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Kurzfassung

Das Kernziel dieser Arbeit war es, mehr Einsicht in die Prozesse der Texturwahrnehmung
zu gewinnen und diese letztendlich soweit zu verstehen, wie es derzeit für Geschmacks-
wahrnehmung der Fall ist.

Hierfür wurde zunächst im ersten Teil der Arbeit die Sensilität der Wahrnehmung bezüglich
Scheibchen unterschiedlicher Grösse, d.h. Scheibchen im mm Bereich bezüglich des Durch-
messers und µm Bereich für die Dicke, im Mund zwischen Zunge und Gaumen als paarweiser
Vergleich evaluiert. Nachdem die Sensibilität bestimmt worden war, d.h. 1 mm für Un-
terschiede im Durchmesser und 25 µm in der Dicke, wurden die Erkennungsmechanismen
untersucht.

Aufgrund eines unerwarteten unsicheren Bereiches, in dem die Sensibilität bezüglich der
Dicke kleiner als 25 µm ist, wurde eine Hypothese über die Existenz zweier unterschiedlicher
von der Scheibendicke und -härte abhängiger Erkennungsmechanismen aufgestellt: Durch-
biegen für dünne und Eindrücken in die Zunge für dicke Scheiben. Es wurden mathematische
Modelle entwickelt und verifiziert.

Im zweiten Teil der Arbeit wurde die Empfindung von Griessigkeit in flüssigen Lebensmit-
teln untersucht. Da auf Zunge und Gaumen nur Drucksensoren, aber keine texturspezifischen
Rezeptoren existieren, wurde angenommen, dass das Gefühl von Griessigkeit auf Spannungs-
feldschwankungen zurückzuführen ist. Diese werden durch in der Flüssigkeit enthaltene Par-
tikel verursacht. Ein theoretisches fluidmechanisches Modell wurde diskutiert und danach
experimentell verifiziert.

Die Evaluierung des flüssigen Lebensmittels wurde als Quetschströmung zwischen Zunge
und Gaumen dargestellt. Zu Beginn wurden Quetschströmungen von reinen Fluiden unter-
sucht, deren Druckverteilung mit Hilfe der Stefangleichung berechnet werden kann. Die von
den Partikeln verursachte Punktkraft wurde mit Hilfe von Faxens Gesetz beschrieben. Die
Green Funktionen schliessen diese Punktkraft ein, so dass das resultierende Geschwindigkeits-
und Spannungsfeld im Fluid mit Partikel bestimmt werden können. Ziel war es, die durch das
Partikel verursachten Druckfeldvariationen im mechanischen Modell aufzuzeigen. Das Modell
bestand aus einem blattförmigen Tekscan Drucksensor, der an der unteren von zwei paral-
lelen Platten angebracht war, und so die Variationen im Normaldruck messen konnte. Der
Sensor wies jedoch eine geringere als die vom Hersteller angebene Auflösung auf, sodass die
erwähnten Störungen des Druckfelds nicht registriert werden konnten. Im Falle positiver Ver-
suchsergebnisse wäre es möglich, mit Hilfe der dargestellten Dimensionsanalyse Rückschlüsse
über die Druckfeldvariationen im Mund und damit die Empfindung von Sandigkeit zu ziehen.

x



Abstract

The main aim of this work was to gain more insight into the processes of human oral texture
perception with the final aim being to understand texture perception to the same extent that
taste perception has been understood today.

As a first step to this end the geometrical resolution limits for objects in the human mouth
were determined. For this, disks of varying diameter (in mm range) and thickness (in µm
range) were evaluated in pair comparisons, where the larger respectively thicker sample had
to be identified.

Possible detection processes were discussed, and a hypothesis about the existence of two
different detection processes, i.e. bending for thin disks (below 120 µm) and impressing
into the tongue for thick discs (above 200 µm), was established. These limiting values leave
an undetectable range in which both processes fail. The findings are consistent with the
anatomical and neurological knowledge. Mathematical models were applied. The hypothesis
about the existence of two detection processes was validated using softer materials in order
to show that the insecure range disappears because bending is possible even for thicker discs.

The perception of grittiness was the ficus of the second part of this project. Since there are
no specific texture receptors it was assumed, that perception of grittiness in liquid foods is
due to the perception of stress field variations in the fluid caused by the presence of particles,
which are of the same order of magnitude as the previously determined discrimination limit
for the disks (25 µm). These stress field variations were investigated with a theoretical fluid
mechanical model and then verified experimentally.

The model assumed tongue and palate as two parallel plates, which by the means of squeeze
flow evaluate the (particle containing) fluid. The pressure form of the Stefan equation was
used to describe pure squeeze flow. The force acting on a particle in the fluid was calculated
with the help of Faxen’s law, before the stress and velocity field variations were determined
by the means of the Green functions. Once these stress field variations had been determined
the aim was to show these variations experimentally in a particle containing squeeze flow
by attaching a sheet form pressure sensor with a resolution of 1 mm (the same spacing as
the mechanoreceptors in the mouth) to the bottom plate. Unfortunately the sensor did
not have the resolution claimed by the supplier and despite calibration and equilibration no
disturbances due to the particle could be registered. With an appropriate sensor and the
presented dimensional analysis conclusions about the stress field perception in mouth are
possible.
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Chapter 1

Introduction: Mechanoreception in

the human mouth

1.1 Motivation of the work

Texture evaluation of foods, be these liquid or solid, is a matter of routine in food qual-

ity control and is carried out with the help of a sensory panel or instrument. Therefore,

the quality of the correlation between sensory impression and objective measurements

is of great importance. The term “texture” is rather vague, but commonly refers to

all the mechanical, geometrical, and surface attributes of a product perceptible by

means of the mechanical, tactile, and where appropriate, visual and auditory receptors

(Association Francaise de Normalisation, 1995a). Due to the multi-parameter nature

of texture Szczesniak (2002) suggests consideration and evaluation on molecular, mi-

croscopic and macroscopic scales. This complicates the characterization even further.

For this work only the mechanical and geometrical attributes, i.e. those related to the

reaction of the product to stress and those related to the size, shape, and arrangement

of particles within a product, will be considered. Texture can either be evaluated by

sensory or instrumental analysis, whereas the latter is known as the more “objective

measurement”. From the term “objective” it should not be concluded that the instru-

1



2 CHAPTER 1. INTRODUCTION: MECHANORECEPTION IN THE MOUTH

ments available allow for an absolute measurement of the mechanical stress. Objective

in this sense refers to the repeatability, which is usually more accurate for machines

than for human beings concerning sensory matters since factors such as learning, per-

sonal preferences, or varying performance are not relevant, and hence, there are less

variations in the measurement system. According to Hiiemae (2004) there are several

reasons why an objective measurement is more advantageous than a sensory test with a

panel. Among others this author refers to lower cost, shorter training times, improved

flexibility, reduced ambiguity in the results, and little or no need for statistical inter-

pretation. In addition to this the results are culturally and individually independent,

which permits international standardization (Bourne et al., 2002). For this reason the

prediction of sensory impression by the means of measurements would be very ad-

vantageous (Corradini et al., 2001). Understanding what makes a product texturally

desirable and identification of the negative aspects of texture would be useful in the

development of new and improvement of existing products (Yates et al., 2001).

Textural perception of solid and liquid foodstuffs is one area where perception of

object size is of importance. Texture is mostly taken for granted and consumers do

not comment on it unless expectations are violated or non-food associations are trig-

gered. Texture is often used as an indicator for freshness (shrivelled apples) or quality

(lumps in a sauce) (Szczesniak, 2002), therefore its perception mechanisms have to be

understood to guarantee consumer satisfaction. The importance of textural perception

was shown by Wilkinson et al. (2000) who blended food products and found that only

40 % of the products could be identified correctly once they did not have their char-

acteristic texture properties anymore. Jones et al. (1994) pointed out another reason

to investigate perception of texture, particles in particular. For dental restoration it is

important to know the sensitivity for roughness, this is equivalent to grittiness in the

sensory field, to assure most comfort for the patient when artificial parts are added to

the natural and especially smooth tooth environment.
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1.2 Former studies and the associated problems

Generally there seem to be three ways of approaching the above mentioned problem.

The first possibility is to directly establish correlations between sensory and instru-

mental measurements such as those that have been reported by for example De Wijk

& Prinz (2005). They investigated the rheology, i.e. viscosity due to starch content,

of vanilla custard desserts before correlating it with the sensory impression of “thick”,

“melting”, “creamy-soft” and “rough”. Also the study carried out by Kilcast & Clegg

(2002), who related particle and bubble sizes to the perception of creaminess. Earlier

studies stated an inverse relation between shear thinning of a liquid and the perception

of sliminess, such as the one conducted by Wood (1974). Cutler et al. (1983) tried to

link thickness and dynamic viscosity. These studies all referred to liquids but similar

studies have taken place for solids. Finney & Meullenet (2005) for example compared

the sensory impression of hardness with instrumental compression tests, where either

the resulting force (distance-controlled) or final distance (force-controlled) between the

plates was determined.

When carrying out studies like those mentioned above researchers face many prob-

lems, the main one being the discrepancies between the operating conditions of texture

measuring instruments and the ambient conditions present in the mouth. For example,

most compression tests have been performed at cross-head speeds that are not repre-

sentative of first bite velocities (Finney & Meullenet, 2005). Also the question how to

simulate the high strain rates experienced in the mouth with traditional rheometers, a

consideration very important with viscoelastic materials (i.e. most food products), has

not yet been answered (Szczesniak, 2002). In addition, history dependent behavior, as

described by Pollen et al. (2005) such as shear-thinning, is difficult to simulate with a

rheometer (Cutler et al., 1983). The changes that occur for most fluid foodstuffs due

to tongue movement are very irregular and hard to imitate. Furthermore, instrumental

measurements of food properties are usually obtained as single events whereas texture

perception is a dynamic sensory monitoring of changes made to a food by processes

in the mouth (Wilkinson et al., 2000; Terpstra et al., 2005). Additionally for a long
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time the influence of saliva, i.e. its diluting and mouth-coating properties, has been

ignored (Bourne et al., 2002). Only fairly recent studies such as Engelen et al. (2003b)

investigated salivary flow-rates as a function of the stimulus and compared the influ-

ence saliva and other liquids have on textural perception when added to liquid foods

(Engelen et al., 2003a). Dunnewind et al. (2005) were among the first to carry out

dynamic imitations such as repeated parallel plate compression tests. Physiological

in-mouth conditions were tried to be taken into account by covering the bottom plate

with a rough surface imitating the tongue and wetting it with saliva. Another mis-

take quite frequently made is that measurements are carried out at room temperature.

Dickie & Kokini (1983) made a first step in the right direction by conducting their

trials at 30.5˚C, this being the average between room and body temperature, hence,

considering the warming effect of the oral cavity on the introduced food.

All these studies clearly show the complexity of perception. The perception of

“juiciness” is another very hands-on example for the difficulties scientists are facing.

Juiciness seems to be a fairly self-explanatory term referring to the amount of juice

released upon mastication as stated by Szczesniak (2002). The author then added

further dimensions such as the force with which the juice squirts out of the product,

the rate of juice release, the total amount released during chewing, the flow properties

of the expressed fluid, contrast in consistency between liquid and suspended cell debris,

and the effect of saliva production. Despite the number of descriptive terms this was

not sufficient to give a uniform definition of juiciness. This is an example for the

considerable gap between the methods that food scientist use to gauge the perception

of food texture in the human mouth and those which oral physiologists employ to

investigate ingestion, mastication and swallowing (Lucas et al., 2004). It also shows

that bulk rheology alone does not provide a complete characterization of in-mouth

sensory properties (Malone et al., 2003). Another example was given by Malone et al.

(2003), who proved that subjects could distinguish between 0 % and 1 % fat emulsions,

whereas the measured lubricant properties were identical. An inverse situation was

described by Corradini et al. (2001), who modified samples of tomato paste, yogurt,

and strawberry jam and could clearly identify these modifications with instrumental

analysis but not with sensory analysis. Sometimes seemingly obvious relationships
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between human assessments and mechanical variables could not be found at all (Peyron

et al., 1997).

As has just been demonstrated, due to the complexity of the in-mouth situation it

is not easy to establish a direct connection between instrumental measurements and

sensory impression. This leads to a second approach consisting of the discovery and

understanding of the mechanisms and conditions of oral processing. The third approach

results from the second one and relies on the prediction of sensory properties with the

help of predictive mechanical models and data. First trials were made in this domain

by Dickie & Kokini (1983) and more recently by Terpstra et al. (2005). Mathmann

et al. (2006) also work in this field. They try to understand the perception of grittiness

with the help of numerical simulations. The work is based on previous work by Nirschl

(1997) and Hartmann & Delgado (2003), who also dealt with particle containing fluids.

When dealing with texture perception it has to be decided if solid or liquid foods

should be in the center of interest (Bourne, 2002). Many of the studies carried out so

far focused on solid foods requiring biting. Mioche et al. (2002) for example identified

four different stages for the oral treatment of solids in the oral cavity, and Peyron et al.

(1996) stated that the number of chewing cycles influences the duration of each cycle.

Both could detect repeating patterns among test subjects. This was also proven in the

framework of this work when evaluating magnetic resonance images (MRI) from the In-

sel Spital in Bern, Switzerland. Here the jaw and tongue movements of subjects eating

a mint were recorded (Lindinger, 2003). Processes seem to be fairly well characterized

for solid foods, but not for liquids. These processes require primarily tongue move-

ments, which have proven to be difficult to monitor instrumentally without restricting

masticatory movements (De Wijk et al., 2003a).
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1.3 Complexity of the perception of texture in

comparison with taste

Considering that texture and taste are usually perceived at the same time it is not

surprising that, when dealing with texture perception in the oral cavity, information

about taste perception is found as well. It becomes evident very quickly, many more

taste investigations have taken place. It was not until the late 1950s that texture began

to be looked at as a subject in itself (the way flavor had been studied for some time

(Szczesniak, 2002)). The reason for the limited existence of textural studies lies in the

complexity of textural perception in comparison with the perception of taste. Percep-

tion of sweet, sour, bitter and salty has long been related to specialized taste buds as

can be seen for example in the work of van Ruth et al. (2001), who conducted trials in

order to discover the interaction of different aroma compounds with saliva; not so for

texture perception. Different types of mechanoreceptors are known (Johnson, 2001),

which capture stimuli that are transmitted to the brain and processed into informa-

tion (Szczesniak, 2002). Still the question remains as to how perceived texture

relates to the structures in the mouth. It is not known if the mechanoreceptors

are stimulated by force, deformation or strain energy density. It seems reasonable to

assume, that texture is perceived holistically through the unconscious measurement of

stresses and/or strains resulting from the manipulation of the “textured” material in

the mouth while it is flowing through the mouth from the entrance of the oral cavity

to the pharynx.

Therefore, texture has to be perceived by the means of flow, see Figure 1.1. This

is in contrast to the perception of taste as demonstrated in the first flow schema of

this Figure. For taste the process is fairly static, a molecule needs to dock to a sensor

before this causes a stimulus, but no active movement is needed as it is the case for

the perception of texture. Szczesniak (2002) postulated that some redundancies are

felt when the food is placed in the mouth, others are just sensed when the food is

deformed, therefore, for textural perception a certain movement seems necessary.
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molecule sensor stimulusTaste

Texture material sensor stimulus?Texture material sensor stimulus?

Figure 1.1: Differences in the creation of a stimulus between taste and texture perception.

1.4 Direction and aim of the project

The emphasis during this work is on liquid foods in order to avoid processes such as

biting, which complicate in-mouth processing since the main goals of the process are

reduction of particle size and resistance against food deformation. For solid foods a

bolus is only formed and manipulated as a very last step after other more predominant

processes, i.e. when perceived resistance is sufficiently low and particles are sufficiently

small and lubricated (Prinz & Lucas, 1997). Apart from that, when dealing with

biting and chewing, the dental situation (number and condition of dental units) and

especially the differences between subjects becomes important (Hatch et al., 2000). In

contrast, for the evaluation of liquids the tongue and palate are in the center of interest,

although the presence of the tongue complicates the system as well due to its irregular

movements and changing shape (De Wijk et al., 2003a). For the first part of this

work the anatomy and physiology of the tongue, i.e. the surface of the tongue being

covered with four types of papillae: filiform, fungiform, vallate, and foliate (Paulsen

& Thale, 1998), is of high importance. Also the fact that the tongue is innervated by

mechanoreceptors, which are also present in the glabrous skin, e.g. the hand, plays a

major role. Three of the four mechanoreceptors present in the glabrous skin can be

found in the oral mucosa and tongue: Merkel cells, Meissner, and Ruffini corpuscles,

whereas Pacinian corpuscles are not found in the oral mucosa (Johansson et al., 1988).

Some of the mechanisms can and will be transferred to the in-mouth processes.
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The final idea of this work is to understand in-mouth processing during textural per-

ception and to establish a model, which is able to predict the textural impression

of a food, which has only been physico-chemically characterized. Alterna-

tively, the understanding could lead to a definition of the physico-chemical

product properties to be obtained for a desirable sensory impression (Fig-

ure 1.2). Of course considerations such as experience or variations among individuals

cannot be considered in a model in a complete way but the aim should be to achieve a

standardization for the aspects, which can be considered as uniform among subjects.

Prescription of physico-chemical properties in order to 
provoke a desired sensation

Appreciation
Refusal
Indifference

Prediction of sensory properties of new foods a priori
when they have only been physico-chemically 

characterized

Prescription of physico-chemical properties in order to 
provoke a desired sensation

Appreciation
Refusal
Indifference

Prediction of sensory properties of new foods a priori
when they have only been physico-chemically 

characterized

Figure 1.2: Two-fold deliverables of the thesis: 1) knowledge about textural impression with-

out sensory evaluation based on physico-chemical characterization, 2) product

design with previously assigned textural attributes.

In order to achieve the above mentioned goal, a very interdisciplinary approach,

combining fluid mechanics, dentistry, biology, biomechanics, and neurology is taken.

At the same time, and this is the new idea of this work, the mouth itself is considered

as in instrument, such as a squeeze-flow rheometer, which needs to be characterized

(Chapter 2) and evaluated (Chapter 3 and 4). This is in contrast to traditional ap-

proaches, where external machine measurements were compared with the in-mouth

impression (e.g. De Wijk et al. (2003b)).

So far studies about the treatment of liquid foods in the oral cavity are rare and
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have not fulfilled the aim to understand textural perception. As Guinard & Mazzuc-

chelli (1996) stated explicitly mouth-feel properties of e.g. beverages have received

comparatively little attention.

Some of the methods used, but mainly for solid food investigation, are

• Videofluorographic (VFG) (Palmer et al., 1997)

• X-ray/Cinefluorographic (CFG) recordings (Hiiemae & Palmer, 1999)

• Sirognatography (attaching a magnet on the incisor tooth and following its move-

ment) (Dove et al., 1994; Hiiemae et al., 1996))

• Electromyography (EMG, recording muscle activity) (van der Bilt et al., 2001)

• Mixing of two-color chewing gums (Hayakawa et al., 1998)

• Bite mark analysis of chewed wax-wafers (Prinz & Lucas, 2001)

• Particle size analysis after chewing (Hoebler et al., 2000)

• Implementation of small strain gauges into teeth in order to record the forces

exerted during chewing (Bourne et al., 2002)

• Magnetic resonance imaging (MRI) (Lindinger, 2003)

Most of these methods are too invasive: MRI measurements, despite the fact that

they do not deliver results in real-time, make it very difficult to place food into the

subject’s mouth (Wilkinson et al., 2000). Due to the stressful testing conditions it is

almost impossible to receive an objective opinion concerning the food’s texture from

the test subjects. Therefore, a non-invasive method is needed, meaning that the

measurement is not supposed to take place at the same time as the textural evaluation

but rather through the application of models, which have to be established. A two-fold

approach is taken in order to fulfill this aim.
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1.4.1 Geometrical size sensitivity

As a first step in this direction trials are carried out in order to determine the sensitivity

to geometric differences in the mouth (Chapter 2). Disks of varying diameter, thickness,

and material are introduced into blind-folded subjects’ mouths for pair comparisons in

order to obtain information about in-mouth size judgement and especially the detection

processes. Trials for the determination of spatial resolution on the finger or hand have

been carried out already by Schlereth et al. (2001) and Johansson & Vallbo (1979)

but similar studies in mouth are rare. The sensitivity between finger (index) and

palm is also investigated within the framework of this work in order to possibly use

this system alternatively to the tongue-palate system for non food grade materials.

Prinz & Lucas (1995) discovered that human beings can detect particles of 15 µm

between the teeth but not on the oral mucosa. Therefore, the idea to investigate the

sensitivity between tongue and palate is a new approach. The first part of the work

dealing with the size sensitivity for geometric objects creates the basis for the further

investigations in Chapter 3 and 4. Here the mouth is considered as a squeeze flow

rheometer and perception of suspensions (“grittiness”) is looked at. The discovered

particle size sensitivity and detection processes from Chapter 2 play an important role.

1.4.2 Perception of suspensions

For the second step, the investigation of suspensions in the mouth, the manipulation of

the fluid in-mouth and the predominant flow behavior are important. Dickie & Kokini

(1983) assumed that the prevalent flow type between tongue and palate is shear flow.

This agrees with Cook et al. (2003) who claimed that the stimulus associated with the

evaluation of fluid foods appeared to be the shear rate developed at a constant shear

stress of 10 Pa (therefore a stress-controlled process). The results of Wood (1968), who

carried out work in this field earlier, differ from this. He stated that the stimulus for

perceived texture of hydrocolloids is a shear stress developed in the mouth at a constant

shear rate of 50 s−1 (hence a strain-controlled process). A much wider range of shear

rates are operative in the mouth (10 - 1000 s−1) dependent on the flow characteristics
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of the food. Low viscosity liquids (viscosity below 0.1 Pas) are evaluated at a constant

shear stress of about 10 Pa, while products with high viscosity (viscosity above 10 Pas)

are evaluated at a constant shear rate of 10 s−1. Low viscosity samples will spread

faster (higher shear rates) and over longer distances. Products with a high viscosity

or a yield stress will not spread significantly under gravity in the usual oral evaluation

time. So probably for these products there is another evaluation criterion for viscosity.

This could be the pressure (normal stress) required to produce significant flow (Cook

et al., 2003).

Very important, bulk rheology does not completely characterize in-mouth texture

properties. Therefore, tribology, which is the science of adhesion, friction and lubri-

cation (Foegeding et al., 2003) becomes important. Tribology (science and technology

of friction, lubrication, and wear) combines rheological and solid mechanical aspects

of a dynamic contact problem. It therefore provides a useful approach to determine

properties in thin films, that cannot be deduced from bulk properties nor from thin

film rheology. In a study by Malone et al. (2003) average fluid film thickness, which

occurs during the processing of semi-solid foods, was investigated. It is in the order

of 1.5 - 25 µm, a size range, which encompasses most of the dispersed particles found

in foods. Twenty-five µm is also the differentiable thickness difference that is found in

the framework of this research project (Chapter 2). van Vliet (2002), who gave a wide

overview of the possibilities of stress or strain controlled behavior, stressed the im-

portance of considering additionally uni- and biaxial elongational flow, as experiments

with oil samples containing air bubbles showed that only elongational flow caused the

bubbles to break up. Its importance for textural impression has also been mentioned

by Pollen et al. (2005), who instrumentally studied the extensional viscosity (a mate-

rial’s resistance to elongational flow). Still this elongational flow component in-mouth

has not been studied so far. This does not appear to be possible in the near future,

either, since the measurement of elongational properties imposes serious difficulties.

There are earlier investigations about different aspects of the tongue-palate system,

but not much is known about the flow of fluids between tongue and palate and especially

not about the behavior of suspensions. Agrawal et al. (1997) looked at the connection
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between the rate of breakdown (particle size reduction over time) between tongue

and palate, and the toughness and elastic modulus of the food. Chiba et al. (2003)

investigated the pressures between tongue and palate with the help of a transpalatal

arch (TPA), which measured the tongue pressure exerted during deglutition. The

values measured at various distances between 2 and 6 mm away from the mucosa were

between 0.97 and 2.23 N/m2. Palatal pressure as well as the elasticity of in-mouth

objects are two of the key parameters in this work, which are also relevant for the

modeling presented in Chapter 3.

The modeling of physical phenomena in the oral region so far mainly refers to

flavor release based on mass transfer as done by Harrison in several studies since 1996

(Harrison & Hills, 1996) or mechanical processing such as the prediction of particle

sizes after chewing as done by Agrawal et al. (1997). Nicosia & Robbins (2001) used

parallel plates in order to model the process of swallowing and predict ejection of the

food bolus from the oral cavity. The tongue was considered as a rigid body due to

its composition of muscle tissue and as containing incompressible fluid (Smith & Kier,

1989). This is also the case in the study presented here. Modeling the tongue is

very difficult as it is never static. Stone et al. (2001) used continuum mechanics and

modelled each tongue slice taken from an MRI as a single 2D object. The modeled

tongue was only capable of rotation, translation, and homogeneous strain and shear.

3D models were possible but static. Napadow et al. (1999) used finite element modeling

to represent the internal mechanics of the tongue but had problems incorporating the

proper anatomy and physiology.

Since there are limitations to all of the models existing at present it was decided to

work with the parallel plate model, especially since food particles, such as those present

in suspensions, are principally worked by the tongue against the palate (Prinz & Lucas,

2001). The approach in this work is taken on a micro-scale level (Chapter 3), i.e. at the

level of the particles and embedding fluid and not for the bulk fluid. Suspensions are

looked at with the objective to understand “grittiness” perception. The work done by

Malone et al. (2003) on film thickness between tongue and palate was a first approach

in this direction.
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A mathematical as well as a mechanical model are constructed. For this purpose

the tongue and palate are represented by two parallel plates of known diameter. The

mechanical approximation of the tongue-palate assembly by a two-plate system is sim-

ilar to the simplification of Booth et al. (2003). He represented the biting of a cookie

simply with a 3-point break rig. Weipert et al. (1993) actually suggested a two-plate

model for the representation of tongue and palate.

The plates are at the beginning a known distance apart, then the top plate moves

towards the bottom plate at a constant speed like in a squeeze flow rheometer. Between

these plates there is a fluid of known viscosity, which is gradually squeezed out in the

radial direction.

At the beginning, when the reliability of the instrument is still being tested, the

fluid does not contain any particles. The behavior of the fluid between the plates

is axisymmetric squeeze flow with constant contact area between sample and plates.

Various mathematical models are applied in order to describe the flow, pressure, and

velocity field between the plates with and without particles. The resulting pressure

profile across the plates in dependence of the plate radius is first described by the

pressure form of the Stefan equation (Stefan, 1874).

As a next step the force on a single particle is considered. For this Faxen’s first

law is used. Then the free space Green function allows determination of the pressure

and velocity field due to this point force. The bounded Green function from Blake &

Chwang (1974) is considered afterwards since it can take possible boundary conditions

such as the presence of the bottom plate into account. Both Green functions give

pressures and velocities. The stress tensor can be derived from these quantities. Thus,

the disturbances due to the presence of a particle can be determined.

In the experimental part these pressure field fluctuations need to be demonstrated.

The experimental set-up consists of two parallel plates and a Tekscan pressure sensor

in sheet form, which is attached to the bottom plate. The sensor should show the

variations when the fluid containing particles is compressed between the plates. This

is the intermediate step before conducting the same experiment in vivo, i.e. let test
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subjects evaluate suspensions for grittiness. This verification has not been done within

the framework of this thesis and the question remains open for future work. The

suspensions have to be designed so that they show stress field disturbances in the

mathematical model as well as on the sensor of the mechanical model, and finally in

the human mouth.

Modeling particles and their resulting stress fields is a reasonable approach because

some of the superficial receptors in the tongue are actually tuned to detect forces even

in the low mN range (Trulsson & Essick, 1997). The data from Engelen et al. (2002)

suggests that the tongue rather than the palate is probably responsible for the sensory

evaluation of this type, but more importantly it confirms the general feasibility of the

study.

Recapitulating the basic ideas of this thesis the questions to be answered within the

framework of this work are:

1. How sensitive is the human mouth to geometric size differences when

evaluated between tongue and palate?

2. What are the detection processes?

3. How can these processes be expressed with the help of mathematical

models?

4. How does a human being perceive grittiness in the oral cavity? Could

it be the perception of stress field perturbations?

5. What do these perturbations look like?

6. How well do the mathematical models agree with experimental data?



Chapter 2

Geometrical resolution limits in the

human mouth

In order to understand textural perception it is necessary to know the stereognostic

ability for objects in mouth, i.e. the ability to recognize and to distinguish forms

and sizes. For the definition of the shear rate (velocity divided by a characteristic

length over which the velocity varies) the judgement of object sizes in the mouth is

absolutely necessary. This assumes that shearing is distance controlled. Also for the

perception of grittiness the sensitivity for object sizes has to be understood. Grittiness

is a special smaller size case of granularity, which is a textural attribute relating to

the perception of the size and shape of particles in a product (Association Francaise

de Normalisation, 1995b). The study described in the following is carried out in order

to determine this geometric sensitivity and to draw conclusions about the detection

process(es). Disks are differentiated concerning their differences in height and diameter.

Up to now grittiness has only been investigated as a function of the dispersion medium,

particle size, shape, and concentration (Imai et al., 1995; Engelen, 2004). There is little

published information available on intraoral size perception as stated by Engelen et al.

(2002), who reports size sensitivity trials for spheres of varying size, material, and

weight/density. Spheres lead to a small, indeterminate area of contact on the palate

because the palate is not compliant in comparison with the tongue, which can sense
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the sphere’s full size. Therefore, Engelen suggested the use of plastic plates instead of

spheres as done in the experiments described further on.

2.1 Materials & methods

2.1.1 Sensory test procedure

The assessment took place on a one to one basis. All trials were pair comparisons, where

one disk at a time was placed on a blind-folded subject’s tongue with tweezers. Subjects

were instructed to press the tongue with the disk against the palate for evaluation since

touch sensation is the most acute in the anterior part of the tongue and hard palate

(Ten Cate, 1994).

At the same time they were instructed not to turn or bite the disks, nor to move

them excessively, see Figure 2.1. The disks were removed from the mouth with a tissue

in order to avoid touching with the hands and the introduction of an extra parameter:

as previously mentioned the mechanoreceptors of the tongue and finger are very similar

(van Boven & Johnson, 1994) and thus the sensation between tongue and palate is com-

parable to the one between finger and palm (Jacobs et al., 2002). Samples could have

also been evaluated visually, thus the blind-folding. Once the second disk had been

evaluated the subjects were asked to name the apparently larger (diameter sensitivity

determination), respectively thicker (height sensitivity determination) sample. By ask-

ing the question in this way a 2-Alternative Forced Choice test (2-AFC) was carried

out, which allows the statistical analysis described in the data processing Section.

2.1.2 Subjects

A minimum number of fifteen subjects participated in each trial to assure statistical

significance. If material and time permitted up to 25 subjects evaluated samples in

duplicate and triplicates. This was only different for the pre-trials (7 subjects), which
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Figure 2.1: Schematic illustration of the trial procedure for disks varying in diameter.

aimed at the determination of the general feasibility of the trials and relied strongly

on subjective judgement by test subjects. Subjects were randomly chosen concerning

age and gender. The range of age of the subjects varied between 21 and 39 years.

The influence of age could be neglected: age dependent changes as for example the

muscle weakening in elderly mentioned by Roininen et al. (2004) only occur at age

60+. Informed consent was received from all subjects.

2.1.3 Materials (films)

Small disks made from polyethylene terephthalate (PET, Eastman, Young’s modulus

1900 MPa) films of three different thicknesses (50, 75, and 250 µm) were used for series

A and B of the preliminary trials (see Section 2.1.4). Disks of 3, 5, 6, and 10 mm

diameter were punched out of these films leading to 12 possible disks (see Table 2.1).

Multiples of these disks were used in the trials. Series C, evaluating the finger (index)-

palm system, used the standard film from the main series explained below. All materials

were obtained in form of films and available in the thicknesses described in Table 2.2.

For the main trial series, focusing on the sensitivity for vertical differences (“thick-
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Table 2.1: Possible disks resulting from three different thicknesses and four diameters.

diameter 3 mm 5 mm 6 mm 10 mm

thickness

50 µm x x x x

75 µm x x x x

250 µm x x x x

ness”), three different materials were tested:

1. “standard material”: Fluoroethylene propylene (FEP, DuPont), Young’s modulus

480 MPa, used in series C and series 1-3,

2. “stiff material”: Polyethylene terephthalate (PET, Klöckner Pentaplast), Young’s

modulus 2060 MPa, used in series 2 and series 3,

3. “compliant material”: whey protein - glycerol (65 : 35) films (NIZO food re-

search), Young’s modulus approximately 90 MPa, used in series 3 (for details

about the production please see below).

The standard films disposed of the following thicknesses: 12.5, 25, 50, 75, 125, 190,

and 250 µm (for later trials further disks, 150 and 180 µm, were added, see further on

for modification process of the films). Disks of 3 and 5 mm diameter were punched

out of these films. For the stiffer and compliant films only two thicknesses (150 and

180 µm) and one diameter (3 mm) were used (see Table 2.2 for an overview of all

materials used).

2.1.3.1 Thinning of standard films

The films were placed between the two plates of a heatable load cell. The films were of

10 cm x 10 cm surface. The plates were heated until 270˚C (melting temperature of
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Table 2.2: Classification of all disks used in the main study in terms of diameter, thickness

and material.

Material “standard” “stiff” “compliant”

DuPont Klöckner NIZO

E[MPa] 480 2060 90

Thickness diameter [mm] diameter [mm] diameter [mm]

µm 3 5 3 5 3 5

12.5 x x - - - -

25 x x - - - -

50 x x - - - -

75 x x - - - -

125 x x - - - -

150 (x) - x - x -

180 (x) - x - x -

190 x x - - - -

250 x x - - - -

350 x x - - - -

Teflon) before a load of 100 kN was applied for a duration of 7 min. After the thinning

it was possible to punch out disks of 150 and 180 µm from the original 190 µm thick

but now thinned films. The punched out disks were measured with a Käfer micrometer

(resolution 1 µm, calibration with 100 µm film from Mitutoyo no. 030122) in triplicates

in order to determine their thickness with minimum error. The procedure was the same

for the creation of the 225 and 250 µm thick films used later on.

2.1.3.2 Whey protein-glycerol films (WP/G)

These films were provided by NIZO food research. An 8 % whey protein isolate (WPI,

type BIPRO, from Davisco Food International, Le Sueur, USA) was heated at 85 ˚C
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for 80 minutes. The solution was subsequently filtered (sieve) to remove any large flocs.

Glycerol (BDH Laboratory) was added to the protein solution to obtain a ratio of WPI:

glycerol of 65:35. Films were prepared by casting an aliquot of protein solution into

Petri dishes and evaporating the solvent at ambient temperature. The elastic modulus

was characterized using a Texture Analyzer TA-XT2 with a 25 kg load cell, following

the approach of ASTM-D882-02 (2005) (Standard Test Method for Tensile Properties

of Thin Plastic Sheeting). Films were cut to 70 mm x 35 mm. The initial distance

between the grips was 60 mm, the speed of separation of the grips was 1.6 mm/sec. The

elastic modulus was determined during the first part of the stress strain curve. For each

value of the elastic modulus an average of five measurements was taken. Afterwards

disks of 3 mm were punched out of these films using of a hand press. The thicknesses

of these disks were measured with a Käfer micrometer (see above), three times for each

disk, and then the average was taken.

2.1.4 Geometrical sensitivity experiments

2.1.4.1 Introductory trials for determination of the feasibility

The trials were conducted in six sessions (A, B, C, 1, 2, and 3) and some sub-sessions

(a, b, and c). Three trials (A, B, and C) were carried out for general orientation and

determination of the feasibility of a larger study. For an overview of all the trials carried

out see Table 2.3. Values in rows were compared with each other whereas values in

columns were kept constant. For series B this means for example that disks of 50, 75,

and 250 µm thickness were compared but they all had the same diameter of 3 mm.

The first two trial series (A and B) focused on:

1. horizontal sensitivity: by the means of different diameters (study A)

2. vertical sensitivity: by the use of different thicknesses (study B)

The third preliminary trial (series C) investigated the statement made by, e.g. Jacobs
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et al. (2002) and Sakada (1983), that the tongue-palate system is similar to the finger-

palm system. The idea was to verify the suitability of this system in order to be able

to also use non food-grade materials since in-mouth contact can be avoided. At the

same time the finger-palm system reduces stimuli such as taste and smell.

For all trials only one parameter out of thickness, diameter or Young’s modulus,

was varied at a time. Table 2.4 shows comparisons of disks of constant thickness and

material but varying diameter (study A), Table 2.5 gives pairs of disks with constant

diameter and material but varying thickness (study B) in all combinations, which were

investigated. Table 2.6 shows all pairs evaluated between finger and palm (preliminary

series C) and main study 1.
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Table 2.3: Overview and further references for all trial series carried out.

series subjects system diameter thickness material/[E]=MPa

preliminary study

A 7 tongue-palate 3,5,6,10 50 PET 1900

75

250

B 7 tongue-palate 3 50,75,250 PET 1900

5

6

10

C 7 index-palm 5 12.5,25,50,75,125,190,250 FEP 480

3

main study

1a 15 tongue-palate 5 12.5,25,50,75,125,190,250 FEP 480

1b 15 3

1c 14 3 50 vs. 75, 225 vs. 250

2a 13 tongue-palate 3 150 vs. 180 FEP 480

2b 15 3 150 vs. 180 PET 2060

3a 25 tongue-palate 3 150 vs. 180 WP/G 90

3b 10 3 150 vs. 180 PET 2060
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Table 2.4: Pairs of disks which were compared in the framework of diameter sensitivity de-

tection (series A).

thickness [µm] diameter 1 [mm] diameter 2 [mm]

5 6

250 µm 6 10

3 5

5 6

75 µm 6 10

3 5

5 6
50 µm

6 10

3 5

Table 2.5: Pairs of disks which were compared in the framework of thickness sensitivity de-

tection (series B).

diameter thickness 1 [µm] thickness 2 [µm]

50 75
10

75 250

50 75
6

50 250

50 75
5

75 250

50 75
3

75 250
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Table 2.6: Pairs of disks which were compared in the framework of finger-palm trials (series C,

but also series 1). The trial was carried out for disks of 5 mm diameter and

repeated for 3 mm.

thickness 1 [µm] thickness 2 [µm]

12.5 25

25 50

50 75

75 125

125 190

190 250

2.1.4.2 Thickness determination (main study)

The main study consisted of three series of trails (1-3), each focusing on a different

material. The stimuli for the series 1 were adjacent pairs of disks of the eight standard

films (see Table 2.2 and Table 2.6), all disposing of the same diameter (once 5 mm and

once 3 mm). The 5 mm disks were compared first (15 subjects). After a small break

the 3 mm pairs were compared (1b). During this session a re-evaluation of the 50/75

and a new pair (225/250) was carried out by 14 randomly chosen subjects (1c).

The second and third series focused on one single pair, i.e. 150 versus 180 µm, but

made of different materials. Series 2 evaluated first the standard material (13 randomly

chosen subjects) and then the stiff material (15 subjects- varying number of subjects

and its influence are explained below).

Series 3 (25 subjects) compared the same pair of disks but made of the compliant

material. Ten randomly chosen subjects re-evaluated the stiff pair to confirm the

impossibility to detect the difference.
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2.1.5 Data processing

Data was collected using a sensory difference test called 2-Alternative Forced Choice

(2-AFC, Lawless & Heymann (1999)) and analyzed by the means of an adapted and

common statistical hypothesis testing approach. As for all statistical tests, a null

hypothesis H0 and an alternative hypothesis H1 are defined:

• H0: disk 1 and disc 2 are not different in thickness

• H1: the two disks are perceived as significantly different in thickness.

Each experiment has a fixed number of trials. When the outcome of each trial is only

success or failure, when trials are independent, and when the probability of success is

constant throughout the experiment, this can be expressed via a binomial b (x,N, P ),

where:

• X is the random variable representing the number of correct answers

• x is the number of correct answers in the data

• N is the number of trials (panelists multiplied by repetitions)

• P is the probability for success, i.e. 0.5

It is therefore possible to calculate the probability, under H0, to have X = x correct

answers in the data:

b (x,N, P ) =
N !

(N − x)! x!
P x (1− P )N−x = p (X = x), (2.1)

or to have x or more correct answers in the data (cumulative binomial distribution):

B (x,N, P ) =
N∑

y=x

N !

(N − y)! y!
P y (1− P )N−y = p (X ≥ x) (2.2)

This probability is called the p-value. According to common practice this value is

set at 5 %. If the p-value is lower than 5 %, then H0 is rejected and the two disks
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can be considered as being significantly different in thickness. The level of 5 % is

called the level of significance and represents the risk to reject H0 when it is effectively

true. It has to be kept in mind that if p > 0.05, H0 cannot be rejected, but it

does not mean that H1 is automatically accepted (Henze, 1997). Since the proof for

similarity is not straightforward and statistically not possible for a 2-AFC but only for

a triangle test, another condition was introduced before the conclusion on similarity

could be admitted. If the hypothesis that two disks are similar could not be rejected,

i.e. p > 0.05, and simultaneously the percentage of correct responses was between 30

and 70 %, hence the results must be due to no more than pure chance, the two disks

were considered as non-differentiable.

2.1.6 Mathematical model

A mathematical model was applied to predict the load P exerted on the disks when

manipulated by the tongue. It was assumed that, when the tongue presses the disk

against the palate, the disk is aligned with the palate (see Figure 2.2) due to a dis-

tributed load P (r). This force intensity is generated through activation of the tongue

muscle. The contraction of the muscle allows contact between tongue and disk causing

a deflection. The distributed load is a force intensity and has the dimension of a force

per surface area. It has a normal and a tangential component. The normal compo-

nent is responsible for the deflection, since the tangential component disappears due

to radial symmetry. Additionally lubricating effects of saliva do not allow any shear

component. This normal force intensity is unknown but can be determined through

use of linear plate bending theory (Timoshenko & Woinoswky-Krieger, 1959) and the

radius of curvature of the palate. For small deflections/deformations (linear theory of

plates and shells (Timoshenko & Woinoswky-Krieger, 1959)) the normal component of

the force intensity (induced through deflection) can be neglected.

The radius of curvature of the palate RC was determined experimentally to be 1 cm.

For this an imprint of one subject’s palate was taken with the help of alginate impres-

sion material (Cavex Holland BV, Cavex Impressional Fast Set). The imprint was then
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P(R0)

r
palate

P(0)

P(R0)

r
palate

P(0)

Figure 2.2: Schematic illustration of the distributed load across the bent disk with a preset

deformation profile.

cut at its highest point, and the diameter measured with a caliper in longitudinal and

cross-sectional direction (Figure 2.3). In order to obtain the radius the retrieved value

was divided by two. No great variations could be found between the longitudinal and

cross-sectional value, see also Figure 2.3. This is why the impressing of the disk can be

imagined as pressing it against the inside of a spherical shell with 1 cm radius. Mea-

suring only one subject is not representative but it was sufficient to retrieve knowledge

about the order of magnitude. The actual radius might vary by millimeters but never

by an order of magnitude (e.g. 10 cm instead of 1 cm).

RCRC

Figure 2.3: Illustration of the cross-sectional measurement of the radius of curvature in one

human palate.

In the following the development of the model for treating the bending of the disks
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against the human palate is sketched. Consider a lateral cross-section through the

palate, which takes form of part of a circle with radius RC as demonstrated with the

imprints, which has been moved towards the negative y-axis and intersects the y-axis

at λ (Figure 2.4).

r2 + (w + (RC − λ))2 = R2
C (2.3)

  

�
 b 

a 
r, x 

w, y 

�  
RC 

2R0 

Figure 2.4: Deflection of a disk with Radius R0 in-mouth to the preset radius of curvature of

the palate RC leading to the deflection λ.

The part of the circular arc above the x-axis represents the bent disk and has the

length 2R0 with R0 being the radius of the disk. The deflection profile w was required,

which can be obtained by solving the original circular equation for w.

w(r) = λ +
√

R2
C − r2 −RC (2.4)

To proceed it is necessary to relate λ to the radius of the disk R0 and the radius of

curvature (of the palate) RC . It is evident from Figure 2.4 that

sin
α

2
=

a

2RC

(2.5)

and that the segment length is 2R0 = RC α, hence α = 2R0

RC
, therefore

λ = RC

(
1− cos

R0

RC

)
. (2.6)

Since the dependance of λ on RC is now known it is possible to calculate the deflec-

tion profile w(r). An integral equation, which is derived in Timoshenko’s “Theory of
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Plates and Shells” (Timoshenko & Woinoswky-Krieger, 1959) and which is explained

in the following, is used to determine the resulting load distributions as a function of

the radius. The following boundary conditions are assumed:

1. The slope at the center of the disk is zero: w′(RC) = 0.

2. The deflection at the edge is zero: w(R0) = 0.

3. The bending moment at the edge is zero: 1
R
w′(R0) + νw′′(R0) = 0.

The theory deals with symmetrical bending of circular plates and the special case

discussed here is bending of thin plates with small deflections. The deflections have to

be small (i.e. <10 %) in comparison with the plate’s thickness h. This condition has

been checked, e.g. for a disk of 0.0015 m radius a deflection of 0.0001122 m results,

which is equivalent to 8 %. A very satisfactory approximate theory of bending of the

plate by lateral loads can be developed by making the following assumptions:

1. there is no deflection in the central fiber of the plate. This plane remains neutral

during bending.

2. points of the plate lying initially on a normal-to-the-middle plane of the plate

remain on the normal-to-the-middle surface of the plate after bending

3. the normal stresses in the direction transverse to the plate can be disregarded

Using these assumptions, all stress components can be expressed through the deflec-

tion w of the plate, which is a function of the two coordinates in the plane of the plate.

This function together with the boundary conditions completely defines w. Thus the

solution of this equation gives all necessary information for calculating stresses at any

point of the plate.

If the load acting on a circular plate is symmetrically distributed about the axis

perpendicular to the plate through its center, the deflection surface to which the middle

plane of the plate is bent will also be symmetrical. At all points equally distant from
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the center of the plate the deflections will be the same, and it is sufficient to consider

deflections in one diametral section through the axis of symmetry. The origin of the

coordinate system will be set as 0 at the center of the non-deflected plate, r denotes the

radial distance and w the deflections of the disk in the downward direction (Figure 2.5,

in accordance with Figure 2.4). B is a point on the axis through the origin, and A is

a point on the disk. ϕ refers to the small angle between the normal to the deflection

surface at A and the axis of symmetry 0B.

 

0 
w r 

z 

B 

A 

dr r 

ϕ 

Figure 2.5: Illustration of the deflected disk in a coordinate system, where r denotes the

radial distance, w the deflection of the disk in the downward direction.

The slope of the deflection at any point is −dw
dr

, and the curvature of the middle

surface of the plate in the diametral section rz for small deflections (linear theory) is

1

Rn

=
d2w

dr2
=

dϕ

dr
(2.7)

This is one of the principle curvatures. A second one is through AB but perpendic-

ular to the rz plane. From Figure 2.5 it can be obtained that

1

Rt

= −1

r

dw

dr
=

ϕ

r
. (2.8)
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Using expressions (2.7) and (2.8) for the principle curvatures, and assuming that

the bending moments (2.9) and (2.10),

Mx = D

(
1

rx

+ ν
1

ry

)
= −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(2.9)

My = D

(
1

ry

+ ν
1

rx

)
= −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
, (2.10)

which were originally derived for pure bending of a rectangular plate with x and y

coordinates (Timoshenko & Woinoswky-Krieger, 1959), still hold, the bending moments

described in (2.11) and (2.12) can be obtained. D with D = Eh3

12(1−ν2)
(E = elastic

modulus, h = disk thickness, and ν = Poisson ratio) is the flexural rigidity.

Mr = −D

(
d2w

dr2
+

ν

r

dw

dr

)
= D

(
dϕ

dr
+

ν

r
ϕ

)
(2.11)

and

Mt = −D

(
1

r

dw

dr
+ ν

d2w

dr2

)
= D

(
ϕ

r
+ ν

dϕ

dr

)
(2.12)

The effect of shearing stresses acting on normal sections of the plate perpendicular

to meridians is neglected here. Their effect is slight in the case of plates for which the

thickness is small in comparison with the diameter.

The moment Mr acts along circumferential sections of the plate, such as the section

made by the conical surface with the apex at B, and Mt acts along the diametral

section rz of the plate. Equations (2.11) and (2.12) only contain ϕ or w, which can

be determined by considering the equilibrium of an element of the plate which was cut

out from the plate by two cylindrical sections ab and cd and by two diametral sections

ad and bc (Figure 2.6). Q refers to the load applied on the element of the disc. This is

the actio. The re-actio is shown by Mr, respectively Mt.

The bending moment Mr acting on the side cd of the element is

Mrrdθ. (2.13)
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Figure 2.6: Equilibrium on an element of the plate, i.e. internal reaction Mr to external load

Q on the element

The corresponding bending moment on the side ab is
(
Mr +

dMr

dr
dr

)
(r + dr) dθ. (2.14)

The bending moments on the sides ad and bc of the element are each Mt dr, and

they give a resultant bending moment in the plane r0z

Mtdrdθ. (2.15)

From symmetry it can be concluded that the shearing forces that may act on the

element must vanish on diametral section of the plate but that they are usually present

on cylindrical sections such as sides cd and ab of the element. Denoting by Q the

shearing force per unit length of the cylindrical section of radius r, the total shearing

force acting on the side cd of the element is Qrdθ, and the corresponding force on this

side ab is [
Q +

(
dQ

dr
dr

)]
(r + dr) dθ. (2.16)

Neglecting the small differences between the shearing forces on the two opposite

sides of the element, it can be stated that these forces give a bending moment in the
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rz plane equal to:

Qrdθdr. (2.17)

Summing up the moments (2.13), (2.14), (2.15), and (2.17) with proper signs and

neglecting the moment due to the external load on the element as a small quantity of

higher order, the following equation of equilibrium on the element abcd can be obtained
(
Mr +

dMr

dr
dr

)
(r + dr) dθ −Mrrdθ −Mtdrdθ + Qrdθdr = 0, (2.18)

for which it can be found, by neglecting high order quantities, that

Mr +
dMr

dr
r −Mt + Qr = 0. (2.19)

Substituting expressions (2.11) and (2.12) for Mr and Mt equation (2.19) becomes

d2ϕ

dr2
+

1

r

dϕ

dr
− ϕ

r2
= −Q

D
(2.20)

or, in another form,
d3w

dr3
+

1

r

d2w

dr2
− 1

r2

dw

dr
=

Q

D
. (2.21)

Sometimes it is advantageous to represent the right-hand side of equation (2.21) as

a function of the intensity P of the load distributed over the plate. For this purpose

both sides of the equation are multiplied by 2πr. Then, observing that

Q2πr =
∫ r

0
P (r)2πrdr (2.22)

we obtain ∫ r

0
P (r)2πrdr = D 2πr

(
d3w

dr3
+

1

r

d2w

dr2
− 1

r2

dw

dr

)
, (2.23)

When differentiating this equation with respect to r, dividing by r, and substituting

for w, the load across the disk in dependance of the radius r can finally be obtained.

P (r) =
64 D λ2 (R8

0 + 4R6
0 λ2 − 2r4 λ4 + 4r2 λ6 + λ8)

(R04 − 4r2 λ2 + 2R2
0 λ2 + λ4)3

√
−4r2 +

(R2
0 + λ2)2

λ2

(2.24)

+
64 D λ2 (R4

0 (4r2λ2 + 6λ4) + 4 R2
0 (2r2λ4 + λ6))

(R04 − 4r2λ2 + 2R2
0λ

2 + λ4)3
√
−4r2 +

(R2
0+λ2)2

λ2
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In order to compare the load profiles for different disks P (0)
P (R0)

is evaluated and used

as a characteristic dimensionless number representing the ratio of the distributed load

value in the center to the one at the edge.

2.2 Results

In the following the results of the preliminary and main trials are presented. The

previously discussed mathematical model was used in order to determine the conditions

for confirmatory trials.

2.2.1 Preliminary trials

First of all it has to be stated that all subjects were able to sense certain differences

and confirmed the feasibility of the study by reasonable judgement. For the horizon-

tal sensitivity trials (series A) the comparison of adjacent pairs showed that subjects

could significantly differentiate between 3 and 5 mm, and 6 and 10 mm diameters (see

Table 2.7), but most importantly between 5 and 6 mm diameters (17 of 21 subjects,

when adding the replies for the same diametric difference, replied correctly, p < 0.05),

which suggests a sensitivity of at least 1 mm since no smaller disks were tested. For the

preliminary vertical sensitivity trials (series B) there were three situations for which

differentiation was not possible with 100 % certainty (see Table 2.8). This occurred

for the 50 - 75 pair at 3, 5, and 6 mm, where the number of wrong answers increased

with reduced diameter (from three wrong answers out of seven for the 6 mm disk to 4

wrong answers out of seven for the 5 mm disk, and then up to five out of seven wrong

answer for the 3 mm disk). When regarding these results it has to be kept in mind

that the general idea was to receive a subjective opinion from the test subjects about

the feasibility of a larger study. The total number of participants was not sufficient for

significant statistical analysis.
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Table 2.7: Series A: diameter differentiation between tongue and palate (the replies for pairs

comparing the same diameters were added leading to a total of 21 replies for the

calculation of the p-value).

diameter [mm] thickness correct/ sum p-value

disk 1 disk 2 [µm] total

50 7/7

3 5 75 7/7 21/21 0.000

250 7/7

50 5/7

5 6 75 6/7 17/21 0.001

250 6/7

50 7/7

6 10 75 7/7 21/21 0.000

250 7/7

Table 2.8: Series B: thickness differentiation between tongue and palate. It can only be

summed for the comparison of 75 versus 250 µm.

thickness [mm] diameter correct/

disk 1 disk 2 [mm] total

50 75 10 7/7

50 75 6 4/7

50 75 5 3/7

50 75 3 2/7

75 250 3 28/28
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For the finger-palm system (series C) the study was once carried out for disks with

5 mm diameter and repeated for disks of 3 mm diameter with the following thicknesses:

12.5, 25, 50, 75, 125, 190, and 250 µm. For all adjacent pairs of these disks differentia-

tion was possible (p < 0.05) except for the comparison of 12.5 µm and 25 µm, which

is certainly due to the threshold value of 25 µm explained later on (for an overview

of the results see Table 2.9). In comparison with the first series of the main study it

becomes clear that the finger-palm system is as sensitive as the tongue palate system.

Ten Cate (1994) stated that the fingertips fall between the tongue and hard palate in

a ranking according to sensitivity. This lead to the conclusion that if the tongue is

included, as it is the case in the tongue-palate system, this is more sensitive than the

finger-palm combination. van Boven & Johnson (1994) were even more explicit when

stating that the smallest grating groove and bar widths that subjects discriminated

with lip and tongue were 30 to 40 % lower than the fingertip. Still, during the later

discussion we will see that there are some drawbacks which hinder the precision.

Table 2.9: Results of the finger-palm trial (series C) for 15 tested subjects. For p < 0.05 at

least 11 correct replies are required.

thickness correct replies possible

[µm] 3 mm 5 mm

12.5 vs. 25 8 12 yes

25 vs. 50 11 12 yes

50 vs. 75 14 13 yes

75 vs. 125 15 14 yes

125 vs. 190 11 14 yes

190 vs. 250 14 13 yes

For the later discussion it has to be pointed out that there was no gap in the detection

process for the finger-palm system. All pairs could be differentiated with a sensitivity

of 25 µm.



2.2. RESULTS 37

Table 2.10: Pair comparison of selected standard disks (DuPont FEP, elastic modulus

480 MPa) showing that a distinction between two disks varying by 50 µm and

even just 25 µm in thickness is possible for both diameters.

no. diameter [mm] thickness [µm] answers (correct/total) p-value possible

1 75 vs. 125 11/15 0.018 yes

2
5

50 vs. 75 13/15 0.001 yes

3 75 vs. 125 12/15 0.004 yes

4
3

50 vs. 75 19/29 0.031 yes

2.2.2 Sensitivity to thickness differences (main study)

Series 1

The results from the thickness sensitivity trials for the standard material allowed ar-

rangement of the standard disks into three different intervals as demonstrated in Fig-

ure 2.7. This Figure clearly points out regions where differentiation is possible and

where no difference can be seen. The lower end of the scale including disks of thick-

nesses below 25 µm is excluded in the further discussion; these disks seem to be below

the threshold, which is further explained in the discussion (see Section 2.3).

The first interval comprises disks from 25 µm to approximately 125 µm thickness,

and here disks with differences of 25 µm difference in thickness could clearly be dis-

tinguished from each other, e.g. 50 µm from 75 µm, see Table 2.10, where four sets of

pairs are presented exemplarily.

First pairs of disks with 5 mm diameter were compared (series 4a) leading to 11

correct replies out of 15 in the case of 75 versus 125 µm (p = 0.018) and 13 right

answers out of 15 for the 50 µm and 75 µm disks (p = 0.001). The trial was repeated

for disks with 3 mm diameter (no. 3 and 4, series 4b) leading to 12 correct replies out of

15 for 75/125 (p = 0.004) and 19 correct replies out of 29 for the smaller difference of

25 µm (p = 0.031, here the replies from the repetition trial 4c are considered as well).
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Figure 2.7: Three different intervals for the standard disks (DuPont FEP, 480 MPa) are

shown in this graphic. For very thin disks (below 25 µm) no differentiation is

possible.
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Diminishment of the diameter from 5 mm to 3 mm made the trial more sensitive based

on the following assumption: a certain amount of load is applied to each disk to cause

alignment of the disk with the palate’s curvature. The required load varies between the

center and the edge, see Figure 2.8, where the general, dimensionless form is shown on

a small scale. The parabolic profile is very developed. A parabolic profile for the load

distribution can be obtained for any of the disk sizes and thicknesses. In Figure 2.9

two disks of the same material and diameter but different thickness (dashed < solid)

can be seen. The profiles are similar but the thicker disk requires a higher load for

the same deflection. Figure 2.10 shows another important characteristic: small disks

have a smaller pressure decrease across the surface and also the difference between the

gradients is less for the same pair of disks if the diameter is changed (of course the

discs were of the same thickness, here exemplarily 25 µm).

To support the above mentioned Figures with concrete values, Table 2.11 shows

pressure values in Pa for different disk thicknesses and two diameters, i.e. 5 and

10 mm. Smaller disks require higher pressures in the disk middle than larger disks

of the same thickness as can be seen in the above mentioned Table. On the contrary

smaller disks need lower pressures at the edges than the corresponding larger disks.

Still, the differences between the loads at the disk middle for different diameters are

less than the differences at the edges (see Table 2.11). This leads to the mentioned

difference in the gradients. The influence on the detection process is mentioned in the

discussion Section.

r

P

Figure 2.8: Distribution of the load P in dependance of the radius r.
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Figure 2.9: Comparison of the load profile for different thicknesses but the same diameter

(5 mm) and material (standard).
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Figure 2.10: Comparison of pressure gradients P(0)/P(R0) of disks with different diameters

(3 and 10 mm) both of 25 µm thickness.

Coming back to the intervals: the second interval comprises the thickness range

between 125 µm and 190 µm. Unexpectedly the disks with thicknesses between 125 µm

and 190 µm could not be differentiated from each other, despite the thickness difference

being much greater than the expected threshold of 25 µm, see Table 2.12 for the results.

Fifteen subjects assessed this pair, giving nine right answers. This leads to a

p = 0.151, which is larger than 0.05, therefore, the second condition had to be

looked at: the percentage of correct answers was 60 %, therefore, the disks could really

not be differentiated.
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Table 2.11: Theoretically determined pressures in Pa at the disk middle (P (0)) and the edge

(P (R0)) of two different disks (5 and 10 mm diameter) varying in thickness.

diameter P(0) or thickness [µm]

[mm] P(R0) 12.5 25 50 75 125 190 250

5 P(0) 0.8 6.2 50.1 169.2 783.5 2751.49 6267.0

5 P(R0) 1.1 8.2 66.0 222.7 1030.8 3620.0 8246.4

10 P(0) 0.7 5.2 42.1 142.0 657.3 2308.3 5258.5

10 P(R0) 1.8 14.7 117.7 397.3 1839.3 6459.1 14714.1

Table 2.12: Pair comparison of standard disks (DuPont FEP, elastic modulus 480 MPa) show-

ing that a distinction between two disks (5 mm) originating from the second

interval and varying by 65 µm in thickness is not possible (no. 1); above and

below the second interval this does not pose a problem (no. 2 - 3), even for 3 mm

diameters.

no. thickness [µm] answers (correct/total) p-value possible

1 125 vs. 190 9/15 (60 %) 0.151 no

2 50 vs. 75 9/29 0.030 yes

3 225 vs. 250 11/16 0.038 yes

All disks above 200 µm in thickness make up the third interval, which resembles the

first one concerning the differentiation possibilities, see Table 2.12. Here the comparison

of 225 µm versus 250 µm is shown. Eleven correct replies out of 16 lead to p = 0.038,

i.e. differentiation was possible. The pair 50 - 75 is shown once more for clarification

to have one pair from each interval opposed.
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Series 2

Series 2 mainly focused on the comparison of 150 µm and 180 µm disks, but of two

different materials, i.e. the original (2a) and the less flexible (2b) material. The two

standard disks could not be differentiated from each other, since only six correct answers

out of 13 could be obtained leading to a correct responsive percentage of only 46 %,

see Table 2.13 for the results. The deviation from the standard test subject number of

minimum 15 can be explained by a lack of material. In defense of the work it has to be

mentioned that even two further positive replies would not change the overall result.

For the stiffer disks the same result was received, the two disks of 150 µm and 180 µm

could not be differentiated from each other since only 14 out of 25 subjects (p = 0.212)

replied correctly.

Table 2.13: Pair comparison of 150 µm and 180 µm (3 mm) disks of materials varying in the

elastic modulus (480 MPa, 2060 MPa, and 90 MPa). The soft (90 MPa) material

leads to significant difference but not the other two.

elastic modulus [MPa] thickness [µm] answers (correct/total) p-value possible

480 150 vs. 180 6/13 (46 %) 0.387 no

2060 150 vs. 180 14/25 (62 %) 0.212 no

90 150 vs. 180 41/64 0.008 yes

Series 3

The results from the third series are in contrast to the results from the second series

investigating the standard and stiff material. The comparison of the same disks made

from compliant material resulted in 41 correct replies out of 64 (p = 0.008). Therefore,

differentiation was possible (see Table 2.13).
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2.3 Discussion

The spatial resolution capacity for diameter differences is around 1 mm. This finding

is consistent with neurological data. Johnson (2001) discovered receptive fields of 2 -

3 mm leading to a discrimination threshold of 0.5 mm. The studies of Conner &

Johnson (1992) showed the spatial resolution of the somatosensory system (sensory

performance of the surface of the body) to be approximately 0.5 mm. Trials conducted

by van Boven & Johnson (1994) proved the tongue spatial resolution capacity to be

0.58 mm. From the results of the thickness sensitivity trials conclusions about the

detection process can be made, which are explained in the following. The four pairs

illustrated in Table 2.10 could all be differentiated from each other and this lead to the

conclusion that a difference in thickness of 25 µm can be detected.

The last two pairs were a repetition of the first two but for a smaller diameter.

By diminishment of the diameter from 5 to 3 mm the trial was made more sensitive

as explained in Section 2.2.2. Since the ratio P (0)
P (R0)

(see Table 2.11) becomes larger,

i.e. the actual difference between the values becomes smaller, for a 3 mm disk in

comparison with a 10 mm disk, judgement is more difficult. With the help of plate

theory (Timoshenko & Woinoswky-Krieger, 1959) the resulting pressure profiles and

ratios were calculated for each pair. We postulate that this load intensity variation

caused by alignment of the disk with the palate is sensed by the tongue. The comparison

of relative instead of absolute differences seems to be part of human nature since

Chanasattru et al. (2002) also discovered that humans judge differences in consistency

relatively rather than absolutely.

Consequently for the comparison of the alternative materials only disks of 3 mm

diameter were used in order to make the trial as sensitive as possible. The result

shown in Table 2.12 in the first row was in contrast to the 25 µm threshold, though.

After it had just been shown that disks differing by just 25 µm could be distinguished

from each other, a 125 µm and 190 µm thick disk could not be differentiated, despite a

much greater thickness difference. It was suspected that they were too thick and that

once a certain thickness is overcome, detection is no longer possible through alignment.
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Based on the bending theory this seems reasonable. For example, for a disk of 250 µm

thickness and 10 mm diameter a load intensity of ≈ 10 kPa (in the center) is required

(see Table 2.11) when calculated according to equation (2.24). Takahashi & Nakazawa

(1991b) investigated palatal pressure patterns in the human mouth during gelatine

gel consumption and discovered that the pressures between tongue and palate varied

between 5 - 30 kPa. These measurements were taken with three transpalatal arches

equipped with pressure gauges at different points of the palate. One of them being

at the anterior midpoint of the palate, i.e. at the same location where the disks were

aligned. Chiba et al. (2003), also using a transpalatal arch, stated values between 9 -

22 kPa. Ono et al. (2004) used a different approach: by implementing seven sensors

of 6 mm diameter each into an artificial palate they obtained pressures of 20 - 30 kPa.

One of the sensors was at the midpoint of the palate, i.e. at the same position where

our assessment took place. This is the point referred to in this work as P (0). Thus it

is reasonable to compare these values with the theoretical values of the mathematical

model. The value of 10 kPa is absolutely within the range of these pressures but it has

to be kept in mind, that these values were measured during destructive processes and

not during normal evaluation of an object.

The result of the comparison of 225 µm and 250 µm is contradictory to the pos-

tulation of an upper limit. The disks are even thicker and harder to bend than the

preceding pair but differentiation was possible for these two disks. Recapitulating the

current findings of the standard trials it can be concluded that for the lower end of

the range (reaching up to 125 µm) differentiation of 25 µm was possible as well as

it was for the upper end (above 200 µm) but the middle range (extending from 125

to 200 µm) remained impossible. The results mentioned above strongly suggest the

existence of a second discrimination processes, schematic illustration of both processes

in Figure 2.11.

Thin disks are aligned with the palate through pressure application of the tongue.

However, thicker disks cannot be significantly deformed because of their larger struc-

tural stiffness. In contrast, these will be impressed into the tongue and therefore

generate a deformation, allowing discrimination in this manner. The dynamics of the
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Tongue 

Palate 1. alignment 

Tongue 

Palate 2. impressing 

Figure 2.11: Processing of materials between tongue and palate depending on the thickness

of the material: 1) For thin or flexible materials, 2) for thick or stiff materials

where bending is not possible with the forces present in the mouth.

process can be neglected with respect to the disks. The materials PET, Teflon, and the

whey protein-glycerol films, show purely elastic behavior. The dynamics of the process

only becomes important for the stimulation of the mechanoreceptors, see below, since

some are sensitive to dynamic stimulation and others to static stimulation.

The second interval results from failure of both detection processes. Disks origi-

nating from the second interval are too thick to be aligned whereas at the same time

they are not thick enough to significantly deform the tongue so that mechanoreceptors

sensitive for static stimulation remain unexcited. When the disks are pressed on the

tongue they first compress the rather soft papillae before they reach the less compli-

ant tongue body (for an illustration of the papillae on the tongue see Figure 2.12 or

Kullaa-Mikkonen & Sorvari (1985)).

The compression of the tongue can be thought of as a strain-hardening material

behavior. The measurement system is only sensitive again once the soft papillae are

compressed and the rather hard and solid tongue body (Smith & Kier, 1989), which can

be considered as incompressible (Napadow et al., 1999), evaluates the load intensity.
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Figure 2.12: Dorsum of the tongue with its four types of papillae (Netter & Kamina, 2004).

Since the papillae have a height from 20 µm up to 200 µm on the tongue (Kobayashi

et al., 1994), the anatomical data is consistent with the idea that the tongue can be

imagined to behave like a strain-hardening material. Of course it has to be kept in

mind that the tongue is an at least two-composite (tongue body and papillae) body,

therefore, the term strain-hardening is technically not absolutely correct but illustrates

the process.

When looking at the neurology of the tongue the existence of the processes seems

logical, too (see Figure 2.13). Three of the four types of mechanoreceptive afferent

neuron types present in the glabrous skin are existent in the mouth. These can be

classified according to their reaction speed: two slowly adapting nerve endings, which

end in Merkel cells (SA 1) and Ruffini corpuscles (SA 2, both located in the medium

layer under the surface) and one type of rapidly adapting ones (RA 1), which end in

Meissner cells (closest to the surface), or also to the size of their receptive fields (see

Table 2.14). Pacinian corpuscles (RA 2) are not found in the oral mucosa (Johansson

et al., 1988; Jacobs et al., 2002).

According to Johnson (2001) Merkel cells are sensitive to the detection of local stress-
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Figure 2.13: Mechanoreceptors in the oral mucosa are identical to mechanoreceptors in the

glabrous skin except for the Pacinian corpuscles (Williams et al., 1998).

strain field differences, perception of edges, corner, and curvature, which is consistent

with the possibility to detect differences in diameter of round objects. At the same

time they manage to detect indentation depths of at least 1500 µm possibly involving

them in the thickness determination process of very thick disks or other objects where

deformation of the underlying tongue body is relevant. Rapidly adapting nerve endings

such as Meissner corpuscles begin to saturate at indentation depths of 100 µm and are

insensitive to indentation above 300 - 400 µm. They detect velocities and are sensitive

to dynamic deformation. This represents a strong indication for possible involvement of

the Meissner corpuscles in the alignment process. Thus the anatomical and neurological
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Table 2.14: Classification of the mechanoreceptors due to perception field size and adaptation

speed (Pacinian corpuscles are not present in the oral mucosa).

receptive field

adaptation properties small large

rapid Meissner cells Pascinian corpuscles

slow Merkel cells Ruffini corpuscles

situation is conform with the concept of an existence of these two processes.

Returning to the intervals previously mentioned, all disks coming from the second

interval and differing by 25 µm (and disposing of an elastic modulus of 480 MPa)

should fall into a range, where the two processes mentioned fail and no differentiation

is possible. Also all disks of harder materials but thinner, as this results in the same

structural resistance (geometry and material stiffness) and load intensities, should fall

into this range. In order to further confirm the concept of the existence of two different

detection mechanisms the following complementary study was undertaken.

The sensory study for the insecure range was reinvented. Disks with 150 µm and

180 µm thickness made from FEP with an elastic modulus of 480 MPa were assessed by

a panel of testers. It could be confirmed that disks in this range cannot be distinguished

due to the previously mentioned reasoning. These characteristics can be challenged by

changing the structural stiffness through choice of stiffer or more compliant materials

(see Table 2.13).

A two-fold confirmation of the hypothesis was carried out. On the one hand for

a material, here PET, with a much higher elastic modulus (2060 MPa) distinction

between the same two disks of 150 and 180 µm should not be possible. Alignment is

actually not possible even for much thinner disks, and in addition to that the disks

are not thick enough to deform the tongue sufficiently. The required normal stresses

for alignment exceed physiological possible values in the human mouth. For a disk

(250 µm thickness, 10 mm diameter) a maximum load intensity of 15 kPa (edge) is
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required, when calculated from equation 2.24. This is not likely to occur as previously

described.

Both, the standard and the stiffer pair, led to the conclusion that the disks could

not be distinguished. Thus, these two results support the hypothesis that the disks are

to stiff to be aligned with the palate by the tongue and not thick enough to generate

a sufficiently large deformation of the tongue body.

This being an indirect verification, direct proof was given by repeating the same

pair (150 versus 180 µm) with a more compliant material. This reduction in structural

resistance (through change of the material stiffness) should allow the alignment of the

previously not differentiable pair of disks to the palate. Thus, this pair of disks should

be differentiable. A disk of known diameter and thickness (thickness at the upper end

of the insecure interval) was taken and the force needed to bend a much thinner disk

(from the first interval) of the standard material was applied. The elastic modulus was

unknown and needed to be determined so that this process was possible. This logically

resulted in a much lower modulus than the original (480 MPa) and was calculated as

30 MPa. A material disposing of 90 MPa was the most compliant and still manageable

that could be found. Disks were prepared and sensory tests were carried out (see

Table 2.13). Differentiation was possible due to the higher compliance of the disks,

which permitted alignment. This means that for 30 MPa the trial would also work if

the material was available.

Therefore, the experiments with the stiffer disks confirm the hypothesis by showing

the impossibility to differentiate these two disks. The more flexible disks also confirm

it by showing that differentiation was possible despite the thickness of the disks when

the necessary compliance was provided. Of course this does not necessarily imply that

detection takes place by these means but until now no other approach has managed to

explain the detection processes.

The question remains how the body handles the appearance of this gap between the

two detection processes. Investigations of Young’s moduli of, e.g. different cheeses,

which are considered as crushable between tongue and palate, showed that they have
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Young’s moduli in the range of several hundred kPa (Goh & Charalambides, 2003).

This is low compared to the 90 MPa used for the more flexible film. According to

Steffe (1992) other foods’ Young’s moduli are in this range as well. (Cooked) Carrots

for example have a Young’s modulus of 20 - 40 MPa, potatoes of 6 - 14 MPa, peach

of 2 - 20 MPa, and bananas of 8 - 30 MPa. This shows that during normal textural

evaluation of food the insecure range is normally not used when evaluating between

tongue and palate. Trials carried out by Takahashi & Nakazawa (1991b) with gelatin

gels between tongue and palate showed that samples which cannot be crushed between

tongue and palate are moved towards the teeth for biting, therefore, confirming the

statement above. The biological pressure limit for this transfer is 20 - 30 kPa according

to Takahashi & Nakazawa (1991a).

The range of materials, which are normally introduced into the mouth is limited

in comparison to the materials, which come into contact with the finger-palm system.

The fact that the insecure range does not exist for the finger-palm system as stated

previously agrees with this. Based on the belief that the insecure range results from

the presence of papillae it is evident that there is no insecure range for the finger-palm

system since this does not dispose of papillae.



Chapter 3

Perception of suspensions by the

tongue-palate system

(fluid mechanical model)

A theoretical and a practical approach are taken in order to investigate textural phe-

nomena such as grittiness. The theoretical approach consists of a mathematical model,

which is described in the following. The mechanical model is discussed in Chapter 4.

3.1 Introduction to the mathematical model

It seems reasonable to use squeeze flow for the investigation of textural evaluation

behavior because three of the basic test procedures human beings use before consuming

a foodstuff rely on the principles of compression: evaluation between the fingers, biting

with the teeth for solid materials, or squeezing between tongue and palate in the

case of crushable, i.e. liquid materials. In addition, food materials are often very

viscous or might have yield stresses. Squeeze flow seems to be the most reasonable

approach in comparison with traditional rheological measurements (Yates et al., 2001).

Although the rheological properties of the sensory system itself, i.e. softness of the



52 CHAPTER 3. PERCEPTION OF SUSPENSIONS

tongue, should be taken into account, a parallel plate model, representing tongue and

palate with rigid plates, is used. The reason for this is that the rheological properties

of the tissues involved are complex and difficult to characterize mathematically and

the interactions between two soft materials presents a contact stress problem between

two viscoelastic materials of irregular shape, therefore a simple analytical solution is

highly improbable (Campanella & Peleg, 1988). Furthermore, other authors argue (see

Chapter 1) that the tongue can be regarded as a static body due to consistence of

muscle tissue (Smith & Kier, 1989). The idea to describe fluids in the human mouth

with the help of two parallel plates has been used before by, e.g. Weipert et al. (1993).

He forced two parallel plates with a fluid between them to move towards each other by

application of a normal force to the bottom plate. This results in shear and elongation

of the fluid layers. For fluids obeying Ostwald-de Waele’s power law, e.g. pseudoplastic

substances, shear stresses and velocity fields can be calculated.

The existing models have been applied to pure fluids, but not to particle containing

substances such as suspensions. The perception of the latter is in the center of interest

of this Chapter. Almost all foods contain particles and the presence of particles in

food affects the perception of sensory attributes. While some particles are obviously

present such as pits in berries, others are small, or soft and hardly noticeable, such

as oil droplets in mayonnaise. Large particles in low concentrations are likely to be

perceived as separate entities, e.g. seeds in a watermelon. Conversely, small particles

(e.g. 4 - 7 µm (Kilcast & Clegg, 2002; Hough et al., 1988)) of high concentrations are

more likely not to be noticed separately, but instead to have an effect on the texture

of the product, e.g. graininess (Engelen, 2004) or even creaminess (Kilcast & Clegg,

2002). For the latter case it is possible that the particles and their perturbations in the

fluid influence each other, therefore, creating a “bulk” impression of the fluid rather

than a heterogeneous perception as is the case for larger particles. The investigation

of these perturbations in comparison to unperturbed fluids is the main aim of this

Chapter.

The sensitivity of the mouth to particles suspended in liquids relies on its ability to

assess shape, size, and surface texture. Information on the significance of the various
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oral parts in oral size perception and sensitivity is required to understand their role in

the control of bite size, swallowing, and perception of food. The investigation of these

limits is discussed in the first part of this work (see Chapter 2).

The shape of the particles also seems to play an important role as demonstrated by

Kilcast & Clegg (2002) and Engelen et al. (2005). Although the detectable particle size

according to confectionery research is around 25 µm, particles of 10 µm can produce

a gritty sensation due to their sharp edges, e.g. alumina particles in tooth pastes. De

Wijk & Prinz (2005), who investigated friction in comparison with particle inclusion,

also showed that the particle shape has a significant influence; spherical particles show

less friction than similarly sized sharp particles. In contrast Kilcast & Clegg (2002)

claim that the factor contributing most to grittiness is concentration, followed by type

of aqueous phase and then particle size, not mentioning the shape at all. Nevertheless

the aspect of shape should be kept in mind when modeling the stress fields around

the particles. In the modeling carried out in this work only spherical particles are

considered to assure the model works before more complexity is added. Nevertheless,

it has to be ensured that the particles are equally buoyant.

An established and repeatedly used model is applied to describe the pressure and

velocity field between the plates with and without particles. The modeling starts with

an investigation of the unperturbed flow field, represented by the pressure form of the

Stefan equation, see Section 3.2.1 or Stefan (1874) for the original work and Engmann

et al. (2005) for a more recent description of the theory. This equation takes into

account: the velocity of the top plate, the viscosity of the fluid not containing any

particles, the plate distance, and the radius of the plates. As a next step the point

force of one particle is determined by Faxen’s first law (see Section 3.2.2) as derived by

Brenner (1964). Faxen’s law is valid for an arbitrary flow field, where the particle is

convecting with the fluid. Since the particle is small the force is considered as a point

force. The theory relies on the fact that close to the particle the fluid is disturbed, but

at infinity the disturbance decays. Finally the flow and pressure fields induced by the

Faxen point force are investigated with the help of Green functions (see Section 3.2.3

and Blake & Chwang (1974) for the original work). They allow mapping of a known
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force, which is the point force, to the associated velocity field. Here two cases are

considered: 1) the free space Green function and 2) the bounded Green function. “Free

space” refers to the condition that the perturbation of the fluid caused by the point

force has to decay at infinity, therefore not assuming any boundaries such as the bottom

plate. Up to here this is a linear problem, meaning the solutions can be superposed.

Faxen’s law and the Green functions work for any arbitrary flow and velocity field.

The specific flow field in this case is the one described by the Stefan equation. The free

space Green function cannot satisfy the boundary condition of the plate or another

particle by simple superposition. This is why the bounded Green function has to be

considered since it can take this condition into account. For both Green functions

velocity and pressure fields are determined. The total stress tensor σij is the sum of

the fluid pressure p (which can be obtained directly from either Green’s function, this

is shown later) multiplied with the Kronecker delta δij and the viscous stress tensor τij.

The latter can be determined once the velocity is known by taking its derivative and

multiplying it by twice the viscosity. Other studies dealing with particle-containing

flow fields were conducted by Nirschl (1994), Zima et al. (2005) and Hartmann et al.

(2003).

For the practical approach: the bottom plate of the experimental setup is equipped

with a sheet pressure sensor as described further on. It can only sense normal stresses.

Therefore, when taking the balance for all vertical force components only the zz com-

ponent of the total stress tensor remains, since there are no other vertical components.

Once these normal stresses are determined they can be added to the ’background’ pres-

sure field (the normal stress resulting from the presence of fluid, i.e. P and τSt
ij ), not

containing any particles, is considered as background pressure) determined with the

help of the Stefan equation in order to know the overall pressure profile. This profile

is presented on the bottom plate. An experimental verification with a Tekscan pres-

sure sensor, two parallel plates and a strain frame, onto which the plates are mounted,

follows (see Chapter 4). For a schematic illustration of the work flow see Figure 3.1.
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Figure 3.1: Overview of the mathematical approach illustrating the influence of the different

equations and their superposition.
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Novelty and reliability of the approach

In the current approach, a theoretical description of local hydrodynamics of a particle

at low Reynolds numbers based on Green functions is employed. This concept has

been formulated by Batchelor (1970), who for example investigated the viscosity of

suspensions and the average effective stress (mean field theory) due to the particles.

This has been verified extensively, see Pusey (1991), Underwood et al. (1994), or Segre

et al. (1995). Blake (1972) used the same models for the investigation of the locomotion

of microorganisms in low Reynolds number flow. He also dealt with mean velocity

fields due to the organisms but did not develop a singular approach. In a combined

theoretical and experimental approach this has more recently been used by Hartmann

et al. (2006) to investigate the influence of ciliate organisms on the surrounding flow

field. In this case the force the particles exert was theoretically obtained on the basis

of micro-Particle Image Velocimetry (PIV) data, which then allowed determination of

the force exerted by the micro-organism onto the fluid from the generated flow field.

The theoretical forces were obtained through correlation of the experimental data with

the established concept from Blake (1972).

In the approach discussed in the following the unperturbed flow field is given a priori

and described through the Stefan equation. The force due to a particle is determined

with the help of Faxen’s law. The values of the forces determined by Hartmann et al.

(2006) serve as a reasonable comparison for the force values obtained in our study and

the judgement of their reasonability. They are discussed below.

Apart from the technical aspects previously mentioned the most outstanding char-

acteristic of current approach concerning novelty is the use of Faxen’s law and Green

functions in a context related to oral fluid dynamics. Here, local particle hydrodynam-

ics are used in order to predict pressure perturbations on distant oral surfaces. Both,

the Faxen law as well as the Green functions, are well established concepts but are

used here for the first time. Hence, all the building blocks of the model have been

extensively verified but they have not previously been assembled.
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3.2 Mathematical methods

Within the work flow illustrated in Figure 3.1 different coordinate systems are used.

For clarification these are explained beforehand with the help of Figure 3.2. The

cylindrical polar coordinate system in rz-coordinates placed: at the line of symmetry

between the plates is used in the Section describing the Stefan model. There are several

xyz-coordinate systems whose origins are placed on the line of symmetry (X1, Y1, Z1,

this is used for Faxen’s law), at the center of the bottom plate (X2, Y2, Z2, relevant for

the bounded Green function), and at the center of a particle (X3, Y3, Z3, this being

of relevance for the free space Green function).
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Figure 3.2: Coordinate frames used within the calculations: origin based on the line of sym-

metry (X1, Y1, Z1 and cylindrical polar r, z), origin based at the center of the

particle (X2, Y2, Z2), and origin at the center of the bottom plate (X3, Y3, Z3).
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3.2.1 Newtonian fluid between parallel moving plates:

Stefan model

The first step in the model is the description of the unperturbed squeeze flow between

parallel plates as described by Stefan (1874). It is assumed that two disks of radius

RP are brought together, forcing out the incompressible fluid between them. The disk

separation is 2d(t) at time t, and the velocity at which the top plate moves towards

the bottom plate is ḋ. The fluid pressure P at the edges of the disks, where the fluid

exists, is assumed to be zero (see Figure 3.3).

z

r
Flow Flowd(t)

RP

d(t)

z

r
Flow Flowd(t)

RP

d(t)

Figure 3.3: Squeeze flow scheme.

Stefan (1874) was one of the first to describe squeeze flow, although his original

study dealt with adhesion. The actual Stefan equation deals with the resulting forces

during the squeeze flow, whereas here the main focus is on the pressure distribution

as a function of the fluid viscosity η, velocity of the upper plate ḋ, radius of the

plates RP , and the radial distance r from the center of the plate. The so-called Stefan

equation is derived in the following. Starting from the Navier-Stokes equation (Pnueli

& Gutfinger, 1992), which is valid for Newtonian fluids under the assumption that they

are incompressible and the flow isotherm,

Dv

Dt
=

∂v

∂t
+ v • ∇v = Fg − 1

%
∇P + ν∇2v, (3.1)
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where v is the fluid velocity, P the hydrostatic pressure, ν the kinematic viscosity (mul-

tiplied with the density % this leads to the dynamic viscosity η), and Fg the gravitational

force. Bold letters indicate vectors. It is assumed that d ¿ RP (d refers to half the gap

between the plates). This assumption allows simplification of the Navier-Stokes equa-

tion, which is based on similar considerations as those in classical lubrication theory

(Pnueli & Gutfinger, 1992). The following three terms can be ignored:

1. Fg because it is small in comparison with the other forces,

2. v • ∇v because the Reynolds number Re is small, i.e. high viscosity and small

inertial forces,

3. ∂v
∂t

because the changes are taking place slowly, i.e. the acceleration is small.

This leaves

−1

%
∇P + ν∇2v = 0 (3.2)

and therefore,

∇P = η∇2v, (3.3)

which is the Stokes equation. This equation needs to be expressed in cylindrical polar

coordinates (r, z with θ symmetry) with z = 0 at the line of symmetry between the

two plates. With P being a scalar, Bird et al. (1960) give

∂P

∂r
= η

(
∂

∂r

(
1

r

∂

∂r
(r vr)

)
+

1

r2

∂2vr

∂θ2
− 2∂vr

r2∂θ
+

∂2vr

∂z2

)
(3.4)

in the r-direction. For the θ-direction the following equation is obtained.

1

r

∂P

∂θ
= η

(
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+

1

r2

∂2vθ

∂θ2
+

2∂vr

r2∂θ
+

∂2vθ

∂z2

)
(3.5)

To the system of equations for v and P it belongs

∂P

∂z
= η

(
1

r

∂

∂r

(
r
∂vz

∂r

)
+

1

r2

∂2vz

∂θ2
+

∂2vz

∂z2

)
. (3.6)

For the axisymmetric squeeze flow considered in this study the circumferential veloc-

ity vθ is equal to zero because the plates do not rotate. Therefore all terms containing

derivatives in the θ-direction vanish.
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The three equations above together with the continuity equation

∇ • v =

(
1

r

∂(r vr)

∂r
+

1

r

∂vθ

∂θ
+

∂vz

∂z

)
= 0 (3.7)

are sufficient to solve the flow problem with the four dependent variables vr, vθ, vz, and

P (Pnueli & Gutfinger, 1992).

As a next step a non-dimensionalization is carried out, in which the following

reduced variables are defined

• r = r∗ RP

• z = z∗ d(t)

• vz = ḋ(t) v∗z

• vθ = v∗θ ḋ(t).

Dimensionless forms of the variables are marked with an asterisk. The dimensionless

forms of vr and P are not shown because they are not immediately apparent but are

determined at a later point in the analysis, see below. The continuity equation in its

dimensionless form (still containing vr) furnishes the scaling for vr.

∇∗ • v∗ =
1

r∗RP

∂ (r∗RP vr)

∂ (r∗ RP )
+

∂
(
ḋ(t) v∗z

)

∂ (d(t) z∗)
= 0 (3.8)

Simplification leads to

1

RP r∗
∂ (r∗ vr)

∂r∗
+

ḋ(t) ∂v∗z
d(t) ∂z∗

= 0. (3.9)

Multiplication with d(t)

ḋ(t)
on both sides gives

d(t)

ḋ(t) RP

1

r∗
∂ (r∗ vr)

∂r∗
+

∂v∗z
∂z∗

= 0. (3.10)

Solving for vr leads to the suggested scaling for vr.

vr = v∗r ḋ(t)
RP

d(t)
(3.11)
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By substituting vr in equation (3.10) the non-dimensional form of the continuity

equation can be obtained

d(t)

ḋ(t) RP

1

r∗
∂(r∗ v∗r

ḋ(t)
d

RP )

∂r∗
+

∂v∗z
∂z∗

= 0, (3.12)

which leads to
1

r∗
∂(r∗ v∗r)

∂r∗
+

∂v∗z
∂z∗

= 0 (3.13)

after simplification.

The pressure maximum is on the central axis. From equation (3.6) it follows that

the pressure change in the z-direction depends only on r. At r = RP the pressure

(total) equals the atmospheric pressure, implying that the dynamic pressure is zero

here.

∂P

∂(r∗RP )
= η

(
∂

∂(r∗RP )

(
1

r∗RP

∂(r∗Rp Rp ḋ(t) v∗r)
∂(r∗RP )d(t)

))
+ η

∂2

(
RP ḋ(t) r∗ v∗r )

d(t)

)

∂(d(t)z∗)2
(3.14)

Expanding this expression and dividing it by RP ḋ(t)
d(t)3

leads to the following equation,

which makes it possible to see that P has to be scaled with P =
η R2

P ḋ(t)

d(t)3
to become

dimensionless.

∂P d(t)3

η R2
P ∂r∗ ḋ(t)

=
d(t)2

R2
P

∂

∂r∗

(
1

r∗
∂(v∗r r∗2)

∂r∗

)
+

∂2(v∗r r∗)
∂z∗2

(3.15)

Substitution of P in equation (3.15) yields equation (3.16), which is the pressure in

the r-direction in dimensionless form.

∂P ∗

∂r∗
=

(
d(t)

RP

)2
∂

∂r∗

(
1

r∗
∂(v∗r r∗2)

∂r∗

)
+

∂2(v∗r r∗)
∂z∗2

(3.16)

In the next step a perturbation analysis is carried out. This means that every

term in the equation is scaled with respect to a small dimensionless parameter, which

in this case is d(t)
RP

= ε. In dimensionless form this leads to

∂P ∗

∂r∗
= ε2 ∂

∂r∗

(
1

r∗
∂(v∗r r∗2)

∂r∗

)
+

∂2(v∗r r∗)
∂z∗2

(3.17)
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for equation 3.16.

This leaves the left hand side to be order 1, whereas the two terms on the right hand

side are order ε2 and 1. Applying the same procedure to equation (3.6), i.e. expansion,

non-dimensionalization and scaling with the small parameter ε, results in the following

equation
R2

P

d2(t)

∂P ∗

∂z∗
=

d2(t)

R2
P

∂r∗(∂v∗z)
r∗∂r∗

+
∂2v∗z
∂z∗2

. (3.18)

Multiplication with d2(t)
R2

P
, i.e. ε2, brings forth

∂P ∗

∂z∗
= ε4 ∂r∗(∂v∗z)

r∗ ∂r∗
+ ε2∂2v∗z

∂z∗2
. (3.19)

Omitting terms of the order ε2 and higher from equation (3.19) leads to ∂P ∗
∂z∗ = 0 and

the conclusion that the pressure is only a function of r. This leaves only equation (3.16),

i.e. the scaled equation in the r-direction,

∂P ∗

∂r∗
=

∂2(v∗r r∗)
∂z∗2

= r∗
∂v∗r
∂z∗2

. (3.20)

In the following steps the above equation is integrated with respect to z in order to

obtain v∗r . The left hand side is only dependent on r, whereas the right hand side is

dependent on z. Hence, both sides have to be constant and the left hand side of the

equation is therefore set equal to k. Integration of the previous integration leads to

k z∗ + C =
∂(v∗r r∗)

∂z∗
, (3.21)

followed by
k

2
z∗2 + C z∗ + B = v∗r r∗, (3.22)

when integrated again. The following boundary conditions are now applied

v∗r = 0 at z = 1, (3.23)

i.e. the velocity at the plate is zero (see Figure 3.3), and

∂(v∗r)
∂v∗z

= 0, for z = 0, (3.24)
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i.e. the maximum velocity is at the center.

This leads to C = 0 and B = −1
2
k. When substituting k by ∂P ∗/∂r∗, this gives

the radial velocity profile. It is the equation later referred to as Stefan velocity but in

its dimensionless form.

v∗r =
1

2r∗
∂P ∗

∂r∗
(z∗2 − 1) (3.25)

As a last step the overall mass balance, i.e. the ingoing flow (left hand side) has

to be equal to the outgoing flow (right hand side), is taken, first in dimensional units,

afterwards in dimensionless form.

ḋ(t) π r2 =
∫ d(t)

−d(t)
2vr π r dz (3.26)

When replacing vr by Rp r∗ ḋ(t)
d(t)

v∗r , z by d(t) z∗, and r by Rp r∗ it becomes evident

that

ḋ(t)πr2 =
∫ 1

−1
2πr∗Rp Rp r∗

ḋ(t)

d(t)
v∗r d(t) dz∗. (3.27)

After cancellation of reappearing terms and substitution of the right hand side of

equation (3.25) for v∗r this gives

r∗ =
∂P ∗

∂r∗

∫ 1

−1
(z∗ − 1) dz∗ =

∂P ∗

∂r∗

[
z∗3

3
− 1

]1

−1

, (3.28)

resulting in
dP ∗

dr∗
=

3

2
r∗. (3.29)

Integration of this equation from 0 to r∗ with respect to r∗ and solving for P ∗ leads

to

P ∗ =
3

2

1

2
r∗2 + C. (3.30)

Re-substitution of the dimensions gives the final equation, referred to in the following

as the Stefan pressure equation.
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P (r) =
3 η ḋ(t)

4 d3(t)

(
r2 −R2

P

)
(3.31)

This equation is in needed in its dimensional form because once the presence of a

particle is discussed, a new length scale enters the system. In this case it is not evident,

which length scale (particle or fluid) needs to taken. The exact non-dimensional form

can be found in Burbidge & Servais (2004). The non-dimensionalization discussed

previously is necessary in order to carry out the perturbation analysis and determine

the terms with least significance.

It can be seen that the resulting pressure profile should show a parabolic form with

respect to the radius, which is also demonstrated in the experimental part of this

Chapter. Redimensionalizing equation (3.25) gives

vr =
1

2 η

∂P

∂r
(z2 − d(t)2). (3.32)

Differentiation of equation (3.31) with respect to r and substitution of ∂P/∂r with

the obtained result in equation (3.32) gives the Stefan velocity in the r-direction.

vr =
3 r ḋ(t)(z2 − d(t)2)

4 d3(t)
(3.33)

The velocity in the z-direction can be obtained when substituting vr into equa-

tion (3.7), which is the continuity equation, and then integrating and solving for vz.

Solving the obtained equation for ∂vz/∂z gives the the z-component of the velocity

gradient.

∂vz

∂z
= −3

2

ḋ(t)(z2 − d(t)2)

d(t)3
(3.34)

Multiplication of this gradient by 2η results in the viscous stress tensor τij according

to the constitutive equation for incompressible Newtonian fluids τij = 1
2
η (vi,j + vj,i)

(Pnueli & Gutfinger, 1992).
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τST
zz = 2 η

∂vz

∂z
= −3 η

ḋ(t)(z2 − d(t)2)

d(t)3
(3.35)

This normal stress τST
zz (in the zz-direction) is needed additionally to the Stefan

pressure when the pressures and normal stresses of the fluid and the particle are super-

posed. Since the stress is only measured at the plate, z = ± d, the stress component

vanishes and is therefore not further considered in the following calculations.

3.2.2 Point force: Faxen’s first law

The objective of this Section is to calculate the force on a small, solid (rigid) sphere

with radius a in an arbitrary velocity field. Furthermore the sphere (particle) has to

be nonpolar and biochemically inert.

The Faxen law is valid for non-uniform flows. Faxen’s first law (Deen, 1998) provides

an expression for the force on a particle in an unbounded flow field in terms of the

unperturbed velocity far from the particle (sphere), i.e. v∞, and the force given by

Stokes’ law, i.e. FStokes = 6 η π a vp (vp = particle velocity). The notation |0 refers to

the origin of the coordinate system, i.e. the center of the particle (Figure 3.2). The

complete Faxen equation is the following

FFaxen = 6 π η a (v∞|0 − vp) + η π a3
(
∇2 v∞

)
|0. (3.36)

This equation relies on the fact that the particle can freely rotate and that pure

shear forces have no effect on particle displacement, in contrast squeeze flow does have

an effect because it generates a pressure gradient. Because the flow discussed is low

Re flow, the Stokes equation ∇P = η∇2v can be used to replace the Laplacian ∇2v∞

by the pressure gradient ∇P . This pressure gradient can for example be the one from

the squeeze flow described above. The particle must in turn induce a disturbance

velocity in the fluid due to the apparent relative velocity. Choosing to represent this

particle effect on the fluid as a point force, Faxen’s law allows the calculation of the

magnitude of this point force. The density of the particle is identical to the density of
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the fluid (equally buoyant), therefore, the particle convects at the speed of the fluid,

which causes the first term on the right hand side of equation (3.36) to become zero,

and leads to the following equation

FFaxen ' η π a3(∇2 v∞) |0. (3.37)

The velocity v∞ of the fluid at infinity equals the velocity vr determined in the unper-

turbed flow field (i.e. Stefan velocity), and taking into account that η∇2v = ∇P for

the above mentioned reasons, where P refers to the Stefan pressure (see Section 3.2.1),

the following equation can be obtained, which is from now on referred to as the Faxen

force equation

FFaxen =
3 a3 π2rηḋ(t)

2 d(t)3
. (3.38)

This is the force experienced by a particle in the Stefan flow between the parallel

plates when it is assumed to convect with the fluid. Only the pressure gradient matters,

since the shear part vanishes because of the convection of the particle with the fluid.

The force on the particle thus only depends on r and the instantaneous position and

velocity of the plates. The force can be considered as a point force. The influence of this

point force on the flow and pressure field is discussed in the following. Since the force

is a vector in the r-direction it can easily be transformed into Cartesian coordinates

and simplified when aligning r and x. This is more convenient when carrying out the

subsequent vector analysis. Hence

Fx =
3 a3 π2x η ḋ(t)

2 d(t)3
, (3.39)

where Fx is the force in Cartesian coordinates may these be plate or particle based as

discussed further on since it is independent of z.

Comparison of the obtained forces with data from the literature

The forces obtained through Faxen’s law are used in the Green functions as point forces

in order to obtain the pressure field variations. Hence, it is reasonable to compare these

forces with values found by other authors before substituting them.
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The forces, which are hydrodynamically induced, are the following

• FStokes = 6 π η a vrel Stokes’ force

• Fcentrifugal = m
v2

rel

a
centrifugal force

• Fg = mg = 4
3
ρp π a3 g gravitational force

• Fbuoyancy = m g = 4
3
ρfl π a3 g buoyancy

• FSaffmann = 6.46 a2
√

ρfl η

γ̇
γ̇ vrel Saffman’s force (lift from rotation)

• FRubinow−Keller = π a2 ρp v2
rel Rubinow-Keller force (lift),

where γ̇ = vrel

a
is the shear rate. For the characteristic length the particle radius a is

considered, and vrel refers to the relative velocity between the particle and the fluid.

For the centrifugal force the radius of curvature of the path line is assumed to be a.

The indices fl and p refer to fluid and particle, m is the particle mass.

The above mentioned forces are calculated for the particle but not for the surround-

ing fluid. In all cases the fluid velocity is considered for vrel leading to upper bound

forces. For the centrifugal force this means, e.g. it is the absolute force on the particle,

but it does not cause the particle to leave the path line. For the case that the fluid

is considered forces such as Rubinow-Keller or Stokes would turn to zero due to the

assumption of equal buoyancy, i.e. no density or velocity differences. On the contrary

the Faxen force remains in both cases.

As previously discussed only the second part of Faxen’s law remains. The first part,

which is actually Stokes’ law, is evaluated in the Stokes’ force calculation. All forces

mentioned above were determined for particles in fluids by Hartmann et al. (2006), who

also investigated the relation of each force to the Stokes force, in order to determine

the predominant forces. The parameters of both trials can be found in Table 3.1. Use

of these parameters in the above mentioned force equations resulted in the forces and

force ratios in Table 3.2.
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Table 3.1: Parameters for force comparisons of current values with values from Hartmann

et al. (2006) (the values in parentheses were not given by Hartmann et al. (2006),

the plate distance and radius were set according to the current data, i.e. 2a and

RP ; the plate velocity was determined with help of equation (3.33).

Value Hartmann et al. (2006) Current work

fluid density ρfl [kg/m3] 998 (water) 938 (silicon oil)

fluid viscosity η [Pas] 10−3 30

particle density ρp[kg/m3] 1030 (yeast) 938 (equally buoyant material)

fluid velocity v[m/s] 2.5·10−5 3.75·10−5 (from Stefan’s equation)

particle mass m [kg] 4·10 −14 4·10−9

particle radius a [m] 3.5·10−6 10−4

plate distance d [m] (7·10−6) 2·10−4

plate velocity pv [m/s] (6.7·10−5) 10−4
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Table 3.2: Force values and ratios obtained in the current work in comparison with values

from (Hartmann et al., 2006). In all cases the fluid velocity was taken for vrel

and equally buoyant particles were assumed, i.e. ρp = ρfl. All other values were

as listed in Table 3.1. The influence of the supporting fluid was not considered,

hence, leading to upper limit forces.

Force or Force relation Hartmann et al. (2006) Current work

Stokes 1.7·10−12 N 2.1·10−06 N

Faxen1 8.6·10 −13 N 1.8·10−06 N

Faxen2 4.2·10 −11 N 8.7·10−05 N

Buoyancy 1.8·10−12 N 4.0·10−08 N

Gravitational 1.8·10−12 N 4.0·10−08 N

Centrifugal 1.2·10−17 N 2.6·10−14 N

Saffman 1.3·10−19 N 4.9·10−16 N

Rubinow-Keller 8.7·10−18 N 2.1·10−14 N

Faxen1/Stokes 5.2·10−01 8.3·10−01

Faxen2 /Stokes 2.6·10+01 4.1·10+01

Buoyancy/Stokes 1.1·1000 1.9·10−02

Gravitation/Stokes 1.1·1000 1.9·10−02

Centrifugal/Stokes 7.0·10−06 1.3·10−08

Saffman/Stokes 8.1·10−08 2.3·10−10

Rubinow-Keller/Stokes 5.3·10−06 1.0·10−08

1 close to (less than 10a away from) the center of the plate

2 close to (less than 10a away from) the edge of the plate
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In Table 3.2 it can be seen that the predominant forces in the experimental flow

carried out are the Stokes and Faxen force. All other forces are at least two orders of

magnitude smaller, hence they are negligible for further estimations. Faxen and Stokes

forces are roughly in the same order of magnitude. This allows use of the Faxen force

as a point force in further estimations.

3.2.3 Point force (particle) in a fluid: Green functions

In this Section the stress distributions in a fluid due to a particle are determined. Once

these are known they are added to the unperturbed flow field, determined previously

(see Section 3.2.1) so that the pressure profile on the bottom plate is known. With the

help of the Green functions the two components of the total stress tensor σij

σij = −δijp + τij (3.40)

can be determined. From now on the notation with indices is used to make use of the

Einstein convention (Morrison, 2001). The hydrostatic pressure contributes directly

to the total stress tensor, whereas the velocity field contributes through the devia-

toric part of the stress tensor, i.e. through τij, based on the constitutive equation for

incompressible Newtonian fluids (see above).

Once the total stress is determined, i.e. the particle has been considered, the Stefan

pressure has to be added to the result of equation (3.40). This gives the complete

stress exerted on the bottom plate by the fluid and the particle it contains (for the

total stress see Section 3.2.5), when considered in the zz-direction. The influence of

the particle should be seen as a disturbance in the Stefan pressure field.

A point force, e.g. FFaxen, in a fluid induces a velocity disturbance. The func-

tion describing this is/are the Green function(s) and its/their solution(s) is/are called

“Stokeslets” (Blake & Chwang, 1974). Blake & Chwang (1974) provide results for the

pressure and velocity field, which are discussed in the following. Two situations have

to be considered



3.2. MATHEMATICAL METHODS 71

1. the free space Green function assuming a disturbance, which decays at infinity

2. the bounded Green function taking into consideration possible boundary con-

ditions such as the bottom plate.

Both equations define pressure and velocity fields due to a point force F , here FFaxen.

The free space Green function is discussed first before the bounded Green function is

taken into consideration.

3.2.3.1 Free space Green function

The free space Green function assumes a point force in a fluid causing a disturbance,

which decays at infinity. No boundary conditions are taken into consideration and the

Cartesian coordinate system is based at the center of the particle (see Figure 3.4). The

singularity solution for this point force can be extracted from the classical solution of

Stokes (1851) for flow past a sphere (i.e. the velocity and pressure fields)

p(r) =
1

4 π r3
ri • Fi, (3.41)

where ri is the position vector to the sample point SP with origin at the particle center,

r is the magnitude of ri, xi is the vector from the plate based coordinate system to the

sample point SP , and Fi is the force vector acting at the virtual particle center. This

force is implied by the disturbance velocity field vi(r), which results from the presence

of the particle

vi(r) =

Oseen tensor︷ ︸︸ ︷
1

8 π ν

[
δij

r
+

ri rj

r3

]
Fj, (3.42)

where δij is the unit tensor. Figure 3.4 illustrates the relations between xp, x, r, the

particle, and the plate based coordinate system.

The complimentary tensor for the scalar product with the force vector is called Oseen

tensor (Oseen, 1974). The variable Fj refers to the point force FFaxen determined within

Section 3.2.2, respectively Fx for plate based coordinates.
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Figure 3.4: Vectorial relations for the free space Green function.

In order to determine the deviatoric part of the stress tensor the gradient of the

velocity (equation (3.42)) has to be taken. For this equation (3.42) needs to be differ-

entiated with respect to coordinate direction q (q ε i, j, k) and then expanded with Fj

according to the Einstein convention.

vi,q =
1

8πη

(
Fj δij

r
+

Fj ri rj

r3

)

, q

(3.43)

=
Fj

8πη

(
−δijrq

r3
+

δiqrj

r3
+

riδjq

r3
− 3rirjrq

r5

)

=
1

8πη

(
−Fi rq

r3

δiq(r1F1 + r2F2 + r3F3)

r3
− 3rirq(r1F1 + r2F2 + r3F3)

r5
+

riFq

r3

)

Due to the position of the pressure sensor, i.e. fixed to the bottom plate, only

normal stresses on the plate can be measured, hence, of the deviatoric stress only the

τzz, i.e. only the τ33-component, is of importance. Also, as determined before, the

force is only relevant in the r (respectively x) direction of the coordinate system and

is 0 elsewhere. Hence, cancelling all terms containing F2 and F3, and noting that
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F = FFaxen = Fx = F1 and i = q = 3 leads to

vzz = v33 =
1

8 π η

[
r1 F1

r3
+

3 r2
3 r1 F1

r5

]
(3.44)

for the velocity gradient in the free space flow field in the zz-direction. Multiplication

with 2η gives the deviatoric stress τ33.

τzz = τ33 =
1

4 π

[
r1 F1

r3
+

3 r2
3 r1 F1

r5

]
(3.45)

Here r is given in particle based coordinates. It can be transformed into the plate

based (Cartesian) coordinate system according to r
¯

= x
¯
− x

¯p, i.e. r = (x − xp, y −
yp, z − zp) leading to

τzz =
1

4π


 F1 (x− xp)

((x− xp)2 + (y − yp)2 + (z − zp)2)
3
2

+
3 F1 (x− xp)(z − zp)

2

((x− xp)2 + (y − yp)2 + (z − zp)2)
5
2


 .

(3.46)

When using component notation for the equation for the pressure p (see equa-

tion (3.41)) and applying the same rules as mentioned above for the force, this results

in

p =
F1(x− xp)

4π((x− xp)2 + (y − yp)2 + (z − zp)2)
3
2

(3.47)

for the free space pressure field.

3.2.3.2 Bounded Green function

In this Section a point force in the presence of a stationary plane boundary, as discussed

by Blake (1972), is of interest. The bounded problem is discussed in analogy to the

free space discussion in the previous Section. The bounded Green function assumes an

imaginary particle R in order to take care of the boundary which is in the midplane

between the two particles. The sample point SP lies on or above (see Figure 3.5) this

boundary.

The exact solution for a force singularity in the presence of a stationary plane



74 CHAPTER 3. PERCEPTION OF SUSPENSIONS

 

R 

x 

Z3 

Y3 

X3 

r 

h 

-h 

SP 

Figure 3.5: Illustration of the vector x leading to the sample point, r leading to the real, and

R to the imaginary particle.

boundary is as follows for the pressure

p =
Rj

4π

[
rj

r3
− Rj

R3
− 2h (δjαδαk − δj3δ3k)

∂

∂Rk

(
R3

R3

)]
(3.48)

and for the velocity

vi =
Fj

8πη




real particle︷ ︸︸ ︷(
δij

r
+

ri rj

r3

)
−

image particle︷ ︸︸ ︷(
δij

R
+

Ri Rj

R3

)



(3.49)

+
2hFj

8πη
(δjαδαk − δj3δ3k)

A︷ ︸︸ ︷
∂

∂Rk

{
hRi

R3
−

(
δij

R
+

Ri R3

R3

)}
,

where ri refers to the particle position, Ri to the position of an image particle, α = 1, 2;

the tensor (δjαδαk − δj3δ3k) is non zero only when j = k; its value is +1 for j = 1 or

2, and 0 for i, j = 3. h refers to the distance of the real particle from the plate in the

z-direction, this is −h for the image particle.

As a first step the term A of equation (3.49) needs to be differentiated with respect

to Rk before the whole equation is differentiated with respect to q

∂
∂Rk

(
hRi

R3
−

(
δij

R
+

Ri R3

R3

))
= (3.50)
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hRi,k

R3 −3hRiRα,kRα

R5
− δij RαRα,k

R3
+

Ri,kR3 + RiR3,k

R3
− 3RiR3Rα,kRα

R5
.

Now it is possible to take the differential of vi with respect to q. The differential of

the real particle part is equal to the velocity derivative of the free space Green function

but with R instead of r for the imaginary particle

vi,q =
1

8 π η

[
−Firq

r3
+

δiqr1F1 + r2F2 + r3F3

r3
− 3rirqr1F1r2F2 + r3F3

r5
+

riFq

r3

]
(3.51)

− 1

8 π η

[
−FiRq

R3
+

δiqR1F1 + R2F2 + R3F3

R3
− 3RiRqR1F1R2F2 + R3F3

R5
+

RiFq

R3

]

+
6h2

8πη

[
−RqFi

R5
+

RqF3δi3

R5
+

R3F3

R5
− RiFq

R5
+

Riδ3qF3

R5

]

+
6h

8πη

[
−5RiRqR1F1 + R2F2 + R3F3

R7
− hδiqR1F1 + R2F2 + R3F3

R5

]

+
2h

8 π η

[
15hRiRqR3F3

R7
+

δi3Fq

R3
− δq3δi3F3

R3
+

Fiδ3q

R3
− F3δi3δ3q

R3
+

F3δiq

R3
− F3δ33δiq

R5

]

+
6h

8 π η

[
−3δi3RqR1F1 + R2F2 + R3F3

R5
+

R3Rqδi3F3

R5
− RiR3Rq

R5
− riR3Fq

R5

]

+
6h

8 π η

[
δi3R3RqF3

R5
− F3RqRi

R5
− δiqR3R1F1 + R2F2 + R3F3

R5
+

δiqR2
3F3

R5

]

+
6h

8 π η

[
F3δ33RqRi

R5
− Riδ3qR1F1 + R2F2 + R3F3

R5
+

Riδ3qR3F3

R5
+

RiR3δq3F3

R5

]
.

The reasoning mentioned in the previous Section for only taking vzz = v33 for

i = q = 3 is also valid here and leads to

v33 =
1

8πη

[
r1F1

r3
− R1F1

R3

− 3r2
3r1F1

r5
+

3R2
3R1F1

R5

]
(3.52)

− 6h

8πη

[
hR1F1

R5
+

5R2
3R1F1

R7
+

R3F1R1

R5
+

3R3F1R1

R5

]
.

Multiplying this equation with 2η and replacing h by r3 results in τ33 = τzz

τzz =
1

4π

[
r1F1

r3
− R1F1

R3
− 3r2

3 r1F1

r5
+

3R2
3 R1F1

R5

]
(3.53)

− 6r3

8πη

[
r3R1F1

R5
+

5R2
3R1F1

R7
+

R3F1R1

R5
+

3R3F1R1

R5

]
.
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Before being able to add the above determined stress to the pressure from the

bounded Green function given in equation (3.48), the differential term of the pressure

equation has to be considered. This leads to

p =
Fj

4π

[
rj

r3
− Rj

R3
− 2h (δjαδαk − δj3δ3k)

(
δ3k

R3
− 3Rk R3

R5

)]
. (3.54)

When expanding this equation for the pressure with Fj, then summing over the

indices, and considering that F only acts in the x-direction, i.e. F1, the following

equation can be obtained for p

p =
F1 r1

4π(r2
1 + r2

2 + r2
3)

3
2

(3.55)

− 6 F1 r3 r1 R3

4π(R2
1 + R2

2 + R2
3)

5
2

− F1R1

4π(R2
1 + R2

2 + R2
3)

3
2

.

3.2.4 Particular consideration of the two Green functions for

a particle above the origin

The objective of this Section is to investigate the changes in the stress distribution due

to the presence of a particle in a fluid. The special case discussed here is a particle

above the origin. As before the free space situation is discussed first.

3.2.4.1 Free space Green function

“Above the origin” is with reference to the coordinate system based at the bottom

plate. The coordinates of the free space Green function are based in the particle center

(see Figure 3.2). Hence, a particle, which is above the origin, is at (x, y, z) in particle

based coordinates but at (0, 0, b) in plate based coordinates such that Z3 = Z2 + b

when Z2 refers to the particle coordinate system and Z3 to the plate based system.

This leads to the following pressure distribution

p =
Fx x

4π (x2 + y2 + (z + b)2)
3
2

. (3.56)
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Hence, there is a pressure disturbance around the particle, which is positive upstream

and negative downstream with respect to the particle moving direction. Since the plate

is at z = 0, the function describing the pressure field on the plate is

p =
Fx x

4π (x2 + y2 + b2)
3
2

, (3.57)

where Fx, which is FFaxen, only acts in the x-direction as before. Assuming a force Fx

of 1.8·10−6 N, which is calculated as described in Section 3.2.2 for a particle less than

10a away from the origin (i.e. a particle “close to the origin of the plate”, analogue

for the distance from the edge) the pressure field disturbance shown in Figure 3.6

and Figure 3.7 can be obtained. The force used is for a particle of 100 µm radius at

z = 2 · 10−4 m (in plate based coordinates) in a gap of 400 µm height (i.e. h = 2a).

The two graphs show the hydrostatic pressure influence.

The viscous influence for the same parameters can be seen in Figures 3.8 and 3.9. It

was determined from equation (3.46) when the same coordinate system transformations

(see above) as for the hydrostatic pressure were applied

τzz =
1

4 π

[
Fx x

(x2 + y2 + b2)
3
2

+
3 Fx x b2

(x2 + y2 + b2)
5
2

]
. (3.58)

The comparison of the graphs shows that the viscous stress leads to a sharper and

larger peak (approximately 2 Pa) than the hydrostatic pressure. Still, neither of the

stresses is larger than the 10 kPa threshold for in-mouth sensation (or the instrumental

threshold, according to Tekscan 0.5 kPa). Therefore, the bounded Green function

needed to be investigated.
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Figure 3.6: Pressure disturbance (hydrostatic pressure p) in a fluid due to a single particle

under free space conditions, the disturbance is projected onto the bottom plate

(RP = 5 cm).
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Figure 3.7: Pressure disturbance (hydrostatic pressure p) in the fluid due to a point force in

free space conditions (regarded in the neighborhood of the particle).
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Figure 3.8: Normal stress disturbance (viscous contribution τzz) under free space conditions,

the disturbance is projected onto the bottom plate (RP = 5 cm).
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Figure 3.9: Normal stress disturbance (viscous contribution τzz) in the fluid due to a point

force in free space conditions (regarded in the neighborhood of the particle).
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3.2.4.2 Bounded Green function

As a first step the r-axis is aligned with the x-axis so that the force is only in the

x-direction. If the particle is above the origin r = (r1, r2, r3) = (−x, −y, b − z)

and R = (R1, R2, R3) = (−x, −y, −b−z) in plate based coordinates, where b refers

to the intersection with the z-axis. Substitution of these relations into equation (3.55)

leads to

p =
1

4π

6 Fx(−b− z)(b− z)

((−x)2 + (−y)2 + (−h− z)2)5
+

Fx x

((−x)2 + (−y)2 + (−h− z)2)3
(3.59)

− Fx x

((−x)2 + (−y)2 + (h− z)2)3
.

This equation gives the pressure anywhere in xyz-coordinates, which are fixed to the

center of the bottom plate. Choosing all parameters to be the same as in the previous

Section permits calculation of the pressure on the boundary plane. Figure 3.10 shows

the deviatoric part of the particle stress. It was obtained from equation 3.60, when r

and R were substituted as described above.

τzz =
1

4π

[ −xFx

((−x)2 + (−y)2 + (b− z)2)
3
2

− −xFx

((−x)2 + (−y)2 + (−b− z)2)
3
2

]
(3.60)

− 1

4π

[
3(b− z)2 (−x) Fx

((−x)2 + (−y)2 + (b− z)2)
5
2

+
3(−b− z)2 (−x) Fx

((−x)2 + (−y)2 + (−b− z)2)
5
2

]
(3.61)

− 6(b− z)

4π

[
(b− z) (−x) Fx

((−x)2 + (−y)2 + (−b− z)2)
5
2

+
5(−b− z)2 (−x) Fx

((−x)2 + (−y)2 + (−b− z)2)
7
2

]

+
6(b− z)

4π

[
4(−b− z)Fx (−x)

((−x)2 + (−y)2 + (−b− z)2)
5
2

]
.

The disturbance is in the range of 100 kPa and therefore, overcomes the in-mouth

threshold as well as the threshold of the Tekscan sensor. The hydrostatic pressure is

not shown since the influence is much less as can be seen in Figure 3.11. The viscous

stress is several orders of magnitude larger than the hydrostatic component.
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Figure 3.10: Normal stress disturbance (viscous contribution τzz) in the fluid due to a point

force under bounded conditions (regarded in the neighborhood of the particle).
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Figure 3.11: Deviatoric (red/dashed) versus hydrostatic pressure for a particle above the

origin under bounded conditions (regarded in the neighborhood of the particle).
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3.2.5 Superposition of the estimated stresses

In order to know the true stress on the bottom plate and therefore the pressure sensor

used in Chapter 4, the pure fluid pressure P (r) obtained from Stefan’s equation (see

Section 3.2.1) needs to be added to the total stress tensor σzz obtained from the point-

force disturbance. The viscous stress τSt
zz from Stefan’s equation can be neglected as

previously explained. The total stress tensor comes from the particle and consists of

the pressure part p and the deviatoric stress tensor in the zz-direction, which is equal

to the velocity gradient multiplied with twice the viscosity. Again these stresses are

first summed for the free space condition before the bounded situation is considered.

3.2.5.1 Stress superposition for the free space situation

As demonstrated in the previous Sections, equation (3.47) gives the pressure distri-

bution for the free space Green’s function. Due to the sign convention this equation

receives a minus sign when added to the other stress terms. The deviatoric stress,

equation (3.46), is added to this.

Finally the pressure distribution of the undisturbed flow field from the Stefan equa-

tion (Section 3.2.1), where r has been replaced by x, needs to be added. Since there is

no dependency in the z direction this transformation can be formulated as

P (x) =
3 η ḋ(t)

4 d3(t)

(
x2 −R2

P

)
. (3.62)

Figure 3.12 illustrates the influence of the two terms of the total stress tensor by

plotting the stress variations versus the radius of the disc. The upper part of the Figure

shows the disturbance for a particle above the origin (i.e. x = 0) whereas the bottom

Figure represents a particle close to the edge, i.e. x = 0.049 m (the values used for a,

Fx, and d are identical with the values used in Section 3.2.4.1). It can be seen that the

particle disturbs the fluid more (stress is two orders of magnitude higher) when it is

closer to the edge. Furthermore, the fact that the fluid pressure decreases versus the

edge (parabolic profile) supports this effect. The positive pressure change in front of
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the particle and the negative change behind the particle discussed before can clearly

be seen. Still, the resulting stress (150 Pa) is not sufficient to overcome the in-mouth

threshold. This is more clearly shown in Figure 3.13. Here the absolute disturbances is

shown by plotting the pressure resulting from the sum of the three terms (red/dashed)

versus the pure fluid pressure (blue/solid). The curves do not significantly deviate.

Hence, in the following the bounded Green function has to be looked at, especially

since the situation dealt with here (parallel plate squeeze flow) is certainly a bounded

problem.
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Figure 3.12: Top: Comparison of hydrostatic and deviatoric stress for a particle above the ori-

gin. Bottom: Superposition (blue/solid) of hydrostatic pressure p (red/dashed

fine) and deviatoric stress τzz (green/dashed) curves for a particle close to the

edge of the plate under free space conditions.
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Figure 3.13: Comparison of normal stress resulting from summing over all three terms (red/-

dashed) in the free space situation versus the pure fluid pressure distribution

(blue/solid) taken from the Stefan calculation.



86 CHAPTER 3. PERCEPTION OF SUSPENSIONS

3.2.5.2 Stress superposition for the bounded situation

As can be seen in Figure 3.13, the variations between the curves for the fluid with

and without particle (for the free space situation) are hardly visible. Still, the Tekscan

pressure sensor has to resolve the difference between the curves as a pressure field distur-

bance and not as noise (analogue for the mechanoreceptors in the mouth). Therefore,

in the following the pressure p taken from equation (3.55), the deviatoric stress τzz,

see equation (3.60), and Stefan’s pressure, see equation (3.31) need to besuperposed

for the bounded situation. The normal stress τST
zz , see equation (3.35), is neglected for

previously mentioned reasons.

The disturbances of the fluid pressure field due to the particle in the bounded situ-

ation are generally larger. This can be seen when comparing the sum of the pressure

p and the deviatoric stress τzz for both conditions as shown in Figure 3.14.

Plotting the same graphs for the bounded situation as before for the free space

condition (using the previous parameters) shows that the disturbances resulting in the

bounded situation are larger than for the free space situation, see Figures 3.15 and

3.16 respectively 3.17. The differences between the curves are clearly visible (6·106 Pa)

and should be detectable with the Tekscan sensor and with the mechanoreceptors.

Investigating a particle close to the edge in a very small gap leads to larger fluctuations

(range of 1000s kPa) than the same situation for a particle close to the midpoint

(100s kPa, see Figure 3.18). Still, the fluctuations are above the necessary threshold

in both cases. Figure 3.15 once again shows the almost negligible influence of p in

comparison with τzz.
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Figure 3.14: Comparison of the normal stress (sum of p and τzz) in the xy-plane for the free

space (top) and bounded (bottom) Green’s function showing that the stress is

larger for the bounded Green’s function (investigation for a particle less than

10 radii away from the edge).
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Figure 3.15: Superposition (blue/solid) of pressure p (red/dashed) and deviatoric stress τzz

(green/largely dashed) curves for a particle close to the edge under bounded

conditions.
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Figure 3.16: Comparison of the stress resulting for the bounded situation from summing

over all three terms (red/dashed) versus the pure fluid pressure distribution

(green/solid); no disturbance visible (far field perspective).
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Figure 3.17: Comparison of stress resulting for the bounded situation from summing over

all three terms (red/dashed) versus the pure fluid pressure distribution (green/-

solid) taken from the Stefan calculation. Close up, disturbance visible. Particle

close to the edge.
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Figure 3.18: Comparison of total pressure resulting for the bounded situation from summing

over all three terms (red/dashed) versus the pure fluid pressure distribution

(green/solid) taken from the Stefan calculation. Close up, disturbance visible.

Particle close to the center.
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Three aspects are investigated further: 1. Considering that the particle radius enters

Faxen’s law with the third power its influence has to be determined. Plotting the

resulting pressure fluctuation versus the radius of the particle shows the dependance.

For this, additionally to the previous parameters (particle size, plate velocity, viscosity,

half plate distance), the sample point is set at (0.03 m, 0.00 m, 0.00 m) and the particle

at (0.029 m, 0.00 m, a 1.1). The plates have a radius of 0.05 m as previously. The

resulting stress fluctuations are shown in Figure 3.19. This clearly demonstrates that a

small particle leads to a higher disturbance due to the smaller gap between the plates.

2. Figure 3.20 shows that the resulting stress is also highly dependent on the par-

ticle’s position. The parameters are identical to the previous investigation, except for

particle position, which is now at (x - 0.0015, 0, a 1.1), i.e. 1.5 mm away from the

sample point, whereas x is varied in this part. From the graph it can be seen that the

particles should preferably not be placed close to the center but rather in the outer

regions of the sensor since their influence increases.
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Figure 3.19: Resulting pressures in Pa in dependence of the particle radius a. This shows

that a particle with radius 0.001 m should give a visible disturbance of 10 kPa if

the sensor is not too noisy itself (red=particle pressure, green=fluid pressure).

3. The resulting pressure (force) is also dependent on the particle position z in the

gap (how close the particle is to the plate) and the absolute gap around the particle (h).

Figure 3.21 illustrates the influence of the percentage of the gap the particle occupies
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Figure 3.20: Dependence of the disturbance caused by the particle on the particle position.

This clearly shows that particles closer to the edge cause more disturbance,

especially since the pure fluid pressure (Stefan) is decaying towards the edge

(red=particle, green=fluid pressure).

for three different situations (10 %, 50 %, and 99 %). The resulting force relations of

Faxen and Stokes (multiplied with the dimenisonless radius r∗) are plotted against the

relative particle position z
h
. This relation is obtained in the following way: in order to

have an indication of the velocity in front of the particle and behind the particle, the

gradient of the Stefan velocity (equation 3.33) is taken and multiplied with the scale

of the rigid body, i.e. the particle radius a. When Faxen’s force is divided by Stokes’

force including this term for the velocity, this leads to

FFaxen

FStokes

=
r a

3(−h2 + z2)
. (3.63)

When scaling h and a with h, and r with a, leading to the dimensionless r∗, all vari-

ables are dimensionless. Their relations can be investigated. Each obtained value for

the relation of the Faxen and Stokes force needs to be multiplied with the dimension-

less radius. It can be seen that in the case of increasing z
h

(when regarding the lower

plate this means the more the particle approaches the plate) the relation Faxen/Stokes

increases, giving more importance to the Faxen force. Figure 3.21 also illustrates very

well that the more space the particle takes up of the gap, the larger the force is, i.e.
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the curve for 99 % (blue/solid) is much larger than the corresponding curve for 10 %

(red/largely dashed). Analogue the smaller the gap around the particle is, the larger

the influence of the Faxen force is. These aspects have to be kept in mind for the

further discussion. Furthermore, the larger r∗ (which is the radial distance in particle

radii) becomes, the more influence the Faxen force has. For very small r∗ the Stokes

force is larger than the Faxen force but close to the midpoint, e.g. at distance a, the

theory is not valid because the condition h
r
¿ 1 is not fulfilled.
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Figure 3.21: Relation of Faxen’s force to Stokes’ force for different ratios of particle size and

half plate distance (a/h) as a function of particle position in the gap (z/h).



Chapter 4

Experimental validation of the fluid

mechanical model

4.1 Introduction to the experiments

In order to verify the mathematical theory stated in the previous Chapter experimen-

tally two sets of squeeze flow trials were carried out. The aim of the experiments was

to show that a particle containing fluid has a characteristic stress field, meaning that

different pressures are shown in areas with a particle than in the ones without a par-

ticle. From the mathematical model it can be obtained that ideally there should be

a positive pressure in front (with respect to the moving direction of the fluid) of the

particle and a negative pressure behind the particle.

In a first step the sensitivity of the pressure sensor, which was supposed to show the

fluctuations, had to be determined. This was done by carrying out a pure squeeze flow

trial and comparing the experimental data with the theoretical results of the Stefan

equation (see Section 3.2.1). Pure squeeze flow provokes a parabolic pressure profile

when plotted in dependence of the radius as previously demonstrated. This has been

verified by other authors (Yates et al., 2001).
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In a second step the stress field perturbations were investigated by adding a particle

to the fluid. The size of the particle was chosen so that the disturbances caused by it

are larger than the previously determined noise threshold of the sensor. Setting the

threshold of the sensor equal to the complete stress for the bounded Green function

(p + τzz) and solving for a gives the necessary particle radius a. All other parameters

such as the plate velocity, fluid viscosity, particle position, plate distance, and sample

point were known. This determination was done at the end of the previous Chapter,

where the particle caused pressure disturbances p were plotted in dependence of the

particle radius.

The idea was to draw conclusions from the experimental data about the stress field

perturbations in-mouth and therefore grittiness perception. For the scaling from the

instrumental to the in-mouth conditions see Section 4.3.1 (dimensional analysis).

4.2 Materials & methods

4.2.1 Experimental set-up

For the experimental set-up two parallel steel plates (PSP, see also Roussel & Lanos

(2003) and Leider & Bird (1974)) of 5 cm radius were mounted to a Zwick Roells

texture analyzer (model Z005). A Tekscan pressure sensor (model 5051, for further

details concerning the sensor see below), was fixed to the middle of the bottom plate.

At the beginning two flat, plain parallel plates were mounted. The bottom plate

was modified as described below. During the equilibration and calibration described

below, it turned out that the contacting surfaces play a very important role, meaning

that two steel plates contacting each other do not load enough sensels, and the ones,

which are loaded, are not equally loaded. In order to have a compliant surface, a

mouse-pad (neoprene) was attached onto the upper plate and covered with cling film

for protection. In order to assure axissymetric squeeze flow the fluid needs to cover the

whole plate and be kept on the plate at the beginning. Therefore a different bottom
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plate was made, which can be seen in Figure 4.1. This plate has a milled-out center

piece but also a circular flute in which a separable ring can be placed. The ring disposes

of a small slot, where the sensor can be slid in. In order to keep the sensor stable on

the plate, wax was placed into the flute underneath the sensor to keep it from hanging

down at the edge of the plate. The ring has a horizontal line at the height of 5 mm

indicating the fill height.

Figure 4.1: Experimental set-up showing the soft coverage of the upper plate, split rings,

wax, and the milled out center piece.

4.2.2 Tekscan pressure sensor

Three different measuring ranges of the pressure sensor, i.e. 0 - 138 kPa (20 psi), 0 -

345 kPa (50 psi), and 0 - 517 kPa (75 psi) were purchased. The smallest sensor was used

the most since it disposes of the finest resolution. Later the 345 kPa sensor was used

as well since in contrast here the noise level should be less, but this is unfortunately on
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the cost of the resolution. At the heart of each sheet sensor there is a squared, 0.1 mm

thick measuring area containing 1936 measuring points arranged in form of a matrix.

This is within an area of 5.6 cm x 5.6 cm resulting in a sensel spacing of 1.27 mm, see

Figures 4.2 and 4.3.

Figure 4.2: Tekscan pressure sensor and USB handle (Tekscan Inc., Boston, MA, USA).

The standard sensor consists of two thin flexible polyester sheets, which have silver

electrodes (conductive) in row and column pattern spread across them. When they are

put on top of each other, cross points turn into contact points/sensels. Between these

two sheets there is also a semi-conductive ink (patented), which registers the changes

in resistance at the intersection points, for an illustration of the composition of the

sensor see Figure 4.4. These sensors work in real-time as they take up to 125 pictures

per second. They can be used in combination with products such as food, and they are

capable of recording static as well as dynamic measurements, as necessary within the

framework of this project. The 2-D and 3-D displays show the location and magnitude

of the forces exerted on the surface of the sensor at each sensing location. Force and

pressure changes can be observed, measured, recorded, and analyzed throughout the

test. The sensor is placed into a mobile handle, which is connected to a computer

via a USB connection. The tools menu allows adjustment of the sensitivity range of

the sensor. Eight different sensitivities are provided (here listed in descending order):
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high-2 (maximum), high-1, mid-2, mid-1, default, low-3, low-2, low-1 (minimum).

Figure 4.3: Dimensions of the Tekscan sensor (Tekscan Inc., Boston, MA, USA).
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Figure 4.4: Composition of the Tekscan sensor: rows and colums of silver electrodes on

polyester sheets with a semi-conductive coating (pressure sensitive ink, patented)

between them (Tekscan Inc., Boston, MA, USA).

4.2.3 Fluid and particle materials

The fluid used in the majority of the trials (1-10) was a viscosity standard (silicon

oil) from Brookfield Engineering Laboratories generally used for the calibration of

rheometers. By using a standard it was assured that the viscosity of 30 Pas (measured

at 25˚C) shows negligible variations. For this purpose the laboratory temperature is

also kept constant and regularly controlled. In trial 11 a highly viscous, 300 Pas, silicon

oil, from the Wacker Silicon Grease Series (Wacker AK 300 000) was used.

The particles were 1 mm in radius and made of polypropylene, specific gravity 0.95.

In the calculations “equally buoyant” particles were assumed. This is the closest, which

could be found to the specific gravity of the silicon oil used (0.94). They were obtained

from Dejay Distribution Ltd, Wokingham, Berks, UK.
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4.2.4 Technical improvements of the system

The sensor is very thin with its thickness of 100 µm but still it sticks out from the

surface and this caused the first problem. If the sensor is higher than the rest of the

plate and non-compliant, all force is loaded on the sensor but not on the plate and the

calculations done beforehand in the mathematical Section are not valid as they were

done for a much larger and especially circular surface. Therefore, a film of the same

thickness as the sensor was glued around the sensor leading to an even surface. The

sensor and the leveling film around it were fixed on the plate with a small amount

of silicon grease. Later it turned out that due to the stickiness of the test substance

(highly viscous silicon oil) this was not very convenient. Hence, the shape of the sensor

was milled out of the bottom plate (plate p2 changed to p3) see Figure 4.5 with a

height of ≈ 100 µm, which corresponds to the thickness of the sensor. Milling out the

shape of the sensor decreased the risk of an uneven surface, which might easily occur

with the leveling film when mounting and removing the ring for sample loading.

Figure 4.5: Bottom plate of the set-up with milled-out center in the shape of the sensor,

depth 100 µm.
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4.2.5 Calibration & equilibration

Technical calibration & equilibration

The calibration of the Zwick strain frame is rather simple. Before starting the mea-

surements the force on the load cell has to be zeroed (software: machine/force zero)

and the zero distance determined. The procedure for taring the crosshead is in the

program menu under machine/verification/Crosshead SN162711. Here the distance to

be approached has to be set beforehand. Once chosen the crosshead approaches this

distance with a maximum speed of 10 mm/min until the predetermined force change

of 2.5 N is registered. This point is then set as zero distance.

In order to use the Tekscan sensor with its maximum sensitivity and measuring

range it has to be first equilibrated : loaded with an even load and all points have to be

initialized so that they measure the same pressure, and afterwards calibrated, i.e. loaded

with a known load, then the maximum measuring range is given by extrapolation and

can be shown on the scale, which up to this point only shows raw data on a scale from

0 to 256. This does not yet correspond to SI units. For an overview of the equilibration

and calibration methods described in the following, see Table 4.1

During the equilibration the full sensor has to be loaded. Since the supplier gave the

advice to use surfaces similar to the test surfaces, the calibration bladder used later on

was not used in the first calibrations but instead the top plate with its known weight

was placed in direct contact with the bottom plate and the sensor, and additional

weight was added (equilibration 1). Loading the sensor this way did not stimulate all

sensels because the surface is not sufficiently compliant. Even the supplier’s advice to

increase the contract area by placing a piece of tissue between them (equilibration 1a)

did not result in any satisfying results, see below. Therefore, afterwards the calibration

bladder was used instead, providing a more homogenous load (equilibration 2). For this

type of equilibration the sensor was clamped between parallel plates exerting pressure.

The bladder used has a maximum pressure range of 35 kPa. Once the sensor had been

placed between the plates and the valve was closed, the bladder was loaded with known
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Table 4.1: Overview of possible equilibration and calibration methods.

method number

equilibration

direct contact with the steel plate 1

tissue between the steel plate and the sensor 1a

bladder 2

Zwick texture analyzer and mouse pad 3

calibration

direct contact with the steel plate, additional load 1

tissue between the steel plate and the sensor, additional load 1a

squared cubes made from steel and caoutchouc 2

Zwick texture analyzer and mouse pad 3

weights, and the equilibration feature (Tekscan software: tools menu) was started. A

waiting period of 30 seconds was set in order to give air bubbles in the sensor matrix

the chance to escape. To support this aeration, small slits were cut into the sensor at

the edges, where there were no wires. The equilibration file can be saved and loaded

into the window. For an example of such a file see Figure 4.6. Here it can be clearly

seen that the points are not tared to measure equally, fluctuations can be seen between

individual points.

A third equilibration alternative (equilibration 3) was loading the sensor equally

with the help of the Zwick strain frame, by placing a soft material such as a mouse-

pad on the sensor, well aligning it on the plate and then descending the top plate.

This way load can be applied in the desired range. Still this did not take care of the

high variations between individual points. This was not a satisfying situation and is

explained below.

When the equilibration had been done the calibration could be carried out. Whereas

for the equilibration it is necessary to load the full sensor surface this is not necessary
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Figure 4.6: Example of an equilibration file.

for the calibration since the measuring range is extrapolated. Instead it is important

to know the exact weight of the load. Nevertheless in a first approach (calibration 1,

analog equilibration 1) the sensor was loaded over its full surface with the help of the

top plate. This way of calibrating never let the sensor extrapolate its maximum range

of e.g. 345 kPa (50 psi). This was due to insufficient contact area, same reasoning as

previously explained. The sensors are scaled with rather soft surfaces when they are

produced. Therefore, one option was to consider the measuring range printed on the

sensor only as an order of magnitude but not as an absolute value. The advise given by

the supplier was to test the effect of different contact surfaces for the load by placing

varying objects onto the sensor such as caoutchouc, steel, and a neoprene patch (mouse

pad) and loading them with additional weights (calibration 2). Hence, pieces of 4 cm2

surface of these three materials were prepared, weighed, and then directly placed on

the sensor before they were loaded with a weight of around 5 kg. The exact weight was

noted as it needed to be entered into the system. Afterwards the calibration feature

was started in the tools menu by adding a new calibration and entering the applied

force in kilograms. A 30 second waiting period was also included in this procedure.

Afterwards the saturation pressure was extrapolated and the unit scale determined
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automatically. This file can also be saved and loaded into the real time window.

For calibration 2, due to the smaller surface of the load object in comparison to the

sensor surface, not all sensels were loaded. Since there is a total of 1936 sensels on a

surface of 31.36 cm2 a load on 4 cm2 of this sensor equals approximately 247 loaded

sensels. When loaded again the values shown by the sensor were off. The explanation

for this was that some sensels were overloaded during the calibration since the control

measurements were always different by the same negative offset of e.g. 20 %. Once

a sensel is overloaded only qualitative information is given but not the amount of

overload. Hence, the calibration was done again for a lower weight, i.e. 2 kg instead

of the previous 5 kg. Here values such as 36 kPa (when extrapolated from 904 loaded

sensels) were given, e.g. for a 35 kPa sensor. The neoprene patch was excluded from

the procedure since loading was too difficult. As for the equilibration the calibration

could also be carried out by fully loading the sensor with the help of the Zwick strain

frame (calibration 3). The load applied was accurately shown by the Zwick in this

case.

Once acceptable equilibration (loaded with almost maximum weight possible on the

bladder or with the help of the Zwick strain frame - both were tried) was obtained

and good calibration data, i.e. the value mentioned as the maximum on the sensor

had been extrapolated, was found, a measurement was carried out. No smooth data

could be obtained. An example of the best equilibration/calibration, which could

be obtained, can be seen in Figure 4.7. According to the Stefan equation a contour

plot with concentric rings would be expected, where the highest value is close to the

midpoint of the plate. This problem was tried to be solved with help of software (see

next Section), since technically (manually) it did not seem possible.

Calibration & equilibration of the experimental data with the help of a

MATLAB code

During the experimental procedure it remained impossible to synchronize the Tekscan

and the Zwick strain frame or to give a triggering signal to either one of the softwares,
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Figure 4.7: Tekscan frame showing the maximum of a measurement with equilibration 2 and

calibration 2.

which would be understood by the other machine. Manual synchronization was also too

time-consuming. Hence, the data evaluation was more difficult than expected and was

carried out with the help of MATLAB. This program deals with vectors and matrices.

Thus it seemed appropriate since the data from the Tekscan pressure sensor is given

in form of matrices, where the rows and columns equal the map of the sensor. Each

frame represents a different moment in time as can be seen in Figure 4.8.

In order to have the highest accuracy and possibility for synchronization, recordings

of 10 frames per second were taken, allowing recording of 800 frames per film. The idea

was to take the force correctly measured by the Zwick (the distance is, e.g. measured

accurately up to 0.1 µm, analog for the force) and impose a correction factor on the

Tekscan grid.

For the synchronization of the data files, i.e. the data of the Zwick (consisting of the

measured force, covered distance, remaining distance and time passed since trial be-

gin) and the Tekscan pressure sensor (pressure at a given point at a known time), both

files had to be renamed with the commands nametek and namezwick leading to, e.g.

nametek=‘SQF 2-1.asf’ and namezwick=‘SQF 2-1.xls’. The files were non-equilibrated
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Figure 4.8: Example of a Tekscan time frame. The time is shown in the bottom left hand

corner.

and non-calibrated when they were loaded into MATLAB with ”tekreadnocal.m”. Af-

terwards the following M-files were applied (the files can be found in the Appendix):

• timepoint.m*: plots a particular point for all times

• timebase.m*: function to find start, end, and maximum of all curves

• synchonise.m**: function to set a common time frame for the Zwick and Tekscan

data

• zwickforce.m**: script to check the consistency of the Zwick data

• tekcorrection.m: function to do a point-wise automatic calibration of the Tekscan

data to compensate for differing sensitivity between points

• crossfilter.m: function to smooth a matrix based on a cross shaped moving aver-

age kernel

• * these files were loaded automatically when calling synchronise.m
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• ** tekcorrection.m takes care of loading zwickforce.m and synchronise.m

The columns 1 to 9 mentioned in the files represent the following Zwick data (for an

overview, see the list in the Appendix B): column one gives the force exerted on the

Zwick crosshead while it moves downwards, column two shows the distance covered

while descending, column three is the absolute distance, which is calculated by taking

the original distance and subtracting the values of column two from it, and column

four is the time which has elapsed since the beginning of the trial. The remaining

columns five to nine contain data, which was determined with the help of the Stefan

equation, see Chapter 2, such as the theoretical force on the crosshead, the theoretical

plate distance, and values such as ḋ
d3 or its cumulative integral. These calculations

were all done within the zwickforce.m script.

The Stefan equation was assumed to be correct and taken as a reference. The

Chapter carries the title “experimental verification of the FM model”. Hence, the

verification refers to the assembly of the different established theories but not to the

building blocks themselves. These have been extensively verified and are commonly

accepted (see Chapter 3 for further details)

In the following the files are explained in more detail: the analysis of the data

was started by loading the previously renamed Tescan (ASCII) and Zwick (Excel)

files into MATLAB with the help of tekread.m. This script only extracts the desired

information from the files and their headers. In order to compare the curves with each

other and to synchronize them, common points on the curves had to be found, before

a shift of one curve on the other could be carried out. This was done with the help of

the M-file“timebase” (see Table B.1 in Appendix B for quick reference concerning the

content of the files, and see also the Appendix for the complete files). Three points

were targeted at in each curve: the beginning of the curve, the maximum, and the

end. The x and y data is in form of a column vector. The beginning of the curve was

found by approaching the curve from small x values. A threshold value of 10 % was set

meaning that if while moving along the curve the increase from one y-value to the next

is greater than 10 % (this value was empirically determined and agrees with the general
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tolerance for errors; it assures that small changes due to inaccuracy of the system are

not interpreted as changes) it was registered as the start. Continuing along the curve

the endpoint was looked for, meaning the point where the change was not greater

than 10 % (same reasoning as for the start point) anymore. The same procedure was

taken for finding the maximum: the first value was set as the maximum and the loop

continued along the curve until the found value was greater than the maximum, then

this value was set to be the maximum and so on. This process continued until the point,

where the following value was not larger anymore. This point was then determined to

be the maximum. The curves have a steep maximum, meaning that only one frame

in the film corresponds to the maximum and there are no ambiguities, the differences

between the previous and following frame are clearly visible, see Figure 4.9. Here it can

be seen that despite the visible color differences the raw sums of the data are different.

Figure 4.9: Illustration about the doubtlessness of finding the maximum frame: left 179967

raw units, middle 241905 raw units (maximum), right 223283 raw untis.

A second function called timepoint.m (see appendix) made it possible to plot the

Tekscan data taking single points and regarding their development over time. After-

wards the synchronization was carried out in order to set a common time frame for

the Zwick and Tekscan data, see synchronize.m in the appendix. The basis for this

synchronization is the previously mentioned timebase.m function giving three values

of each curve: start, maximum, and end. By taking the end times of both sets of data

and subtracting the Zwick time from the Tekscan time (since the Tekscan measurement

was started earlier this value was bigger) the offset can be determined. Afterwards all
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time values, i.e. the fourth column of Table B.1 of the Zwick files, had to be corrected

by the offset.

The final but most complicated step was the synchronization of the data. This was

done in four separate steps within the tekcorrection.m file:

1. checking of the Tekscan data since variations between the points can clearly be

seen, e.g. Figure 4.8 or 4.9.

2. comparison of Tekscan and Zwick (which is believable due to its accuracy) data

3. construction of a matrix of values for all Tekscan sensels

4. multiplication of the Tekscan frame data by the corrected gain matrix from

point (3)

Physical data like the viscosity (30 Pas) and the radius of the plates (0.05 m) was

included in the file. Then the program files zwickforce.m and synchronize.m were

applied. All old data was cleared. In order to complete step one, see above, a loop

was programmed across all sensels. The radius of the sensor was the first value to be

calculated. Where necessary a change of pressure units from psi to pa was applied.

An offset was assumed for each of the points and added to the values. Afterwards

once again the beginning, maximum, and end of the curves were found by running the

timebase.m file on the Tekscan data. A control was done in order to assure that the

sensels really worked. In step 2 (see list above) the stress in dependence of the radius r

at a certain time was calculated for the Zwick data. Since the Zwick stopped recording

at the moment where the top plate started moving upwards, there was less time data,

hence this had to be carefully looked out for. The endpoint of the Teskcan might

not necessarily be in accordance with the Zwick data, since the Tekscan was stopped

manually once the Zwick had finished the compression. Therefore, if this was the case

the last value of the Zwick was taken as the endpoint and a warning was issued: “not

enough late Zwick time data for (x, y)”. Analogical for early Zwick data. In the third

step the multiplier for the Tekscan data was determined by dividing the value given
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by the Zwick by the value given by the Tekscan. If the offsets of certain sensels were

too big, their multiplier was set to be zero, hence, they were treated as not working

and therefore excluded. In the fourth and last step the corrected gains and offsets were

propagated frame by frame through all Tekscan data.

In order to check the effectiveness of the calibration (i.e. if points at e.g. the same

radial distance measure the same pressures) a cross-filter can be applied afterwards.

This cross-filter function averages over eight adjacent points, and therefore smoothes

the surface of the data’s graphic, see the appendix for the crossfilter.m file.

4.2.6 Trial procedure

At the beginning of each trial, before loading the sample, a routine was carried out

for all trials. Once the sensor had been placed into its form on the plate the separable

rings were inserted into the flute. Then the fluid (highly viscous silicon oil, see above)

was placed onto the plate resembling a small cylinder up to the fill line of 5 mm.

It was left on the plate for around 30 minutes to assure the escape of possible air

bubbles. Afterwards the crosshead was moved down until a height of approximately

5 mm (the current position of the crosshead can be tracked in the Zwick programm

once the zero point has been set correctly, see calibration Section). When the 5 mm

limit was reached, i.e. the top plate touched the fluid and caused a change in force

shown by the Zwick, the actual height of the crosshead, e.g. 5.004 mm, was noted.

This was necessary to do the backwards calculation (if done manually) for the Zwick

data later on. The software of the Zwick only gives the distance it has covered but not

the absolute distance, which is needed for the Stefan equation. Once the upper plate

touched the fluid, the separable ring could be removed because the fluid holds due to

surface tension.

For manual as well as MATLAB calibration it had to be absolutely remembered

that the Tekscan measurement needed to be started before the Zwick recording. Once

the Tekscan had started its recording, the Zwick crosshead could start its downward

movement at the speed of 0.0001 m/s.
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For the pure fluid trials the crosshead moved down until it reached the distance

25 µm, before it went back to the initial length of 5 cm (this is called ”LE” length

in the software, a term originally coming from German and referring to extensional

measurements). For trials with particles the crosshead moved down until the plate

touched the particle.

During the MATLAB calibration it turned out that the expected force determined

with the help of the Stefan equation (e.g. 0.2 kPa) was always lower than the exper-

imental values (e.g 1.7 kPa), suggesting that the plates were in fact closer together

than indicated by the Zwick. This was due to the neoprene patch (the difference in

force corresponded to a gap difference of 1.5 mm, which was exactly the thickness of

the patch). The patch was probably completely compressed during the zeroing process

of the Zwick since it was loaded with a force of 2.5 N before the zero distance was set.

Hence, it was decided to remove the patch since the instrumental equilibration and

calibration where the non-compliant surface posed a problem were no longer necessary

(due to MATLAB processing of the data).

4.3 Trials

For all trials the system was equilibrated and calibrated, except when stated otherwise.

A list of the possible equilibration and calibration methods can be found in Table 4.1.

Not all possible combinations of these methods were carried out since some of them

were not successful and it is not reasonable to conduct a calibration of a previous

unsuccessful equilibration. An overview of the trials carried out is given in Tables 4.2

and 4.3. After a preliminary squeeze flow trial (see no. 0), the first trial series focusing

only on the equilibration and calibration conditions (see Table 4.2) was conducted. A

second series dealing with pure squeeze flow (see Table 4.3, no. 0 - 8) and a third series

incorporating particles (no. 9 - 11) were carried out afterwards. The equilibration and

calibration methods used can be found in the last column of the Table, the numbers

refer to the different methods described in Section 4.2.5 and also Table 4.1. The aim

was to find a smooth curve following the pressure profile theoretically determined with
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Table 4.2: Overview of the equilibration and calibration methods tried (for a full list of the

possible methods see Table 4.1).

no. equilibration and calibration method equ./cal. no.

0 PSP (p1 & p2), sensor 138 kPa none

A upper plate contact for equilibration and calibration, extra

weight, sensor 138 kPa

1/1

A1 upper plate, tissue contact for equilibration and calibration,

extra weight, sensor 138 kPa

1a/1a

B equilibration with the bladder, calibration with cubic objects

plus extra weight , sensor 138 kPa

2/2

C equilibration and calibration between Zwick plates, neoprene,

sensor 138 kPa, sensitivity of the sensor ”high-2”

3/3

C1 equilibration and calibration between Zwick plates, neoprene,

sensor 138 kPa, sensitivity of the sensor ”mid-1”

3/3

the help of the Stefan equation for the pure fluid. In the following cascade of trials

the modifications for each trial were due to the results and conclusion of the precedent

trial. This is explained in detail in the results Section of this Chapter and discussed

afterwards. Trials A - C1 were conducted in order to evaluate different equilibration

and calibration methods. All trials were carried out at least in triplicate in order to

receive an idea about the variation of the retrieved data.

4.3.1 Dimensional analysis

A dimensional analysis aiming at the compatibility of the experimental set-up with

the in-mouth situation was done. The dimensionless number, which was to be found,

incorporated the variables contained in the Green functions, i.e. the pressure (thresh-

old) ∆p, the fluid viscosity η, the plate velocity ḋ(t), the plate distance d(t), and the
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Table 4.3: Overview of squeeze flow trials with (no. 9 - 11) and without (0 - 8) particles.

no. trial description equ./cal. no.

0 parallel steel plates (PSP) (p1 & p2), sensor 138 kPa none

1 PSP (p1 & p2), compliant top plate, sensor 138 kPa 1/1

2 PSP (p1 & p2), compliant top plate, sensor 138 kPa 2/2

3 PSP (p1 & p2), compliant top plate, levelling film, sensor

138 kPa

2/2

4 PSP (p1 & p3), compliant top plate, milled out center piece

of the plate (new plate, named plate 3), sensor 138 kPa

2/2

5 PSP (p1 & p3), compliant top plate, sensor 138 kPa none:(MATLAB)

6 PSP (p1 & p3), sensor 138 kPa none:(MATLAB)

7 PSP (p1 & p3), sensor 138 kPa 3/3

8 PSP (p1 & p3), sensor 345 kPa 3/-

9 PSP (p1 & p3), sensor 138 kPa, particle with 1 mm radius none

10 PSP (p1 & p3), sensor 138 kPa, particle with 1 mm radius 3/-

11 PSP (p1 & p3), sensor 345 kPa, particle with 1 mm radius,

fluid 300 Pas

3/3
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particle radius a. The following units according to SI units were considered

• [∆p ] = Pa

• [η] = Pas

• [ḋ(t)] = m
s

• [d(t)] = m

• [a]= m

With these units Table 4.4 can be obtained from which the matrix A can be taken

when considering the last three columns according to Rao (1996).

A =




1 1 0

−1 −1 1

−2 −1 0


 (4.1)

The remaining two columns make up matrix B

B =




0 0

1 1

−1 0


 . (4.2)

In order to obtain a third matrix C the inverse of matrix A

A−1 =




−1 0 −1

2 0 1

1 1 0


 (4.3)

needs to be multiplied with matrix B before the transpose is taken of this matrix

product and the result is multiplied by minus one.

C = −(A−1 B)T =



−1 1 −1

0 0 −1


 (4.4)
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Table 4.4: Variables and units for the dimensional analysis.

ḋ d ∆p η a

M 0 0 1 1 0

L 1 1 -1 -1 1

T -1 0 -2 -1 0

Table 4.4 has to be extended by this matrix by placing it underneath the rows,

which correspond to matrix A. The part underneath matrix B is extended by an

identity (square matrix). The new rows are labelled with π and its ascending indices

(according to the Buckingham π-theorem (Buckingham, 1914)). This leads to Table 4.5

from which the dimensional quantities π can be easily read off, leading to

π1 = ḋ1 d0 ∆p−1 η1 a−1 =
ḋ η

∆p a
(4.5)

or the first dimensionless number and

π2 = ḋ1 d0 ∆p−1 η1 a−1 =
d

a
(4.6)

for the second dimensionless number.

Table 4.5: Variables and units for the dimensional analysis.

ḋ d ∆p η a

M 0 0 1 1 0

L 1 1 -1 -1 1

T -1 0 -2 -1 0

π1 1 0 -1 1 -1

π2 0 1 0 0 1

Only π1 is further considered and referred to as π since π2 is only a length scaling not

leading to any information considering pressure sensitivity or experimental variation.
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If the dynamic viscosity in equation (4.5) is written in form of the kinematic vis-

cosity µ and density % and at the same time the equation is expanded by a factor ḋ it

can easily be seen that the dimensionless number used is equal to the product of the

reciprocal product of the Euler and Reynolds number.

π1 =
ḋ η

∆p a
=

µ % ḋ
a

∆p
=

% ḋ2 µ

ḋ a

∆p
=

% ḋ2

∆p

µ

ḋ a
=

1

Eu

1

Re
(4.7)

Since it is a dimensionless number the inverse of the number, i.e. the product of the

Reynolds and Euler number can be taken. In the following discussion π = Eu Re.

When evaluating in-mouth (subscript ‘im’) and instrument (subscript ‘instr’) pa-

rameters this number has to be the same due to its dimensionless character. For the

in-mouth condition a pressure threshold of 10 kPa was assumed according to Johansson

& Olsson (1976). More recently Booth et al. (2003) assumed 0.1 N for perceptive fields

of 20 µm2 leading to 5 kPa as a threshold value for in-mouth pressure, which is of the

same order of magnitude. The velocity at which tongue and palate approach each other

was set to be 10−1 m/s (deducted from data of Mioche et al. (2002)). Furthermore it

was assumed that fluids slightly higher viscous than water have the tendency to contain

particles, i.e. the viscosity was thought to be 10−2 Pas. The particles investigated were

of 100 µm radius. This lead to the following number for πim

πim =
104Pa 10−4m

10−2Pas 10−2m/s
=

1

10−4
= 104. (4.8)

For the instrumental number different parameters were taken: the pressure threshold

was assumed to be 3 kPa, which equals the sensitivity of the sensor, when taking into

account the internal threshold and an additional security. Furthermore the plates were

moving together at a speed of 0.0001 m/s in all trials. The viscosity of the sample fluid

was 30 Pas in most trials, and the particle size 0.001 m in radius. This lead to the

following relation for the instrumental set-up

πinstr =
3 103Pa 10−3m

103Pas 10−4m/s
=

1

10−4
= 104. (4.9)
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Since both values for π result in the same value the trial is generally suitable to prove

the in-mouth situation. Unfortunately the indication on the sensor about its resolution

was not reliable. If a sensor with the mentioned resolution (i.e. noise maximum of

3 kPa) can be found a realistic extrapolation from the experimental to the in-mouth

situation should be possible.

4.4 Results & discussion of the trials

The trial series “0” was carried out for the general evaluation of the system. The idea

was to check if the sensor records any changes when a fluid is posed on it and squeezed

together between the parallel plates (final distance < 1 mm). No equilibration or

calibration was done for this trial. A pressure profile could be seen (see Figure 4.10) in

the recording but the measurement was noisy. The white line represents the midpoint

of the sensor. Going right and left from the midpoint on the x-axis the pressure profile

should smoothly decay according to the Stefan equation. The variations from one

cell to the next were of up to 50 raw units (knowing that the measuring range of the

sensor is 138 kPa this can be determined to be approximately 30 kPa with the law of

proportion).

For a sensor with a measuring range of 138 kPa and a resolution of 256 raw units the

pressure variations from one cell to the next should be no more than 500 Pa (1.5 kPa if

the preset threshold of the sensor, i.e. 3 raw units, is taken into account). In order to

obtain this accuracy, equilibration and calibration were done. One complete series (see

Table 4.1 and Table 4.2 for explanation of the methods) was carried out to investigate

these two trial parameters.

4.4.1 Equilibration and calibration trials (A - C1)

As described in Section 4.3, the sensor was loaded with different contact surfaces for

the equilibration. The results can be seen in Figure 4.11. For loading with the steel
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Figure 4.10: Pressure profile across the sensor middle shortly before the maximum pressure

was reached (the white line represents the midpoint of the sensor), the system

was unequilibrated, uncalibrated, trial 0.

plate (equilibration method 1, trial A) not a lot of sensels were stimulated (left). More

sensels were stimulated when a tissue was placed between the plate and the sensor

(trial A1) or when equilibration method 2, i.e. equilibration with the bladder (trial B),

was used.

Figure 4.11: Comparison of different equilibration methods, from left to right: method 1

(steel plates), method 1a (steel plates and tissue), and method 2 (bladder).

For the calibrations following the above mentioned equilibrations, the results were
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similar. Loading the steel plate (1.423 kg) in direct contact with the sensor with

additional weight of 1.5 kg, so that a total load of 29.4 N was imposed on the sensor

lead to an extrapolation of the measuring range of 596 kPa (trial A). This is unrealistic

for a sensor labelled 138 kPa (explanation see above). Calibration for the plate and

tissue set-up lead to extrapolation of 109 kPa (trial A1). This value was closer to the

real value but still not correct. The calibration for the bladder equilibrated trial took

place with caoutchouc cubes of 2 x 2 cm2 surface area (the previously mentioned steel

cubes did not result in a satisfactory contact area). The contact area of 4 cm2 resulted

in 256 loaded sensels, which is very close to the 251 sensels, i.e. the corresponding

value for this contact area. The sensor extrapolated a saturation pressure of 138 kpa,

i.e. the value noted on the sensor (trial B). This seemed like a very good result but

not when keeping in mind that the equilibration file, which is ultimately the basis to

see pressure disturbances, was not smooth (see Figure 4.11, right).

In the next step another equilibration was applied (trial C). For this the plates were

mounted to the Zwick texture analyzer, a compliant surface (i.e. a neoprene patch

such as a mouse-pad) was placed between them before they were moved together until

contact was reached. In this case the load was distributed very evenly and at the same

time the exact load could be read off from the Zwick. Another feature was tested in

the framework of this trial: the sensitivity settings in the acquisition parameter menu

of the Tekscan sensor were changed from ”high-2” to ”med-1” sensitivity (trial C1)

from one trial to the next. The results can be seen in Figure 4.12. (The empty line in

the right hand figure is due to a broken wire of the sensor). No significant difference

can be seen between the graphs.

4.4.2 Squeeze flow trials (1 - 11)

In the following step actual squeeze flow measurements were carried out. Since these

turned out to be rather difficult even without particles, particles were only incorporated

at the very last step (trials 9 and 10). The first trial in Table 4.3 is the preliminary trial

mentioned previously but since it dealt with squeeze flow it is mentioned in this Table
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Figure 4.12: Equilibration method 3 (Zwick) and the influence of different sensitivity settings

(high-2 and med-1) on the evenness of the equilibration file.

for completeness. Trial 1 used the calibration with the two steel plates (calibration

method 1), but for the measurement a compliant surface (neoprene) was attached to

the top plate. Trial 2 was identical except that equilibration was carried out with the

bladder (equilibration method 2) and calibration with the caoutchouc cube (calibration

method 2). Neither one of these trials resulted in less noise than trial 0, i.e. the trial

without any equilibration or calibration.

The third trial (equilibration/calibration 2/2) differed by the added levelling film

from the other trials (see Section 4.2.4). Still, even with the film no satisfactory smooth

squeeze flow profile was obtained. In addition to that the film did not stay in its place

and fluid went underneath, therefore a flat surface, which is absolutely necessary for

parallel plate squeeze flow, could not be guaranteed.

For trial 4 (equilibration/calibration 2/2) the shape of the sensor was milled out from

the plate in the thickness of the sensor (see Section 4.2.4). No significant differences

from the 0 trial could be noticed, therefore, the graphs are not presented here.

Trials 5 and 6 were done without equilibration and calibration since this was done

afterwards with the help of MATLAB (see Section 4.2.5). The difference between trial 5

and 6 was that the neoprene patch was removed for the sixth trial due to the reasons

mentioned in Section 4.2.6. The differences between the uncalibrated (Figure 4.13) and
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calibrated (Figure 4.14) profile were not satisfactory. The graphs are nearly identical.
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Figure 4.13: Pressure profile of uncalibrated squeeze flow (MATLAB) without neoprene

patch.
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Figure 4.14: Pressure profile of squeeze flow calibrated retrospectively with MATLAB, with-

out neoprene patch.
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Not even the theoretical equilibration and calibration, which took into account the

accurate and believable force data of the Zwick strain frame resulted in a profile smooth

enough to include a particle, which could effectively be seen.

Therefore, in one more step (trial 7) the equilibration and calibration were carried

out with the Zwick strain frame (see equilibration/calibration method 3/3). Different

settings for the sensitivity were tried, starting with ”default” and going up to ”high-2”

(maximum) sensitivity. As already stated previously for the pure equilibration and

calibration this did not significantly change the outcome. Figures 4.15 and 4.16, which

each show three repetitions of the same trial, make it possible to illustrate the influence

equilibration and calibration have.

Figure 4.15: Squeeze flow between steel plates, not equilibrated or calibrated (trials as trip-

licates).

Attention is necessary because at the first look Figure 4.16 appears smoother and

less noisy, but it has to be kept in mind that here the fluctuations are in kPa and there

are fluctuations of around 30 kPa. The scale of Figure 4.16 is in raw units of pressure

(the trial is not calibrated, hence, it is not possible to show units) so that that the

noise level is in fact equal in both, when determined with the law of proportion.

At the same time the curves show that variation of the data is enormous. The three
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Figure 4.16: Squeeze flow between steel plates, equilibrated and calibrated according to 3/3.

curves in each graph represent identical trials. Hence, the curves should be the same.

Even if the curves are not exactly at the same moment in time, they should still show

the same profile with a certain offset. In order to check variation of the data in more

detail, the data of trial 7 was exported into Excel and synchronized so that the three

curves had the same start and end point. The curves were compared at the same

moment in time, i.e. at a plate distance of 1.53 mm (see Figure 4.17). The Figure

shows once more that the result is very noisy. The high fluctuations are not shown

for the same sensels otherwise it could be concluded that certain sensels have a large

offset. No regularity could be found in the data.

Up to here all trials were carried out with the 138 kPa (20 psi) sensor. As another

option the 345 kPa (50 psi) sensor was used (trial 8) in order to see at which plate

distance the profile is smooth enough to possibly see a particle. The 345 kPa sensor

was only equilibrated (equilibration method 3). The particle size necessary to have a

signal larger than the sensor noise needed to be determined afterwards. The smoothest

profile that could be found can be seen in Figure 4.18, but even here raw pressure

fluctuations of 35 units (equalling to approximately 45 kPa) could be found.
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Figure 4.17: Squeeze flow between steel plates, calibrated according to 3/3.

Despite the fact that the trials with pure fluid were already very unsatisfactory a

few trials were carried out in order to try the experiment with particles, i.e. to see

if the movement of a particle can actually be seen on the sensor. Knowing that a

particle of 0.001 m (1 mm) radius should cause a significant pressure field disturbance

as determined at the end of Chapter 3, 1 - 3 particles of this size were added to the fluid

(trial 9) before moving the upper plate down. They were placed into different quadrants

of the sensor (Figure 4.19) in order to be sure they would not influence each other (for

this case the theory is not valid). They were also placed in the outer triangle of the

quadrant since the particle has more influence in this area (see Chapter 3). At least one

quadrant was always left empty in order to have the zero comparison. Since the sensor

allows evaluation of the data in several different manners one being the possibility to

draw a horizontal line across one row of the patch, a gradually mounting line with its

highest point in the middle due to the fluid profile was expected. There should have

been a slowly increasing peak where the particle(s) is/are since the disturbance caused

by the particle was supposedly to this extent larger. Ideally the radial movement of
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Figure 4.18: Investigation of a pressure sensor with a larger measuring range, 345 kPa, search

for the smoothest profile.

the particle should be tracked across the sensels. If the sensor was sensitive enough the

positive pressure in front of the particle and the negative pressure behind the particle

relative to the fluid flow curve should even be seen. At the end the sensel should be

saturated because the plates were moved so close together so that the particle got

stuck. This was done in order to be able to know where to check for the particle

disturbance when regarding the film. Trial 9 was carried out on an unequilibrated

basis, whereas trial 10 investigated the same particle containing squeeze flow under

equilibrated (equilibration method 3) conditions.

Figure 4.19: Particle layout on the sensor: one quadrant was left free for comparison purposes.
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In both cases only one particle was included in the third (when counting clockwise)

quadrant. The development of the flow field in time can be seen in Figures 4.20 and

4.21. Since not very many changes could be registered over time for the equilibrated

situation only four frames were included. For both trials it can be concluded that the

particle is only registered when it actually touches the plate because there are only

four frames, i.e. one second, between the moment where no particle is seen and when

saturation (red) occurs.

Figure 4.20: Tracking of a particle placed at the bottom right corner through a fluid under

non-equilibrated conditions.

In trial 11 a fluid with higher viscosity, i.e. 300 Pas was used. The results can be

seen in Figure 4.22. Pressure differences can be seen between the middle and the edge

but neither the expected concentric rings nor the particle can be seen.

These findings clearly demonstrate that the Tekscan pressure system is not suitable

to fulfill the experimental verification of the mathematical model despite the claims of

the supplier. All possible equilibration and calibration were done without any satisfac-

tory result. The particle sizes, which would according to the mathematical theory with
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Figure 4.21: Tracking of a particle placed at the bottom right corner through a fluid under

equilibrated conditions (equilibration method 3).

sureness cause a visible signal (hundreds of kPa), are in the µm-range and therefore

impossible to handle as single particles. The resolution of the sensor is not sufficient to

see variations between individual sensels as it would be necessary in order to actually

track a particle.

Even if it was possible to handle particles in the µm-range, the resulting pressure

fluctuation determined in Chapter 3 are orders of magnitude larger, but these stresses

occur at very small surfaces. Hence, when the sensel on the sensor is stimulated this

large stress might get evened out due to the surface of the sensels because the sensel

does not differentiate between full surface stimulation and partial stimulation. The

pressure will then be shown as a much smaller stress, which might not be capable to

differ from the noise.

Yates et al. (2001), who used a similar set-up and the same sensor for their investi-

gations on squeeze flow of pastes and also worked with the Stefan model obtained the

curves shown in Figure 4.23. When evaluating the measured data Yates et al. (2001)

used an algorithm, which averaged over the circumference. This was not possible in

this study since such an algorithm would have also averaged out the peak caused by

the presence of the particle. When looking at these curves it also becomes evident that

the system shows very high fluctuations. The measuring points shown in the graphic
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Figure 4.22: Squeeze flow for highly viscous (300 Pas) fluid containing a particle of 1 mm

diameter.

already represent averages, still they fluctuate around the theoretical curves.
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Figure 4.23: Squeeze flow trials conducted by Yates et al. (2001) with a similar trial set-up.

The curves correspond to different plate distances in mm during the squeeze

flow.
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The dimensional analysis shown in Section 4.3.1 illustrates that generally with the

parameters calculated with the help of the mathematical model the trial according to

the described set-up should be possible and finally the extrapolation to the in-mouth

situation as well.



Chapter 5

Conclusions and future aspects

The aim to understand textural perception in mouth is consistent with the claim made

by Wansink (2005) concerning product development:“Just as marketing is too impor-

tant to be left only to marketers, product development is too important to be left only

to technical product developers”. The reason why a lot of new products fail is because

the developers loose sight of the consumer. Products might be improved with great cre-

ativity and award-winning technology but if they do not correspond to the consumers’

needs, e.g. their preferred texture sensation, they will not be successful. This makes it

evident why it is necessary to understand texture perception. Nevertheless very little

is known about how the human mouth detects texture with the help of tongue and

palate. Even for differences in the geometry of objects to be perceived in the mouth,

such as differences in height and diameter, only little information is available.

The main aim of this work was to understand the mechanisms of texture perception.

This is in order to be able to design foods with tailored texture properties or to adapt

existing methods for the analysis of food texture to in-mouth conditions in the future.

The sensitivity for geometrical differences and the detection mechanisms in the oral

cavity, as discussed in Chapter 2, are the basis for the explanation of sensory attributes

such as ”grittiness”. Chapter 3 and 4 deal with the perception of grittiness, which

from a fluid dynamics point of view was postulated to be the perception of stress field
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fluctuations. For this, existing theories were assembled in a new way in order to explain

perturbations in a fluid caused by the presence of the particle.

This makes it possible to give answers to the six questions posed at the end of

Chapter 1. The first three questions referred to the geometrical resolution in-mouth

and the remaining questions to the perception of grittiness:

How sensitive is the human mouth to geometric size differences when

evaluated between tongue and palate?

The in-mouth sensitivity in the horizontal or tangential direction is at least 1 mm

and is consistent with anatomical data, such as the spacing of the mechanoreceptors.

In vertical direction a discrimination threshold of 25 µm was obtained. This value

depends on the thickness range the disks originate from and on the structural resistance

(thickness, diameter, and material).

What are the detection processes?

For the detection of the standard disks an unexpected non detectable range for which

the differentiation threshold was much larger than 25 µm resulted. Since differentiation

above and below this range was possible it led to the hypothesis that there is a coex-

istence of two detection processes: Bending for thin and flexible disks (up to 125 µm

in thickness) and impressing into the tongue for thick or stiff disks (above 200 µm in

thickness), both for a material stiffness of 480 MPa. In the interval between these to

ranges forces, which are physiologically not possible, would be needed for the deflec-

tion. At the same time the soft papillae on the tongue inhibit the sensitive judgement

of the tongue deformation unless they are completely compressed (this is consistent

with the papillae height, which is approximately 200 µm).

How can these processes be expressed with the help of mathematical

models?

The process of alignment was described with a mathematical model based on Tim-

oshenko’s linear plate theory (Timoshenko & Woinoswky-Krieger, 1959).
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This model allowed the calculation of the normal force intensities exerted on the

disks as a function of the radius. Additionally, material parameters for additional

trials aiming at the confirmation of the hypothesis could be determined. Evaluation of

a stiffer and more compliant material confirmed the hypothesis about the existence of

two detection processes, hence, validating the mathematical model.

Of course this does not mean that there are no other possible ways of approaching

or explaining this problem, but so far no approach has lead to a more plausible expla-

nation. Additionally the in vitro confirmation of the disk bending, i.e. application of

loads on the disks ex vivo has not been carried out within the framework of this thesis.

Still a two-fold confirmation was conducted in order to test the mathematical model,

which confirms the theory.

There are certain limitations of the proposed model. So far the process of impressing

the disk into the tongue has not been modeled. This is mainly due to the lack of

knowledge about the mechanical properties of the tongue. It is inevitable for these

calculations but very difficult to determine due to the non-static character of the tongue

body.

How does a human being perceive grittiness in the oral cavity? Could it

be the perception of stress field perturbations? What do these perturba-

tions look like?

The hypothesis was that particle caused stress field variations in the fluid are re-

sponsible for the sensation of “grittiness” in liquid foods.

The stress distribution for pure squeeze flow (no particles), which was described

with the pressure form of the Stefan equation was considered as the blank value. This

results in a parabolic profile of the pressure when plotted in dependance of the radius.

In order to be able to identify particle related disturbances, these had to be larger than

the noise of the sensor, which was attached to the bottom plate in a trial set-up. The

force due to the presence of a particle was determined with Faxen’s law. The Green

functions incorporating this point force allowed the characterization of the disturbed
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stress and velocity field. With the experimental parameters used, i.e. fluid viscosity

of 30 Pas, velocity of the upper plate = 10−4 m/s, plate distance of 0.002 m, and a

plate radius of 0.05 m, it could theoretically be determined that a particle of 0.001 m

radius should cause stress fluctuations of at least 1000 kPa. The sample point has to

be chosen so that it is not directly underneath the particle as this would result in a

zero pressure due to the characteristic disturbance: the pressure is positive in front of

and negative behind of the particle (with reference to the flow direction of the fluid).

These stress field disturbances should be spotted by a sensor sensing normal stresses,

which has an internal threshold of 3 raw units, with the resolution of 256 raw units

and a pressure range of 138 kPa, since this leads to a noise threshold of approximately

1.5 kPa. Unfortunately the true noise level was much higher.

How well do the mathematical models agree with experimental data?

Squeeze flow trials with particles, which finished by clamping the particle between

the plates in order to show the particle position on the sensor were not able to track

the movement of the particle before it touched the plate. The particles were positioned

in the outer areas of the sensor. The fluid stress decays towards the edge of the plate,

hence, the particle influence is enhanced. Smaller particles show larger fluctuations

because they allow the plates to come closer together. Still, the experimental handling

of single particles in the µm range is tedious.

A dimensional analysis (see 4.3.1) was carried out in order to compare the experi-

mental set-up to common in-mouth conditions. In both cases the dimensionless number

Eu Re was in the range of 10−4. Hence, the experimental set-up is a reasonable ap-

proach in order to understand in-mouth processing, and the hypothesis that grittiness

is sensed through stress field fluctuations possibly confirmed. Due to the high noise

threshold of the sensor the experimental set-up did not work. For the future, a more

sensitive means to measure the stress field fluctuations could be liquid crystals on top

of a glass plate. The stress fluctuations indicated by the crystals need to be filmed

with a camera from underneath the glass plate.

Once an experimental set-up works, other aspects such as the particle shape should
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be taken into account. Particles in foodstuffs are often not spherical but rather irregular

in shape (e.g. sugar crystals). Furthermore the fact that the palate is not a flat plate

should be taken into consideration. The plates of the squeeze flow set-up could also be

covered with different surfaces.

In the present study the sensation of stress field perturbations were assumed to be

responsible for the perception of grittiness. Engelen et al. (2005) in contrast supposes

that the particles are rather sensed by the means of friction or vibration. This would

give another direction of possible investigation.

After the experimental verification of the theory, an in-vivo study should be con-

ducted. For this, particles have to be incorporated in fluids of viscosities, which are

realistic for consumption (e.g. coffee creamer 10−2 Pas) and then evaluated by test

subjects. Here even particle sizes in the µm range can be used, which also makes the

handling much easier. The sensory study, carried out as a triangle test, has to show

that the particles causing perturbations in the theoretical models also lead to a gritty

feeling in the mouth.

The overall goal to keep in mind should be to do accurate measurements

of physical food properties and to determine how these relate to the dynamic

perception of texture rather than to mimic sensory processes (Foegeding

et al., 2003).
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Appendix A

Mathematica code for the fluid

mechanical model

In the following the Mathematica code (written in Mathematica 5.0) used in chapter 3

is listed. This code was used in order to determine the pressure profile for pure squeeze

flow (Stefan), but also to determine the point force (Faxen), which was incorporated in

the fluid (Green) and the resulting stress field and velocity field disturbances. Graphs

were plotted in order to compare this data, which was finally used to set the parameters

for the experimental validation.
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Particles in Fluids
Julia and Adam

Introduction

Use of the single particle singularity functions from Blake et al to calculate the pressure distribution due to
the presence of a particle in a squeeze flow between plates. The following  two definitions are needed to
avoid automatic replacement with later definitions.  Saves from restarting the kernel every time the file is run.

Clear@rD
Clear@RD

Remove@ShowLegendD

Needs@"Graphics`Legend`"D

Newtonian Fluid between parallel moving plates

Stefan  equation  for  flow  between  a  pair  of  parallel  plates  at  a  distance  2  h  apart.  Cylindrical  polar
coordinates (r,z with q symmetry) with z=0 at the line of symmetry between the two plates.

stefanvelocity = ustefan →

Function@8r, z, t<, 81êH2 ηL HD@pstefan@r, z, Rp, tD, rDL Hz^2 − h^2L, −D@h@tD, tD<D
stefanpressure = pstefan → Function@8r, z, Rp, t<,

3 η D@h@tD, tDêH4 h@tD^3L Hr^2 − Rp^2LD

ustefan@r, z, tD ê. stefanvelocity
% ê. stefanpressure

Faxen's First Law

Calculates the effective force experienced by a particle in a fluid based on the undisturbed (i.e. no particle in
the fluid) velocity and pressure fields. 

Faxen = F → Function@8uparticle, ustefan<,
6 π η a Hustefan@r, z, tD − uparticle@r, z, tDL + η π a^3 ∆@ustefan@r, z, tDD D

Because it is a low Re flow, the Stokes equation “p=h Du can be used to directly replace the Laplacian h Du
of the velocity field by the pressure gradient “p.
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Evaluate@HF@uparticle, ustefanD ê. FaxenL ê.
∆ → Function@8u<, 1ê η grad@pstefan@r, z, Rp, tDDDD

operator = grad → Function@8x<, 8D@x, rD, D@x, zD<D
Faxen2 = F → Function@8uparticle, ustefan, pstefan<, Evaluate@%%DD

HF@uparticle, ustefan, pstefan, 8r, z, Rp, t<D ê. Faxen2L;
% ê. operator;
Faxen3 = F → Function@8uparticle, ustefan, pstefan<, Evaluate@%DD

HF@uparticle, uparticle, pstefanD ê. Faxen3L
particleforce = Fp → Evaluate@% ê. stefanpressureD

Which is the force experienced by a particle in the Stefan flow between the parallel plates.  N.B. only the
pressure gradient matters since the shear part vanishes because the particle convects at the same speed
as the fluid.  The force on the particle thus depends only on r and the instantaneous position and velocity of
the plates.
We also create another function that works in coordiantes fixed at the bottom of the plate for use at the end.
pv is velocity of the plates,  halfgap=h[t] which is half the plate separation at time t

xforce = Fx → Function@8xp, a, pv, μ, halfgap<,
Evaluate@HHFp ê. particleforceL@@1DDL ê. 8r → xp, h@tD → halfgap, h'@tD → pv, η → μ<DD

Particle in a fluid close to a boundary

This is a particle in a fluid close to a planar boundary with no slip at the boundary.  The coordinate system
has its origin at the particle centre.  There are results for the pressure and the velocity field available in
Blake and Chwang 1973, which will allow the calculation of the stress.  The pressure field will contribute
directly, but the velocity field will contribute through the devaitoric part of the stress tensor. i.e. the differential
of the veclocity field will also contribute to the stress tensor.  For the moment the velocity field contribution
will be ignored and the focus will  just be on the pressure part. 
OseenBlake is the complementary vector for the scalar product with force vector
len[ r j ] is the length of the vector r j  from the centre of the particle
The stationary boundary is the plane of z=0, with the origin at the centre of the plates (i.e. r=0 for the Stefan
equation - don't confuse with r below which is something else!). 
x is the vector from the origin to the sample point 
r is vector from the sample point x to the position of the real particle
R is vector from the sample point x to the position of the image particle
CAREFUL - THIS IS IN CARTESIAN COORDINATES SO ALL 3 X,Y,Z DIRECTIONS are needed

particlepressure = ppart → Function@8F<, Dot@FêH4 πL, OseenBlake@r, R, xDDD
distance = len → Function@8x<, HDot@x, xDL^H1ê2LD
OBvector = OB → Function@8r, R, x<, rêlen@rD^3 − R êlen@RD^3D
OBtensbit = tens → Function@8x<, −2 x@@3DD 881, 0, 0<, 80, 1, 0<, 80, 0, −2<<D
lastbit =

lastvec → Function@8R<, 8D@R@@3DD, xD, D@R@@3DD, yD, D@R@@3DD, zD<êlen@RD^3 −

3 R@@3DDê len@RD^5 Dot@88D@R@@1DD, xD, D@R@@1DD, yD, D@R@@1DD, zD<,
8D@R@@2DD, xD, D@R@@2DD, yD, D@R@@2DD, zD<,
8D@R@@3DD, xD, D@R@@3DD, yD, D@R@@3DD, zD< <, 8R@@1DD, R@@2DD, R@@3DD<DD

OBtensor = OseenBlake → Function@8r, R, x<, OB@r, R, xD − Dot@tens@xD, lastvec@RDDD

Note that lastvec simplifies considerably
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Clear@RD; Clear@rD;
lastbit = lastvec →

Function@8R<, 80, 0, 1<êlen@RD^3 − 3 R@@3DD 8R@@1DD, R@@2DD, R@@3DD<ê len@RD^5 D

Combining all terms together leads to the pressure function

Off@Part::partdD;
OB@8r@@1DD, r@@2DD, r@@3DD<, 8R@@1DD, R@@2DD, R@@3DD<, 8x, y, z<D ê. OBvector
Dot@tens@80, 0, r@@3DD<D, lastvec@8R@@1DD, R@@2DD, R@@3DD<DD ê. lastbit ê. OBtensbit
OBtensor = OseenBlake → Function@8r, R, x<, Evaluate@%% − %DD
OseenBlake@r, R, 8x, y, z<D ê. OBtensor;
particlepressure =

ppart → Function@8r, R, F<, Evaluate@Dot@8F@@1DD, F@@2DD, F@@3DD<êH4 πL, %DDD

blakestress = blaketauzz →

Function@8x, y, z, px, py, pz, imx, imy, imz, h, F1<, Evaluate@2 μ %@@2DD DD

for comparison the same procedure is carried out just for a single particle (Blake Chwang p. 24, equation
2)...BEWARE F is a vector here!!!

singleparticlepressure = sppart → Function@8fx, x, y, z<,
Evaluate@Dot@8fx, 0, 0<êH4 πL, r êlen@rD^3 ê. r → 8x, y, z< ê. distanceDDD

ü Test for a particle which is above the origin

Choose the r axis to be aligned with the x axis so that the force is only in the x direction.

ppart@8−x, −y, h − z<, 8−x, −y, −h − z<, 8fx, 0, 0<D ê. particlepressure

Tells the pressure anywhere in x, y ,z (the coordinate system is fixed to the center of the bottom plate)
Now the effect of the particle on the boundary plane at z=0  will be calculated.
The force in the equation is the force Fp from Faxen's law
If the force is set equal to one and z is left as it is:  the pressure anywhere is
If z=O--> pressure 0

ppart@8−x, −y, h − z<, 8−x, −y, −h − z<, 81, 0, 0<D ê. particlepressure

ppart@8−x, −y, h<, 8−x, −y, −h<, 81, 0, 0<D ê. particlepressure

Now the comparison for a single particle:  Here (x, y, z) has it's origin at the center of a particle (not the
plates).  But the position of the particle is (0,0,a) in the plate based coordinate system is such that the
pressure field in plate coordinates comes from    

sppart@fx, x, y, z − aD ê. singleparticlepressure

Hence  there  is  a  pressure  disturbance  around  the  particle,  which  is  positive  upstream  and  negative
downstream of the particle motion.  Since the plate is at z=0 the function describing the pressure field on a
plate is 

platefield = sppressfield →

Function@8fx, x, y, a<, Evaluate@sppart@fx, x, y, aD ê. singleparticlepressureDD
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sppressfield@1.8 ∗ 10^−6, x, y, 2. 10^−4D ê. platefield
Max@Table@sppressfield@1.8 ∗ 10^−6, x, y, 2. 10^−4D ê. platefield,
8x, −0.05, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD

legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@
"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D

ShowLegend@ContourPlot@sppressfield@1.8 ∗ 10^−6, x, y, 2. 10^−4D ê. platefield,
8x, −0.05, 0.05<, 8y, −0.05, 0.05<, TextStyle → 8FontSize → 14<D,
8legndB, LegendLabel −> "p @PaD", LegendPosition → 81.2, −0.6<,

TextStyle → 8FontSize → 14<, LegendSize → 81.1, 1.5<<D

Tested for real values:

Plot3D@−sppressfield@1.8 ∗ 10^−6, x, y, 2. 10^−4D ê. platefield,
8x, −0.001, 0.001<, 8y, −0.001, 0.001<, AxesLabel → 8x@mD, y@mD, p@PaD<,
PlotRange → All, TextStyle → 8FontSize → 17<, PlotPoints → 8100, 100<D

It has to be determined, where the particle is in the Stefan flow system:
what is x, y, z in particle based coordinates is (0,0,a) (a is what used to be h but could be confused with h
(=plate distance in Stefan), therefore renamed "a")
in plate based coordinates, this makes it (0,0,a-z) in cylindrical polar coordinates of the Stefan situation,
calculate the velocity at this point for Stefan. h is what is referred to as "d" in the mathematical chapter.

Since the pressure equation at a sample point resulted in zero pressure the velocity gradient has to be
looked at..
For this only the first part (representing a particle in an infinite fluid) of the equation will be taken. 
Now the previously mentioned contribution of the velocity field to the stress tensor will be investigated in the
following       

Next steps
1)Take the gradient of the velocity:
2)Test for a particle which is above the origin

1): free space Green's function:

r = 8x − px, y − py, z − pz<
R = 8x − imx, y − imy, z − imz<
truelength = tl → Function@8w<, Sqrt@w@@1DD^2 + w@@2DD^2 + w@@3DD^2DD
uzz m H1 êH8 π μLL HHr@@1DD F1 êtl@rD^3L − H3 Hr@@3DDL^2 r@@1DD F1 ê tl@rD^5L L
% ê. truelength
freespacestress = fstauzz → Function@8x, y, z, px, py, pz, F1<, Evaluate@2 μ %@@2DD DD

Plot this out for a particle above the origin and an arbitrary force of 1 (This is in the plane of xy - i.e the
bottom plate)

Max@Table@fstauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. freespacestress,
8x, −0.05, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD

legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@
"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D

ShowLegend@ContourPlot@fstauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê.
freespacestress, 8x, −0.05, 0.05<, 8y, −0.05, 0.05<, TextStyle → 8FontSize → 14<D,

8legndB, LegendLabel −> "τzz@PaD", LegendPosition → 81.2, −0.6<,
TextStyle → 8FontSize → 14<, LegendSize → 81.1, 1.5<<D
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Plot3D@fstauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. freespacestress,
8x, −0.001, 0.001<, 8y, −0.001, 0.001<, AxesLabel → 8x@mD, y@mD, τzz@PaD<,
PlotRange → All, TextStyle → 8FontSize → 17<, PlotPoints → 8100, 100<D

Now the same thing for the Blake (bounded version)

r = 8x − px, y − py, z − pz<
R = 8x − imx, y − imy, z − imz<
F = 8Fx, 0, 0<
truelength = tl → Function@8w<, Sqrt@w@@1DD^2 + w@@2DD^2 + w@@3DD^2DD
uzzblake m

H1êH8 π μLL Hr@@1DD F1êtl@rD^3 − R@@1DD F1êtl@RD^3 − 3 r@@3DD^2 r@@1DD F1êtl@rD^5 +

3 R@@3DD^2 R@@1DD F1ê tl@RD^5 − 6 h^2 R@@1DD F1êtl@RD^5 − 30 h R@@3DD^2 R@@1DD
F1ê tl@RD^7 − 6 h R@@3DD F1 R@@1DDêtl@RD^5 − 18 h R@@3DD F1 R@@1DDêtl@RD^5L

% ê. truelength ê. 8imx → px, imy → py, imz → −pz< ê. h → pz ê. F1 → Fx
blakestress = blaketauzz → Function@8x, y, z, px, py, pz, Fx<, Evaluate@2 μ %@@2DD DD

Plotted out for a particle above the origin (This is in the plane of xy - i.e the bottom plate.)

Max@Table@blaketauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. blakestress,
8x, −0.05, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD

legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@
"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D

ShowLegend@ContourPlot@blaketauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. blakestress,
8x, −0.05, 0.05<, 8y, −0.05, 0.05<, TextStyle → 8FontSize → 14<D,
8legndB, LegendPosition → 81.2, −0.7<, LegendLabel −> "τzz@PaD",

TextStyle → 8FontSize → 14<, LegendSize → 81.2, 1.8<<D

Plot3D@blaketauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. blakestress,
8x, −0.001, 0.001<, 8y, −0.001, 0.001<, AxesLabel → 8x@mD, y@mD, τzz@PaD<,
PlotRange → All, TextStyle → 8FontSize → 17<, PlotPoints → 8100, 100<D

Total stress due to a single particle is the sum of (-) the pressure (negative foresign due to sign convention)
and the normal stress component. 
First step:  single particle free space version
Creation of  a new pressure function which works in terms of  the plate coordinate system, so as to be
compatible with the normal stress function.

spartpressfull = sppress → Function@8x, y, z, px, py, pz, Fx<,
Evaluate@sppart@Fx, x − px, y − py, z − pzD ê. singleparticlepressureDD

Max@Table@−Hsppress@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. spartpressfullL +

Hfstauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. freespacestressL,
8x, −0.05, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD

legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@
"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D

ShowLegend@ContourPlot@
−Hsppress@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. spartpressfullL +

Hfstauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. freespacestressL,
8x, −0.05, 0.05<, 8y, −0.05, 0.05<, TextStyle → 8FontSize → 14<D,

8legndB, LegendPosition → 81.2, −0.65<, TextStyle → 8FontSize → 14<,
LegendLabel −> "p+τzz@PaD", LegendSize → 81.0, 1.6<<D
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Plot3D@−Hsppress@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. spartpressfullL +

Hfstauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. freespacestressL,
8x, −0.001, 0.001<, 8y, −0.001, 0.001<, AxesLabel → 8x@mD, y@mD, p + τzz@PaD<,
TextStyle → 8FontSize → 14<, PlotRange → All, PlotPoints → 8100, 100<D

Plot@8H−sppress@x, 0, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. spartpressfullL,
Hfstauzz@x, 0, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. freespacestressL<,

8x, −0.005, 0.005<, AxesLabel → 8x@mD, stress @PaD<, PlotRange → All,
TextStyle → 8FontSize → 14<, PlotPoints → 500, PlotLegend → 8"p", "τzz"<,
LegendPosition → 80.40, 0.2<, LegendSize → 80.4, 0.4<, LegendShadow → None,
PlotStyle → 88AbsoluteThickness@3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness@3D, RGBColor@0, 1, 0D<<D

Now for the bounded version:

ppart@r, R, FD ê. particlepressure ê. distance

blakepressfull = blakepress → Function@8x, y, z, px, py, pz, Fx<, Evaluate@
ppart@r, R, FD ê. particlepressure ê. distance ê. 8imx → px, imy → py, imz → −pz<DD

N@blakepress@x, y, 0, 0, 0, 1, 1D ê. blakepressfullD

blaketauzz@x, y, z, px, py, pz, FxD ê. blakestress
Simplify@blaketauzz@x, y, 0, 0, 0, 1, 1D ê. blakestressD

Max@Table@−Hblakepress@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. blakepressfullL +

Hblaketauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. blakestressL,
8x, −0.05, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD

legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@
"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D

ShowLegend@ContourPlot@−Hblakepress@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê.
blakepressfullL + Hblaketauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. blakestressL,

8x, −0.05, 0.05<, 8y, −0.05, 0.05<, TextStyle → 8FontSize → 14<D,
8legndB, LegendPosition → 81.2, −0.68<, LegendLabel −> "p+τzz@PaD",

TextStyle → 8FontSize → 14<, LegendSize → 81.0, 1.6<<D

Plot3D@−Hblakepress@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. blakepressfullL +

Hblaketauzz@x, y, 0, 0, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. blakestressL,
8x, −0.001, 0.001<, 8y, −0.001, 0.001<, AxesLabel → 8x@mD, y@mD, p + τzz@PaD<,
TextStyle → 8FontSize → 14<, PlotRange → All, PlotPoints → 8100, 100<D

Plot@8−Hblakepress@x, 0, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. blakepressfullL,
Hblaketauzz@x, 0, 0, 0, 0, 2 ∗ 10^−4, 1.8 ∗ 10^−6D ê. blakestressL<,

8x, −0.005, 0.005<, PlotPoints → 500, AxesLabel → 8x@mD, stress@PaD<,
PlotRange → All, TextStyle → 8FontSize → 14<, PlotLegend → 8"p", "τzz"<,
LegendPosition → 80.40, 0.2<, LegendSize → 80.4, 0.4<, LegendShadow → None,
PlotStyle → 88AbsoluteThickness@3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness@3D, RGBColor@0, 1, 0D<<D

In the above equations  Fx from Faxen's law needed to be calculated for the position of the particle and
substituted into the last bit. 
This is the free particle. 

The force acting on the particle is
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Fx@x, a, pv, μ, halfgapD ê. xforce

The pressure between the plates due to the unperturbed fluid (Stefan equation) is (Rp is the radius of the
plates)

pstefan@x, z, Rp, tD ê. stefanpressure
fluidpressure = fluidP →

Function@8x, Rp, pv, μ, halfgap<, Evaluate@% ê. h'@tD → pv ê. h@tD → halfgap ê. η → μDD

Max@Table@−Hsppress@x, y, 0, 0.0049, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. spartpressfullL +

Hfstauzz@x, y, 0, 0.01, 0, 0.01,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. freespacestressL,

8x, −0.05, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD
legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@

"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D
ShowLegend@ContourPlot@−Hsppress@x, y, 0, 0.0049, 0, 2 ∗ 10^−4, 9 ∗ 10^−5D ê.

spartpressfullL + Hfstauzz@x, y, 0, 0.01, 0, 0.01,
HFx@0.049, 2 ∗ 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. freespacestressL,

8x, −0.05, 0.05<, 8y, −0.05, 0.05<D, 8legndB, LegendPosition → 81.2, −0.4<,
LegendSize → 81.20, 1.5<<D

Plot3D@−Hsppress@x, y, 0, 0.049, 0.049, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. spartpressfullL +

Hfstauzz@x, y, 0, 0.01, 0, 0.01,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. freespacestressL,

8x, 0.048, 0.05<, 8y, 0.048, 0.05<, TextStyle → 8FontSize → 14<,
AxesLabel → 8x@mD, y@mD, p + τzz@PaD<,
PlotPoints → 8100, 100<, PlotRange → AllD

Plot@8−Hsppress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. spartpressfullL,

Hfstauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. freespacestressL,

−Hsppress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.
xforceLD ê. spartpressfullL + Hfstauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,

HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. freespacestressL<,
8x, 0.045, 0.055<, PlotRange → All, TextStyle → 8FontSize → 14<,
AxesLabel → 8x@mD, stress@PaD<,
PlotLegend → 8"p", "τzz", "p+τzz"<,
LegendPosition → 80.40, 0.2<,
LegendSize → 80.4, 0.4<,
LegendShadow → None,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.01, 0.01<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@0, 1, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 0, 1D<<D
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Plot@8−Hsppress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. spartpressfullL +

Hfstauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.
xforceLD ê. freespacestressL +

fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure,
fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure<,

8x, −0.05, 0.05<, AxesLabel → 8x@mD, stress@PaD<,
PlotRange → All,
PlotLegend → 8"p+τzz+P", "P"<,
LegendPosition → 80.60, −0.2<,
LegendSize → 80.6, 0.4<,
LegendShadow → None,
TextStyle → 8FontSize → 14<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 0, 1D<<D

Plot@8−Hsppress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. spartpressfullL +

Hfstauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.
xforceLD ê. freespacestressL +

fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure,
fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure<,

8x, 0.047, 0.05<, AxesLabel → 8x@mD, P@PaD<,
PlotLegend →

8"p+τzz+P", "P"<,
LegendPosition → 8−0.15, 0.2<,
LegendSize → 80.6, 0.4<,
LegendShadow → None,
TextStyle → 8FontSize → 14<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 0, 1D<<D

NB the last graph compares the Stefan solution (blue),  without the particle,  to the one of the perturbed flow
(red).
The graph before shows the influence of the hydrostatic pressure (red),  the viscous stress (green), and both
together (blue).
Finally the same thing for Blake, i.e. the bounded situation.

Max@Table@
−Hblakepress@x, y, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.

xforceLD ê. blakepressfullL + Hblaketauzz@x, y, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL,

8x, −0.01, 0.05, 0.001<, 8y, −0.05, 0.05, 0.001<DD
legndB = Table@8Graphics@8GrayLevel@1 − iD, Rectangle@80, 0<, 81, 1<D<D, StringForm@

"``", PaddedForm@ScientificForm@−2 H%L Hi − 0.5LD, 82, 3<DD<, 8i, 0, 1, .1<D
ShowLegend@ContourPlot@−Hblakepress@x, y, 0, 0.049, 0, 2 ∗ 10^−4,

HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakepressfullL +

Hblaketauzz@x, y, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL,

8x, −0.01, 0.05<, 8y, −0.05, 0.05<D, 8legndB, LegendPosition → 81.2, −0.4<,
LegendLabel −> "p+τzz@PaD",
TextStyle → 8FontSize → 14<,
LegendSize → 81.20, 1.5<<D
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Plot3D@−Hsppress@x, y, 0, 0.049, 0.049, 2 ∗ 10^−4, 9 ∗ 10^−5D ê. spartpressfullL +

Hfstauzz@x, y, 0, 0.01, 0, 0.01,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. freespacestressL,

8x, −0.01, 0.01<, 8y, −0.01, 0.01<, TextStyle → 8FontSize → 14<,
AxesLabel → 8x@mD, y@mD, p + τzz@PaD<,
PlotPoints → 8100, 100<, PlotRange → AllD

Plot3D@−Hblakepress@x, y, 0, 0.049, 0.049, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakepressfullL +

Hblaketauzz@x, y, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL,

8x, 0.048, 0.05<, 8y, 0.048, 0.05<, TextStyle → 8FontSize → 14<,
AxesLabel → 8x@mD, y@mD, stress@PaD<,
PlotRange → All,
PlotPoints → 8100, 100<D

Display@"file.ps", %D

Plot@
8−Hblakepress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.

xforceLD ê. blakepressfullL, Hblaketauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL,

−Hblakepress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.
xforceLD ê. blakepressfullL + Hblaketauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,

HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL<,
8x, 0.046, 0.052<, AxesLabel → 8x@mD, stress@PaD<,
PlotRange → All,
TextStyle → 8FontSize → 14<,
PlotLegend → 8"p", "τzz", "p+τzz"<,
LegendPosition → 80.40, 0.2<,
LegendSize → 80.4, 0.4<,
LegendShadow → None,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.04, 0.04<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @4D, Dashing@80.3, 0.02<D, RGBColor@0, 1, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 0, 1D<<D

Plot@
8−Hblakepress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.

xforceLD ê. blakepressfullL + Hblaketauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL +

fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure,
fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure<,

8x, −0.05, 0.05<, PlotLegend → 8"p+τzz+P", "P"<,
LegendPosition → 80.60, 0.2<,
LegendSize → 80.8, 0.4<,
LegendShadow → None,
AxesLabel → 8x@mD, stress@PaD<,
PlotRange → All,
TextStyle → 8FontSize → 13<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 1, 0D<<D

Particle close to the middle
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Plot@
8−Hblakepress@x, 0, 0, 0.001, 0, 2 ∗ 10^−4, HFx@0.001, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.

xforceLD ê. blakepressfullL + Hblaketauzz@x, 0, 0, 0.001, 0, 2 ∗ 10^−4,
HFx@0.001, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL +

fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure,
fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure<,

8x, 0.00, 0.01<, PlotLegend → 8"p+τzz+P", "P"<,
LegendPosition → 80.50, 0.2<,
LegendSize → 80.44, 0.4<,
LegendShadow → None,
AxesLabel → 8x@mD, stress@PaD<,
PlotRange → All,
TextStyle → 8FontSize → 14<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 1, 0D<<D

Particle close to the edge

Plot@
8−Hblakepress@x, 0, 0, 0.049, 0, 2 ∗ 10^−4, HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê.

xforceLD ê. blakepressfullL + Hblaketauzz@x, 0, 0, 0.049, 0, 2 ∗ 10^−4,
HFx@0.049, 10^−4, −.0001, 30, 2 ∗ 10^−4D ê. xforceLD ê. blakestressL +

fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure,
fluidP@x, 0.05, −0.0001, 30, 2 ∗ 10^−4D ê. fluidpressure<,

8x, 0.047, 0.05<, PlotLegend → 8"p+τzz+P", "P"<,
LegendPosition → 8−0.50, 0.2<,
LegendSize → 80.45, 0.4<,
LegendShadow → None,
AxesLabel → 8x@mD, stress@PaD<,
PlotRange → All,
TextStyle → 8FontSize → 14<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 1, 0D<<D

This graph illustrates the influnece of the pressure part (red), the velocity part (green), and both together
(blue)

As before, in the last graph blue referrs to the unperturbed Stefan flow field, red shows the influence of the
particle. 
Sowith the right parameters in the Blake solution one ought to be able to 'see' a particle...

The added pressures for the single particle (free space) & the Blake situation (bounded) are shown in the
following:
Free space:

Totalfreestress =

totfree → Function@8x, y, z, px, py, pz, Fx, Rp, pv, η, d<, Evaluate@Simplify@
−Hsppress@x, y, 0, px, py, pz, FxD ê. spartpressfullL + Hfstauzz@x, y, z, px, py,

pz, FxD ê. freespacestressL + fluidP@x, Rp, pv, η, dD ê. fluidpressureDDD

Simplify@%D

And for the Blake bounded situation:
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Totalboundedstress =

totbound → Function@8x, y, z, px, py, pz, Fx, Rp, pv, η, d<, Evaluate@Simplify@
−Hblakepress@x, y, z, px, py, pz, FxD ê. blakepressfullL + Hblaketauzz@x, y, z, px,

py, pz, FxD ê. blakestressL + fluidP@x, Rp, pv, η, dD ê. fluidpressureDDD

From now on only Blake will be used. The magnitude of p and tau has to be considered as they need to be
larger than 
the noise of the sensor

particleinfluence = partinf → Function@8x, y, z, px, py, pz, Fx<,
Evaluate@−Hblakepress@x, y, z, px, py, pz, FxD ê. blakepressfullL +

Hblaketauzz@x, y, z, px, py, pz, FxD ê. blakestressLDD

In the following the pure Stefan profile will  be plotted for a 5cm radius disc-> 0.05m, plate velocity of 6
mm/min = 0.0001 m/s, viscosity = 30 Pas, and plate distance=2.5mm=0.0025m (x,Rp,pv,eta,halfgap), the
result is in Pa

Plot@8fluidP@x, 0.05, −0.0001, 30, 0.001D ê. fluidpressure<,
8x, −0.05, 0.05<, AxesLabel → 8x, P<, PlotStyle → 8Thickness @0.01D<D

Evaluate@fluidP@0, 0.05, −0.0001, 30, 0.001D ê. fluidpressureD

Plot@8fluidP@x, 0.05, −0.0001, 30, 0.00153D ê. fluidpressure,
fluidP@x, 0.05, −0.0001, 30, 0.001D ê. fluidpressure<,

8x, −0.05, 0.05<, AxesLabel → 8"x @mD", "P @PaD"<, PlotStyle →

88Thickness @0.01D, RGBColor@1, 0, 0D<, 8Thickness @0.01D, RGBColor@0, 1, 0D<<D

The following function substitutes Faxen's force (dependent of particle position xp, particle radius a, plate
velocity pv, viscosity h, and plate distance d) into the sum of Blake pressure and Blake stress

particleinfluenceFAXEN =

partinfFAXEN → Function@8x, y, z, px, py, pz, a, pv, η, d<, Evaluate@
−Hblakepress@x, y, z, px, py, pz, Fx@x, a, pv, η, dD ê. xforceD ê. blakepressfullL +

Hblaketauzz@x, y, z, px, py, pz, Fx@x, a, pv, η, dD ê. xforceD ê. blakestressLDD

With a given threshold (given by the sensor sensibility) the partinf function needs to be so that the resulting
value is greater than the threshold, i.e. threshold<partinf, the particle radius a for which this is valid with a
given viscosity, plate velocity, particle position, plate distance, and sample point x has to be found
Example for viscosity 30Pas, plate velocity 0.0001 m/s, particle position (1,1,1), plate distance, 0.0012 m,
sample point 1

Force is largest on particle as it gets near to the edge of the plate...also F is proportional to the cube of the
particle radius
Force is largest for high viscosities (second graph)

Plot@Fx@0.03, a, 0.0001, 30, .001D ê. xforce,
8a, 0, .001<, AxesLabel → 8a, Fx<, PlotStyle → 8Thickness @0.01D<D

Plot@Fx@0.03, 0.001, 0.0001, η, .001D ê. xforce, 8η, 10^−3, 10^3<,
AxesLabel → 8a, Fx<, PlotStyle → 8Thickness @0.01D<D
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partinfFAXEN@0.03, 0, 0, 0.029, 0, a 1.1, a, −0.0001, 30, 2 ∗ aD ê.
particleinfluenceFAXEN

Newfunc = pfunc → Function@8a<, Evaluate@%DD
Plot@8pfunc@aD ê. Newfunc, fluidP@0.03, 0.05, −0.0001, 30, 0.001D ê. fluidpressure<,
8a, 0.00, 0.01<, AxesLabel → 8"a @mD", "stress @PaD"<,
PlotLegend → 8"p+τzz+P", "P"<, LegendPosition → 80.40, 0.1<,
LegendSize → 80.7, 0.4<, LegendShadow → None, TextStyle → 8FontSize → 14<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 1, 0D<<D

partinfFAXEN@x, 0, 0, x − 0.0015, 0, a 1.1, a, −0.0001, 30, 2 ∗ aD ê.
particleinfluenceFAXEN ê. a → 0.001

Newfunc = pfunc → Function@8x<, Evaluate@%DD
Plot@8pfunc@xD ê. Newfunc, fluidP@x, 0.05, −0.0001, 30, 0.002D ê. fluidpressure<,
8x, 0.00, 0.05<, AxesLabel → 8"x @mD", "stress @PaD"<,
PlotLegend → 8"p+τzz+P", "P"<, LegendPosition → 80.50, −0.1<,
LegendSize → 80.7, 0.4<, LegendShadow → None, TextStyle → 8FontSize → 14<,
PlotStyle → 88AbsoluteThickness @3D, Dashing@80.03, 0.02<D, RGBColor@1, 0, 0D<,
8AbsoluteThickness @3D, RGBColor@0, 1, 0D<<D
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Appendix B

MATLAB code for the theoretical

equilibration and calibration

The MATLAB code described in the following refers to the MATLAB version no. 7.0.1.

In order to start the MATLAB correction procedure the relevant files have to be

loaded. For this the Tekscan file needs to be renamed with the nametek command, e.g.

nametek=’SQF 2-1.asf’, and the Zwick file with namezwick, e.g. namezwick=’SQF

2-1.xls’. Afterwards they can be loaded and processed with the following files. The

columns the files refer to are listed in Table B.1.

Tekreadsnocal.m

% tekreadnoca l .m − s c r i p t to read a TekScan ASCII f i l e i n t o

matlab data

% s t r u c t u r e s

% Adam & Jul ia , May 2005

% assume the v a r i a b l e name in c l u d e s the f i l e path

% e . g . command l i n e such as

153
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Table B.1: Contents of the different columns referred to in the MATLAB files

column no. described value

1 force in N

2 distance covered in mm

3 absolute distance remaining in mm

4 time passed since the beginning of the trial

5 velocity of the upper plate in m/s

6 force calculated with the Stefan equation, see chapter ??

7 true distance calculated with the Stefan equation

8 ḋ/d3

9 cumulative integral of column 8

% nametek=’ t e s t . dat ’

%open the Zwick f i l e ( e x c e l )

% assume the v a r i a b l e name in c l u d e s the f i l e path

% e . g . command l i n e such as

% namezwick=’ t e s t . dat ’

% open the f i l e and read in the header to appropr ia t e

v a r i a b l e s

f i l e i d = fopen ( nametek , ’ r ’ ) ;

% sk i p f i r s t two l i n e s o f header

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

% now ge t the f i l ename on TekScan system
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% more robus t t h i s way as i gnore s spaces in f i l e path

out=text scan ( f i l e i d , ’%s %[ˆ\n ] ’ , 1 ) ;

% note t ha t t h i s i s a c e l l array so we need to index i t wi th

cu r l y b r a c k e t s

% i f we want to see the con ten t s

f i l ename=out {1 ,2} ;

% more i n t e r e s t i n g data from header

% semico lons j u s t s top i t echoing to the screen during

execu t i on

out=text scan ( f i l e i d , ’%s %d ’ ,1 ) ;

sensor mode l=out {1 ,2}
out=text scan ( f i l e i d , ’%s %d ’ ,1 ) ;

rows=out {1 ,2}
out=text scan ( f i l e i d , ’%s %d ’ ,1 ) ;

c o l s=out {1 ,2}
out=text scan ( f i l e i d , ’%s %f %s ’ , 1 ) ;

row pitch mm=out {1 ,2}
out=text scan ( f i l e i d , ’%s %f %s ’ , 1 ) ;

col pitch mm=out {1 ,2}
out=text scan ( f i l e i d , ’%s %f %s ’ , 1 ) ;

sensor area mm2=out {1 ,2}
out=text scan ( f i l e i d , ’%s %f ’ , 1 ) ;

n o i s e t h r e s h o l d=out {1 ,2}
out=text scan ( f i l e i d , ’%s %f ’ , 1 ) ;

f r ame t ime s=out {1 ,2}

% sk i p l i n e

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

% more data from header
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out=text scan ( f i l e i d , ’%s %[ˆ\n ] ’ , 1 ) ;

when=out {1 ,2}

% sk i p 1 l i n e

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

% need to s e t t h i s to a dummy va lue so t ha t l a t e r f i l e s don ’ t

complain

p r e s s u r e un i t={ ’RAW’ } ;

% more data from header

out=text scan ( f i l e i d , ’%s %d ’ ,1 ) ;

s t a r t f r ame=out {1 ,2}
out=text scan ( f i l e i d , ’%s %d ’ ,1 ) ;

end frame=out {1 ,2}

% sk i p 4 l i n e s

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

out=text scan ( f i l e i d , ’%[ˆ\n ] ’ , 1 ) ;

% erase any o ld frame data f i r s t

clear frames ;

% now we can read the frame data

for frame=s ta r t f r ame : end frame

% read a s i n g l e frame

out=text scan ( f i l e i d , ’%s %d ’ ,1 ) ;

frame num=out {1 ,2}
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% read one frame in to a matrix frame

A=zeros ( rows , c o l s ) ;

for i =1: rows

temp = fscanf ( f i l e i d , ’%f , ’ ) ;

A( i , : ) = temp ;

end % s i n g l e frame loop

% bung each frame in an indexed c e l l array

frames ( frame )={A} ;

% to read the s e nack as arrays we need to use the command

% A=frames{x } , where x i s the frame number (NB cur l y

b r a c k e t s )

end % a l l frames loop

% remember to c l o s e the f i l e again ( i . e . c l ean up )

fc lose ( f i l e i d ) ;

%open the Zwick f i l e ( e x c e l )

% assume the v a r i a b l e name in c l u d e s the f i l e path

% e . g . command l i n e such as

% namezwick=’ t e s t . dat ’

[ zwickvalue , zwickheader ]= x l s r e ad ( namezwick ) ;

Timepoint.m

% timepo in t .m − p l o t s a p a r t i c u l a r po in t f o r a l l t imes

% Adam & Jul ia , Apr i l 2005

function f=t imepoint ( frames , row , c o l )
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% f i s the va lue re turned

[ c o l s rows ]= s ize ( frames ) ;

for i =1: rows

f ( i , 1 )=i ; % frame number

f ( i , 2 )=frames{ i }( row , c o l ) ; % va lue

end

Timebase.m

% timebase .m− f unc t i on to f i nd s t a r t and end o f curves .

% Adam & Jul ia , May 2005

% se t a t h r e s h o l d va lue as 10% of the average va lue then count

from each

% end to f i nd s t a r t and f i n i s h o f curve . . .

function f=timebase ( curve , thresh )

% curve i s a ( : , 2 ) column vec to r o f x and y data f o r the curve

% th r e s h o l d o f average va lue in %

l a r g e s t=max( curve ( : , 2 ) ) ; % average y va lue

thresh=thresh ∗ l a r g e s t /100 ; % th r e s h o l d va lue

[ row , c o l ]= s ize ( curve ) ;

s t a r t =0;

s t a r t i =−1;

f i n i s h i =−1;

mx=1;
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f i n i s h =0;

% loop through a l l the po in t s in the curve

for i =1:row

i f ( ( curve ( i , 2 )>thresh )&( s t a r t==0)) s t a r t=curve ( i , 1 ) ;

s t a r t i=i ;

end

i f ( ( curve ( i , 2 )>thresh ) ) f i n i s h=curve ( i , 1 ) ; f i n i s h i=i ;

end

i f ( ( curve ( i , 2 )>curve (mx, 2 ) ) ) mx=i ;

end

end

% add the maximum va lue as w e l l

f =[ s ta r t , curve (mx, 1 ) , f i n i s h , s t a r t i ,mx, f i n i s h i ] ;

Synchronise.m

% synchron i se .m− f unc t i on to s e t a common time frame f o r the

Zwick and the

% Tekscan data

% Adam & Ju l i a May, 2005

% crea t e a vec t o r o f v e l o c i t y vs time from Zwick data

% and f i nd s t a r t and end o f curve

temp=[ zwickvalue ( : , 4 ) zwickvalue ( : , 5 ) ] ;

c = timebase ( temp , 1 0 ) ;

zendtime=c (3)

% now do the same th ing f o r the tekscan data

% take a random po in t
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% may not be robus t i f t h i s po in t i s not s t a b l e , so b e t t e r to

take a few and use

% the average , but do t h i s l a t e r . . .

temp = 1/4∗( t imepoint ( frames , 26 , 25 )+t imepoint ( frames , 10 , 10 )+

t imepoint ( frames , 30 , 10 )+t imepoint ( frames , 10 , 30 ) ) ;

c = timebase ( temp , 1 0 ) ;

tekendtime=c (3)

% ca l c u l a t e the o f f s e t between zwick end time (when the

v e l o c i t y s t op s )

% and tekscan end time (when the v e l o c i t y s t op s )

o f f s e t = tekendtime − zendtime

% ad ju s t a l l o f the zwick t imes to the tekscan time frame

zwickvalue ( : , 4 ) = zwickvalue ( : , 4 ) + o f f s e t ;

Zwickforce.m

% zwi c k f o r c e .m− s c r i p t to check the cons i s t ency o f Zwick data

% Adam & Jul ia , May 2005

% column 5 i s v e l o c i t y (m/s )

% column 6 i s f o r c e ( kg .m/s ˆ2) from Ste fan equat ion ( wi th no

% mouse mat c o l s 6 and 1 shou ld be i d e n t i c a l )

% column 7 i s t rue d i s t ance back c a l c u l a t e d from Ste fan

equat ion

% column 8 i s hdot /hˆ3

% column 9 i s the cumaluat ive i n t e g r a l o f c o l 8

[ row co l ]= s ize ( zwickvalue ) ;

for i =1:row−1
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temp=zwickvalue ( i +1, : )−zwickvalue ( i , : ) ;

v e l ( i )=−1e−3.∗temp (3) . / temp (4) ;

end

ve l=vel ’ ;

% add l a s t v e l c o i t y so s i z e matches zw i ckva lue

ve l ( row ) =0;

zwickvalue ( : , 5 ) = ve l ;

%ca l c u l a t e the f o r c e wi th Ste fan equat ion

constant1= 3∗30∗3 .14∗0 .05ˆ4/2 ;

zwickvalue ( : , 6 )=constant1 ∗( zwickvalue ( : , 5 ) . / ( 1 e−3 ∗( zwickvalue

( : , 3 ) ) ) . ˆ 3 ) ; % 1/(mˆ2. s )

% c a l c u l a t e the ’ t rue h ’ assuming F i s c o r r e c t l y measured by

Zwick ( in mm)

zwickvalue ( : , 7 ) =1000∗( constant1 ∗ zwickvalue ( : , 5 ) . / zwickvalue

( : , 1 ) ) . ˆ ( 1 /3 ) ;

% t h i s i s wrong f o r the f i r s t few po in t because the v e l o c i t y

i s zero , so we

% need to patch i t up

temp=[ zwickvalue ( : , 4 ) zwickvalue ( : , 5 ) ] ;

c = timebase ( temp , 1 0 ) ;

v s t a r t=c (4 ) ; % number o f f i r s t po in t wi th non zero v e l o c i t y

zwickvalue ( 1 : v s ta r t , 7 ) = zwickvalue ( v s t a r t +1 ,7) ;

vend=c (6) ; % number o f l a s t po in t wi th non zero v e l o c i t y

zwickvalue ( vend : row , 7 ) = zwickvalue ( vend−1 ,7) ;

% ca l c u l a t e hdot /hˆ3

zwickvalue ( : , 8 ) = real ( ( zwickvalue ( : , 5 ) ) . / ( zwickvalue ( : , 7 ) .∗1

e−3) . ˆ 3 ) ;
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% ca l c u l a t e the cumula t ive numerical i n t e g r a l o f hdot /hˆ3 dt

[ row , c o l ]= s ize ( zwickvalue ) ;

dt = ( zwickvalue ( row , 4 )−zwickvalue (1 , 4 ) ) /row ;

zwickvalue ( : , 9 ) = cumtrapz ( zwickvalue ( : , 8 ) ) ;

% cumtraz assumes dt=1 so mu l t i p l y a l l by dt

zwickvalue ( : , 9 ) = zwickvalue ( : , 9 ) ∗dt ;

Tekcorrection.m

% te k c o r r e c t i o n .m− f unc t i on to do a po in tw i s e automatic

c a l i b r a t i o n o f the

% Tekscan data to compensate f o r d i f f e r i n g s e n s i t i v t y between

po in t s

% Adam & Jul ia , May 2005

% 3 s t e p s to succe s s . . .

% (1) check what the tekscan sensor t h i n k s i t measures

% (2) compare wi th the zwick data ( which we b e l i e v e ) and

c a l c u l a t e the

% true gain from the d i f f e r e n c e ( i . e . Zwick va lue / tekscan

va lue

% (3) Bui ld a matrix o f va l u e s f o r a l l o f the tekscan sensor (

measuring

% po in t )

% (4) mu l t i p l y a l l o f the tekscan frame data by the cor r e c t ed

gain matrix from (3)

% sorry t ha t was 4 po in t s . . .

% phy s i c a l data



163

nu = 30 ; % dynamic v i s c o s i t y Pa . s

R = 50e−3; % p l a t e rad ius m

thresh = 50 ; % th r e s h o l d va lue f o r curve s t a r t end e t c

zw i ck f o r c e ; % ca l c u l a t e the zwick de r i v ed data

synchron i s e ; % ensure t ha t t imebases are common between the

da t a s e t s

% c l e a r out any o ld data

clear ( ’ c a l ’ ) ;

clear ( ’ o f f s e t ’ ) ;

% loop through a l l the sensors

for x=1: double ( rows )

for y=1: double ( c o l s )

% step (1)

% what i s the rad ius o f the sensor

r = sqrt ( ( ( double ( rows ) /2.−x )∗ row pitch mm ) ˆ2 + ( (

double ( c o l s ) /2.−y )∗ col pitch mm ) ˆ2) ;

r = r . / 1000 ; % conver t to m

% ex t r a c t the s t r e s s time curve f o r the po in t ( x , y )

from the Tekscan data

t ekpo intdat=t imepoint ( frames , x , y ) ;

% conver t PSI to Pa i f r e qu i r ed f o r tekscan yankee

un i t s

i f (strcmp ( p r e s s u r e un i t {1} , ’ PSI ’ ) )

t ekpo intdat ( : , 2 ) = tekpo intdat ( : , 2 ) .∗ ( 1 e+5) . / 1 4 . 5 ;

%to Pa

end
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% be c a r e f u l as some sensors have a permanent o f f s e t

% we assume tha t a l l s ensors have an o f f s e t and t ha t

the va lue o f

% the s t r e s s f o r the f i r s t and l a s t few po in t s i s zero

[ ro , co ]= s ize ( t ekpo intdat ) ;

[ roz , coz ]= s ize ( zwickvalue ) ;

o f f s e t (x , y ) = −(1/5) ∗(sum( t ekpo intdat ( 1 : 3 , 2 ) )+sum(

t ekpo intdat ( ro−1: ro , 2 ) ) ) ;

% patch up t e k po i n t d a t f o r r e s t o f t h i s c a l c u l a t i o n

t ekpo intdat ( : , 2 ) = tekpo intdat ( : , 2 ) + o f f s e t (x , y ) ;

% f ind the s t a r t end and max va l u e s o f t h i s curve

% and take the mean between the s t a r t end end po in t s (

above the t h r e s h o l d )

% don ’ t use mean func t i on as time bases cou ld be

d i f f e r e n t

t ek cu rve s t a t=timebase ( tekpointdat , thre sh ) ;

% check t ha t the sensor a c t u a l l y works at po in t ( x , y )

i f ( ( t ek cu rve s t a t (4 ) >0.0)&( t ekcu rve s t a t (3 )−t ek cu rve s t a t

(1 ) >0.0) )

tekmeanstress=sum( t ekpo intdat ( t ek cu rve s t a t (4 ) :

t ek cu rve s t a t (6 ) ,2 ) ) . / ( t ek cu rve s t a t (3 )−
t ek cu rve s t a t (1 ) ) ;

% step (2)

% c a l c u l a t e the s t r e s s a t rad ius r based on the

Zwick data
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% ca l c u l a t e the p r e f a c t o r f o r the i n t e g r a l

pf=3∗nu∗(Rˆ2−r ˆ2) . / ( t ek cu rve s t a t (3 )−t ek cu rve s t a t

(1 ) ) ; % Pa .mˆ2

% f ind and i n t e r p o l a t e the va lue o f the i n t e g r a l

a t time

% t2 = t e k c u r v e s t a t (3)

y2 = interp1 ( zwickvalue ( : , 4 ) , zwickvalue ( : , 9 ) ,

t ek cu rve s t a t (3 ) ) ;

% check to see i f we run out o f time data

% i f so then s e t y2 to the l a s t po in t and i s s u e a

warning

i f ( isnan ( y2 ) )

y2 = interp1 ( zwickvalue ( : , 4 ) , zwickvalue ( : , 9 ) ,

zwickvalue ( roz , 4 ) ) ; % make y2 the l a s t

po in t a v a i l a b l e

warning ( ’Not enough l a t e Zwick time data f o r

(%d,%d) ’ , x , y ) ;

end

% s im i l a r l y f o r t1 = t e k c u r v e s t a t (1)

y1 = interp1 ( zwickvalue ( : , 4 ) , zwickvalue ( : , 9 ) ,

t ek cu rve s t a t (1 ) ) ;

% check t ha t we have zwick data in t h i s timeframe

i f ( isnan ( y1 ) )

y1=interp1 ( zwickvalue ( : , 4 ) , zwickvalue ( : , 9 ) ,

zwickvalue (1 , 4 ) ) ; ; % make y1 the f i r s t

po in t a v a i l a b l e

warning ( ’Not enough ea r l y Zwick time data f o r

(%d,%d) ’ , x , y ) ;

end
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% so the s t r e s s i n t e g r a l o f zwick data i s

s t r e s s zw i c k = pf ∗( y2−y1 ) ;

% step (3)

% c a l c u l a t e the mu l t i p l i e r to c a l i b r a t e the

tekscan sensor

c a l (x , y ) = s t r e s s zw i c k / tekmeanstres s ;

i f ( o f f s e t (x , y )>1) c a l (x , y )=0; end % remove a l l

po in t s wi th o f f s e t s

i f ( o f f s e t (x , y ) <−0.1) c a l (x , y )=0; end % remove a l l

p o in t s wi th o f f s e t s

else % sensor i s broken

warning ( ’ Sensor (%d,%d) i s broken ’ , x , y )

c a l (x , y ) = 0 ;

end % for the i f

end % for the y loop

end % for the x loop

% loop through a l l the sensors to remove any e x c e s s i v e ga ins

t y p i c a l = mean(mean( c a l ) ) ;

for x=1: double ( rows )

for y=1: double ( c o l s )

i f c a l (x , y ) > 2∗ t y p i c a l

c a l (x , y )=0; % bad sensor

end % i f c l au s e

end % for the y loop

end % for the x loop
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% p l o t the two s h i f t e d curves as a check

% p l o t ( zw i ckva lue ( : , 4 ) , ( p f ∗( t e k c u r v e s t a t (3)−t e k c u r v e s t a t (1) ) )

.∗ zw i ckva lue ( : , 8 ) , t e k p o i n t d a t ( : , 1 ) , t e k p o i n t d a t ( : , 2 ) )

i f (strcmp ( p r e s s u r e un i t {1} , ’ PSI ’ ) )

warning ( ’Dodgy American un i t s have been detec ted in

Tekscan data − t h i s has been r e c t i f i e d ’ , ’NRC: :BUSH’ )

end

% step (4) propagate the corec t ed ga ins and o f f s e t s through

a l l the

% tekscan data in frames

% loop through a l l frames

for f =1: frame num

% loop through rows

for i =1: double ( rows )

% loop through columns

for j =1: double ( c o l s )

ca l f r ames { f }( i , j ) = ( frames{ f }( i , j )−o f f s e t ( i , j ) )

∗ c a l ( i , j ) ;

end % columns loop

end % rows loop

end % frames loop

Crossfilter.m

% c r o s s f i l t e r .m − smooth a matrix based on a cros s shaped

% moving average k e rne l

% Adam & Jul ia , Apr i l 2005
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function f=c r o s s f i l t e r ( data )

% S i s the frame

% f i s the va lue re turned

[ rows c o l s ]= s ize ( data ) ;

for i =2: rows−1

for j =2: co l s−1

f ( i , j ) =1/8∗(4∗data ( i , j )+data ( i −1, j )

+data ( i +1, j )+data ( i , j−1)+data ( i , j +1) ) ;

end end



Appendix C

Specification of the films

Table C.1: Properties of DuPont FEP fluorocarbon film

Application Food packaging

”Teflon”

chemically inert

food grade

solvent resistent

Dimensions

Thickness sheets 12.5, 25, 50, 75, 125, 190, 250,

375, 500, 750, 1500, 2300, 3125, 4750 µm

Physical properties Value

Young’s modulus 480 MPa

Specific gravity 2150 kg/m3

Melting temperature 250 - 280 ˚C
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Table C.2: Properties of APET 4500.00.000 Klöckner Pentaplst

Application Food packaging

biocompatible

ecologically disposable

good barrier characteristics

can be gamma sterilized

recycling possible

Dimensions

Thickness sheets 150 µm to 800 µm

Width max. 850 mm

Length max. 1200 mm

coloring as desired

Physical properties Value

Young’s modulus 2060 MPa

Specific gravity 1335 kg/m3

Glass transition temperature 63 ˚C

Melting temperature 250 ˚C

Table C.3: Properties of whey protein-glycerol films NIZO Food Research

Application

food grade

Dimensions

Thickness sheets 34 µm to 186 µm

size 10 cm diameter

composition whey protein : glycerol 70:30 (series 1) and 65:35 (series 2)

Physical properties Value

Young’s modulus approx. 130 MPa (series 1)

approx. 90 MPa (series 2)
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Determination of the elastic

modulus of the flexible film

The following equation gives the pressure profile in dependence of the radius r, a preset

deflection λ, the flexural rigidity D (which is a function of the disk thickness h, the

Young’s modulus E and the Poisson ratio ν) and the disk radius R0. This equation

needs to be solved for the elastic modulus E when the pressure is known.

P (r) =
64Dλ2((R8

0 + 4R6
0λ

2 − 2r4λ4 + 4r2λ6 + λ8)

(R04 − 4r2λ2 + 2R2
0λ

2 + λ4)3
√
−4r2 +

(R2
0+λ2)2

λ2

(D.1)

+
64Dλ2(R4

0(4r
2λ2 + 6λ4) + 4R2

0(2r
2λ4 + λ6))

(R04 − 4r2λ2 + 2R2
0λ

2 + λ4)3
√
−4r2 +

(R2
0+λ2)2

λ2

E =
3P (R4

0 − 4r2λ2 + 2R2
0λ

2 + λ4)3
√
−4r2 +

(r2
0+λ2)2

λ2 (−1 + ν2)

16h3λ2(R8
0 + 4r2R4

0λ
24R6

0λ
2 − 2r4λ4 + 8r2R2

0λ
4 + 6R4

0λ
4 + 4r2λ6 + 4R2

0λ
6 + λ8)

(D.2)

With the help of equation D.1 the pressure necessary to deflect a disk with the

following characteristics can be determined: 3 mm diameter, 75 µm thickness, made

from FEP, Poisson’s ratio of 0.5, and an Young’s modulus of 480 MPa, deflected to a

λ of 0.112289 mm. Taking this pressure, i.e. 176 Pa, and assuming that it is sufficient

to bend a 190 µm thick disc of a more flexible material, the necessary elastic modulus
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can be determined with the help of equation D.2, when r = 0 m, R0 = 1.5 mm,

λ = 0.112289 mm h = 190 µm, ν = 0.5, and P (0) = 176 Pa. A value of 30 MPa

results from these conditions. Films of 30 MPa are very brittle and hard to get, hence,

it was decided that the available 90 MPa, which was already an order of magnitude

more flexible, were sufficient.
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