

2.2. The Meta-Model 33

[99] and [75, 76, 77]. However, even this improved approach can not resolve all
ambiguities and remains complicated.

Storing the original editor operations automatically captures the original se-
mantic context of the changes. When using the operation-based approach, deltas
can easily be recorded on the model level. Several other research efforts have suc-
cessfully employed the operation-based approach in environments, similar to the
RUSE model [105, 90, 95].

A drawback of the operations-based approach is that the operations depend
on the editors used, resulting in coupling the editor tools with the SCM engine.
However, on the one hand this can be resolved by defining a standardized language
to express changes in the means of operations, and on the other hand, it is not
very common to use different editors to manipulate the same software engineering
artifacts within the same project.

The editors have to support the recording of operations, which is usually not
provided in systems with a simple interface to the SCM system, or in systems that
have to support arbitrary editors. This is probably the main reason why operation-
based systems are not in widespread use today.

The benefits of the operation-based approach clearly outweigh its drawbacks.
Therefore, we select an operation-based delta representation. It is important to
note that operations need to fulfill two requirements in order to be usable in
operation-based deltas [78]):

e The operations have to be deterministically replayable in order to be used
in forward deltas.

e The operations have to be reversible in order to be used in backward deltas.

Delta granularity

Another important question regarding an SCM system is the granularity used
to describe changes. This is called the delta granularity. When changing software
engineering models that are part of the RUSE model and conform to the RUSE
meta-model, changes take place on three different semantic levels of granularity
that are described below. Figure 2.4 illustrates the levels of change on an example.

Logical level These changes are sets of logically coherent work as seen by the
user, e.g. “I updated the use cases, their analysis and the glossary according
to today’s client review”.

Model Level These changes are atomic changes as far as a specific modeling
domain is concerned, e.g. “set a new initiating actor for a use case”. They
correspond to domain specific operations on the Model Elements of the RUSE
model and are usually comprised of several changes on the meta-model
level.

34

2. The RUSE Meta-Model

a)
I:‘> <<initiate>> Withdraw
Money
clarify use case

Customer

Logical Level clarify use case

create actor - set

Model Level "Customer" set the initiating actor name
create create add link to add link to)

Meta-Madel Level ModelElement ModelLink ModelElement ModelElement set field

Figure 2.4: Delta granularity: Three semantic levels of change

[lustration of the delta change granularity that involves three semantic levels. Figure 2.4 a) shows
an example of change. The use case “GetMoney” describes the interaction of a bank customer
with an ATM machine. In our example, a requirements engineer clarifies the use case, by creating
a new actor “Customer”, setting the customer as initiating actor for the use case and changing the
name of the use case to “WithdrawMoney”. Figure 2.4 b) shows the delta granularity of change
on the three semantic levels. On the logical level of the requirements engineer, one change occurs:
the clarification of the use case. The clarification of the use case involves more changes on the
model level. The new actor “Customer” is created, the “Customer” is set as initiating actor of the
use case, and the use case is renamed. All changes of the model level are transformed to changes
on the meta-model level. Creating a new actor transforms to the creation of a new ModelElement.
Setting the initiating actor creates a new ModelLink and adds the link two the ModelElement instances
representing the use case and the actor. Changing the name sets a field value on the meta-model

level.

Meta-model Level These are the changes as seen by the meta-model. They
change attribute values of single Model Elements. Users of the system are
usually not aware of and do not understand this level of change.

The SCM approach needs to be able to describe and track changes on all three
levels of granularity. Fine-grained change tracking can easily be achieved on the
meta-model level since changes can be described with the granularity of changes
to single attributes of a Model Element. Describing the meta-model changes has
the additional benefit of being independent of the underlying model level. We use
the class Meta Model Operation to describe changes on a Model Element.

Unfortunately, this alone is not sufficient since it does not capture enough
context. A meta-model change on its own will not be meaningful to a user of the
system since he will be working on the semantic level of the model and generally

2.2. The Meta-Model 35

not be aware of the mechanics of the meta-model. Reversing the original model
level changes from a series of meta-model changes is a difficult task and nearly
impossible, since it would require the SCM engine to have detailed knowledge of
every domain model on the model level. Furthermore, operations on the logical
model level often do not have an injective mapping to the meta-model, making
an unambiguous reconstruction impossible. As an obvious example, the removal
of an element in one part of the meta-model graph and the addition of a similar
element in another part could be the result of a move operation, as well as the
result of a delete and add operation.

Therefore, we use the Model Operation class to capture additional information
and to preserve the full semantic context of the model level. The model level
can add additional type specific integrity constraints that need to be considered
during conflict detection and resolution. For example, a use case can have only
one initiating actor or a class can not generalize itself. These constraints can only
be checked with additional domain knowledge from the model that is not known
by the meta-model.

An SCM system can automatically track and describe changes on the meta-
model and model level, but not on the logical level. Therefore, the SCM approach
must provide a mechanism for manually grouping and describing logical changes
by the user. Our approach provides Change Packages with log messages to achieve
this on the logical level of granularity.

Figure 2.5 shows the classes Meta Model Operation, Model Operation, and Change
Package with their associations to the classes from the project data model. The
classes are described in detail below.

Abstract Operation

The Abstract Operation class is the abstract super class of the Meta Model Opera-
tion and Model Operation classes. The Abstract Operation class and its subclasses
build a composite pattern [46], in which the Abstract Operation describes an ab-
stract change. The operation +reverse():AbstractOperation creates a new Abstract
Operation, which describes reverse change of the origin change.

Meta Model Operation

Meta Model Operations describe changes on the semantic level of the meta-model.
They describe a single change that affects and changes exactly one Model Element.
A Meta Model Operation support reversibility as described above. The operation
+reverse():MetaModelOperation creates a new Meta Model Operation that can be used
to revert the Model Element change. The Meta Model Operation class extends the
abstract class Abstract Operation and represents the leaf of the composite pattern.
The operation class is abstract, as the concrete changes of a Model Element are
described by several Meta Model Operation subclasses. The Meta Model Operation
taxonomy is shown in figure 2.6.

36

2. The RUSE Meta-Model

Version
ObjectModel
]
Project ! -
-id:String ! ProjectData
. . | *
+“ame:SF””9 . L g L . 1. +applyChangePackage(cp:ChangePackage)
+description:String . .
T +clone(): ProjectData
getld(): String]
1 ¢
1% AbstractOperation

+reverse():AbstractOperation

subelements

* *
ModelOperation MetaModelOperation 0.1
+type: String « affects 1 [ModelElement .
1 - ¥ . paren
+reverse(): reverse(): 5
ModelOperation MetaModelOperation .
" source
1. / target
1
ChangePackage -
+logMessage * 1 userr?asme; « | ModelLink
+timeStamp author links [~
+reverse():ChangePackage

Figure 2.5: Representation of deltas on three semantic change levels.

The UML diagram shows the classes and associations that are used to represent changes of the
project data model. The Meta Model Operation describes changes on the meta-model level, the
Model Operation describes changes on the model level, and the Change Package describes the log-
ical change level from the user. Note that the association between Project and Project Data is an

association class that represents the version object model described below.

The CreateOperation is used to describe the creation of a new Model Element.
It’s +reverse():MetaModelOperation creates and returns a DeleteOperation, which is
used to describe the deletion of a Model Element. Reversing a DeleteOperation re-
turns a CreateOperation of the affected Model Element.

The FieldOperation is used to describe Field changes of a Model Element. The
type attribute indicates whether a field gets added or removed. The name of the
field is stored in the fieldName attribute, while the new and old field value is stored
in the newValue and oldValue attributes. The +reverse():MetaModelOperation returns
a FieldOperation, which changes the Field of the Model Element into it’s previous
state.

The ListOperation is used to describe List changes of a Model Element. The
type attribute indicates whether a list entry gets added or removed. The name
of the list is stored in the listName attribute, while the list value is stored in the
listValue attribute. The +reverse():MetaModelOperation returns a ListOperation, which
has the opposite type attribute value than the origin operation. Thus, the reversed

2.2. The Meta-Model 37

subelements

*

MetaModelOperation 0..1
« affects 1 | .ModelElement
. parent
+reverse():
MetaModelOperation
CreateOperation ModifyOperation DeleteOperation
+reverse(): +reverse(): +reverse():
MetaModelOperation MetaModelOperation MetaModelOperation
N
FieldOperation ListOperation MapOperation SubelementOperation LinkOperation
+type +type +type +type +type
+fieldName +listName +mapName +subelementld +linkld
+newValue +listValue +mapKey +newPosition +reverse():
+oldValue +reverse(): +mapValue +oldPosition MetaModelOperation
+reverse(): MetaModelOperation +reverse(): +reverse():
MetaModelOperation MetaModelOperation MetaModelOperation

Figure 2.6: Taxonomy of Meta Model Operations
The UML class diagram shows the subclass taxonomy of the Meta Model Operation class, which
reflects the possible changes of a Model Element instance, described in section 2.2.1.

ListOperation removes the list value entry when the origin operation added the
value and adds the value when the origin removed it.

The MapOperation is used to describe Map changes of a Model Element. The
type attribute indicates whether a map entry gets added or removed. The MapOp-
eration has the attributes mapName, mapKey and mapValue, to hold the name of the
modified map, the key and the value. The +reverse():MetaModelOperation returns
a MapOperation, which has the opposite type attribute value than the origin oper-
ation. Thus, the reversed MapOperation removes the map entry when the origin
operation added the entry and vice versa.

The SubelementOperation is used to describe changes on the hierarchical struc-
ture of a Model Element. The operation describes the changes on the parent Model
Element, while the id of the subelement is hold in the subelementld attribute. The
type attribute defines if a subelement is added, removed, or if the position of a
subelement changed. The old and new position are captured with the oldPosition
and newPosition attributes. The +reverse():MetaModelOperation creates and returns a
SubelementOperation that describes the reversed change.

The LinkOperation describes changes of the link structure between Model Ele-
ments and Model Links. It type attribute indicates that a link is added to, or removed
from the affected Model Element. The id of the related link is hold in the linkld
attribute value. The +reverse():MetaModelOperation creates and returns a LinkOper-
ation with the opposite type attribute value than the origin operation.

38

2. The RUSE Meta-Model

Model Operation

The Model Operation describes changes on the semantic level of the model layer.
For example, it can describe the creation of an attribute on a class, or setting an
exiting actor as the initiating actor on a use case. It extends the class Abstract
Operation and adds an additional type attribute to capture the semantic context of
the model layer operation that caused the changes. The Model Operation class is
the aggregate of the composite pattern and is composed of one or more Abstract
Operations, which are either Model Operations or Meta Model Operations. The con-
taining Meta Model Operations describe the actual changes on the Model Elements
at meta-model level, that are needed to perform the model change. For example,
adding an attribute to a class is described in one Model Operation, which contains
a Meta Model Operation to create the new attribute and one Meta Model Operation to
add the new attribute as a subelement on the class. The Model Operation contains
other Model Operations, when the model change requires additional changes on the
model level. Assuming the model transformation Extract Class (see figure 2.7) is
realized in the RUSE model. It would create one Model Operation “Extract Class”
that is composed of other Model Operations like “Delete Attribute”, “Create Class”,
“Add Attribute”, and “Create Association”.

Person
name Person » b TelephoneNumer
officeAreaCode :> hame office number ?Ler:g;de
officeNumber
Extract Class

Figure 2.7: Example model transformation “Extract Class”

The model transformation Extract Class [43, p. 149] removes the attributes officeAreaCode and offi-
ceNumber from the class Person and creates a new class TelephonNumber with the attributes areaCode
and number. Than, the new class is associated with the class Person.

Change Package

A Change Package represents a logically coherent set of work as seen by the user.
The user has to provide a textual message that is set to the +logMessage attribute
and describes the work. The Change Package is associated with its author and
provides information about the time of the change, captured in the +timeStamp
attribute. It is composed of one or more Model Operations, which describe the
concrete changes on the model. Reversibility is supported by the operation +re-
verse():ChangePackage, which creates a new Change Package that is composed of
all reversed Model Operations of the origin Change Package.

Model Element and Model Link
The classes Model Element and Model Link are the main classes of the meta-model.

2.2. The Meta-Model 39

They are described in detail in section 2.2.1. We add a new association between
the Model Element and the Meta Model Operation class, which identifies all changes
of a Model Element in a specific Project Data version.

Project Data

The Project Data class represents the versioned part of project data model. It is
composed of Model Elements and Model Links. In order to facilitate the version-
ing mechanisms, we add the operations +clone:ProjectData and +applyChangePack-
age(cp:ChangePackage). The operation +clone:ProjectData creates a new Project
Data instance, which is an exact copy of the instance on which the operation was
invoked. All Model Elements and their states are also cloned and composed into the
new Project Data instance. The operation applyChangePackage(cp:ChangePackage)
applies the changes, described by the Change Package cp on the Model Elements of
the Project Data.

Version granularity

The version granularity describes how product and version spaces are com-
bined. Conradi and Westfechtel [26] present three types. One of the main issues
here is how to represent configurations.

Component versioning In component versioning, each configuration item has its
own separate version space. Since the version spaces of different configura-
tion items are not directly related, there is no intrinsic method of providing
consistent configurations. This must be added on top of the version model.
An example of a system that uses component versioning is the Revision
Control System (RCS) [45].

Total versioning Total versioning is an extension of component versioning in
which composite items are versioned as well. Since configurations are com-
posite items, they can be versioned directly in this approach. However,
configurations are specified explicitly, thus, they add some additional com-
plexity and effort to the management of configurations. An example of a
system that follows this approach is Rational ClearCase [59].

Product versioning In product versioning, all configuration items share a com-
mon uniform, global version space. Thus configurations are represented
implicitly and are always consistent, assuming no inconsistent versions are
checked into the repository. This approach is less flexible than the other
approaches but considerably simplifies the management of consistent con-
figurations. Product versioning has become more and more popular with
systems such as Subversion [123].

Component versioning lacks intrinsic support for managing consistent con-
figurations. This is however highly desirable. The Model Element instances in a

40

2. The RUSE Meta-Model

Project Data are highly interdependent through semantic relationships and we are
interested in managing sets of artifacts that consistently model an entire software
project.

Total versioning is not a big improvement in this respect since it still requires
explicit management of consistent configurations. The Model Elements managed
by the system should completely and unambiguously describe exactly one system
under development. Therefore, there is usually only one valid configuration at
any point in time. Thus, the flexibility of being able to explicitly manage con-
figurations is not needed and actually becomes a disadvantage by unnecessarily
increasing the complexity of the system.

Offloading this task of managing the configurations to the user would make the
system usage very difficult and error prone. Logic for supporting the user in this
task could be built into the SCM engine, but that would be very time consuming
and the process would still remain tedious. Many problems of this approach are
described in [90]. Furthermore, this would imply that the SCM engine needs to
be able to handle the structure and semantic integrity constraints of configuration
items and configurations. However the SCM engine should be kept as independent
of the internal structure of the data model as possible.

Product versioning lacks any modularity of the version space since it only has
one uniform global version space for all configuration items. This non-modularity
has its advantages and disadvantages. The main advantage is that version spaces
of different configuration items are naturally related, alleviating the need to find
combinations that produce valid configurations. Product versioning thus automati-
cally provides consistent configurations without the need for explicit management
of configurations or the SCM engine having to know about the exact nature of the
data model. It can guarantee consistent configurations by always versioning the
complete state of a project. Furthermore, product versioning is a natural match
with Change Packages since both approaches handle changes that are spanning
over several configuration items, the Model Elements, as a coherent entity.

One disadvantage of product versioning is that variants need to be global, too
[27]. In our case this is not an important concern since varying single data Model
Elements is seldom required as there is usually only one valid configuration at any
point in time. In the few cases where this is required, such variants can easily be
provided by branching. Another drawback of product versioning is that no unique
version or history exists per configuration item. For the former, the last product
version that changed the item can be used. For the latter, filters can easily be used
that select only the changes for the specified elements when extracting history
information.

Summarizing the analysis in this section, product versioning provides the ver-
sion granularity most suitable for configuration management of the RUSE Model.
As we have seen, it has several benefits and all its drawbacks can be overcome.
We therefore use product versioning in our approach.

2.2. The Meta-Model 41

Version object model

The version model resulting from the analysis above is shown in the UML
class diagram in figure 2.8. The version model classes are shown with their asso-
ciations to classes from the project data model, introduced in section 2.2.1.

History
Proi +createBranch(v:Version, name:String)
roject s))
— +createRevision(base:Version,
description |1 ! cp:ChangePackage): Version |1 1. Branch
id +createTag(v:Version, name:String):Tag +name
name .
+getChanges(source:Version,
target:Version):ChangePackage*
+getVersion(branch:String, 1
revision:int):Version
1.”
successors source Version
i i I 0
HistoryLink * 1 +revision:int L +na-:-:§
0..1 1 __| +date:Date
predecessor target
1
0..1
VariantLink RevisionLink Project Data

+applyChangePackage(cp:ChangePackage)

1 +clone(): ProjectData
1
ChangePackage User
+logMessage * 1
+timeStamp username
+reverse()

Figure 2.8: Version object model

The UML class diagram shows the version object model of the RUSE meta-model. The version
space is represented by a graph structure consisting of Branches and Versions as nodes, while the
Revision Links and Variant Links represent edges for the revision and variant relationships. The Re-

vision Links are associated with the Change Packages, describing the changes between two Versions.

History

The History class represents the history of a Project. It provides operations for cre-
ating revisions, branches and tags and for accessing specific versions, differences
and history information. A History has at least one Branch, which contains the main
trunk of development. All Branch instances of a History must have different names.

42

2. The RUSE Meta-Model

The operation +createRevision(base:Version, cp:ChangePackage): Version creates
a new Version from the base Version parameter. The base Version and the new Ver-
sion get connected by a Revision Link, which gets associated with the Change Pack-
age parameter cp . The Revision Link indicates the successor Version for the base
Version. The new Version is added to the Branch of the base Version. Both Versions
might have an associated Project Data instance, representing the data model in two
different versions. To create the new Project Data instance of the target Version, the
+clone(): ProjectData operation is used to create an identical Project Data instance
of the base Version, followed by the applyChangePackage(cp:ChangePackage) oper-
ation, changing the Project Data according to the Change Package associated with
the Revision Link.

The operation createBranch(v:Version, name:String) creates a new Branch for
concurrent development, which starts with the Version v. The name parameter
must be unique among all existing Branches. A new Version is created in the new
Branch and is connected by a Variant Link instance to the source Version v.

The operation +createTag(v:Version, name:String):Tag creates and returns a new
Tag object with the name parameter. The name must be unique among all Tags in
the History.

The operation +getChanges(source:Version, target:Version):ChangePackage* re-
turns all Change Packages that are associated to the Revision Links, when traversing
over the History Links from the source to the target Version. The result represents
the delta between the two Versions. Regarding the example object diagram shown
in figure 2.9, the +getChanges(...) operation from Version v1 to Version v2 returns
the Change Packages cp1 and cp2. The changes between the Versions v1 and b2 is
represented by the Change Package cp3.

The operation +getVersion(branch:String, revision:int):Version returns the Version
instance that is identified by the branch and revision parameters, if existent.

Listing 2.6: OCL constraints of the class History

context History inv:
self .branch—>size ()>0
self .branch
—>forAll(bl, b2 | bl<>b2 implies bl.name<>b2.name)

context History ::createRevision (base: Version,
cp:ChangePackage): Version

pre: base.branch. history = self

pre: base.successors —>select(link HistoryLink |
link . getType ()=RevisionLink)—>size ()=0

post: base.successors —>select (link HistoryLink |
link . getType ()=RevisionLink)—>size ()=1

post: result = base.successors —>select(link HistoryLink |
link . getType ()=RevisionLink)

2.2. The Meta-Model 43

context History ::createBranch(v: Version, name: String)

pre: self .branch—>forAll(b: Branch | b.name <> name)
pre: v.branch. history = self
post: self.branch—>size () = @pre.branch—>size ()+1

context History::createTag(v:Version, name: String): Tag
pre: self .branch.version.tag
—>forAll(t: Tag | t.name <> name)

Branch

The Branch class represents a branch of concurrent development in the version
space and is composed of all versions that are available in the branch. A Branch
has a unique name attribute among all Branches of its History. A Branch has at least
one Version instance, which has no associated Revision Link as predecessor. This
instance is the initial Version of the Branch. If this instance has no predecessor at
all, it is the initial Version of the History and thus, the Branch represents the main
trunk of development . Otherwise, it has a Variant Link to a Version of a different
Branch, and the Branch instance represents a variant of the trunk.

Listing 2.7: OCL constraints of the class Branch

context Branch inv:
self.version—>size ()>0
self.version —>size () = self.version.predecessor
—>select (]l HistoryLink | 1.getType()=RevisionLink)
—>size ()+1

Version

Versions represent the nodes in the version graph. The state of the project at a
specific version can either be represented explicitly by a Project Data or implicitly
by its position in the version graph and the appropriate deltas, represented by
the Change Packages. The predecessor and successor Versions of a Version are
identified by the subclass instances of the History Link class. These are the classes
Revision Link and Variant Link. A Version can have at most one incoming and at
most one outgoing Revision Link. If it has no incoming Revision Link, it is the initial
version of a branch. If it has no outgoing Revision Link, it is the head revision of
that branch. A Version can have an arbitrary number of outgoing Variant Links since
it can have an arbitrary number of variants. However, a version can have at most
one incoming Variant Link, in which case it is the initial revision of a new branch.
A Version has a unique +revision:int attribute to identify the Version in a Branch and
a +date attribute, holding the creation date of the Version.

Listing 2.8: OCL constraints of the class Version

context Version inv:

44

2. The RUSE Meta-Model

self.successor —>forAll (h: HistoryLink |
h.getType()=RevisionLink
implies h.target.branch=self.branch)

self.successor —>forAll (h: HistoryLink |
h.getType ()= VariantLink
implies h.target.branch<>self.branch)

Tag

The Tag class identifies an user defined Version of the version graph by a user
defined name. The name must be unique among all Tags of the History. The name
attribute represents the name of the Tag.

Listing 2.9: OCL constraints of the class Tag

context Tag inv:
Tag. alllnstances ()
—>forAll(tl, t2 | tl<>t2 implies tl.name<>t2.name)

History Link

The History Link class is and abstract class, which is used to represent the edges
in the version graph. The History Link represents the relationship between two
different Version instances. It is a directed link class from the associated source to
the associated target Version. The source and the target Versions must be different.
The relation type is defined by the concrete subclasses Revision Link and Variant
Link.

Listing 2.10: OCL constraints of the class HistoryLink

context HistoryLink inv:
self.source <> self.target

Revision Link

The Revision Link class connects two different Versions from the same Branch. The
target Version results from the source Version when applying the changes that are
encapsulated in the associated Change Package. The associated Change Package
represents the differences between the source and target Version.

Listing 2.11: OCL constraints of the class RevisionLink

context RevisionLink inv:
self.source <> self.target
self.source.branch = self.target.branch

Variant Link
The Variant Link class represents the relation between two different Versions from

2.2. The Meta-Model 45

two different Branches. Both Versions can be concurrently and independently
changed, which results in the creation of new Versions and Revision Links in the
related Branch. The Variant Link identifies the initial Version in a Branch that is
based on a Version from a different Branch.

Listing 2.12: OCL constraints of the class VariantLink

context VariantLink inv:
self.source <> self.target
self.source.branch <> self.target.branch

trunk:Branch b1:Branch

cpl
:ChangePackage

| :RevisionLink }- -

:ProjectData

vi:Version

1 .
v2:Version | :VariantLink

[:RevisionLink |-->-----

cp2
:ChangePackage

b1:Version

—{ :RevisionLink |

cp3
:ChangePackage

v3:Version b2:Version

:ProjectData

Figure 2.9: Example instance of the version object model

The UML object diagram shows an example instance of the version object model. The History
consists of two branches, the trunk and the variant Branch b1l. The trunk has three Versions. Version
v1 is the initial version of the trunk and of the overall project, as it has not Revision Link or Variant
Link as predecessor. Revision changes between the different versions are represented in the Change

Packages associated to the Revision Links.

The following chapter describes the rationale-based unified software engineer-
ing model that extends the described meta-model. The model is separated into
system models, collaboration models and the organizational models and describe
their associations.

46

2. The RUSE Meta-Model

3.1

CHAPTER 3

The RUSE Model

This chapter presents the rationale-based unified software engineering model (RUSE
model), which integrates system models, collaboration models and organizational
models. The system models consists and integrates concepts from different mod-
eling techniques. It covers feature modeling, use case modeling, object-oriented
analysis, hazard modeling, requirements and system design. In addition, concepts
for document models and diagrams of the RUSE model elements are provided. The
collaboration models support informal communication, formal discussion models
to capture rationale and a task model. The organizational model describes the
project organization and integrates the participants with the system model and
collaboration model.

All models are based on the extendable RUSE meta-model described in chap-
ter 2. All classes of the RUSE model are subclasses of the Model Element class.
The associations of the RUSE model are association classes that extend the Model
Link class, except those associations that are marked with a «subelement» label.
These associations are using the parent—subelement mechanism described in sec-
tion 2.2.1. All attributes are realized with the field, list, and map mechanisms of
the Model Element class. To reduce complexity from the class diagrams in the fol-
lowing, we do not show the classes of the RUSE meta-model again, except for those
cases, in which we directly refer to them. Figure 3.1 shows an example. The class
diagram on the top shows a model that is based on the RUSE meta-model. The
simplified version of the model is shown at the bottom.

Organizational models

The RUSE model contains an organizational model consisting of Organizational
Units that are either Participants or Teams. Teams in turn consist of other Organiza-
tional Units. Participants can be members of many Teams. An Organizational Unit has

47

48

3. The RUSE Model

ModelElement

ModelLink
Professor 1 N L:::(:lfxer:i?r:k 01 1 Lecture N Exercise
. .
parent subelements
Professor 0.1 Lecture Exercise
. * *

<<subelement>>

Figure 3.1: Example class diagram that is based on the RUSE meta-model.
The upper class diagram shows the model classes Professor, Lecture, and Exercise that extend the
Model Element class of the RUSE meta-model. A Professor instance can be the lecturer of many
Lectures, while a Lecture is associated to zero or one Professor. The association is realized by the
ProfessorLectureLink class, which extends the Model Link class. In this model, a Lecture is composed
of many Exercises. The lower class diagram shows the simplified notation of the model that we use
in this chapter. The classes of the RUSE meta-model are hidden. The link class ProfessorLectureLink
is replaced by a normal association. The association between the Lecture and the Exercise classes
is marked with the «subelement» label to denote that the parent—subelement mechanism of the Model
Element class is used.

attributes like name, address, phonenumber, and email, which provide the informa-
tion to contact the Organizational Unit, and a description attribute.

We explicitly include the stakeholders of a project in the model. We add the
Stakeholder class as a subclass of the Participant class. A stakeholder is a person
or organization who has a certain interest and influence in the project. Typical
project stakeholders are clients, project owners, or investors. The stakeholders
are the main drivers of a project and their satisfaction can be used to define a
successful project.

A Participant can be associated with at most one User, which is defined in
section 2.2.1. The User defines the access rights of a person to the RUSE model
in a Project. Typically, not every participant of a project is allowed to access
the models. For instance, clients are normally not allowed to access the models
during development. Only selected outcomes and work products are provided.
Therefore, a Participant can be modeled in the organizational model but must not

3.2. System models 49

3.2

be associated with a User. Conversely, each User who is allowed to access the
Rationale-based unified software engineering model model is part of the project
organization and must be included as Participant (see figure 3.2).

Organizational Unit
name
address Assignable

Ll phonenumber x Ll
email +isClosed():boolean
description

Team Participant 1 0.1 User

_ .
Stakeholder

Figure 3.2: The organizational model
The UML class diagram shows the organizational model of the RUSE model. The organizational
model represents the project in terms of Teams and Participants. A Participant associated with a User

has access rights to the model.

Organizational Units are associated to many Assignables. The Assignable class
is abstract and represents any items that need responsible Organizational Units.
Subclasses include the Issue and the Work Item classes that are defined in sec-
tion 3.3. An Assignable has a state that is either open or closed. The operation
isClosed():boolean returns the state of the Assignable. Changing the state must be
provided by the subclasses.

In difference to other approaches, the organizational model is represented in
the same model as the system models. Thus, we can directly associate system
model elements with the Participants and Teams and retrieve organizational infor-
mation about authors and stakeholders of relevant elements.

System models

This section describes the system models of the RUSE model. It integrates
different existing modeling techniques and is based on the unified requirements
model presented in [13, 12]. We do not describe existing models in detail, but
focus on the changes and extensions we made.

50

3. The RUSE Model

3.2.1

Stakeholder requirements

We explicitly start the description of the system models with project stake-
holders. The stakeholders have different requests and expectations on a project,
that we capture with stakeholder requests. The stakeholder requests are the initial
elements for creating the project requirements. For requirements traceability it is
essential to know the original stakeholders of a requirement [35, 69, 48, 47]. This
knowledge is needed when negotiating about different and possibly contradict-
ing requirements, as the original stakeholders have differing needs and influence
within the project. Moreover, it is important to verify that each requirement is
based on a stakeholder’s request. Otherwise, it may be an orphan or “gold plated”
requirement, whose implementation costs and resources have no financial justifi-
cation.

The Stakeholder class is associated with many Stakeholder Requests. As many
stakeholders such as clients do not access the system models of a project, the
Stakeholder Requests are created and associated with the related Stakeholder by a
responsible requirements engineer or analyst. A Stakeholder Request has a unique
name, a description explaining required needs, and a status attribute that defines
if the request is accepted or not.

If a stakeholder request is accepted, it will be associated with one or more fea-
tures describing the stakeholder’s needs in more detail, including possible system
variability (see figure 3.4). According to the definition of Kang et al. (1990) [70]
a feature is a property of a system that directly affects the end user:

“Feature: A prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems”

A Feature is detailed in any number of subfeatures that are mandatory, op-
tional, or alternative. Mandatory subfeatures describe detailed aspects that the
parent feature must support, while optional subfeatures may be selected when
creating a concrete system from the feature model. Alternative subfeatures have
a multiplicity similar to the UML multiplicity, which defines how many of the
subfeatures must or may be selected [107]. A feature may be reused as subfeature
by many other features; thus, a feature may have many parents. In addition to
the hierarchical relationship, a constraint relation defines if a feature requires of
conflicts with any other features.

A Feature directly results from a Stakeholder Request is called a concept feature
and is represented within a feature diagram, which forms a tree. The concept fea-
ture is the root node of the feature diagram and all subfeatures are represented as
child nodes. The hierarchical relationships mandatory, optional, and alternatives
are represented by different edges between the nodes of the tree. A line with a
filled cycle denotes the mandatory relationship, while the optional relationship is
represented with a line, ending with an open cycle. An arc spanning two or more

3.2. System models 51

mandarory
feature

ﬁ Digital Video System
optional
feature
@ alternative
features
> require_s
constraint

Hardware

[~

Internet
IrDA Port Access

Function

Web PDA Remote
Interface Control

. . - et 2

IR Remote
Control

Key Pad

Playback

Recording

| Editing | | IR Port

e - - LAN
Access

| Modem |

Figure 3.3: Feature diagram example
The figure shows an example feature diagram describing digital video disc recording product line.
The diagram is adapted from [106] and is only shown partially.

edges of the feature nodes depicts a set of alternative features. The arc is anno-
tated with the multiplicity of the alternative [124]. Figure 3.3 shows an example
feature diagram that is adapted from Riebisch [106].

Feature models are able to describe the aspects, qualities or characteristics of a
system and specially include variability modeling for system families. They focus
on hierarchical decomposed system characteristics, but do not necessary include
the end-users of the system. The structure of the feature model does not describe
how a feature is used by the end-user, but rather provides a clear, unambiguous
representation of the product and product line with all possible variations and
combinations.

To describe the end-user interaction with a system, we use use case model-
ing. Use case modeling is a well-accepted technique to describe the interaction
between end-users and the system as a textual flow of events. They represent
functional requirements from an end-user perspective, as they describe what users
can do with the system and how users interact with the system. Any parties out-
side the system that interact with the system are modeled as Actors. They may be
human users or other external systems. By having a certain goal and requiring
assistance of the system, an Actor initiates a Use Case, which in turn may involve
many other participating Actors from which the system needs assistance to satisfy
its goal [68, 93]. We separate the events flow into actor steps and system steps.
Actor steps describe what an Actor does and the system steps describe the reaction
or response of the system.

To combine the advantages from feature modeling and use case modeling in a
single model, we introduce a new association that relates Features with Use Cases.
The association specifies that the interaction represented by the Use Case, uses
the associated Features. Therefore, the Use Case describes the Features from an

52

3. The RUSE Model

3.2.2

] Constraint

AbstractFeature Relation

Hierarchy | * [name *
Relation Tl subfeatures |[description

*
| Requires | | Conflicts |

|Mandatory| | Optional |

alternative

Alternative *
multiplicity

Stakeholder parents

Request L [Feature
name
description 1..* maybecome *
status

*

described by

Use Case
name

Use Case inti * participating %
- Relation [~~< . description WI
1. ~< flow of events

Stakeholder $ \“‘ ~ intiating 1
| Includes || Extends || Inherits | *

Figure 3.4: Stakeholder requirements
The UML class diagram shows the integration of Stakeholders and Stakeholder Requests, with Fea-

* *

tures and Use Cases. The classes describe the requirements of a project on a high level of abstrac-
tion, which is understandable by non-technical persons.

interactive end-user perspective. The Feature is either associated with the com-
plete Use Case, or with a concrete event of the event flow. Thus, a Use Case can
describe the interaction with the system including many different features.

A Feature should be associated with at least one Use Case. By traversing over
the associations of a Feature and its Use Cases and between the associated Use
Cases and their Actors, we identify the relevant Actors for the Feature. Features
without Use Cases or Use Cases without Features should be subject of require-
ments reviews that identify whether the Features or Use Cases are really needed or
if they should be revised. When looking at the features of some mobile phones,
we question if really all features have a benefiting actor. Figure 3.4 shows the
described stakeholder requirements model as a UML class diagram.

Requirements analysis

To explore and understand the problem domain, we apply an object-oriented
requirements analysis as described in [19]. The analysis is based on the use case
model and creates structural and a dynamic UML models and diagrams. To cap-
ture the relations and to maintain traceability between the stakeholder require-
ments and the analysis, we introduce new associations. By using Abbott’s rules [1]
for natural language analysis, participating objects are identified on use cases and
are captured as class models. We create new participating objects associations be-

3.2. System models 53

tween the Use Cases and the analysis classes. For clarifying and for describing the
use cases in more detail and more formal, we use state, activity or sequence dia-
grams and create the expose in association between the Use Cases and the detailing
diagrams.

* participating *
Use Case Actor
* initiating 1
* |* |* |* *
participates
expose in
. participating * *
expose in objects Sequence
Diagram
expose in "
* * * *
D.S tate A_ctivity - . Class ! i Object
iagram Diagram

Figure 3.5: Requirements analysis
The UML class diagram shows the new associations between the Use Case and Actor classes and

classes of the object-oriented requirements analysis.

The sequence diagrams instantiate the related use cases. All actors and all
participating objects of a use case are also part of the instantiating sequence dia-
grams. The initiating actor of a use case also initiates the instantiating sequence
diagrams and interact with boundary objects. Each event of the use case event
flow is mapped to a message from the initiating actor to the boundary object or
back. The requirements analyst can add new objects and messages to detail the
internal control flow that describes how the goals of the use case are realized by
the system. During this activity missing control and entity objects are identified.
Whenever new messages between the actor and the boundary objects are created
or deleted, the use case event flow gets automatically updated. Respectively, all
changes of the use case event flow are automatically updated in the instantiating
sequence diagrams [128].

Activity and state diagrams are used accordingly the sequence diagrams to
expose a use case. Each event of the event flow is either represented as an activity
or state. Activity and state diagrams are best suitable when focusing on alternative
event flows. Analysis classes are used as input and output objects on activities.

We use the object-oriented analysis as described in [19] and do not describe
all UML models in detail here. The focus is on capturing the relations between
the analysis and the stakeholder requirements model as new associations. The as-

54

3. The RUSE Model

3.2.3

sociations represent the dependency traces and support consistency among these
models when change occur. Potentially impacted elements are identified follow-
ing the traces. Some changes can even result in additional cascaded automatic
model changes, while other changes require a manually review of potentially im-
pacted elements. Figure 3.5 shows the proposed associations between the Use
Cases and the analysis model as a UML class diagram.

Detailed requirements

During detailed requirements analysis we inspect the higher level stakeholder
requirements and create fine-grain functional and nonfunctional requirements.
Each Requirement has a unique name and a description attribute. The granularity
must be sufficiently fine that the requirement can be tested against any compo-
nents realizing the requirement. Otherwise it must be refined until the required
granularity is reached. Therefore, a requirement can be associated with many
refining requirements.

<<subelement>>

refined
requirement | 0..1

Requirement
Feature * detailed in * | name *

description refining
- x requirement

described by

*

na:ﬁae Case Nonfunctional
- * constrained by * | Requirement
description
flow of events
*
. *
detailed in constrains
*
* Functional

Requirement

Figure 3.6: Detailed requirements

The UML class diagram shows the new associations between the stakeholder requirements con-
sisting of Features and Use Cases and the detailed requirements consisting of hierarchical functional
and nonfunctional requirements.

A Functional Requirement describes a required system function. A Functional
Requirement can only be refined by other Functional Requirements. A nonfunctional
requirement describes a property or quality of the system or of parts of the system
and can only be refined by other Nonfunctional Requirements. A Nonfunctional Re-

3.2. System models 55

3.2.4

quirement can constrain many Functional Requirements to indicate the quality of the
associated functionality. The constrains association is in particular important for
testing. For example, resting the Functional Requirement “The user must be able to
login.” is completely different if it is constrained by the Nonfunctional Requirement
“The system must support 50000 users in parallel”.

Listing 3.1: OCL constraints of the class Requirement

context Requirement inv:
self .refining requirements
—>forAll (r Requirement | r.getType()=self.getType())

A Functional Requirement must be based on at least one Feature or Use Case.
A Nonfunctional Requirement is only based on Features, but can constrain many Use
Cases. For instance, the Nonfunctional Requirement that a web form in a browser
must completely appear within 4 seconds after being requested constrains any use
cases where a user needs to see a form. The Nonfunctional Requirements might also
be identified during use case modeling. Figure 3.6 shows the detailed require-
ments model and the associations to the Feature and Use Case classes.

Hazard analysis

During hazard analysis we identify potential Hazards for the end-users of the
system under development. The Hazard class describes a potential harm or injury
of a user, which might occur when using the system. It has a unique name, a
description and a severity. As the users of the system are already represented as
Actors in the use case model, we relate the Hazard class with a target association
to many Actors. Conversely, an actor is the potentially target of many Hazards.
When identifying a Hazard without finding any related target actor, then either the
use case model is incomplete and needs to be refined, or the engineer has found
a Hazard that is orthogonal to the system, which indicates that the Hazard is out
of scope. In addition to the Hazard’s target, any other analysis entities represented
as classes (e.g. insurance company) may be involved with the Hazard. Thus, the
Hazard can be related to many classes by using the involved entity association.

A Hazard may have many Causes, which describes the circumstances that leads
to the Hazard. The Cause has a unique name, a description, a likelihood attribute,
and an evaluation status. The evaluation status of a Cause depends on its likeli-
hood and on the severity of the associated Hazard. It either indicates that mitiga-
tion of the Hazard or Cause is required. Otherwise, the current state of the related
Hazard is acceptable. The target Actors of a Hazard are injured when a Cause of
a Hazard gets triggered. As the Actors interaction is described by the use case
model, we relate the Cause to the Use Case with a trigger association. In addition,
a Cause may be associated with many hazardous elements. Hazardous elements are
any model elements that describe the system under development and which are in-
volved when a Cause gets triggered. We use the abstract super class System Model

56 3. The RUSE Model

Element to represent all possible model elements. For example, classes, compo-
nents, controllers, or hardware nodes, which are realizing or which are involved
with the triggering Use Case, are hazardous elements for the Cause.

<<subelement>>

1
Requirement

*

Feature * detailed in * | name
description

*
described by Zr ZF
*

na::ee vase Nonfunctional
* description * constrained by * | Requirement
. flow of events
detailed in *
* | * * constrains
*
* Functional
participating objects initiating — Roflenent
participating
mitigates
expose in triggers Mitigation
x Actor name
description | |
* * * technique
. evaluation status
Sequence
Diagram target

*

*

*>| Object L

* *

instance Hazard zaiise
*| 1 name ame
involved entit ipti
Class * Y *{ description ! - I(ijlftjlicr:gt)lgn
severity . |evaluation Status

*
SystemModelElement [a-ardous
element

Figure 3.7: Hazard analysis
The UML class diagram shows the hazard analysis model including its associated classes from the

stakeholder requirements, detailed requirements, and requirement analysis.

If Hazards including its Causes have an unacceptable risk or severity, mitiga-
tion of the Hazards or/and the Causes is needed until an acceptable risk and sever-
ity is reached. We mitigate the Hazards and Causes by creating new requirements
that change the environment or the circumstances of the Hazards and Causes. A
mitigation results in the reduction of the Hazard severity or of the likelihoods of
the Causes. We use the association class Mitigation to capture the mitigation and
to associate the mitigating requirements with the related Hazards and Causes. The
class Mitigation has a unique name, a description, a mitigation technique, and an

3.2. System models 57

3.2.5

evaluation status attribute. The evaluation status defines if the mitigation is ac-
cepted or not. Reviews with involved stakeholders is required before a mitigation
is accepted and results in changing the severity of a Hazard, or changing the like-
lihood of a Cause. Figure 3.7 shows the hazard analysis model as a UML class
diagram.

Diagrams

ModelElement

ModelLink
Vertex
Diagram +x:int
+nhame 1 * | +y:int %
+description +width:int
+height:int
| l |
UseCase Feature Class
Diagram Diagram Diagram - e =

Figure 3.8: The diagram model

The UML class diagram in shows the generic diagram concept that enables the visualization of
Model Elements in many diagrams. The Diagram class has a name and description attribute to identify
and describe the Diagram instances. The Vertex class extends the Model Link class and associates the
Model Elements with the Diagrams. Layout information is represented in the attributes of the Vertex.
Subclasses such as the Use Case Diagram, Feature Diagram, or Class Diagram are used to ensure that
only meaningful diagrams are created. Note that not all diagram subclasses are presented here.

Diagrams are mainly used to represent the described system models. For in-
stance, Features are visualized in feature diagrams, Use Cases in use case dia-
grams, or classes in class diagrams. A system model element can be displayed in
many diagrams, where each diagram has a different purpose. For example, classes
are typically grouped into packages and a class diagram for each package is used
to show all its classes. But a class diagram of a package is not able to include
the associations between classes when one of the classes is not in the package. A

58

3. The RUSE Model

3.2.6

second diagram must be used to show the class with all its associations and associ-
ated classes. For each diagram, additional information such as layout information
is needed to visualize the elements in diagrams. This information is related to the
diagram and should not be part of the system model. Therefore, we explicitly sep-
arate the diagrams from the system models and provide a generic diagram model
that enables to capture the required diagram information. The diagram model is
shown if figure 3.8.

The diagram model supports consistency across all diagrams that contain the
same Model Elements. For instance, when a Model Element is renamed, all diagrams
reflect the change immediately, as they refer to the same element. When a Model
Element is deleted, all associated Vertex links are deleted too, and the element is
automatically removed from all diagrams. Moreover, starting from a given Model
Element, all Diagrams can be identified by traversing over the associated Vertex
instances.

Document model

In software development projects, documents are used to capture the outcome
of an activity. For instance, the requirements analysis is documented in the Re-
quirements Analysis Document (RAD) or the system design is documented in the
System Design Document (SDD) [19]. In general, they consist of the activity re-
lated models and text. The models are created and maintained in modeling tools,
while the documents are written with word processing tools. The models must be
exported either into a graphical diagram or into a textual representation, before
integrating them into the documents. Whenever a model is changed, it must be
exported again, and the related documents must be updated. Thus, the documents
get outdated very fast and manual effort is required to keep the documents and
models consistent.

To overcome these problems, we integrate a document model into the RUSE
model. All Model Elements are organized and viewed in the context of documents
or as aresult of filters. A document is defined in terms of sections and subsections,
each containing text, diagrams, or a filter. The filter is used to attach matching
Model Elements to the sections. A filter is defined as a class of element (e.g.,
Use Case) and an optional number of property name and values (e.g., “priority =
high” or “planned for release = 2”). Documents and filters are themselves Model
Elements and can be customized for each Project. Figure 3.9 shows the classes of
the document model.

The filter mechanism enables that a single Model Element can be part of many
documents or sections. When the Model Element is changed, all documents reflect
the change immediately as they refer to the same element. Moreover, when the
state of a Model Element is changed, it can dynamically appear in or disappear
from a document, depending on the filter settings. This mechanism supports con-

3.3. Collaboration Models 59

3.3

+ | ModelElement

_ filtered elements
Filter [%
- Section Document
Diagram - % 0.1
* x| +itle "o +name
+text * +abbriviation
<<subelement>>
LeafSection CompositeSection |[p..1| parent

Figure 3.9: Document model

The UML class diagram shows the document model of the RUSE model. The Document class
represent documents and has a name and a abbreviation attribute. The Document extends the Model
Element and is composed of many Sections, which are either Composite Sections or Leaf Sections. A
Section consists of a title, text and many Diagrams. The Composite Sections are used to realize a
section hierarchy in which the Leaf Sections represent the leafs. Leaf Sections have a filter that is
used to integrate any Model Elements in the section.

sistency across all documents and their included models. When the system models
are changed, the documents do not require a manual change or update.

At the beginning of a project an initial set of documents, consisting of the
empty sections and their filters, enables a template-based development. They
can be changed during a project and may serve as new templates for subsequent
projects. To enable collaboration with external stakeholders, the documents in-
cluding all models and diagrams can be exported into files of different formats,
such as PDF or RTF.

Collaboration Models

Capturing collaboration artifacts can help supporting future changes, such as
finding the human source of a feature or a nonfunctional requirements and iden-
tifying related model elements, as indicated by studies about pretraceability [47]
and rationale [71, 37]. The challenge is in making such collaboration capture
practical and usable. To address this challenge we integrate the collaboration
model into the RUSE model, so that collaborating about the system models can be
supported in the same environment as developing the system model. Project par-
ticipants are not required to switch their context and the collaboration artifacts can
be captured. We provides an annotation mechanism that strikes a balance between

60

3. The RUSE Model

3.3.1

spontaneous, informal collaboration and formal, long-term rationale capture. We
initially published the annotation mechanism in [129].

ModelElement

annotates

Annotation

Figure 3.10: Annotation model
The UML class diagrams shows the Annotation class, which extends the Model Element class. Anno-

tations can be associated to many Model Elements and are treated as first class objects.

In the RUSE model, users collaborate by linking collaboration artifacts, called
Annotations, to Model Elements. Comment, Issue and Work ltem are the main sub-
classes of the Annotation class and are described below. The Annotation class in-
herits in turn from the Model Element class (see figure 3.10). Consequently, anno-
tations have the same importance as system model elements and, unlike in other
tools, are treated as first class objects. A single Model Element can be annotated
by many Annotations and a single Annotation can be linked to many Model Elements.
Therefore, Annotations can be used to represent complex relationships, for exam-
ple, connecting system elements that are not directly linked. As the collaboration
artifacts are directly associated with system models, the collaboration context is
always provided. Conversely, all collaboration artifacts can be identified for a
given system model element. The traces across system models and collaboration
artifacts are captured and maintained.

Informal communication

Comments are an informal and unstructured way for project participants to
communicate, similar to posts in a newsgroup. Project participants can reply to
existing comments, initiating discussion threads. Unlike in newsgroups, the RUSE
model Comments and their replies can annotate and refer to any other Model El-
ements, including system model elements and other Annotations. The annotated
Model Elements provide the detailed context for the discussion. Conversely, the
discussions of a given Model Element can be identified. Figure 3.11 shows the
UML class model supporting informal communication.

3.3. Collaboration Models 61

3.3.2

Annotation

Comment
+subject
+description

replies
*

0..1

<<subelement>>

Figure 3.11: Informal communication

The UML class diagram shows the class Comment, which extends the Annotation class. A Comment
can have many replies and represent a discussion thread. A Comment has a subject and a description
attribute.

Issue model

While comments are suited for light-weight, short-term collaboration, such as
requesting clarifications or indicating superficial problems, they are not sufficient
for long-running or complex design discussions involving conflicting criteria and
trade-offs. To support these types of discussions, the RUSE model provides an
issue model that is based on QOC [80], including Proposals, Criteria, Assessments,
and Resolutions (see figure 3.12). We chose QOC instead of the more popular IBIS
model [25] because we observed that users often reverse engineer issue models
from informal or threaded discussions as opposed to structuring them on the fly.

Issues represent needs to be solved for the development process to proceed.
Issues can indicate a design issue, a request for clarification, or a problem resulting
from a possible defect. An important part of the rationale is a description of the
specific Issue that is being solved. Issues are usually phrased as questions. The
Issue class extends the Annotation and Assignable classes. Thus, an Issue can be
attached to any problem related system model elements. In addition, it can be
assigned to Organizational Units that are responsible for resolving the Issue. Issues
are closed when they are associated with a Resolution. They can be reopened
again, which results in relating the previous Resolution instance with a contested
association.

Proposals are possible solutions that could address the Issues under consider-
ation. These include Proposals that were explored but discarded because they did
not satisfy one or more associated Criterion instances.

The Criterion class represents desirable qualities that the selected Proposals
should satisfy. In our model, the Criterion class is the super-class for nonfunctional
requirements, system design goals, and test criteria. Thus, the qualities of the sys-

62

3. The RUSE Model

Annotation Assignable . Organizational Unit

+isClosed():boolean

Issue
+subject
+description *
*| +isClosed():boolean \
* *
* * resolution| 0..1
Criterion Proposal *=| Resolution
+name *) * | +subject contested | +subject
+description ' +description * * | +description
I

1
Assessment
+value

Figure 3.12: The issue model

The UML class diagram shows the issue model of the RUSE model. It consists of the Issue, Proposal,
Criterion, Assessment, and Resolution classes. The model is based on QOC [80] and facilitates formal
design discussions and the capturing of rationale.

tem under development can be used to evaluate the Proposals for system relevant
Issues.

Assessments represent the evaluation of a single Proposal against a Criterion.
An Assessment indicates whether a Proposal satisfies, helps, hurts, or violates a
Criterion.

A Resolution represents the solution of Issues and is based on one or more
Proposals. Contesting a Resolution results in the reopening of the associated Issues
and relating the Issues and the Resolution with the contested association.

The issue model is used to capture the rationale behind decisions and thus, is
capturing long term project knowledge. In existing approaches, the rationale is not
captured explicitly. It is only available implicitly in the minds of the participants
or in communication artifacts such as email, which is not accessible to all project
participants. During stuff turnover, the rationale behind decisions gets lost. As
the Issue class extends the Annotation class, the Issues can annotate any system
model element. Therefore, the Issues can capture the rationale behind high level
requirements such as Features, as well as the rationale behind analysis details,
such as the attributes and operations of classes. Once an issue has been discussed
and resolved, users can plan the resulting work as an aggregate of Work ltems, that
are described in the next section.

3.3. Collaboration Models 63

3.3.3

Task model

The RUSE model includes task model consisting of Work ltems (see figure 3.13).
A Work Item has a subject, a description, a status, a due date, and an estimate at-
tribute. It extends the Annotation and the Assignable class. Thus, the Work Iltems
can be annotated on any Model Elements that are related to the represented work
and responsible Organizational Units can be assigned. The depends on association
is used to relate depending Work Items. By using the «subelement» association,
a Work Item can be decomposed into smaller Work Items, realizing a hierarchical
checklist of work. The status attribute defines if a Work Item is open or closed,
when it has no sub-Work Items. A Work Item containing sub-Work Items is closed, if
all sub-Work Items are closed.

Annotation Assignable Organizational Unit

+isClosed():boolean

_/

Work Item
+subject
+description
+status
+dueDate
+estimate
* | +isClosed():boolean | *
+getLabel():String
* 0..1

depends on <<subelement>>

Figure 3.13: The task model
The UML class diagram shows the task model of the RUSE model. It consists of hierarchical Work
ltems that extends the Annotation and Assignable classes.

The operation getLabel():String returns an end-user readable label that depends
on the state and structure of the Work Item. The operation returns “ToDo”, if the
Work Item has no sub-Work Items, no defined due date, and no assigned Organiza-
tional Units. The operation returns “Action Item”, if the Work Item has no sub-Work
ltems, but a due date and assigned Organizational Units. It returns “Activity”, if the
Work Item has sub-Work Items.

64

3. The RUSE Model

4.1

CHAPTER 4

RUSE Model usage and views

This chapter describes possible user interfaces and usages of the RUSE model.
First we provide an overview of a graphical user interface window and how it is
divided into separate areas that show the system, collaboration, and organizational
models. Than we describe selected views in detail and how they meet the require-
ments provided in chapter 2. At the end we describe how the model and the user
interfaces support traceability and awareness.

Views

As the RUSE model integrates the system models, the collaboration models,
and the organizational models into one model, the project participants need only
one user interface to access and manipulate all artifacts of a software development
project. They can use the same interface to develop the required system models,
collaborate and communicate with other participants over the models and explore
the teams and participants of the project and identify their responsibilities and
activities. Figure 4.1 shows the graphical user interface to the RUSE model, which
is separated into four areas.

The upper left area is the navigation area that displays different configurable
views into the RUSE model. A view is defined by a filter that filters for the Model
Elements types, as well as for the state of their attributes. Defaults include views
to show all Documents, Comments, Issues, Work Items, Diagrams, and an index view
over all existing Model Elements. The users can define new views, for example a
view containing all Work Items of a specific Team, or all Use Cases that are anno-
tated by open Issues or Work ltems.

The upper right area is a hyperlinked content area that is used to display any
Model Element and the Diagrams in detail, including all their detailed attributes and
relations to other Model Elements. The area enables the users to manipulate the
Model Elements.

65

66

4. RUSE Model usage and views

411

806 RAT - SuperMarket Demo [SuperMarket Demo@6] |
| Documents ViewSelection | Dmposite Section: 3. Requirements & 13.1Ad0rs . O X
=l COE0 e ABEE N4 ¥ Edit CO® D e A BEE 4 ¥
ate Element

v Requirements Specification Name: Requirements

1. Problem Statement

Parent Section: [Z]| Requirements Specification
v 3. Requirements q P

> 3.1. Actors Subsections: 3.7. Quality Constraints
o 3.1. Actors
> 3.3. User Tasks k .
. B e T (el 3.5. Domain Constraints
= =l 3.3. user Tasks
3.7. Quality Constraints

¥ [z 5. Specification Description: This section describes the user needs that the

system has to support in terms of actors, user

hd S.1. Use Cases tasks, and domain constraints. Actors are entities
¥ 3 Report that interact with the system. User tasks are
b ¥ Check One Article activities initiated by actors that are supported by
» ¥ Purchase Article = the system. Domain constraints are facts that are

b % |dentify Article the system must take into account.

» & Pay For Article . Attached Diagrams: 28 SuperMarket UserTasks

e Modified by wolft, Mar 26, 2004 9:30 AM Created by dutolt, Dec 17, 2003 1:29 PM

l

ar

b ALL 1 Allen Duteit .
HTUM | [Florian Huber Timo Wolf
5 Items €3 | My ltems Assign to Me g Open Items Filter; Show All i]

5 Uvic ' Timo Wolf

username waolft Clos... Task Due Da... Assigned To

~email wolft@in.tum.de =) %] Add a generic price attribute 4/25... /! Timo Wolf /% TUM

phone B8 %] Refine the use case model 4/18... /! Timo Wolf

mobile] » @ Periodic or on demand check: 1 Allen Dutoit

webpage http:/ /wwwhbruegge ™ > @ How should the customer inpt 1 Allen Dutoit

| — R & =] . What is the size attribute for?

Preview | Chat History Browser | Change Browser Traceability Graph
preview| char | | [Task st -

Figure 4.1: Overview of the graphical user interface to the RUSE model

The lower right area provides selectable user interfaces that supports frequent
tasks of the users. They include the user interfaces for supporting traceability,
for displaying the current user tasks, or for SCM functionality such as browsing
through the project history and identifying recent changes.

The lower left area provides selectable user interfaces including an address
book that contains all Teams and Participants of the organizational model and a
Chat that enables synchronous communication between the project participants.

Document view

The elements of the RUSE model are organized and viewed in the context of
documents. A document has defined goals such as specifying the requirements,
analyzing the problem domain, or documenting the software project management
plan. As documents are part of the RUSE model and consisting of text, diagrams,
and filtered Model Elements, they are used to group the elements of the RUSE model
that are used to meet the goals of a document. Document templates are created at
the beginning of a project and help to focus on the RUSE model elements of the
document related activity.

In existing approaches documents are large binary files. Exploring the docu-
ments require the usage of the related word processing tool and to scroll through

4.1. Views 67

large number of pages. Investigating multiple large documents simultaneously is
almost impossible. If a model such as a diagram is reviewed in a document and
needs to be changed, an external modeling tool needs to be used, the diagram
needs to be changed, and the exported diagram image needs to be updated in all
related documents.

D T TS iy View Selection 1
= C@% W Ao D
State Element Last Modifier | Creator Modified Date

v Requirements Specification huberfl dutoit Feb 1, 2006 12:53 AM
rev. 1. Problem Statement huberfl dutoit Nov B, 2005 8:56 PM
> 3. Requirements wolft dutoit Mar 26, 2004 9:30 AM
v 5. Specification wolft dutoit Nov 24, 2004 5:41 PM
v E 5.1. Use Cases wolft dutoit Apr 23, 2007 12:24 PM
> ¥ Report huberfl dutoit Nov 10, 2005 4:11 PM
» ¥ Check One Article wolft dutoit Apr 23, 2007 12:09 PM
P 2 Purchase Article dutoit dutoit Jun 27, 2005 3:12 PM
> ¥ |dentify Article wolft dutoit Nov 16, 2004 1:13 PM
> &> Pay For Article huberfl dutoit Nov 12, 2005 2:36 AM
> 5.3. Services dutoit dutoit Dec 17, 2003 1:48 PM
5.5. Functional Constraints dutoit dutoit Dec 17, 2003 1:48 PM
new! 5.7. Quality Constraints on Use Cases dutoit dutoit Dec 17, 2003 1:48 PM
5.9. Quality Constraints on Services dutoit dutoit Dec 17, 2003 1:48 PM
> 7. Analysis Model wolft wolft Mar 8, 2005 5:38 PM
> 9. Examples wolft dutoit Apr 4, 2005 1:52 PM
v Managemant wolft wolft May 5, 2007 12:46 PM
v 1. Critical Issues wolft wolft Nov 9, 2005 7:16 AM
> . Periodic or on demand check? wolft dutoit Apr 23, 2007 2:35 PM
v 3. All Issues wolft wolft Nov 9, 2005 7:16 AM
> Q Use Case Purchase Article huberfl dutoit MNowv 10, 2005 4:13 PM
rev. > Q Use Case Report dutoit dutoit Jun 27, 2005 11:41 AM
> . Periodic or on demand check? wolft dutoit Apr 23, 2007 2:35 PM
> Q Use Case Pay For Articles dutoit dutoit Dec 17, 2003 5:08 PM
> Q Is the manager also the system admin? dutoit dutcit Dec 18, 2003 2:30 PM
> O How should the customer input commands? wolft wolft May 5, 2007 12:49 PM
. What is the size attribute for? wolft wolft Apr 10, 2005 5:00 PM
v 5. Critical Use Cases wolft wolft Nov 9, 2005 7:17 AM
b ¥ Check One Article wolft dutoit Apr 23, 2007 12:09 PM
v 7. Teams wolft wolft May 5, 2007 12:46 PM
rev. v R oTuMm huberfl wolft MNov 22, 2005 8:32 PM
1 Timo Wolf wolft wolft Apr 23, 2007 12:24 PM
! Florian Huber wolft wolft Jul 14, 2006 9:45 AM
! Allen Dutoit wolft wolft Apr 24, 2007 12:04 PM
rev. v (B uvie huberfl wolft Mov 10, 2005 6:19 PM
! Daniela Damian wolft wolft Nov 11, 2005 8:10 AM
" Luis lzquierdo wolft wolft Nov 9, 2005 7:28 AM
! Florian Huber waolft wolft Jul 14, 2006 3:45 AM

Figure 4.2: Tree table document view

The documents of the RUSE model enable the exploration of multiple docu-
ments simultaneously. A tree table view of sections, their subsections, and the fil-
tered Model Elements is used for a compact visualization. Figure 4.2 shows the tree
table visualizing a “Requirements Specification” and a “Management” document.
Sections of interest are expanded while others are collapsed. The creator, the last

68

4. RUSE Model usage and views

41.2

modifier, and the last modification date is provided for each section, subsection,
and filtered Model Element, as demanded by the accountability requirement from
section 2.1. The realization of the awareness requirement enables that the ele-
ments, which have never been opened by the current user are flagged with a new!
tag and are using a bold font. Revised elements, which have been modified after
the current user opened them, are flagged with a rev. tag and use an italic font.

The filter mechanism of the documents enable Model Elements to be included
in multiple documents and support dynamic document updating if the state of the
elements change. For example, Figure 4.2 depicts the use case “Check One Ar-
ticle” in the context of the “Requirements Specification” document. The subsec-
tion “3.1 Use Cases” includes a filter displaying all use cases. The “Management”
document in the same project contains a section that includes all high-priority use
cases. When a new use case is created, it appears under the “3.1 Use Cases” sub-
section of the “Requirements Specification”. When the priority of the use case
“Check One Article” is changed from low to high, it dynamically appears in the
“Management” document. When renaming an element such as a use case, both
documents are kept consistent. Attached diagrams are also automatically updated,
as they are just another view of the model. The filter mechanism of the Documents
meets the consistency of multiple model views requirement from section 2.1 and
uses the realization of the support for fine-grained search and filter mechanisms
requirement. Each occurrence of a Model Element in a document is just a view. All
views reference to the same Model Element and are consistent.

Visualizing collaboration artifacts

In section 3.3 we described that all collaboration artifacts are directly associ-
ated with the related system model elements, which are providing the context of
the collaboration. To increase the awareness of ongoing collaboration such as dis-
cussions or open issues, we augment the icons of the related Model Elements with
collaboration indicators. When Issues or Work Items are attached to a Model Ele-
ment, the icon depicting the Model Element is augmented with a red ball for open
and with a green ball for closed Issues or Work Items. Yellow notes are used when
Comments are attached on Model Elements. The collaboration indicators quickly
tell the user whether a model element is part of an ongoing discussion. The collab-
oration indicators visualize the realization of the artifact integration requirement
from section 2.1.

Figure 4.3 is a section of the tree table view of the documents in figure 4.2
and shows the collaboration indicators on the icons of the use cases. The icon of
the use case “Pay For Article” indicates that all related issues and work items are
closed and comments are associated with the use case. The icon of the use case
“Check One Article” indicates that the use case has either associated open issues
or work items.

4.1. Views 69

v 5.1. Use Cases
P ¥ Report
b ¥ Check One Article
P ¥ Purchase Article
¥ |dentify Article
P &> Pay For Article

Figure 4.3: Collaboration indicators

The tree tables introduced above are also effective to give the users a compact
view of the ongoing project collaboration. Figure 4.4 shows the issue models and
discussion threads of a project in the tree table view. The views benefit from the
realization of the accountability and awareness requirements. The user recognize
the relevant participants of the collaboration Model Elements, as well as if the Model
Elements are new for him, or have been revised after he read them.

R, View Seiection | |

® C @D L A
State Element Last Modifier Modified Date
rev. » O Rollen Trainer/Arzt? seyboth Jul 15, 2005 3:19 PM
rev. ¥ O Mobiler Zugrifi? seyboth Jul 15, 2005 3:19 PM
new! » + Mobiles Webinterface seyboth Jul 15, 2005 3:19 PM
new! > SJ Offline Client seyboth Jul 15, 2005 12:35 PM
new! > SJ Mobiles Webinterface seyboth Jul 15, 2005 3:19 PM
v . Persistenz /Datenbank? wolft Apr 24, 2007 10:53 AM

> 9 Hibernate /MySOL wolft Apr 24, 2007 10:53 AM
new! v 9 Bestehende Infrastruktur am Lehrstuhl seyboth Jul 15, 2005 12:45 PM
new! 'l: Integration nicht vorgesehen seyboth Jul 15, 2005 12:45 PM
new! > 'l: leichte Integration seyboth Jul 15, 2005 12:46 PM v

Ry View Selection }

i3 AR
State Element =~ Creator Modified Date
new! 'l: Abhangigkeiten des Sportmedizinischen Mcseyboth Jul 15, 2005 1:35 PM
new! 'l: Andere Systeme unbekannt seyboth Jul 15, 2005 1:15 PM m
v 'l: Anwendungspraxis seyboth Apr 24, 2007 11:35 AM
'l: RE:Anwendungspraxis wolft Apr 24, 2007 11:35 AM
'l: RE:Anwendungspraxis wolft Apr 24, 2007 11:35 AM
new! 'l: Ausreichende Datenbasis seyboth Jul 15, 2005 2:19 PM
rev. » 'l: ussprache Tortoise koegel Apr 19, 2005 9:16 PM
new! 'l: ewahrung der Daten seyboth Jul 15, 2005 2:11 PM

new! 'l: BMI wird direkt aus Grisse und Gewicht beiherkomme Jun 19, 2005 11:38 PM
new! 'l: Einfache Implementierung und Flexibilitit seyboth Jul 15, 2005 2:04 PM v

>

Figure 4.4: Tree table view of all issues and discussion threads.

70

4. RUSE Model usage and views

41.3

Hyperlinked content area of Model Elements

When visualizing an element of the Rationale-based unified software engi-
neering model model in detail, it’s dependency traces can be traversed and all
other related elements can be included as demanded by the artifact integration
requirement. A set of modifications such as adding new Comments to related el-
ements or creating new Issues are applicable without changing the view. In other
approaches, the related elements are located in a different models and tools. A
general linking concept between specified elements across different tools is not
existent. URL hyperlinks to web-based applications are supported, but following
the links require to change the view and the context of the user.

Name: Pay For Article
Priority: —---
Description: No description specified for this use case.

Participating Actors: 2 System
Preconditions: Purchase transaction exists, bill exists
Postconditions: Purchase transaction exists, bill is paid, Payment is registered in the System

Actor Steps System Steps

Customer calls Payment function [bill is
paid already?] ,[Articles left on the
Conveyor Belt?]

System displays a choice between cash or credit card
Uses Functional Requirement: & Display Choice

If Customer chooses cash:
Customer inserts money

System registers money [Money does not correspond to bill?]
Uses Functional Reguirement: <> Register Money

If Customer chooses credit card:
Customer authenticates with the System

System charges bill to credit card
Uses Functional Requirement: & Charge Card

System creates receipt of Payment
Uses Functional Requirement: < Print Receipt

Constraning NFRs: % Familiarity with Checkout Procedure
Participating Objects: ReceiptPrinter

& Article

ConveyorBelt

MoneySlotDevice

CreditCardDevice

Bill

Display

Context Use Case Diagram: <> Pay For Article
Relevant Class Diagram: o Classes of Pay For Article
Comments: 'L_f What about credit payment (Flerian Huber)
Issues; Closed Element OrganizationalUnits

1 @ How should the customer input commands? (Timo Wolf) 1 Allen Dutoit
™ @ use Case Pay For Articles (Allen Dutoit)

Figure 4.5: Example view of an use case

4.1. Views 71

41.4

Figure 4.5 shows the details of the use case “Pay For Article”. It includes all
use case relevant information such as the name, the participating actors, pre- and
postconditions, or the flow of events. In addition, the flow of events include the as-
sociated Functional Requirements. A list of constraining Nonfunctional Requirements
and all identified participating object are provided. The collaboration artifacts
such as Comments or the open Issue “How should the customer input commands?”
are depicted at the bottom of the view. The integration of the related Model Ele-
ments in the view of the Use Case follows the consistency of multiple model views
requirement. Whenever the integrated elements are change, the Use Case view
gets updated immediately. The All included elements are interactive. They can
be directly modified by a provided context pop-up menu or can be opened and
visualized in their own content view.

Diagram views

The diagram model of the RUSE model enables a diagram based visualization
of all Model Elements. Standard diagrams for class models, use case models or
feature diagrams are provided. All diagrams are always consistent with the model,
as the diagrams are just a view of Model Elements. Changing a Model Element such
as renaming a use case is reflected in all diagrams immediately, as demanded by
the consistency of multiple model views requirement in section 2.1.

% oo Identify Article) —=<uses>> Q
Customer % %mplay Message To Customer

Reaister Money

<<Uses>>

Purchase Artlc:le earch Article in Database

<<participate>>

O

<<uses>>
I<<|nc|ude>>

Scan Article Label

. <<uses>
Print Recelnt

<<Uses>>

Pay For Article

Disnlav ChDIGE <<participate>>
es>>
<<|mt|at§>>
Check One Amcle

Charqe Card Automator
/‘mﬂmpa{ ricipate>>

<<initiate>> Repor‘r

Figure 4.6: Use case diagram including functional requirements

Manager

72

4. RUSE Model usage and views

41.5

The diagram concept enables extensibility for new types of diagrams. For in-
stance, figure 4.6 shows a use case diagram including the Functional Requirements
that are associated with the Use Cases. Use cases are represented with ovals and
Functional Requirements with circles. The diagrams also visualize the collaboration
indicators introduced in section 4.1.2. The diagrams provide a compact view of
multiple Model Elements including their associated elements from different soft-
ware engineering activities and the related collaboration models. The diagrams
visualize the realization of the artifact integration.

|dentifying work and participants

As demanded by the artifact integration requirement, all Work Items and Issues
are included in the same model as the Organizational Units. Thus, project wide and
user dependent task lists can be visualized. Figure 4.7 shows a task list includ-
ing all Assignables and the assigned Participants. The items of the task list can
be opened in the content area, which includes all item relevant annotated Model
Elements, which provide the context of the item.

=

9 ltems &3 | Myltems AssigntoMe | Open Items Filter: Show All =% }
Closed Task Due Date v Assigned To
%] Add a generic price attribute 4/25/07 “L Timo Wolf
*] Refine the use case model 4/18/07 ! Timo Wolf

» @ How should the customer input commands?
> Q Is the manager also the system admin?
¥ @ Periodic or on demand check? 1 Allen Dutoit
Q Add a regular check function satisfying the cc
Q Delete the constraint
& My option 333333
‘!Z Security From Theft
%2 safe Checkout
Lg O Use Case Pay For Articles
» @ Use Case Purchase Article ! Florian Huber
» (@ Use Case Report
@ What is the size attribute for?

DRRROOOODO/ODO0

Figure 4.7: Task list view

According to the accountability requirement, the RUSE model captures all au-
thors and modifiers of all Model Elements. Users can identify who created or mod-
ified the Model Elements. Following these information identifies the related Orga-
nizational Unit and opens it in an address book view. Figure 4.8 shows the address
book with the Participant “Allen Dutoit”. Conversely, a user can identify all Model
Elements that were created or modified by a given Participant and find all associ-
ated Assignables. This mechanism increases the awareness of the current tasks of
Participants and helps to identify on which Model Elements they work.

4.2. Supporting traceability 73

© 0 x

B ALL ! Allen Dutoit [F— .
1 Florian Huber | Allen Dutoit
8 uvic “L Timo Wolf X

Jusername dutait

email dutoit@in.tum.de

phone

mobile

webpage

Figure 4.8: Address book view

4.2 Supporting traceability

The traceability requirement from section 2.1 demands for traceability links
between all related system models, collaboration models and organizational mod-
els. We use the Model Link class and the inclusion of collaboration and organi-
zational models in RUSE model to provide a uniform mechanism for supporting
pre- and post-traceability. Let us consider three activities in which traceability is
needed:

¢ Identifying change impact. Explicit links are used for tracing between the
elements. These links are part of the model and are created by the users.
For instance, links between Actors and Use Cases, Use Cases and Classes,
or Use Cases and Functional Requirements are created during requirements,
analysis, and detailed requirements. By following these links forward and
backward, the user can assess the potential impact of a change.

o Identifying stakeholders. As Participants are also represented as Model El-
ements, the user can examine the author of a model element or trace from
an Work Item to its assigned Organizational Units. For example, by examin-
ing who wrote a specific Nonfunctional Requirement and how it was used as
a Criterion when resolving an Issue, the user can identify which qualities are
critical for a Stakeholder.

¢ Identifying implicit dependencies. Annotations typically relate several Model
Elements. As Annotations are also Model Elements, a user can trace over anno-
tation links to find related elements. For example, a Feature can be referred
in the discussion of a design Issue, involving a number of Nonfunctional Re-
quirements. Even if the Feature is not explicitly linked to these Nonfunctional
Requirements, the user will be able to find them by tracing through the Issue.

While traceability is conceptually simple to explain, it is not trivial to provide
practical and usable traceability tools. On the one hand, users need a localized

74

4. RUSE Model usage and views

4.2.1

view of elements to explore the immediately surrounding context. On the other
hand, users need to view traces several levels deep to visualize a complete path
between a pair of indirectly related elements. When addressing both of these
requirements, the amount of information displayed quickly overloads the user We
propose three graphical views to visualize and follow traceability links. All are
focusing on the reduction of complexity, to support the users in daily work tasks.

Traceability tree

We propose a tree view to visualize transitive traceability dependencies. Each
element is shown as a node in the tree and its direct related elements are shown as
child nodes. The users can expand the nodes of interest and recursively expand the
child nodes. Thus, the traceability paths over several elements are visualized. The
users can reduce the number of elements by defining filters. For example, the user
can define element types (e.g. use case, feature, or nonfunctional requirement) and
link types to be included and excluded. Moreover, the user can define if incoming
or outgoing traceability links are used to traverse to related elements.

#
view: tree = ! O 7 & | trace: E forward E backward E transitive

¥ Purchase Article

v E] ArticleData
ArticleDatabase
¥ |dentify Article

¥ E ArticleDatabase
ArticleData
‘F database
> |dentify Article

v @ How should the customer input commands?
EC Cost
Q External buttons
% Touch-screen
",Z Familiarity with Checkout Procedure 1
&> Pay For Article v

" sort Traceabilty Links

Figure 4.9: Example of the traceability tree view

Figure 4.9 shows an example traceability tree. The use case “Purchase Article”
is expanded and the participating objects “Article Data” and “Article Database”
are shown. The classes are also expanded and show the related use case “Iden-
tify Article”. The user can see a traceability dependency path from the use case
“Purchase Article” over the participating classes to the use case “Identify Article”.

4.2. Supporting traceability 75

4.2.2

4.2.3

Traceability table

The second view focuses on all elements of the same type (e.g. use case)
and supports the comparison of multiple elements. The elements are shown a
table, with one element per row. The properties of the elements are displayed
in the columns and also include the target elements of the traceability links. For
instance, the figure 4.10 displays all use cases of an example project in the second
column. Their related Initiating Actors, the Constraining NFRs, the Open Issues,
and Participating Object from the requirements analysis are shown in the other
columns. The user can open each traceability target element in its detailed view
by double-clicking on its name. The included columns are configurable for each
element type. The table rows are sortable by the columns and the table content can
be searched and filtered. Hence, the tables are useful for inspection and review
tasks. For example, a user can identify critical use cases by displaying all use cases
and sorting for open issues. Alternatively, all use cases without any participating
objects can be displayed.

Initiating Actors * Use Cases ‘Constraining NFR= Open lzsues Participating Objects
Customer P & Purchase Article Familiarity with Checkout Procedure How should the customer input commands? Bill, Article, Con...
Customer P & Identify Article Familiarity with Checkout Procedure What is the size attribute for? Article, ArticleD...

Manager & & Report Usability of Reports Use Case Report
System P &2 Check One Article Min. Outdate Articles in Customer Hands Periodic or on demand check?
P & Pay For Articles Familiarity with Checkout Procedure How should the customer input commands? ConveyorBelt, ...

Figure 4.10: Example of the traceability table view

The figure shows the traceability table view, which contains use cases. The complexity of display-
ing traces is reduced by adding the trace targets into columns and using the label of the traceability
links as column headers.

Traceability graph

The traceability graph focuses on one element and its surrounding context.
The element under consideration is displayed at the center of the traceability graph
while its directly related elements are displayed around it. Only links to and from
the focused element are displayed, links among the other elements are hidden.
For example, at the top of Figure 4.11, “Purchase Article” is the element under
consideration. To differentiate quickly between types of relationships, the layout
is separated into four areas: left, right, top and bottom. Contributor links are dis-
played on the left. Incoming system links are depicted on the left and outgoing
system links on the right. Annotations (issues, comments, and tasks) attached
to the system element are displayed below it while constraining elements (e.g.,
nonfunctional requirements) are displayed above. In other words, the horizontal
axis displays system and organizational dependencies while the vertical axis dis-
plays rationale and collaboration artifacts. The user resets the focus of the graph

4. RUSE Model usage and views

Article
rticleData
rticleDatabase
Il
ConveyorBelt
&> Pay For Article

£ Automator -Raaic
2cC initiates ¥ Familiarity with Checkout Procedur
© Buy Articles -ealized by ¥ Purchase Article

{1 Allen Dutoit -Lslastmodifier of @ Use Case Purchase Article
{1 Allen Dutoit -isreatorof

@ How should the customer input commands?

v > Purchase Article
&> Pay For Article

External buttons
@ How should the customer input commands?—<ﬂ§ﬁtQ
@ Touch-screen

*
Y Familiarity & Cost
Checkout Procedure

—

==

@ Account number Asse
@ CardA
Q Credit and cash Asse

. . How should the
Q Credit payment only Asse S c input ¢ ds?
@ External buttons A % Familiarity with Checkout Procedure - @ Use Case Pay For Articles

@ Store payment onlyAsse Constaains = ¢y Buy Articles
Q Touch-screenAsse
1 Allen Dutoit L

1 Allen Dutoit 12

Figure 4.11: Interaction sequence of the traceability graph

The figure shows three steps of interacting with the traceability graph, in which the user clicks on
a traced element. System model traces are displayed at the horizontal axis, while collaboration
artifacts like comments and issues are displayed on the vertical axis. The creator and the last
modifier of the focused element in the middle is always visible.

4.2. Supporting traceability 77

424

by clicking on any of the related elements, thus enabling a quick mechanism for
exploring a full trace. To further reduce the amount of information displayed, the
user can filter and search within the traceability graph. Double clicking on an
element opens the element in a new detailed view that displays its properties and
enables its modification. We initially published the concept in [130].

Figure 4.11 shows three steps of an user interaction sequence with the trace-
ability graph. Each step shows the graph after the user clicks on a traced element,
starting at the use case “Purchase Article”. From the use case, he clicks on the
issue “How should the customer input commands?” and ending at the nonfunc-
tional requirement “Familiarity with Checkout Procedure”. All elements related
with the focused element, including the creator and the last modifier are shown in
this example.

Capturing change impact

The proposed traceability views enable the exploration of dependent Model El-
ements, which might be impacted by a specific change. For example, if a Feature
is the subject of change, depending Use Cases, their participating objects repre-
sented as Classes, and related Functional Requirements need to be reviewed and
might be changed too. The requirements engineer responsible for changing the
Feature might not have enough project knowledge or enough time to review and
change all depending elements. Related project participants have to be informed
about the change and need to review and change the model elements that are in
their responsibility.

The traceability views support a mechanism to automatically create and an-
notate Work Items to all dependent elements. One initiating change Work ltem is
created and annotated on the element that is the subject of change and is assigned
to the participant performing the change. One Work Item is created for each de-
pending element and is added as subelement to the initiating change Work Item.
Relevant project participants must be identified and assigned to the Work Iltems.
The items appear in their task lists and notify the participants about the change
and the review they have to perform. The overall change task is finished, when all
elements are reviewed, changed, and all Work Items are marked as closed.

Figure 4.12 illustrates the mechanism with an UML object diagram. The
Participant “Timo Wolf” changes the Feature “RFID Identification” and identi-
fied the depending Use Case “Identify Article” and its participating objects “Ar-
ticle” and “Article Label” by using the traceability tree. He generates the Work
ltem “Changed Feature ’RFID Identification’ ” and its sub-Work Items “Review to
change of Feature RFID Identification’ . All items are automatically annotated
to the related elements and assigned to responsible Participants.

78

4. RUSE Model usage and views

4.3

4.3.1

assigned Timo Wolf : Participant
Changed Feature
"RFID Identification":Work ltem .
annotates RFID Identification : Feature

- assigned Allen H. Dutoit : Participant
Review to change of Feature
%) "RFID Identification":Work ltem ’ ’
g annotates Identify Article : Use Case
1S
o
2 - assigned Florian Huber : Participant
3 Review to change of Feature
"RFID Identification":Work ltem -
annotates Article : Class
- assigned Florian Huber : Participant
Review to change of Feature
"RFID Identification":Work Iltem)
annotates Article Label : Class

Figure 4.12: Object diagram of generated Work Items for capturing change

Supporting awareness

Within distributed projects, awareness of changes at other sites is key to re-
duce misunderstandings and redundant work and to increase trust across sites.
Awareness helps to identify critical issues early and provides the opportunity to
resolve issues in time [6, 36, 40]. In addition to capturing the activities of the
project participants as required from the awareness requirement, mechanisms and
services must use this information to automatically raise the awareness of relevant
participants. Otherwise, the participants required inform themselves manually.

Subscribing to notifications

The RUSE model facilitates the subscription of users to receive notifications
concerning changes about all Model Elements. Notifications range from changes to
documents, system model elements (e.g. use cases, requirements, classes), to is-
sues and work items. To avoid broadcasting all changes to all project participants,
users can subscribe to the type of changes they want to be notified about. They
can specify the model element classes of interest, such as use case, requirement or
issue, resulting in an notification if any elements of these classes are created, mod-
ified, or deleted. They can also subscribe to changes in documents or in document
sections, resulting in notifications when any model element within the document
hierarchy changes. For example, if users choose a document that includes only
high-priority use cases, they will be informed of all modifications to high-priority
use cases, even if those use case did not yet exist at the time of subscription. Each

4.3. Supporting awareness 79

4.3.2

notification includes the type of change, the responsible person, the date and time,
and a link to the modified element. Notifications are batched and sent to users at
customizable intervals.

While notification subscription works well for system models (as develop-
ers usually have a well-defined area of responsibility), a different mechanism is
needed for notifying changes in the collaboration model, as users are not neces-
sarily aware of conversations that might be relevant to their work. To address this
problem, notifications are sent to the last modifier of a model element, when an-
notations are attached to it. For example, if a user has modified a class, he will
receive a notification if another user attaches an issue or a comment to this class.
Similarly, a reply to an annotation will also trigger a notification to the author the
initial annotation. In addition, users are notified if a Work Item is assigned to them
or to their Team.

Disseminating changes

As not all stakeholders can be expected to access the RUSE model on a daily
basis, the notification mechanism described above may not be sufficient to raise
their awareness. To address this challenge, we propose to supports the dynamic
creation of lists of URLs into the model. These lists can be included into web
pages, to provide dynamic content about the state of the project. For example, a
Wiki-based portal containing lists of all open Issues and open Work Items, orga-
nized by teams and sorted by date of modification and by responsible participants
can be used by external stakeholders to get information of the project progress.
Users can view the Wiki topics using a Web browser without being aware of the
origin of the items.

80

4. RUSE Model usage and views

5.1

CHAPTER 5

The Sysiphus environment

This chapter describes the system design of the Sysiphus [131] tool suite, which
implements the RUSE Model and the RUSE Meta-Model described in the chap-
ters 2 and 3. Beside the model and the meta-model, Sysiphus covers a server and
several client components to access and manipulate the models of a project. In
the year 2000, Allen H. Dutoit started the implementation of REQuest [38], a sin-
gle web-application, which integrated use case modeling with rationale design.
In 2002, we realized a first independent server component that implemented an
initial version of the RUSE Meta-Model and added the client desktop application
RAT [126]. We changed REQuest to use the RUSE Model and the new server
component and published initial results in [128]. We constantly iterated over the
system and applied it in academic and industrial contexts [21]. The applications
are described and evaluated in chapter 6.

The structure of this chapter is based on the system design document template
from [19, p. 283]. Section 5.1 describes the design goals, section 5.2 provides
the subsystem decomposition and describes the subsystems. Section 5.3 maps the
subsystems to hardware nodes. Persistent data management and access control are
described in section 5.4 and 5.5. We conclude this chapter with the global control
flow (section 5.6) and the boundary conditions (section 5.7) of Sysiphus.

Design goals

The design goals are qualities of the system. They build a consistent set of cri-
teria that are used to evaluate design decisions and that are considered during the
the subsystem decomposition, the realization of subsystems, and in the selection
of off-the-shelf components [19, p. 248].

81

82

5. The Sysiphus environment

5.1.1

5.1.2

Performance Criteria

Response time The response time for all client applications of the system should
be less than two seconds. Otherwise a progress indicator shall inform the
user about the system activity. When possible, expensive computations shall
be executed on the client nodes to reduce the load on the server node. Stan-
dard modifications of the RUSE Model, like changing the name and descrip-
tion of a use case, or adding a new association between classes must be
performed within 1 second. The response time for modifying Model Ele-
ments must be constant O(/) and must not depend on the number of Model
Elements in a Project. Boundary and initialization activities like loading or
creating a project are not restricted in their response time. However, the
response time should be at least linear to the number of Model Elements of a
Project: O(#Model Elements).

Memory usage We do not restrict the memory usage of the system to a concrete
value. The used memory depends on the number of Projects and on the
number of Model Elements in the Projects. The used memory must be at least
linear to the number of all Model Elements of all loaded of Projects: O(#Model
Elements).

Network bandwidth The system should minimize the amount of used network
bandwidth and compress the transfer data if possible. The network band-
width for transferring a Meta Model Operation must be constant O(/), and
must not depend on the number of Model Elements of a Project. Transferring
a complete Project must use linear bandwidth to the number of it’s Model
Elements.

Throughput The system should be able to handle up to 20 clients using an online
workspace or up to 200 clients using an offline workspace simultaneously.
Offline clients only require the repository server from time to time, while
online clients continually send requests.

Dependability Criteria

Reliability The system should always preserve the state and the integrity of the
RUSE model and the RUSE meta-model, including history data. Performing
a change must result in an consistent and sound state of the data. In the case
of a system error or crash, the data should be set to it’s previous consistent
state.

Robustness The system should validate all input provided by the user and display
descriptive messages in the case of an error.

5.1. Design goals 83

5.1.3

5.1.4

Fault tolerance The system should notify the user of any exceptions encountered
during operation and cleanly shutdown the system in the face of unrecover-
able errors. The data integrity should be preserved in the face of client and
server node crashes. Client node crashes should impact the server node or
any other client nodes.

Cost Criteria

Deployment cost Deployment cost should be low. Installing the system should
be a task a normal user can perform and should not require the installation
of any additional tools. End-user client applications should be executable
without any configuration. The deployment of end-user client applications
must conform to the platform typical installation process.

Upgrade cost Changing the RUSE model must be possible without changing or
recompiling the meta-model. Adding new models or changing existing
models must be possible without restarting the central repository containing
the Projects.

Maintenance cost As the system is constantly being improved and new func-
tionality is developed, the maintenance cost for bug fixes and extensions of
the system must be low. Bug fixes in client applications shall not require a
restart or even redeployment of the server or other clients. If, for any un-
known reason, the persistent data integrity gets corrupted, experts should be
able to fix the corrupted data manually.

Administration cost Administration cost should be low. A graphical user inter-
face must be provided to support administrative tasks, like the creation of
Projects and Users, and for setting the User access rights.

Maintenance Criteria

Extensibility The RUSE model implementation should be extensible without re-
quiring any change on the meta-model or on the client applications. All
subsystems must provide a well documented API, enabling reuse and the
extension of the system with new subsystems, components, and applica-
tions.

Modifiability The system should be easily modifiable to be able to adapt the
functionality of the system to new or changed requirements. Sysiphus will
be freely distributable and changeable to fulfill its purpose as a research
platform. It will be distributed under the GNU General Public License [44]
in summer 2007. All off-the-shelf components, possibly used to realize
subsystems, must not interfere with this licensing.

84 5. The Sysiphus environment

Adaptability The system must be highly adaptable to different application do-
mains by extending the RUSE model. The extensions must not require any
changes on other subsystems.

Portability Sysiphus must run on at least on Mac OS X, Windows and Linux.
Java is used to implement the system, thus, all platforms that support the
Java Runtime Environment can be used as target platform. Sysiphus should
minimize the usage of operating system specific behavior. If operating sys-
tem specific behavior is required, the interaction must be encapsulated by
using the Bridge Pattern [46], and implementations for Mac OS X, Windows
and Linux must be provided.

Readability All Java classes and its public methods must be documented with
JavaDoc comments. Each package must provide a description, including
it’s goals and it’s usage.

5.2 Subsystem decomposition

This section describes the hierarchical decomposition of Sysiphus into layers
and it’s subsystems. Each subsystem is described in detail, including its dependen-
cies and main services. Sysiphus has an open layer architecture [110], consisting
of the Element Store Layer, the Model Layer and the Client Application Layer (see fig-
ure 5.1). Each layer only uses services provided by its underlying layers and does
not have dependencies to higher layers.

—
Client Application
Layer

.

Model Layer

N\
—

Element Store
Layer

Figure 5.1: Open layer architecture of Sysiphus

The UML class diagram shows the layering of Sysiphus. The Client Application Layer contains the
end-user applications to access and modify the RUSE Model, which is located in the Model Layer.
The Element Store Layer provides the RUSE meta-model and a central sever repository. The reposi-

tory contains the meta-model data that is accessible by distributed client applications.

Figure 5.2 shows the subsystem decomposition and subsystem dependencies
of Sysiphus.

5.2. Subsystem decomposition 85
Client Application Layer
— — — — —
RAT REQuest Notification SysClipse Admin
Subsystem Subsystem Subsystem Subsystem Subsystem
| |
| |
| |
| |
| |
Model Layer I I
L] :
|
— — :
Model Model Service | }bo-ocoooo oo ______ oo
Subsystem Subsystem ! !
L
| |
| |
| |
| |
| |
Element Store Layer b
| |
—— L
| |
Communication ! !
/7 Subsystem \\ o
e AN |
/// \\\ \ll \ll
L7 Project Data |_____ | Workspace
. - 7 Subsystem | Subsystem
Repository - L’
Subsystem S —1 7
: <. ~~x| Storage Management [¢
! . Subsystem
— v \\\ —
User Management N Version Model
Subsystem Subsystem

Figure 5.2: Sysiphus subsystem decomposition
The UML class diagram shows the layered architecture and the subsystem decomposition of Sysi-

phus. The Repository Subsystem and the Workspace Subsystem are the only subsystems of the Element

Store Layer that are accessed directly by higher layers. The Repository Subsystem provides a Fa-

cade for the server repository containing the RUSE meta-model. To accomplish its task, it uses all

other subsystems except for the Workspace Subsystem. The Workspace Subsystem provides access

to the ProjectDataSubsystem and additional services to distributed client applications, located on

the Client Application Layer. It uses the Communication Subsystem to access the Repository Subsystem.

The Project Data Subsystem provides services to manipulate the RUSE meta-model. Persistency is

handled by the Storage Management Subsystem. Access control is supported by the User Management

Subsystem. The Model Layer provides the RUSE model and related services.

86

5. The Sysiphus environment

5.2.1

5.2.1.1

5.2.1.2

In the following, we describe the subsystems of these three layers, starting
with the bottom layer.

The Element Store Layer

The subsystems in the Element Store Layer provide the Rationale-based unified
software engineering model Meta-Model and underlying services for the Rationale-
based unified software engineering model Model, including access control, per-
sistent storage, and a central server repository that provides Project access to dis-
tributed client applications.

The Element Store Layer contains the following subsystems, which are dis-
cussed in the following subsections (see figure 5.2):

e Project Data Subsystem

e \ersion Model Subsystem

e Storage Management Subsystem
e User Management Subsystem

e Repository Subsystem

e Workspace Subsystem

e Communication Subsystem

The Project Data Subsystem

The Project Data Subsystem realizes the project data model described in sec-
tion 2.2.1 and provides the services necessary to access and manipulate the project
data model. In order to synchronize the project data models between multiple
nodes without sending the whole data, the Project Data Subsystem provides the
Change Package, the Model Operation and Meta Model Operations described in chap-
ter 2.

The Project Data Subsystem is also capable of applying Change Packages to
the data model. Applying Change Packages to the data model means to change
the data model according to the encapsulated Meta Model Operations and handle
possible exceptions. The Meta Model Operations manipulate the Model Elements,
Model Links, its fields, lists, and maps, and the subelement structure, as discussed
in2.2.1.

The Version Model Subsystem

The Version Model Subsystem provides the version model as described in chap-
ter 2. It provides services for creating, managing and retrieving versions and
history information of a Project. The version model is independent of the project
data model to satisfy the design goal of modifiability.

5.2. Subsystem decomposition 87

5.2.1.3

5.21.4

5.2.1.5

5.2.1.6

The Storage Management Subsystem

The Storage Management Subsystem provides persistency for project data model
and the version object model. It provides services for storing, loading, and chang-
ing Projects and it’s Model Elements on the persistent storage. To avoid storing
the whole model for every change, the Storage Management Subsystem is notified
when changes occur and is able to update the persistent data accordingly. The Stor-
age Management Subsystem is configurable to either use a database management
system, or a file based approach for realizing persistency.

The User Management Subsystem

The User Management Subsystem provides services for authentication, autho-
rization and management of users. It uses a role and group based security model,
as published in [28]. Each project has one or many assigned groups, containing
users that are allowed to access the project. A user is in turn assigned to a number
of groups. The group membership and the group roles define the access rights of
the user for a project.

The Repository Subsystem

The Repository Subsystem provides a Facade to the shared server repository,
containing the Projects and its Model Elements. It offers all service operations to
retrieve and change the meta-model on a server node. In addition, the repository
includes administrative services for project and user management. The Reposi-
tory Subsystem provides the main controller for the shared server repository and
delegates the invoked service operations to the related subsystems.

When the service operation for retrieving the project data model is requested
by a workspace, the Repository Subsystem sends the data to the caller by using the
Communication Subsystem. The invoking workspace can subscribe to receive syn-
chronous push notifications about project changes. When the Repository Subsys-
tem is requested to change the project data model according to a Change Package,
it delegates the call to the Project Data Subsystem and the Version Model Subsystem
to perform the necessary changes. The Storage Management Subsystem is notified
to make the changes persistent. All subscribed workspaces are synchronously
notified of the changes by sending a copy of the Change Package.

The Workspace Subsystem

The Workspace Subsystem provides the interface for accessing and manipulat-
ing the projects of the Repository Subsystem to higher layer subsystems, especially
to the end-user client applications. It loads and maintains requested projects from
the Repository Subsystem into the memory of a client node, thus enabling access
to Model Elements without any network delay. The Workspace Subsystem delegates

88

5. The Sysiphus environment

5.2.1.7

5.2.2

all service calls, which manipulates the project data model, to the Project Data
Subsystem, which realizes the requested changes. When Model Elements of the lo-
cal workspace project get changed, it creates the necessary Meta Model Operations
and Model Operations that describe the performed changes. The operations are col-
lected in a Change Package. Whenever the Workspace Subsystem is requested by
an upper layer to send the changes to the repository, it uses the Communication Sub-
system to send the Change Package. The Workspace Subsystem supports two modes
for manipulating Model Elements: a synchronous online and the asynchronous of-
fline mode.

In online mode, the Workspace Subsystem ensures the synchronization of a
project state and it’s Model Elements on the client node with the state of the project
from repository on a server node. Therefore, the workspace registers itself for
pushed updates about project changes on the Repository Subsystem. The Workspace
Subsystem sends any changes made on the client node to the repository immedi-
ately and receives any changes that were made by other clients. The online mode
supports synchronous collaboration with multiple clients in a distributed environ-
ment.

In offline mode, the Workspace Subsystem isolates the client node from any
changes of other clients. Instead of immediately synchronizing changes with the
Repository Subsystem, it aggregates them in a Change Package. Synchronization
of the local workspace project with the repository must be done by explicitly by
calling a service operation.

The Workspace Subsystem is also responsible for conflict detection. Conflict
detection is necessary when changes from the repository are integrated into a local
workspace project, during an update or merge operation. The conflict detection
service provides operations to detect conflicts between lists of Change Packages
and to determine which changes are prerequisites for other changes.

The Communication Subsystem

The Communication Subsystem is responsible for transporting remote service
calls, their corresponding data and results between the Workspace Subsystem and
the Repository Subsystem. These subsystems may be located on different hardware
nodes. To increase network performance, it uses compression when transporting
the project data model. It uses socket connections to transport time critical data
such as Change Packages to minimize network delay.

The Model Layer

The Model Layer provides the domain knowledge of software engineering arti-
facts and models. It consists of the Model Subsystem and the Model Service Subsys-
tem. Both subsystems depend on the Element Store Layer, while the subsystems of
the Element Store Layer are independent from the Model Layer. Changes and exten-

5.2. Subsystem decomposition 89

5.2.2.1

5.2.2.2

5.2.3

5.2.3.1

sions of the Model Layer subsystems can be done without impacting the subsystems
of the Element Store Layer.

The Model Subsystem

The Model Subsystem provides the RUSE model as described in chapter 3. The
subsystem relies on the services of the Project Data Subsystem from the Element
Store Layer. The Project Data Subsystem is needed to realize the Rationale-based
unified software engineering model Model conforming to the Rationale-based uni-
fied software engineering model meta-model. The Model Subsystem can be easily
extended with new models. Every model instance of the Model Subsystem is repre-
sented by exactly one Model Element instance of the Project Data Subsystem. Note,
that the Project Data Subsystem has no dependencies to the Model Subsystem, sup-
porting the extensibility design goal.

The Model Service Subsystem

The Model Service Subsystem provides additional services on the Rationale-
based unified software engineering model model. These services are used by sev-
eral client applications and include the export of models to external PDF or RTF
files, the support for JPEG or PNG image generation of diagrams, and services
for text processing like the conversion of plain text to HTML and back. Further-
more, the subsystem provides user interface components that are used to view and
manipulate models. The components are reused by different client applications to
provide a common look and feel in Sysiphus.

The Client Application Layer

The Client Application Layer contains the subsystems of the Sysiphus client ap-
plications. The subsystems include the RAT Subsystem, the REQuest Subsystem,
the Notification Subsystem, the SubClipse Subsystem, and the Admin Subsystem.

The RAT Subsystem

The RAT Subsystem provides the end-user desktop application RAT, a graphical
user interface for accessing and manipulating the RUSE Model. RAT is compara-
ble to other modeling CASE tools like the IBM Rational Software Modeler [64],
supporting drag and drop interaction and the manipulations of diagrams. The RAT
Subsystem provides the online and offline capabilities of the Workspace Subsystem
to the end-user. The online mode enables a synchronous collaboration in a dis-
tributed environment. For instance, distributed design reviews and modifications
of class models and diagrams are supported, in which all changes are propagated
to all sites in real time. The offline mode enables the users to disconnect from
the Repository Subsystem and to work offline without any network connectivity.

90

5. The Sysiphus environment

5.2.3.2

5.2.3.3

5.2.3.4

5.2.3.5

For instance, requirements engineers can create and change requirements at client
site, while being offline. Changes are merged back into the repository when get-
ting online again.

The RAT Subsystem provides a plugin mechanism that enables developer to
create and add new plugins on runtime. The plugins get access to the loaded
projects and can extend the functionality of RAT.

The REQuest Subsystem

The REQuest Subsystem provides the web-based client application REQuest,
which provides a HTML-based hypertext view of the RUSE model, located in the
Repository Subsystem. REQuest provides non-technical users access to the models
and diagrams from a document-based perspective. REQuest is a server application
in relation to the end-users, who access REQuest over HTTP by using any WWW
Internet browser like Safari, Firefox or the Windows Internet Explorer.

The Notification Subsystem

The Notification Subsystem sends notification emails about user-relevant changes
of a Project end-users. For instance, users get notified when they get assigned to
Work Items or Issues. They also get notifications when collaboration artifacts like
Comments or Issues are attached to models, they created or modified. The emails
include an URL, displaying the relevant models in REQuest. In addition, the Notifi-
cation Subsystem supports services to register for rule-based notifications, in which
the users can specify about which changes they want to be notified.

The SubClipse Subsystem

The SubClipse Subsystem provides a framework for developing Eclipse plu-
gins, which access the Repository Subsystem. The subsystem supports graphical
user interface components for common tasks, like the login, logout or the se-
lection of Projects. In addition, the subsystem provides Eclipse plugins to display
user relevant Work Items and Issues, as well as displaying a graph, containing other
project participants, which are assigned to related tasks.

The Admin Subsystem

The Admin Subsystem provides a graphical user interface for administrative
tasks of the Repository Subsystem. The subsystem enables end-users with admin-
istrative access rights to create and delete projects, users, and groups and to define
the group and user memberships and roles.

5.3. Hardware/software mapping 91

5.3 Hardware/software mapping

Sysiphus is a distributed application and its runtime components are deployed
on several hardware nodes. This section describes the runtime components, the
node types, and their prerequisites. Furthermore, we describe which subsystems
are used in which components.

Sysiphus has a client—server architecture. Therefore, there are two types of
nodes, namely client nodes and the server node. To satisfy the portability design
goal, all subsystems of the Sysiphus are written in the Java programming lan-
guage. Java features a Java Virtual Machine that provides a common application
runtime on all kinds of different platforms. These include Windows, Linux and
Mac OS X. Therefore, the Sysiphus components can deployed on any hardware
node, independent from the operating system, as long as a Java Virtual Machine
implementation available.

The runtime components of Sysiphus are listed below and an example deploy-
ment of the components to hardware nodes is shown in figure 5.3.

Element Store is the central server component of Sysiphus. It contains all sub-
systems of the Element Store Layer and provides access to the projects to
distributed clients.

Element Store Admin is the application to administer the Element Store, real-
ized by the Admin Subsystem.

RAT is the graphical desktop application to access and manipulate the RUSE
model provided by the Element Store. RAT supports an online and offline
mode. RAT uses the integrated Derby [4] database management system for
persistent storage in offline mode. RAT is realized by the RAT Subsystem.

REQuest REQuest is a web-application that runs in an application server. It
connects to the Element Store to access the projects containing the RUSE
models and provides an HTML-based view on the models. REQuest gets
accessed by browsers running on any client nodes.

Notification Service is a service application that connects to the Element Store
to access the projects. It is realized by the Notification Subsystem.

Subclipse is an Eclipse plugin and provides the RUSE model in the environment
of Eclipse. It is realized by the SubClipse Subsystem.

Figure 5.4 shows an example deployment of RAT and the Element Store on a
client and server node. The diagram includes the subsystems and dependencies of
the components.

92

5. The Sysiphus environment

:Client :Client
:Server
offline:RAT online
Derby S| :BAT
EDBMS :Notification
RN N System
:Client NN [
— A N \
:Eclipse ~J
N :Element
< - ——- .
% :SubClipse FHF-F----=-====--==--- - Store i
]
! |
v :
:Client MySQL |
:DBMS !
Safari: L I
Browser | ~+~-_ X
T~ 1
T~ 1
- T~ Tomcat:ApplicationServer | |
:Client]
Firefox: | | | __ é :REQuest |-+ i
Browser [| |~ TTTTTTT

Figure 5.3: Deployment of the Sysiphus runtime components

The UML deployment diagram shows an example deployment of the runtime components of Sysi-
phus. The Element Store, the Notification Service and REQuest run on the same server node. The
Element Store uses the database management system MySQL [87] for realizing persistent storage.
REQuest runs in the Tomcat application server. Note, the components of Sysiphus running on the
server node, could also be on separated nodes. The Element Store Admin is not shown in the
diagram.

5.3. Hardware/software mapping

93

:Server

:Element Store

:Client
:RAT
—
RAT |
Subsystem !
1]
I T
. Model Service
. Subsystem
1 1
N —
i === Model
i r---1 Subsystem
'
Workspace | _ _| Project Data
Subsystem Subsystem
T T
I —
: _ - _ | Communication |
1 Subsystem
v
——
Storage Management
Subsystem
]
|
Derby
:Database Management System

Database Management System

—
Repository
Subsystem
— ik
User Management (! | | | |
Subsystem R
1 1 1 1
— A
Version Model <__J' Co
Subsystem .
[
—— b
Project Data <__: L
Subsystem .
1 1
— i
[
] Communication 2t
1
Subsystem !
1
— :
Storage Management | _____ H

Subsystem

i
v
MySQL:

Figure 5.4: Deployment of RAT and the Element Store, including their sub-

systems

The UML deployment diagram shows RAT and the Element Store on a client and server node. The

Element Store contains all subsystems of the Element Store Layer, except the Workspace Subsystem.

It uses a database management system for persistent storage. RAT uses the RAT Subsystem of the

the Client Application Layer, the Model Layer, and the Workspace Subsystem, the Project Data Subsystem,

the Storage Management Subsystem, and the Communication Subsystem from the Element Store Layer.

RAT uses the embedded database management system Derby [4], for persistent storage in the offline

mode.

94

5. The Sysiphus environment

5.4

5.5

Persistent data management

Persistent data is present on both client and server nodes. The server node uses
the Storage Management Subsystem to load, store and update persistent data. The
Storage Management Subsystem is notified of changes to the project data model
and updates the persistent data according to the Change Package, describing the
change. The system supports a file storage mechanism, as well as storing the data
into a database management system. The usage of a database management system
is recommended in productive use, enabling the advantages of atomic transactions
and regular backups. We use the MySQL [87] database management system for
the Element Store on the server node.

Client applications with workspaces in offline mode need to store uncommit-
ted changes and the project data model. Otherwise uncommitted changes and the
current state of the data model would be lost. The Workspace Subsystem also uses
the Storage Management Subsystem on client nodes. As the end-users should not
need to install a database management system before using a client application
like RAT, we use the Apache Derby database management system. Derby can be
embedded in any Java application and needs no installation process.

Access control and security

This section describes how access to the data stored in the system is controlled
and how these controls are enforced. In Sysiphus, only authenticated and autho-
rized users can view and modify the RUSE model and its history. The Workspace
Subsystems can not implement any effective access control, as they are running on
different client nodes. The Repository Subsystem that is running on the server node
is a facade for all server operations accessing the data of the Projects. Therefore,
the Repository Subsystem enforces the access control and mistrusts by default any
client. It provides service operations that enable the users to login and to retrieve
a working session. The session must be provided in every service operation of
the Repository Subsystem facade. It is used to test the user permission, before ex-
ecuting the operation. The user and session management is provided by the User
Management Subsystem, used by the Repository Subsystem.

However, the Workspace Subsystem is caching the user and role information
and 1s controlling access too. This enables the client applications to only provide
valid operations to the users. Users can be immediately notified about any ac-
cess violations on the local data, before the Element Store server would reject the
committed changes due to missing privileges.

Sysiphus generally separates between an administrator role and a user role.
The administrator role is required for all administrative operations, such as the
creation an deletion of Projects and Users. In addition, the administrator is able
to copy, archive and unarchive Projects and to set the access rights for roles and

5.6. Global control flow 95

Users. A user has access rights to Projects and is in general able to create, access,
modify and delete Model Elements.

In addition, a mapping of Model Operations to Roles can be defined for each
project. The mapping defines the access rights for a Model Operation of a RUSE
model element and is stored on the Element Store server. When the server receives
a change request in form of a Change Package, the User Management Subsystem
validates all Model Operations of the Change Package against the provided access
mapping. A new revision of the project data model is created, only if the user is
allowed to execute all Model Operations. The mechanism enables a fine grained
security and access rights definition on the operation base of a Rationale-based
unified software engineering model model element.

5.6 Global control flow

This section describes the global control flow of the Sysiphus. Sysiphus uses
an event-driven control flow [19, p. 276] to communicate between the Element
Store server and different client applications. We describe the global control flow
separately for the two workspace modes, the synchronous online and the asyn-
chronous offline mode. Both control flows start with a client application (we use
RAT) that modifies elements on the Model Layer. The Workspace Subsystem de-
scribes the changes to the meta-model in terms of creating Model Operations and
Meta Model Operations.

5.6.1 Control Flow in Online Mode

The online mode facilitates synchronous collaboration between many dis-
tributed client applications, connected to the Element Store server. After changing
the model and it’s meta-model, the Workspace Subsystem uses the Communication
Subsystem to send a Change Package, containing the generated Model Operations
and Meta Model Operations to the server node. The Element Store server creates a
new revision by changing the project data model and the version model according
to the received Change Package. All changes made persistently by notifying the
Storage Management Subsystem.

After successfully creating a new revision, the Repository Subsystem of the
server node sends the Change Package to all other client applications, whose Workspace
Subsystems registered for push updates on the modified project. By using the
Project Data Subsystem, the affected client Workspace Subsystems modify the af-
fected project data models, according to the received Change Package. The initi-
ating sender client is blocked, until all client nodes are updated, and the Element
Store acknowledges the change. Figure 5.5 shows a simplified sequence diagram
of the control flow in online mode.

96

5. The Sysiphus environment

5.6.2

5.7

client A ws A :Element ws B client B
:RAT :Workspace Store :Workspace :RAT
T T T

>0

Alice

o
o
(o)

. | Create
Modify - ' Revision

Modify
Model

Model :| Push Update
—>

Update Ul | y/igyalize

Change

Acknowledge

Visualize Update Ul
Change i X

Figure 5.5: Control flow in online mode (UML sequence diagram)

The sequence diagram shows the two end-users Alice and Bob, both working with RAT on dis-
tributed hardware nodes. Both applications are connected to the Element Store, located on a cen-
tral server node. After Alice modifies the model in her client application, the workspace sends the
changes to the repository, which creates a new revision. The repository sends a push update, con-
taining the changes to the online workspace used by Bob. The changes get applied and visualized
at the RAT instance of Bob before Alice changes get acknowledged.

Control Flow in Offline Mode

In offline mode, the Workspace Subsystem stores the performed changes in
a local Change Package, until an explicit commit operation is invoked on the
workspace. When a commit operation is invoked on the Workspace Subsystem,
it sends the Change Package to the Repository Subsystem to request the creation of
a new revision. In case that the version of project data model on the client node
is older than the version on the server node, the Repository Subsystem rejects the
create revision operation and the Workspace Subsystem requests the user to up-
date his project data model before committing. In case the commit succeeds, the
Repository Subsystem on the server node acknowledge the change, and sends the
Change Package to all online client nodes, which are registered for push updates.
The affected online clients proceed as in the online mode. Figure 5.6 shows a
simplified sequence diagram of the control flow in offline mode.

Boundary conditions

The boundary conditions describes the system configuration, startup and shut-
down of subsystems and the handling of exceptional conditions [19, p. 277]. This
section explains how the Sysiphus is configured, initialized and shut down and
how exceptional situations are handled.

5.7. Boundary conditions 97

>0

client A ws A :Element ws B client B
:RAT :Workspace Store :Workspace :RAT
A H T T T

lice | | | | | Bob
",Cf%if’l' M Modify 1 I | |
oae | |
Model 1 1 1
Visualize ! 1 1
Change Update Ul o i i i
mm(’jif’l' "1 Modify ! | : |
oae] | |
Model | | |
Visualize | | _\jpqate Ul | | :
Change p L ! ! !
! ! Create ! ! !
Commit__, 1. Revision __ . :
! 1
| Acknowledge | | push Update 1 E isualize
| L %E] Update Ul | Ghange
1 1
| | i i Modif | -
| | i\ Create | Mo de)I/ ' _ Modify
: . ! Revision Model
1 1
! ! Get Acknowledge
Update | ! Changes . a Update Ul
Visualize : Changes | 1 Visualize
1 1]
Change Update Ul | - : : Change
- I 1 1 1 1 L

Figure 5.6: Control flow in offline mode (UML sequence diagram)

The sequence diagram shows the two end-users Alice and Bob, both working with RAT on dis-
tributed hardware nodes. The RAT instance of Bob is constantly connected with the Element Store,
and is registered for push updates on changes. Alice works offline and only connects to the Ele-
ment Store server for commits and updates. Alice uses her client application to modify the model
several times, before she commits her changes. The Workspace Subsystem connects and sends all
changes gathered so far to the Repository Subsystem and creates a new revision. The repository
sends a push update with the changes to the online Workspace Subsystem of the client application
of Bob. Bob, working in online mode, creates a new revision by modifying the model. Alice will
only receive his changes when she manually updates her workspace.

98

5. The Sysiphus environment

5.7.1

5.7.2

5.7.3

Configuration

We separate the configuration description between the Element Store server
component and all client applications. The Element Store server has a textual
configuration file that defines all used network ports, and contains the required
information for the Storage Management Subsystem. It defines if the data is stored
directly in files, or if a database management system is used. In case of the file-
based approach, the system file path to the store location must be provided. Oth-
erwise, the required database information like the database host and port, as well
as the user name and password used to access the database must be provided.

Client applications like RAT needs to know the Element Store server informa-
tion, like the host name and used server port. The information of several servers
may be provided at the login and the user can select the server he wants to work
with. The login user interface component provides the additional option to man-
ually add the description of a new server. The server information data gets stored
in the user home directory and can be reused by any Sysiphus client applications.

Startup and Shutdown

Startup and shutdown need to be considered for the client applications and the
Element Store server of the Sysiphus system. When starting the Element Store
server, the Repository Subsystem loads all stored project data models and the ver-
sion object models by using the Storage Management Subsystem. The version ob-
ject model of a project may contain many versions and many changes, which
require much memory. The memory usage can be reduced by constraining the
loading to a configurable depth, starting from the head revision. The remaining
history is loaded on demand only.

When starting a client application in offline mode, the Workspace Subsystem
loads a requested project, which has been previously checked out, as well as any
uncommitted changes by using the Storage Management Subsystem. When work-
ing in the online mode, the Workspace Subsystem loads a copy of the requested
project from the Element Store server.

On shutdown, the Repository Subsystem on the server node notifies all regis-
tered online clients about the shutdown. This enables the client application to per-
form a clean shutdown as well. Shutting down a client application in online mode
requires to close all it’s workspace projects and to unregister from the Repository
Subsystem on the server node.

Exception Handling

To satisfy the reliability design goal, it is especially important for all compo-
nents of the system to react adequately to exceptions. In case of an unexpected
or unrecoverable exception in the Element Store server, the Repository Subsystem

5.7. Boundary conditions 99

triggers an emergency shutdown to avoid persistent data corruption. The Stor-
age Management Subsystem is always notified after all changes are applied to the
project data model and the version model. This ensures that data is only stored
when it has been successfully processed by all the other involved subsystems.

The Workspace Subsystem provides a rollback operation, enabling Model Layer
subsystems to rollback Model Operations that were interrupted by an exception.
When an exception occurs while a Model Layer subsystem is performing a Model
Operation, it shall invoke the rollback service operation of the Workspace Subsys-
tem. The Workspace Subsystem removes the unfinished and therefore possibly
inconsistent Model Operation from the Change Package, holding the uncommitted
changes. All executed changes of that operation are reverted.

Network failures on client nodes are handled differently, depending on the
mode of the Workspace Subsystem. Client applications that are working in the
online mode are closed immediately, when the connection to the repository server
is lost. The loss of the connection is an unrecoverable situation, since the online
synchronization mechanism requires and relies on an uninterrupted connection to
the Element Store server repository. Offline workspaces only require a connection
to the server repository when operations on the repository are explicitly requested
by the users. Consequently, the users can be notified about connection failures and
are asked to retry, when the network connection is established again. The client
applications must not quit and the users can continue to work offline.

100 5. The Sysiphus environment

CHAPTER 6

Applications and evaluation

The goal of this chapter is to show the validity of the concepts introduced in
this dissertation. Since 2000, we have used and evolved successive versions of
Sysiphus. Sysiphus has reached a state of maturity that it has been used in in-
dustrial and academic applications. In academia, Sysiphus was used in software
engineering project courses, for teaching software engineering concepts, for eval-
uating new research concepts, and to manage system development projects from
the chair of Applied Software Engineering and from interested students.

Our software engineering project courses provide a realistic environment to
students who experience first hand the complexity of software development projects.
These projects feature an actual problem specified by a real client and sometimes
involve up to 100 participants in several locations, in Germany, in the United
States, and in New Zealand. These courses have provided us with a research
testbed that is realistic enough for quickly evaluating ideas while enabling de-
tailed observation and surveys [20, 39]. The project courses are a first approxima-
tion for a distributed project, as students work part time, from different locations,
and usually do not know each other before the start of the course. Moreover, stu-
dents elicit requirements and deliver a system to an actual client external to the
university.

In industry, we used Sysiphus in consulting projects. After taking into account
the feedback from the academic applications, we have used documents and feed-
back from industrial partners to assess how realistic our ideas would be in real
projects. This enables us to study aspects related to scale and long term use that
we cannot assess in an academic environment.

Section 6.1 describes the projects that were used to evaluate the developed
concepts and the realization of the requirements provided in chapter 2. In sec-
tion 6.2 we provides additional applications of Sysiphus that were used to support
teaching software engineering concepts.

101

102 6. Applications and evaluation

6.1 Case studies

This section provides anecdotal evidence on selected case study projects. The
projects were conduced simultaneously to development of the introduced con-
cepts. The results of a postmortem analysis from each project were used to iterate
and incrementally refine on the concepts. We describe project environment and
the usage of Sysiphus for each case study. By observing the projects, analyzing
the created RUSE models in Sysiphus, and conducting interviews with the project
participants, we investigated the projects for four goals:

e The feasibility demonstrations of the introduced concepts in a wide range
of projects.

e The evaluation and refinement of the requirements introduced in chapter 2.

e The feasibility of communication and capturing rationale within the system
modeling context for the whole life cycle of a project.

e Investigating the concept application differences between beginners and ex-
perts.

Requirements
w
5 2
c|8 2 @
e |28s |8 §
a 9l o % o
c |5 |Eg|s ©
o g P E 2 ©
Bl |LBE |2 E
L P E 5|z
2|%825°|2klE |z vl | 2
c c o€ clwm B2 = 0 ©
£ 152 SICNl® = 4 o 2
= e > e STIE=| @ c =] 3
823|253 2 3 ol 2| ¢
“— g S O Y=
158555588 8| 5| 5%
Year Project < |SERYSB<8 £| x| 8|
2003/ L
2004 Cargo & Logistic| X X
2004/
2005 CampusTV| X X
Mobile Sportsman
2005 Artifacts X X X X
2004/ .
2005 Symphonia| X X X X X
2005/ Virtual Symphony
2006 Orchestra X X X X X X X
2006 IBM Awareness Mockup X X
2006 JASS X
2004-
2006 MOQARE| X X X
2007 Yieeha| X X X X X X X X
2007 TEAM| X X X X X X X X

Figure 6.1: Requirements evaluation
The table provides an overview of the projects of this sections and describe which requirements
are evaluated.

6.1. Case studies 103

6.1.1

Cargo & Logistics

During the winter semester 2003/04 the project Cargo & Logistics [22] devel-
oped a functional prototype forecasting system for the chemical company WACKER
Chemie AG [125]. The system analyzes the logistic information provided by the
SAP system of WACKER and calculates and visualizes a forecast about the lo-
gistics of inventory management, freight service support and dispatch disposition
(see figure 6.2). The project involved 30 students that worked in four teams.

eoe Wacker Chemie

: J Add Note ‘ View Notes |
Cargo'Logistic

Select User to Inform

Filter

[Lager 1
Subtract ﬂ ager
-
2004-02-21 17

Add Filter P

I [0 2004-02-20 17

I_l2004-02-19 17
2004-02-18 17 m
2004-02-17 17: %
[12004-02-1617: v

——

note
iption

€ start % € save) { Reset § Calor Index Descri

ﬁ
=

Lager 4

Filter Parameters Lager 5

Select days to apply

{ Add Filter Parameter

¥ Topic by ID
P All associated

==
o

‘&'i@j'g“@' IS

Import from SAP

Figure 6.2: The functional prototype of the Cargo & Logistic project course
The figure shows the functional prototype, visualizing and forecasting the logistic information of
the company WACKER Chemie AG.

In this project, Sysiphus was used the first time for an integrated development
of the requirements and the analysis models, including functional and nonfunc-
tional requirements, actors, use cases, and analysis class models. The require-
ments analysis document was generated with Sysiphus. At that time, Issues were
already supported in Sysiphus, but Comments and Work ltems were not. The system
design was created with several tools and documented in Word. We used Lotus
Notes-based BBoards (Bulletin Boards) as a communication platform for threaded
discussions and for capturing Issues. Moreover, the BBoards were used to create
project wide announcements about the activities and tasks the participants had to
perform. The organizational model was provided by a web-based address book
realized with Lotus Notes.

104

6. Applications and evaluation

6.1.2

In this project initial parts of the artifact integration and the consistency of
multiple model views requirements were realized and resulted in a generated,
sound, and consistent requirements analysis document, which had a higher qual-
ity than the documents of previous projects. The requirements analysis document
turned out to be one of the primary client deliverables, as it was used by the
WACKER IT department for realizing a production version of the system.

However, we recognized that the usage of different tools led to problems
among the students and the delivered work products. The system design docu-
ment that was created with other tools than Sysiphus was inconsistent in itself,
and in relation to the requirements analysis document. We were not able to trace
from the requirements to the subsystems and the components of the system design
and could not identify if all requirements were addressed, and which requirements
were realized by which subsystems. In a postmortem analysis we were not able
to access the rationale behind the analysis or the design. The students did not use
Sysiphus to create and capture the rationale in form of Issues, Proposals, and their
Resolutions. We recognized that most Issues were raised during informal com-
munication in Lotus Notes. Students discussed about problems before they were
identified as relevant Issues. Therefore, the Issues were represented in detail in in-
formal communication threads in Lotus Notes, but were not explicitly created in
Sysiphus. Due to the project’s time pressure and missing responsible participants,
the Issues were not recreated in Sysiphus. As the informal communication threads
from Lotus Notes were not connected to the system model elements in Sysiphus,
it was not feasible to identify the rationale and related collaboration artifacts for
the system models.

The project showed that the traceable integration of the requirements and
analysis and generation of the requirements analysis document leads to consis-
tent models and documents, which we did not found in previous project courses.
Therefore, we decided to follow this approach by extending the RUSE model with
system design artifacts. We recognized that the separation of collaboration and
system modeling hinders the efficient capturing of rationale. The students did not
switch their context and tool when recognizing that their discussion leads to an
Issue. We decided to extend the RUSE model with Comments to support informal
communication and discussion threads in the context of system modeling.

CampusTV

During the winter semester 2004/05 the project course CampusTV [23] devel-
oped a prototype system for supporting interactive and distributed lectures, based
on digital video broadcast (DVB-T). The hardware transmitters were provided
by the company and our client Rohde & Schwarz [108]. The developed system
records and transmits a digital video from the lecturer and the lecture slides in
realtime over DVB-T. Clients can view the video from distributed locations and
can interact by positing questions. All questions are collected and available to all

6.1. Case studies 105

b , Video Mixer

Transmitter

» Lecture Slides
Albert:Lecturer A

| l‘w Streaming Server

Stefan:Moderator

Interaction Server

Figure 6.3: Visionary mockup of CampusTV
The lecturer and his slides get recorded and transmitted over DVB-T in realtime. Mobile devices
receive the video signal location independent have the possibility to interact by posting questions.

Questions are tracked by a moderator and selectively forwarded to the lecturer.

other clients, which are also able to answer them. A moderator tracks all ques-
tions and forwards questions with class wide importance to the lecturer, who can
discuss the question openly (see figure 6.3). The project involved 25 students that
worked in four teams and selected students worked in additional cross-functional
teams.

The project used Sysiphus to develop the requirements analysis and the sys-
tem design documents, including the related Model Elements. Moreover, Sysiphus
supported Comments for informal communication. Unfortunately, Sysiphus had
no awareness support and did not notify participants about changes and ongoing
collaboration. Email notifications about posts to the BBoards were supported and
so we decided to additionally use Lotus Notes. The assumption was that Sysiphus
is used to communicate about the system models and capture arising Issues, while
Lotus Notes is used for the project organization and the notification of current
tasks.

The RUSE model of the project shows that the assumption was wrong. The stu-
dents created only one Comment and one Issue in Sysiphus. Instead, the BBoards
were full of discussions about the system. We had the same problems in tracing
between the system models and their Issues and the related communication than
in the Cargo & Logistic project. It was not feasible to identify the rationale behind
the developed system. Although we conducted rationale tutorials at the beginning
of the project, interviews showed that the students assessed the rationale manage-
ment as the most unimportant task of the project. Most students were beginners in

106

6. Applications and evaluation

6.1.3

system modeling and programming, so that the system development was already
challenging under time pressure. In their opinion, the capturing of rationale was
the first task to skip to meet the deadlines.

Satisfying was the integration of the system design into the RUSE model. The
students created 269 Model Elements from requirements, analysis and the system
design and generated the related documents. Traceability links between the related
Model Elements were created and were used to maintain consistency across the
system models and documents.

Mobile Sportsman Artifacts

The development project Mobile Sportsman Artifacts (MSA) involved four
students and was an interdisciplinary project between the Information Systems
and Preemptive and Rehabilitative Sports Medicine chairs of the Technische Uni-
versitdt Miinchen. The six month project started in January 2005 and developed a
system that manages personalized artifacts, including training and health relevant
information for long-distance runners. The system captures semi-automatically
health information like the pulse or blood pressure from relevant sensors and cal-
culates goal oriented training recommendations. The personalized artifacts are
accessible by web-browsers or over mobile hand held devices (see figure 6.4).

MSAS i
Hans Meler

‘Aktuell giltiger

=Obirdicht: ‘ fif|internet Explorer ¢ 20:54 €3

Halbmarathon
01:46 http:/fmypenguin.dyndns.org:8080 ~| @

Siathasndonoche Tranngaumtang o Woche . - E
Woche 10, 25,07, bis 31.07.05 o Trainingsplan fiir Hans Meier [*]
MMMMMMMMMMM
s aktuel gutiger

Traningsplan - Ubersicht:
Meta - Zel: Halbmarathon

Zielzeit fur Metaziel: 01:46

Mesozyklen des aktuellen Trainingsplans

Traningsumfang
Starthalenderwoche [/

Woche 30, 25.07
bis 31.07.05 Sissw

Mesozyklus -
Typ

eleje]e
lolololc
ejcje]e

11 bd

il L] [T*
ek rEREER

2|
<

@@
@@
L 3] [g]
@)@

@@

| —— W
- /o\\’ ’)

aja

Figure 6.4: The web interface and the mobile interface of the MSA system.
The left part of the figure shows the HTML-based web interface of the MSA system. The hand held
device on the right shows mobile interface of a training schedule for a long distance runner.

The students were excellent programmers and had already deep knowledge of
system modeling. They started system modeling with Rational Rose [62]. But
after initial usage, they decided to switch to Sysiphus. They claimed a missing
support for distributed collaboration of Rational Rose and wanted to capture ra-
tionale knowledge in form of Issues. We provided Sysiphus in the same version
that was used in the CampusTV project. They successfully modeled the system
with Sysiphus, including the requirements, the analysis, and the system design.

6.1. Case studies 107

6.1.4

The generated requirements analysis and system design documents were part of
the project deliverables.

The issue model was intensively used to capture and discuss problems about
the unknown problem domain, as well as about the design. They created 129 sys-
tem model elements and 18 Issues. We use the ratio between Issues and system
model elements to measure for the reusability of the developed system models and
call the ratio issue coverage. Calculating the issue coverage shows that 13.95% of
the system model elements were discussed with our issue model. In contrast, the
issue coverage in the CampusTV project was 0.37%. We explored the reasons for
the big difference by interviewing the participants. We figured out that all partici-
pants had previously been involved in development projects and some had already
experienced the draw backs of loosing the rationale for critical development deci-
sions. Moreover, they saw a big advantage of investigating the solution space of
critical problems in the defined structure that is supported by our issue model.

The success of the MSA project led to a follow up project with new student
participants. They had to extend the developed system and were required to reuse
and extend the existing system models. The participants reported in interviews
that the captured rationale represented by our issue model was extremely help-
ful to understand the system and the decisions that were made during the first
project. As they extended the system design, they were able to trace back to the
requirements and their related issues. They investigated the proposed solutions
and understood the reasons that led to the resolutions. For still unresolved ques-
tion, they were able to trace to the related participants of the previous project and
contacted them directly. This application initially evidenced the realization of the
traceability and accountability requirement of chapter 2.

Symphonia

To assess the traceability and extendability of our model in an actual industrial
project, we used a set of documents from a Siemens project developing a commu-
nication framework for enterprise phone applications. At the time, the project had
been running for about nine months, included about 40 people, and was about
to be distributed to four different sites, growing to about 100 participants. We se-
lected about 120 use cases and 100 nonfunctional requirements from their require-
ments documents, and entered in Sysiphus traces for these requirements, including
links to design components. We extended our model with project specific system
test cases and added traceability links to other related models. The documents we
examined also included annotations which we also entered in Sysiphus. We then
used the entered models as examples to elicit feedback during interviews with key
individuals, then with project management, and finally with all relevant persons
as a group. Several participants interviewed had taken part in distributed projects
and had used DOORS [121] as a requirements management tool so far.

Within this study, we observed several lessons learned:

108

6. Applications and evaluation

6.1.5

e The usage of Sysiphus enabled to visualize and manage the traces from
requirements to nonfunctional requirements, design components and test
cases within one view. Change impact could be identified through all mod-
els, that were previously distributed in several tools and only manually con-
nected by listing relations in external spread sheets.

e Different roles are involved in creating and using the traceability links. For
example, architect or senior developers are typically responsible for linking
requirements to components, whereas product managers and requirements
engineers need change impact knowledge when prioritizing requirements.
When the individuals involved are in different sites, we think that the likeli-
hood that traceability links are entered is much reduced.

e Individuals entering requirements in the tool are not necessarily the stake-
holders who originated the requirements, as pointed out by Gotel [48].
However, architectural and development decisions seem more easily trace-
able to their authors.

e The project we studied was organized in four week iterations, at the end of
which a product increment, including both documentation and code, was
validated. We think that such fast pace iterations are necessary to keep
the model up-to-date so that different sites use annotations on the model to
collaborate. Conversely, we think that the value of traceability through an-
notations would be reduced in projects were documentation either precedes
the product or is reconstructed after the product is stable.

Virtual Symphony Orchestra

During the winter semester 2005/2006 the project course Virtual Symphony
Orchestra (VSO) [127] developed a system that enables children to conduct a
virtual symphony orchestra. A video stream of each musician is displayed on one
of many screens surrounding the child conductor. The child hears the symphony
through a surround-sound system, providing a three-dimensional sound image of
the positions of each musician. A camera tracks the baton of the conducting child,
enabling the child to interact with the orchestra. The child can change the tempo
of the music and volume with motions of the baton. The child can also walk
through the orchestra, as the video and audio streams are dynamically adjusted to
reflect the relative positions of the musicians and the child (see figure 6.5).

The project started on October 30, 2005 and ended with the Client Acceptance
Test on February 16, 2006. The client is the Bavarian Symphony Orchestra [119]
with the chief conductor Mariss Jansons [81]. 24 students participated on the
project and worked in teams, each lead by a student team leader. Each develop-
ment team was responsible for a component. A cross-functional architecture team
included representatives from each development team. All teams met weekly for

6.1. Case studies 109

November, 2005 l February, 2006

Figure 6.5: VSO system mockup and a picture of the CAT.
The figure on the left shows the visionary mockup of the VSO system from November 2005. The
picture on the right site shows the VSO system during the client acceptance text in February 2006.

team status review and issue discussion. The team leaders met with the project
manager weekly for project status. A weekly all-hands meeting was used for tu-
torials and major reviews. As all participants were students, they had no common
office, worked in distributed locations, and often met only at team and all-hands
meetings.

In difference to the previous project development courses, we did not use Lo-
tus Notes any more. We added the organizational model, the Work ltems and the
described awareness mechanisms to notify the participants of related changes.
Sysiphus was used to develop the requirements analysis document, the system de-
sign document, as well as the software project management plan. Comments and
the issue model were used to communicate and to capture rationale. The Work
ltems were used to assign tasks to participants and for the project management
activities, like tracking state and progress. The realization of the support for fine-
grained search and filter mechanisms requirement was used to filter all Comments,
Issues, and Work Items to their related Teams. The filter results were integrated into
Team related sites of the web-based project portal and showed always the ongoing
communication and open Issues and Work Items.

The students created 234 system model elements, 48 Issues, and 141 Work
ltems. Calculating the issue coverage results in 20.51%, which is much higher
than in the previous CampusTV project course (0.37%) and in the MSA project
(13.95%). We expected a higher value than in CampusTV, as we completely in-
tegrated the project collaboration into Sysiphus. However, we were surprised that
the value is higher than in the issue coverage from the MSA project, as the students

110

6. Applications and evaluation

of the VSO project were in average less skilled than the students from MSA. The
skill levels of the students were equivalent to the CampusTV students. To clarify
the result, we explored the captured Issues in detail and recognized that 20 of the
48 Issues were not used to describe and capture system related problems. The
students used 20 Issues to ask and resolve organizational questions like “Who will
present the actors and use cases?”. Removing the 20 Issues from the calculation
still results in 7.69% issue coverage.

Additionally, we captured the complete history of accesses during the project.
We collected 29930 change events, denoting changes to the Model Elements of the
repository and 29151 user events, denoting read accesses and user actions in the
client applications (e.g., changes of focus in the traceability graph window). Ta-
ble 6.1 shows for selected Model Element classes the average number users and
teams who read or changed an element of that class. For example, on average,
each Work Item was read by 5.76 and modified by 1.78 users. Similarly, on aver-
age, each Work Item was read by members of 4.5 teams. The average number of
read and write accesses by users show how the system and collaboration models
were used to interact and how system knowledge is shared across participants and
teams. These users gained knowledge about the focused element and transfered
the knowledge by face-to-face communication to their teams. Therefore, the av-
erage team access indicates how many different teams were involved and aware
of the elements. As some users participated in more than one team, the average
number of accesses by teams can be higher than the number of users.

Element Element User | User | Teams | Team
Count Type Read | Write | Read | Write
141 Work Items | 5.76 1.78 4.50 1.98
48 Issues 6.45 2.20 5.81 3.00
60 Proposals 3.95 1,15 3.93 2.00
32 Resolutions | 0.75 1.03 0.84 2.03
34 Comments 4.55 1.05 4.11 1.64
13 Scenarios 7.69 2.30 6.46 3.23
24 Use Cases 8.33 4.95 7.04 5.04
23 NFR 7.30 1.91 6.04 3.00
9 Packages 11.66 | 3.66 7.66 4.00
109 Classes 3.22 1.67 3.27 2.19
10 Sequence D. | 8.80 | 2.10 7.50 2.30
5 Components | 9.00 | 2.80 7.00 3.00

Table 6.1: Average number of unique users and teams reading and writing a Model
Element.

We also captured the access date and time and recognized mayor activity peeks
(see Figure 6.6) around the Requirement Review, Analysis Review and System
Design Review. At all reviews, the students presented the relevant models of the
complete system. To ensure consistency and to integrate the different aspects of

6.1. Case studies 111

6.1.6

all teams, communication, negotiations, and problem solving across teams was
required. Combining the data from Table 6.1 and Figure 6.6 suggests that Sysi-
phus was used to collaborate across sites and teams, while face-to-face meetings
were used to resolve team-internal problems. To report problems and to raise
clarification questions, students created Issues and attached them to other teams’
system models. Examining the content of the Sysiphus repository, we observed
that students used our collaboration model mostly for application domain prob-
lems, design questions, components API discussions, and for project management
aspects. Participants used mailing lists to discuss infrastructure problems, imple-
mentation and programming questions. While the evidence from this case study
is anecdotal as the subjects were students, it confirms that it is feasible for groups
of participants who do not know each other to collaborate using Sysiphus.

1000 1 - . . .
Requirements Review J Analysis Review

= 24 Nov. 2005 8 Dec. 2005

800 |

System Design Review
15 Dec. 2005

600

400

200

10.11.2005 17.11.2005 24.11.2005 01.12.2005 08.12.2005 15.12.2005 22.12.2005
[IClass M Package [1Comment M Issue [JProposal [l Resolution [JNFR [JUse Case B Work Items

Figure 6.6: User activity on selected Model Elements in the VSO project.

IBM Awareness Mockup

The realization of the accountability and the awareness requirements was ev-
idenced by Florian Huber [58]. He used the capabilities of Sysiphus to compute
and visualize related project participants, based on their assigned Work Items, the
system model elements, and Issues. His work was used to mockup new awareness
concepts for IBM in Vancouver. We imported the persons and bug reports from the
free accessible bug tracking system Bugzilla [86] of the Eclipse [42] project, and
combined them with the eclipse components. The Sysiphus client SysClipse was

112

6. Applications and evaluation

6.1.7

than used to visualize social networks of Eclipse developers from within Eclipse.
Main contributors of specific components and knowledgeable developers for given
bugs could be identified (see figure 6.7).

®s|na~ =0

Problems | Javadoc | Declaration ss Graph
project "SEGAL{try it)" !

flo is logged in at the server "localhost” at the

%) Define Content
£] Deliver SRS Document T Foian
%] analyse different Tools
%] Write Glossary =
Kedar Shrikhande 2
£] Visualize Graph

Luis Izquierdo S f

%, Develop Prototype Florian Huber /
/

_$:| Plug In GUI
%) Define Layout /
%,] Design graph model

Christopher Hanlon JJ Sgrep

Figure 6.7: Visualized awareness graph in the Sysiphus client SysClipse
The screenshot shows the Sysiphus Eclipse plug-in SysClipse, visualizing relationships between
project participants. The relationships are computed on the basis of the participant’s activities on

Work ltems, components and issues.

JASS

The JASS project was part of the Joint Advanced Student School in St. Peters-
burg in April 2006. We conducted a 10 day project with seven German and seven
Russian students. The goal of the project was to extend Sysiphus with an agile
meeting management tool for distributed software projects, which is based on our
rhetorical issue model and Work Items. Meeting agendas should not explicitly be
written by a meeting facilitator, but should be generated automatically from the
open Issues and Work Items from the Sysiphus repository.

Beside extending Sysiphus with a meeting manager component, we used Sysi-
phus to manage the project, following the Scrum [113] management method. We
used the Work Items as backlog items and applied the filtering mechanism of the
RUSE model Documents and Leaf Sections to realize the product backlog and sprint
backlogs. The students managed to develop a functional prototype of a meeting
management extension for Sysiphus, while the RUSE model proved to be flexible
enough to apply agile management methods.

6.1. Case studies 113

6.1.8

6.1.9

In a follow up project, Jennifer Schiller [112] extended Sysiphus to support
the Scrum management method. The Scrum concepts were integrated and merged
into the RUSE model and a graphical user interface supporting the Scrum activities
was developed as a RAT plug-in.

MOQARE

The Software Engineering Group at University of Heidelberg [116] conducted
several project courses that used Sysiphus to develop and document the require-
ments, the analysis, the architecture and the design. In addition, the goals of the
project courses were to extend Sysiphus with new functionality. For example, in
the winter semester 2004/2005, a filter and sort mechanism was designed and de-
veloped for the web-based interface application REQuest. In the winter semester
2005/2006, the RUSE model was extended to support the creation and documenta-
tion of test cases and detailed test artifacts.

Within two bachelor theses, Sysiphus was extended with the concepts of misuse-
oriented quality requirements engineering (MOQARE) [56] and the synchroniza-
tion of object design and source code. The concepts were designed and specified
by using Sysiphus and functional prototypes were implemented. The extendability
of the RUSE meta-model and the reuse of the existing client applications enabled
a fast implementation and validation in real projects.

Sysiphus was used for accomplishing industrial case studies. In the winter
2004/2005 they conducted a Uveitis case study [55], evaluating the task- and
object-oriented requirements engineering approach with Sysiphus. From the lessons
learned, they extended Sysiphus with the MOQARE concepts and evaluated the
approach in a confidential case study with Porsche. Based on a 160-side client
specification and the related 240-side technical specification of a real project, they
created the nonfunctional requirement by using Sysiphus and evaluated the project
consistency, as well as their MOQARE approach.

Yieeha

The company Yieeha Ltd. & Co KG [132] are developing the Web 2.0 ap-
plication Yieeha, a playful community-based platform to discover new products.
Yieeha users have the opportunity to add and publish discovered products to the
platform, as well as to their personal wish list. Personalized product wish lists
and profiles arise, which are discoverable by Yieeha users and companies. On-
line shops have the opportunity to advertise their products by raffling them on the
Yieeha platform. Figure 6.8 shows the list of top wishes from the Yieeha users.

Yieeha Ltd. & Co KG recently started to use Sysiphus, after we realized the
configuration management requirement. They are going to model and manage
their requirements, analysis and system design. Before, they specified their re-
quirements and goals in traditional documents. They noticed that the documents

114

6. Applications and evaluation

6.1.10

Top Wunsche

Google-Anzeigen

Mortal Kombat

Die heilesten Winsche bei yieeha. Je mehr lhr
euch ein Produkt wiinscht, desto
wahrscheinlicher erfiillt ein Partner diesen

Armageddon
Alle Mortal Kombat Teile

18+ 100 % uncut
Versionen. Dt. Texte.

Wunsch und startet ein Gewinnspiel dazu. Tipp:
Schau doch mal in den Gruppen nach den Winschen
der Experten. Neue Apple iPod
Angebote

iPod Nano, Shuffle und
iPod Video. iPod Store -
Alles fiir den iPod!

’:j Die neuesten Wiinsche beobachten

Kategorie: Bitte auswihlen = § | Die neuesten Winsche | Heute | Woche | Monat | Jahr | All Time
Pod nano 8GB
" Nintendo Wii Ki I .
1 B [+] ;lns,fl,zs E_t:e?:soo 366 Kaufberatung,
Testberichte und
Preisvergleich fir MP3-
W Apple iPh
2[f] o g 255 Player.
3 Q ia Playstat| 249
Xbox360 Konsole
EUR 279,00, kostenlose
Aoble IPod 8GB sch Lieferung. sofort zum
. pple IFod nano schwarz 2
4 i [+ 1 Happy hat s entdeckt 225 Kracherpreis kaufen!

Figure 6.8: The top product wishes of the Yieeha platform
The screenshot shows the top four product wishes of the Yieeha Web 2.0 platform in April 2007.

outdated very fast and that they were not able to manage consistency and traceabil-
ity across different documents. They expect to overcome these problems by using
Sysiphus and will provide us practical experiences and feedback on our approach.

TEAM

In September 2006, the European Commission signed an agreement to fund
the 30 month research project TEAM [120], which aims to develop an open-source
software system, seamlessly integrated in a software development environment for
enabling decentralized, personalized and context-aware knowledge sharing. In
particular, it focuses on a semantic-based framework for sharing knowledge about
software implementation, accessible from an IDE (see figure 6.9). The project has
ten participating organizations from eight different European countries, including
universities as well as industrial companies.

The project just started using Sysiphus. The participants initially use Sysiphus
to analyze and model their problem domain by using class models. All models
are shared across the eight countries in realtime and Sysiphus provides the mech-
anisms for synchronous collaboration. We hope to get detailed feedback on using
Sysiphus across several countries.

6.2. Teaching software engineering 115

6.2

6.2.1

@ Domain
a8 Ontology

working|
confext

log

user’s
preferences

History
Analyzer

Figure 6.9: A conceptual overview of the system developed by TEAM
The figure shows a conceptual architectural overview of the TEAM system. Developers access
and share knowledge by using ontologies and taken their local working context into account.

Teaching software engineering

We also used Sysiphus for teaching software engineering concepts including
rationale management and to develop example projects used in software engi-
neering lectures. This section describes applications of Sysiphus in the context of
teaching software engineering.

Arena

ARENA [5] is a distributed, multi-user system for organizing and conducting
tournaments. It is an open source project, published under the GNU GPL [44]
license. ARENA is game independent in the sense that organizers can adapt a
new game to the ARENA game interface, upload it to the ARENA server, and
announce and conduct tournaments with players and spectators located anywhere
on the Internet. Organizers can also define new tournament styles, describing how
players are mapped to a set of matches and how to compute an overall ranking of
players by adding up their victories and losses (see figure 6.10).

ARENA has been developed as a companion example for the book Object-
Oriented Software Engineering [19]. The goal is to provide a non-trivial and
living example for software engineering education. With ARENA, an instruc-
tor can cover technical topics (e.g., access control, concurrency control, dynamic
class loading), and methodological topics (e.g applying design patterns, specify-

116 6. Applications and evaluation
Welcome to ARENA alice
TicTacToe Leagues
v Expert TicTacToe League [restricted, owner: bob] - A restricted league for insiders.
v 2003 Championship - playing first round.
alice, joe- match playing
2004 Championship - registration open
> Novice TicTacToe League [owner: bob] - A simple, unrestricted league for beginners.
(Play match |
Playing alice, joe ® O O Playing alice, joe
X) | 0 X) . X) 0 .
) (0) (X)) (O) (X
Your turn Waiting for opponent to play
Figure 6.10: Screenshots of the ARENA
The screenshot show the ARENA management interface to organize tournaments and the user
interface provided distributed sample game Tic Tac Toe.
ing contracts). ARENA can also be used for supporting project courses in which
students extend or refine the system.

We used Sysiphus to create the requirements, the analysis and the system de-
sign of ARENA. The rationale of design decisions are captured by using our issue
model. All documents and models are frequently published to the ARENA web-
site and provide the documentation for the project. ARENA was used in several
lectures. Students had to extend ARENA for new game types. They used the doc-
uments and models from Sysiphus to learn about the ARENA requirements and the
system design. Interviews showed that the issue model annotated on the system
model elements was extremely helpful for their understanding.

6.2.2 Asteroids

During teaching software engineering including design patterns, we recog-
nized that students have problems in understanding and applying design patterns.
We recognized that practical experiences are needed to understand and internalize
the application of design pattern. Therefore, we developed a set of design pattern
exercises that are based on our own implementation of the Asteroids game. Differ-
ent versions of Asteroids are available, each a target for applying a design pattern.
The Students have to realize new requirements by applying a design pattern in the
system model, as well as in the source code of Asteroids. Figure 6.11 shows the
game Asteroids.

6.2. Teaching software engineering 117

Asteroids

File Control

stop
.__\' speed up "__.
I._: left "_.I |__\' fire rocket "_.I |__\' right -'_.I

speed down

Collision Strategy _Space Shuttle Collision ﬂ .__" reload .,.-'

.!\ Your Space Shuttle
Direction: 0

Speed: 3.0
GPS Coords: 0192 | 0146

new Window

Chair for Applied Software Engineering, TUM 2006

Figure 6.11: Screenshot of the game Asteroids

We used Sysiphus create and manage the requirements and analysis of Aster-
oids. We created multiple projects, each referring to a Asteroids version, which is
target for an exercise. The students used Sysiphus access the models of Asteroids
and to apply the design pattern by changing the models.

6.2.3 Software engineering lectures

The Software Engineering Group at University of Heidelberg [116] used Sysi-
phus to support the software engineering lectures “Planning and execution of
software development projects”, “Requirements engineering and project manage-
ment” and “Software engineering for modern applications”. The results of using
Sysiphus in teaching software engineering were published in [16, 17, 100].

Planning and execution of software development projects

In the summer semester 2004, The University of Heidelberg used Sysiphus to cre-
ate and document software engineering models. The students accessed the RUSE
model of a real project, to learn how they are used. After understanding the con-
cepts, such as requirements, use cases and actors, the students used Sysiphus to
change and extend the existing project models. The course was repeated in the
summer semesters 2005 and 2006.

Requirements engineering and project management
In the summer semester 2005, students used Sysiphus to get practical experiences

118

6. Applications and evaluation

in the area of project management. The students created project management
plans, including work-packages, milestones and measured the project states.

Software engineering for modern applications

In the winter semesters 2005/2006 and 2006/2007, Sysiphus was used by the stu-
dents to get experiences in the area of rationale-based architecture modeling and
modern technologies. They used Sysiphus to create a requirements specification,
the system design and the test specification. They used intensively our issue model
to capture the rationale behind decisions. The teaching approach was published
in [109].

7.1

711

CHAPTER 7

Related Work and Previous
Research

We separate the related work into research and commercial systems.

Research

Integrating related software engineering models and the use of rationale, trace-
ability, and awareness for supporting distributed development is not new. Re-
search efforts from the software engineering and computer-supported collabora-
tive work communities have investigated these mechanisms for distributed work
to achieve a variety of goals, such as improving distributed negotiation [18],
identifying social dependencies [33], using traceability to raise awareness [79],
using asynchronous issue discovery and consolidation to reduce the need for syn-
chronous collaboration [30, 74]. While many aspects of these proposals appear
similar to our Rationale-based unified software engineering model model, each
differs fundamentally either in the goal they achieve or their approach. In this
section, we examine how our work complements and extends these proposals.

Rationale and Distributed Work

The goal of much rationale research has focused on capturing decision making
knowledge for long term use, contributing to the group memory of the organiza-
tion. However, such externalized knowledge is also useful in the short term for
supporting transfer between sites [37]. For example, EasyWinWin [14, 18], an
approach for negotiating requirements, leverages off both rationale and collabora-
tive techniques. Rationale is represented as Win conditions, issues, proposals, and
agreements, similar to the QOC [80] model in Sysiphus. During negotiation, stake-
holders follow a sequence of stages in which they brainstorm win conditions, de-

119

120

7. Related Work and Previous Research

7.1.2

fine glossary terms, prioritize Win conditions, surface issues and constraints, and
resolve issues. The EasyWinWin tool enables stakeholders to remain anonymous
during several stages of the process, thus shifting the focus of the negotiation on
the content. The tool enables dealing with a large number of win conditions and
with geographical distribution. While EasyWinWin and Sysiphus are similar in
their use of rationale, they differ in their scope: EasyWinWin targets high-level
requirements elicitation during synchronous workshops, Sysiphus focuses on de-
tailed development of requirements and architecture during both synchronous and
asynchronous collaboration. This key difference lead us to investigate closely the
relationship of rationale with traceability and awareness.

Traceability and Awareness

Requirements traceability has long been identified as a key success factor in
large software development projects [35, 47]. The Standish Group’s CHAOS re-
port identified incomplete and changing requirements as two key factors in project
failures [117]. Moreover, requirements traceability is required for CMMI com-
pliance [114]. While commercial requirements traceability tools (e.g., DOORS
and RequisitePro) have been used in distributed projects, their focus is on man-
aging complex requirements and on change management. They do not support
distributed collaboration and traceability to the project participants. The interest
of using traceability for supporting the concept of group awareness is recent.

Souza et al. [33] conducted a field study on the use of Application Program-
mer Interfaces (APIs) for coordinating distributed work. While they confirmed the
popular belief that APIs create walls between teams allowing them to work inde-
pendently, they found that defining contracts with APIs can also create obstacles
for inter site collaboration, in particular, during the integration. They also noted
difficulties by developers in finding and communicating with their counterparts at
remote sites. Based on these insights, Souza et al. propose the concept of social
call graphs, depicting both dependencies among components and their authors,
thus depicting the social dependencies between developers that would be critical
during integration. The RUSE model provides pretraceability with a similar graph
of relationships between model elements and authorship, extended this concept to
software engineering models in general.

ADAMS [79] tracks artifacts produced during development along with their
dependencies. Moreover, ADAMS associates developers with the operations they
are allowed to perform on each artifact, thus also capturing life cycle aspects. De-
velopers become aware of changes to dependent artifacts by subscribing to events.
To ensure that all dependencies are captured, ADAMS uses a latent semantic in-
dexing mechanism to suggest the addition or removal of links between artifacts,
based on their linguistic similarity. Traceability and notification are thus used to
raise the awareness of developers to changes to related artifacts. Latent semantic
indexing ensures that links among artifacts produced at different sites are cap-

7.1. Research 121

7.1.3

tured. ADAMS provides a generic file-based representation of artifacts, but does
not explicitly represent software engineering concepts. Conversely, in Sysiphus,
users can specify such concepts when subscribing to notifications. As indicated
before, a user can request to be notified when high-priority use cases change.

Asynchronous Inspections

Several web-based tools have been proposed for supporting asynchronous in-
spections in distributed projects (e.g., IBIS [74] and HyperCode [101]). The
goal of such tools is to minimize the number of synchronous activities during
the inspection process to enable its distributed execution while retaining the ben-
efits of inspections. Asynchronous inspection has also been used for require-
ments [30]. While such inspection tools focuses specifically on the inspection
activity, they share with Sysiphus the concept of raising and resolving issues asyn-
chronously and attaching issues with the artifact under consideration (e.g., re-
quirements, source code). Our approach differs in that it does not support specific
stages in the process, treating development as a continuous process in which issues
can be raised, discussed, and closed in any order.

Ebert and Neve summarize in Surviving Global Software Development [40]
experiences and best practices for global distributed software development projects.
The results focus on project organization structures, process management and in-
tegrated workflow management. They stated out that one of the real challenges
is to spread the awareness, communication and knowledge to all development
levels and sites in real time, specially when different cultures and languages are
involved. Within this paper, we proposed a model and prototype implementation
to increase these properties by realtime collaboration on requirements and system
models integrated with rationale knowledge and communication. Traceability be-
tween requirements, system models and rationale knowledge and communication
is supported to identify change impact as well as critical stakeholders.

Battin, Crocker and Kreidler describe in [6] the main issues and solutions of
a global distributed project from Motorola. Main issues they encountered are the
loss of communication richness between different sites and a centralized software
configuration management. The solution approach for the loss of communica-
tion richness includes the exchange of documents and work products over the
intranet, using a web site for each site. The RUSE model follows the same princi-
ple, as all artifacts like documents, models, rationale and communication elements
are located in the central repository of Sysiphus, accessible from all sites. Thus,
awareness of the other site’s work increases and foreign experts can be found.

Chisan and Damian developing a model of awareness support in software de-
velopment in GSD [24]. They propose a workspace, containing all development
artifacts like the requirements or the design document, which support notification
to relevant project participants, when the content of the workspace changes. To
avoid broad cast notification, the model proposes artifact dependencies to notify

122

7. Related Work and Previous Research

selected people only. We agree to the need of awareness in distributed software
development and have already implemented aspects of the proposed model. Our
approach consists of a central repository containing all development artifacts that
are an extension of the described meta-model. Our concrete development artifacts
range from documents (e.g., requirements, design) to UML models like use cases,
classes, or components to design rationale based on QOC [80]. Awareness is sup-
ported as developers can subscribe to their project and get notified when elements
changes. Instead of getting notified about all changes they can define the artifact
class or the document sections they want to be aware of. Notification of relevant
artifacts is supported by tracing to the collaboration model. Authors of system
model elements get notified when collaboration artifacts like comments, issues,
or work items are attached to the elements.

Mockus and Herbsleb show in [85] the need for finding experts in distributed
projects. They introduced a tool that supports the measurement of expertise and
expert searching in terms of people or organizational units. The tool works on the
data of version control systems (VCS), capturing deltas of files. In addition, author
information, modification dates and a change log are captured. The tool enables
the browsing and searching of work products and expertise-based identification
of people. The work products are mainly source code files and are visualized as
a product hierarchy resulting from the source code directory structure. VCSs are
very good in dealing with text files, but they have problems when working on bi-
nary files, which are mainly used by CASE tools to store models. Often, MS Word
files are used to create the project documents, containing images of diagrams. The
integration of the configuration management into the RUSE meta-model captures
similar change data as a VCS. Therefore, the same approach as in [85] can used
to identify experts within the requirements, system models, rationale knowledge,
or within the communication elements. The introduced traceability concepts fur-
ther helps to identify dependencies among experts, expertise, and work products
in terms of model elements.

Dellen, Kohler and Maurer propose in [34] methods and techniques to extract
automatically causal dependencies between decisions from development tasks de-
compositions and from the information flow of fine-grained software process mod-
els. The decisions are part of rationale information and supported with cons and
pros. Decisions are made during tasks, which are part of the process model. The
decisions of a task are influencing depending tasks. The application of their ap-
proach overlaps to ours. The dependencies are used to identify change impact,
when a decision changes or becomes invalid. In opposite to our work, they focus
on a process model and use development artifacts as inputs and outputs for tasks.
We focus on all kinds of development artifacts and support direct links between
them and rationale, capturing the reasoning behind them and providing a context
to resolve issues.

REMAP [103] is a tool to support stakeholders to create design solutions from
a set of requirements, using Design Rationale. The rationale is used to capture

7.1. Research 123

7.1.4

knowledge and to negotiate over open issues, related to requirements. A decision
leads to a constraint, which must be addressed by the design solution. Therefore,
REMAP uses rationale to maintain traceability between requirements and design
solutions. The use of rationale in REMAP is similar to ours. In addition, we
supports a mechanism to create traceability links. We allow to attach issues to all
elements of all software development activities and we integrate rationale into the
graphical modeling user interface. Integrating rationale in the developer’s daily
work tools, increases the acceptance, usage, and benefit of rationale.

Versioning of software engineering models.

Several research efforts addressed the problem of designing SCM systems that
are capable of managing complex data structures in a fine grained manner. Most
of them focus on single project artifacts such as diagrams rather than consistently
managing the complete set of artifacts produced during the life cycle of a software
development project.

One of the central techniques described in this dissertation is the representa-
tion of deltas using the original editor operations. This idea was heavily influenced
by the work on operation-based merging by Lippe and van Oosterom presented
in [78]. They discuss the advantages and disadvantages of using operation-based
delta representations to capture the semantic context for diffing, merging and sev-
eral algorithms for conflict detection.

Rho and Wu describe an approach for configuration management of software
diagrams that they use in the DIVERS system in [105]. They use a fine grained
model with operation-based deltas similar to our approach. Software diagrams are
represented as a graph consisting of nodes and edges. In contrast to our work, they
focus on managing single diagrams rather than an integrated model of software
engineering artifacts. Consequently, they do not show how their approach can
be applied to consistently manage a set of interrelated models that have different
domain specific constraints.

Ohst et al. present an approach for versioning software documents with a focus
on UML-based analysis and design diagrams [96, 98, 97]. They assume these
documents are modeled in a fine grained way using a syntax, which is defined
by a meta-model. Differences are visualized using a unified document containing
both common and differing parts. Versioning is essentially state-based. While
tool and design transactions support the grouping of logical changes similar to our
Change Packages, the original tool operations are not captured to provide the full
semantic context of changes. Thus, differences between two versions have to be
incompletely recalculated. Furthermore, they use a pessimistic locking scheme for
collaboration. Finally, their approach again concentrates on single diagrams and
the authors do not show how their approach can be applied to sets of interrelated
models with different domain specific elements.

124

7. Related Work and Previous Research

Nguyen et al. introduce the Molhado framework for building object-oriented
software configuration management services with versioning at adjustable lev-
els of abstraction and granularity [88, 90, 89]. Their motivation to develop this
framework is the impedance mismatch between the complex data structures of
object-oriented design documents and file-oriented SCM systems. The system is
geared towards versioning sets of interrelated model elements, like the approach
presented in this dissertation, in order to consistently manage the different artifacts
created during the software development life cycle. However, the system operates
on a very abstract meta-model level only. Consequently, the issue of semantic
integrity of domain specific models is not covered.

Mehra et al. present generic version control, visual differentiation and merg-
ing for diagrams in the Pounamu meta-CASE tool [82]. Pounamu allows the
user to specify and generate multi-view visual design tools for sets of diagrams
based on a model of entities, associations, connectors, shapes and manually spec-
ified integrity constraints. The paper describes how the authors added versioning,
diffing and merging facilities. Different versions of diagrams are serialized into
XML and stored in a regular CVS repository. Differences are extracted by com-
paring the XML documents and translated back into editing operations for the
original editors. This facilitates leveraging the editors’ logic for diagram specific
visualization of diffing and merging as well as their logic for integrity constraint
checking. The approach used is essentially state-based since the operations are
recalculated rather than stored directly. Although this facilitates the usage of a
main-stream SCM system, it loses information about the changes irrecoverably
and makes difference calculation more complex and time consuming.

Oda and Saeki propose a fine grained version model for software engineer-
ing models focusing on diagrams in [95]. They argue, that SCM for diagrams is
highly dependent on the specific types of the diagrams. To solve this problem, they
propose an approach that uses a meta-CASE tool to generate the SCM functional-
ity along with the CASE tools from meta descriptions for specific diagram types.
They use a graph structures meta-model that differentiates between logical and no-
tational information to represent different diagram types. In their SCM approach
they use change-based versioning with operation-based deltas. The facilities for
capturing operations during manipulation of the diagrams are automatically gen-
erated by adding appropriate editor and capturing code during tool generation.
One disadvantage of this approach is that new editor tools have to be generated
each time a diagram type is added or modified, thus severely limiting extensibil-
ity when tools have already been deployed. Furthermore, they only show how
their approach can be applied to single diagrams and not to an integrated model
of software engineering artifacts.

Oliviera et al. present Odyssey-VCS, a system for fine grained version control
of UML model elements [99]. A main design goal of the system is to support
a wide range of CASE tools. Consequently, the MOF and XMI standards are
used for the internal representation of diagrams and only a narrow file or plug-

7.2. Commercial Systems 125

7.2

in based interface to higher level tools is provided. The versioning and conflict
detection behavior can be configured for each element type on a per project basis.
The version model used is state-based and operates on the meta-model level only.
Differences are extracted by comparing the XMI syntax trees. Since Odyssey-
VCS does not use operation-based deltas and operates on the meta-model level
only, model integrity can not be guaranteed during merging.

Commercial Systems

The IBM Rational RequisitePro [61] solution is a requirements management
tool using familiar document-based methods. IBM Rational RequisitePro relies
heavily on Microsoft Office products for editing model elements. Changes can be
tracked on a per element level. In contrast to the RUSE model, model elements
are textual paragraphs of a document with no complex internal structure and no
type consistency. Differences can be derived by text-based differencing. A change
and version history is provided but changes can neither be undone nor replayed.
Offline operation is only supported with a pessimistic locking mechanism. The
integrated SCM functionality thus only provides the logging of changes. For any
other required SCM functionality such as version selection, an external SCM tool
is required. However, such a solution would not be able to supply meaningful
changes since it is not fine grained and adds usability issues by requiring the user
to use separate tools. Informal collaboration artifacts and capturing issues for
representing rationale are not supported.

Telelogic DOORS [121] is a requirements management tool with focus on
textual requirements. Changes are tracked on a per element level and can be ag-
gregated into change notes, an equivalent to our Change Packages. Configuration
management, traceability, and an extension for use case modeling is fully sup-
ported. In contrast to our approach, collaboration models and the organizational
models are not supported within DOORS.

IBM Rational Software Architect (IRSA) [63] is an integrated design and de-
velopment tool. It leverages model-driven development with integrated UML
support for creating the architecture of applications and services. The organi-
zational model and informal collaboration and rationale management of a project
are not supported. IRSA is built on the Eclipse IDE and uses the Eclipse Model-
ing Framework (EMF). Kim Letkeman discusses the approach taken to compare
and merge UML models in the IRSA in a multi-part article [75][76][77]. IRSA
captures changes on one EMF level while user interaction and integrity checking
take place on the higher UML level. It turned out to be very difficult to reconstruct
the higher level operations at a later stage and to maintain model integrity without
capturing additional context. Our approach provides this additional context with
the introduced Model Operations.

126

7. Related Work and Previous Research

Artisan Studio [115] is an integrated suite of UML modeling tools for the
development needs of technical systems. It can be extended by a module called
Multi-user Change Tracking to allow change tracking. Artisan does not support
workspace isolation. Artisan Software suggests the use of a mainstream SCM tool
for all other SCM functionality except change tracking. As only change tracking is
supported in Artisan, there is no way to automatically derive meaningful changes
between two versions of an Artisan project. Furthermore, an offline mode is not
supported by Artisan.

8.1

CHAPTER 8

Conclusion

This chapter summaries our research and the results in section 8.1 and outlines
future directions in section 8.2.

Summary

This dissertation addresses the problems of inconsistencies between related ar-
tifacts and inefficient collaboration in distributed software development projects.
The artifacts such as documents and models are created and managed in separated
tools and meta-models that are insufficiently integrated. The same models have
usually several redundant media representations, for instance in a modeling tool
and in several documents. Artifact dependency traces across all related artifacts
and redundant media representations are not supported. Inconsistencies between
related artifacts usually arise when changes occur. The project participants have
to analyze the change impact to related artifacts and change them accordingly. In
distributed development projects with huge numbers of models and documents,
the identification of related depending artifacts and redundant media represen-
tation is not feasible due to missing dependency traces. Efficient collaboration
between the distributed project participants is needed.

Unfortunately, project collaboration is also hindered by the distribution. In
particular informal communication to overcome urgent issues is reduced. Missing
cross-site project knowledge and awareness of activities and problems from teams
located at foreign sites are problems. The rationale behind the parts of a system
developed at one site is usually not propagated to all sites and gets lost in long-
term projects.

Our approach to overcome these problems is to integrate all related system
models, the project organizational models and the collaboration models in the
RUSE model that is based on an extendable meta-model. The model is repre-
sented in a single central repository and accessible from distributed sites. De-

127

128

8. Conclusion

pendency traces across all artifacts are created and managed implicitly within the
same model and support consistency maintenance of related artifacts. The organi-
zational models consist of participants and teams and their activities of manipulat-
ing the RUSE model elements are captured. The relations between participants and
related model elements are traceable in both directions. The collaboration models
include Comments, an issue model, and Work Items. The comments are used for
capturing informal discussion threads. The issue model is based on Question, Op-
tions, Criteria (QOC) [80] and facilitates the capturing of rationale and represent
project knowledge. Work Items describe the project activities and tasks and can be
assigned to the project participants. The collaboration models are attached to rel-
evant system model elements and their relations are traceable in both directions.
Specifically, our approach is able to:

e Visualize complex relationships across related artifacts from different de-
velopment activities by multiple distributed teams.

e Eliminate fragile traces that are intrinsic to the use of different tools and
media for storing work products.

e Support the identification of related artifacts for mitigating the problem of
consistency maintenance.

e Capture rationale knowledge during the whole software development life
cycle and to make the rationale accessible to all distributed participants.

e Support distributed informal communication in the same context as devel-
oping the system models.

We realized our concepts in a tool called Sysiphus. We applied Sysiphus in a
wide range of different projects to demonstrate the feasibility of our concepts. The
projects range from small projects with 4 participants to large projects with about
40 participants. We observed university project courses, independent student de-
velopment projects, industrial projects, and projects that were used for teaching
software engineering concepts. The skill level of the project participants range
from beginners to experienced professionals.

Our observations show that the integrated RUSE model and the traceability con-
cept presented in this dissertation can be deployed and are useful in a distributed
development environment. We also observe that missing traceability links will
probably be most often those between model elements owned by different sites or
by different roles. In this case, it is critical that sufficient collaboration (either in
the form of informal Comments or formal Issues) occurs over the model to make
up for this deficit. Expert project participants applied our collaboration concepts
and in particular the capturing of Issues immediately, while beginners had more
problems.

In summary, the applications evidenced that our approach is feasible for a
wide range of distributed projects. The applications in our university development
project courses resulted in system models and documents with better quality than

8.2. Future directions 129

8.2

those, created in previous project courses. The ratio between Issues and system
model elements is probably a good measure for the reusability of the developed
system models. By iterating and refining our concepts, we increased the ratio
from 0.37% to 20.51% in our project development courses. The applications in
industrial projects confirmed the need and the usability of our concepts by profes-
sionals.

Future directions

While this dissertation has been a step into the right direction, more inde-
pendent case studies of long running industrial distributed projects need to be
performed to measure the impact of the proposed concepts. Siemens has already
done three pilots projects without Sysiphus that incorporated nonfunctional and
functional requirements into UML [12]. The pilots were successful and confirmed
that we are on the right track. During the requirements engineering effort on large
projects, Siemens have experienced significant problems with the use of different
media for the storage of related materials. They have run into problems with syn-
chronization and fragility when generating traces using third party tools that store
the traces external to both the source and destination. Essentially, they added an-
other storage media to the mix. We are currently planning an industrial case study
in cooperation with Brian Berenbach from Siemens Cooperate Research to eval-
uate our proposed concepts and compare the results with previous project from
Siemens.

However, our concepts and the realization of Sysiphus have already reached a
level of maturity that new research projects are based on our work.

The research of Korbinian Herrmann focuses on Model Elements that are on
different abstraction levels. For instance, a class may arise during the problem
analysis and gets refined and detailed during object design and detailed design.
Moreover, a class from the problem domain may also be realized by many dif-
ferent classes in the object design. All classes should represent the same domain
concept, but each representation has a different levels of detail. Changing a Model
Element on a specific abstraction level may require to change the related Model
Elements on other abstraction levels as well. Korbinian Herrmann is currently ex-
tending the RUSE model with an abstraction layer concept and evaluates his ideas
with Sysiphus . The layers form a hierarchy and each layer is connected by trace-
ability links to any related Model Elements of the RUSE model. Depending on the
Model Element type, the mechanism tries to automatically propagate changes from
one layer to the next. His concepts should also facilitate the release management
of system model elements. Initial results are published in [57].

The research of Anil Kumar Thurimella focuses on issue-based variability
modeling for product line engineering. The issue-based variability modeling sup-
ports the instantiation and evolution of the variations in product lines as well as

130

Conclusion

enabling informal collaboration in software product line engineering. He inte-
grates our existing issue model and the capabilities for informal collaboration with
traditional variability modeling. Initial results are published in [122].

This dissertation focuses on the integration of different models and distributed
project collaboration. New research needs to investigate how the system imple-
mentation and the source code can be integrated or benefit from our concepts.
Also the rationale behind source code gets usually lost in long running projects.
Source code documentation gets outdated very fast and new programmers have
to investigate the code frequently. Rationale management integrated into the de-
velopment IDEs would probably help to overcome these problems. Traceability
across classes, attributes and methods are supported by the compiler, but traceabil-
ity to related system models like use cases or to design issues is still a problem.

APPENDIX A

Bibliography

[1] R.J. Abbott. Program design by informal english description. Comm. of
the ACM, 26(11):82-94, 1983. 52

[2] Annie I. Anton. Goal-based requirements analysis. In IEEE Interna-
tional Conference on Requirements Engineering (ICRE ‘96), pages 136—
144, Colorado Springs, Colorado, USA, April 1996. Available from:
citeseer.nj.nec.com/article/anton96goalbased.html. 12

[3] Annie I. Anton, R.A. Carter, A. Dagnino, J.H. Dempster, and D.F. Siege.
Deriving goals from a use case based requirements specification. Require-
ments Engineering Journal, 6:63-73, May 2001. 12

[4] Apache. Apache derby [online]. April 2007. Available from: http:/db.
apache.org/derby/. 91, 93

[5] ARENA [online]. January 2006. Available from: http://sysiphus.informatik.
tu-muenchen.de/arena/. 115

[6] Robert D. Battin, Ron Crocker, Joe Kreidler, and K. Subramanian. Lever-
aging resources in global software development. IEEE Software, pages
70-77, March/April 2001. 11, 78, 121

[7] Kent Beck. Extreme Programming Explained: Embrace Chang. Addison-
Wesley, 1999. 12

[8] Brian Berenbach. Evaluating the quality of a uml business model. In RE
'03: Proceedings of the 11th IEEE International Conference on Require-
ments Engineering, page 280, Washington, DC, USA, 2003. IEEE Com-
puter Society. 21

[9] Brian Berenbach. The evaluation of large, complex uml analysis and design
model. In ICSE '04: Proceedings of the 26th International Conference on

131

citeseer.nj.nec.com/article/anton96goalbased.html
http://db.apache.org/derby/
http://db.apache.org/derby/
http://sysiphus.informatik.tu-muenchen.de/arena/
http://sysiphus.informatik.tu-muenchen.de/arena/

132

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Software Engineering, pages 232-241, Washington, DC, USA, 2004. IEEE
Computer Society. 12, 21

Brian Berenbach. Impact of organizational structure on distributed require-
ments engineering processes: lessons learned. In GSD ’06: Proceedings of
the 2006 international workshop on Global software development for the
practitioner, pages 15-19, New York, NY, USA, 2006. ACM Press. 14

Brian Berenbach. Introduction to product line requirements engineering.
In SPLC °06: Proceedings of the 10th International on Software Product
Line Conference, page 215, Washington, DC, USA, 2006. IEEE Computer
Society. 14

Brian Berenbach and Gail Borotto. Metrics for model driven requirements
development. In ICSE ’06: Proceeding of the 28th international confer-
ence on Software engineering, pages 445-451, New York, NY, USA, 2006.
ACM Press. 12, 22,49, 129

Brian Berenbach and Mark Gall. Toward a unified model for require-
ments engineering. In Proceedings of the First International Conference
on Global Software Engineering, pages 237-238, 2006. 12, 49

Barry Boehm, Paul Grunbacher, and Robert O. Briggs. Easywinwin:
A groupware-supported methodology for requirements negotiation. icse,
00:0720, 2001. 119

Borland. Together [online]. April 2007. Available from: http://www.
borland.com/us/products/together. 12

Lars Borner and Barbara Paech. Teaching the software engineering process
emphasizing testing, rationale and inspection (train). In European Sympo-
sium on Systems Analysis and Design: Practice and Education, June 2006.
117

Lars Borner, Barbara Paech, and Jiirgen Riickert. Vom modellverstehen
zum modell-erstellen. In Modellierung 2006, Workshop Modellierung in
Lehre und Weiterbildung, 2006. 117

Robert O. Briggs and Paul Gruenbacher. Easywinwin: Managing com-
plexity in requirements negotiation with gss. In 35th Hawaii International
Conference on System Sciences, volume 1, page 21b, 2002. 119

Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineer-
ing Using UML, Patterns, and Java. Prentice Hall, Englewood Cliffs, NJ,
second edition, Sep 2003. Available from: http://wwwbruegge.in.tum.de/
OOSE/WebHome. 11, 12, 20, 24, 28, 52, 53, 58, 81, 95, 96, 115, 152, 154

http://www.borland.com/us/products/together
http://www.borland.com/us/products/together
http://wwwbruegge.in.tum.de/OOSE/WebHome
http://wwwbruegge.in.tum.de/OOSE/WebHome

Bibliography 133

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Bernd Bruegge, Allen H. Dutoit, Rafael Kobylinski, and Giinter Teubner.
Transatlantic project courses in a university environment. In Asian Pacific
Software Engineering Conference, Dec 2000. 101

Bernd Bruegge, Allen H. Dutoit, and Timo Wolf. Sysiphus: Enabling infor-
mal collaboration in global software development. In Proceedings of the
First International Conference on Global Software Engineering, October
2006. Available from: http://www.icgse.org/. 15, 81

Chair for Applied Software Engineering, Technische Universitit Miinchen.
Cargo & Logistic [online]. 2003. Available from: http://wwwbruegge.
informatik.tu-muenchen.de/Logistic/WebHome. 103

Chair for Applied Software Engineering, Technische Universitit Miinchen.
CampusTV [online]. 2004. Available from: http://wwwbruegge.informatik.
tu-muenchen.de/SoftwareEngineeringPraktikumWiSe2004. 104

James Chisan and Daniela Damian. Towards a model of awareness support
of software development in gsd. In The 3rd International Workshop on
Global Software Development, pages 28-33, May 2004. 20, 121

Jeff Conklin and K. C. Burgess-Yakemovic. A process-oriented approach
to design rationale. Human-Computer Interaction, 6(11):357-391, 1991.
61

Reidar Conradi and Bernhard Westfechtel. Towards a uniform version
model for software configuration management. In ICSE ’97: Proceed-
ings of the SCM-7 Workshop on System Configuration Management, pages
1-17, London, UK, 1997. Springer-Verlag. 32, 39

Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Comput. Surv., 30(2):232-282, 1998. 32,
40

Oliver Creighton, Christoph Angerer, Timo Wolf, Allen H. Dutoit, and
Bernd Bruegge. Temporary roles: An explicit, user-specified organiza-

tional model. In First Workshop on Pervasive Security, Privacy and Trust
(PSPT), Aug 2004. Available from: http://www.pspt.org/. 87

B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems. Comm. ACM, 31(11), November 1988. 13

Daniela Damian, Filippo Lanubile, and Teresa Mallardo. Investigating ibis
in a distributed educational environment: the design of a case study. In Int’l
Workshop on Distributed Software Development, pages 153—158, August
2005. 119, 121

http://www.icgse.org/
http://wwwbruegge.informatik.tu-muenchen.de/Logistic/WebHome
http://wwwbruegge.informatik.tu-muenchen.de/Logistic/WebHome
http://wwwbruegge.informatik.tu-muenchen.de/SoftwareEngineeringPraktikumWiSe2004
http://wwwbruegge.informatik.tu-muenchen.de/SoftwareEngineeringPraktikumWiSe2004
http://www.pspt.org/

134

Bibliography

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Susan Dart. Spectrum of functionality in configuration management sys-
tems. Technical report, Software Engineering Institute, Carnegie Mellon
University, 1990. 23

Susan Dart. Concepts in configuration management systems. In Proceed-
ings of the 3rd international workshop on Software configuration manage-
ment, pages 1-18, New York, NY, USA, 1991. ACM Press. 23

Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen, and
John Patterson. Sometimes you need to see through walls: a field study of
application programming interfaces. In CSCW, pages 63-71, New York,
NY, USA, 2004. 20, 119, 120

Barbara Dellen, Kirstin Kohler, and Frank Maurer. Integrating software
process models and design rationales. In Knowledge-Based Software Engi-
neering Conference, volume 11, 1996. 122

Jeremy Dick. Design traceability. IEEE Software, 22(6):14-16, Novem-
ber/December 2005. 18, 50, 120

Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In Conference Proceedings on Computer-supported Cooper-
ative Work, 1992. 20, 78

Allen H. Dutoit, Raymond McCall, Ivan Mistrik, and Barbara Paech, ed-
itors. Rationale Management in Software Engineering. Springer Verlag,
April 2006. 59, 119

Allen H. Dutoit and Barbara Paech. Rationale-based use case specification.
Requirements Engineering Journal, 7(1):3—19, 2002. Available from: http:
/Nink.springer.de/link/service/journals/00766/tocs/t2007001.htm. 15, 81

Allen H. Dutoit, Timo Wolf, Barbara Paech, Lars Borner, and Jurgen Ruck-
ert. Using rationale for software engineering education. In Timothy C.
Lethbridge and Daniel Port, editors, CSEET ’05: Proceedings of the 18th
Conference on Software Engineering Education & Training, pages 129—
136, Washington, DC, USA, April 2005. IEEE Computer Society. Avail-
able from: http://www.site.uottawa.ca/cseet2005. 101

Christof Ebert and Philip De Neve. Surviving global software development.
IEEE Software, pages 62—69, March/April 2001. 11, 78, 121

Jacky Estublier, David Leblang, Andre van der Hoek, Reidar Conradi, Ge-
offrey Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of soft-
ware engineering research on the practice of software configuration man-
agement. ACM Trans. Softw. Eng. Methodol., 14(4):383-430, 2005. 23

http://link.springer.de/link/service/journals/00766/tocs/t2007001.htm
http://link.springer.de/link/service/journals/00766/tocs/t2007001.htm
http://www.site.uottawa.ca/cseet2005

Bibliography 135

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Eclipse Foundation. Eclipse [online]. 2007. Available from: http://www.
eclipse.org. 111

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley Pro-
fessional, 1999. 38

Free Software Foundation. Gnu general public license. http://www.gnu.org/
copyleft/gpl.html, April 2007. 83, 115

Free Software Foundation (FSF). The revision control system. http://www.
gnu.org/software/rcs/rcs.html, October 2006. 39

Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. El-
ements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley, 1995. 35, 84, 147

Orlena Gotel and Anthony Finkelstein. An analysis of the requirements
traceability problem. In International Conference on Requirements En-
gineering, pages 94-101, Colorado, April 1994. IEEE. Available from:
citeseer.ist.psu.edu/gotel94analysis.html. 18, 50, 59, 120

Orlena Gotel and Anthony Finkelstein. Contribution structures. In
International Symposium on Requirments Engineering, pages 100-
107. IEEE, March 1995. Available from: citeseer.ist.psu.edu/article/
gotel95contribution.html. 18, 50, 108

Orlena Gotel and Anthony Finkelstein. Extended requirements traceability:
Results of an industrial case study. In 3rd IEEE International Symposium
on Requirements Engineering (RE’97), pages 169-179. IEEE Computer
Society, 1997. Available from: citeseer.ist.psu.edu/gotel97extended.html.
18

Robert B. Grady. Practical Software Metrics for Project Management and
Process Improvement. Prentice Hall Press, 1992. 23

R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography of coordina-
tion: Dealing with distance in R&D work. ACM, 1999. 13

Carl Gutwin, Reagan Penner, and Kevin Schneider. Group awareness in
distributed software development. In CSCW ’04: Proceedings of the 2004
ACM conference on Computer supported cooperative work, pages 72-81,
New York, NY, USA, 2004. ACM Press. 20

James D. Herbsleb and Audris Mockus. An empirical study of speed and
communication in globally distributed software development. /IEEE Trans-
actions on Software Engineering, 29(6):481-494, June 2003. 13, 20

http://www.eclipse.org
http://www.eclipse.org
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/software/rcs/rcs.html
http://www.gnu.org/software/rcs/rcs.html
citeseer.ist.psu.edu/gotel94analysis.html
citeseer.ist.psu.edu/article/gotel95contribution.html
citeseer.ist.psu.edu/article/gotel95contribution.html
citeseer.ist.psu.edu/gotel97extended.html

136

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E.
Grinter. An empirical study of global software development: Distance and
speed. icse, 00:0081, 2001. 20

Andrea Herrmann and Barbara Paech. Software quality
by misuse analysis. Technical Report SWEHD-TR-2005-
01, University of Heidelberg, http://www-swe.informatik.uni-

heidelberg.de/research/publications/reports.htm, 2005. 113

Andrea Herrmann and Barbara Paech. Moqare = “misuse-oriented qual-
ity requirements engineering” — iiber den nutzen von bedrohungsszenarien
beim re von qualitdtsanforderungen. Softwaretechnik-Trends, 26(1), Febru-
ary 2006. 113

Korbinian Herrmann and Bernd Bruegge. Visualization of release planning.
In Proceedings of the International Workshop on Requirements Engineer-
ing Visualization (REV 2006), September 2006. 129

Florian Huber. Design and implementation of an awareness system,
integrating sysiphus and eclipse. Diplomarbeit, Technische Universitit
Miinchen, 2006. 111

IBM. Rational ClearCase [online]. Mar 2007. Available from: http://
www-306.ibm.com/software/awdtools/clearcase. 12, 22, 39

IBM. Rational ClearQuest [online]. April 2007. Available from: http:
/lwww-306.ibm.com/software/awdtools/clearquest. 12

IBM. Rational RequistePro [online]. Mar 2007. Available from: http:
/lwww-306.ibm.com/software/awdtools/reqgpro. 12, 125

IBM. Rational Rose [online]. April 2007. Available from: http://www-306.
ibom.com/software/awdtools/developer/rose. 12, 106

IBM. Rational Software Architect [online]. Mar 2007. Available from:
http://www-306.ibm.com/software/awdtools/architect/swarchitect/. 12, 125

IBM. Rational Software Modeler [online]. Mar 2007. Available from:
http://www-306.ibm.com/software/awdtools/modeler/swmodeler. 20, 89

IEEE. IEEE guide to software configuration management. ANSI/IEEE Std
1042-1987,1987. 22

IEEE. IEEFE Standard for Software Configuration Management Plans. June
1998. 22

Ivar Jacobson, Grady Booch, and Jim Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999. 23

http://www-306.ibm.com/software/awdtools/clearcase
http://www-306.ibm.com/software/awdtools/clearcase
http://www-306.ibm.com/software/awdtools/clearquest
http://www-306.ibm.com/software/awdtools/clearquest
http://www-306.ibm.com/software/awdtools/reqpro
http://www-306.ibm.com/software/awdtools/reqpro
http://www-306.ibm.com/software/awdtools/developer/rose
http://www-306.ibm.com/software/awdtools/developer/rose
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/awdtools/modeler/swmodeler

Bibliography 137

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering — A Use Case Driven Approach.
Addison-Wesley, 1994. 12, 51

Matthias Jarke. Requirements tracing. Comm. ACM, 41(12):32-36, De-
cember 1998. 18, 50

Kyo C Kang, Sholom G. Cohen, James A.Hess, William E. Novak, and
A. Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical Report SEI-90-TR-21, CMU, 1990. Available from: http:
//www.sei.cmu.edu/domain-engineering/FODA.html. 50, 149

Laurent Karsenty. An empirical evaluation of design rationale documents.
In CHI ’96, pages 150-156, 1996. 59

Rafael Kobylinski, Oliver Creighton, Allen H. Dutoit, and Bernd Bruegge.
Building awareness in distributed software enginering: Using issues as con-
text. In International Workshop on Distributed Software Development, In-
ternational Conference on Software Engineering, May 2002. 20

R. E. Kraut and L. A. Streeter. Coordination in software development.
Comm. ACM, 38(3), Mar 1995. 13

Filippo Lanubile, Teresa Mallardo, and Fabio Calefato. Tool support for ge-
ographically dispersed inspection teams. Software Process: Improvement
and Practice, 8(4):217-231, October/December 2003. 119, 121

Kim Letkeman. Comparing and merging uml models in ibm rational soft-
ware architect: Part 1 - comparing models with local history. Technical
report, Modeling Compare Support, IBM Rational, 2005. 33, 125

Kim Letkeman. Comparing and merging uml models in ibm rational soft-
ware architect: Part 2 - merging models using "compare with each other".
Technical report, Modeling Compare Support, IBM Rational, 2005. 33,
125

Kim Letkeman. Comparing and merging uml models in ibm rational soft-
ware architect: Part 3 - a deeper understanding of model merging. Techni-
cal report, Modeling Compare Support, IBM Rational, 2005. 32, 33, 125

Ernst Lippe and Norbert van Oosterom. Operation-based merging. In SDE
5: Proceedings of the fifth ACM SIGSOFT symposium on Software develop-
ment environments, pages 78—87, New York, NY, USA, 1992. ACM Press.
33,123

http://www.sei.cmu.edu/domain-engineering/FODA.html
http://www.sei.cmu.edu/domain-engineering/FODA.html

138

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Andrea De Lucia, Fausto Fasano, Rita Francese, and Rocco Oliveto. Trace-
ability management in adams. In Int’l Workshop on Distributed Software
Development, pages 125-139, Aug. 2005. 119, 120

Allan MacLean, Richard M. Young, Victoria M.E. Bellotti, and Thomas P.
Moran. Questions, options, and criteria: Elements of design space analysis.
HCI, 6(3-4):201-250, 1991. 15, 61, 62, 119, 122, 128

Mariss Jansons [online]. April 2007. Available from: http://www.br-online.
de/kultur-szene/klassik/pages/so/so_chefdirigent.html. 108

Akhil Mehra, John Grundy, and John Hosking. A generic approach to
supporting diagram differencing and merging for collaborative design. In
ASE ’05: Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 204-213, New York, NY, USA,
2005. ACM Press. 32, 124

Mercury. Testdirector [online]. April 2007. Available from: http:/www.
mercury.com/us/products/quality-center/testdirector. 12

Microsoft. Microsoft office word [online]. April 2007. Available from:
http://office.microsoft.com/word. 12, 20

Audris Mockus and James D. Herbsleb. Expertise browser: A quantitative
approach to identifying expertise. In International Conference on Software
Engineering, pages 503-512, May 2002. 20, 122

Mozilla. Bugzilla [online]. 2007. Available from: http://www.bugzilla.org/.
111

MySQL. Mysql community server [online]. April 2007. Available from:
http://www.mysqgl.com/. 92, 94

Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao.
Flexible fine-grained version control for software documents. In APSEC
'04: Proceedings of the 11th Asia-Pacific Software Engineering Confer-
ence (APSEC’04), pages 212-219, Washington, DC, USA, 2004. IEEE
Computer Society. 124

Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao.
Configuration management for designs of software systems. In ECBS ’05:
Proceedings of the 12th IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems (ECBS’05), pages 236-243,
Washington, DC, USA, 2005. IEEE Computer Society. 124

http://www.br-online.de/kultur-szene/klassik/pages/so/so_chefdirigent.html
http://www.br-online.de/kultur-szene/klassik/pages/so/so_chefdirigent.html
http://www.mercury.com/us/products/quality-center/testdirector
http://www.mercury.com/us/products/quality-center/testdirector
http://office.microsoft.com/word
http://www.bugzilla.org/
http://www.mysql.com/

Bibliography 139

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao. An
infrastructure for development of object-oriented, multi-level configuration
management services. In ICSE "05: Proceedings of the 27th international
conference on Software engineering, pages 215-224, New York, NY, USA,
2005. ACM Press. 23, 33, 40, 124

Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging
inconsistency in software development. Computer, 33(4):24-29, 2000. 19,
21

Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Making in-
consistency respectable in software development. The Journal of Systems
and Software, 58(2):171-180, 2001. Available from: citeseer.ist.psu.edu/
nuseibeh01making.html. 19, 21

Object Management Group, Inc. Unified Modeling Language Specification
Version 2.0, May 2004. 12, 15, 25, 51

Object Management Group, Inc. Object Constraint Language Specifica-
tion, version 2.0, 2006. Available from: http://www.omg.org/technology/
documents/formal/ocl.htm. 25

Takafumi ODA and Motoshi SAEKI. Meta-modeling based version control
system for software diagrams. IEICE Trans Inf Syst, E§9-D(4):1390-1402,
2006. Available from: http://ietisy.oxfordjournals.org/cgi/content/abstract/
E89-D/4/1390. 33, 124

D. Ohst. A fine-grained version and confguration model in analysis and
design. In ICSM ’02: Proceedings of the International Conference on Soft-
ware Maintenance (ICSM’02), page 521, Washington, DC, USA, 2002.
IEEE Computer Society. 32, 123

Dirk Ohst, Michael Welle, and Udo Kelter. Difference tools for analysis
and design documents. In ICSM ’03: Proceedings of the International

Conference on Software Maintenance, page 13, Washington, DC, USA,
2003. IEEE Computer Society. 123

Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions of
uml diagrams. In ESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 227-236, New
York, NY, USA, 2003. ACM Press. 123

Hamilton Oliveira, Leonardo Murta, and Claudia Werner. Odyssey-vcs:
a flexible version control system for uml model elements. In SCM ’05:
Proceedings of the 12th international workshop on Software configuration
management, pages 1-16, New York, NY, USA, 2005. ACM Press. 33, 124

citeseer.ist.psu.edu/nuseibeh01making.html
citeseer.ist.psu.edu/nuseibeh01making.html
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://ietisy.oxfordjournals.org/cgi/content/abstract/E89-D/4/1390
http://ietisy.oxfordjournals.org/cgi/content/abstract/E89-D/4/1390

140

Bibliography

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Barbara Paech, Lars Borner, Jiirgen Riickert, Allen H. Dutoit, and Timo
Wolf. Vom Kode zu den Anforderungen und zuriick: Software Engineering
in 6 Semesterwochenstunden. In Software Engineering im Unterricht der
Hochschulen. Aachen, 2005 (SEUH 2005), 2005. 117

Dewayne E. Perry, Adam A. Porter, Michael W. Wade, Lawrence G. Votta,

and James Perpich. Reducing inspection interval in large-scale software
development. /IEEE Trans. Soft. Eng., 28(7):695-705, 2002. 121

Dewayne E. Perry, Nancy Staudenmayer, and Lawrence G. Votta. Peo-
ple, organizations, and process improvement. /[EEE Software, 11(4):36-45,
1994. 13

Balasubramaniam Ramesh and Vasant Dhar. Supporting systems develop-
ment by capturing deliberations during requirements engineering. [EEE
Trans. Softw. Eng., 18(6):498-510, 1992. 122

Balasubramaniam Ramesh and Matthias Jarke. Toward reference models
for requirements traceability. IEEE Transactions on Software Engineering,
27(1):58-93, 2001. 18

Jungkyu Rho and Chisu Wu. An efficient version model of software di-
agrams. In APSEC ’98: Proceedings of the Fifth Asia Pacific Software
Engineering Conference, page 236, Washington, DC, USA, 1998. IEEE
Computer Society. 33, 123

Matthias Riebisch. Supporting evolutionary development by feature mod-
els and traceability links. ecbs, 00:370, 2004. 51

Matthias Riebisch, Kai Bollert, Detlef Streitferdt, and Ilka Philippow. Ex-
tending feature diagrams with uml multiplicities. In Proceedings of the

Sixth Conference on Integrated Design and Process Technology (IDPT
2002), Pasadena, CA, June 2002. 50

Rohde & Schwarz [online]. April 2007. Available from: http://www.
rohde-schwarz.de/. 104

Jiirgen Riickert and Barbara Paech. Software engineering moderner anwen-
dungen. In Software Engineering im Unterricht der Hochschulen (SEUH),
pages 59-72,2007. 118

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice-
Hall International Editions, New York, NY, 1991. 84

http://www.rohde-schwarz.de/
http://www.rohde-schwarz.de/

Bibliography 141

[111] Anita Sarma and Andre van der Hoek. Towards awareness in the large.
In Proceedings of the First International Conference on Global Software
Engineering, October 2006. 20

[112] Jennifer Schiller. Design and implementation of the agile project manage-
ment method scrum in sysiphus. Master’s thesis, Technische Universitit
Miinchen, 2007. 113

[113] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, 2001. 112

[114] SEIL Capability maturity model integration [online]. 2006. Available from:
http://www.sei.cmu.edu/cmmi. 22, 31, 120

[115] Artisan Software. Artisan studio home, November 2006. Available from:
http://www.artisansw.com. 126

[116] Software Engineering Group at the University of Heidelberg [online]. 2007.
Available from: http://www-swe.informatik.uni-heidelberg.de/. 113, 117

[117] StandishGroup. Extreme chaos [online]. 1999. Available from: http://
standishgroup.com/sample_research. 120

[118] M. A. Storey, Davor Cubranic, and D. M. German. On the use of visual-
ization to support awareness of human activities in software development:a
survey and a framework. In Proceedings of the 2nd ACM Symposium on
Software Visualization, 2005. To be presented. 20

[119] Symphonieorchester des Bayerischen Rundfunks [online]. April 2007.
Available from: http://www.br-online.de/kultur-szene/klassik _e/pages/so/.
108

[120] TEAM [online]. 2006. Available from: http://www.team-project.eu/. 114

[121] Telelogic. Doors [online]. Mar 2007. Available from: http://www.telelogic.
com/products/doors. 12, 18, 20, 23, 107, 125

[122] Anil Kumar Thurimella. Rationale-based variability management in prod-
uct line requirements engineering. In International Conference on Software
Engineering. IASTED, 2007. 130

[123] Tigris.org. Subversion version control system [online]. Mar 2007. Avail-
able from: http://subversion.tigris.org. 12, 22, 39

[124] Valentino Vranic. Reconciling feature modeling: A feature modeling meta-
model. In Net.ObjectDays, pages 122—-137, 2004. 51

http://www.sei.cmu.edu/cmmi
http://www.artisansw.com
http://www-swe.informatik.uni-heidelberg.de/
http://standishgroup.com/sample_research
http://standishgroup.com/sample_research
http://www.br-online.de/kultur-szene/klassik_e/pages/so/
http://www.team-project.eu/
http://www.telelogic.com/products/doors
http://www.telelogic.com/products/doors
http://subversion.tigris.org

142

Bibliography

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

WACKER Chemie AG [online]. April 2007. Available from: http://www.
wacker.com. 103

Timo Wolf. Design and implementation of a rationale-based analysis tool.
Diplomarbeit, Technische Universitit Miinchen, 2002. 81

Timo Wolf and Bernd Bruegge. Virtual symphony orchestra [online]. Jan-
uary 2005. Available from: http://wwwbruegge.in.tum.de/VSO/. 108

Timo Wolf and Allen H. Dutoit. A rationale-based analysis tool. In Walter
Dosch and Narayan Debnath, editors, Proceedings of the ISCA 13th Inter-
national Conference on Intelligent and Adaptive Systems and Software En-
gineering (IASSE’04), pages 209-214. ISCA, July 2004. Available from:
http://www.isp.uni-luebeck.de/iasse04/index.htm. 15, 53, 81

Timo Wolf and Allen H. Dutoit. Sysiphus: Combining system modeling
with collaboration and rationale. Softwaretechnik-Trends, 24(4), November
2004. Available from: http:/pi.informatik.uni-siegen.de/stt/24_4/. 60

Timo Wolf and Allen H. Dutoit. Supporting traceability in distributed soft-
ware development projects. In Proceedings of the International Workshop
on Distributed Software Development, pages 111-124, August 2005. 77

Timo Wolf and Allen H. Dutoit. Sysiphus at http://sysiphus.in.tum.de [on-
line]. May 2005 [cited 27.05.2005]. Available from: http://sysiphus.in.tum.
de. 15, 81, 154

Yieeha Ltd. Co KG [online]. 2007. Available from: http://www.yieeha.de.
113

http://www.wacker.com
http://www.wacker.com
http://wwwbruegge.in.tum.de/VSO/
http://www.isp.uni-luebeck.de/iasse04/index.htm
http://pi.informatik.uni-siegen.de/stt/24_4/
http://sysiphus.in.tum.de
http://sysiphus.in.tum.de
http://www.yieeha.de

APPENDIX B

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5

List of Figures

Meta-model overview (UML class diagram)
The projectdatamodel
Example extension of the meta-model
Delta granularity: Three semantic levels of change
Representation of deltas on three semantic change levels.
Taxonomy of Meta Model Operations
Example model transformation “Extract Class”
Version objectmodel L.
Example instance of the version object model

Example class diagram that is based on the RUSE meta-model.

The organizational model
Feature diagram example
Stakeholder requirements
Requirements analysis
Detailed requirements
Hazard analysis L
The diagrammodel
Documentmodel L
Annotationmodelo Lo oo
Informal communication
Theissuemodel L.
The taskmodel

Overview of the graphical user interface to the RUSE model
Tree table document view
Collaboration indicators,
Tree table view of all issues and discussion threads.
Example view of anusecase

144

List of Figures

4.6 Use case diagram including functional requirements
47 Tasklistview
4.8 Addressbookview L oo
4.9 Example of the traceability tree view
4.10 Example of the traceability table view
4.11 Interaction sequence of the traceability graph
4.12 Object diagram of generated Work Items for capturing change . . .

5.1 Open layer architecture of Sysiphus
5.2 Sysiphus subsystem decomposition
5.3 Deployment of the Sysiphus runtime components
5.4 Deployment of RAT and the Element Store, including their sub-
SYStEIMS e e e
5.5 Control flow in online mode (UML sequence diagram)
5.6 Control flow in offline mode (UML sequence diagram)

6.1 Requirements evaluation
6.2 The functional prototype of the Cargo & Logistic project course .
6.3 Visionary mockup of CampusTV
6.4 The web interface and the mobile interface of the MSA system. . .
6.5 VSO system mockup and a picture of the CAT.
6.6 User activity on selected Model Elements in the VSO project. .
6.7 Visualized awareness graph in the Sysiphus client SysClipse
6.8 The top product wishes of the Yieeha platform
6.9 A conceptual overview of the system developed by TEAM .
6.10 Screenshots of the ARENA
6.11 Screenshot of the game Asteroids

APPENDIX C

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
3.1

Listings

OCL constraints of the class Project 27
OCL constraints of the class User 27
OCL constraints of the class ProjectData 28
OCL constraints of the class ModelElement 29
OCL constraints of the class ModelLLink 30
OCL constraints of the class History 42
OCL constraints of the class Branch 43
OCL constraints of the class Version 43
OCL constraints of theclass Tag 44
OCL constraints of the class HistoryLink 44
OCL constraints of the class RevisionLink 44
OCL constraints of the class VariantLink 45
OCL constraints of the class Requirement 55

145

146 Listings

APPENDIX D

Glossary

Abstract Operation The Abstract Operation class is the abstract super class of the
Meta Model Operation and Model Operation classes. The Abstract Opera-
tion class and its subclasses build a composite pattern [46], in which
the Abstract Operation describes an abstract change., p. 35.

Actor An Actor represents the role of an external person of system that inter-
acts with the system under development. The interaction is described
in Use Cases., p. S1.

Admin Subsystem The Admin Subsystem provides a graphical user interface for
administrative tasks of the Repository Subsystem., p. 89.

Annotation In the RUSE model, users collaborate by linking collaboration arti-
facts, called Annotations, to Model Elements.

API (application programming interface) A set of definitions of the ways
in which one piece of computer software communicates with another.
It is a method of achieving abstraction, usually (but not necessarily)
between lower-level and higher-level software. Definition adapted
from [http://en.wikipedia.org/wiki/API]., p. 29.

Assessment Assessments represent the evaluation of a single Proposal against a
Criterion, p. 61.

Assignable The Assignable class represent any item in a project that needs a re-
sponsible Organizational Unit., p. 49.

147

http://en.wikipedia.org/wiki/API

148 Glossary

Branch The Branch class represents a branch of concurrent development in the
version space and is composed of all versions that are available in the
branch., p. 24.

Cause The Cause class describes the circumstances that leads to its associ-
ated Hazard, p. 55.

Change Package The Change Package represents and encapsulates the changes
on the Project Data, the Model Elements, and the Model Links between
the two Versions that are connected by the associated Revision Link. A
Change Package represents the differences or deltas between the ver-
sions. It is also used to create a new successor version for an existing
version., p. 25.

Client Application Layer The Client Application Layer contains the subsystems of
the Sysiphus client applications. The subsystems include the RAT
Subsystem, the REQuest Subsystem, the Notification Subsystem, the Sub-
Clipse Subsystem, and the Admin Subsystem., p. 4.

Comment Comments are an informal and unstructured way for project partici-
pants to communicate, similar to posts in a newsgroup. The Comment
class extends the Annotation class., p. 60.

Communication Subsystem The Communication Subsystem is responsible for trans-
porting remote service calls, their corresponding data and results be-
tween the Workspace Subsystem and the Repository Subsystem.

Composite Section The Composite Section is part of a Document and can have any
subsections in a Section hierarchy.

Criterion The Criterion class represents desirable qualities that selected Proposals
should satisfy.

Derby (Apache Derby) Apache Derby is part of the Apache DB subproject,
and is an open source relational database implemented entirely in
Java and available under the Apache License, Version 2.0. [http:
//db.apache.org/derby], p. 91.

http://db.apache.org/derby
http://db.apache.org/derby

Glossary 149

Diagram The Diagram class of the RUSE model is used to represent diagrams
containing Model Elements. Vertex instances are used to defined which
Model Elements are part of aDiagram.

Document The Document class represent any documents in the RUSE model and
consists of Sections.

Element Store Layer The subsystems in the Element Store Layer provide the Rationale-
based unified software engineering model Meta-Model and under-
lying services for the Rationale-based unified software engineering
model Model, including access control, persistent storage, and a cen-
tral server repository that provides Project access to distributed client
applications., p. 4.

Feature A Feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems [70]., p. 50.

Functional Requirement (FR) A Functional Requirement describes a required func-
tion of the system under development. The granularity must be suf-
ficiently fine that the requirement can be tested against a component
realizing the requirement., p. 54.

Hazard The Hazard class describes a potential harm or injury of a user, which
might occur when using the system., p. 55.

History The History class represents the history of a project. It provides oper-
ations for creating revisions, branches, tags and for accessing specific
versions, differences and history information., p. 24.

History Link The History Link class defines the successor Versions for a given Ver-
sion and represents the edges in the version graph. The History Link
has the two subclasses Revision Link and Variant Link that are defined
in 2.2.2. Revision Links represent changes between two Versions within
the same branch, while the Variant Link connects two Versions from
different branches., p. 24.

HTML (HyperText Markup Language) A coding system that provides a stan-
dard for integrating graphics, multimedia, and references to distant
texts in WWW documents., p. 89.

150 Glossary

HTTP (HyperText Transfer Protocol) The communications protocol of the
WWW., p. 90.

Issue The Issue represents critical problem that has no clear solution. Dif-
ferent Proposals are evaluated before formulating a Resolution, p. 49.

Leaf Section The Leaf Section class represent the leafs of a Section hierarchy in a
Document and has a filter to include any Model Elements.

Meta Model Operation Meta Model Operations describe changes on the sematic
level of the meta-model. They affect exactly one Model Element and
describe a single change. A Meta Model Operation support reversibility
as described in section 2.2.2., p. 34.

Mitigation The Mitigation class associates Requirements with Hazards or Causes.
The Requirements were created to mitigate the associated Hazards or
Causes, p. 56.

Model Layer The Model Layer provides the domain knowledge of software engi-
neering artifacts and models. It consists of the Model Subsystem and
the Model Service Subsystem., p. 4.

Model Service Subsystem The Model Service Subsystem provides common ser-
vices on the Rationale-based unified software engineering model model,
provided by the Model Subsystem, that are shared among several client
applications of Sysiphus., p. 88.

Model Subsystem The Model Subsystem provides the RUSE model as described
in chapter 3., p. 88.

Model Element The class Model Element is the most abstract and generic model-
ing class that represents any concept of the software engineering do-
main. A model element can have many child model elements and can
be linked by Model Link classes to many other model elements. The
Model Element class provides generic methods to store and retrieve ar-
bitrary data., p. 25.

Model Link The Model Link class is an association class that links two related
Model Element instances. The Model Link class extends the Model El-

Glossary 151

ement class and inherits to all its properties to represent a software
engineering concept., p. 25.

Model Operation The Model Operation describes changes on the semantic level of
the model layer., p. 35.

Nonfunctional Requirement (NFR) A Nonfunctional Requirement describes a re-
quired function of the system under development. The granularity
must be sufficiently fine that the requirement can be tested against a
component realizing the requirement., p. 54.

Notification Subsystem The Notification Subsystem sends notification emails about
user-relevant changes of a Project to the end-users., p. 89.

Object Constraint Language (OCL) A declarative language for describing
rules that apply to UML models developed at IBM and now part of the
UML standard. Definition adapted from [http://en.wikipedia.org/wiki/
OCL]., p. 25.

Organizational Unit The RUSE model contains an organizational model consist-
ing of Organizational Units that are either Participants or Teams., p. 47.

Participant The Participant represent a person that is part of the organizational
model of a project., p. 47.

Project A class Project represents a software development project, containing
all project related entities. It provides access to the project data, the
history containing different versions and their changes, as well as to
the users that access the project., p. 24.

Project Data Subsystem The Project Data Subsystem realizes the project data model
described in section 2.2.1 and provides the services necessary to ac-
cess and manipulate the meta-model.

Project Data The class Project Data represents the complete data of a project in a
specific version. It is composed of Model Elements and Model Links,
which relates two elements, thus building a graph structure. The
Project Data class provides operations for accessing, searching and fil-
tering model elements., p. 25.

http://en.wikipedia.org/wiki/OCL
http://en.wikipedia.org/wiki/OCL

152

Glossary

Proposal Proposals are possible solutions for associated Issues., p. 61.

Requirements Analysis Document (RAD) A document describing the anal-
ysis model of the problem domain., p. 58.

RAT Subsystem The RAT Subsystem provides the end-user desktop application
RAT, a graphical user interface for accessing and manipulating the
RUSE Model., p. 89.

RDF (Resource Description Framework) A language designed to support
the Semantic Web, in much the same way that HTML is the language
that helped initiate the original Web. The RDF supports resource de-
scription, or metadata (data about data), for the Web. It provides com-
mon structures that can be used for interoperable XML data exchange.,
p. 152.

Repository Subsystem The Repository Subsystem provides a Facade to the shared
server repository, containing the Projects and its meta-models. It of-
fers all service operations to retrieve and change the meta-model on a
server node.

REQuest Subsystem The REQuest Subsystem provides the web-based client ap-
plication REQuest, which supports a HTML-based hypertext view of
the RUSE model., p. 89.

Requirement The Requirement class is used to describe functionality or qualities
of the system under development. The granularity must be sufficiently
fine that the Requirement can be tested against any components realiz-
ing the requirement. The Requirement class is abstract and is the su-
per class of the Functional Requirement and Nonfunctional Requirement
classes., p. 54.

Resolution The Resolution class represents the solution of Issues and is based on
one or more Proposals., p. 61.

Revision Link The Revision Link class is a subclass of the History Link and rep-
resent changes between two Versions within the same Branch. The
changes between two versions are encapsulated in the associated Change
Package., p. 25.

Role The Role association class relates many Users with many Projects. The
Role defines the user’s role in a project. Typical roles are Project Man-
ager, Requirements Engineer, Analysist, or Architect [19]., p. 24.

Glossary 153

RSS (RDF Site Summary or Rich Site Summary) A mechanism to pub-
lish and subscribe to news feeds, like e.g. websites and so-called
weblogs. Not to be confused with the competing plain-XML based
standard Really Simple Syndication, p. 156.

Rationale-based unified software engineering model (RUSE) A model
unifying communication, software development models and project

management with rationale for distributed software development projects,
p. 14.

software configuration management (SCM) The purpose of Software Con-

figuration Management is to establish and maintain the integrity of the
products of the software project throughout the project’s software life-
cycle. Software Configuration Management involves identifying the
configuration of the software (i.e., selected software works products
and their descriptions) at given points in time, systematically con-
trolling changes to the configuration, and maintaining the integrity
and traceability of the configuration throughout the software lifecy-
cle. The work products placed under software configuration manage-
ment include the software products that are delivered to the customer
(e.g., the software requirements document and the code) and the items
that are identified with or required to create these software products
(e.g., the compiler). A software baseline library is established con-
taining the software baselines as they are developed. Changes to the
baselines and the release of software products built from the baseline
library are systematically controlled via the change control and con-
figuration auditing functions of software configuration management.,
p. 22.

System Design Document (SDD) The System Design Document is a docu-
ment describing the system design model., p. 58.

Section The Section class is the superclass of the classes Composite Section and
Leaf Section and consists of a title, text, and many Diagrams.

Stakeholder The Stakeholder class represents a person or organization who has a
certain interest in the Project., p. 48.

Stakeholder Request A Stakeholder Request class is used to describe the needs
and requests of Stakeholders in a Project. They can be accepted or
rejected., p. 50.

154

Glossary

Storage Management Subsystem The Storage Management Subsystem provides
persistency for project data model and the version object model.

SubClipse Subsystem The SubClipse Subsystem provides a framework for devel-
oping Eclipse plugins, which access the Repository Subsystem., p. 89.

SVG (Scalable Vector Graphics) A XML based open W3C standard describ-
ing two-dimensional vector graphics, both static and animated, p. 156.

Sysiphus Sysiphus [131] is a distributed tool suite that implements the RUSE
model. Sysiphus provides a central repository for the RUSE model and
provides online access for synchronous collaboration of project par-
ticipants from distributed sites, as well as offline workspace support
for asynchronous interaction., p. 15.

system design model A high-level description of the system, including de-
sign goals, subsystem decomposition, hardware/software platform, per-
sistent storage strategy, global control flow, access control policy, and
boundary condition strategies. The system design model represents
the strategic decisions made by the architecture team that allow sub-
system teams to work concurrently and cooperate effectively [19].,
p. 153.

Tag The Tag class identifies an user defined Version of the version graph by
a user defined name., p. 42.

Team A Team consists of Organizational Units that are belonging together.,
p. 47.

UML (Unified Modeling Language) A graphical and formal modeling lan-
guage, which supports twelve diagram types in three categories: struc-
tural, behavioral, and model management. UML helps visualization,
specification, construction, and documentation of artifacts of a software-
intensive system. Several different predecessors of UML, which were
established for object-oriented design, have been unified to simplify
graphical modeling and to facilitate exchange., p. 12.

URL (Uniform Resource Locator) , p. 70.

Use Case A Use Case describes the interaction of Actors with the system under
development in a textual flow of events.

Glossary 155

User The class User represent persons or external entities, accessing a Project.
A User may access many Projects, defined by the Role association.,
p. 24.

User Management Subsystem The User Management Subsystem provides services
for authentication, authorization and the management of Users.

Variant Link The Variant Link class is a subclass of the History Link and represent
changes between two Versions across two different Branches., p. 25.

Version Versions represent the nodes in the version graph. The state of the
project at a specific version can either be represented explicitly by a
Project Data or implicitly by its position in the version graph and the
appropriate deltas, represented by the Change Packages., p. 24.

Version Model Subsystem The Version Model Subsystem provides the version model
as described in chapter 2. It provides services for creating, managing
and retrieving history information for a Project., p. 86.

Vertex The Vertex class extends the Model Link class and defines which Model
Elements are part of a Diagram.

w3c (World Wide Web Consortium) The consortium producing and gov-
erning the standards of the Www. It is headed by Tim Berners-Lee,
the original creator of URL, HTTP and HTML, the principal technolo-
gies that form the basis of the Web, p. 154.

Work Item The Work Item describes the work to done in development project.,
p. 49.

Workspace Subsystem The Workspace Subsystem provides the interface for ac-
cessing and manipulating the projects of the Repository Subsystem to
higher layer subsystems, especially to the end-user client applications.

www (World Wide Web) A system that provides relatively uniform standards
for widely scattered information services on the Internet, including an
addressing scheme that permits HyperText references to other sites.,

p. 90.

156 Glossary

XML (eXtensible Markup Language) A w3C-recommended general-purpose
markup language for creating special-purpose markup languages (it
is a metaformat). It is a simplified subset of SGML, capable of de-
scribing many different kinds of data. Its primary purpose is to facil-
itate the sharing of structured text and information across the Inter-
net. Languages based on XML (for example, RDF, RSS, and SVG) are
themselves described in a formal way, allowing programs to modify
and validate documents in these languages without prior knowledge
of their form. Definition adapted from [http://en.wikipedia.org/wiki/
XML]., p. 32.

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML

	Abstract
	Conventions
	1 Introduction
	1.1 Artifact inconsistencies
	1.2 Distributed collaboration
	1.3 Goal and approach

	2 The RUSE Meta-Model
	2.1 Requirements
	2.2 The Meta-Model
	2.2.1 The project data model
	2.2.2 The configuration management model

	3 The RUSE Model
	3.1 Organizational models
	3.2 System models
	3.2.1 Stakeholder requirements
	3.2.2 Requirements analysis
	3.2.3 Detailed requirements
	3.2.4 Hazard analysis
	3.2.5 Diagrams
	3.2.6 Document model

	3.3 Collaboration Models
	3.3.1 Informal communication
	3.3.2 Issue model
	3.3.3 Task model

	4 RUSE Model usage and views
	4.1 Views
	4.1.1 Document view
	4.1.2 Visualizing collaboration artifacts
	4.1.3 Hyperlinked content area of Model Elements
	4.1.4 Diagram views
	4.1.5 Identifying work and participants

	4.2 Supporting traceability
	4.2.1 Traceability tree
	4.2.2 Traceability table
	4.2.3 Traceability graph
	4.2.4 Capturing change impact

	4.3 Supporting awareness
	4.3.1 Subscribing to notifications
	4.3.2 Disseminating changes

	5 The Sysiphus environment
	5.1 Design goals
	5.1.1 Performance Criteria
	5.1.2 Dependability Criteria
	5.1.3 Cost Criteria
	5.1.4 Maintenance Criteria

	5.2 Subsystem decomposition
	5.2.1 The ` =9 [word]ElementStoreLayer
	5.2.2 The ` =9 [word]ModelLayer
	5.2.3 The ` =9 [word]ClientApplicationLayer

	5.3 Hardware/software mapping
	5.4 Persistent data management
	5.5 Access control and security
	5.6 Global control flow
	5.6.1 Control Flow in Online Mode
	5.6.2 Control Flow in Offline Mode

	5.7 Boundary conditions
	5.7.1 Configuration
	5.7.2 Startup and Shutdown
	5.7.3 Exception Handling

	6 Applications and evaluation
	6.1 Case studies
	6.1.1 Cargo & Logistics
	6.1.2 CampusTV
	6.1.3 Mobile Sportsman Artifacts
	6.1.4 Symphonia
	6.1.5 Virtual Symphony Orchestra
	6.1.6 IBM Awareness Mockup
	6.1.7 JASS
	6.1.8 MOQARE
	6.1.9 Yieeha
	6.1.10 TEAM

	6.2 Teaching software engineering
	6.2.1 Arena
	6.2.2 Asteroids
	6.2.3 Software engineering lectures

	7 Related Work and Previous Research
	7.1 Research
	7.1.1 Rationale and Distributed Work
	7.1.2 Traceability and Awareness
	7.1.3 Asynchronous Inspections
	7.1.4 Versioning of software engineering models.

	7.2 Commercial Systems

	8 Conclusion
	8.1 Summary
	8.2 Future directions

	A Bibliography
	B List of Figures
	C Listings
	D Glossary

