Molekulare Phylogenie der Halbaffen, Schlankaffen und Gibbons

Christian Roos

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan
für Ernährung, Landnutzung und Umwelt der Technischen Universität München
zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
(Dr. rer. nat.) genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. E. Grill

Prüfer der Dissertation:

1. Univ.-Prof. Dr. A. Gierl

2. Univ.-Prof. Dr. P. M. Kappeler, Georg-August-Universität Göttingen

3. Priv.-Doz. Dr. R. A. Tórres Ruiz

Die Dissertation wurde am 17.06.2003 bei der Technischen Universität München
eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für
Ernährung, Landnutzung und Umwelt am 09.10.2003 angenommen.
Inhaltsverzeichnis

1. Allgemeine Einführung ... 1
 1.1. Die Ordnung der Primaten .. 1
 1.2. Molekulare Phylogenie .. 3
 1.3. Sequenzanalyse mitochondrialer DNA-Abschnitte ... 5
 1.4. Transpositionsereignisse als molekular-kladistische Marker 7
 1.5. Ziele .. 9

2. Methoden .. 11
 2.1. DNA-Extraktion ... 11
 2.2. Analyse mitochondrialer DNA .. 11
 2.2.1. Amplifikation von mitochondrialen DNA-Fragmenten ... 11
 2.2.2. Gelelektrophorese und Aufreinigung von DNA aus dem Gel 13
 2.2.3. Ligation und Klonierung von PCR-Produkten ... 13
 2.2.4. Sequenzierung .. 14
 2.2.5. Alignierung, statistische Auswertung und Stammbaumrekonstruktion 14
 2.3. Analyse von SINE-Integrationen ... 16
 2.3.1. Datenbank-Suchstrategien .. 16
 2.3.2. Southern-Blot- und Hybridisierungstechniken .. 16
 2.3.3. Konstruktion genomischer Banken und deren Weiterbearbeitung 18
 2.3.4. Spezies-übergreifende SINE-PCRs ... 18
 2.3.5. Weiterbearbeitung und Auswertung von SINE-PCRs ... 20

3. Kapitel 1: Molekulare Phylogenie der Halbaffen (Strepsirrhini) .. 21
 3.1. Einleitung ... 21
 3.2. Material und Methoden .. 24
 3.3. Ergebnisse .. 25
 3.3.1. Sequenzanalyse des mitochondrialen Cytochrom b Gens .. 25
 3.3.2. SINE-Transpositionen als molekular-kladistische Marker 33
 3.3.3. Berechnung von Aufsplitsungszeiten .. 40
 3.4. Diskussion ... 42
 3.5. Zusammenfassung ... 53
1. Allgemeine Einführung

1.1. Die Ordnung der Primaten

ausschließlich in Primaten vorkommen und sich im menschlichen Genom in einer Kopienzahl von mehr als einer Million nachweisen lassen (Li et al., 2001).

1. Allgemeine Einführung

1.2. Molekulare Phylogenie

Obwohl die molekulare Phylogenie als wichtigen Hauptzweig die Klärung von evolutionären Verwandtschaftsbeziehungen zum Ziel hat, dient das dabei erstellte Gerüst auch als Basis für die Erforschung evolutionärer Mechanismen. Durch die stetig wachsende Zahl von Sequenzinformation von Mensch und anderen Organismen können Veränderungen auf DNA-
1. Allgemeine Einführung

Während morphologische und ethologische Merkmale seit dem Entstehen der Evolutionstheorie untersucht wurden, ist die Analyse molekularer Merkmale für systematische Fragestellungen in großem Maßstab erst in den letzten drei Jahrzehnten durch die Entwicklung geeigneter Techniken ermöglicht worden, wobei die ursprünglich verwendeten Protein- und Chromosomen-Studien heute meist durch vergleichende Analysen von DNA-Sequenzen ersetzt werden.
1.3. Sequenzanalyse mitochondrialer DNA-Abschnitte

Aufgrund der Fortschritte in der Molekularbiologie in vergangenen Jahrzehnten wurde auch die Arbeit in der vergleichenden Biologie deutlich vereinfacht. Speziell durch die Entwicklung der Polymerase-Ketten-Reaktion (PCR) und den verbesserten Verfahren zur Direktsequenzierung wurden die Möglichkeiten auf diesem Gebiet revolutioniert.

Analysen von mitochondrialen Sequenzabschnitten erwiesen sich in den letzten Jahrzehnten als hilfreiches Mittel zur Klärung phylogenetischer Fragestellungen und wurden aufgrund einiger Vorteile nukleären Datensätzen vorgezogen. Das ringförmige mitochondriale Genom der Säuger ist im Gegensatz zum nukleären Genom klein (etwa 16,600 bp) und kompakt gebaut. Es wird ausschließlich maternal vererbt und ist vermutlich frei von Rekombinationen (Cann et al., 1987). Das mitochondrial Molekül kodiert für dreizehn Proteine, die als Enzym-Untereinheiten der Atmungskette fungieren, 22 Transfer-RNAs (tRNA), sowie zwei ribosomale RNAs (rRNA). Zusätzlich enthält das mtGenom eine Kontrollregion, welche die Replikation und Transkription reguliert. Da die mitochondriale DNA – über das ganze Genom gemittelt - etwa 5-10 mal schneller evolviert als nukleäre DNA (Brown et al., 1982), kommt sie daher besonders bei der Analyse nah verwandter Taxa zum Einsatz. Ein weiterer Vorteil von Mitochondrien ist ihre hohe Kopienzahl pro Zelle (bei Säugern etwa 2000 mtGenome) (Cann et al., 1987), was speziell bei der Untersuchung von nicht-invasiv gewonnenem Probenmaterial von Nutzen ist. Problematisch bei phylogenetischen Rekonstruktionen jedoch sind mitochondriale Kernintegrationen, die im nukleären Genom als funktionslose Pseudogene vorliegen (Collura &
1. Allgemeine Einführung

Stewart, 1995; Mourier et al., 2001; Zischler et al., 1995) und somit leicht zur „Kontamination“ mitochondrialer Datensätze führen können.

Aufgrund der hohen Evolutionsrate und einer damit verbundenen frühen Sättigung des Datensatzes, stark schwankenden Veränderungen der Basenzusammensetzung und einer Ungleichverteilung der evolutionären Raten über die Positionen (Gamma-Verteilung), ist mitochondriale DNA aber weniger zur Analyse tieferer Verzweigungen geeignet. Beispiel hierfür ist die falsche Positionierung der Koboldmakis und Pelzflatterer (Dermoptera) anhand von mitochondrialen Sequenzdaten. Basierend auf Transpositionsereignissen ist die Schwesterngruppenbeziehung von Koboldmakis und Anthropoidea (Schmitz et al., 2001) sowie die Abtrennung der Pelzflatterer von den Primaten klar belegt (Schmitz et al., 2002a). Bei der Analyse von mitochondrialen Daten jedoch bildet der Koboldmaki eine Gruppe zusammen mit Halbaffen (Murphy et al., 2001; Schmitz et al., 2001b) bzw. ist vollständig aus der Ordnung der Primaten ausgegliedert (Arnason et al., 2002), wogegen Pelzflatterer immer die Schwesterngruppe zu den Anthropoidea darstellen (Arnason et al., 2002; Murphy et al., 2001; Schmitz et al., 2002a).

Abbildung 1: Schematische Darstellung eines mitochondrialen Säugergenoms. Die schwarzen Balken geben die Lage der tRNAs an.

1.4. Transpositionsereignisse als molekular-kladistische Marker

Das Primatengenom besteht aus einer Vielzahl von interspergierten repetitiven DNA-Sequenzen, die auf transposable Elemente zurückzuführen sind. Man schätzt, daß etwa 50% des

Die Replikation von SINEs verläuft konservativ, d.h. eine RNA-Kopie eines SINEs wird mit Hilfe einer RNA-Polymerase III erstellt, wobei das zu kopierende SINE am alten Lokus verweilt. Durch eine Reverse Transkriptase wird die RNA-Kopie schließlich in eine cDNA umgeschrieben. An einem neuen Lokus wird mit Hilfe einer Endonuklease die doppelsträngige DNA restringiert, wobei überhängende Enden entstehen. Die SINE-cDNA wird eingebaut und die Lücken im Doppelstrang durch eine DNA-Polymerase aufgefüllt. Durch die überhängenden Enden entstehen auf beiden Seiten der Insertion kurze Abschnitte von Sequenzwiederholungen (etwa 7-25 bp), sogenannte „Direct Repeats“. Da die kurzen SINEs nur interne Promoter-Regionen (A-, B-Box) für die RNA-Polymerase III besitzen, sind sie bei der Transposition auf die Hilfe von Klasse II-Elementen, wie zum Beispiel LINEs angewiesen. Diese stellen die für die Transposition notwendigen Enzyme Reverse Transkriptase und Endonuklease zur Verfügung (Smit, 1996).

Abbildung 2: Schematischer Ablauf einer SINE-Transposition. „DR“ bezeichnet die „Direct Repeats“.

1.5. Ziele

Als die am nächsten mit uns Menschen verwandten Säuger spiegeln nicht-humane Primaten einen wichtigen Teil auch unserer Evolutionsgeschichte wider. Die Klärung von...
phylogenetischen Verwandtschaftsbeziehungen innerhalb der Primaten sowie ihre Beziehung zu anderen Säugeterordnungen gibt daher auch Aufschluß über unsere eigene Geschichte.

2. Methoden

2.1. DNA-Extraktion

Da nur wenige der untersuchten Arten in Zoos gehalten werden und somit qualitativ hochwertiges Material schwer erhältlich ist, mußte für die Extraktion von DNA-Proben eine Reihe unterschiedlicher Ausgangsmaterialien verwendet werden. Für die DNA-Präparation aus Gewebe- (Frisch- sowie Museumsmaterial) und Kotproben wurde der QIAamp DNA Mini Kit bzw. QIAamp DNA Stool Mini Kit von Qiagen verwendet. Größere DNA-Mengen aus Gewebe oder EDTA-Blut wurden nach Standardverfahren extrahiert (Sambrook et al., 1989), wogegen die Präparation von DNA aus Haaren nach einer modifizierten Methode von Walsh et al. (1991) durchgeführt wurde. Dazu wurden die Haare über Nacht bei 50 °C in einer 5%-igen Chelex-100-Resin-Lösung (BioRad) inkubiert und anschließend 5 min. bei 100 °C gekocht.

2.2. Analyse mitochondrialer DNA

2.2.1. Amplifikation von mitochondrialen DNA-Fragmenten

Zur Amplifikation mitochondrialer Fragmente kam eine Reihe unterschiedlicher Primer zum Einsatz (Abb. 4, Tabelle 1). Sofern sich das gewünschte Fragment nicht in einem Stück amplifizieren ließ, zum Beispiel bei Museumsmaterial, wurden überlappende PCR-Produkte gebildet, die anschließend aligniert wurden.

2. Methoden

Tabelle 1: Liste der zur Amplifikation mitochondrialer Fragmente verwendeten Primer.

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer (5'-3')</th>
<th>Temp.</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-CYT</td>
<td>AATGATATGAAGAACCATCGTTGTA</td>
<td>64 °C</td>
<td>Roos & Geissmann, 2001</td>
</tr>
<tr>
<td>L-C400</td>
<td>CCATGAGGACATGATATCTGAGG</td>
<td>74 °C</td>
<td></td>
</tr>
<tr>
<td>L-C805</td>
<td>AAACGAAATGTATTTCTATTTG</td>
<td>68 °C</td>
<td></td>
</tr>
<tr>
<td>L-LOOP</td>
<td>AAGGCTAGGGACCAAAACTT</td>
<td>54 °C</td>
<td></td>
</tr>
<tr>
<td>L-L344</td>
<td>TTGGCCAAACCCCAAAAACAAA</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>L-12S</td>
<td>AGATTACACATGCAAGCATCC</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>L-16S</td>
<td>ACACACCGCCGGTCACCT</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>H-C443</td>
<td>TTGGATATTCTGGTGCC</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>H-C671</td>
<td>TAGTAGGGGGAAGGGGATTTTGT</td>
<td>78 °C</td>
<td></td>
</tr>
<tr>
<td>H-C941</td>
<td>CTTTTCCGGAATTTTGTG</td>
<td>54 °C</td>
<td></td>
</tr>
<tr>
<td>H-CYT</td>
<td>AACTGCAGTCATCTCGTTTACAAGAC</td>
<td>82 °C</td>
<td>Yoder et al., 1996a</td>
</tr>
<tr>
<td>H-C-Hyl</td>
<td>TTCATTTCGGTTTACAAGAC</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>H-C-Lor</td>
<td>GTTTAAAGTAGAAGCTTTG</td>
<td>68 °C</td>
<td></td>
</tr>
<tr>
<td>H-L365</td>
<td>TTGGTTTTGGGTTTGGCAA</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>H-LOOP</td>
<td>CCCAAGTGCAAGATTCTAA</td>
<td>52 °C</td>
<td>Roos & Geissmann, 2001</td>
</tr>
<tr>
<td>H-12S</td>
<td>CACCTTCAGTACAACCTTACC</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>H-16S</td>
<td>TTGGCCGAGTTTCTATTTC</td>
<td>60 °C</td>
<td></td>
</tr>
</tbody>
</table>

Um möglichst optimale Amplifikationsergebnisse zu erzielen und ein unspezifisches Hybridisieren der Primer an die Ausgangs-DNA zu verhindern, wurden in dieser Arbeit ausschließlich „Hot-Start“-PCRs durchgeführt, wofür die Primer bis zum ersten Denaturierungsschritt durch eine Wachsschicht von der DNA-Polymerase und der Ausgangs-DNA getrennt waren.

Der Reaktionsansatz setzte sich aus 10 mM Tris, 4 mM HCl, 50 mM KCl, 2 mM MgCl₂, 0,1% Triton-X-100, 1,2 mg/ml BSA, je 330 nM Primer, 125 µM dNTPs und 1 U Taq-Polymerase zusammen und wurde in einem Gesamtvolumen von 30µl durchgeführt. Um Kontaminationen zu vermeiden, wurde der Ansatz in einem separaten Raum angesetzt und die DNA (etwa 50 ng) zuletzt in einem weiteren Raum zugegeben. Die Amplifikationen wurden in einem Peltier Thermal 200 Cycler (Biozym) durchgeführt. PCR-Bedingungen varierten je nach Primerwahl und der Größe des zu erwarteten PCR-Produktes. Prinziell wurde mit einem 2 min. Denaturierungsschritt bei 92 °C begonnen, danach folgte eine zyklische Phase (35 x) mit 60 s Denaturierung bei 92 °C, 60 s Annealing bei variierenden Temperaturen (siehe Primer-Liste) und
einer 60-90 s Elongation bei 72 °C. Zur Terminierung der PCR-Amplifikation wurde ein 5 min. Elongationsschritt bei 72 °C angefügt.

2.2.2. Gelelektrophorese und Aufreinigung von DNA aus dem Gel

Um die Ergebnisse von PCR-Amplifikationen oder Restriktionsverdau zu überprüfen, wurden entsprechende Proben in einem Agarose-Gel (Seakem LE; Biozym) zusammen mit einem Längenstandard (GeneRuler™ 100bp DNA Ladder Plus, MBI Fermentas) elektrophoretisch aufgetrennt. Die dafür verwendeten Gele waren meist 1%-ig und mit 0,5 µg/ml Ethidiumbromid versetzt. Die Dokumentation der Ergebnisse erfolgte anschließend über ein digitales Bildverarbeitungssystem (Eagle Eye, Stratagene).

Entsprechende PCR- oder Restriktionsverdau-Produkte wurden aus dem Gel ausgeschnitten und in 6 M NaJ bei 50 °C gelöst. Danach wurde die DNA nach beschriebenem Verfahren (Sambrook et al., 1989) an Silica-Milch gebunden, mit NaJ und 70% EtOH gewaschen und schließlich in H₂O gelöst.

2.2.3. Ligation und Klonierung von PCR-Produkten

2.2.4. Sequenzierung

Für die Sequenzierreaktion wurde der Amersham Thermo Sequenase™ Primer Cycle Sequencing Kit nach Angaben des Herstellers verwendet. Neben den im Vektorbereich-\liegenden, Fluoreszenz-markierten Primern (IRD800-5'-GAG CGG ATA ACA ATT TCA CAC AGG-3' und IRD700-5'-AGG GTT TTC CCA GTC ACG ACG TT-3') wurde dem Sequenzieransatz etwa 200 ng Plasmid-DNA als Ausgangsmaterial zugegeben. Die Sequenzreaktion wurde unter folgenden Bedingungen durchgeführt: Vordenaturierung bei 95 °C für 2 min., 30 Zyklen mit je 30 s Denaturierung bei 95 °C, 40 s Annealing bei 60 °C und 40 s Elongation bei 72 °C.

Die anschließende gelektrophoretische Auftrennung der Sequenzierprodukte erfolgte in einem Denaturierungs-Polyacrylamid-Gel nach Standardmethoden (Sambrook et al., 1989) auf einem LI-COR 4200-Sequencer. Die Auswertung der Sequenzen erfolgt über die entsprechende LI-COR Software sowie dem Lasergene-Paket von DNASTAR.

2.2.5. Alignierung, statistische Auswertung und Stammbaumrekonstruktion

Die ermittelten Sequenzen wurden mit Hilfe der Computerprogramme SeqPup und ClustalX (Thompson et al., 1997) aligniert und danach manuell editiert. Anschließend wurden Basenzusammensetzungen und paarweise Differenzverteilungen mit PAUP 4.0b10 (Swofford, 1999) ermittelt, sowie die Datensätze auf mögliche Unterschiede in den Linien-spezifischen Evolutionsraten mit dem relativen Ratentest (Programm RRTree, Robinson et al. 1998) überprüft. Da für die phylogenetischen Rekonstruktionen bei Strepsirrhini und Hylabatidae ausschließlich Cytochrom b-Daten verwendet wurden, konnten diese direkt weiterbearbeitet werden. Für die Colobinae wurde ein längeres Fragment analysiert, deren Alignment Insertionen
und Deletionen (Indels) aufweist. Kolumnen mit diesen wurden mit dem Programm Gblocks unter Einsatz unterschiedlich stringenter Einstellungen (Castresana, 2000) entfernt („degapped“).

Um einzelne Aufspaltungszeiten zu bestimmen, wurde für alle ML-Rekonstruktionen getestet, ob die Sequenzen des vorliegenden Datensatzes nach dem Prinzip einer molekularen Uhr evolvieren. Dazu wurden in PUZZLE die Log Likelihoods unter der Annahme und Nicht-Annahme einer molekularen Uhr für vorgegebene Baumtopologien verglichen. Als Ausgangspunkt für sämtliche Datierungen wurden Fossilfunde oder aus genetischen Studien abgeleitete Aufspaltungszeiten als Referenzwerte verwendet (Arnason et al., 1998; Goodman,
2. Methoden

1999; Goodman et al., 1998; Martin, 2003; Page & Goodman, 2001; Stewart & Disotell, 1998; Tavaré et al., 2002; Yoder et al., 1996b).

2.3. Analyse von SINE-Integrationen

2.3.1. Datenbank-Suchstrategien

Um Primer in möglichst konservierte Bereiche zu legen, wurde mit NCBI-BLAST und NCBI-BLAST 2 Sequences versucht, orthologe Sequenzabschnitte bei anderen Arten zu finden. War dies nicht möglich, mußten die Primer willkürlich gewählt werden.

2.3.2. Southern-Blot- und Hybridisierungstechniken

Basierend auf den Informationen aus der Datenbank wurden die beiden für Halbaffen beschriebenen Elemente weiteren labortechnischen Untersuchungen unterzogen, wobei zuerst die Repräsentanz der Elemente in weiteren Primatengruppen mit Southern-Blot- und Hybridisierungstechniken überprüft wurde.

Dazu wurde etwa 5 µg genomische DNA von Galago, Otolemur, Perodicticus, Loris, Nycticebus, Propithecus, Microcebus, Lemur, Cheirogaleus, Daubentonia, Callithrix und
2. Methoden

Colobus mit dem Restriktionsenzym Sau3AI (BioLabs) nach Angaben des Herstellers restringiert, anschließend auf einem Agarose-Gel aufgetrennt und über Nacht auf eine Hybond-N+ Nylon Transfer Membran (Amersham) nach Standard-Southern-Blot-Techniken übertragen. Anschließend wurde die Membran getrocknet und die DNA mit UV-Licht fixiert (UV-Stratalinker 2400, Stratagene).

Für die nachfolgende Hybridisierung wurden unterschiedlich lange Oligonukleotide (MWG) als Ausgangsmaterial für die Herstellung der Sonden verwendet, so daß zwei unterschiedliche Markierungsmethoden zum Einsatz kamen:

Die Alu-Probe (5‘-GAC CAG CCT GAG CAA GA**G-3‘; ** bezeichnet die Strepsirrhini typische 2bp-Deletion) wurde mit Hilfe einer T4-Polynukleotidkinase (BioLabs) und unter Zugabe von \(\gamma^{-32}P \) ATP (50 \(\mu \)Ci) von Amersham am 5‘-Ende nach Standardmethoden (Sambrook et al., 1989) radioaktiv markiert. Anschließend wurde der Ansatz über einen Ionentauscher (DE52-Säule, Whatman) aufgereinigt und 10⁶ cpm/ml in die Hybridisierung (1 h bei 53 °C, Stringenz: 70%) eingesetzt. Nach zwei Waschschritten mit 6x SSC, 1% SDS wurde die Membran mit einem Röntgenfilm (X-Omat, Kodak) für zwei Stunden exponiert und dieser anschließend entwickelt.

Die Markierung der tRNA-Probe (5‘-GGC CCC GTA TGC CAG AGG TGG TGG GTT CAA ACC CAG CCC TGG CC-3‘) dagegen erfolgte über einen Einbau von \(\alpha^{-32}P \)CTP unter Verwendung des Megaprime DNA Labelling Systems (Amersham) und der Zugabe von 50\(\mu \)Ci \(\alpha^{-32}P \)CTP. Bevor 10⁶ cpm/ml der markierten Probe in die Hybridisierung eingesetzt wurde, wurde diese noch über eine MicroSpin™ S-300HR (Amersham) aufgereinigt. Die Hybridisierungstemperatur (68 °C) wurde so gewählt, daß die Probe an Sequenzen mit mindestens 90% Ähnlichkeit bindet. Nach zwei Waschschritten mit 2x SSC wurden die Ergebnisse wie beschrieben ausgewertet.
2.3.3. Konstruktion genomischer Banken und deren Weiterbearbeitung

Um weitere Loci mit entsprechenden SINE-Elementen aufzuspüren, wurden Fragmentlängen-angereicherte, genomische Banken von *Lemur catta*, *Propithecus verreauxi*, *Daubentonia madagascariensis*, *Loris tardigradus* und *Perodicticus potto* erstellt. Dazu wurde etwa 5 µg genomische DNA der entsprechenden Arten mit Sau3AI geschnitten und anschließend auf einem Agarose-Gel aufgetrennt. Da kleine Fragmente für weitere Untersuchungen nicht geeignet waren, wurden Fragmentgrößen von 0,5 bis 2,5 kb aus dem Gel ausgeschnitten und aufgereinigt.

Als Klonierungsvektor wurde der pUC18-Vektor der Firma Boehringer Mannheim verwendet. Der Vektor wurde mit BamHI geschnitten und mit „Shrimp“ alkalischer Phosphatase (Amersham) dephosphoryliert. Die Ligation der DNA-Fragmente erfolgte mit T4-DNA-Ligase und Zugabe von 500 µM ATP über Nacht bei 16 °C. Nach einer Phenol-Chloroform-Aufreinigung wurden die Ligationsansätze, wie unter 2.2.3. beschrieben, transformiert und ausplattiert.

Die Klone wurden auf eine Membran (Sartolon Blotting Membran, Sartorius) übertragen und mit entsprechenden Sonden hybridisiert (siehe 2.3.2.). Positive Klone wurden mit einer Vektor-PCR (siehe 2.2.3.) auf ihre Insertgröße hin überprüft und die dabei entstandenen Agarose-Gele zu Kontrollzwecken geblottet und nochmals hybridisiert. Doppeltpositive Klone wurden sequenziert (siehe 2.2.4.) und anschließend, wie unter 2.3.1. beschrieben, nach SINEs und „Direct Repeats“ abgesucht.

2.3.4. Spezies-übergreifende SINE-PCRs

Da Transpositionsereignisse nur als informative Marker Verwendung finden, wenn die An- bzw. Abwesenheit des SINEs an einem bestimmten Lokus in unterschiedlichen Taxa nachgewiesen werden kann, wurde für jeden zu untersuchenden Lokus ein PCR-System entwickelt. Um diesen An- bzw. Abwesenheitsbeweis zu erbringen, wurden die dafür verwendeten Primer in SINE-flankierende Bereiche gelegt, so daß auf jeden Fall PCR-Produkte amplifiziert wurden – unabhängig von der Anwesenheit eines SINEs.

Die PCR-Amplifikationen wurden nach beschriebenen Bedingungen (siehe 2.2.1.) durchgeführt, wobei die Annealing-Temperatur je nach Bedarf variiert wurde (siehe Tabelle 2).

Tabelle 2: Primer-Liste der analysierten Loci

<table>
<thead>
<tr>
<th>Lokus</th>
<th>Primer 1 (5'-3')</th>
<th>Primer 2 (5'-3')</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str1</td>
<td>TGGTGTGGATGACACTACAAAGG</td>
<td>CATCTCACAATAATATCCCC</td>
<td>58°C</td>
</tr>
<tr>
<td>Str2</td>
<td>GGAAAATGATTAGTTGCTACAC</td>
<td>GGAAAATGATTAGAAGTGGTTGTTAGAAGAGC</td>
<td>58°C</td>
</tr>
<tr>
<td>Str3</td>
<td>AGAAAGTTAATGCGAAGTAATAAGAAGTAATA</td>
<td>TCTCTAAGGGAAGGTGGTTAGAAGAGC</td>
<td>58°C</td>
</tr>
<tr>
<td>Mad1</td>
<td>TGTATTGTTGATGAGTCTCT</td>
<td>TGTATTGTTGATGAGTCTCT</td>
<td>58°C</td>
</tr>
<tr>
<td>Mad2</td>
<td>GAGAAAATTATACATGCTTCT</td>
<td>GAGAAAATTATACATGCTTCT</td>
<td>58°C</td>
</tr>
<tr>
<td>L1</td>
<td>CATGAGAAGCTCGAAATGGAAT</td>
<td>CATGAGAAGCTCGAAATGGAAT</td>
<td>58°C</td>
</tr>
<tr>
<td>Lem1</td>
<td>GAGAAAGTTAATGCGAAGTAATAAGAAGTAATA</td>
<td>TCTCTAAGGGAAGGTGGTTAGAAGAGC</td>
<td>58°C</td>
</tr>
<tr>
<td>Lem2</td>
<td>AAGATATACAAACAGGTATACC</td>
<td>TATATACAAACAGGTATACC</td>
<td>58°C</td>
</tr>
<tr>
<td>Lem3</td>
<td>GGTATTGTTGATGAGTCTCT</td>
<td>GGTATTGTTGATGAGTCTCT</td>
<td>58°C</td>
</tr>
<tr>
<td>Lem4</td>
<td>AAGAAATGATTAGTTGCTACAC</td>
<td>AAGAAATGATTAGTTGCTACAC</td>
<td>58°C</td>
</tr>
<tr>
<td>HLE1</td>
<td>GCCGACGACYCAAAATTATTCCAAATCCAAT</td>
<td>GCCGACGACYCAAAATTATTCCAAATCCAAT</td>
<td>58°C</td>
</tr>
<tr>
<td>HL1</td>
<td>CATATATGACTGTTTACCATATA</td>
<td>CATATATGACTGTTTACCATATA</td>
<td>58°C</td>
</tr>
<tr>
<td>HL2</td>
<td>CCGAAAGTGAAGGCGGTTGAGAAAGTAAGAAAG</td>
<td>CCGAAAGTGAAGGCGGTTGAGAAAGTAAGAAAG</td>
<td>58°C</td>
</tr>
<tr>
<td>HL3</td>
<td>CCTAAGAAGTGRACTACAAAACTAAATAT</td>
<td>ATTTTGTTGACCTTTATATAAGG</td>
<td>58°C</td>
</tr>
<tr>
<td>Ind1</td>
<td>GTGGGAACTGAGTCCTATAT</td>
<td>GTGGGAACTGAGTCCTATAT</td>
<td>58°C</td>
</tr>
<tr>
<td>Ind2</td>
<td>AGGTAACCTGATGGAAGTAAGG</td>
<td>AGGTAACCTGATGGAAGTAAGG</td>
<td>58°C</td>
</tr>
<tr>
<td>Ind3</td>
<td>GCCGACGACYCAAAATTATTCCAAATCCAAT</td>
<td>GCCGACGACYCAAAATTATTCCAAATCCAAT</td>
<td>58°C</td>
</tr>
<tr>
<td>MM1</td>
<td>CATATATGACTGTTTACCATATA</td>
<td>CATATATGACTGTTTACCATATA</td>
<td>58°C</td>
</tr>
<tr>
<td>LoF1</td>
<td>TCTTGTGTGGAGCCTCCCATCC</td>
<td>AGTTGCTCCAGGCAGCATC</td>
<td>56°C</td>
</tr>
<tr>
<td>LoF2</td>
<td>GTGTATAGGTGACAGGTAGTGGTACAC</td>
<td>GTGTATAGGTGACAGGTAGTGGTACAC</td>
<td>60°C</td>
</tr>
<tr>
<td>LoF3</td>
<td>CAAAGCTTCTTCCATTGCAAAAAA</td>
<td>TTCTCACAACACTTATAAG</td>
<td>58°C</td>
</tr>
<tr>
<td>Lor1</td>
<td>CACATACAGATGAAATTACAAAG</td>
<td>CACATACAGATGAAATTACAAAG</td>
<td>58°C</td>
</tr>
<tr>
<td>Lor2</td>
<td>ACTATTTTTATGTGATTGATAT</td>
<td>ACTATTTTTATGTGATTGATAT</td>
<td>54°C</td>
</tr>
<tr>
<td>Lor3</td>
<td>CACATATGATAATGAAAGGACC</td>
<td>CACATATGATAATGAAAGGACC</td>
<td>58°C</td>
</tr>
<tr>
<td>LN1</td>
<td>TATATATACAAAAATTTATATATG</td>
<td>TATATATACAAAAATTTATATG</td>
<td>58°C</td>
</tr>
<tr>
<td>LN2</td>
<td>GATGAGAACTTCTTACATGAAAT</td>
<td>GATGAGAACTTCTTACATGAAAT</td>
<td>58°C</td>
</tr>
<tr>
<td>LN3</td>
<td>GATGAGAACTTCTTACATGAAAT</td>
<td>GATGAGAACTTCTTACATGAAAT</td>
<td>58°C</td>
</tr>
<tr>
<td>LN4</td>
<td>GTTCCATGATGACAACATATTTCAT</td>
<td>GTTCCATGATGACAACATATTTCAT</td>
<td>58°C</td>
</tr>
<tr>
<td>PA1</td>
<td>CATATATGACTGTTTACCATATA</td>
<td>CATATATGACTGTTTACCATATA</td>
<td>58°C</td>
</tr>
<tr>
<td>PA2</td>
<td>GGGGCTTCATGCTAGGAGATTT</td>
<td>GGGGCTTCATGCTAGGAGATTT</td>
<td>54°C</td>
</tr>
<tr>
<td>Gal1</td>
<td>AGAAAGTTAATGCGAAGTAATAAGAAGTAATA</td>
<td>TCTCTAAGGGAAGGTGGTTAGAAGAGC</td>
<td>58°C</td>
</tr>
</tbody>
</table>
2. Methoden

2.3.5. Weiterbearbeitung und Auswertung von SINE-PCRs

Sofern entsprechende PCR-Produkte für die einzelnen Loci amplifiziert werden konnten, wurden diese wie unter 2.2.2.-2.2.4. beschrieben weiterbearbeitet. Die Analyse der Sequenzen erfolgte mit NCBI Blast 2 Sequences und den Programmen SeqPup und ClustalX (Thompson et al., 1997). Aufgrund der einfachen Merkmalspolarität der Marker (An- bzw. Abwesenheit des SINEs) waren keine weiteren statistischen Auswertungen und Korrekturen der Sequenzen notwendig. Um aber mögliche Ungleichverteilungen von ursprünglich polymorphen Markern in Folgeli- ni en („Incomplete Lineage Sorting“) ausschließen zu können, wurde versucht, die einzelnen Kanten im Baum durch mehrere SINE-Integrationen zu belegen.

<table>
<thead>
<tr>
<th>Lokus</th>
<th>Primer 1 (5'-3')</th>
<th>Primer 2 (5'-3')</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gal2</td>
<td>CTAAGTTAATCTCATATAATCCTA</td>
<td>TCAGCAATTTAGCCAGCCAAAA</td>
<td>58°C</td>
</tr>
<tr>
<td>Gal3</td>
<td>ACCTATTATAACAAGGGAGGA</td>
<td>TCTAAGGGATAACTTGAGTATT</td>
<td>58°C</td>
</tr>
<tr>
<td>Gal4</td>
<td>ACATGCAATGGATGATGAGCA</td>
<td>TGCTCAGACTCTGCTCTTTAAA</td>
<td>58°C</td>
</tr>
<tr>
<td>Gal5</td>
<td>ACTAATTTACAATTTCAATCAGC</td>
<td>TGATGATCTGAATCTAATAAGTC</td>
<td>58°C</td>
</tr>
</tbody>
</table>
3. Kapitel 1: Molekulare Phylogenie der Halbaffen (Strepsirrhini)

3.1. Einleitung

Die Halb- oder Feuchtnasenaffen (Strepsirrhini) stellen eine der beiden Teilordnungen der Primaten dar. Wie bereits ihr Name verrät, stellen sie das Zwischenglied zwischen den eigentlichen Affen (Anthropoidea) und anderen Säugerordnungen dar und weisen daher noch eine Reihe von ursprünglichen Merkmalen auf, die sie mit anderen Säugerordnungen, nicht aber mit höheren Primaten teilen. Besonders bezeichnend ist das Vorhandensein eines Tapetum lucidum, das den überwiegend nachtaktiven Halbaffen ein verbessertes Sehen bei Dunkelheit ermöglicht, welches bei den beiden einzigen nachtaktiven Haplorrhini-Gattungen *Tarsius* und *Aotus* fehlt. Ein weiteres Merkmal der Halbaffen ist der Orbitaring, der bei höheren Primaten durch eine Orbitahöhle ersetzt wurde, ebenso wie der charakteristische Zahnkamm, das Vorhandensein von mindestens vier Brustwarzen, sowie eines feuchten Nasenspiegels, welcher auch namensgebend war (Feuchtnasenaffen) (Geissmann, 2002a).

Abbildung 5: Verbreitung der Halbaffen.
Halbaffen besiedeln weite Teile Asiens und Afrikas sowie die Insel Madagaskar (Abb. 5). Aufgrund ihrer weitreichenden Ausdehnung und langen unabhängigen Evolution sind eine Vielzahl von sehr unterschiedlichen Formen entstanden. Ihr Spektrum reicht von Maus-(Mausmakis) bis hin zu Bärengröße (Megaladapis, Subfossil), ebenso gibt es Tag- (Lemuridae, Indri, Propithecus) wie Nachtaktivität (alle anderen Gattungen und Familien), oder schnelle (Galagonidae) bzw. langsame (Loridae) Fortbewegungsmuster. Derzeit werden 89 Arten in sieben Familien und zwei Infraordnungen anerkannt (Geissmann, 2002a), wobei erst in den letzten Jahren einige neue Arten hinzu kamen (Groves, 2000; Honess, 1996, 1997; Kappeler et al., in Präp; Rasoloarison et al., 2000; Thalmann & Geissmann, 2000).

Neben der prinzipiellen Frage nach der Artenvielfalt sind vor allem die evolutionsbiologischen Zusammenhänge von Interesse. Ein wichtiges Problem innerhalb der Halbaffen-Evolution stellt die bisher unzureichend geklärte phylogenetische Position des Fingertieres (Daubentonia) und die damit verbundene Besiedelungsgeschichte Madagaskars dar. Aufgrund seiner bizarren Erscheinung und Spezialisierungen wurde das Fingertier (Daubentonia) ursprünglich in die Ordnung der Rodentia eingegliedert (Linnaeus, 1789), jedoch später in die Nähe der Primaten gerückt. Je nach Autor wurde das Fingertier als Schwestergruppe aller Primaten (Oxnard, 1981), der Halbaffen (Adkins & Honeycutt, 1994; Arnason et al., 1998; Groves, 1974), der Lemuriformes (Dene et al., 1976; Dutrillaux, 1988; Porter et al., 1995, 1997; Rumpler et al., 1988; Yoder, 1994; Yoder et al., 1996a,b) oder gar der Indriidae (Schwartz, 1986; Schwartz et al., 1978; Szalay & Delson, 1979) angesehen. Obwohl genetische Daten meist Hinweise auf eine Schwestergruppenbeziehung von Daubentonia und Lemuriformes liefern, konnte bisher noch kein definitiver Beweis für diese Konstellation erbracht werden (Dene et al., 1976; Dutrillaux, 1988; Porter et al., 1995, 1997; Rumpler et al., 1988; Yoder, 1994; Yoder et al., 1996a,b). Aufgrund dieser unsicheren phylogenetischen Position und der deutlichen morphologischen Unterschiede zu anderen Halbaffen-Formen wurde das Fingertier als eigene Infraordnung Chiromyiformes abgetrennt (Groves, 2001). In Bezug auf die zweite madagassische Infraordnung, die Lemuriformes sind vor allem Fragen von Bedeutung, die die Verwandtschaftsverhältnisse zwischen den vier Familien Lemuridae, Indriidae, Lepilemuridae
und Cheirogaleidae, sowie die Abspaltungsfolge innerhalb der einzelnen Familien betreffen (Yoder, 1997).

3.2. Material und Methoden

3.3. Ergebnisse

3.3.1. Sequenzanalyse des mitochondrialen Cytochrom b Gens

Von allen zur Verfügung stehenden Proben konnten erfolgreich vollständige Cytochrom b Sequenzen ermittelt werden.

Basenzusammensetzung

Die Analyse der Basenzusammensetzung zeigt eine hohe Variabilität zwischen den einzelnen Gattungen, wobei nicht nur sehr distante Taxa unterschiedliche Muster aufweisen, sondern dies auch zwischen Schwester-Gattungen zum Teil erkennbar ist (Abb. 6). Besonders auffallend ist dies bei den beiden asiatischen Loridae-Vertretern, *Loris* (33,0% A, 28,3% C, 11,6% G, 27,1% T) und *Nycticebus* (28,6% A, 29,1% C, 13,5% G, 28,2% T). Ebenso weist *Phaner* (30,1% A, 28,1% C, 12,3% G, 29,6% T) deutliche Unterschiede zu anderen Cheirogaleidae-Gattungen (29,7-31,3% A, 26,6-28,0% C, 12,1-13,1% G, 28,8-30,6% T) auf.

Abbildung 6: Durchschnittliche Basenzusammensetzung (in%) der einzelnen Halbaffen-Gattungen und der verwendeten Außengruppe *Tarsius*

Paarweise Differenzverteilung

Die beobachteten Differenzen zwischen anerkannten Arten liegen bei 2,72-14,45%, wobei die zwischen *Lemur* und *Hapalemur* mit 11,05-12,81% ebenfalls in diesen Bereich fällt. Paarweise Vergleiche zwischen Gattungen zeigen eine steigende Tendenz mit bis zu 19,56%. Ausgenommen aus dieser Kategorie ist die Differenz zwischen *Phaner* und den anderen Cheirogaleidae-Gattungen mit 19,12-21,23%, welche mit dem genetischen Abstand zwischen Familien (14,56-23,25%) vergleichbar ist. Die Unterschiede zwischen den Infraordnungen liegen dagegen bei 19,91-25,88%.

Insgesamt ist eine Klassifizierung in Arten, Gattungen, Familien oder Infraordnungen mit den ermittelten Differenzen nur bedingt möglich, da nur eine Tendenz zu einem Anstieg der Differenzen je tiefer die Verzweigungen fallen erkennbar und keine klare Untergliederung in Kategorien möglich ist. Weitere Details zu paarweisen Differenzverteilungen sind in Abb. 7 graphisch dargestellt.
Phylogenetische Rekonstruktionen

Stammbaumrekonstruktionen wurden mit den drei Algorithmen Maximum-Parsimony, Neighbor-Joining und Maximum-Likelihood und unter Einbeziehung unterschiedlicher Sequenzevolutionsmodelle erstellt. Um die langen Kalkulationszeiten zu verkürzen, verblieb im
finalen Datensatz nur noch jeweils ein Vertreter pro Taxon. In allen Rekonstruktionen wurde die homologe Sequenz von *Tarsius bancanus* (AF378365) als Außengruppe gewählt wurde, da aufgrund der ähnlichen Basenzusammensetzung von *Tarsius* und Strepsirrhini eine mögliche Fehlinterpretation der Daten ausgeschlossen werden kann.

Die Baumrekonstruktionen wurden wie unter 2.2.5. beschrieben durchgeführt. Für die NJ-Kalkulation in PHYLIP wurde dazu das in PUZZLE ermittelte Transitions-Transversions-Verhältnis von 4,13 und die ML-Distanzkorrektur verwendet. NJ-Bäume in PAUP wurden unter Annahme des „General time-reversal“-Modells und den in MODELTEST geschätzten Werten für die Gamma-Verteilung der Raten-Heterogenität ($\alpha = 0,908348$) und den Anteil invariabler Positionen ($P_{\text{inv}} = 0,420378$) berechnet.

Die aus den Rekonstruktionen abgeleiteten Baumtopologien zeigen überwiegend identische Verwandtschaftsverhältnisse und unterscheiden sich nur durch variierende Bootstrap- bzw. Quartet Puzzling-Werte (Abb. 9).

 Phylogenetische Verwandtschaftsbeziehungen

In sämtlichen abgeleiteten Baumtopologien ist eine Gliederung in die drei Infraordnungen Loriformes, Chiromyiformes und Lemuriformes klar erkennbar und deren jeweilige Monophylie gut belegt (88-100%). Die Beziehungen der drei Infraordnungen zueinander können aber mit dem vorliegendem Datensatz nicht mit Sicherheit aufgelöst werden. Obwohl eine Schwestergruppenbeziehung der beiden madagassischen Infraordnungen angedeutet wird, ist die statistische Unterstützung für diese Konstellation nur in ML-Rekonstruktionen ausreichend hoch (94%), wogegen die NJ- und MP-Algorithmen niedrige bzw. gar keine Unterstützung liefern. Des weiteren zeigt der Maximum Likelihood Ratio Test (Kishino & Hasegawa, 1989) in PUZZLE keine signifikanten Unterschiede zwischen den vier möglichen Gruppierungen an, wodurch keine der Konstellationen statistisch abgelehnt werden kann (5%-Signifikanz-Level) (Abb. 8).
Abbildung 8: Log Likelihood-Werte der vier möglichen Verwandtschaftsbeziehungen zwischen den Infraordnungen (Lo: Loriformes, Ch: Chiromyiformes, Le: Lemuriformes).

Innerhalb der Lemuriformes sind die Verwandtschaftsverhältnisse zwischen den Familien ebenfalls kaum aufgelöst, weiterhin gibt es keine Unterstützung für eine Schwestergruppenbeziehung von Phaner und anderen Cheirogaleidae-Gattungen, so daß Phaner neben den vier Familien eine fünfte Hauptgruppe bildet. Im Gegensatz dazu liefert aber der Datensatz schwache Hinweise auf eine Verwandtschaft der Indriidae und Lemuridae. Die Monophylie und Abspaltungsfolge innerhalb der einzelnen Familien dagegen ist klar aufgegliedert und meist gut statistisch belegt.

weißen Formen die Schwestergruppen dazu. Die Verhältnisse zwischen den fünf Eulemur-Arten
dagegen können kaum aufgelöst werden. Jedoch ist es zumindest möglich, die Monophylie von
Eulemur macaco und Eulemur fulvus zu belegen, wobei in letzterer Art zwei sehr distante,
paraphyletische Gruppen von E. f. rufus entdeckt wurden.

Innerhalb der Indriidae können die Verzweigungen zwischen den drei Gattungen nicht
aufgeschlüsselt, die jeweilige Monophylie von Avahi und Propithecus jedoch klar bewiesen
werden (98-100%). Die Gattung Propithecus kann zudem in die zwei unterschiedlichen
Artgruppen P. diadema und P. verreauxi/P. tattersalli unterteilt werden. P. verreauxi bildet eine
paraphyletische Art, in dem P. v. coquereli die Schwesterngruppe zu P. tattersalli darstellt.

Innerhalb der Cheirogaleidae (ohne Phaner) spaltet sich Cheirogaleus als erstes ab,
gefolgt von Allocebus, wobei die Trennung von Mirza und Microcebus zuletzt erfolgt. Obwohl
die Monophylie der jeweiligen Gattungen gut belegt ist (88-100%), sind die Beziehungen
zueinander nicht besonders stark untermauert. So ist der gemeinsame Ursprung von Allocebus,
Mirza und Microcebus zum Ausschluß von Cheirogaleus nur durch Bootstrap- oder Quartet
Puzzling-Werte von 50-69% gestützt. Ähnliches gilt für die Schwesterngruppenbeziehung von
Mirza und Microcebus: in NJ- und MP-Rekonstruktionen findet diese Konstellation nur 55-68%
Unterstützung, wogegen in ML-Bäumen die Verhältnisse zwischen beiden Gattungen und
Allocebus gar nicht aufgelöst werden. Innerhalb von Cheirogaleus wurden vier unterschiedliche
Formen untersucht. Im Gegensatz zur eindeutig bewiesenen Monophylie von C. medius und
einer noch unbeschriebenen Art (92-100%), können die Beziehungen zwischen dieser Gruppe,
C. major und C. crosselyi nicht mit Sicherheit geklärt werden. Die Gattung Microcebus unterteilt
sich in zwei sehr unterschiedliche Hauptgruppen, die jeweils gut unterstützt sind (91-100%).
Eine davon beinhaltet M. murinus und M. griseorufus, die andere alle weiteren Arten. Innerhalb
dieser zweiten Gruppe bildet M. ravelobensis die tiefste Abspaltung, gefolgt von M. tavaratra.
Die letzte Verzweigung erfolgt schließlich zwischen zwei weiteren Untergruppen, bestehend
einerseits aus M. sambiranensis und M. rufus von Tampolo und andererseits aus M. berthae, M.
myoxinus sowie M. rufus von Ranomafana und Andasibe. Die Beziehungen zwischen letzteren Formen wird aber mit den zur Verfügung stehenden Sequenzdaten nicht aufgelöst.

Die asiatischen Loridae sind weiterhin in die beiden monophyletischen Gattungen Loris und Nycticebus unterteilt. Die statistische Unterstützung hierfür und für die Konstellationen innerhalb der Gattungen liegen zwischen 64 und 100%. Innerhalb von Nycticebus spaltet sich zuerst N. pygmaeus ab, später dann N. coucang, gefolgt von N. menagensis; als letztes trennen sich N. javanicus und N. bengalensis.

Die afrikanischen Loridae setzen sich ebenfalls aus zwei Gattungen zusammen, deren gemeinsamer Ursprung in ML- und NJ-Rekonstruktionen eindeutig belegt ist. Innerhalb von Perodicticus spaltet sich die westlichste Unterart, P. p. potto als erstes ab, wobei die östlichste Unterart (P. p. ibeanus) und die aus dem westlichen Zentralbereich (P. p. edwardsi) die rezenteste Verzweigung bilden.

Die 15 untersuchten Taxa der Familie der Galagonidae können in drei Spezies-Gruppen oder Gattungen unterteilt werden. Obwohl die Monophylie der Familie gut untermauert ist (89-100%), ist die Schwestergruppenbeziehung von Galagoides zu Galago/Otolemur nur schwach

3.3.2. SINE-Transpositionen als molekular-kladistische Marker

Propithecus, 14 für Lemur, 13 für Daubentonia, 18 für Loris und 22 für Perodicticus erstellt werden.

Abbildung 11: Beispiele für zwei Spezies-übergreifende PCR-Amplifikationen (HL1, links) und (Mad2, rechts).
HL1: Lemur und Hapalemur haben eine Alu-Integration, alle anderen untersuchten Gattungen dagegen besitzen am orthologen Lokus diese nicht. Mad2: Die fünf madagassischen Formen besitzen an diesem Lokus eine Alu-Integration, die bei Loriformes und höheren Primaten nicht vorhanden ist. Die variierenden Fragmentlängen innerhalb der madagassischen Taxa werden durch unterschiedlich lange Deletionen hervorgerufen.

Um einen klaren An- bzw. Abwesenheitsbeweis für die jeweiligen SINE-Integrationen zu erhalten, wurden die 143 Loci Spezies-übergreifend auf Integrationen hin überprüft. Die dafür verwendeten Taxa wurden für jeden Lokus möglichst repräsentativ gewählt, so daß sie einen klaren Beleg für einen gemeinsamen Ursprung zweier oder mehrerer Taxa zum Ausschluß des nächst verwandten Taxons ergaben (Abb. 11).

Von den 143 untersuchten Loci konnte nur für 35 dieser eindeutige An- bzw. Abwesensheits-Beweis erbracht werden; in allen anderen Fällen gelang zwar meist die
Amplifikation der Integrations-enthaltenden PCR-Produkte, jedoch nicht die der Außengruppen. Möglicher Grund hierfür ist die frühe Aufspaltung der Halbaffen und die damit verbundene lange unabhängige Evolution einzelner Linien, so daß häufig nicht ausreichend konservierte Regionen für die Primer-Wahl gefunden werden konnten.

Die 35 Loci, die auf PCR-Ebene eine Definition von Verwandtschaftsverhältnissen erlaubten, wurden anschließend sequenziert, um somit die Ergebnisse auch auf Sequenz-Ebene verifizieren zu können. Dabei wurden bei einigen Loci neben den bereits bekannten Elementen weitere SINE-Integrationen gefunden, wovon einige ebenfalls als cladistische Marker Verwendung fanden. Insgesamt konnten so 49 unterschiedliche SINE-Integrationen entdeckt werden, wobei es sich mit Ausnahme der zufällig gefundenen Integration im Locus MM1 ausschließlich um Alus oder tRNA-abgeleitete Elemente handelt. Der MM1-Lokus dagegen besitzt eine kurze Integration von nur 37 bp. Sequenzvergleiche mit bekannten transposablen Elementen haben ergeben, daß das Fragment eine 40%-ige Übereinstimmung mit einer der beiden internen Promotoren (A-Box) von Alus aufweist.

Für die Monophylie der Strepsirrhini wurden drei Marker (Str1-3) gefunden, wobei in Str1 zwei weitere Elemente entdeckt wurden: eines davon ist in allen Lemuriformes, das zweite nur in Cheirogaleidae (mit *Phaner*) vorhanden. Der gemeinsame Ursprung der beiden madagassischen Infraordnungen Chiromyiformes und Lemuriformes ist durch zwei Marker belegt (Mad1-2). Zusätzlich zu dem Madagaskar-Monophylie Marker in Mad1 konnte eine weitere Integration in allen Galagonidae-Gattungen beschrieben werden. Innerhalb der Lemuriformes konnten die Verwandtschaftsverhältnisse zwischen den Familien kaum aufgelöst werden, zumindest fand sich aber ein Marker (LI1), der Hinweise auf eine Schwestergruppenbeziehung von Lemuridae und Indriidae liefert. Die Monophylie der Familien Lemuridae und Indriidae ist jeweils durch vier Integrationen (Lem1-4, Ind1-3) eindeutig bewiesen. Innerhalb der Lemuridae wurden vier weitere SINEs gefunden, die einerseits die Monophylie von *Hapalemur* und *Lemur* (HL1-3) und andererseits die von *Lemur/Hapalemur* und *Eulemur* zum Ausschluß von *Varecia* (HLE1) belegen. Innerhalb der Cheirogaleidae fand sich ein Marker (MM1), der Hinweise auf eine Schwestergruppenbeziehung von *Mirza* und

Tabelle 3: Liste der 49 untersuchten Integrationen und ihre Verteilung innerhalb der getesteten Primaten (aufgeteilt nach Marker-Gruppen).

Strepsirrhini-Monophylie

<table>
<thead>
<tr>
<th>Lokus</th>
<th>Mic</th>
<th>Che</th>
<th>Pha</th>
<th>Lep</th>
<th>Pro</th>
<th>Lem</th>
<th>Dau</th>
<th>Nyc</th>
<th>Per</th>
<th>Gal</th>
<th>Oto</th>
<th>Cal</th>
<th>Pap</th>
<th>Mac</th>
<th>Pan</th>
<th>Hom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str1</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str2</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str3</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Madagaskar-Monophylie

<table>
<thead>
<tr>
<th>Lokus</th>
<th>Mic</th>
<th>Che</th>
<th>Lep</th>
<th>Pro</th>
<th>Lem</th>
<th>Dau</th>
<th>Nyc</th>
<th>Per</th>
<th>Gal</th>
<th>Oto</th>
<th>Ges</th>
<th>Cal</th>
<th>Hom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mad1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mad2</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 3: Fortsetzung

Innerhalb Loriformes

<table>
<thead>
<tr>
<th>Lokus</th>
<th>Mic</th>
<th>Che</th>
<th>Lep</th>
<th>Pro</th>
<th>Lem</th>
<th>Var</th>
<th>Dau</th>
<th>Lor</th>
<th>Nyc</th>
<th>Per</th>
<th>Arc</th>
<th>GM</th>
<th>GS</th>
<th>GZ</th>
<th>Oto</th>
<th>Ges</th>
<th>Cal</th>
<th>Hom</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoF1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LoF2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LoF3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lor1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lor2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lor3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LN1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LN2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LN3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>LN4</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PA1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PA2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PA3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PA2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gal1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gal2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gal3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gal4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Gal5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mad1</td>
<td>-</td>
</tr>
</tbody>
</table>

Innerhalb Lemuriformes

| Lokus | Mic | Mir | All | Che | Pha | Lep | Pro | Ava | Lem | Hap | Eul | Var | Dau | Nyc | Per | Gal | Cal | Pap | Mac | Pan | Hom |
|-------|
| Str1 | + | + | + | + | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Str1 | + | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| MM1 | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| L11 | - | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ind1 | - | - | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ind2 | - | - | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Ind3 | - | - | + | + | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3. Kapitel 1: Molekulare Phylogenie der Halbaffen (Strepsirrhini)

<table>
<thead>
<tr>
<th>Lokus</th>
<th>Mic</th>
<th>Mir</th>
<th>All</th>
<th>Che</th>
<th>Pha</th>
<th>Lep</th>
<th>Pro</th>
<th>Ava</th>
<th>Lem</th>
<th>Hap</th>
<th>Eul</th>
<th>Var</th>
<th>Dau</th>
<th>Nyc</th>
<th>Per</th>
<th>Gal</th>
<th>Cal</th>
<th>Pap</th>
<th>Mac</th>
<th>Pan</th>
<th>Hom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lem1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lem2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lem3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lem4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HLE1</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL1</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL2</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL3</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Anwesenheit von Integrationen ist durch „+“ gekennzeichnet; Abwesenheit dagegen mit „-“.

Abbildung 12: Phylogenetische Position der Marker. Schwarze Blöcke bezeichnen Multi- (Southern Blot-Analysen), die grauen Balken dagegen die Mono-Lokus-Marker (siehe Tab. 3).
3.3.3. Berechnung von Aufspaltungszeiten

Die Basis für die Datierung von Aufspaltungsereignissen stellte ein verkleinerter Datensatz mit 34 Taxa dar. Um mögliche Unterschiede in der Sequenzevolution des vorliegenden Datensatzes zu erkennen, wurde der relative Raten-Test in RRTree sowie für alle ML-Rekonstruktionen der Molecular Clock Likelihood Ratio Test in PUZZLE durchgeführt. Da die ersten beiden Positionen der Kodons meist selektionierte sind und zudem der relative Raten-Test teilweise signifikante Unterschiede in den Raten (P < 0,05) einzelner Linien aufzeigte, wurden für die Datierung ausschließlich dritte Positionen verwendet. Weiterhin ergaben die in PUZZLE durchgeführten Tests, daß die Sequenzevolution der dritten Positionen einer molekularen Uhr entspricht (Annahme molekulare Uhr: log L –9360,69; Annahme keine molekulare Uhr: log L –9339,19) und somit der Datensatz zur Datierung geeignet ist. Die dafür verwendeten Kantenlängen wurden in PUZZLE unter Vorgabe der aus mitochondrialen und retropositionellen Daten ermittelten Baumtopologie und des HKY-Modells berechnet und die Aufspaltungszeiten anschließend manuell kalkuliert.

Demnach kann es nach der Trennung von Loriformes und den beiden anderen Infraordnungen vor etwa 61 (50-80) Millionen Jahren (Mio) zu einer ersten Verzweigung auf Madagaskar vor 53 (44-70) Mio in die zwei Infraordnungen Lemuriformes und Chiromyiformes
Abbildung 13: Aufspaltungszeiten errechnet anhand eines ML-Baumes. Der schwarze Kreis gibt die Referenzwerte; die grauen Kreise die ermittelten Zeitpunkte für die jeweiligen letzten gemeinsamen Vorfahren an.

3.4. Diskussion

In der vorliegenden Arbeit wurden erstmals alle anerkannten Gattungen und eine Vielzahl an Halbaffen-Arten molekulargenetisch untersucht. Die beiden kombinierten Methoden erbrachten überwiegend identische und eindeutige Ergebnisse, so daß einige wichtige Fragen ihrer Evolutionsgeschichte geklärt werden konnten.

Basenzusammensetzungen kommen kann (Schmitz et al., 2002b; Tarrio et al., 2001). Da aber nur geringe Unterschiede in der Basenzusammensetzung innerhalb von Gattungen entdeckt wurden, dürften diese kaum Auswirkungen auf die erstellten Phylogenien nah verwandter Taxa haben.

Phylogenie und Taxonomie der Strepsirrhini

Der gemeinsame Ursprung der Halbaffen konnte klar anhand von vier Markern belegt werden. Obwohl die Monophylie der Lemuriformes und Loriformes durch Sequenzinformation und SINE-Transpositionen ebenfalls bewiesen ist, konnten die Verwandtschaftsverhältnisse zwischen den drei Infraordnungen durch mitochondrialen Daten nur angedeutet werden. Die dabei erhaltenen Hinweise auf eine Schwestergruppenbeziehung der beiden madagassischen Gruppen Chiromyiformes und Lemuriformes wurden aber durch zwei kladistische Marker eindeutig belegt und konnten somit die vermutete Phylogenie bestätigen (Dene et al., 1976; Dutrillaux, 1988; Martin, 2000; Porter et al., 1995; Yoder et al., 1996a,b).

Die Verwandtschaftsbeziehungen innerhalb der Familien und Gattungen konnten mit den beiden Methoden meist gut aufgelöst werden und stimmten überwiegend mit bereits publizierten Daten überein (DelPero et al., 2001; Dutrillaux, 1988; Fausser et al., 2002; Pastorini et al., 2000; Pastorini et al., 2001a,b; Pastorini et al., 2002; Pastorini et al., 2003; Rumpler, 2000; Rumpler et al., 1994; Wyner et al., 2000; Yoder, 1994; Yoder & Irwin, 1999; Yoder et al., 1996a,b; Yoder et al., 2000).

Die Familie Lemuridae unterteilt sich in vier Gattungen, wobei Varecia die tiefste Verzweigung darstellt und die Trennung von Hapalemur und Lemur zu letzt stattfand (DelPero et al., 2001; Pastorini et al., 2002, 2003; Wyner et al., 2000; Yoder, 1994; Yoder et al., 1996a,b). Die Monophylie von Hapalemur ist nur schwach unterstützt und bestätigt somit frühere Ergebnisse (Pastorini et al., 2002, 2003). Möglicherweise haben sich die drei Linien, Lemur, H. simus und alle anderen Hapalemur sp. innerhalb einer sehr kurzen Zeitspanne voneinander getrennt, so daß die genauen Verwandtschaftsverhältnisse nicht nachvollzogen werden können. Nach der frühen Abspaltung von H. simus, stellt H. aureus die nächste Abzweigung innerhalb von Hapalemur dar. Die restlichen Formen, die ursprünglich alle als Unterarten von H. griseus anerkannt wurden (Warter et al., 1987), unterteilen sich weiterhin in die monotypische Art H. meridionalis und H. griseus, in der alle weiteren Unterarten vereint sind (Fausser et al., 2002). Die Verwandtschaftsverhältnisse zwischen den fünf Eulemur-Arten konnten in dieser Studie nicht geklärt werden. Im Gegensatz dazu ergab der Datensatz aber zumindest klare Hinweise auf die Abspaltungsfolge der E. fulvus-Unterarten, die sich in vier Hauptgruppen (collaris, rufus 1,

Eine der artenreichsten Familien der Halbaffen stellen die Cheirogaleidae dar, die traditionell in fünf Gattungen unterteilt werden (Groves, 2001). Trotz der teilweise schlechten Auflösung durch die jeweiligen Methoden ergaben beide in Kombination ein klares Bild der Cheirogaleidae-Evolution, welches mit bereits publizierten Phylogenien übereinstimmt (Pastorini et al., 2001b; Rumpler et al., 1994). Basierend auf den vorliegenden Ergebnissen hat sich demnach zuerst *Phaner* abgetrennt. Später spaltete sich *Cheirogaleus* und *Allocebus* ab, wobei *Mirza* und *Microcebus* sich zuletzt voneinander trennten. Aufgrund der großen

aus biogeographischer Sicht sinnvoll, kann aber die auf Chromosomen-Analysen basierenden Verhältnisse nicht bestätigen (Rumpler, 2000).

von denen die westliche Form *P. p. potto* die Schwesterguppe zu den zentralafrikanischen *P. p. edwardsi* und *P. p. ibeanus* darstellt.

Abbildung 14: Ermittelte phylogenetische Verwandtschaftsbeziehungen zwischen Strepsirrhini-Gattungen.

nur von zwei Individuen die Herkunft bekannt ist, sind Aussagen über weitere Verwandtschaftsverhältnisse aber kaum möglich. In der zweiten Gruppe vereinigen sich zwei jeweils monophyletische Gruppen mit einerseits *O. garnetti* und *O. crassicaudatus* und andererseits mit den Vertretern der *G. alleni*-Gruppe *G. cameronensis* und *G. gabonensis*. Die letzte Gruppe enthält alle übrigen Taxa, die sich in weitere drei Untergruppen unterteilen. Die erste, die sich von den anderen abtrennt, enthält *G. zanzibaricus* und *G. granti*, wobei die anderen beiden aus *G. matschie* und *Euoticus elegantulus* und aus *G. senegalensis* und *G. moholi* bestehen.

Ursprung und Biogeographie der Strepsirhini

Durch die Kombination der beiden verwendeten Methoden konnten erstmals die phylogenetischen Verwandtschaftsverhältnisse innerhalb der Halbaffen eindeutig geklärt und somit ein grundlegendes Fundament für die Analyse von biogeographischen Zusammenhängen innerhalb der Strepsirhini geschaffen werden.

Obwohl die prinzipielle Frage nach dem Ursprung der Halbaffen somit geklärt ist, bleibt offen, wie die Besiedelung der beiden anderen Landmassen ermöglicht wurde. Da die Halbaffen vor etwa 61 (50-80) bis 53 (44-70) Mio auf Madagaskar eintrafen und die Insel bereits seit dem Auseinanderbrechen von Gondwanaland vor 165 Mio (Rabinowitz et al., 1983) von Afrika

3.5. Zusammenfassung

4. Kapitel 2: Molekulare Phylogenie der Schlankaffen (Colobinae)

4.1. Einleitung

Die Schlankaffen stellen eine der beiden Unterfamilien der geschwänzten Altweltaffen (Cercopithecoidae) dar; sind aber durch eine Reihe anatomischer Merkmale deutlich von ihrer Schwestergruppe, den Cercopithecinaen getrennt. Die Hauptunterschiede zwischen den beiden Unterfamilien liegen in ihrer Ernährung und den damit verbundenen anatomischen Anpassungen. So besitzen Colobinae Molaren mit hohen, scharfen Scherkanten und einen mehrkammerigen Magen, der es ihnen erlaubt, Blätter, unreife Früchte oder Gräser zu verwerten. In ihrer äußeren Anatomie sind Schlankaffen vor allem durch ihre relativ langen Beine und Schwänze sowie verkürzte oder völlig fehlende Daumen gekennzeichnet; Merkmale die sich von der arborealen Lebensweise ableiten lassen (Geissmann, 2002a).

Abbildung 15: Verbreitung der Colobinae-Gattungen.

Die Colobinae sind über weite Teile Afrikas und Asiens verbreitet und werden in 38 (Rowe, 1996) bis 60 Arten (Geissmann, 2002a) unterteilt. Obwohl die Monophylie der Gruppe

Obwohl eine Reihe von phylogenetischen Fragen innerhalb der Gattungen mit molekularen Studien gelöst werden konnten (Geissmann et al., 2003; Nadler & Roos, 2002a,b; Roos, 2000, 2003; Roos & Nadler, 2001; Roos et al., 2001; Rosenblum et al., 1997; Wang et al., 1997; Zhang & Ryder, 1998), gibt es bisher kaum molekulare Hinweise für die Verwandtschaftsverhältnisse zwischen den Gattungen, so daß von einer Radiations-artigen Verzweigung auszugehen ist.

Um die phylogenetischen Beziehungen zwischen den Gattungen zu klären, wurden in der vorliegenden Arbeit neun der zehn Colobinae-Gattungen molekulargenetisch untersucht. Unter Berücksichtigung einer vermuteten Radiations-artigen Aufspaltung der Gattungen wurde für die Analyse ein etwa 4,3kb langes Fragment des mitochondrialen Genoms gewählt, welches schnell und langsamer evolvierende Abschnitte enthält, so daß eine Auflösung der Abspaltungsfolge ermöglicht werden sollte.

4.2. Material und Methoden

Als Ausgangspunkt für die Rekonstruktion der phylogenetischen Verwandtschaftsverhältnisse innerhalb der Colobinae diente ein Datensatz von 12 Sequenzen mit einer Länge von jeweils etwa 4,3 kb. Da bereits publizierte Information von Vertretern (*Macaca sylvanus*, *Papio hamadryas*) der Schwestergruppe Cercopithecinae und den Hominoidea (*Homo sapiens* diente als Außengruppe) vorhanden war, mußten nur die Sequenzen der Colobinae-
Gattungen selbst ermittelt werden. Die Amplifikation und Sequenzierung des Gesamtfragmentes war jedoch nicht möglich, so daß mehrere überlappende Teilsequenzen generiert und anschließend aneinander gefügt wurden. Weitere Details zur labortechnischen Vorgehensweise und statistischen Auswertung sind in 2.1. und 2.2. beschrieben.

4.3. Ergebnisse

4.3.1. Sequenzanalyse mitochondrialer DNA-Abschnitte

Es wurden von allen neun untersuchten Colobinae-Gattungen vollständige Sequenzen generiert. Das erstelle Alignment hat eine Länge von 4419 bp und beinhaltet das Cytochrom b Gen, die Kontrollregion (D-loop), die 12S rRNA und Teile der 16S rRNA, sowie die dazwischen liegenden tRNAs für Threonin (Thr), Prolin (Pro), Phenylalanin (Phe) und Valin (Val).

<table>
<thead>
<tr>
<th></th>
<th>Cyt b</th>
<th>tRNA-Thr</th>
<th>tRNA-Pro</th>
<th>Kontrollreg.</th>
<th>tRNA-Phe</th>
<th>12S rRNA</th>
<th>tRNA-Val</th>
<th>16S rRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo</td>
<td>1140</td>
<td>75</td>
<td>68</td>
<td>1122</td>
<td>71</td>
<td>954</td>
<td>69</td>
<td>810</td>
</tr>
<tr>
<td>Papio</td>
<td>1140</td>
<td>72</td>
<td>68</td>
<td>1076</td>
<td>72</td>
<td>947</td>
<td>68</td>
<td>817</td>
</tr>
<tr>
<td>Macaca</td>
<td>1140</td>
<td>73</td>
<td>68</td>
<td>1095</td>
<td>72</td>
<td>946</td>
<td>69</td>
<td>804</td>
</tr>
<tr>
<td>Procolobus</td>
<td>1140</td>
<td>76</td>
<td>67</td>
<td>1133</td>
<td>71</td>
<td>950</td>
<td>69</td>
<td>814</td>
</tr>
<tr>
<td>Piliocolobus</td>
<td>1140</td>
<td>76</td>
<td>67</td>
<td>1131</td>
<td>69</td>
<td>948</td>
<td>69</td>
<td>807</td>
</tr>
<tr>
<td>Colobus</td>
<td>1140</td>
<td>72</td>
<td>67</td>
<td>1153</td>
<td>69</td>
<td>948</td>
<td>69</td>
<td>816</td>
</tr>
<tr>
<td>Semnopithecus</td>
<td>1140</td>
<td>75</td>
<td>67</td>
<td>1075</td>
<td>71</td>
<td>947</td>
<td>69</td>
<td>809</td>
</tr>
<tr>
<td>Trachypithecus</td>
<td>1140</td>
<td>75</td>
<td>67</td>
<td>1094</td>
<td>71</td>
<td>947</td>
<td>69</td>
<td>812</td>
</tr>
<tr>
<td>Presbytis</td>
<td>1140</td>
<td>75</td>
<td>67</td>
<td>1086</td>
<td>71</td>
<td>949</td>
<td>69</td>
<td>814</td>
</tr>
<tr>
<td>Nasalis</td>
<td>1140</td>
<td>74</td>
<td>67</td>
<td>1099</td>
<td>71</td>
<td>949</td>
<td>69</td>
<td>819</td>
</tr>
<tr>
<td>Pygathrix</td>
<td>1140</td>
<td>74</td>
<td>67</td>
<td>1092</td>
<td>71</td>
<td>948</td>
<td>69</td>
<td>808</td>
</tr>
<tr>
<td>Rhinopithecus</td>
<td>1140</td>
<td>74</td>
<td>67</td>
<td>1095</td>
<td>71</td>
<td>949</td>
<td>69</td>
<td>814</td>
</tr>
</tbody>
</table>

Mit Ausnahme des 1140 bp langen Cytochrom b Gens, dessen Terminierung über ein Polyadenylierungssignal (T) erfolgt, sind in allen weiteren Abschnitten Insertionen bzw. Deletionen zu finden. Die größte Variabilität zeigt dabei die Kontrollregion mit Längen von 1075 bp bis 1153 bp. Innerhalb der 12S und der partiellen 16s rRNA gibt es nur geringe Abweichungen von 7 bzw. 13 bp. Die tRNAs sind alle etwa 70 bp lang und besitzen ebenfalls kaum Längenpolymorphismen (Tab. 4).
3. Kapitel 1: Molekulare Phylogenie der Schlankaffen (Colobinae)

Basenzusammensetzung

Die Basenzusammensetzung wurde für den gesamten Abschnitt sowie nur für das Cytochrom b Gen ermittelt. Da die Zusammensetzungen zwischen den beiden Fragmenten kaum variieren, wurden zu Vergleichszwecken nur die der Cytochrom b Daten näher untersucht. So ergab die Analyse eine besonders auffallende Verschiebung des T (Thymin)- und C (Cytosin)-Gehalts zwischen Colobinae und Homo/Cercopithecinae. Das Gen besteht bei Colobinae zu 27,19-30,26% aus Thymin und zu 28,16-31,75% aus Cytosin. Bei Homo und den Cercopithecinae-Vertretern fällt der Anteil von Thymin auf 24,65-25,26% ab und der für Cytosin nimmt stark zu (33,68-34,21%). Der Gehalt der anderen beiden Basen dagegen bleibt überwiegend konstant (Adenin: 28,60-30,61%; Guanin: 11,14-12,46%).

![Abbildung 16: Basenzusammensetzung des Cytochrom b Gens (in%) der untersuchten Gattungen.](image)

Paarweise Differenzverteilung

Die beobachteten Differenz zwischen den untersuchten Gattungen im Cytochrom b Gen liegen bei 12,34-17,12%, wobei die größten zwischen den afrikanischen und asiatischen
Vertretern gefunden werden (15,72-17,12%). Im Gegensatz hierzu unterscheiden sich die Gattungen der jeweiligen Kontinente nur in 12,34-15,69% (Asien) bzw. 13,68-15,50% (Afrika). Die paarweisen Vergleiche zwischen den beiden Unterfamilien Colobinae und Cercopithecinae zeigen mit 18,30-20,06% weiterhin eine steigende Tendenz, die schließlich mit den ermittelten Differenzen zwischen der Außengruppe *Homo* und den Cercopithecoidea ihr Maximum mit 21,99-24,12% erreicht.

Da die ermittelten paarweisen Differenzen in Kategorien unterteilt werden können, können diese auch zur Klassifizierung verwendet werden. So würde man Taxa, die sich in 12,0-15,7% unterscheiden als Gattungen klassifizieren, die die sich in 15,7-18,0% unterscheiden als Stämme und die sich in 18,3-20,0% unterscheiden als Unterfamilien.

Abbildung 17: Beobachtete paarweise Differenzverteilungen in% zwischen den untersuchten Gattungen.

Phylogenetische Rekonstruktionen

Als Ausgangspunkt für die Stammbaumrekonstruktionen diente ein Datensatz mit 12 Sequenzen, in dem neun Gattungen der Colobinae, zwei Gattungen der Cercopithecinae und

Die Baum-Berechnungen wurden wie unter 2.2.5. beschrieben mit den drei Algorithmen Maximum-Parsimonie, Neighbor-Joining und Maximum Likelihood erstellt. Für die NJ-Rekonstruktionen in PHYLIP wurde dazu das in PUZZLE geschätzte Transitions-Transversions-Verhältnis von 3,07 und die ML-Distanzkorrektur verwendet. NJ-Bäume in PAUP dagegen wurden unter der Annahme des „General time-reversal“-Modells und den in MODELTEST geschätzten Werten für die Gamma-Verteilung der Raten-Heterogenität (\(\alpha = 0,761399\)) und den Anteil invariabler Positionen (\(P_{\text{inv}} = 0,373648\)) berechnet.

Phylogenetische Verwandtschaftsbeziehungen

Die erstellten Phylogenien untergliedern die untersuchten Gattungen in die zwei anerkannten Unterfamilien Cercopithecinae und Colobinae und beweisen eindeutig deren Monophylie durch eine statistische Unterstützung von jeweils 100%.

4.3.2. Berechnung von Aufspaltungszeiten

Als Basis für die Kalkulationen diente das längere der beiden mit Gblocks generierten Alignments. Da der relative Ratentest signifikante (P < 0.05) Unterschiede zwischen Macaca und den Colobinae-Linien anzeigte, wurde Macaca sylvanus für die weiteren Berechnungen aus dem Datensatz entfernt. Mit dem verkleinerten Datensatz wurden weiterhin Molecular Clock Likelihood Ratio Tests in PUZZLE durchgeführt, die keine signifikanten Unterschiede anzeigten (Annahme keine molekulare Uhr: logL –20503,65; Annahme molekulare Uhr: logL -20508,27) und somit eine Datierung ermöglichten. Die Berechnung der Kantenlängen erfolgte schließlich in PUZZLE unter Vorgabe einer Baumtopologie, die mit Ausnahme einer angenommenen Pygathrix-Rhinopithecus-Schwestergruppenbeziehung der erstellten Phylogenie entsprach.

Geht man von einer Verzweigung der beiden Familien vor etwa 14 und 30 Mio aus, ergibt sich für den gesamten untersuchten Abschnitt somit eine Evolutionsrate von 14,68 x 10⁻⁹ bzw. 6,85 x 10⁻⁹ Substitutionen/Position/Jahr.

Nach der Trennung der beiden Unterfamilien Cercopithecinae und Colobinae kam es innerhalb letzterer Gruppe vor etwa 9,9-21,2 Mio zu einer weiteren Aufspaltung in eine asiatische und afrikanische Linie, die sich dann jeweils weiter untergliederten. Die afrikanischen Vertreter unterteilten sich dabei vor 7,7-16,5 bzw. 6,6-14,1 Mio in die drei Gattungen Colobus, Piliocolobus und Procolobus. Die Verzweigungen innerhalb der asiatischen Gattungen vollzogen sich ebenfalls in einem sehr kurzen Zeitraum. Als erste Gattung trennte sich dabei Semnopithecus vor etwa 8,6-18,3 Mio von der Stammlinie ab. Die restlichen Gattungen
unterteilten sich vor etwa 7,7-16,5 Mio in zwei weitere Gruppen mit einerseits *Nasalis*, *Pygathrix* und *Rhinopithecus* und andererseits mit *Trachypithecus* und *Presbytis*. Letztere Gruppe verzweigte sich schließlich vor etwa 6,9-14,7 Mio in die beiden Gattungen. Innerhalb der „odd-nosed monkeys“ (*Nasalis, Pygathrix, Rhinopithecus*) spaltete sich *Nasalis* vor etwa 6,2-13,2 Mio als erstes ab. Nur kurze Zeit später (0,5-1,0 Mio) trennten sich aber auch *Pygathrix* und *Rhinopithecus* voneinander.

Abbildung 19: Aufspaltungszeiten errechnet anhand eines ML-Baumes. Der schwarze Kreis gibt die Kalibrierungszeiten; die grauen Kreise die ermittelten Zeiten für die jeweiligen letzten gemeinsamen Vorfahren an.

4.4. Diskussion

In der vorliegenden Studie wurden mit Ausnahme von *Simias* alle anerkannten Colobinae-Gattungen molekulargenetisch untersucht. Die dabei erzielten Ergebnisse erbrachten erstmals klare Hinweise auf die phylogenetischen Verwandtschaftsbeziehungen zwischen den Gattungen und lieferten somit einen wichtigen Beitrag zum Verständnis der evolutionären Zusammenhänge in dieser Primatengruppe.

Mit den etwa 4,3 kb langen Sequenzen des mitochondrialen Genoms wurden phylogenetische Stammbäume mit unterschiedlichen Algorithmen und auf Basis
unterschiedlicher Sequenzevolutionsmodelle errechnet. Die dabei ermittelten Baumtopologien waren in allen Fällen identisch und unterschieden sich nur in ihrer statistischen Unterstützung. Weiterhin wurden innerhalb der Colobinae keine signifikanten Unterschiede in der Basenzusammensetzung gefunden, so daß davon auszugehen ist, daß die ermittelte Phylogenie die tatsächlichen Verwandtschaftsbeziehungen widerspiegelt.

Phylogenie und Taxonomie der Colobinae

Kapitel 1: Molekulare Phylogenie der Schlankaffen (Colobinae)

Biogeographie der Colobinae

Da nahezu alle Arten der Cercopithecinae und einige Vertreter der Colobinae in Afrika beheimatet sind, ist von einem afrikanischen Ursprung der Cercopithecidae auszugehen (Stewart & Disotell, 1998). Demnach kam es auf dem afrikanischen Kontinent zu einer Verzweigung der Cercopithecidae in die beiden Unterfamilien vor etwa 14-30 Mio. Später, vor etwa 9,9-21,2 Mio
Inseln (*Macaca*) gezeigt, daß die Inseln zweimal besiedelt wurden (Roos et al., 2003), so daß die Suche nach Erklärungen für eine Besiedelung durch *Simias* weiterhin erschwert wird. Da in bisherigen molekularen Studien kein Vertreter von *Simias* analysiert wurde, bleibt somit auch die Frage nach der Kolonisierung der Mentwai-Inseln vorerst unbeantwortet.

4.5. Zusammenfassung

5. Kapitel 3: Molekulare Phylogenie der Gibbons (Hylobatidae)

5.1. Einleitung

Abbildung 20: Verbreitung der vier Gibbon-Gattungen. Das größte Verbreitungsgebiet hat *Hylobates*.

Obwohl die Monophylie der Gibbons weithin akzeptiert ist, gibt es innerhalb der Familie eine Reihe von unbeantworteten Fragen bezüglich ihrer Evolutionsgeschichte. In frühen Untersuchungen wurden die Gibbons in die zwei Gattungen *Symphalangus* und *Hylobates* unterteilt, wobei letzterer auch *Nomascus* und *Bunopithecus* zugeordnet wurden (Napier & Napier, 1967; Schultz, 1933; Simonetta, 1957). Nach detaillierten Studien wurde aber deutlich, daß die Gibbons nicht nur durch zwei, sondern vier unterschiedliche Hauptgruppen repräsentiert

Feldstudie im August 2001 in Kim Hy konnten jedoch klare Hinweise auf das Überleben von Gibbons in NO-Vietnam gefunden und Proben von einem frisch gewilderten Tier gesammelt werden. Die damit durchgeführten molekulargenetischen Untersuchungen belegten eindeutig die Existenz einer vierten *Nomascus*-Art (Goldthorpe et al., in Präp.).

5.2. Material und Methoden

5.3. Ergebnisse

5.3.1. Sequenzanalyse des mitochondrialen Cytochrom b Gens

Es konnten von allen zur Verfügung stehenden Proben erfolgreich vollständige Sequenzen des mitochondrialen Cytochrom b Gens amplifiziert und sequenziert werden. Um die erzielten Sequenzdaten besser bewerten zu können, wurden die Datensätze zusätzlich noch mit homologen Sequenzen der Hominidae (*Homo sapiens*, *Pan paniscus*, *P. troglodytes*, *Gorilla gorilla*, *Pongo abelii*) und *Papio hamadryas* aus der NCBI-Datenbank erweitert.

Wie bei allen Catarrhini wird auch bei Gibbons die Transkription des 1140bp langen Gens nicht über ein Stop-Kodon, sondern über ein posttranskriptionelles Polyadenylierungssignal (T) terminiert.

Basenzusammensetzung

![A C G T Graph](image)

Abbildung 21: Durchschnittliche Basenzusammensetzung der untersuchten Gattungen in %.

Die Analyse der Basenzusammensetzung zeigte keine großen Unterschiede zwischen den einzelnen Gattungen. Prinzipiell ist aber eine leichte Verschiebung des GC-Gehalts erkennbar. So stellt Cytosin (C) bei *Papio* und den vier Gibbon-Gattungen einen durchschnittlichen Anteil
von 33,34% des Gens dar, wogegen bei den Hominidae dieser auf 34,44% ansteigt. Entsprechend liegt der Guanin-Anteil (G) bei den großen Menschenaffen und Mensch (11,67%) um 1,19% niedriger als bei den Hylobatidae und Papio (12,86%).

Paarweise Differenzverteilung

Die beobachteten Differenzen zwischen anerkannten Arten liegen bei 4,21-7,98%. Je tiefer die Verzweigungen fallen, desto größer werden die beobachteten Unterschiede zwischen den Taxa. So unterscheiden sich Gattungen in 9,47-15,35% und Familien in 15,44-18,07%. Die beobachteten Differenzen zwischen den Hominoidea und der Außengruppe Papio liegen bei 20,44-22,90%.

Da die ermittelten paarweisen Differenzen in Kategorien unterteilt werden können, können diese auch zur Klassifizierung von Taxa verwendet werden. So würde man Taxa, die sich in 4-8% unterscheiden als Arten klassifizieren, die, die sich in 9-13,5% unterscheiden in Gattungen und
die, die sich in 14-18% unterscheiden in Familien. Da die Vergleiche zwischen *Pongo* und den anderen Hominidae-Vertretern bei 14,3-15,4% liegen, würde dies jedoch einen Familienstatus für *Pongo* (Pongidae) bedeuten. Weitere Details zu paarweisen Differenzverteilungen sind in Abb. 22 graphisch dargestellt.

Phylogenetische Rekonstruktionen

Phylogenetische Verwandtschaftsbeziehungen

In allen rekonstruierten Baumtopologien ist eine Unterteilung in die beiden Familien Hominidae und Hylobatidae eindeutig erkennbar und deren Monophylie statistisch gut belegt (69-100%).

Bunopithecus/Hylobates dagegen sind nur durch eine statistische Unterstützung von 52-71% angedeutet, so daß dieses Ergebnis keine klare Auflösung der Verhältnisse erlaubt. Innerhalb der Gattung Nomascus stellt *N. nasutus* die tiefste Abspaltung dar, gefolgt von *N. concolor*, wobei *N. gabriellae* und *N. leucogenys* die rezenteste Verzweigung bilden. Die statistischen Unterstützungen für diese Konstellationen und die Monophylie der Gattung liegen bei 79-100%.

Obwohl die Monophylie der Gattung Hylobates eindeutig bestätigt ist (95-100%), können die Verwandtschaftsbeziehungen zwischen den sechs untersuchten Arten dagegen kaum aufgelöst

Die phylogenetischen Verwandtschaftsbeziehungen innerhalb der Hominidae sind zumindest in ML-Rekonstruktionen relativ gut belegt. So spaltet sich zuerst *Pongo* von der Stammlinie ab, danach *Gorilla*. Die rezenteste Verzweigung wird durch *Homo* und *Pan*, die sich weiter in zwei Arten (*P. paniscus, P. troglodytes*) unterteilt, repräsentiert. Die Quartet Puzzling-Werte (ML) für die genannten Konstellationen liegen alle bei 97-100%. Im Gegensatz hierzu sind die Verhältnisse in MP- und NJ-Bäumen weniger gut unterstützt (59-83%).

5.3.2. Berechnung von Aufspaltungszeiten

Die Berechnung von Aufspaltungszeiten wurde anhand des vollständigen Datensatzes durchgeführt. Da der relative Raten-Test keine signifikanten Unterschiede in den Raten (\(P > 0,05 \)) einzelner Linien aufzeigte, konnten für die Datierung alle Positionen und Sequenzen verwendet werden. Ebenso zeigten die Molecular Clock Likelihood Ratio Tests in PUZZLE keine signifikanten Unterschiede zwischen den analysierten Bäumen (Annahme molekulare Uhr: \(\log L = -7096, 97 \); Annahme keine molekulare Uhr: \(\log L = -7085,19 \)), so daß eine Datierung anhand des vorliegenden Datensatzes möglich war. Die für die Berechnung verwendeten Kantenlängen wurden in PUZZLE unter Vorgabe einer Baumtopologie und des HKY-Modells kalkuliert. Die vorgegebene Baumtopologie entsprach überwiegend der in dieser Arbeit ermittelten Gibbon-Phylogenie, wurde aber innerhalb von *Hylobates* durch detailliertere Verwandtschaftsverhältnisse (Geismann, 2002a) ergänzt.

Die Kalibrierung der molekularen Uhr stellt auch bei den Hominoidea eine große Schwierigkeit dar. Da man heute prinzipiell von einem älteren Ursprung der Primaten ausgeht (Martin, 2003; Tavaré et al., 2002), müssen auch die Kalibrierungspunkte für die Hominoidea zurückgesetzt werden. So schätzten Arnason et al. (1998) den letzten gemeinsamen Vorfahren aller Catarrhini auf etwa 50 Millionen Jahre (Mio) und den der Hominoidea auf etwa 34 Mio. Im Gegensatz hierzu werden in den meisten anderen Arbeiten deutlich jüngere Zeiten von etwa 25 Mio für die Aufspaltung von Cercopithecoidea und Hominoidea verwendet (Goodman et al.,
5. Kapitel 3: Molekulare Phylogenie der Gibbons (Hylobatidae)

Abbildung 24: Aufspaltungszeiten errechnet anhand eines ML-Baumes. Der schwarze Kreis gibt die Referenzwerte; die grauen Kreise die ermittelten Zeitpunkte für die jeweiligen letzten gemeinsamen Vorfahren an.

Nach der Aufspaltung in die beiden Familien Hominidae und Hylobatidae vor etwa 18-34 Mio, kam es innerhalb der Hominidae zu einer relativ frühen Abtrennung von *Pongo* (14,4-27,2

Abbildung 24: Aufspaltungszeiten errechnet anhand eines ML-Baumes. Der schwarze Kreis gibt die Referenzwerte; die grauen Kreise die ermittelten Zeitpunkte für die jeweiligen letzten gemeinsamen Vorfahren an.

Nach der Aufspaltung in die beiden Familien Hominidae und Hylobatidae vor etwa 18-34 Mio, kam es innerhalb der Hominidae zu einer relativ frühen Abtrennung von *Pongo* (14,4-27,2
5. Kapitel 3: Molekulare Phylogenie der Gibbons (Hylobatidae)

Mio). Von den übrigen drei Gattungen stellt *Gorilla* (10,8-20,5 Mio) die erste Abzweigung dar. Die beiden Linien *Homo* und *Pan* trennten sich schließlich vor etwa 8,7-16,4 Mio, wobei sich letztere Gattungen vor 3,9-7,4 Mio zusätzlich in die zwei Arten *P. paniscus* und *P. troglodytes* unterteilte.

Die Aufspaltung in die vier Gibbon-Gattungen dagegen erfolgte in einem relativ kurzen Zeitraum (2,9-5,5 Mio), wobei sich *Nomascus* als erste Gattung von der Stammlinie abzweigte (11,0-20,8 Mio). Nach der Abtrennung von *Symphalangus* vor etwa 9,5-17,9 Mio, kam es schließlich zu einer letzten Verzweigung in die Gattungen *Bunopithecus* und *Hylobates* (8,1-15,3 Mio). Die sechs *Hylobates*-Arten entstanden innerhalb eines sehr kurzen Zeitrahmens von nur 1,3-2,5 Mio, so daß die Artbildung vor etwa 3,7-6,9 Mio abgeschlossen war. Die Unterteilung in einzelne Arten innerhalb *Nomascus* begann mit der Abspaltung von *N. nasutus* vor etwa 5,9-11,2 Mio und wurde durch eine letzte Verzweigung zwischen *N. gabriellae* und *N. leucogenys* vor etwa 2,7-5,1 Mio beendet.

5.4. Diskussion

In der vorliegenden Arbeit wurden erstmals alle zwölf anerkannten Gibbon-Arten molekulargenetisch untersucht. Die erzielten Ergebnisse erbrachten klare Hinweise auf die phylogenetischen Verwandtschaftsbeziehungen innerhalb der Hylobatidae, so daß diese einen wichtigen Beitrag zum Verständnis von Evolution und Biogeographie der kleinen Menschenaffen liefern.

Mit den mitochondrialen Daten aller Gibbon-Arten, fünf Homindae-Vertretern sowie von *Papio hamadryas* wurden Stammbäume unter Verwendung unterschiedlicher Algorithmen und Sequenzevolutionsmodelle ermittelt, die die Verwandtschaftsverhältnisse innerhalb der beiden Familien meist gut auflösten. Da die Basenzusammensetzungen zwischen den analysierten Gattungen kaum variiert, kann eine artifizielle Gruppierung phylogenetisch nicht verwandter Taxa nahezu ausgeschlossen werden (Schmitz et al., 2002b; Tarrio et al., 2001), so daß die ermittelte Phylogenie die tatsächliche Evolution der Hominoidea widerspiegelt.
Phylogenie und Taxonomie der Hylobatidae

Die Monophylie der beiden Schwesterfamilien Hominidae und Hylobatidae ist durch den Datensatz gut unterstützt und bestätigt somit die allgemein gültige Einteilung.

Die Hominidae unterteilen sich in die vier Gattungen *Pongo*, *Gorilla*, *Pan* und *Homo*, wobei sich *Pongo* als erstes abzweigt. Als nächstes trennt sich *Gorilla* ab, so daß die rezenteste
Aufspaltung durch *Homo* und *Pan* repräsentiert wird. Innerhalb der Gattung *Pan* kam es schließlich vor 3,9-7,4 Mio zu einer weiteren Untergliederung in die beiden Arten *P. paniscus* und *P. troglodytes*.

Biogeographie der Hylobatidae

Die molekularen Daten und Verbreitungsmuster sprechen für einen afrikanischen Ursprung der Catarrhini (Stewart & Disotell, 1998). Demnach wanderten die Hominoidea vor

Die Hylobatidae unterteilten sich innerhalb eines sehr kurzen Zeitraumes (2,9-5,5 Mio) in die vier Gattungen. Die tiefste Abspaltung stellt *Nomascus* dar, die sich bereits vor etwa 11,0-20,8 Mio von der Stammlinie abtrennte. Die nächste Verzweigung vor etwa 9,5-17,9 Mio wird von *Symphalangus* repräsentiert, die nur auf der malaiischen Halbinsel und Sumatra überlebte. Schließlich unterteilte sich die dritte Linie vor etwa 8,1-15,3 Mio in *Bunopithecus* und *Hylobates*.

Drei der vier Gattungen (*Nomascus, Bunopithecus* und *Hylobates*) kommen im Quellgebiet der Flüsse Yangtze, Mekong und Salween vor, so daß diese Region als mögliches Ursprungsgebiet der Gibbons in Frage kommt. Da *Nomascus* ursprünglich über weite Teile Chinas verbreitet war (Gao et al., 1981; van Gulik, 1967; Zhang et al., 1992) und die ermittelte

Die Abspaltung von *Symphalangus* vollzog sich vor etwa 9,5-17,9 Mio. Da die Gattung heute auf der malaiischen Halbinseln und auf Sumatra vorkommt und der Unterart-Status der beiden Formen angezweifelt wird (Geissmann, 1995), wäre es möglich, daß *Symphalangus* vor 9,5-17,9 Mio nur die malaiische Halbinsel und erst sehr viel später, während einer der vielen Meeresspiegel-Absenkungen im Pleistozän (Bergh et al., 1996), Sumatra besiedelte.

Die Gattung *Hylobates* unterteilte sich schließlich Radiations-artig vor 5,0-3,7 bzw. 9,4-6,9 Mio in sechs Arten, die über weite Teile Süd-Ost-Asiens verbreitet sind. Da in beiden Zeiträumen Verbindungen zwischen den heutigen Verbreitungsgebieten bestanden, kann keine der Zeiten für die Ausdehnung der Gattung ausgeschlossen werden. Die Verbindungen zwischen den Inseln und dem Festland waren jedoch durch einen niedrigeren Meeresspiegel vor 5 Mio deutlich mehr ausgeprägt als vor 10 Mio (Hall, 1998, 2001), so daß eine spätere Radiation vor 5,0-3,7 Mio eher in Frage kommt.

5.5. Zusammenfassung

In der vorliegenden Gibbon-Studie wurden erstmals alle 12 Arten der Hylobatidae molekulargenetisch untersucht. Die anhand mitochondrialer Cytochrom b Daten erstellten
Phylogenien erbrachten meist eine klare Auflösung der Verwandschaftsverhältnisse und bestätigten die bereits publizierten Ergebnisse. Demnach spaltet sich **Nomascus** als erste Linie ab, gefolgt von **Symphalangus**, wobei die letzte Verzweigung durch **Bunopithecus** und **Hylobates** repräsentiert wird. Innerhalb der Gattungen konnten die phylogenetischen Beziehungen nur bedingt gelöst werden. So kann zwar vom Datensatz eindeutig die Abspaltungsfolge der **Nomascus**-Arten abgeleitet werden, nicht aber die der **Hylobates**-Arten, die sich vermutlich Radiations-artig verzweigten. Weiterhin konnten die Zeiten für die jeweiligen letzten gemeinsamen Vorfahren der einzelnen Gruppen ermittelt werden. Da die jüngeren Datierungen insgesamt besser mit den geologischen Gegebenheiten vereinbar sind, wird davon ausgegangen, daß der Ursprung der Hominoidea nicht älter als 25 Mio ist.
6. Allgemeine Diskussion

Basenzusammensetzung

Paarweise Differenzverteilung und Systematik

Die beobachteten Differenzen im Cytochrom b Gen zwischen den Halbaffen-Taxa sind durchschnittlich größer als die zwischen den Colobinae- und Hylobatidae-Taxa der gleichen taxonomischen Einheit. So unterscheiden sich die anerkannten Halbaffen-Arten in 2,72-14,45%; die maximale Differenz zwischen den Arten der Hylobatidae dagegen liegt bei nur 7,98%. Ähnliches gilt für die Gattungen: bei Halbaffen liegt der Unterschied bei 12,54-19,56%; bei Colobinae bei 12,34-15,69% und bei Hylobatidae bei 9,47-15,35%.

Insgesamt bestätigen die ermittelten paarweisen Differenzvergleiche die heutigen Erkenntnisse, daß die Diversität kleiner Säuger-Arten eher unter- und die der größeren Arten eher überschätzt wurde (Castresana, 2001). So wurden bei kleineren Arten sehr unterschiedliche Taxa nur als Unterarten oder überhaupt nicht als eigenständige Taxa anerkannt, wogegen bei größeren Arten häufig zu stark unterteilt wurde. In dieser Arbeit konnte diese Körpergrößen-basierte Ungleichverteilung bestätigt werden. Weiterhin wurde festgestellt, daß auch nachtaktive Formen eine sehr viel größere Diversität repräsentieren als dies bisher angenommen wurde. So liegen die beobachteten Distanzen zwischen tagaktiven oder kathemeralen Halbaffen-Arten (Eulemur sp., Lemur catta, Hapalemur sp., Varecia sp., Propithecus sp., Indri indri) bei maximal 11,58% (Ø 8,05%) und sind somit mit denen zwischen Hylobatidae-Arten von 7,98% vergleichbar. Im Gegensatz hierzu unterscheiden sich die nachtaktiven Halbaffen-Arten in bis zu 14,45% (Microcebus sp.). Bemerkenswert dabei ist, daß die tagaktiven Vertreter zum Beispiel der Gattung Eulemur traditionell schon immer in fünf Arten klassifiziert wurden, die der Gattung Microcebus aber bis vor kurzem nur in zwei Arten (Napier & Napier, 1985). Ähnliches trifft auch für die beiden einzigen nachtaktiven Gattungen der Haplorrhini Tarsius (Koboldmakis) und Aotus (Nachtaffen) zu. Traditionell klassifizierte man alle Formen der Nachtaffen als Unterarten von Aotus trivirgatus (Napier & Napier, 1985), jedoch unterscheiden sich die einzelnen Taxa durch sehr unterschiedliche Chromosomensätze, wonach heute acht Arten anerkannt werden (Geissmann, 2002a). Bei den Koboldmakis, die ursprünglich in drei Arten unterteilt wurden (Napier & Napier, 1985), geht man heute von mindestens sieben Arten aus (Geissmann, 2002a).
Erklären läßt sich diese Ungleichverteilung durch die ursprüngliche Klassifizierung anhand von überwiegend Fell-morphologischen Merkmalen. Im Gegensatz zu tagaktiven Primaten weisen nachtaktive Vertreter aber keine größeren Unterschiede in der Fellfärbung auf, da ihnen diese in der Dunkelheit keine Vorteile verschaffen. Für sie sind Unterschiede zum Beispiel in der Vokalisation sehr viel wichtiger; ein Merkmal, welches erst in letzten Jahren näher untersucht wurde. Basierend auf den Ergebnissen dieser und weiterer Arbeiten (Castresana, 2000; Yoder et al., 2000) läßt sich vermuten, daß die Diversität nachtaktiver und kleinerer Arten bisher als zu gering angenommen wurde und es somit zukünftig durch die Analyse besser geeigneter Merkmale zu weiteren taxonomischen Aufspaltungen innerhalb dieser Gruppen kommen wird.

Phylogenetische Rekonstruktionen

Transpositionsereignisse klar belegt ist, deuten die mitochondrialen Daten eine Schwestergruppenbeziehung der afrikanischen Vertreter zum Ausschluß der asiatischen an. Da diese Konstellation statistisch aber relativ schwach oder gar nicht unterstützt ist, sollte diese als unaufgelöst angesehen werden, wodurch sich der Widerspruch zur SINE-basierten Phylogenie aufhebt.

Insgesamt zeigte sich, daß die mitochondrialen Daten besonders zur Rekonstruktion von phylogenetischen Verwandtschaftsverhältnissen zwischen nah verwandten Taxa, jedoch nicht zur Auflösung von Radiationen oder tiefen Verzweigungen geeignet waren. Trotz der möglichen Ungleichverteilung von ursprünglich polymorphen Markern in Folgelinien („Incomplete Lineage Sorting“), die hier nicht entdeckt wurde, erwiesen sich Transpositionsereignisse bei tiefen Aufspaltungen als unschlagbares Markersystem. Durch die Kombination von mitochondrialen und molekular-kladistischen Daten konnte so ein vollständiges Bild der Halbaffen-Evolution gezeichnet werden. Für die Schlankaffen und Gibbons wurden ausschließlich mitochondrialen Daten verwendet, die aber aufgrund der jungen Aufspaltungen eine relativ gute Auflösung der Verwandtschaftsbeziehungen ermöglichten.

Biogeographische Rekonstruktionen

Auf dem afrikanischen Kontinent sind Schlankaffen und Halbaffen weit verbreitet, wobei Schlankaffen fast ausschließlich im tropischen Regenwald zu finden sind. Obwohl Vertreter beider Gruppen sympatrisch vorkommen, wurden keine Ähnlichkeiten zwischen den Verbreitungsmustern der Gattungen erkannt. In Asien dagegen wurden klare Überschneidungen zwischen den ermittelten Verbreitungsszenerien der Halbaffen, Schlankaffen und Gibbons festgestellt, von denen im folgendem einige näher beschrieben werden:

1. indischer Subkontinent

2. Indochina: Mekong

6. Allgemeine Diskussion

3. Indochina: Yangtze

4. Mentawai-Inseln

Auf den Mentawai-Inseln (Siberut, Sipora, Nord- und Süd-Pagai) westlich von Sumatra leben die fünf endemischen Primatenarten *Presbytis potenziani, Simias concolor, Hylobates klossii, Macaca siberu* und *M. pagensis*, wobei für die Makaken bereits gezeigt wurde, daß diese die Inseln zweimal (vor 1,1 und 2,2 Mio) besiedelten (Roos et al., 2003). Da die anderen drei Arten jedoch im Gegensatz zu *Macaca* keine nah verwandte Form auf Sumatra haben, ist eine einmalige Besiedelung der Inseln durch diese Arten wahrscheinlich, konnte aber aufgrund der wenigen molekularen Daten bisher nicht bestätigt werden. Nach den Berechnungen dieser Arbeit besiedelte *H. klossii* die Inseln vor 4,3–8,0 Mio. Da die Mentawai aber vermutlich erst vor etwa 5 Mio entstanden sind (Hall, 1998), käme nur die jüngere Schätzung für eine Besiedelung in Frage. Ähnliches trifft auch für die Kolonialisierung durch *Simias* zu. Obwohl in bisherigen molekularen Arbeiten noch kein Vertreter dieser Gattung untersucht wurde, geht man aufgrund

Anhand molekularer Daten konnte jedoch der letzte gemeinsame Vorfahr der übrigen *Presbytis*-Arten auf etwa 4,9-10,5 Mio geschätzt werden (Roos, unpublizierte Daten). Da *P. potenziani* innerhalb der Gattung vermutlich eine sehr frühe Abspaltung darstellt, kann eine Besiedelung der Mentawai-Inseln auf einen Zeitraum von etwa 4-5 bzw. 9-10,5 Mio begrenzt werden. Den errechneten Zeiten nach wären die Inseln somit insgesamt durch drei Wanderungsbewegungen besiedelt worden. Während der ersten, die kurz nach dem Entstehen der Inseln geschah, wanderten *Hylobates klossii, Presbytis potenziani* und *Simias concolor* ein, die letzten beiden Wanderungen dagegen vollzogen sich erst vor 2,2 und 1,1 Mio und hatten die erfolgreiche Besiedelung durch *Macaca siberu* und *M. pagensis* zur Folge.
7. Allgemeine Zusammenfassung

Die primäre Aufgabe dieser Studie war die Rekonstruktion von phylogenetischen Verwandtschaftsverhältnissen innerhalb der Halbaffen (Strepsirrhini), Schlankaffen (Colobinae) und Gibbons (Hylobatidae). Basierend auf den erstellten Phylogenien sollten weiterhin die biogeographischen Verbreitungsmuster der jeweiligen Gruppen rekonstruiert und mögliche Überschneidungen zwischen diesen ermittelt werden.

afrikanischen Gattungen *Colobus, Procolobus* und *Piliocolobus* sind ebenfalls unzureichend gelöst.

Zur Rekonstruktion der phylogenetischen Verwandtschaftsverhältnisse innerhalb der Colobinae wurde ein etwa 4,3 kb langes Fragment des mitochondrialen Genoms von neun der zehn Gattungen sequenziert und phylogenetisch analysiert. Der auserwählte Abschnitt beinhaltet das Cytochrom b Gen, die Kontrollregion, die 12S rRNA, Teile der 16S rRNA sowie die dazwischen liegenden tRNAs für Threonin, Prolin, Phenylalanin und Valin. Da das Fragment schnell und langsamer evolvierende Bereiche enthält, sollte eine Auflösung der Verhältnisse ermöglicht werden.

Anhand der erstellten Phylogenie ist von einem afrikanischen Ursprung der Colobinae auszugehen. Die Auswanderung nach Asien vollzog sich schließlich vor etwa 8,6-9,9 (18,3-21,2) Mio.

Zur Rekonstruktion der phylogenetischen Verwandtschaftsverhältnisse innerhalb der Hylobatidae wurden Sequenzen des mitochondrialen Cytochrom b Gens von allen anerkannten Arten ermittelt und phylogenetisch untersucht.

Zur Berechnung von Aufspaltungszeiten wurden die mitochondrialen Daten verwendet. Da das Alter des letzten gemeinsamen Vorfahren aller Primaten umstritten ist, wurden zur Kalibrierung der molekularen Uhr unterschiedliche Werte eingesetzt. Die anhand der Zeiten und Phylogenien ermittelten Verbreitungsszenarien wurden anschließend mit geologischen Gegebenheiten verglichen. Es zeigte sich, daß die jünger geschätzten Aufspaltungszeiten eher mit geologischen Veränderungen vereinbar sind als die älteren, so daß insgesamt von einem jüngeren Ursprung der Primaten auszugehen ist.

8. Literatur

Felsenstein, J. (1993): PHYLIP (Phylogeny Inference Package), Version 3.5c. (Distributed by the author, Department of Genetics, University of Washington, Seattle).

Murata, S., Takasaki, N., Saitoh, M. & Okada, N. (1996): Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the Pacific salmon and trout (Oncorhynchus) from the Atlantic salmon and trout (Salmo). Genetics 142: 915-926.

8. Literatur

Roos, C. & Ostner, J. (in Präp.): Paraphyletic origin of red-fronted lemurs (*Eulemur fulvus rufus*), and the re-introduction of the synonym *Eulemur fulvus rufifrons* (Bennett, 1833).

8. Literatur

9. Danksagung

Ich möchte mich herzlichst bei Hans Zischler für die sehr gute Betreuung und Unterstützung meiner Arbeit und seiner ständigen Bereitschaft zu Diskussionen bedanken.

Ganz besonderer Dank geht auch an die übrigen Mitarbeiter der Arbeitsgruppe Primatengenetik am DPZ Claudia Schwiegk, Martina Ohme, Jürgen Schmitz, Holger Herlyn und Andreas Hapke für die Hilfen und Freuden im alltäglichen Labordasein.

Da die Arbeit ohne die Vielzahl an Proben niemals dieses Ausmaß erreicht hätte, möchte ich mich auch bei denen bedanken, die mir Proben vertrauensvoll zur Verfügung stellten oder mir bei deren Beschaffung unter die Arme gegriffen haben. Viele dieser Personen waren auch jederzeit zu heißen Diskussionen bereit und lieferten viele Hintergrundinformationen: Dietmar Zinner, Peter Kappeler, Oliver Schülke, Julia Ostner, Manfred Eberle, Roland Hilgartner, Eckhard Heymann und Christophe Knogge (VÖ DPZ), Andreas Hapke (Genetik DPZ), Keith Hodges, Michael Heistermann, Thomas Ziegler und Christophe Abegg (Repro DPZ), Kerstin Mätz-Rensing und Wolfgang Henkel (Patho DPZ), Jörg Ganzhorn (Universität Hamburg), Hans-Jürg Kuhn (Universität Göttingen), Tilo Nadler und Ulrike Streicher (EPRC Vietnam), Lucy Tallents und Barney Long (FFI Indochina), Gareth Goldthrope und Liz Tydeman (Frontier-Vietnam), Vu Ngoc Thanh (Universität Hanoi), Thomas Geissmann und Elke Zimmermann (TiHo Hannover), Linda Vigilant und Christophe Boesch (EVA Leipzig), Yves Rumpler, Luc Fausser und Daniel Montagon (Universität Strasbourg), Werner Schempp (Universität Freiburg), Herbert Tichy (Universität Tübingen), Anna Nekaris (Universität Oxford Brookes), Liz Pimley (Universität Cambridge), Helga Schulze (Universität Bochum), Christian Welker (Universität Kassel), Jenny Pastorini und Wolfgang Scheffrahn (Universität Zürich), Colin Groves (Universität Canberra), Anne Yoder (Universität Yale), Andrew Kitchener (Museum Edinburgh), Manfred Ade (Museum Berlin), Judith Masters (Museum Pietermaritzburg), Karl Amman, Holger Meinig, Peter Zwanzger, Roland Wirth sowie den Mitarbeitern der Duke Universität und den Zoos in Leipzig, München, Münster, Wuppertal, Nürnberg, Duisburg, Dresden, Stuttgart, Köln, Berlin, Twycross, Beakesbourne, Besançon, Paris, Perth und Singapur.

Finanziell unterstützt wurde die Arbeit durch das Graduiertenkolleg „Perspektiven der Primatologie“ der Deutschen Forschungsgemeinschaft (DFG).
10. Anhang

Tabelle 5: Liste der verwendeten Proben

<table>
<thead>
<tr>
<th>ART</th>
<th>HERKUNFT</th>
<th>SPONSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LORIFORMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loris tardigradus grandis</td>
<td>Sri Lanka</td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Loris tardigradus grandis</td>
<td>Sri Lanka</td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Loris tardigradus</td>
<td>Sri Lanka</td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Loris tardigradus tardigradus</td>
<td>Matara, Sri Lanka</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris tardigradus tardigradus</td>
<td>Matara, Sri Lanka</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris tardigradus tardigradus</td>
<td>Matara, Sri Lanka</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris tardigradus tardigradus</td>
<td>Matara, Sri Lanka</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris tardigradus nycticeboides</td>
<td>Anthropol. Institut Zürich</td>
<td></td>
</tr>
<tr>
<td>Loris lydekkerianus lydekkerianus</td>
<td>Ayyalur, Tamil Nadu, S-Indien</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris lydekkerianus lydekkerianus</td>
<td>Ayyalur, Tamil Nadu, S-Indien</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris lydekkerianus lydekkerianus</td>
<td>Ayyalur, Tamil Nadu, S-Indien</td>
<td>A. Nekaris</td>
</tr>
<tr>
<td>Loris lydekkerianus n.</td>
<td>H. Schulze</td>
<td></td>
</tr>
<tr>
<td>Loris lydekkerianus n.</td>
<td>Zoo Berlin</td>
<td></td>
</tr>
<tr>
<td>Nycticebus pygmaeus</td>
<td>Vietnam</td>
<td>U. Streicher</td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>Hoa Binh, Vietnam, Typus-Exemplar</td>
<td>Vu Ngoc Thanh</td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>U. Streicher</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>Zoo Besançon</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>Zoo Besançon</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>C. Welker</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>H. Schulze</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>Zoo Singapur</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>Zoo Singapur</td>
<td></td>
</tr>
<tr>
<td>Nycticebus bengalensis</td>
<td>Zoo Berlin</td>
<td></td>
</tr>
<tr>
<td>Nycticebus coucang</td>
<td>Sumatra</td>
<td>H. Meinig</td>
</tr>
<tr>
<td>Nycticebus coucang</td>
<td>Malaiische Halbinsel</td>
<td>Zoo Singapur</td>
</tr>
<tr>
<td>Nycticebus menagensis</td>
<td>Borneo</td>
<td>Museum Berlin</td>
</tr>
<tr>
<td>Nycticebus javanicus</td>
<td>Java</td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Nycticebus javanicus</td>
<td>Java</td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Nycticebus javanicus</td>
<td>Java</td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Perodicticus potto edwardsi</td>
<td>Mt Kupe, SW-Kamerun</td>
<td>L. Pimley</td>
</tr>
<tr>
<td>ART</td>
<td>HERKUNFT</td>
<td>SPONSOR</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Perodicticus potto ibeanus</td>
<td>Bili, NO-Zaire</td>
<td>K. Amman</td>
</tr>
<tr>
<td>Perodicticus potto ibeanus</td>
<td>Bili, NO-Zaire</td>
<td>K. Amman</td>
</tr>
<tr>
<td>Arctocebus calabarensis</td>
<td>Umuahai, Nigeria</td>
<td>Museum Edinburgh</td>
</tr>
<tr>
<td>Arctocebus calabarensis</td>
<td></td>
<td>Museum Edinburgh</td>
</tr>
<tr>
<td>Arctocebus calabarensis</td>
<td>Basho, Kamerun</td>
<td>Museum Berlin</td>
</tr>
<tr>
<td>Galago senegalensis senegalensis</td>
<td>Togo</td>
<td>Museum Edinburgh</td>
</tr>
<tr>
<td>Galago senegalensis senegalensis</td>
<td>Togo</td>
<td>Museum Edinburgh</td>
</tr>
<tr>
<td>Galago senegalensis</td>
<td></td>
<td>H. Schulze</td>
</tr>
<tr>
<td>Galago senegalensis</td>
<td></td>
<td>Anthropol. Institut Zürich</td>
</tr>
<tr>
<td>Galago moholi</td>
<td></td>
<td>C. Welker</td>
</tr>
<tr>
<td>Galago matschie</td>
<td></td>
<td>NCBI: AF 271409</td>
</tr>
<tr>
<td>Euoticus elegantulus</td>
<td></td>
<td>Museum Berlin</td>
</tr>
<tr>
<td>Galago granti</td>
<td>Tanzania</td>
<td>Museum Berlin</td>
</tr>
<tr>
<td>Galago zanzibaricus</td>
<td></td>
<td>J. Masters</td>
</tr>
<tr>
<td>Otolemur crassicaudatus</td>
<td></td>
<td>C. Welker</td>
</tr>
<tr>
<td>Otolemur garnetti</td>
<td></td>
<td>Anthropol. Institut Zürich</td>
</tr>
<tr>
<td>Otolemur garnetti</td>
<td></td>
<td>Anthropol. Institut Zürich</td>
</tr>
<tr>
<td>Galago gabonensis</td>
<td>Sagmelima, Kamerun</td>
<td>Museum Berlin</td>
</tr>
<tr>
<td>Galago cameronensis</td>
<td>Mt Kupe, SW-Kamerun</td>
<td>L. Pimley</td>
</tr>
<tr>
<td>Galagoides demidoff</td>
<td></td>
<td>W. Schümp</td>
</tr>
<tr>
<td>Galagoides demidoff</td>
<td></td>
<td>W. Schümp</td>
</tr>
<tr>
<td>Galagoides demidoff</td>
<td></td>
<td>W. Schümp</td>
</tr>
<tr>
<td>Galagoides demidoff</td>
<td></td>
<td>H. Tichy</td>
</tr>
<tr>
<td>Galagoides demidoff</td>
<td>Mt Kupe, SW-Kamerun</td>
<td>L. Pimley</td>
</tr>
<tr>
<td>Galagoides thomasi</td>
<td>Bili, NO-Zaire</td>
<td>K. Amman</td>
</tr>
</tbody>
</table>

CHIROMYIFORMES		
Daubentonia madagascariensis		Duke Universität
Daubentonia madagascariensis		Anthropol. Institut Zürich

<p>| LEMURIFORMES | | |
| Phaner furcifer pallescens| Kirindy, W-Madagaskar | O. Schülke |
| Phaner furcifer pallescens| Kirindy, W-Madagaskar | O. Schülke |
| Phaner furcifer pallescens| Kirindy, W-Madagaskar | O. Schülke |
| Cheirogaleus major | Mantasoa, O-Madagaskar | J. Pastorini |
| Cheirogaleus major | Andasibe, O-Madagaskar | J. Pastorini |
| Cheirogaleus medius | | Zoo Köln |
| Cheirogaleus medius | | Zoo Köln |
| Cheirogaleus medius | | Y. Rumpler |
| Cheirogaleus crosselyi | Fort Dauphin, SO-Madagaskar| A. Hapke |
| Cheirogaleus sp. de.novo. | Ambanja, NW-Madagaskar | P. Kappeler |
| Alopeus trichotis | | Zoo Paris |
| Mirza coquereli | Kirindy, W-Madagaskar | P. Kappeler |
| Mirza coquereli | Kirindy, W-Madagaskar | P. Kappeler |
| Mirza coquereli | Kirindy, W-Madagaskar | P. Kappeler |
| Mirza coquereli | Kirindy, W-Madagaskar | P. Kappeler |
| Mirza coquereli | Kirindy, W-Madagaskar | P. Kappeler |
| Mirza sp. de.novo. | Ambanja, NW-Madagaskar | P. Kappeler |</p>
<table>
<thead>
<tr>
<th>ART</th>
<th>HERKUNFT</th>
<th>SPONSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirza sp. de.novo.</td>
<td>Ambanja, NW-Madagaskar</td>
<td>P. Kappeler</td>
</tr>
<tr>
<td>Mirza sp. de.novo.</td>
<td>Ambanja, NW-Madagaskar</td>
<td>P. Kappeler</td>
</tr>
<tr>
<td>Mirza sp. de.novo.</td>
<td>Ambanja, NW-Madagaskar</td>
<td>P. Kappeler</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Berenty, S-Madagaskar</td>
<td>NCBI: AY 167071</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Mandena, SO-Madagaskar</td>
<td>NCBI: AF 285565</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Mandena, SO-Madagaskar</td>
<td>NCBI: AF 285566</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Vohimena, SW-Madagaskar</td>
<td>NCBI: AF 285564</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Kirindy, W-Madagaskar</td>
<td>NCBI: AF 285561</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Kirindy, W-Madagaskar</td>
<td>NCBI: AF 285562</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Kirindy, W-Madagaskar</td>
<td>NCBI: AF 285563</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Andranomena, W-Madagaskar</td>
<td>NCBI: AF 285557</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Andranomena, W-Madagaskar</td>
<td>NCBI: AF 285558</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Andranomena, W-Madagaskar</td>
<td>NCBI: AF 285559</td>
</tr>
<tr>
<td>Microcebus murinus</td>
<td>Manamby, W-Madagaskar</td>
<td>NCBI: AF 285560</td>
</tr>
<tr>
<td>Microcebus griseorufus</td>
<td>Berenty, S-Madagaskar</td>
<td>NCBI: AY 167076</td>
</tr>
<tr>
<td>Microcebus griseorufus</td>
<td>Beza Mahafaly, SW-Madagaskar</td>
<td>NCBI: AF 285568</td>
</tr>
<tr>
<td>Microcebus griseorufus</td>
<td>Beza Mahafaly, SW-Madagaskar</td>
<td>NCBI: AF 285567</td>
</tr>
<tr>
<td>Microcebus ravelobensis</td>
<td>Berenty, S-Madagaskar</td>
<td>NCBI: AY 167076</td>
</tr>
<tr>
<td>Microcebus sambiranensis</td>
<td>Manongarivo, NW-Madagaskar</td>
<td>NCBI: AF 285554</td>
</tr>
<tr>
<td>Microcebus berthae</td>
<td>Kirindy, W-Madagaskar</td>
<td>M. Eberle</td>
</tr>
<tr>
<td>Microcebus berthae</td>
<td>Kirindy, W-Madagaskar</td>
<td>NCBI: AF 285540</td>
</tr>
<tr>
<td>Microcebus rufus</td>
<td>Andasibe, O-Madagaskar</td>
<td>J. Pastorini</td>
</tr>
<tr>
<td>Microcebus rufus</td>
<td>Tampolo, O-Madagaskar</td>
<td>J. Pastorini</td>
</tr>
<tr>
<td>Microcebus rufus</td>
<td>Ranomafana, O-Madagaskar</td>
<td>NCBI: AF 285545</td>
</tr>
<tr>
<td>Microcebus rufus</td>
<td>Ranomafana, O-Madagaskar</td>
<td>NCBI: AF 285549</td>
</tr>
<tr>
<td>Microcebus rufus</td>
<td>Ranomafana, O-Madagaskar</td>
<td>NCBI: AF 285551</td>
</tr>
<tr>
<td>Microcebus myoxinus</td>
<td>Bemaraha, W-Madagaskar</td>
<td>NCBI: AF 285535</td>
</tr>
<tr>
<td>Microcebus myoxinus</td>
<td>Bemaraha, W-Madagaskar</td>
<td>NCBI: AF 285536</td>
</tr>
<tr>
<td>Microcebus myoxinus</td>
<td>Bemaraha, W-Madagaskar</td>
<td>NCBI: AF 285537</td>
</tr>
<tr>
<td>Microcebus myoxinus</td>
<td>Abalimena, W-Madagaskar</td>
<td>NCBI: AF 285538</td>
</tr>
<tr>
<td>Microcebus myoxinus</td>
<td>Aboalimena, W-Madagaskar</td>
<td>NCBI: AF 285539</td>
</tr>
<tr>
<td>Microcebus myoxinus</td>
<td>Ankarana, N-Madagaskar</td>
<td>NCBI: AF 285533</td>
</tr>
<tr>
<td>Microcebus tavaratra</td>
<td>Ankarana, N-Madagaskar</td>
<td>NCBI: AF 285534</td>
</tr>
<tr>
<td>Microcebus ravelobensis</td>
<td>Ankarafantsika, NW-Madagaskar</td>
<td>NCBI: AF 285529</td>
</tr>
<tr>
<td>Microcebus ravelobensis</td>
<td>Ankarafantsika, NW-Madagaskar</td>
<td>NCBI: AF 285532</td>
</tr>
<tr>
<td>Lepilemur ruficaudatus</td>
<td>Kirindy, W-Madagaskar</td>
<td>D. Zinner</td>
</tr>
<tr>
<td>Lepilemur ruficaudatus</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Lepilemur edwardsi</td>
<td>Anjamena, NW-Madagaskar</td>
<td>J. Pastorni</td>
</tr>
<tr>
<td>Lepilemur leucopus</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Lepilemur dorsalis</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Lepilemur septentrionalis</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Avahi laniger</td>
<td>Fort Dauphin, SO-Madagaskar</td>
<td>J. Ganzhorn</td>
</tr>
<tr>
<td>Avahi occidentalis</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Indri indri</td>
<td></td>
<td>Museum Berlin</td>
</tr>
<tr>
<td>Propithecus diadema diadema</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Propithecus diadema edwardsi</td>
<td>Ranomafana, O-Madagaskar</td>
<td>J. Pastorni</td>
</tr>
<tr>
<td>Propithecus tattersalli</td>
<td></td>
<td>Y. Rumpler</td>
</tr>
<tr>
<td>Propithecus verreauxi coquereli</td>
<td>Ampijoroa, NW-Madagaskar</td>
<td>J. Pastorni</td>
</tr>
<tr>
<td>Propithecus verreauxi coronatus</td>
<td></td>
<td>Zoo Paris</td>
</tr>
<tr>
<td>ART</td>
<td>HERKUNFT</td>
<td>SPONSOR</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Propithecus verreauxi coronatus</td>
<td>Y. Rumpler</td>
<td></td>
</tr>
<tr>
<td>Propithecus verreauxi verreauxi</td>
<td>Y. Rumpler</td>
<td></td>
</tr>
<tr>
<td>Hapalemur aureus</td>
<td>Y. Rumpler</td>
<td></td>
</tr>
<tr>
<td>Hapalemur meridonalis</td>
<td>Fort Dauphin, SO-Madagaskar</td>
<td>J. Ganzhorn</td>
</tr>
<tr>
<td>Hapalemur griseus griseus</td>
<td>Y. Rumpler</td>
<td></td>
</tr>
<tr>
<td>Hapalemur griseus occidentalis</td>
<td>Y. Rumpler</td>
<td></td>
</tr>
<tr>
<td>Hapalemur sinus</td>
<td>Karianga, SO-Madagaskar</td>
<td>J. Pastorini</td>
</tr>
<tr>
<td>Hapalemur griseus</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Hapalemur simus</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Lemur catta</td>
<td>Zoo Münster</td>
<td></td>
</tr>
<tr>
<td>Eulemur mongoz</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur rubriventer</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur coronatus</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur fulvus collaris</td>
<td>NCBI: U 53576</td>
<td></td>
</tr>
<tr>
<td>Eulemur fulvus albifrons</td>
<td>NCBI: AF 081048</td>
<td></td>
</tr>
<tr>
<td>Eulemur fulvus rufifrons</td>
<td>Kirindy, W-Madagaskar</td>
<td>J. Ostner</td>
</tr>
<tr>
<td>Eulemur fulvus rufifrons</td>
<td>E-Madagaskar</td>
<td>J. Pastorini</td>
</tr>
<tr>
<td>Eulemur fulvus rufifrons</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur fulvus rufifrons</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur fulvus rufifrons</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur fulvus rufus</td>
<td>Anjamena, NO-Madagaskar</td>
<td>J. Pastorini</td>
</tr>
<tr>
<td>Eulemur macaco macaco</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur macaco macaco</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Eulemur macaco flavifrons</td>
<td>NCBI: AF 081050</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata rubra</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata rubra</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata subcincta</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata subcincta</td>
<td>Zoo Paris</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata subcincta</td>
<td>Zoo Paris</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata subcincta</td>
<td>Zoo Paris</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata variegata</td>
<td>Zoo Berlin</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata variegata</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata variegata</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Varecia variegata variegata</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>COLOBINAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colobus polykomos polykomos</td>
<td>Zoo Duisburg</td>
<td></td>
</tr>
<tr>
<td>Procolobus verus</td>
<td>Thai National Park, Elfenbeinküste</td>
<td>L. Vigilant</td>
</tr>
<tr>
<td>Piliocolobus badius badius</td>
<td>Thai National Park, Elfenbeinküste</td>
<td>L. Vigilant</td>
</tr>
<tr>
<td>Semnopithecus entellus entellus</td>
<td>Zoo Dresden</td>
<td></td>
</tr>
<tr>
<td>Trachypithecus obscurus</td>
<td>Zoo Wuppertal</td>
<td></td>
</tr>
<tr>
<td>Presbytis flavirufus</td>
<td>Howletts Wild Animal Park</td>
<td></td>
</tr>
<tr>
<td>Nasalis larvatus</td>
<td>Wilhelm Stuttgart</td>
<td></td>
</tr>
<tr>
<td>Pygathrix nemaeus</td>
<td>Zoo Köln</td>
<td></td>
</tr>
<tr>
<td>Rhinopithecus avunculus</td>
<td>Na Hang, N-Vietnam</td>
<td>T. Nadler</td>
</tr>
<tr>
<td>HYLOBATIDAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nomascus nasutus nasutus</td>
<td>Kim Hy, NO-Vietnam</td>
<td>Frontier Vietnam</td>
</tr>
<tr>
<td>Nomascus concolor concolor</td>
<td>Che Tao, N-Vietnam</td>
<td>FFI Vietnam</td>
</tr>
<tr>
<td>Nomascus leucogenys leucogenys</td>
<td>Zoo Twycross</td>
<td></td>
</tr>
<tr>
<td>Nomascus gabriellae</td>
<td>Zoo Leipzig</td>
<td></td>
</tr>
<tr>
<td>Bunopithecus hoolock</td>
<td>Zoo Perth</td>
<td></td>
</tr>
<tr>
<td>Symphalangus syndactylus</td>
<td>Zoo München</td>
<td></td>
</tr>
<tr>
<td>ART</td>
<td>HERKUNFT</td>
<td>SPONSOR</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Hylobates lar</td>
<td>Zoo Wuppertal</td>
<td></td>
</tr>
<tr>
<td>Hylobates lar</td>
<td>Zoo Besançon</td>
<td></td>
</tr>
<tr>
<td>Hylobates klossii</td>
<td>Siberut, Mentawai Inseln</td>
<td>C. Abegg</td>
</tr>
<tr>
<td>Hylobates moloch</td>
<td>T. Geissmann</td>
<td></td>
</tr>
<tr>
<td>Hylobates pileatus</td>
<td></td>
<td>C. Roos</td>
</tr>
<tr>
<td>Hylobates agilis</td>
<td>T. Geissmann</td>
<td></td>
</tr>
<tr>
<td>Hylobates muelleri</td>
<td></td>
<td>T. Geissmann</td>
</tr>
</tbody>
</table>

Weitere Arten

<table>
<thead>
<tr>
<th>ART</th>
<th>SPONSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callithrix jacchus</td>
<td>DPZ</td>
</tr>
<tr>
<td>Papio hamadryas</td>
<td>DPZ</td>
</tr>
<tr>
<td>Macaca mulatta</td>
<td>DPZ</td>
</tr>
<tr>
<td>Pan troglodytes</td>
<td>Zoo München</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td></td>
</tr>
</tbody>
</table>

Zusätzliche mitochondrial Sequenzen

<table>
<thead>
<tr>
<th>ART</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>NCBI: X 93334</td>
</tr>
<tr>
<td>Pan paniscus</td>
<td>NCBI: NC 001644</td>
</tr>
<tr>
<td>Pan troglodytes</td>
<td>NCBI: NC 001643</td>
</tr>
<tr>
<td>Gorilla gorilla</td>
<td>NCBI: NC 001645</td>
</tr>
<tr>
<td>Pongo abelii</td>
<td>NCBI: NC 002083</td>
</tr>
<tr>
<td>Papio hamadryas</td>
<td>NCBI: NC 001992</td>
</tr>
<tr>
<td>Macaca sylvanus</td>
<td>NCBI: NC 002764</td>
</tr>
<tr>
<td>Tarsius bancanus</td>
<td>NCBI: AF 378365</td>
</tr>
</tbody>
</table>
11. _Curriculum vitae_

Name: Christian Roos

Geboren: am 29.10.1972 in München

Schulische Ausbildung

- 1979-1983 Grundschule Unterhaching
- 1983-1993 Gymnasium Unterhaching

Zivildienst

Universitäre Ausbildung

- 1995-2000 Biologie-Studium an der Technischen Universität München
- 1999 Diplomarbeit an der Ludwig-Maximilians-Universität München

 „Phylogenie und Taxonomie der Schlankaffen (Colobinae): Sequenzanalyse des mitochondrialen Cytochrom b-Gens“

- 2000 Diplom an der Technischen Universität München

Tätigkeiten

 seit 1995 Leiter der „Gene Bank of Primates“

- 2000-2002 Promotionsstipendiat im Rahmen des DFG-geförderten Graduiertenkollegs „Perspektiven der Primatologie“

 seit 2003 Wissenschaftl. Mitarbeiter der Arbeitsgruppe Primatengenetik am DPZ

- seit 2003 Mitglied der „IUCN/SSC Primate Specialist Group, Section Asia“