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New approaches in context-based gene function prediction

Summary

In this work we analyze genomic neighborhood of a gene as a

source of functional information. Using concept of Similarity-Neighbor-

hood graph we show presence of non-trivial relations between genomic

neighbors in the context of several genomes. We also show that while for

prokaryotes the existence of such relations can be deduced from the oper-

onic organization of prokaryotic genomes, these relations can also be

detected in the eukaryotic genomes where such organization is not com-

mon (with notable exception of Caenorhabditis elegans and possibly other

members of Nematodae). We demonstrate applicability of our method for

uncovering gene’s function and studying properties of genomes.

We also demonstrate the techniques and tools developed for the analysis of

genomic data. PEDANT genome system has been developed by our group

and served as a main foundation for development of Similarity-Neighbor-

hood approach, with the latter coming into life as a separate gene-function

prediction tool - SNAPper web server. We discuss the techniques hiding

behind our all-against-all protein alignment database, which has been

developed as part of PEDANT genome analysis system. Such database is

the requirement for nearly any cross-genome comparison approach, as it

provides the basis for delineating of orthologous and paralogous groups of

genes. One of such approaches - phylogenetic profiling, has been imple-

mented by us in collaboration with Philip Wong and Walid Houry of Uni-

versity of Toronto, as highly flexible Web-based tool called PWP. The

Jaba visualisation tool which we developed for manual analysis of

genomes and multiple gene predictions and which has been extensively

used in several genome projects, including large eukaryotic genome

projects such as Arabidopsis thaliana and Neurospora crassa is also pre-

sented.



Briefly, Remm et al. define in-paralogous genes as genes which undergone duplication

ev ent after species’ split (and therefore are essentially orthologous to their counterparts in

another specie) in contrast to out-paralogs whose duplication precedes the speciation.

Detection of orthologs as implemented in INPARANOID starts with calculation of all-

against-all alignments. This step usually performed by using BLAST (Altschul et

al.,1998), because of its speed and because it is well-established software. Pairwise simi-

larity scores for a pair of genomes (protein sets) A and B are calculated (A vs B, B vs A)

as well as self-scores (A vs A, B vs B). When out-group protein set C is used, A vs C

and B vs C are computed as well. Bit scores are made symmetrical by averaging recip-

rocal scores.

On the next step reciprocal best BLAST matches are found. Such pair of proteins from

genome A and B is then considered as a central orthologous pair, around which addi-

tional orthologs (in-paralogs) are clustered. The basic assumption made by Remm et al. is

that in-paralogs are more similar to the main ortholog, than to any sequence from other

species.

On the last stage of algorithm the overlaps are resolved using different rules depending on

the type and extant of the overlap; confidence values are computed using bootstrap.

The outline of INPARANOID algorithm is depicted on Fig. 1.1. The method of clustering

in-paralogous into orthologous groups is visualized on Fig. 1.2.

Remm et al. compared the results of INPARANOID run to the results obtained from

manually curated analysis of phylogenetic trees computed with nine different approaches.

As it turns out, while INPARANOID failed to report less than 3% of orthologs found

using these methods it reported considerable amount of additional orthologs, which may

represent false positives or novel true orthologs. As it has been demonstrated by Remm

et al, in many cases BLAST is able to detect more orthologs than phylogenetic

approaches, due to its better sensitivity and different treatment of gaps.

Better performance of INPARANOID in comparison to COGs in terms of separation of

in-paralogs and out-paralogs has been also shown. In large part this is due to the fact

that COGs operate on the set of species larger than two, while INPARANOID is essen-

tially two-lineage approach which allows it to precisely define the evolutionary point of

orthology. At the same time that is also a drawback of the INPARANOID approach: for

instance, in our case we would have to implement additional clustering techniques to

cluster INPARANOID orthologs in COG-like groups. Preliminary studies conducted by

us show that it is generally not very overwhelmingly difficult task though: INPARA-

NOID pairwise ortholog groups have very low noise ratio which makes clustering them

into multi-species groups relatively simple. In other words, simple approaches such as

single-linkage clustering do not result in one huge cluster which encompasses everything.



Figure 1.1. Overview of the INPARANOID algorithm. The program requires two fasta for-

mat sequence files A and B with protein sequences. All-versus-all BLAST search is run (1)

and sequence pairs with mutually best hits are detected (2). Sequences from outgroup

species are optionally used to detect cases of selective loss of orthologs. The A-B sequence

pairs are eliminated if either sequence A or sequence B scores higher to outgroup sequence

than they score to each other (3,4). Additional orthologs (in-paralogs) are clustered together

with each remaining pair of potential orthologs as shown in Figure . Overlapping clus- ters

are resolved by a set of rules. Finally, the bootstrapping technique is used to estimate the

probability that a given pair of orthologs had mutual best score only by chance (8). The

bootstrapping step is optional. (From Remm et al).
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Figure 1.2. Clustering of additional orthologs (in-paralogs). Each circle represents a

sequence from species A (black) or species B (grey). Main orthologs (pairs with mutually

best hit) are denoted A1 and B1. Their similarity score is shown as S. The score should be

thought of as reverse distance between A1 and B1, higher score corresponding to shorter

distance. The main assumption for clustering of in-paralogs is that the main ortholog is more

similar to in-paralogs from the same species than to any sequence from other species. On

this graph it means that all in-paralogs with score S or better to the main ortholog are inside

the circle with diameter S that is drawn around the main ortholog. Sequences outside the cir-

cle are classified as out-paralogs. In-paralogs from both species A and B are clustered inde-

pendently (from Remm et al.).

1.1.2. COGs - Clusters of Orthologous Groups

COGs database (Tatusov et al. 2000) is an application of orthology concept to sets of

multiple genomes. Originally COGs were developed for prokaryotic genomes but they

have recently been extended to include large eukaryotic genomes such as Caernorhabdi-

tis elegans and Drosophila melanogaster (Tatusov et al. 2001).

COGs too are constructed using all-against-all gapped BLAST alignment. The underlying

assumption of COGs approach is that any three proteins from the distant genomes that are

more similar to each other than they are to any other proteins from the same genomes

belong to an orthologous family. Further such minimal triangular clusters are extended

by joining triangles sharing one edge. Thus, COGs unlike INPARANOID require at least

three-species similarity relationships.

COG algorithm includes the following steps:

1 Perform the all-against-all protein sequence alignment.

2 Detect and collapse obvious in-paralogs, proteins from the same genome that are more

similar to each other than to any proteins from other species. This step is similar to

INPARANOID.

3 Detect triangles of mutually consistent, genome-specific best hits, taking into account

the paralogous groups detected at step 2.

4 Merge triangles with common side to form COGs.

5 Manual analysis of each COG to remove false-positives.
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6 Manual analysis of large COGs that include multiple members from all or several of

the genomes using phylogenetic trees, cluster analysis and visual inspection of align-

ments. As result of this step, COG can be split to two or more consistent COGs.

COGs are arguably most used orthology database due to its effective and elegant cluster-

ing technique, manual curation and availability.

The drawback of using COGs is that it is a fixed database which includes limited number

of genomes rather than a dynamic algorithm such as INPARANOID. Although some

ideas behind COGs can be used separately to construct orthologous families.

Another drawback of COGs which it shares with INPARANOID is that horizontal gene

transfer is not taken into account, although it has been shown relatively widespread

among prokaryotes (Omelchenko et al. 2003; Brochier et al. 2000) and in some cases it

can probably have dramatic effect on construction of orthologous groups.

1.2. Phylogenetic profiles

Biochemical pathways are not rigid constructs it terms of their occurence in various

organisms. Some of them can be fairly conserved, some can disappear in the course of

ev olution, some can get displaced by alternative routes. The presence of certain biochem-

ical route is determined by the presence of certain enzymes; coordinated action of these

enzymes builds up that route. Therefore if in an organism we observe the enzyme

belonging to the particular reaction path we can assume that the other enzymes participat-

ing in the path are likely to be present in that organism as well. Even more extreme

example of such correlated occurrence is when a protein participates in multi-subunit

complex and all parts of the complex hav e to be present in the organism to render the

complex functional.

Recently suggested method of phylogenetic profiling (Pellegrini et al. 1999; Marcotte et

al. 1999) explores a related idea: if two genes are not present individually in any of the

genomes, i.e. the presence of one gene in the genome always implicates the presence of

another, these genes are functionally related. The hypothesis behind this statement is

that functionally linked proteins evolve in a correlated fashion, and, therefore, they hav e

homologs in the same subset of organisms.

As a formalization of this approach, a bit-string of size N is constructed for each protein,

where N is a number of genomes in the set. The presence of protein’s homolog in the ith

genome is indicated by setting ith bit of the string to 1. The bit string is essentially a phy-

logenetic profile of a particular protein. Further, proteins are clustered according to the

similarity of their bit strings (Figure 1.3). The prediction method is based upon the

assumption that functions of the proteins within one cluster are likely to be similar. Thus

by using this method one can assign function (broadly) to the uncharacterized proteins

using known proteins in the cluster.

The relevance of the method has been demonstrated on the real data. For instance, let us
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Figure 1.3. The method of analyzing protein phylogenetic profiles is illustrated schemati-

cally for the hypothetical case of four fully sequenced genomes (from E. coli, Saccha-

romyces cerevisiae, Haemophilus influenzae, and Bacillus subtilis) in which we focus on

seven proteins (P1−P7). For each E. coli protein, we construct a profile, indicating which

genomes code for homologs of the protein. We next cluster the profiles to determine which

proteins share the same profiles. Proteins with identical (or similar) profiles are boxed to

indicate that they are likely to be functionally linked. Boxes connected by lines have phylo-

genetic profiles that differ by one bit and are termed neighbors (from Marcotte et al.).

consider cluster of proteins with phylogenetic profiles no more than 1 bit different to the

phylogenetic profile of ribosomal protein RL7(Figure 1.4(a)). This protein is present in

nearly all eubacterias and yeast but not in Archae. Indeed, more than half of the proteins

in the cluster are known to be associated with the ribosome.

The applicability of the method has also been shown on few other examples including

histidin metabolism and flagella-related proteins (Figure 1.4(b,c)]). As it could be noted
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Figure 1.4. Proteins with phylogenetic profiles in the neighborhood of ribosomal protein

RL7 (A), flagellar structural protein FlgL (B), and histidine biosynthetic protein His5 (C). In

each case, we first found all proteins with profiles identical to our query proteins; the pro-

teins we found are shown in the double boxes. We then found all the proteins with profiles

that differed from our query proteins by one bit; these are shown in the single boxes. Pro-

teins in bold participate in the same complex or pathway as the query protein, and proteins

in italics participate in a different but related complex or pathway. Proteins with identical

profiles are shown within the same box. Single lines between boxes represent a one-bit dif-

ference between the two profiles. All neighboring proteins whose profiles differ by one bit

from the query protein are shown. Homologous proteins are connected by a dashed line or

are indented. Each protein is labeled by a four-digit E. coli gene number, a SwissProt gene

name, and a brief description. Note that proteins within a box or in boxes connected by a

line have similar functions. Hypothetical proteins (i.e., those of unknown function) are prime

candidates for functional and structural studies. Proteins in the double boxes in A, B, and C

have 11, 6, and 10 ones, respectively, in their phylogenetic profiles, of a possible 16 for the

17 genomes presently sequenced (from Marcotte et al.).
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all of the examples provided are focused on conserved biological mechanisms. This may

hint to one of the drawbacks of the method: it is sensitive to the quality of recognition of

orthologous proteins. Obviously, a protein wrongfully recognized as ortholog or unrec-

ognized, but existing, ortholog, would affect phylogenetic profile adding 1 bit of differ-

ence to the targeted protein’s profile. It can dramatically affect the quality of found clus-

ters especially in the presence of phylogenetically distant genomes in the set, where

homology relationships can not be as easily inferred. Therefore the value of the method

for the characterization of less known, less studied in experiments (biologists tend to

study core and often more conserved processes first), proteins is limited.

Another problem one has to be aware of when applying the method of phylogenetic pro-

files is that it is not always possible to separate process-specific genes from phylogenetic

signal (taxon-specific genes). For instance, by clustering the phylogenetic profiles of the

oxygenic photosynthesis-related proteins of Cyanobacteria species (the only prokaryotic

organisms which are capable of this process) not only the proteins directly participating

in the oxygenic photosynthesis could be extracted but other Cyanobacteria-specific pro-

teins as well.

On the other hand, it can be useful in certain cases to restrict phylogenetic profiling to

the certain taxon. For example, phylogenetic profiling predicts functional linkage

between GroEL and GroES if only Bacteria species are present in the set. While Archaea

species do have GroEL, they do not possess GroES homolog and therefore adding them

to the genome set would hamper proper clustering of GroEL’s and GroES’ phylogenetic

profiles.

An on-line resource for phylogenetic profiling has been developed recently (Wong et al.

2003) by our group (see Chapter 3).

More elaborate method which incorporates phylogenetic information in the analysis has

been published recently (Vert 2002). In this paper author generalizes the approach of

phylogenetic profiles and builds up powerful mathematical framework to analyze them.

Instead of just defining bit difference-based measure of similarity between profiles author

suggests to map profiles in higher-dimensional features space. This feature space is

defined in such way that each point in the space corresponds to a pattern of inheritance

during evolution. An example such pattern could be "this gene has been transmitted to

proteobacteria and eubacteria but not to Gram-positive bacteria".

As it is impossible to know the exact content of ancestral genomes, the mapping of phy-

logenetic profiles to the feature space is defined using a probabilistic (Bayesian) model of

ev olution giving weights to ’features’ which correspond to plausible patterns of inheri-

tance for a particular profile.

As there exists immense number of possible patterns of evolution the dimension of the

feature space is very large; consequently, the explicit computation of the image of a pro-

file could be infeasible. However, the method was provided to efficiently compute the

inner product between the images of any two profiles in the feature space.
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The function designed to map any two phylogenetic profiles to the inner products of their

images in the high-dimensional feature space is called tree kernel. It belong to a larger

class of functions, called kernels, defined as the inner product of two objects mapped to

any vector space. Once a kernel and a corresponding feature space are chosen it is possi-

ble to define the Euclidian distance between any two images of the phylogenetic profiles

in the feature space. In this case, two profiles are near in the feature space if they are

likely to share common pattern of inheritance during evolution, which is an appealing

property.

However the application of kernel function is not limited to computing of Euclidean dis-

tances. Whole set of new algorithms, known as kernel methods, can be applied once the

kernel function is defined. Kernel methods work implicitly in the feature space using only

kernel function and include such popular algorithms as Support Vector Machine (SVM)

(Vapnik 1998), kernel principal component analysis (Schölkopf et al. 317), kernel cluster-

ing (Ben-Hur et al. 2001) and Fisher discriminants (Mika et al. 1999).

Author applied SVM to infer the function of a gene from its phylogenetic profiles. SVMs

are a class of supervised learning algorithms. Given a kernel K(.,.) and a set of a training

examples (phylogenetic profiles) labeled as positive or neg ative, SVMs learn a linear

decision boundary in the feature space defined by the kernel in order to discriminate

between positive and negative examples. Any new unlabeled examples is then predicated

to be positive or neg ative depending on the position of the image of phylogenetic profile

in respect to a linear boundary obtained by SVM.

Author then tested a trained SVM using naive kernel (bit-distance based) and tree kernel

on a set of proteins from S. cerevisiae genome. As it has been shown prediction power

achieved by tree kernel surpasses by more than two folds that of bit distance-based

approach at low values of false positives.

1.3. Patterns of domain fusion

Fused gene constructs are often used in experiments for biochemical analysis and protein-

purification technology (Buxlow 1990; Wales and Wild 1991). These experiments are

strikingly similar to what is being observed happening in nature: as it turns out, gene

fusion is not at all rare or exotic event in the course of evolution ( Enright et al. 1999 ).

The classical example of such event is the fusion of α- and β- chains of tryptophan syn-

thetase from bacteria to fungi ( Burns et al. 1990 ), depicted on the Figure 1.5.

It is intuitively appealing to assume that proteins involved in the fusion events interact in

the living cell. Indeed, the precision of such prediction of ∼ 75% has been estimated.

(Enright et al. 1999 ) The false positives and false negatives are believed largely due to

the errors in the determination of protein-domain homology relationships. Thus precision

of the method can be further increased by raising similarity cut-off values. The method’s

maximum coverage of 95% has also been estimated.
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Figure 1.5. Schematic representation of tryptophan synthetase genes and polypeptides in

bacteria and fungi. N and C refer to the amino- and carboxyl-terminal residues, respectively.

Con refers to the connecting region in fungi that joins the TSase A and B domains (from

Burns et al.).

The examples of gene fusion events are provided in the Table 1.1. All of the involved pro-

teins are known interaction partners.

It has also been shown that non-neighbors (genes located far apart on bacterial chromo-

some) are as often involved in the fusion events as neighboring genes. This is an

extremely important observation and we will return to it later.
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1.4. Functional coupling of collinear gene pairs

Genes in prokaryotic chromosome are often appear grouped in the structures known as

operons (Jacob et al. 1960) genome: it can contain several adjacent genes sharing
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regulatory sites at 5’ region of operon, transcription start and stop5(see Figure 1.6). The

presence of several downstream alternative transcription terminators as well as translation

attenuators has been shown in some cases.

All genes in operon are transcribed by RNA-polymerase into single polycistronic mRNA,

which is later translated by ribosome to produce individual polypeptides. The most

prominent examples of operons are E. coli’s Lac-operon (Figure 1.6) (Jacob et al. 1960) ,

tryptophan operon and ribosomal operons.

Figure 1.6. Schematic represtentation of lac-operon. LacZ, LacY and LacA are adjacent

structural genes coding for proteins contributing to lactose transport and metabolism:

β-galactosidase, galactoside permease and transacetylase, respectively. Structural genes are

prefixed by promoter (P) and operator (O) sites. The product of LacI gene is a transcription

repressor binding to the operator site of lac-operon and effectively blocking the transcrip-

tion. In the presence of lactose lactose-repressor complex is unable to bind to the operator

thus enabling the transcription.

Several alternative hypothesis explaining this organization have been proposed: evolu-

tionary advantage of having a single point of regulation for genes functionally related to

each other, e.g. participating in the same metabolic pathways; evolutionary pressure to

group genes into functional modules to ease horizontal transfer of advantageous gene

cliques (selfish operon model) (Lawrence and Roth 1996).

The latter hypothesis has gained large popularity among biologists and evolutionists

despite of the lack of rigorous studies which would confirm or discard it and despite it’s

claim to be the only mechanism keeping functionally related genes in operon being in

conflict with the gene shuffling observed in genomes.

Brochier et al. studied evolutionary fate of ribosomal protein RpS14 (Brochier et al.

2000). This protein belongs to the group of the most conserved proteins - it is necessary

for assemblage of 30S ribosomal subunit and it is a part of peptide environment of the

peptidyl transferase center, which is involved in the essential process of peptide elonga-

tion.

Considering the RpS14’s crucial role in what could be designated as the heart of cell’s

activity - in translation and taking into account the large number of physical interactions

this protein is involved in, it would seem improbable for this gene to be transfered from

other species without it’s ribosomal partners.

In contrary to this common-sense assumption Brochier et al. identified several cases of

insertion of single foreign RpS14 gene into genomes’ native ribosomal operon.
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Figure 1.7. Bacterial rps14 sequences cluster within three main groups (I, II and II) in the

phylogeny constructed using the neighbour-joining algorithm and rooted on the archaeal and

eukaryotic sequences. Several monophyletic groups are displayed as solid triangles for clar-

ity. Names of groups that are considered monophyletic on the basis of other phylogenetic

markers but split in the RpS14 phylogeny are in bold. Species with two rps14 copies are in

bold. The rps14 sequences mapping within spc canonical operon are indicated by †, those

mapping within rearranged operons by Ψ. Bootstrap proportions estimated using 1000 repli-

catees are shown for the three main groups. The scale bar represents the number of substitu-

tions per 100 sites for a unit branch length. The alignment, sequence accession number and

the complete phylogenetic tree are available at htt://sorex.snv.jussieu.fr (from Brochier et al).

Analysis of phylogenetic tree of RpS14 depicted on Figure 1.7 showed that while some

species occupy two distant branches in that tree, several others occupy branches distant
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from their taxon which strongly suggests xenologous origin of their RpS14 gene.

One of the most remarkable large-scale horizontal gene transfer (HGT) of rps14 gene is

the acquisition of proteobacterial group III-type genes by Chlamydiales, Cyanobacteria

and several high-GC Gram positive speices (Fig. 1.7). In all cases the acquired genes do

not map to canonical for that gene spc operon but often to other ribosomal operons,

which further strengths the hypothesis of rps14’s HGT origin (Figure 1.8). In one case

(Synechocystis sp.) rps14 seems to be isolated from other ribosomal genes but instead is

located very closely to Arg-tRNA gene.

Figure 1.8. Archaeal and bacterial canonical spc operons, and genetic environments for the

rps14 genes acquired by horizontal gene transfer (HGT) by several species. Boxes corre-

sponding to genes for ribosomal proteins are in colour. tRNA genes are indicated by stars.

Arrows indicate the sense of transcription. Species with two rps14 copies, one within a

canonical operon and the other witin a rearranged operon, are in the old. Abbreviations: HP,

hypothetical protein; RNPA, RNase P protein A. SPHX, periplasmic phosphate-binding pro-

tei; USF, putative carboxymethylenebutenolidase (from Brochier et al).

The HGT of rps14 has been also observed in case of D. radiodurans , some Gram posi-

tive bacterias.
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The authors conclude that it is difficult to explain multiple HGT events of single rps14

without predominant selective pressure favouring HGT. Authours propose that it could

be that antibiotic resistance is conferred by the transferred sequences coming from resis-

tant species (rps14 is known to be involved to antibiotic resistance).

This study discards the hypothesis that complexity of physical interactions in ribosome

would prevent the transfer and integration of xenologous ribosomal protein into transla-

tion machinery. In addition, these results demonstrating the single gene being transferred

from one specie to another and inserting into functionally close (ribosomal) operon but

disrupting original operon for this gene (spc-operon) are questioning selfish operon

model (SOM).

It has been shown in this work, an idea operon as just a unit of horizontal transfer does

not match observations in the cases studied, which of course does not completely discard

SOM. Also, the authors point out, only the cases that passed strict homology threshold

have been considered.

In related study Daublin et al. challenge these and similar results which demonstrate the

ubiquity of HGT in evolution of prokaryotic genomes (Daubin et al. 2003). The authors

claim that such studies fall prey of certain problems and/or methodological artifacts: i)

the complexity of phylogenetic analysis, namely overestimation of bootstrap support for

gene trees and ii) wrong ortholog determination by using reciprocal best similarity hits as

orthologous.

Authors go further and conduct analysis of gene trees computing the statistical support

for them by applying Shimodaira-Hasegawa test (Shimodaira and Hasegawa 1999).

Orthologous genes were selected by rather conservative approach: by including only

those genes that have a single significant match per genome, thus minimizing the risk of

including hidden paralogs descending from within genome duplication events. They ana-

lyze quartets of orthologous genes and compare the topology of resulting trees to topol-

ogy of the tree derived from small subunit ribosomal RNAs (SSU rRNAs) of correspond-

ing prokaryotic species. The species’ quartets were subdivided into two groups in respect

of the possibility of HGT: "Intraspecies" quartets which contained quartets of species and

strains between which HGT is believed to be likely, and "Interspecies" quartets contain-

ing lineages for which HGT is unlikely due to the environmental (different ecological

niche) or other reason.

The resulting frequencies of different quartet topologies are shown on Figure 1.9. The rel-

ative appearance of HGT topologies is very low even for intraspecies quartets. Authors

examined the group of HGT topologies to discover that frequencies of such topologies

correlate strongly with the ratio of external and internal branch lengths. On the other

hand, no correlation with distance between sequences in the rRNA trees was observed,

thus suggesting that most cases of these alternate topologies represent false-positives due

to reconstruction artifacts rather than the accumulation of HGT events with time.

The authors point out that low frequencies of HGT do contradict with the genome content

trees (Snel, Bork, and Huynen 1999). They provide explanation for this contradiction.
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Figure 1.9. Relative frequencies of the three categories of alignments, i.e., those supporting

the reference phylogeny (SSU rRNA), those supporting an alternate phylogeny (HGT), and

those with no statistical support for any phylogeny. Points represent quartets of genomes for

which orthologous genes have been inferred, aligned, and evaluated at the nucleic acid

sequences level based on the SH test. The left part of the plot (in blue) represents the area

where HGT predominates (from Daubin et al).

The genes can be naturally subdivided into two subclasses: those which can be trans-

ferred from specie to specie and those genes for which it is possible to find orthologous.

In our opinion, this statement is highly questionable, given highly strict criteria for

ortholog selection which effectively leaves out many proteins belonging to one or other

protein family.

In the recent work Omelchenko et al. (Omelchenko et al. 2003) studied on more general

level putative operons which in part or entirely consist of genes of foreign for a given

organism origin.

As the data on operon structure in the majority of genomes are virtually absent

Omelchenko et al. relied on method of conserved gene pairs (see below) to detect puta-

tive operon structures. Phylogenetic trees have been constructed for individual members

of operon and compared to the topology of species’ tree, as well as to the topologies of

phylogenetic trees of other members of putative operon.
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The results of this study also do not support SOM: 35 cases of whole operon transfer

have been identified in a set of 41 genomes along with 19 cases of mosaic operons, i.e.

operons containing genes of different phylogenetic origin (which are also more difficult

to detect). However, authors note, these results represent conservative low bound estimate

for HGT, as very strict cutoffs on ortholog selection and operon detection have been

applied.

Regardless of evolutionary premises of operonic organization, it is widely accepted fact

that genes in operons are likely to be functionally related. Thus, if operon structure of

genome is known, it is relatively straightforward to extract potential functional relations.

The challenge for bioinformatics is that in the majority of sequenced genomes the exact

bounds of operons are unknown. This difficulty could have been overcome by exploiting

the tendency of genes belonging to the same operon to have smaller intergenic spacers

than genes not involved in the same operon. Unfortunately, the situation is complicated

by the fact that gene starts often are not accurately predicted by the gene finding algo-

rithms, thus making it difficult to cluster genes into putative operons, judging just by the

intergenic distances alone.

Dandekar et al. studied coappearance of closely located genes in nine bacterial and

archael species (Dandekar et al. 1998). Sets of three genomes were selected in such way

that fraction of shared orthologs for at least two pairs of genomes in the set was less than

50%. The choice of this threshold has been based on the observation that if percentage of

orthologs is less than 50%, the gene order is completely disrupted, meaning that no

ancestral colocalization is preserved without evolutionary pressure to maintain such colo-

calization. In addition, to ensure that conservation of gene order reflects evolutionary con-

strains rather than horizontal gene transfer events only such genes were considered that

were found colocalized in all three genomes.

In each of these three genomes sets authors found approximately 100 genes which were

conserved as colinear gene strings. They show that for most of them physical interaction

is evident or can be confidently predicted. Most of these proteins participate in core cell

activities and represent conserved mechanisms - translation (ribosomal proteins),

DNA/RNA-related enzymes and some metabolic enzymes (Fig. 1.10).

It was also observed, that even if in most cases the exact gene order is not conserved, in

some cases, operons as unodered sets of genes can be preserved even if extensively rear-

ranged inside. The Trp operon illustrates this point (Fig 1.11). The only aspect of the Trp

operon that is preserved in all organisms is the gene pair trpB-trpA, which encodes two

subunits of tryptophan synthase.

Authors further speculate that the fact of conservation of the exact gene order in most

conserved gene they found suggests the interaction directly after translation or cotransla-

tional folding, which has been experimentally shown for some systems (Netzer and Hartl

1997; Thanaraj and Argos 1996).

Further authors made another important observation: the proteins which are involved in
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Figure 1.11. Structure of the tryptophan operon in different organisms. Arrows indicate the

direction of transcription. Black lines indicate disruption of the operon by intervening

genome sequences; double lines indicate a separation of more than 50 genes. The proteins

encoded by the genes shown follow: trpA, tryptophan synthase chain; trpB, tryptophan syn-

thase chain; trpC, indol-3-glycerol phosphate synthetase; trpD, anthranilate phosphoribosyl-

transferase; trpE, anthranilate synthase component I; trpF, anthranilate phosphoribosyl-iso-

merase; trpG, anthranilate synthase component II. Gene numbers are indicated and are con-

secutive along the genome. In the proteobacteria, the trpC and trpF genes are fused. The

trpG and trpD genes in Escherichia coli, and the trpC and trpD genes in Archaeoglobus

fulgidus, are also fused. The only feature of the Trp operon that is conserved across all seven

genomes is the trpA−trpB gene pair (from Dandekar et al.).

conserved gene pairs are generally more conserved too. For instance, the average degree

of sequence identity shared by orthologs that exist as conserved gene pair in E. coli and

H. pylori is 46%; while the equivalent figure for orthologs that do not contribute to con-

served gene pairs is 38%. This fact prompted authors to suggest the presence of co-adap-

tion between genes in conserved gene pair. Additionaly, genes which products interact

physically should also exhibit a lower rate of evolution. We would like to note though,

that significant fraction of the genes found (1.10) are genes coding for ribosomal proteins

which belong to the most conserved group of proteins. Thus this result might represent

the fact that gene order of ribosomal genes is exceptionally conserved and highest degree

of coadaption between parts of ribosome.
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Figure 1.10. From Dandekar et al, 1998.

More general method for extraction of conserved gene pairs has been recently proposed
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(Overbeek, Fonstein et al. 1998; Overbeek, Fonstein et al. 1999). It too exploits the

observation that some genes, whichever mechanism is responsible for that, often occur in

close neighborhood (presumably in the same operon) even in phylogenetically distant

species.

Figure 1.12. Illustration of the definitions of PCBBHs and ‘‘pairs of close homologs’’

(PCHs) (from Overbeek et al.).

Let us start with definitions. A "run" in terminology of Overbeek is a set of adjacent

genes occurring on a prokaryotic chromosome with maximum size of intergenic spacer

smaller than certain threshold D , e.g. 300 b.p. (see Figure 1.12). A pair of two genes Xa

and Xb from two genomes Ga and Gb is called bidirectional best hit (BBH) or best-to-

best hit if there is recognizable sequence similarity between them lower then certain

threshold value P and there is no gene Zb in genome Gb that is more similar than Xb is to

Xa, and there is no gene Za in Ga that is more similar than Xa is to Xb. Any pair of genes

genes in the run is a "close" pair. A pair of genes from genome Ga (Xa, Ya) and (Xb, Yb)

from genome Gb form a pair of close bidirectional best hits (PCBBH) if Xa is close to Ya,

Xb close to Yb, (Xa, Xb) is BBH and (Ya, Yb) is BBH (Fig. 1.13). When the bidirectional-

ity of the hit is not required such pair of hits is called simply "pair of close hits" (PCH).

Later in the text we will use more general definition "colinear gene pair" or "conserved

gene pair" for close pair of homologous genes (supposing we know how to find

homologs).

As it was demonstrated in (Overbeek, Fonstein et al. 1999): 1) a numerous PCBBHs exist

(∼ 60000 in 31 genomes) 2) genes constituting PCBBHs are more likely to be functionally

related than can be estimated by random 3) The number of PCBBH is nearly order of

magnitude higher than can be found in genomes produced by random shuffling of genes’

locations 4) Almost all PCBBHs are located on the same strand 5) It is possible to recon-

struct to a certain extent some core (conserved) metabolic networks 6) PCBBHs are also

commonly present in Archae.

This approach has become part of WIT6 system developed at Argonne National Laborato-

ries by Overbeek et al (Overbeek, Larsen et al. 2000).

5 Av ailable on-line at http://wit.mcs.anl.gov/WIT2/.
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This work has been extended to a more general approach in STRING7 (Snel, Lehmann et

al. 2000 ). Instead of considering only pairs, colinear strings are sought for. Moreover,

iterative extraction of such strings is implemented. That is, for gene X found in string S,

all colinear strings Si X belongs to are found, then for gene Y neighboring X in the string

Sk , all strings S j containing Y are found; and so on. This iterative search can not be con-

tinued ad infinitum though, because generally it does not converge and only after few iter-

ations results in combinatorial explosion.

In more recent work (Mering1 et al. 2003) STRING has been extended to use gene fusion

and phylogenetic profiles along with conserved colinear strings to predict functional rela-

tions. The scoring system has been devised which would allow for combined score of

functional relatedness of two genes based on all three approaches.

In related work Wolf et al. (Wolf et al. 2001) introduced entirely different method of

extracting colinear gene strings. The method is based on idea of genome order alignment,

similar to the sequence alignment but instead considers genes as basic informational char-

acters (by using COGs). The method has been shown to detected conserved operons such

as ribosomal operons. Although the method is interesting and applicable, it has one seri-

ous drawback - it’s sequence-like alignment would totally miss shuffled colinear gene

strings, e.g. identical operons in different genomes containing the same genes but in vary-

ing order.

Despite of success of colinear gene strings method it does not approach the problem men-

tioned in introductory section of this work. As it has been shown in (Mushegian and

Koonin 1996 ) and (Itoh et al. 1999) operons are generally poorly conserved. Conse-

quently only limited amount of functionally coupled genes can be detected by using col-

inear strings approach. Only in the case when certain constraints on genes’ colocalization

are present such colinearity would be observed in sufficient amount of species. Further-

more, as it has been mentioned earlier in this chapter, even the proteins involved in the

fusion events, which by itself implies tight physical interaction, are often located in dis-

tant regions on chromosome. What if there are no constraints on genes colocalizaton? Is

it still possible to exploit non-randomness of gene order in prokaryotes?

We would like to highlight again two simple facts we know about operons: i) genes in

operons are likely to be functionally related and ii) operons are not conserved, i.e. the

gene content of operons always varies from specie to specie. Two works has been pub-

lished recently aiming at this contradiction: (Lathe III et al. 2000) and work of our

group (Kolesov et al. 2001) which will be discussed in details in the following chapter.

To explain aforementioned difficulty Lathe III et al put forward the concept of uber-

operon. Uber-operon is set of functionally related genes encompassing several operons.

In the course of evolution genes within this set are randomly sampled, constituting to the

random subsets of uber-operon - the operons. In this scenario operons would appear dif-

ferent in each genome, although the genes composing them would still be functionally

related to each other.

6 available on-line at http://bork.heidelberg.de/strings
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Figure 1.13. The genomic organization for four species of (i) the genes from the flagellar

uber-operon (colored), (ii) genes that occur in the context of the uber-operon but not in all

species (gray) and (iii) genes that happen to occur once in the context of the uber-operon

(white). The white genes are mostly absent from complete genomes of the other species. The

composition of the cassettes is (transcription direction from left to right): C1, (flhB, flhA);

C2, (fliO, fliP, fliQ); C3, (fliL, fliM, fliN); C4, (motA, motB); C5, (flgE, flgD); C6, (fliF, fliG,

fliH, fliI); C7, (flgB, flgC); C8, (cheW, cheA); C9, (flgK, flgL); C10, (flhO, flgG). The white

genes labeled ‘hyp’ are hypothetical (genes with unknown function) and are not homologous

to each other.

Indeed, few uber-operons have been found by manually iterating through orthologs of rel-

evant genes and their neighbors. Example of flagellar-related genes uber-operon is shown

on Figure 1.13.

Although the model of uber-operons is in the good agreement with the observed gene

shuffling in operons, there are several difficulties which hinder automatic extraction of

uber-operons: i) not necessarily all genes in operon are functionally related - although the

genes in operon are likely to be functionally related some of the neighbors can be
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completely random; ii) the exact bounds of operons are often unknown8 , leading to

uncertainty in deriving ’true’ operon neighbors. Both of these problems lead to a highly

undesirable effect: even one ’wrong’, i.e. functionally unrelated to its neighbors gene can

cause our resulting uber-operon be badly polluted with false positives if simple algorithm

of iterative extraction of neighbors is being used. Hence, another, more sophisticated,

aw are of these difficulties approach is required.

7 At the time of writing the only moderately complete databases of experimentally

confirmed operons are available for E. coli and Bacillus subtilis.
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Chapter 2

SNAPping up functionally related genes in prokaryotic
genomes

In this chapter we will discuss our own approach to finding functionally related genes

using properties of gene order in prokaryotes without relying in any way on it’s conserva-

tion.

2.5. Main ideas and definitions

Genes fulfilling the same function in different organisms, or similar but distinct functions

in the same organism are expected to possess a certain degree of sequence similarity due

to the evolutionary conservation of their primary structure. By contrast, functionally

related genes are essentially different genes that are involved, for example, in the same

metabolic or signaling pathway. Such genes are normally not similar; hence, their related-

ness is not detectable by sequence comparison. Instead, functionally related genes often

form clusters on the chromosome (Lawrence and Roth 1996); their relatedness may be

manifested by spatial proximity rather than structural resemblance. Throughout this text,

we will use the terms S-relationship, N-relationship, and SN-relationship to describe the

cases where genes are related by similarity, neighborhood, or a mixture thereof, respec-

tively.

In this work we attempt to exploit the observation that neighboring genes on bacterial

chromosomes tend to be functionally related, even if there is no evidence that their posi-

tional preference with respect to each other is conserved across many different genomes.

Potentially, any random pair of adjacent genes could be functionally coupled. It is evi-

dent, of course, that many hundreds and even thousands of genes encoded in complete

bacterial genomes fall into hundreds of different functional categories, making the joint

occurrence of two functionally related genes a rather unlikely event (Huynen et al. 2000).

We need to be able to distinguish random pairs of physically proximate genes from mean-

ingful ones, without relying, in general, on the conservation of such pairs across multiple

genomes.

Before we provide a formal description of our algorithm, we start with a simple illustra-

tion. Let us first consider a group of five genes involved in a certain biochemical process,

and compare this group as a whole with functionally related groups in other genomes. In

the case of a perfectly conserved gene cluster, we will observe a string of genes

α A,β A,γ A,ω A,ε A in the genome A, α B,β B,γ B,ω B,ε B in the genome B, αC ,βC ,γC ,ωC ,εC in

the genome C, and so on, such that the genes from different genomes denoted with the

same Greek letter are S-related, and the genes from the same genome are N-related. In a

more complex, and more realistic case, many of the inter-genome S-relationships may not

be preserved due to physiological differences between the species involved, or simply
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because the similarity is not detectable with current sequence comparison tools. Likewise,

and even more probably, the N-relationships within each genome may be disrupted as a

result of gene shuffling in the course of evolution. Therefore, the association between the

different instances of this particular gene cluster in different genomes will be expressed

as an irregular mixture of S- and N-relationships.

Figure 2.1. Finding genes functionally coupled with the gene α residing in the genome A.

Colored arrows represent individual genes and their direction. Straight black arrows repre-

sent S-relationships between orthologs in different genomes while round black arrows repre-

sent N-relationships between genes in the same genome. Only one neighbor of every gene in

each direction is considered. The analysis starts with finding neigbours of gene α genes β A

and γ A in the genome A. Then their orthologs on other genomes are identified, and so on.

As a result, a chain of alternating similarity- and neighborhood relationships, called SN-

graph, is constructed. In this example, the SN-graph has a closed path

α A, γ A, γ B, δ B, δC, ωC, ω B, ε B, εC, αC, α A or SN-cycle, indicating that at least some

part of the constituent genes may be functionally related. Solid black arrows correspond to

the closed path while the rest of the SN-graph is shown in dotted arrows. Genes not partici-

pating in the closed path are shown in grey.

Let us consider a hypothetical example depicted in Figure 2.1 and focus on the chain of

SN-relationships originating from gene α in genome A. This gene is N-related to the

genes β A and γ A. Gene γ A is S-related to γ B, the latter is N-related to δ B, and so on. The

complete system of such SN-relationships, subject to certain limitations described below,

forms an SN-graph. SN-paths on the graph are made up of alternating S- and N-relation-

ships. The former are derived using selective sequence comparison tools, such as BLAST,

(Altschul et al. 1997) and are thus extremely significant. By contrast, the latter are over-

whelmingly random. For this reason, the majority of the SN-paths has no diagnostic

value. However, intermixed with a large number of "false positives" among N-relation-

ships, i.e. pairs of totally unrelated genes, are a number of N-related genes that are actu-

ally functionally coupled. We put forward a hypothesis that such meaningful N-relation-

ships are likely to occur in closed SN-paths, which we will call SN-cycles. In Figure 2.1,

the longest SN-cycle is represented by the path α A, γ A, γ B, δ B, δC, ωC, ω B, ε B, εC, αC, α A.

The primary intuition here is that the N-relationships resulting from nonrandom associa-

tions between genes will have a statistical tendency to throw a bridge between pairs of S-

related proteins, and ultimately help join proteins that belong to the same metabolic
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pathway, resulting in a closed path on the graph. Our principal approach in this work is

to exploit simultaneously the two possible types of relatedness between genes - S- and N-

relationships - in order to establish functional links undetectable by either type of rela-

tionship alone.

2.6. Description of the algorithm

We consider N bacterial genomes Gi(i = 1, N ), each containing M i genes gi
k (k = 1, M i),

where k is the sequential number of the gene on the chromosome. Two genes gi
k and gi

k+1

from the same genome i are N-related if they fulfill the following conditions: i) both

genes gi
k and gi

k+1 have the same orientation (i.e., are situated on the same strand; as

demonstrated by (Overbeek, Fonstein et al. 1999), co-occurrence of functionally coupled

genes on opposite strands is a very rare event), and ii) the distance between the stop

codon of 5’ gene (gi
k if on direct strand, gi

k+1 if on reverse) and the start codon of 3’ (gi
k+1

on direct strand) is smaller then a certain threshold value d (typically 500 base pairs.).

We take into account spatial association between genes that are at most c genes away

from each other. Therefore, a genome i can be represented as an unordered set of up to

M i − 2c gene words,W i
q, (q = c +1, M i − c) , each word being an ordered list of up to

2c + 1 genes:

W i
c+1 = (gi

1, . . .  , gi
2c+1), W i

c+2 = (gi
2, . . .  , gi

2c+2), W i
c+3 = (gi

3, . . .  , gi
2c+3), etc.

In other words, each gene word W i
q contains the gene gi

q, its c neighbors on the left, and

its c neighbors on the right. A genome will contain exactly M i − 2c gene words only if all

genes are on the same strand and are separated by no more than d bases. Since this is

never the case, the actual number of gene words in a genome will be smaller. For the

same reason many of the gene words will contain less than 2c +1 genes. The minimal

number of genes in a gene word is 2 since otherwise no N-relationship in the word can

exist. Throughout his work we used c = 2 (unless otherwise stated) in order to make our

tests computationally feasible.

An all-against-all comparison of the genes , (i = 1, N , k = 1, M i) is conducted using the

PSI-BLAST algorithm (Altschul et al. 1997). An S-relationship between two genes gi
k

and , residing on the genomes Gi and G j , respectively, exists if the BLAST E-value

E(gi
k, g

j

l ) < e and the coverage of the BLAST alignment, defined as the fraction of amino

acids of the shorter compared protein covered by the alignment, C(gi
k, g

j

l ) > a where e

and a are parameters of the analysis. As an additional restriction, we may require the

BLAST match to be reciprocal, such that E(gi
k, g

j

l ) < e, E(g
j

l , gi
k) < e and there is no

x = 1, M i, x ≠ k and y = 1, M j, y ≠ l such that E(gi
x, g

j

l ) < E(gi
k, g

j

l ) and

E(g j
y, gi

k) < E(g
j

l , gi
k) The matrix of all-against-all BLAST matches is made symmetrical

by selecting for each pair of proteins the best E-value and the best value of coverage C,

such that

E′(gi
k, g

j

l ) = E′(g j

l , gi
k) = min(E(gi

k, g
j

l ), E(g
j

l , gi
k)) and

C′(gi
k, g

j

l ) = C′(g j

l , gi
k) = max(C(gi

k, g
j

l ), C(g
j

l , gi
k))
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Figure 2.2. A hypothetical chain of SN-relationships. A part of a hypothetical SN-graph

involving an SN-cycle. Genes participating and not participating in the SN-cycle are shown

as filled and open circles, respectively, and are denoted as where the superscript stands for

the genome number and the subscript for the sequential gene number on the chromosome.

Solid and dashed arrows depict similarity and neighborhood relationships, respectively. The

number of gene neighbors considered on each side c = 1.

We can now represent the chain of SN-relationships originating from an arbitrary gene as

an SN-graph involving S- and N-relationships in an alternating fashion, starting either

with an S-relationship or an N-relationship in which is involved. An example of such a

graph is shown in Figure 2.2. It is easy to see that the SN-graph joins gene words that

have at least one pair of S-related genes.

In our implementation, an SN-graph is traversed using the depth-first algorithm and all

closed SN-paths, or SN-cycles, are identified. In Figure 2.2, an SN-cycle involves 16

genes shown as filled circles, corresponding to the 8 related gene words. A special case of

an SN-cycle is constituted by colinear gene clusters in which the order of genes is par-

tially or fully conserved across several genomes. Such SN-cycles involve words with

more than one pair of S-related genes (Figure 2.3).

With an increasing number of genomes the number of nodes in the SN-graph grows very

quickly so that finding all paths becomes computationally prohibitive. To demonstrate the

feasibility of our approach, without losing the generality, we set an upper limit on the

path length at a certain value, typically 14 nodes.
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Figure 2.3. A hypothetical SN-graph which involves a conserved pair of genes in three

genomes: genes 552 and 553 in genome 1, genes 600 and 601 in genome 2, and genes 51

and 52 in genome 3. In this case, the SN cycle is equivalent to a colinear gene cluster of the

type described by Overbeek et al. (1999). Notation as in Figure 2.2.

2.7. Measuring the performance of the method

All genes belonging to an SN-cycle are regarded as functionally coupled. In order to test

the validity of this assertion, we need to measure the performance of the algorithm on a

large number of documented cases of "true" functional relatedness. Two different

approaches for defining the standard of truth for our calculations have been explored.

2.7.1. Analysis of reference metabolic pathways

The entire KEGG/PATHWAY database9 (Kanehisa and Goto 2000) was downloaded from

ftp://kegg.genome.ad.jp. The database was processed with a sophisticated Perl script to

extract the pathway graph in a form suitable for subsequent computer analysis. Informa-

tion about links between biological objects cannot be easily gleaned from the KEGG

image files representing the pathways. We obtained this information indirectly by com-

paring the list of all biochemical reactions present in the database with another list which

specifies both the EC number of a given enzyme and the compounds it interacts with.

Since the names of the compounds in the first and the second list are often inconsistent,

we used a sub-string comparison technique to establish correspondence between them.

Further, unspecific widely applicable metabolites, such as H2O, alcohol, CO2, etc. were

not considered.

The pathway graph is constituted by vertices and edges corresponding to enzymes and

8 available on-line at http://www.genome.ad.jp/kegg/kegg2.html
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substrates, respectively. Giv en a set of enzymes represented by their EC numbers

E = (E1, E2, . . .  , En), where n is the number of enzymes in the set, our goal is to find a

measure, 0 ≤ K p ≤ 1, to describe their "concentration" on the pathway graph. We call this

measure "pathway coefficient". The ideal case of K p = 1 corresponds to an SN-cycle join-

ing enzymes that form a compact pathway sub-graph such that i) no other nodes except

for (E1, E2, . . .  , En) exist, and ii) for any nodes Ei and E j there exists a path connecting

them. The worst case K p = 0 describes an SN-cycle that joins totally unrelated enzymes,

i.e. there is no path on the pathway graph connecting any pair of the enzymes found.

The metabolic distance Dij between two enzymes Ei and E j on the pathway graph is

defined as the minimal number of reaction stages (edges) connecting these enzymes (ver-

tices). Given a set of enzymes, we used the following approach to determine the value of

the pathway coefficient K p. Single linkage clustering was applied to the metabolic dis-

tance matrix Dij , i = 1, n, j = 1, n in order to find the largest cluster of vertices C ∈ E sub-

ject to the constraint that Dij < Dt , where Dt is the threshold metabolic distance. The

pathway coefficient can then be computed as:

K p = λ p

m

n

where m is the number of elements in C, and λ p is a normalization coefficient defined as:

λ p =
m

m

j=1
Σ q j

where q j denotes the number of times the EC number corresponding to the jth element

of C occurred in the entire pathway graph.

2.7.2. Utilization of functional categories

The degree of functional coupling between the genes involved in SN-cycles was also

examined in reference to the MIPS functional role catalogue 10 developed for the yeast

genome (Mewes et al. 1997). The catalogue has a hierarchical structure. Each of the 15

main classes (e.g. metabolism, energy etc.) contains three to four subclasses, with the

total number of functional categories exceeding 200. Correspondingly, the numeric desig-

nator of a functional class can include up to four numbers. For example, the yeast gene

product YGL237c is attributed to the functional category 04.05.01.04, where the num-

bers, from left to right, mean transcription, mRNA transcription, mRNA synthesis, and

transcriptional control. Nearly 4000 yeast genes could be ascribed to at least one func-

tional category based on careful manual analysis of extrinsic evidence (similarity to

known proteins, presence of indicative sequence patterns) as well as experimental data

from the literature. In this work, the MIPS classification was used for automatic assign-

ment of functional categories to gene products from completely sequenced genomes

based on significant homology to one or many functionally characterized yeast genes.

The functional category coefficient for a group of genes with at least one functional cate-

gory assigned F = (F1, F2, . . .  , Fn) was computed as:

9 Av ailable on-line at http://mips.gsf.de/proj/yeast/catalogues/funcat/index.html
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K f = λ f

m

n

where n is the number of genes in the group, m is the maximal number of times a func-

tional category f occurred in F , and λ f is a normalization coefficient:

λ f = 1 − P(m, f )

In the latter equation P(m, f ) denotes the binomial probability of the functional category

f to occur m times in the group of genes of size n:

P(m, f ) =
n!

m!(n − m)!
pn

f (1 − p f )
n−m

where the probability p f is estimated as the general frequency of occurrence of a func-

tional category f .

2.7.3. Implementation and data sources

The main vehicle for the present study was the PEDANT genome analysis system (Frish-

man and Mewes 1997; Frishman, Albermann et al. 2000). The PEDANT database11 con-

tains exhaustive functional and structural annotation of all completely sequenced

genomes. In particular, gene products are automatically assigned to yeast functional cate-

gories (Mewes et al. 1997) and enzyme classes (Kanehisa and Goto 2000) based on simi-

larity searches. Out of 35 finished genomic sequences available at the time of writing, we

selected 12 genomes from sufficiently distant species, as assessed visually based on a

maximum likelihood phylogenetic tree derived from the small-subunit rRNA sequences

using the PHYLIP package (Felsenstein 1989). Namely, these genomes are: Aeropyrum

pernix, C. jejuni, C. pneumoniae, E. coli, M. pneumoniae, M. thermoautotrophicum,

Mycobacterium tuberculosis, Pyrococcus abyssi, T. acidophilum, T. maritima, Syne-

chocystis sp. and T. pallidum.12 Throughout this text, gene IDs as available through the

PEDANT database are utilized.

A Perl program was written to extract gene positional information and various other

attributes from the PEDANT MySQL relational tables, build the SN-graphs, detect SN-

cycles, and study the features of the genes predicted to be functionally related.13

2.8. Results

2.8.1. Formal properties of SN-cycles

We begin with asking two questions: (i) do non-trivial SN-cycles (i.e. those not involving

colinear gene clusters) exist; and (ii) if they exist, what is the chance that they occur at

random. To answer the first question, it is sufficient to provide an example. Figure 2.4

shows a closed system of SN-relationships involving some of the genes responsible for

lysine biosynthesis in the prokaryotes. There are three adjoining SN-cycles originating at

10 Av ailable on-line at http://pedant.gsf.de
11 URLS of the respective sequencing centers are available at http://pedant.gsf.de/cred-

its.html
12 Later the algorithm was re-implemented for performance (see Chapter 3).
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the E. coli coli gene coding for dihydrodipicolinate reductase. The detailed discussion of

this example from the functional point of view will follow later. In order to answer the

second question, we have studied the behavior of SN-graphs and their dependence on var-

ious analysis parameters using a set of 12 completely sequenced genomes from phyloge-

netically distant species (see 2.7.3). Figure 2.5 shows the dependence of the number of

SN-cycles identified from the number of genomes used in the analysis. The graph makes

immediately obvious the value of a large number of sequenced genomes in comparative

genomics: there is a boost in the number of SN-cycles found as the number of genomes

approaches ten. This is in agreement with the results of Overbeek et al., who noted that in

order to detect functional coupling for a given functional subsystem, at least ten genomes

are needed.

The same experiment was performed with our set of 12 genomes after randomly shuffling

the gene order within each genome, which effectively leads to destroying meaningful N-

relationships while keeping S-relationships intact. The difference in the occurrence of

SN-cycles in real and shuffled genomes quickly grows with the number of genomes and

becomes especially pronounced when more than ten genomes are considered. In the com-

plete set of 12 genomes with real gene order, 33,000 SN-cycles were found, as opposed to

3500 SN-cycles in shuffled genomes. It should also be noted that at greater evolutionary

distances between species, the share of non-random SN-cycles increases. We thus esti-

mate that with a sufficiently large number of evolutionary distant genomes taken into

account, approximately 90% of SN-cycles are non-random. Moreover, as seen in Figure

2.5(b), the increase in the number of SNcycles is almost exclusively caused by long

(more than ten nodes) SN-cycles. Due to the virtual disappearance of long SN-cycles

after shuffling, we are compelled to conclude that the majority of all such cycles reflect

conserved spatial association between genes, although certain parts of these cycles may

still be random. As expected, detection of SN-cycles is strongly influenced by the choice

of the BLAST alignment parameters (Figure 2.5(c) and (d)); their number grows quickly

as the BLAST parameters are changed from very stringent (E-values close to 0, coverage

close to 100%) to entirely permissive (any E-value, any coverage). However, even with

the most permissive parameters, the number of SN-cycles identified in real, unshuffled

genomes is nearly an order of magnitude higher than in the genomes with random gene

order.

Since the S-relationships are not influenced by gene order shuffling, the difference

observed is solely due to the strong functional coupling of adjacent genes in the former

and the virtual disappearance of the N-relationships in the latter.

2.8.2. Functional content of SN-cycles

Now that we have formally established the overwhelming non-randomness of long SN-

cycles and their frequent occurrence, it is time to examine their functional content. The

central issue in accessing the performance of our method is the granularity of the func-

tional assignments. Similarity-free approaches are necessarily less specific than methods

based on protein sequence and structure comparison. While the latter are often capable of
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(a)

(b)
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(c)

Figure 2.4. SNAP analysis of the E. coli gene g1786214 coding for dihydrodipicolinate

reductase. A part of the SN-system originating from the Chlamydia trachomatis gene

gi_3328787 (which is orthologous to the E. coli gene) is shown. For illustration purposes,

only six prokaryotic genomes are considered, numbered from 1 to 6. (a). A representation of

the gene location and their S and N- relationships. The total number of genes in each

genome is shown in parentheses. Sequential numbers of genes, counting from the 5’ to the

3’ end of the genome are indicated. Additionally, each gene is colored and labeled with a

Greek letter according to its function: α (red), dihydrodipicolinate reductase (EC 1.3.1.26);

β (brown), aspartokinase (EC 2.7.2.4); γ (cyan), aspartate-semialdehyde dehydrogenase

(1.2.1.11); δ (yellow), dihydrodipicolinate synthase (EC 4.2.1.52); ε (green), homoserine

dehydrogenase (EC 1.1.1.3); φ (lilac), diaminopimelate decarboxylase (EC 4.1.1.20). Three

adjoining SN-cycles are present: (i) g2
371 g2

36 9 g3
3709 g3

3708 g4
1496 g4

1493 ;(ii) g2
371 g2

36 9

g3
3709 g3

3708 g5
11 85 g5

11 84 g3
129 4 g3

1293 g4
1490 g4

1493 ; and (iii) g2
371 g2

36 9 g3
3709 g3

3708

g3
3708 g6

29 01 g6
29 0 0 g4

1494 g4
1493.Incidentally, a simple colinear gene cluster involving the

spatially conserved pair of genes b and g in T. maritima and Synechocystis sp. is present; the

extra S-relationship between the genes of the type γ is shown as a broken line. (b) An SN-

graph corre- sponding to the system shown in (a). The shadowed part of the graph stems

from the conserved pair of adjacent genes that have sequential numbers 1494 and 1496 in

the genome of T. maritima and number 2900 and 2901 in the genome of Synechosistis sp.
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(c) A part of the KEGG metabolic map involving the six genes predicted to be functionally

coupled. Enzymes (highlighted in the same colors as used in (a)) encoded by the genes α ,

β , γ , δ and ε catalyze subsequent reactions in the lysine biosynthesis pathway, while the

reaction catalyzed by the enzyme φ is separated from the nearest reaction of the first group

by two other metabolic steps.

(a) (b)

(c) (d)

Figure 2.5. Comparison of the global properties of SN-cycles in real (squares) and shuffled

(triangles) genomes. Dependence of the number of SN-cycles detected on (a) the number of

genomes considered (in order to make computations feasible, only selected data points were

computed), (b) cycle length, (c) BLAST cutoff E-value, and (d) BLAST alignment coverage

is shown. The default parameters, unless explicitly specifed are: BLAST cutoff E-value,

0.0001; BLAST coverage, 0.4; number of genomes, 12.

predicting precise specificity of a certain enzyme, the former are intended to attribute pro-

teins to broad functional classes or predict their involvement in the same physiological

processes or cellular structures.

Let us consider again the example shown in Figure 2.4. The system of three adjoining

SN-cycles links six different enzymes participating in the lysine biosynthesis pathway
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(Table 2.1). As seen in Figure 2.4(c), five of these proteins (α , β , γ , δ and ε ) catalyze sub-

sequent reactions, while the reaction catalyzed by the enzyme φ is separated from the

nearest reaction of the first group by two intervening steps, corresponding to a metabolic

distance D = 3. Assuming normalization coefficient λ p = 1, the pathway coefficient (see

Chapter 2) will be equal K p = 1( 5/6) ≈ 0. 83 for Dt = 1, and K p = 1 for Dt ≥ 3. Further, all

six proteins belong to the same functional role category 01.01.01 (amino acid biosynthe-

sis), which means that the functional category coefficient in this case will be

K f = 1( 6/6) = 1 (again, assuming λ f = 1). Thus, both coefficients indicate a high degree

of functional coupling between the enzymes considered. Importantly, none of these three

SN-cycles or their parts constitutes a conserved colinear gene cluster, although one such

cluster is incidentally present and involves the conserved pair of genes coding for dihy-

drodipicolinate synthase and homoserine dehydrogenase shared between the Thermotoga

maritima and Synechocystis sp. genomes.

To assess the global performance of our method, we have studied the behavior of the K p

measure on the full set of SN-cycles delineated from 12 genomes. The complete KEGG

pathway database (Kanehisa and Goto 2000) was treated as a set of separate subgraphs

corresponding to the individual biochemical pathways, such as lysine biosynthesis or gly-

colysis. Effectively, by using such an approach we are introducing additional a priori

knowledge about functionally coupled genes in our measurements. Using this approach

(Figure 2.6(a)) to estimate K p leads to a good separation between real and shuffled

genomes for all values of the maximally allowed metabolic distance D: the functional

content of realistic SN-cycles appears to be an order of magnitude higher. Such bias

would not have any influence on K p if gene groups found by SN-cycles were random.

Comparison of SN-cycles in real and shuffled genomes in terms of the pathway coeffi-

cient K p is presented in Figure 2.6(b). Over 30% of all real SN-cycles found have K p val-

ues greater than 0.5, in contrast to only 1% of random cycles. Even in the range

0. 2 < K p < 0. 5, real SN-cycles have a nearly fivefold lead over the random ones, and the

total of 81% of the cycles are in the range 0. 2 < Kp < 1. 0. By contrast, the same compari-

son for the functional category coefficient K f (Figure 2.6(c)) shows that only 40% of the

real SN-cycles are in the range 0. 2 < K f < 1. 0, while 60% have lower K f values and can-

not be statistically distinguished from random cycles. We can thus conclude that the

SNAP algorithm is capable of associating gene products involved in a common biochemi-

cal pathway, while the specific functions of individual genes represented in terms of a cel-

lular role category appear to be correlated rather weakly.
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Table 2.1. Genes constituting the SN-cycle shown in Figure 4 (shadowed) and their orthologs.

Genome Gene Id Description Start Stop 

� g1786214 dihydrodipicolinate reductase 28374 29195 

� g1790455 lysine-sensitive aspartokinase III 4230812 4229463 

� g1788658 usg-1 protein 2434669 2433656 

� g1788823 dihydrodipicolinate synthase 2597780 2596902 

� g1786183 aspartokinase I/homoserine dehydrogenase 337 2799 

E.coli 

� g1789203 diaminopimelate decarboxylase 2976921 2975659 

� gi_3328787 dihydrodipicolinate reductase 415997 415236 

� gi_3328785 aspartokinase III 414229 412934 

� - - - - 

� gi_3328784 dihydrodipicolinate synthase 412923 412063 

� - - - - 

C. trachomatis 

� - - - - 

� rv2773c dapB dihydrodipicolinate reductase 3082337 3081600 

� rv3709c ask aspartokinase 4153480 4152215 

� rv3708c asd aspartate semialdehyde dehydrogenase 4152214 4151177 

� rv2753c dapA dihydrodipicolinate synthase 3067120 3066218 

� rv1294 thrA homoserine dehydrogenase 1449373 1450698 

M. tuberculosis 

� rv1293 lysA diaminopimelate decarboxylase 1448026 1449369 

� gi_4982086 dihydrodipicolinate reductase 1516426 1516426 

� gi_4982084 aspartokinase II 1515057 1513852 

� gi_4982089 aspartate-semialdehyde dehydrogenase 1518990 1518007 

� gi_4982087 dihydrodipicolinate synthase 1517307 1516423 

� gi_4981061 aspartokinase II 574428 572209 

T. maritima 

� gi_4982083 diaminopimelate decarboxylase 1513842 1512682 

� - - - - 

� gi_5104810 473aa long hypothetical aspartate kinase 711805 713226 

� gi_5104813 long hypothetical aspartate-semialdehyde dehydrogenase 713223 714272 

� - - - - 

� gi_5104814 long hypothetical homoserine dehydrogenase 714263 715267 

A pernix 

� - - - - 

� gi_1651716 dihydrodipicolinate reductase 77406 77406 

� gi_1653765 aspartate kinase 3333243 3335045 

� gi_1001379 aspartate beta-semialdehyde dehydrogenese 3248483 3249325

� gi_1001380 dihydrodipicolinate synthase 3249385 3250290

� gi_1001182 homoserine dehydrogenase 2627873 2626572 

Synechocystis sp. 

� gi_1653772 arginine decarboxylase 3342856 3344943 
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(a)

(b)

(c)

Figure 2.6. Functional content of SN-cycles in real (squares, filled bars) and shuffled (trian-

gles, open bars) genomes. (a) Dependence of the pathway coefficient K p on the maximal

allowed metabolic distance D. (b) Relative occurrence of SN-cycles with different K p val-

ues. (c) Relative occurrence of SN-cycles with different values of the funcat coefficient K f .
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Figure 2.7. Dependence of the percentage of true positive SNAP predictions from the mini-

mal allowed pathway coefficient K p for real (filled bars) and shuffled (open bars) genomes.

2.8.3. Estimating the predictive power of SNAP

The following simple considerations provide the basis for the estimation of the predictive

power of SNAP. Suppose a gene of interest is grouped in an SN-cycle together with a

number of other genes with known EC numbers and an arbitrary number of genes without

EC numbers assigned. We will ignore the latter, since they make no contribution to the

automatic annotation of the query gene. Assuming that at least one gene with a known

EC number is related to the query gene, the probability of a correct functional coupling

prediction for these particular query gene and SN-cycle is equal to the pathway coeffi-

cient K p of the cycle. However, it may happen that none of the genes in the SN-cycle is

pathway-related to the query sequence. Thus, the expected probability of a correct predic-

tion for a given SN-cycle should, on average, be somewhat lower than its K p, dependent

on the frequency of occurrence of a particular functional class. For each gene character-

ized through SNAP, we calculated K p of the SN-cycle used for the prediction and com-

pared the pathway assignment of the most represented gene group in the cycle with that

of the query gene. Tw o alternative conditions for considering a prediction of functional

coupling to be correct were utilized: (a) best group condition, when the query gene was

found in the same pathway as the genes of the single most represented enzyme group in

all of the cycles associated with the query gene; and (b) all groups condition, when the

query gene was found in the same pathway as the genes of any enzyme group across all

cycles.

The cumulative graph in Figure 2.7 shows the dependence of the SNAP best group pre-

diction accuracy on the minimal allowed K p coefficient based on our data. The average

success rate for the entire set of genes participating in the SN-cycle is around 45%. If one

considers only SN-cycles with K p > 0. 4, the prediction accuracy increases to over 75%.

As seen in Figure 2.6(b), approximately 60% of all SN-cycles in real genomes (as

opposed to only 7% in shuffled genomes) have the K p coefficient in this range. Not
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surprisingly, the percentage of true positives for the shuffled genomes shown in Figure

2.7 remains constant for all values of K p. Note that the curve for real SN-cycles in Figure

2.7 tails off somewhat at K p values greater than 0.9. This happens because many of the

SN-cycles with K p values equal to exactly 1.0 include only two genes with known EC

numbers, while SN-cycles with K p values in the range 0.8-1.0 are typically calculated on

the basis of five to ten genes (data not shown). The probability of encountering two out of

two genes with the same EC number by chance is higher than, for example, to find eight

out of ten genes with the same EC number. In other words, this curve is not normalized

by the number of genes actually used to calculate K p.

Table 2.2. Percentage of true positives for individual genomes and summarized for all genomes.

In Table 2.2 we present the percentage of true positive predictions for the individual

genomes studied measured as described above. Only SN-cycles with K p greater than 0.4

were considered. The best group true positive rate for such cycles varies from 54% for

Mycoplasma pneumoniae to 90% for Synechosystis sp., while the all groups numbers lie

in the range from 63% (M. pneumoniae, Tr eponema pallidum) to 91% (Campylobacter

jejuni). Overall, the all groups true positive rate is somewhat better than the best group

simply because the odds of finding genes coupled with the query gene in many KEGG

pathway maps are higher than in just one map.

2.8.4. Genome annotation with SNAP

The genome of the thermoacidophilic archaeon Thermoplasma acidophilum containing

1507 predicted genes has recently been sequenced and subjected to careful manual anno-

tation using the PEDANT software system (Ruepp et al. 2000). In particular, each gene

was assigned to one of the following categories, reflecting the current level of knowledge

about its biochemical function: known protein (24 genes); strong similarity to known pro-

tein (189 genes); similarity to known protein (495 genes); weak similarity to known pro-

tein (101 genes); strong similarity to unknown protein (110 genes); similarity to unknown
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protein (265 genes); weak similarity to unknown protein (85 genes); no similarity (237

genes); and questionable ORF (one gene).

Here, we focus on the 460 T. acidophilum genes, or roughly 30% of the gene comple-

ment, that possess some degree of similarity to uncharacterized proteins. The number of

genes of this type for which a SNAP prediction can be made depends critically on the

number of genomes considered and reaches 140, or roughly one-third of this pool, when

all 12 genomes are taken into account. This number will definitely grow as more

genomes are included in the analysis. It appears that with a sufficient number of phyloge-

netically distant genomes available, essentially every gene in a genome under scrutiny

will participate in at least one SN-cycle.

Let us consider the SNAP results for the T. acidophilum gene Ta0740. This gene,

described as conserved hypothetical protein, has orthologs in a number of other bacterial

genomes, but all of them are functionally uncharacterized. The SN-cycle associated with

Ta0740 (denoted α , see Figure 2.8(a)) involves six other types of proteins. Five of them

(β , δ , ε , ζ and η) are enzymes with known EC numbers, while the sixth protein, denoted

γ , is annotated as chloroplast import-associated channel IAP75. Using our software, we

were able to establish that four of the enzymes, δ , ε , ζ and η, catalyze a compact group

of biochemical reactions in the phenylalanine, tyrosine, and tryptophan biosynthesis path-

way (KEGG map 00400, see Figure 2.8(b)), while the enzyme β and the non-enzymatic

protein γ are seemingly unrelated to the first four proteins. Thus, based on these auto-

matically derived KEGG assignments, the value of K p for this particular SN-cycle is

4/5 = 0. 8, because four out of five proteins with known EC numbers belong to the same

metabolic pathway. Howev er, by additional manual analysis we were able to find out that

the enzyme b, involved in purine methabolism (KEGG map 00230), is actually only six

reactions away from the enzyme ε . Moreover, even the protein γ with no apparent enzy-

matic activity may be linked to the photosynthesis system that is adjacent to the KEGG

map presented in Figure 2.8(b) (see upper left corner). Based on the SNAP results, we

predict that Ta0740 is involved in phenylalanine, tyrosine, and tryptophan biosynthesis.

The second example from T. acidophilum is a SNAP prediction for the gene Ta0420 (Fig-

ure 2.9). In the current annotation, this gene is described as conserved hypothetical pro-

tein and has similarity to hypothetical proteins in Methanobacteirum thermoautotroph-

icum and E. coli. Based on the comparison with the eukaryotic genome of Saccharomyces

cerevisiae, functional categories regulation of carbohydrate utilization, other energy gen-

eration activities and carbohydrate utilization were assigned automatically by the

PEDANT system to this protein; these assignments, however, are based on quite weak

similarities and are thus questionable.

SNAP detected two SN-cycles: a short four-node cycle composed of the proteins of α and

β types, and a long cycle involving the genes α , β , γ , δ , ε , ζ and η (Figure 2.9(a)). The

first cycle represents the case of a weakly conserved colinear gene pair: the genes α and

β appear in close proximity in just two relatively close genomes (M. thermoautotroph-

icum and T. acidophilum). Consequently, based on the annotation of the gene β , we can

putatively assign function to the gene α . Specifically, functional categories automatically

assigned to β by PEDANT do indeed coincide with those assigned to α (see above) and
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(a)

(b)



-40-

Figure 2.8. SNAP analysis of the hypothetical protein Ta0740 from T. acidophilum. (a) SN-

cycle associated with Ta0740 (denoted α ). Six other protein types found are: β , phosphori-

bosylaminoimidazolesuccinocarboxyamide synthase (EC 6.3.2.6); γ , chloroplast import-

associated channel IAP75; δ , prephenate dehydrogenase (EC 1.3.1.12); ε , 2- dehy-

dro-3-deoxyphosphoheptonate aldolase (EC 4.1.2.15); ζ , 3-dehydroquinate synthase (EC

4.6.1.3); η , chorismate synthase (EC 4.6.1.4). (b) Phenylalanine, tyrosine, and tryptophan

biosynthesis pathway as presented in the KEGG database (map 00400). Enzymes δ , ε , ζ ,

and η are highlighted in colors corresponding to those in (a).

thus confirm them (Figure 2.9(b)).

The long SN-cycle reveals the following: α , β , γ and ζ were assigned to the functional

category carbohydrate utilization (β , γ and ζ are well-known enzymes occurring in the

glycolysis pathway and other energy-related pathways), gene η is a regulatory protein of

unclear function, gene δ is a carbonic anhydrase (whose functional role is also not clear)

and gene ε is described as NifU-related protein (Figure 2.9(b)). NifU protein is involved

in the nitrogen fixation process in certain soil bacteria and cyanobacteria. In our example,

though, it has orthologs in Chlamydia pneumoniae and C. jejuni. The existence of nitro-

gen fixation genes in these host-dependent prokaryotes would be difficult to explain: it is

unlikely that such an organism has the ability to perform energetically expensive atmo-

spheric nitrogen fixation in the presence of already fixed nitrogen, as in the host environ-

ment. Thus, we conclude that the description assigned to these proteins based on the

weak similarity to the nitrogen fixation genes is incorrect.
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(a)
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(b)

Figure 2.9. Figure 7. SNAP analysis of the hypothetical protein Ta0420 (α ) from T. aci-

dophilum. (a) SN-cycle associated with Ta0740 (denoted α ). (b) Functional categories

assigned by PEDANT.
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Chapter 3

Databases, tools and implementations

In this chapter we will provide description of tools and databases used in and developed

for SNAP analysis.

3.9. PEDANT genome database

In our implementation SNAP algorithm builds on the PEDANT genome analysis server

(Frishman, Mokrejs et al. 2003) which currently contains information on about 180 com-

pletely sequenced and unfinished genomes, including large eukaryotic genomes such as

Mus musculus and Homo sapiens.

PEDANT is a versatile genome data access and data analysis system which currently pro-

vides automatically pre-computed results of broad range of bionformatics methods, set of

tools for cross-genome comparison, quick access via BioRS
tm

retrieval system, computa-

tion and visualization of protein-protein interaction (PPI) networks based on experimental

data. PEDANT is based on relational database schema compatible with both MySQL
tm

and Oracle
tm

database management systems.

The PEDANT genome set consists of three major sections:

1 Genomes which undergo careful in-depth analysis by the MIPS biologists using the

subsystem for manual annotation available in the PEDANT software suite. This sec-

tion currently includes Neurospora crassa, T. acidophilum, and A. thaliana.

2 Completely sequenced and published genomes. The main source of sequence data for

this section, including DNA contigs and ORF nomenclature, is the genomes division of

GenBank (Benson et al. 2002), although in some cases we obtain data directly from

sequencing centers. Whenever possible data manually curated by NCBI staff has been

used14. If a curated version is not available, original data as submitted by the authors15

is processed. This section contains 5 eukaryotic, 84 eubacterial, and 16 archaebacterial

datasets.

3 Unfinished genomic sequences. Gene prediction is conducted by ORPHEUS (Frish-

man, Mironov et al. 1998) in a completely automatic fashion, usually allowing for

large overlaps between ORFs. This leads to many over-predicted ORFs, but ensures

that fewer real ORFs are missed. In many cases, the PEDANT database is the only

source of annotation for such datasets. This section contains 15 eukaryotic, 51 eubacte-

rial, and 3 archaebacterial datasets.

13 Av ailable at ftp://ftp.ncbi.nih.gov/genomes/Bacteria
14 Av ailable at ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria
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Large volume of false positives is inevitable when exhaustive bioinformatics analysis as

performed by PEDANT is conducted. For this reason stringent parameters of bioinfor-

matics methods were used whenever possible. The raw output of the methods is stored in

the database to make it available for further examination by human expert.

For each of the roughly 650 000 protein sequences the following pre-computed analyses

are available:

(A) Protein function

• BLAST similarity searches against the complete non-redundant protein sequence

database.

• Motif searches against the PFAM (Bateman et al. 2002), BLOCKS (Henikoff et al.

1999), and PROSITE (Falquet et al. 2002).

• Predictions of cellular roles and functions is based on the high-stringency BLAST

searches against protein sequences which have manually assigned functional cate-

gories as defined in the FunCat Functional Catalogue developed by MIPS and

Biomax Informatics AG. The FunCat catalogue covers a broad range of biological

concepts, including cellular processes, systemic physiology, dev elopment and

anatomy for prokaryotes and unicellular eukaryotes, plants and animals. In addition,

genomes annotated with other vocabularies (such as Gene Ontology) can be mapped

to FunCat annotations and thus integrated into the similarity search, as already done

for the genomes of Drosophila melanogaster and Caenorhabditis elegans. At

present, we use proteins with manually assigned functional categories of the follow-

ing species: plant A. thaliana, fungi S. cerevisiae , eubacterium Listeria monocyto-

genes EGD and archaebacterium T.acidophilum. More species-specific catalogues are

in preparation and will be available shortly (e.g. bacteria Bacillus subtilis, Helicobac-

ter pylori, Neurospora crassa).

• Similarity-based predictions of enzyme nomenclature (EC numbers).

• Similarity-based extraction of keywords and superfamily assignments from the PIR-

International sequence database (Barker et al. 2000).

• Assignment of sequence to known clusters of orthologous groups, COGs (Tatusov et

al. 2001).

(B) Protein structure

• Sensitive similarity-based identification of known 3D structures and structural

domains. For this purpose, the IMPALA software (Schaffer et al. 1999) has been uti-

lized which allows comparison of each gene product with a collection of position

specific scoring matrices, or profile library, representing sequences with known three

dimensional structure from the PDB database (Berman et al. 2000) and sequences of

structural domains from the SCOP database (Lo et al. 2002). CATH (Pearl et al.

2001) domain predictions are being currently added to the database.

• Prediction of transmembrane regions using the TMHMM software (Krogh

et al. 2001).
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• Identification of local low similarity regions and entire non-globular domains based

on the SEG algorithm (Wootton and Federhen 1993).

• Prediction of coiled coil motifs (Lupas et al. 1991).

• Prediction of protein structural classes (all-a, all-b, a/b).

One of the important aspects of genome analysis involves evalutation of gene duplication

and identification of paralogous gene families. In PEDANT this is provided by perform-

ing all-against-all PSI-alignment within each genome set. Further, sequences possessing

sufficient degree of sequence similarity are joined into single-linkage groups. Addition-

ally, sequences highly similar on domain level, as inferred from sensitive HMMER (Eddy

1998) recognition of PFAM-domains, are also joined into the clusters, even if the corre-

sponding BLAST score is below than preset threshold.

3.10. Genome viewer

Genomic sequences contain vast number of various elements - genetic structures of dif-

ferent levels of organisation, such as chromosomes, genes, exons, introns, operons, pro-

moters, sites of binding of regulatory proteins, splice sites and so on. Each of these ele-

ments is positioned in respect to other genome elements, it can often be composed from

other simpler genetic structures, and ultimately it is encoded by a nucleotide sequence.

Often the information about such elements is not the result of experimental analysis, but

rather derived from sophisticated prediction algorithms. As a result of applying different

algorithmic approaches many genomic elements are represented by several alternative

models.

For manual analysis of the genome it is often necessary to have the compact view of

genomic structures of different complexity. Here we describe Jaba - genome visualization

tool, which has been developed to aide our analysis of prokaryotic genomes and as an

annotation tool for A. thaliana genome project.

Jaba viewer consists of following panels:

1 A genome panel (Figure 3.1(a)). In this section most of the available genetic structures

are displayed. Genetic structures or models located on direct strand of the DNA are

displayed above the coordinate ruler, structures located on reverse strand - below. Each

type of genetic structure, e.g. GENSCAN gene predictions or annotated genes, is dis-

played in a separate row. Elements constituting more complex structures, e.g. pro-

moter and exons constituting genes, or BLAST alignment stretches composing one

BLAST match, are depicted joined together by the line. If there are several similar

BLAST matches available, they are shown coalesced into a single bar, which can be

expanded with a mouse click. Additionally, possibility to zoom in and out, print the

whole view, filter and reload selected rows on the panel is provided.

2 A sequence panel (Figure 3.1(b)). When the user activates the structure on the genome

panel, she may choose to closely inspect the sequence by pressing "Get sequence" but-

ton. When the nucleotide sequence is fetched, it is displayed in the main part of the
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(a)

(b)

Figure 3.1. Screenshot of Jaba genome viewer. (a) Genome browsing panel. Color codes:

green - exon, red - promoter, dark cyan - protein BLAST match, lilac - nucleotide BLAST

match. Activated gene model is displayed in intensified colors. (b) Sequence and history

panels. Color codes are the same as for (a).

sequence panel with substructures (if any) highlighted in the colors corresponding to

those on genome panel. Mouse click on the highlighted region results in sequence of

the region being pasted into the clipboard panel below. Also, the ability to make three-

frame translation of the fetched sequence, find start/stop codons, candidate splice sites

is provided.

3 A history panel(Figure 3.1(b)). On this panel the names and coordinates of all previ-

ously selected structures and substructures constituting them are displayed in hierarchi-

cal manner. Selection of one of the names on this panel activates corresponding struc-

ture on the genome panel.
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Jaba possesses several features which render it unique among similar programs. First, it

is written in Java computer language using only the basic Java libraries, which makes the

viewer immediately accessible via the Internet with any standard browser without requir-

ing user to install any additional libraries or plug-ins. Second, Jaba being the full-fea-

tured genome viewer is extremely lightweight - executable code fits in only about 60 kilo-

bytes, which makes it ideal for using via the Internet. Third, highly modular design of the

viewer allows it to access variety of data sources: SQL database, WWW and flat files.

Support of the latter is enormous: Jaba supports BLAST, FASTA, GENSCAN, Gene-

mark and numerous other formats, scoring total of about 25 different formats. Further-

more, other formats can be easily added by writing a Perl subroutine.

Jaba has being very extensively used in A. thaliana genome project (Tabata et al. 2000),

Neurospora crassa genome project and numerous prokaryotic genome projects.

3.11. SNAP Implementation

In the past few years the large number of new prokaryotic genomes have been sequenced.

Each new genome is a valuable addition in terms of new context information it contains.

However, the size of genomic data itself and the fact that similarity data are essentially

binary relations, and being those tend to grow in quadratic fashion, adds up to the com-

plexity of bioinformatics analysis.

SNAP algorithm represents interesting technical challenge in this respect. Although the

algorithm is a simple graph traversal, there is no general way of dividing the problem into

smaller subproblems. That is, in general SN-graph can not be split into the smaller sub-

graphs to be traversed on separately, at least not without missing some of the SN-cycles.

Therefore, the algorithm must operate on complete SN-graph. That implicates, apart

from that the algorithm should run reasonably fast on big and complex graph, it must also

have the whole graph in the computer’s random access memory (RAM). Fortunately,

modern computers are well up to the challenge - it is not generally a problem nowadays

to have ∼ 500Mb of RAM required for SN-graph encompassing 25 pro- and eukaryotic

genomes. The second problem caused by the dataset size is that initial stage required for

fetching the data and building up SN-graph takes considerable time (˜10 min for 25

genomes set) and therefore it is too slow to execute for each single computation.

Having these challenges in mind, we designed our program in the followin way. For per-

formance, SNAP algorithm has been implemented in C. It operates in daemon mode, i.e.

once the data are loaded and the SN-graph is constructed, the program remains resident in

the computer’s memory accepting connections from external clients and communicating

with them by means of a simple text-based protocol. Furthermore, program is able to run

several parallel computations on the same SN-graph data structure, thus taking advantage

of modern multi-processor architectures. For more extensive computations it has further

been parallelized to run on many computers through the use of a network proxy daemon

capable of channeling computation requests to the most adequate computer.
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3.12. All-against-all alignment

The sensitivity of SNAP algorithm is dependent on the sensitivity of ortholog recognition.

The latter might become a crucial problem when evolutionary very distant organisms are

present in the dataset, as in case of eukaryotes vs. prokaryotes comparisons (see Chapter

4). For this reason highly sensitive PSI-BLAST (Altschul et al. 1997) alignment of 82

protein sets has been conducted.

The amount and the speed with which protein alignment data have been produced turned

out to be a hard problem for a standard database management system (DBMS). Conse-

quently, we had to resort to using the time proven flat-file-based approach. In order to

retain the ability of running PSI-BLAST computations on several networked computers

simultaneously without losing in consistency of computations and the data management,

simple database-locking scheme has been implemented using POSIX file locking inter-

face. Also, few network daemons has been written to aid alignment data access and man-

agement.

After all-against-all alignment has been completed the parsed results have been imported

into PEDANT system.

(a) (b)

Figure 3.2. SNAP server output for T. acidophilum gene coding for adenylosuccinate syn-

thetase. a)The table of genes participating in SN-cycles (sorted by order of occurrence in

SN-cycles). The ’Purine metabolism’ KEGG/Pathway map is predicted for this gene. b)Dia-

gram of an SN-cycle automatically generated by SNAPper. Blue bar corresponds to gene

which starts SN-cycle, red bars to genes contributing to SN-cycle and black bars to genes

which lay in-between of two SN-cycle members, but not contribute to SN-cycle themselves.

3.13. SNAPper - SNAP Web server

SNAPper (Kolesov et al. 2002) allows to conduct on-line SNAP function predictions for

query protein sequences. Using SQL queries, it is possible to correlate pre-computed
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properties of gene products stored in PEDANT databases with the results of the SNAPper

analysis.

At the time of writing public version of SNAPper utilizes a selection of 23 phylogeneti-

cally distant microbial genomes. A SNAPper search can be initiated either with a query

protein sequence submitted via a Web form, or by specifying a PEDANT gene id, if

known. In the former case a BLAST search against genomic proteins will be performed

to find query’s orthologues in the genomes considered which will serve as starting points

for SNAPping. Subsequently, all SN-cycles originating from the starting points are identi-

fied and a list of genes constituting these cycles displayed, equipped with web links to the

corresponding PEDANT report pages. This list is expected to be enriched in genes func-

tionally coupled with the query gene. If EC-numbers are available for some part of the

genes found, a Web link to the most relevant KEGG (Kanehisa and Goto 2000) metabolic

pathway map will be provided. In addition, SNAPper renders a hyperlinked graphical

representation of the SN-cycles (Figure 3.2).

The result of the SNAPper analysis does not represent a definitive function prediction, but

should rather be considered an aid for further manual annotation. The SNAP analysis

parameters (BLAST E-value threshold, criteria for finding orthologues, the number of

gene neighbours considered, etc) are set to strict values in order to reduce the number of

false positives found, but can be manipulated by advanced users.

3.14. PWP - Phylogenetic Web Profiler

Phylogenetic profiling has become another approach we implemented building upon

PEDANT system and all-against-all alignment database. (Wong et al. 2003)

Phylogenetic Web Profiler16 (PWP) is a program which provides the method of phyloge-

netic profiles over the Internet. It covers set of 72 genomes, including prokaryotic as well

as eukaryotic genomes.

The problem of ortholog determination is addressed in this work in several ways: i) by

using our database of highly sensitive PSI-BLAST alignments ii) by using as orthologs

only best-to-best PSI-BLAST matches by default an iii) by allowing to tweak the parame-

ters of search for each particular case.

Currently, three ortholog determination parameters can be varied by the user.

1 To account for the non-uniform rate of sequence divergence amongst different ortholog

families, the option of PSI-BLAST based E-value cutoff is provided. Stringent cutoffs

are expected to eliminate false positives in ortholog prediction of more conserved pro-

teins while more relaxed cutoffs will allow detection of more diverged proteins.

2 The option to specify tolerances to differences in length between the query and hit pro-

teins is provided. Comparison of protein lengths will improve ortholog prediction for

15 Av ailable on-line at http://pedant.gsf.de/pwp.
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proteins with conserved domains. However, when orthologs are products of fission

ev ents, using stringent length cutoffs may produce false negatives in generated profiles.

To help compensate for this phenomenon, the program predicts ortholog fission by

searching for adjacent genes coding for non-overlapping regions of the same protein.

3 Finally, the option of comparing annotations between query and hit proteins by word

similarity is available as this may help to detect highly sequence divergent orthologs.

The annotations are obtained from the PEDANT database (see Chapter 4).

There are other parameters that can be varied to achieve better performance of phyloge-

netic profiling for particular input. Options allowing to manipulate which NCBI-based

ev olutionary lineages (Wheeler et al. 2000) will be used for profiling are provided. In

addition, in order to predict what proteins might act as analogous replacements to the

query protein in other organisms (Liberles et al. 2002), PWP provides the option of

searching for hits that have an inv erted profile to that of the query protein.
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Chapter 4

SNAPping up eukaryotic genomes

For decades operons or, in general, gene clusters sharing common regulatory region, have

been considered to be a feature mostly confined to prokaryotic kingdom.

However, as Caenorhabditis elegans genome project continued to carry on, the presence

of operon-like gene clusters in this organism has been firmly established. It has been

shown that in C. elegans, unlike other eukaryotes and similar to prokaryotes, there are

groups of genes which are transcribed together by RNA polymerase and (unlike prokary-

otes) subsequently cut by special splicing mechanism into isolated mRNAs (Blumenthal

and Spieth 1996).

This finding and availability of completely sequenced C. elegans genome has prompted

us to test SNAP on C. elegans and other eukaryotic genomes. As usual, we will start with

an example of SN-cycle to demonstrate potential relevance of our approach.

The SN-cycle found by SNAPping C. elegans genome and set of prokaryotic genomes is

shown on Figure 4.1(a). The SN-cycle starts with gene α in C. elegans which has no

annotation assigned, but is highly similar (BLAST E-value 1.0E-58) to gene coding for

3-oxoacyl-[acyl-carrier-protein] reductase in Thermotoga maritima. The gene residing

next to α , β is attributed "propionyl-CoA carboxylase alpha chain precursor" description,

however it shares highest degree of sequence similarity with multifunctional acetyl-CoA

carboxylase-biotin carboxylase enzyme from Streptococcus pneumoniae. Besides, as we

were able to find out in ENZYME17 database (Bairoch 2000) and BRENDA18 (Schom-

burg et al. 2002) eukaryotic propionyl-CoA carboxylase also possesses biotin-dependent

transcarboxylase activity which it shares with enzyme γ , acetyl-CoA carboxylase-car-

boxyl transferase. Interestingly, the latter enzyme is missing in C. elegans, which might

imply that enzyme β carries out its function in C. elegans or simply lack of proper anno-

tation for this enzyme. At last, gene coding for 3-oxoacyl-[acyl-carrier-protein] synthase,

or δ on Figure 4.1, is located in the neighborhood of γ in Campylobacter jejuni and in the

neighborhood of α in Aquifex aeolicus.

As seen of Figure 4.1(b) the enzymes just described participate in fatty acid biosynthesis

pathway. Moreover, these enzymes catalyze the subsequent reactions in the pathway.

Thus we can conclude that it is possible to find at least some meaningful SN-cycles con-

necting together genes in C. elegans genome and prokaryotic genomes.

Gene β in C. elegans and gene β in S. pneumoniae, although highly similar on the

sequence level and described as having similar enzymatic activities, are essentially differ-

ent enzymes. This demonstrates the effect of extending SN-analysis to genomes that are

ev olutionary very distant from the rest of the genomes considered. In C. elegans one of

16 Av ailable at http://us.expasy.org
17 Av ailable at http://www.brenda.uni-koeln.de
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(a)

(b)
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Figure 4.1. (a). A representation of the gene location and their S and N- relationships. The

total number of genes in each genome is shown in parentheses. Sequential numbers of genes

are indicated. Additionally, each gene is colored and labeled with a Greek letter according to

its function: α (red), 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); β (green),

annotated as propyonil-CoA carboxylase in C. elegans, highly similar to multifunctional

enzyme acetyl-CoA carboxilase-biotin carboxylase in S. pneumoniae(EC 6.4.1.3 and

6.4.1.2/6.3.4.14, respectively); γ (light blue) annotated as acetyl-CoA carboxylase - car-

boxyl transferase (EC 6.4.1.2), δ (yellow), 3-oxoacyl-[acyl-carrier-protein] synthase (EC

2.3.1.41). (b) A part of the KEGG metabolic map involving the four genes predicted to be

functionally coupled. Enzymes (highlighted in the same colors as in (a)) encoded by the

genes α , β , γ , δ catalyze subsequent reactions in the fatty acid biosynthesis pathway.

the two genes shown codes for propyonil-CoA carboxylase which is involved in fatty acid

degradation rather than biosynthesis and is thus not a direct functional analog of the

acetyl-CoA carboxylase in S.pneumoniae with which it shares the highest sequence simi-

larity (BLAST P-value 1.E-52). As indicated in the ENZYME database an analogous

enzyme in plants carries out both functions. This example illustrates the limits of SNAP

as a context-based function prediction method: while it is capable of capturing functional

relatedness between genes on the coarse level, precise function prediction is usually not

possible.

A second example involves genes in the D. melanogaster genome. As seen in Figure 4.2

an SN-cycle starts with a pair of reversely oriented genes: α and β . Gene α on D.

melanogaster chromosome III codes for the ribosomal protein S10, the product of gene β

is described as possessing protein-arginine N-methyltranserase activity, i.e. it is involved

in post-translational protein modification. It is homologous to the protein in Neisseria

meningitidis genome which is annotated as ’conserved hypothetical’. While post-transla-

tion modification is in general rare in prokaryotes, the presence of this mechanism has

been shown specifically for N. meningitidis (Virji 1997; Stimson et al. 1996). Although

we have not been able to find evidence for protein methylation as a post-translational

modification mechanism in prokaryotes this result may hint on its presence in N. meningi-

tidis.

The gene γ neighboring gene β is described as "translation elongation factor Tu", also a

part of the ribosome, which has its ortholog in T. maritima. The neighbor of the latter

gene codes for an S10 ribosomal protein which is homologous to the gene α in D.

melanogaster described above. All genes in this SN-cycle are involved in translational

and post-translational activities of the cell. The gene located between β and γ in the N.

meningitidis genome codes for a bacterial type ferredoxin. It is not functionally related to

other genes considered in this example and does not participate in SN-cycle, demonstrat-

ing the property of SN-cycles to avoid such out-of-the-context genes.

4.15. Methods and data

The computational technique used in this work to study gene order in eukaryotic
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2. N. meningitidis (1989)

3. T. maritima  (1846)

3'

5’

5'

1. D. melanogaster, chromosome III

a

5' b 3'

g

103101

b

g

1473

3'

a

1474

Figure 4.2. Graphical representation of the SN-cycle involving two genes in D.

melanogaster genome transcribed in opposite directions. Genes are colored according to

their function (red: ribosomal protein S10; green: arginine methyl-transferase/conserved

hypothetical protein: blue: translation elongation factor Tu."

organisms is largely based on one described in Chapter 2.

In this study the original SNAP method was modified in several ways to account for

larger evolutionary distances and differences in genome structure between prokaryotic

and eukaryotic organisms. First, we removed the requirement for the similarity (S-) edges

connecting eukaryotic genes to prokaryotic genes or other way around to be the best-to-

best PSI-BLAST matches.

Also the S-edges on the SN graph were calculated using less stringent parameters

(namely E-value and alignment coverage) for prokaryote-eukaryote comparisons than for

prokaryote-prokaryote comparisons. Likewise, while computing the Neighborhood (N)

edges on the SN graph the allowed intergenic space size and the number of neighbors on

the chromosome considered were different for bacterial and eukaryotic genomes. In addi-

tion, in some cases we disregarded all adjacent gene pairs on eukaryotic chromosomes

possessing significant sequence similarity and thus representing duplications.

Another difference with respect to the original SNAP method was in the way we retained

SN-cycles for analysis. Instead of identifying all SN-cycles having less then a certain

number of nodes through the depth-first graph traversal algorithm, as previously

described, we performed breadth-first search and selected the shortest SN-cycles contain-

ing unique genes not found in any other cycle. This modification allows to prevent combi-

natorial explosion caused by substantial increase of the number of genomes in our analy-

sis and to decrease the number of spurious SN cycles caused by false positive similarity

hits, especially pronounced for comparisons between prokaryotes and eukaryotes. Note

that this modification does not cause any changes in the total number of targeted genes

participating in SN-cycles. In other words, where the old SNAP scheme (all-SN-cycles,

depth-first search) would find some SN-cycles for a particular gene, the new approach



-55-

(unique-gene-SN-cycles, breadth-first search) is guaranteed to find a subset of these SN-

cycles. As shown on Figure 4.3 this approach changes significantly the distribution of

number of SN-cycles of different length.19
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Figure 4.3. Distribution of number of shortest unique-gene SN-cycles of different length

originating from genome of worm C. elegans.

The same experiment was performed with our set of 23 genomes after randomly shuffling

the gene order within studied eukaryotic genome, which effectively leads to destroying

meaningful N-relationships in this genome while keeping all S-relationships intact.

Throughout this chapter we will use the signal-to-noise ratio defined as:

R =
Nr

Ns

,

where Nr is number of pairs of genes in studied genome for which SN-cycles were found

and Ns is number of pairs genes found in SN-cycles when studied genome was shuffled.

Please note, that in shuffle-test only targeted genome was shuffled, the other (22 prokary-

otic genomes) remained unchanged. Also, to account for stochastic oscillations shuffle-

test was normally performed several times and the results of the tests were averaged.

4.16. Eukaryotic SN-cycles and the intergenic distance D

The size of the intergenic spacer D controls the maximum distance between two genes

required for them to be considered involved in an N-relationship, i.e. to be neighbors. In

prokaryotic genomes the probability of two genes to be involved in the same operon is

intimately connected to D (Overbeek, Fonstein et al. 1999). To illustrate the non-random

behavior of SN-cycles found in the course of this work in eukaryotic organisms we found

18 Interestingly, it also provides a hint that our choice of 14-node cut-off on SN-cycle

length was optimal.
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it convenient to study the dependence of noise ratio R between random and shuffled

genomes on the intergenic distance D using the so-called DR-graphs. Throughout this

work we present DR-graphs both for original gene complements of the genomes studied

(dubbed "all") and for the case where tandem duplications between sequence-similar

genes were filtered out ("duplication-filtered"). Another critical parameter that had to be

taken into account is relative orientation of genes. We distinguished between genes in the

head-to-tail orientation having the same direction of transcription ("unidirectional orien-

tation") as well as genes arranged in tail-to-tail ("divergent orientation") and head-to-head

("convergent orientation"). As demonstrated below the performance of the SNAP method

on eukaryotic data crucially depends on the organism studied and thus requires organism-

specific choice of analysis parameters. For all three eukaryotic genomes considered we

could establish a detectable non-random correlation of gene order with prokaryotes under

at least a part of parameters tested. In all cases strong influence of tandem duplications

was observed.

4.16.1. DR dependence in C. elegans

In C. elegans signal-to-noise ratio R quickly grows with decreasing intergenic spacer size

when all gene orientations are considered (Figure 4.4). R ratios observed for duplication-

filtered SN-cycles are just slightly lower than in the case when all SN-cycles are taken.

As in all further tests the behavior of the curves becomes more stochastic towards the

lowest values of intergenic distance threshold as the number of genes located in such

close neighborhood is very small.

In C. elegans SN-cycles involving unidirectional genes and genes in convergent orienta-

tion display significant non-randomness (R>1) even at large intergenic distances (Figure

4.4(b,d)). Unidirectional genes show similar behavior both with and without tandem

duplications as the intergenic distance D decreases down to approximately 600 bp. (Fig-

ure 4.4(b)). At closer distances the two curves diverge: tandemly duplicated genes appear

to make a major contribution to SN-cycles, with R values indicating a nearly 7-fold

increase over the random level. Duplication-filtered SN-cycles cause a modest albeit

quite noticeable increase of R in this distance range, implying that unidirectional gene

duplications are very prominent in C. elegans and usually involve genes located in close

proximity to each other.

Surprisingly, genes in convergent orientation display strongly non-random behaviour,

although the number of genes in this orientation involved in SN-cycles is relatively small.

The DR diagram for genes in divergent orientation (Figure 4.4(c)) does not display any

significant signal apart from the last data point which is based extremely low number of

genes found in such orientation with such strict distance threshold (4 genes) and is thus

not statistically significant.

Very strong SN-correlation for unidirectional gene pairs presumably reflects their

involvement in operon-like structures The presence of noticeable correlation even at large

(> 1000 b.p.) distances may provoke speculations on the presence of a separate
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Figure 4.4. DR-diagram for C. elegans genes participating in SN-cycles broken down for

genes in different co-orientation: (a) any orientation (b) unidirectional orientation (c) diver-

gent orientation (d) convergent orientation

mechanism such as chromatin-level regulation which could make these long-distance

effects slightly more advantageous in the course of evolution.

Non-random behavior of convergent genes is not easy to explain, since genes in such ori-

entation do not share regulatory zones as divergent gene pairs do, with the only exception

of hypothetical long-distance enchancer elements which can be located in-between those

genes. Hence, one possibility to explain the result would be to assume existence of

enchancer elements located in-between 3’ ends of convergent gene pairs regulating tran-

scription of both genes in the pair. We think this is rather unlikely explanation due to vari-

ous spatial considerations and due to obviously common occurrence of such pairs; also,
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other orientations could be affected by such elements as well.

Here we put forward another hypothesis: the products of the genes involved in such con-

vergent gene pairs interact physically directly after translation; translation they undergo is

prokaryotic-style translation occurring right after transcription or coupled with transcrip-

tion. Thus, it could be evolutionary advantageous to place genes coding interacting prod-

ucts in convergent orientation - mRNAs, ribosomes and nascent polypeptides would be

closely located aiding genes’ products to find each other and interact. The existence of

such coupled transcription and translation, and generally translational activity in eukary-

otic nucleus has recently been shown in the excellent experimental study by Iborra et al.

( Iborra et al. 2001)

4.16.2. DR dependence in D. melanogaster

In D. melanogaster (Figure 4.5) non-random correlations between genes in unidirectional

and convergent orientation appear to be almost exclusively due to tandemly duplicated

pairs, with a dramatic increase of R at distances under 3000 base pairs. Unlike C. elegans

genes in convergent orientation display a weak correlation for D > ∼ 1000 b.p. The graphs

for gene pairs with and without duplication filter are virtually indistinguishable.

The only case where we registered significant SN-cycles for duplication-filtered genes

was for divergent orientation and small (under 500 b.p.) intergenic distances(Fig. 4.5(c)).

A possible explanation for this effect could be sharing of promoter regions between genes

in this orientation.

Very strong drop of R is observed in duplication-filtered mode for D<∼ 200 b.p. for all

orientations, but convergent (Fig. 4.5(d)) - the only gene orientation in which two genes

do not have promoter region located in-between. That suggests the presence of very

strong constraints in D. melanogaster genome on minimal intergenic spacer size, most

probably on promoter region. The absence of the drop for duplication-unfiltered mode

probably implies the presence of large number of recent tandem duplications for which

effect of evolutionary pressure on intergenic distance has not yet become detectable. In

any event such constraints on the spacer size between duplicated genes are much weaker

if present at all.

We examined one of the SN-cycles involving a divergent pair of genes in D.

melanogaster (see 4.6(a)). This SN-cycle is short, encompassing a gene pair conserved in

both D. melanogaster and C. jejuni. The first gene in this pair codes for a protein

described as "ribonuclease III" which is responsible for cleavage and processing of

tRNAs, rRNAs, some mRNAs and hnRNAs. The ability to cleave double-stranded DNA

has also been demonstrated for this enzyme. The second gene is described as coding for

’ribonuclease HI’ and the corresponding enzyme has been shown to possess DNA-RNA

hybrid cleavage activity. Evidently, these two enzymes have similar and/or related func-

tions.

On D. melanogaster chromosome the start codons of these two genes are separated by a
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Figure 4.5. DR-diagram for D. melanogaster genes participating in SN-cycles broken down

for genes in different co-orientation: (a) any orientation (b) unidirectional orientation (c)

divergent orientation (d) convergent orientation. To account for generally larger intergenic

distances in D. melanogaster data points up to D=100000 b. p. hav e been computed.

167b.p.-long spacer and the genes are transcribed in opposite directions. To check for

candidate regulatory sites within the spacer we extracted the sequence for the spacer and

100 b.p flanking regions at its 5’ and 3’ ends, and then ran the MatInspector (Quandt et

al. 1995) transcription factor binding site finding software on obtained sequence. As

shown on 4.6(b) the spacer itself, in contrast to the flanking regions, is enriched by puta-

tive transcription factor binding sites. The short distances separating these sites and the

start codons of both genes suggest that regulatory proteins binding to the sites can affect

transcription of both genes, although only wet-lab experiments can provide further evi-

dences supporting this hypothesis.
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2. C. jejuni (1731)
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I$ELF1_01           |        4 (+) |  0.889 |  0.907 | tagtgcgGTGTtgcca
I$BRCZ4_01          |       73 (-) |  1.000 |  0.883 | aataTAAAgcaat
I$CF2II_01          |       79 (+) |  1.000 |  0.898 | ttATATttg
I$DFD_01            |      101 (+) |  1.000 |  0.934 | acgaatATTAggtagt
I$BRCZ4_01          |      113 (+) |  1.000 |  0.864 | tagtTAAAgtaat
I$DFD_01            |      116 (-) |  1.000 |  0.991 | aagttgATTActttaa
I$SN_02             |      120 (-) |  0.906 |  0.859 | ccaagtTGATtact
I$BCD_01            |      121 (-) |  1.000 |  0.901 | ttGATTac
I$SN_01             |      157 (+) |  1.000 |  0.866 | gccacAGGTtcaa
I$ADF1_Q6           |      168 (+) |  0.971 |  0.850 | aaGCTGaagctgcgta
I$BRCZ4_01          |      193 (-) |  1.000 |  0.930 | taatTAAAcgaaa
I$DFD_01            |      194 (-) |  1.000 |  0.957 | agaataATTAaacgaa
I$DFD_01            |      196 (+) |  1.000 |  0.972 | cgtttaATTAttctga
I$E74A_01           |      217 (+) |  1.000 |  0.881 | acaaacgGGAAataaaa
I$BRCZ4_01          |      221 (+) |  0.909 |  0.893 | acggGAAAtaaaa
I$HB_01             |      225 (+) |  1.000 |  0.865 | gaaatAAAAt
I$BRCZ4_01          |      235 (-) |  1.000 |  0.914 | atatTAAAaaaat
I$HB_01             |      235 (-) |  1.000 |  0.901 | ttaaaAAAAt
I$DFD_01            |      236 (-) |  1.000 |  0.943 | tagtatATTAaaaaaa
I$HB_01             |      236 (-) |  1.000 |  0.874 | attaaAAAAa
I$HB_01             |      237 (-) |  1.000 |  0.922 | tattaAAAAa
I$CF2II_01          |      241 (-) |  1.000 |  0.860 | gtATATtaa
I$CROC_01           |      245 (+) |  1.000 |  0.895 | tatacTAAAtaagtta
I$ZESTE_Q2          |      255 (+) |  1.000 |  0.889 | aagttaGAGTgtattg
I$DFD_01            |      274 (-) |  1.000 |  0.961 | agttcaATTAtctcga
I$CROC_01           |      303 (+) |  1.000 |  0.953 | agtcaTAAAtatctcc
I$SN_02             |      321 (-) |  0.906 |  0.899 | agcaccTGCTaaat
I$SN_01             |      323 (+) |  1.000 |  0.952 | ttagcAGGTgctc

Figure 4.6. Example of an SN-cycle involving two genes on D. melanogaster chomosome

transcribed in opposite directions. (a) Graphical representation of the SN-cycle. Genes are

colored according to their function (red: α - ribonuclease III; green: β - riboncuclease HI).

(b) MatInspector output showing detected putative regulatory sites in spacer (shaded) sepa-

rating α and β on D. melanogaster chromosome and 100 b.p. regions surrounding spacer.

22 putative sites are located in 167 b.p. spacer in contrast to just 7 in 200 b.p. of flanking

regions.
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Figure 4.7. DR-diagram for S. cerevisiae genes participating in SN-cycles broken down for

genes in different co-orientation: (a) any orientation (b) unidirectional orientation (c) diver-

gent orientation (d) convergent orientation

4.16.3. DR dependence in S. cerevisiae

In a recent publication Hurst et al (Hurst et al. 2002). have analyzed 166 gene pairs that

are co-expressed and conserved in both S. cerevisiae and Candida albicans. Their find-

ings can be summarized as follows: i) correlation of expression profiles of genes involved

in gene pairs increases with decreasing intergenic distance, ii) the proportion of gene

pairs conserved in S. cerevisiae and C. albicans grows with decreasing intergenic dis-

tance, and iii) among the genes that are highly co-expressed those in divergent orientation

are found more frequently than expected from their overall frequency. We would thus
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expect to detect similar tendencies with our method - growth of signal-to-noise ratio with

decreasing size of intergenic spacer as well as higher R-ratios for divergent gene pairs.

In yeast unidirectional genes perform modestly better than random at large (D > 600 b.p.)

intergenic distances while at close range R sharply decreases (Figure 4.7(b)). In both

cases R values are higher for duplication-filtered genes, implying a small number of local

duplications. Gene pairs in convergent orientation (Figure 4.7(d)) display high R values

for the distance range 200 - 400 (the hypothesis explaining this phenomenon is the same

as for C. elegans). Unlike Hurst et al. we were not able to detect any correlation for pairs

in divergent orientations, most likely due to the reasons explained below. R for genes in

divergent orientation (Figure 4.7(c)) is essentially random for large intergenic distances

and becomes worse than randoma (i.e. < 1. 0) for adjacent genes.
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Figure 4.8. Distribution of average number of S-edges per S. cerevisiae gene for different D

In order to find the reason of how algorithm can perform significantly worse than random

we computed similarity-ness profile for yeast genes having intergenic spacer on either

side (5’ or 3’) less than D. As shown on Figure 4.8 average number of S-edges connect-

ing yeast genes to genes in prokaryotic genomes (statistic per gene) drops dramatically

for D < 200 b.p. It explains the behavior of DR-graph: for D < 200b.p we find less SN-

cycles than in shuffled simply because of significantly lower number of S-edges for the

close neighbors in real S. cerevisiae genome. But why does S-profile behave this way?

The lower number of S-edges for genes in close neighborhood implies that those genes

are, in average, less similar to the genes in other genomes. Since it is difficult to propose a

natural process leading to this kind of separation, we assume that this effect is, in fact,

artifact of gene prediction. I.e. many of the genes occurring in too close neighborhood

are incorrectly predicted ORFs or ORFs with incorrectly extended 5’-region - both of

these cases would lower the average number of S-edges per gene. To test this hypothesis

we computed the fraction of genes having word "questionable" in their description line

in dependence on D. As seen on Figure 4.9, the graph grows sharply when reaches
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Figure 4.9. Distribution of number of ’questionable’ ORFs on D.

D < 200, and this growth perfectly corresponds to the drop on the figure 4.8. Thus, the

strange behavior of DR graph is due to the presence of multiple artifact ORFs sharing an

evident tendency to be located in the close neighborhood.
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Chapter 5

Conclusion

SNAP is a generalization of the algorithm described by Overbeek et al (Overbeek, Fon-

stein et al. 1998; Overbeek, Fonstein et al. 1999). Our method does not rely on the con-

servation of gene order in the form of colinear gene clusters and detects genes that are

functionally coupled through a chain of alternating S and N-relationships. The algorithm

takes a protein sequence and a set of annotated completely sequenced genomes as input

and returns a number of SN-cycles with all vertices being potentially linked to the query

sequence. The main finding that is the wide occurrence of SN-cycles and their strong

non-randomness as compared with genomes in which gene order was artificially shuffled.

The fact that SN-cycles actually reflect the conservation of gene order makes them a use-

ful instrument for defining functional relationships among genes, studying genome plas-

ticity, and reconstructing evolutionary events. While the biological background of the SN-

cycles remains unclear at this point, we assume that they reflect functional coupling

between closely co-regulated genes in prokaryotic genomes and, more generally, the con-

servation of functional and regulatory contexts in genomes (Lathe III et al. 2000).

Further, we sought to quantify the ability of SNAP to predict broad gene function. Using

assignments of genes to KEGG metabolic maps and the genome annotation available

through the PEDANT database, we have demonstrated the tendency of SN-cycles to

reveal the proximity of functionally coupled genes. In doing so, our consideration was

necessarily limited to the genes to which EC numbers could be assigned. Moreover, the

metabolic pathway and functional category assignments that served as the basis for calcu-

lating the K p and K f coefficients were produced automatically based on sequence simi-

larity searches and are prone to errors. Thus, while the anecdotal evidence of functional

coupling detection by SNAP presented throughout this work appears to be quite convinc-

ing, objective assessment of SNAP performance is very difficult and is currently limited

to recovering rough pathway information for some of the genes involved. Moreover,

using this approach we are capable of finding putative true positive predictions, but can-

not make any conclusions about negative predictions, i.e. cases when no prediction could

be made. In any event, it is clear that the reliability of functional inferences made with

SNAP will depend critically on the quality of the whole body of genome annotation avail-

able.

Significantly better performance of SNAP in terms of the pathway coefficient K p as com-

pared with the functional category coefficient K f is not unexpected and is compatible

with the main bulk of facts available on the functional composition of gene clusters. Bac-

terial operons tend to encode members of distinct protein families required for subsequent

steps in a biochemical or regulatory pathway. There is also sufficient evidence that the

conservation of spatial proximity is especially pronounced between the physically inter-

acting genes (Itoh et al. 1999; Dandekar et al. 1998). We hav e thus confirmed that the

concept of functionally coupled or functionally related genes used in context-based pre-

diction methods actually means functionally interacting or jointly acting genes.
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We do not claim to provide the algorithmically most optimal approach to exploring SN-

relationships in genomes. The filtering criterion for SN-graphs that we used, namely the

requirement for SN-paths to be closed, is essentially equivalent to the requirement of two

alternative SN-paths between two functionally coupled genes to be present. A more strict

criterion would require that more than two alternative paths between two genes exist. We

plan to test the performance of SNAP with the number of gene neighbors in each direc-

tion considered c > 2  (see Chapter 2). Increasing c may allow the detection of long-range

patterns in gene order. The main factor limiting the potential of any approach exploiting

the conservation of gene order is the massive disruption of gene clusters in distantly

related species and the resulting reduction of the number of significant N-relationships

available. Another obvious limitation is the possibility of non-orthologous gene displace-

ment (Koonin et al. 1996), leading to termination of SN-cycles due to the absence of their

constituent S-relationships. The results of the functional coupling prediction are also

dependent on our ability to differentiate orthologs of a certain gene in other genomes

from paralogous genes. However, even if a homologous protein with a similar function is

recruited instead of the true functional ortholog, the SN-graph may still be closed and the

corresponding prediction of significant value.

An important recent advance is the establishing of functional association between spa-

tially separated genes that in other organisms are fused to form a composite protein (Mar-

cotte et al. 1999; Enright et al. 1999). Gene fusion events have been shown to be reliable

indicators of protein interaction, but the number of such events is rather limited (e.g. 64

cases involving 2.8 % of proteins in E. coli, Haemophilus influenzae, and Methanoccocus

jannaschii, as reported by Enright et al.4). It will be easy to adapt SNAP to take into

account gene fusion events by redefining N-relationships as those between separate spa-

tially proximate genes, and those between distinct, non-overlapping sequence domains of

the same protein as outlined by the structure of BLAST local alignments. SNAP can also

be combined with statistical operon prediction methods (Craven et al. 2000) based on

recognition of regulatory DNA signals.

Based on our tests with the Thermoplasma acidophilum genome, we estimate that SNAP

will prove instrumental in mapping functional links for a significant fraction (up to 30 %)

of presently uncharacterized genes in bacterial genomes. We plan to launch an effort to

re-annotate all completely sequenced genomes available to date. Systematic work

directed at the detection of functionally interacting genes will have implications for medi-

cal and environmental research, since many genes responsible for antibiotic resistance,

pathogenesis, and biodegradation are transferred horizontally between different species in

clusters (De La Cruz and Davies 2000) and consequently represent good targets for

SNAP. A  WWW server allowing the users to perform a gene function prediction using

our method and the underlying PEDANT genome database has been implemented.

In the course of our analysis we have dev eloped numerous tools and data repositories.

Jaba has been created for visual analysis of genomic data and models of genetic struc-

tures. SNAPper webserver allows to conduct on-line SNAP analysis for the user input.

All-against-all alignment database is a generic resource for extracting groups of ortholo-

gous and paralogous genes. Using this database we have dev eloped and made available

for public PWP - Phylogenetic Web Profiler, an online system allowing to interactively
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apply method of phylogenetic profiling. All-against-all alignment database, PWP and

SNAPper have become integral parts of PEDANT genome analysis system.

The role and the frequency of occurrence of gene clusters in eukaryotes is completely

open. While operons seem not to be generally present in higher organisms, they do play a

significant role in some of them. In the Caenorhabditis elegans genome, for example, up

to 25% of the genes are organized in polycistronic transcription units (Blumenthal and

Spieth 1996). A sizeable number of functionally interacting eukaryotic genes are

involved in synexpression groups (Niehrs and Pollet 1999). What part of these genes are

physically associated on the chromosome remains unclear. These findings have prompted

us to apply our method on eukaryotic genomes.

Although when SNAPping eukaryotic genomes we encountered considerably more noise

than in original SNAP study on prokaryotes and we had to modify our method in order to

cope with it, non-randomness of SN-cycles and, thus, of gene order in the considered

organisms is apparent as shown on DR −diagrams.

Perhaps, one of the most surprising results we report here is the presence of significant

amount of non-random functionally linked gene pairs in divergent orientation in D.

melanogaster. Such structures controlled by region lying in-between have been reported

in prokaryotes and S. cerevisiae before, but not in higher eukaryotes with their complex

genome organization. Similar to the other, simpler, org anisms, we suggested that rela-

tively small region in-between divergent genes can control transcription of both genes.

Also, our results suggest such corregulated pairs are relatively widespread in D.

melanogaster genome. The brief study of the region separating a pair of genes predicted

by our method to be functionally linked (and they are indeed functionally linked) made

our point stronger by demonstrating high concentration of putative transcription factor

binding sites in this region.

No less surprising is excess of non-random correlated gene pairs in convergent orienta-

tion in C. elegans and S. cerevisiae. It is very difficult to hypothesize on evolutionary

forces driving to this kind of local genomic organization with only exception of the

hypothesis that evolution may favor genes in such orientation if their products interact

right after the translation if translation occurs directly on-site, in the nucleus; indeed, it

has recently been reported that about 10% of all translation in mammalian cell takes place

in the nucleus (Iborra et al. 2001). Thus, from this hypothesis it can be expected that

functionally related genes arranged in convergent gene pair undergo prokaryotic-style on-

site coupled transcription and translation, with following interaction of the gene products.

Obviously, these results as well as this hypothesis require further extensive inv estigation.

As expected uni-directionally oriented genes in C. elegans appeared to be significantly

correlated even after duplication filter has been applied, which is in agreement with the

estimation that approximately 25% of genes in C. elegans participates in operon-like

structures.

In D. melanogaster genome for which no operon-like org anization has ever been shown,

any non-randomness in uni-directional gene order disappears when duplication filter is
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applied. The presence of large amount of tandem duplication, and their strong effect on

amount of found SN-cycles is observed for all three genomes.

Since SNAP relies on information encoded in the gene order to make functional linkage,

it turned out to be sensitive to artificial disruption of the gene order as was demonstrated

on S. cerevisiae genome. Apparently, introduction of large amount of non-sense ORFs by

seeking to fill the gaps gene finder program, obscured almost all non-random correlation

of colocalized genes as has been reported by Hurst et al. We plan to apply our method

again when new release of S. cerevisiae database will come out: as we have been

promised, these non-sense ORFs will finally be removed.

We plan to apply our method on eukaryotic organisms from other phyla, in particular

plants (A. thaliana) and mammals (Mus. musculus and Homo sapiens).

To draw the line, SNAP method developed by us has been shown as an unique tool capa-

ble of uncovering gene function as well as non-trivial gene associations in complex

eukaryotic genomes. Moreover, SNAP results strongly hint on the presence of structures

and gene arrangements in the eukaryotic genomes which have not been known before.

These results can be used to guide further experimental studies. The strength of our

method is that it does not rely on any explicit functional information in order to uncover

functional association, thus almost entirely avoiding the noise introduced by human

errors or by other methods.
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