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Zusammenfassung

Lokalisierte elektronische Zustände treten in Halbleitern an Punktdefekten wie Fremd-

atomen oder intrinsischen Störstellen des Kristallgitters auf. Zusätzlich zu ihrer Ladung

besitzen solche Zustände durch ungepaarte Spins in vielen Fällen ein magnetisches Mo-

ment. Die Vermeidung der häufig schädlichen Defekte und das gezielte Einbringen von

Dotieratomen ermöglicht in Halbleitern die Realisierung einer Vielzahl von elektronischen

Bauelementen. Eine vergleichbar präzise Kontrolle der Spineigenschaften wird im Fall

von Metallen seit langem angewendet, während die Realisierung von spinbasierten Halb-

leiterbauelementen noch immer Gegenstand intensiver Forschung ist. Paramagnetische

Defektzustände lassen sich experimentell mittels Elektronenspinresonanz (ESR) identifi-

zieren und auf ihre mikroskopischen Eigenschaften wie Symmetrie und Lokalisierung hin

untersuchen. Besonders empfindlich ist eine indirekte Detektion der ESR mittels elektrisch

detektierter Elektronenspinresonanz (EDMR). Beide Methoden beruhen auf der Messung

des Zeeman-Effektes des lokalisierten Elektrons, d.h. der Aufspaltung seiner Spinzustände

unter Einwirkung eines äußeren magnetischen Feldes. Gleichzeitig lassen sich auch Fein-

strukturwechselwirkungen innerhalb des Elektronenspinsystems und Hyperfeinwechsel-

wirkungen des Elektronenspins mit in der Nähe befindlichen Kernspins beobachten.

In dieser Arbeit wurden lokalisierte Zustände in drei verschiedenen Materialsystemen

untersucht: Ungesättigte Bindungen oder “dangling bonds” (dbs), die typischen intrinsi-

sche Defekte in amorphem Germanium (a-Ge), Phosphor-Donatoren, die neuerdings die

n-Dotierung von Diamantkristallen ermöglichen, und Manganatome, die als Kandidaten

für eine “magnetische Dotierung” von Gruppe-III Nitriden gelten. Die gewonnenen Ergeb-

nisse werden jeweils mit den in der Literatur eingehend untersuchten Referenzsystemen

von dbs in amorphem Silizium, Phosphor-Donatoren in kristallinem Silizium und Man-

ganatomen in ferromagnetischem Galliummanganarsenid verglichen.

Die elektronischen Eigenschaften von a-Ge werden insbesondere durch hohe Konzen-

trationen an dbs beeinträchtigt. Aus der beobachteten Verbreiterung der EDMR-Signale

in einer Serie von a-Ge Filmen mit maßgeschneiderten 73Ge-Isotopenkonzentrationen im

Bereich von 0.1% bis 95.6% und bei Mikrowellenfrequenzen ν von 0.434 GHz bis 9.35 GHz

konnte in dieser Arbeit die Hyperfeinwechselwirkung des elektronischen Spins von dbs mit

einer großen Zahl an 73Ge-Kernspins bestimmt werden und daraus der Lokalisationsradius

der dbs in a-Ge abgeschätzt werden. In einer kernspinfreien Probe bei 0.434 GHz wurde
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eine minimale Linienbreite von nur 2.6 G beobachtet. Es wurde gezeigt, dass die frequenz-

abhängige Verbreiterung von 4.4 ν×G/GHz bei niedrigen Kernspinkonzentrationen durch

g-Faktoranisotropie und -unordnung bestimmt wird, und dass bei den untersuchten De-

fektkonzentrationen eine frequenzunabhängige dipolare Verbreiterung mit ungefähr 1 G

zur ESR-Linienbreite beiträgt. In einem weiten Bereich von Kernspinkonzentrationen wird

die ESR-Linienbreite durch die statistisch verteilten 73Ge-Kernspins in der Umgebung des

Defektatoms bestimmt. Die maximal beobachtete EDMR-Linienbreite von 300 G für ei-

ne Probe mit [73Ge] = 95.6% lässt sich auf eine zentrale Fermi-Kontaktwechselwirkung

von 29 G × gµB zurückführen. Das zeigt, dass die 4s-Wellenfunktion des Zentralatoms

mit einem Anteil von 3.4% zur Defektwellenfunktion beiträgt. Mit Hilfe eines numeri-

schen Modells konnte der Spin-Lokalisierungsradius der restlichen Spinwellenfunktion auf

ca. 3.5 Å festgelegt werden. Folglich ist die Wellenfunktion der Spindichte der dbs in

a-Ge deutlich stärker lokalisiert als die Ladungsdichte, deren Lokalisierungsradius durch

Transportexperimente in der Literatur zu 11 Å bestimmt wurde.

Diamant läßt sich mit Phosphordonatoren seit einigen Jahren reproduzierbar n-Typ

dotieren. Allerdings ist die Ionisierungsenergie dieses Donators unerwartet hoch, was auf

mikroskopische Besonderheiten der Spinwellenfunktion des Donatorelektrons in der Nähe

der Phosphoratome hindeutet. Zur Charakterisierung der Donatorwellenfunktion wurde

ein n-leitfähiger Phosphor-dotierter Diamantfilm mittels EDMR untersucht und die Sig-

nale mehrerer elektrisch aktiver Zentren vom Untergrund der Stickstoffzentren im Sub-

strat und der dbs im Bereich der elektrischen Kontakte isoliert. Ähnlich wie Defekte in

nicht n-leitfähigen P-dotierten Diamantproben, deren ESR-Signatur zuvor in der Litera-

tur berichtet wurde, zeigte das erste der hier beobachteten Zentren mit Aiso = 17.6 G

und Aaniso = 1.8 G eine viel geringere Spindichte am Phosphoratom, als es für was-

serstoffähnliche Donatoren in Diamant zu erwarten wäre. Statt auf einen Effektiv-Masse-

Donator deuten diese Hyperfeinparameter eher auf einen phosphorhaltigen Defektkomplex

als Ursprung des EDMR-Signals hin. Ein zweites EDMR Signal mit Aiso = 380 G und

Aaniso = 15 G, das vorübergehend unter nicht klar definierten Bedingungen in der gleichen

Probe beobachtet wurde, lässt sich dagegen eher mit den Vorhersagen der Effektiv-Masse-

Theorie in Einklang bringen. Allerdings zeigt auch dieses Zentrum einen nennenswerten

anisotropen Beitrag der Hyperfeinwechselwirkung, der wiederum auf eine signifikante Git-

terverzerrung hindeutet. Zum Bau von bipolaren Bauelementen aus Halbleitermaterialien

mit großer Bandlücke bieten sich neben rein diamantbasierten Strukturen auch Hete-

rostrukturen aus Diamant und anderen Materialien an. Besonders kritisch für die Funkti-

on eines solchen Bauelements sind Grenzflächendefekte, wie sie im Rahmen dieser Arbeit

exemplarisch an einer AlN/Diamant-Heterostruktur untersucht wurden.

Halbleitern mit geeigneten magnetischen Eigenschaften wird ein großes Potential für

neuartige “spintronische” Anwendungen prognostiziert. Insbesondere für GaN:Mn wur-

de aufgrund von Austauschwechselwirkungen der Mn2+-Spins mit Löchern im Valenz-
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band Ferromagnetismus bei Raumtemperatur vorhergesagt. Spin-Spin-Wechselwirkungen

in GaN:Mn und AlN:Mn mit Mn-Konzentrationen um 1020 cm−3 wurden in der vorlie-

genden Arbeit mittels konventioneller ESR untersucht. Die Vorhersage von ferromagne-

tischen Wechselwirkungen zwischen den Mn2+-Spins ist allerdings auf Grundlage dieser

experimentellen Ergebnisse nicht aufrechtzuerhalten. Die beobachtete paramagnetischen

Resonanz zeigt eindeutig die zu erwartende Hyperfeinwechselwirkung Aiso = −69 G×gµB
der kompensierten substitionellen, d.h. vierfach stickstoffkoordinierten Mn2+-Akzeptoren

in GaN:Mn und AlN:Mn. Je nach biaxialer Verspannung der epitaxischen Filme wurden

Feinstrukturwechselwirkungen zwischen−218 G×gµB und−236 G×gµB in GaN:Mn bzw.

−648 G× gµB in AlN:Mn beobachtet. Diese Werte lassen sich im Rahmen des Superposi-

tionsmodells von Kristallfeldern quantitativ durch kleine Verschiebungen der Mn-Atome

um δGaN = 0.085 Å bzw. δAlN = 0.13 Å von den idealen Gitterplätzen der Wurtzitstruk-

tur von GaN bzw. AlN erklären. Bei Verkippungen der Kristallachse c gegenüber dem

Magnetfeld wurden durch das Wechselspiel von Zeeman- und Feinstrukturwechselwirkung

zahlreiche verbotene ESR-Übergänge mit ∆mI > 0 beobachtet und durch numerische

Diagonalisierung der vollständigen Spin-Hamiltonfunktion erklärt. Aus der Intensität der

ESR-Signale zeigte sich, dass die Mn-Konzentration in den Schichten die der kompensier-

ten Mn2+-Akteptoren bei weitem übertrifft, solange nicht durch Kodotierung zusätzlich

Elektronen in vergleichbarer Menge zur Verfügung gestellt wurden. Diese Beobachtung

schließt die gleichzeitige Existenz von Mn2+ und Löchern im Valenzband aus und zeigt,

dass Mn in nicht kodotiertem GaN hauptsächlich im neutralen Ladungszustand vorliegt.

Mit Hilfe optischer Messungen konnte dieser neutrale Zustand mit Absorptionsbanden

um 1.5 eV und 1.8 eV korreliert werden. Spektral aufgelöste Photoleitungsmessungen

zeigten, dass es sich bei dem Absorptionsprozess oberhalb von 1.8 eV um die direkte

optische Ionisation des Mn-Akzeptors handelt. Die entsprechende Ionisationsenergie in

AlN:Mn beträgt 2.6 eV. Andererseits ist der Absorptionsprozess bei 1.5 eV einem inneren
5T2 → 5E Übergang von Mn3+ zuzuordnen. Qualitativ können die Unterschiede zwi-

schen den neutralen Mn-Akzeptorzuständen in GaN und GaAs anhand eines einfachen

Defektmolekülbildes erklärt werden, in Übereinstimmung mit den Ergebnissen neuerer ab

initio Rechnungen aus der Literatur. Da sich nach den Ergebnissen dieser optischen Un-

tersuchungen das Akzeptorniveau von Mangan in Gruppe-III Nitriden weit oberhalb der

Valenzbandkante befindet, sind im Gegensatz zu GaAs:Mn2+ bei Dotierkonzentrationen

über 0.1% daher für GaN:Mn2+ keine elektrostatischen und magnetischen Kopplungen

zwischen Mn-Zuständen und Löchern im Valenzband zu erwarten, und die Vermittlung

von Ferromagnetismus über freie Ladungsträger ist in GaN:Mn als sehr unwahrscheinlich

anzusehen.

III



IV



Contents

1 Introduction 1

2 Localized electronic states 5

2.1 Bases for orbital wave functions . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Effective-mass states . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Molecular wave functions . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The spin Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Diagonalization procedures . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Transition intensities . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Spin-spin interactions 17

3.1 Spin-orbit interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Effective g-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Axial anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Electron-electron interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Dipolar interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Exchange interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Spin polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Hyperfine interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Dipolar interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Fermi contact interaction . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Ligand hyperfine interaction . . . . . . . . . . . . . . . . . . . . . . 29

4 Detection of electron spin resonance 33

4.1 Spectrometer components . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Resonance Lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Indirect detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Dangling bonds in amorphous germanium 41

5.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 EDMR results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

V



5.2.1 Isotopically pure a-70Ge . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 a-Ge and a-Ge:H with natural isotope composition . . . . . . . . . 49

5.2.3 73Ge-enriched samples . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Hyperfine interactions with 73Ge . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Spin Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Convolution of multiple hyperfine interactions . . . . . . . . . . . . 58

5.3.3 Analytical lineshape calculations . . . . . . . . . . . . . . . . . . . 61

5.3.4 Numerical lineshape simulation . . . . . . . . . . . . . . . . . . . . 64

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Line broadening mechanisms . . . . . . . . . . . . . . . . . . . . . . 71

5.4.2 Spin polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.3 Charge localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Shallow donors in diamond 79

6.1 ESR of phosphorus in diamond . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 EDMR of n-type diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Bias dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Anisotropy at high bias voltage . . . . . . . . . . . . . . . . . . . . 84

6.2.3 Additional signal after illumination . . . . . . . . . . . . . . . . . . 87

6.3 Discussion of the EDMR signals . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Effective-mass donors in diamond . . . . . . . . . . . . . . . . . . . 88

6.3.2 Hyperfine values from the literature . . . . . . . . . . . . . . . . . . 89

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Outlook: Alternatives to n-type diamond . . . . . . . . . . . . . . . . . . . 91

6.5.1 Spin-dependent recombination . . . . . . . . . . . . . . . . . . . . . 92

6.5.2 Anisotropy of the EDMR signal . . . . . . . . . . . . . . . . . . . . 92

7 The Mn3+/2+ acceptor level in group III nitrides 97

7.1 Transition-metal states in semiconductors . . . . . . . . . . . . . . . . . . 99

7.2 Growth of GaN:Mn films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Elastic recoil detection . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2 SQUID measurements . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 ESR of GaN:Mn2+ and AlN:Mn2+ . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Crystal field spin Hamiltonian . . . . . . . . . . . . . . . . . . . . . 115

7.3.2 Spin Hamiltonian analysis with ~B ‖ c . . . . . . . . . . . . . . . . . 120

7.3.3 Arbitrary orientations . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.4 Discussion of the ESR parameters . . . . . . . . . . . . . . . . . . . 135

7.3.5 Mn2+ spin density . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Identification of the Mn3+ state . . . . . . . . . . . . . . . . . . . . . . . . 144

VI



7.4.1 Optical absorption measurements . . . . . . . . . . . . . . . . . . . 146

7.4.2 Tight-binding picture . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 Outlook: Ferromagnetism in GaN . . . . . . . . . . . . . . . . . . . . . . . 157

7.5.1 Charge-transfer levels of Cr, Mn, and Fe . . . . . . . . . . . . . . . 158

7.5.2 Prospects for carrier-mediated ferromagnetism . . . . . . . . . . . . 162

7.5.3 Other exchange mechanisms . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Summary 169

List of publications 173

Acknowledgements 177

VII



VIII



Chapter 1

Introduction

The manipulation of the electrical properties of bulk semiconductors and semiconduc-

tor heterostructures is the basis for most electronic devices. Sophisticated lithography

techniques and material purity have been optimized to a degree, which allows precisely

controlled electronic landscapes to be constructed, whose functionality is based on doping

control and external programming, e.g. via metallic gate electrodes. However, compared

to metallic or insulating materials, the wide tunability of semiconductor electrical prop-

erties also makes them very sensitive to unintentional impurities and to intrinsic defects.

Electron spin resonance (ESR) is a well established technique for the identification and

characterization of the localized electronic states formed in the presence of such “point

defects” in an otherwise perfectly regular crystal.

Microscopically, the symmetry and extent of a defect wave function is far from being

point-like, and its shape and size are directly linked to its electronic and magnetic proper-

ties in the host crystal. Theoretical predictions of these properties are still a challenge in

many cases. Spin-spin interactions can provide an ideal tool for the experimental investi-

gation of the shape and size of a defect wave function. Particularly useful for this purpose

are the hyperfine interactions between an electronic spin and the surrounding nuclear

spins. Because of the weakness of these interactions, nuclear spins can hereby be con-

sidered as non-perturbing and extremely local probes. Also the much stronger exchange

interactions between neighboring electronic spins are known to depend critically on the

shape and size of the involved spin wave functions. On the other hand, such spin-spin

interactions can be strong enough to dominate material properties even at technologically

relevant temperatures. This makes the investigation of spin-spin interactions interesting

not only from a fundamental point of view, but also with respect to possible technological

applications.

Spin-spin interactions at a variety of point defects are described in this work: intrinsic

defects in amorphous germanium, phosphorus for the n-type doping of diamond, and

manganese impurities as candidates for magnetic “dopants” in group III nitrides. The

symmetry and extent of the investigated defect wave functions in these materials are then
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2 CHAPTER 1. INTRODUCTION

compared to the well-known analogue defects in amorphous silicon, in n-type crystalline

silicon, and in dilute magnetic gallium manganese arsenide. The results are critical for

the anticipated technological applications in the new material systems.

The dominant point defects in amorphous germanium are “dangling bonds” formed at

under-coordinated germanium atoms. These were identified years ago, and can be made

electrically inactive to a great extent by hydrogenation. However, little is known micro-

scopically about the shape and size of the electronic wave function of dangling bonds in

a-Ge. The first part of this work shows how the hyperfine interaction of dangling bond

spins with the large number of surrounding nuclear spins can be extracted from electri-

cally detected magnetic resonance (EDMR) spectra of isotopically engineered amorphous

germanium films, even in the presence of spin-orbit and spin-spin interactions. Following

this, the hybridization and localization of the dangling bond wave function will be dis-

cussed, based on the observed interaction strength and the number of interacting nuclei.

The material properties of silicon are sufficient for the fabrication of most electronic

devices. However, other properties are required for devices operating at high temper-

atures or in particular chemical environments, e.g. within the human body. Electrical

doping is still a challenge in many of these materials. In diamond, which is a wide band

gap semiconductor with a considerable potential for sensor, UV-LED, and display appli-

cations, n-type doping via phosphorus has been achieved only recently. The identification

and characterization of the active donor states in diamond is a current challenge for re-

search. The second part of this thesis deals with the localization of the phosphorus bound

donor states in diamond, which can be obtained from hyperfine interactions between the

electronic and nuclear spins. Particular attention is paid again to the EDMR detection

technique, which makes it possible to monitor the hyperfine interactions in epitaxial dia-

mond films.

Today the antiferromagnetic, ferromagnetic, and non-magnetic properties of materi-

als are of similar technological interest as the electronic properties of semiconducting,

conducting and insulating materials. In modern data storage devices, external magnetic

fields are used to control the magnetization of thin films with otherwise fixed magnetic

properties. New materials with tunable magnetic properties have been predicted to offer

a breakthrough in the field of “spintronic” devices, similar to the tunability of semicon-

ductor “electronic” devices via doping and gates. Novel applications are anticipated from

the combination of both electric and magnetic tunability. The interplay of electronic and

magnetic properties has been predicted as being particularly strong in manganese-doped

gallium nitride. Detailed structural information is obtained in this thesis from the spin-

spin interactions at the negatively charged acceptor state of this impurity. Its neutral

acceptor state is found to be invisible to electron spin resonance experiments, and will

therefore be discussed based on optical absorption measurements. The observations for

both defect states show that the anticipated very strong spin-spin interaction will be im-
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possible to achieve in GaN:Mn, as the Mn impurity states are much more localized in

gallium nitride than in gallium arsenide.

In the following, the basic concepts in the description of orbital and spin states of

defects in semiconductors will be introduced in Chap. 2. The evaluation and interpretation

of electron spin resonance spectra will then be discussed in some detail in Sec. 2.2. Typical

interaction mechanisms between the spins of several electrons or nuclei, and the influence

of the orbital momentum on the observable spin parameters will be introduced in Chap. 3,

followed by a summary of the experimental spin resonance techniques used in Chap. 4.

The investigations of dangling bond defects in amorphous germanium will be presented

in Chap. 5, those of phosphorus donors in n-type diamond films in Chap. 6, and those on

Mn2+ and Mn3+ gap states in group III nitrides in Chap. 7. Detailed descriptions of the

respective materials and the types of point defect wave functions studied will be given in

the respective chapters of this work. All results are summarized in Chap. 8.
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Chapter 2

Localized electronic states

The experimental observations available from electron spin resonance experiments are

mostly related to the spin properties of electronic states, which, however, are directly

connected with the orbital properties, e.g. the shape and localization of the electronic

wave function. In many cases, these orbital properties are impossible to determine oth-

erwise. The theoretical interpretation of both spin and orbital properties depends on the

bases employed for the description of the orbital wave function as well as for the spin.

In the following sections, some basic concepts for orbital and spin states of defects in

semiconductors will be introduced. The analysis of a spin Hamiltonian will be explained

in some detail, which will be important for the interpretation of the experimental data

presented later.

2.1 Bases for orbital wave functions

One of the most characteristic properties of defects in a crystalline matrix is their ioniza-

tion energy with respect to the valence or conduction bands of the host material. The wave

functions of “shallow defects” with ionization energies below 100 meV typically extend

over many unit cells. These wave functions are clearly distinct from the wave functions of

“deep defects” with ionization energies of the order of 1 eV and large parts of their wave

function localized in one or two unit cells of the crystalline lattice. The limiting cases of

free electrons, i.e. plane waves, which are preferably described in ~k-space, and of tightly

bound atomic states, which are preferably described in real space, will be discussed briefly

in the following sections. Defect states are better approximated from one or the other of

these approaches depending on their degree of localization.

Similar to the Bloch formalism for band states, plane waves are used as the favored

basis set for the description of shallow defects, as discussed in Sec. 2.1.1. In contrast,

deep defects are preferably constructed from atomic or molecular wave functions, which

are also used in the tight-binding formalism, as discussed in Sec. 2.1.2. Much more

elaborate theoretical models like the pseudopotential method (1) and the local spin density
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6 CHAPTER 2. LOCALIZED ELECTRONIC STATES

approximation (LSDA) using the Korringa-Kohn-Rostocker (KKR) method, the Linear

Muffin-Tin Orbital (LMTO) method, and the Augmented Plane Wave (APW) method can

be used very successfully in modern numerical calculations for defect wave functions.(2)

2.1.1 Effective-mass states

According to Bloch’s theorem, a single-particle electron wave function in a crystalline

lattice is represented by the product of a plane wave exp(i~k~r) with the wave-vector ~k

within the first Brillouin zone, and a periodic Bloch function un,~k with the band index n

ψn,~k(~r) = exp(i~k~r) · un,~k(~r) . (2.1)

Insertion of this product function in the Schrödinger equation results in a differential

equation for the Bloch functions with an additional term (h̄/m0) ~k · ~p. The solutions for

this equation can be expanded in terms of the Bloch functions at high-symmetry points

of the Brillouin zone as

un,~k(~r) = un,~k0(~r) +
h̄

m0

∑
n′ 6=n

〈un,~k0|~k · ~p |un′,~k0〉
En,~k0 − En′,~k0

· un′,~k0(~r) . (2.2)

Typically, the contributions to Eq. (2.2) of those bands with a large energy separation

En,~k0 − En′,~k0 can be neglected. Therefore, the dispersion relation of conduction band

states of many cubic semiconductors close to ~k0 = 0 is reasonably well described by a

5-band ~k · ~p approximation with

E(~k) = En,~k0 +
h̄2~k2

2m∗ , (2.3)

and the parameters m∗ for the effective electron mass and g∗ for its effective g-factor

m0

m∗ = 1 +
P 2

EG
− P ′2

E ′ (2.4)

g∗

g0

= 1− ∆0

3

(
P

EG

)2

− ∆′
0

3

(
P ′

E ′

)2

. (2.5)

With the typical value of the matrix element P 2 =
∣∣∣〈Γ1|~k · ~p |Γ4〉

∣∣∣2 × 2/(m0k
2) ≈ 20 eV

between the s-like Γ1 conduction band, and the p-like Γ4 valence band, good agreement of

the effective parameters predicted from the band gap EG, the spin-orbit coupling ∆0, and

the corresponding primed parameters P ′ and ∆′
0 of the next higher Γ4 conduction band

with the experimental values for m∗ and g∗ can be obtained for many materials.(1, 3)

Because the corrections from the valence band are particularly large in narrow band

gap semiconductors like Ge, GaAs, or InAs, even influences from the next-higher conduc-

tion band are negligible there. In contrast, contributions from these bands are essential for
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|ψ(r)|2
effective-mass
wavefunction Bloch function |un,k(r)|

2

envelope |F(r)|2

 

periodic lattice

Figure 2.1: A weakly localized state can be described in the effective-mass approximation
with the product wave function of a periodic band state ψ

n,~k
constructed with the Bloch wave

functions u
n,~k

, and of an hydrogenic envelope function F defined by the screened impurity
potential.

a reasonable agreement of ~k ·~p calculations with the experimental parameters in wide band

gap semiconductors, e.g. for the g-values of effective-mass donors in wurtzite Al1−xGaxN

alloys.(4) Typically, the effective-mass approximation for electronic states at the conduc-

tion band minimum also holds for shallow donor states, as both types of states undergo

very similar spin-orbit interactions (see Sec. 3.1).

The periodic part of the wave function of weakly localized shallow donor or acceptor

states can be expressed in conduction and valence band states with few, or even a single

orbital momentum ~k. In this approximation, a localized wave function

Ψ(~r) = F (~r) exp(i~k~r) · un,~k(~r) (2.6)

is described by the product of a band state ψn,~k(~r) of Eq. (2.1) and a slowly varying

envelope function F (~r), as shown in Fig. 2.1. Because of the sixfold conduction band

minima, summation over six equivalent ~k(i) and F (i)(~r) is required for the description of

effective-mass donors in crystalline silicon.(5, 6) As the periodic crystalline potential of the

Schrödinger equation is solved by ψn,~k(~r), the remaining differential equation resembles

the Schrödinger equation for the hydrogen atom with the electron mass replaced by the

effective mass m∗, and the Coulomb potential V (~r) = −e2/(4πε0ε
∗|~r|) of the positive

core screened by the relative dielectric constant ε∗. Therefore, the wave function Ψ(~r) of

Eq. (2.6) and its radius of localization a∗ are given approximately by the envelope function

F (~r) =
1√
πa∗3

exp

(
−|~r|
a∗

)
with (2.7)

a∗ =
4πε0ε

∗h̄2

m∗e2
= ε∗

m0

m∗ · a0 , (2.8)

where a0 = 0.529 Å is the Bohr radius of the 1s wave function of the hydrogen atom.

Accordingly, the ionization energy E∗ from the localized state Ψ(~r) to the band ψn,~k(~r)
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is given by

E∗ = − e2

4πε0ε∗ · 2a∗
= −m∗

m0

(
1

ε∗

)2

· E0 , (2.9)

where E0 = 13.6 eV is the ionization energy of the 1s ground state of the hydrogen atom.

As an example, the ground state of donors in Si is a superposition of plane waves of

the six conduction band minima at ~k0 ≈ 0.85 ~kmax along the 〈001〉 directions.(5, 7) With

m∗ = 3
√
ml ·m2

t =
3
√

0.98 · 0.192 m0 and ε∗ = 11.9, one would obtain E∗ = 32 meV for

the effective-mass donors in Si, which is not too far from the observed values between

43-54 meV. However, the wave function amplitudes predicted at the donor site in this

approximation(5) are still too small by at least a factor of five compared to the values

extracted from the experimental hyperfine constants. Therefore corrections for the non-

spherical conduction band minima, the unscreened wave function of the central donor cell,

and a complex envelope function sampled throughout the Brillouin zone must be taken

into account for a more realistic donor wave function in the case of silicon,(5, 6) as well as

for shallow donors in diamond, as discussed in Chap. 6.

2.1.2 Molecular wave functions

As suggested in Ref. 5, a first approximation to a Bloch function can be constructed from

the atomic valence states obtained via Hartree-Fock calculations. In orthogonalized form,

these quasi-atomic orbitals are known as Löwdin orbitals.(1) Formally, such an effective-

mass approach is similar to band-structure calculations based on a tight-binding model.

However, the interpretations of both terms in Eq. (2.1) as wave function and envelope

function are exchanged. In the tight-binding approach, spatially localized atomic states

φ(~r) are used as the basis for the electronic wave functions instead of the plane-wave basis

for free electrons, localized in ~k-space. The ~k-periodic exponential function now appears in

form of coefficients for the atomic wave functions, and the valence and conduction bands

of a solid now are formed from the bonding and antibonding σs,p,d orbitals resulting from

the overlap of the relevant atomic states. As an example, the wave functions ψk(~r) and

the energy dispersion relation E(~k) for the hypothetical textbook-example of a periodic

linear chain of atoms with spacing a is given by

ψ =
∑
n

exp(ikna) · φ(r − na) (2.10)

E(k) = E0 − Eα − 2Eγ · cos(ka) , (2.11)

with the parameters Eα =
∫
φ∗(r) ∆U(r)φ(r) dV and Eγ =

∫
φ∗(r + a) ∆U(r)φ(r) dV

defined via the atomic states φ(r) and the difference potential ∆U(r) of the atomic and

crystalline Hamiltonians.(8) The curvature at k = 0 is upward for the s-like states with

Eγ > 0 at the bottom of the conduction band, and downward for the p-like states with

Eγ < 0 at the top of the valence band.
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|ψ0|2 |ψ+1|2|ψ-1|2
|ψ(r)|2

defect atom

molecular
wave function

atomic 
orbitals

 

ligands

Figure 2.2: A strongly localized defect state can be described as a superposition of few atomic
orbitals, similar to a molecular state. Therefore, its properties are mostly determined by the size
and symmetry of the involved atomic orbitals instead of the properties of the surrounding lattice.
Such a defect state is best characterized by the few non-vanishing wave function amplitudes at
the ligand atoms instead of the envelope function shown in Fig. 2.1.

The lattice periodicity has only a minor influence on the shape of a strongly localized

defect state, as shown in Fig. 2.2. Thus, Bloch functions from a large number of bands

and with a large range of ~k-vectors would be required to describe such a defect wave

function. It is much more convenient to construct the wave functions directly in real

space from atomic wave functions φ centered at a small number of atoms around a defect

site, similar to the method of linear combinations of atomic orbitals (LCAO) of molecular

physics and chemistry. As a first approximation neglecting all wave function overlap

terms, the so-called Hückl molecular orbital (HMO) approach is derived from Eq. (2.10)

by replacing the periodic coefficient function with a characteristic set of coefficients for

the projections of the defect wave function onto the atomic basis states.(9) Assuming

that the defect wave function can be separated into the product of this spatial wave

function and the spin, these coefficients can be mapped out via hyperfine interactions,

as described in Sec. 3.3.3. Examples of strongly localized defect states that have been

described successfully as a superpositions of a few atomic orbitals are the P1 center of

nitrogen impurities in diamond,(10, 11) discussed in detail in Sec. 3.3.3, and intrinsic defects

like the negatively charged vacancy in Si (V−
Si).

(12)

The electronic states of a transition metal ion in a solid represent complex many-

electron systems. In many cases, it is sufficient to treat the influence of the electronic

orbitals at the nearest neighbors via crystal field theory in a point charge approximation.

In certain cases, however, covalent effects and hybridization with the neighbor atoms

must be taken into account explicitly via ligand field theory. Different single-particle

wave functions and energies must be considered in general for each charge state of the

same impurity or defect molecule.(13)
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2.2 The spin Hamiltonian

The analysis of the complete Hamiltonian of defect states in a semiconductor matrix is

very complex. For a description of the spin properties only, this difficulty is circumvented

by the concept of a spin Hamiltonian, which explicitly includes only spin states and

operators, e.g.

H = µB ~Bĝ ~S + ~SD̂ ~S + ~SÂ~I , (2.12)

with the Bohr magneton µB = 9.274015 × 10−28 J/G, the magnetic field ~B, and the

electronic and nuclear spin operators ~S and ~I. The parameters ĝ, D̂, and Â are in general

spatially anisotropic matrices with at least the symmetry properties of the orbital defect

wave function. By convention, ĝ represents the Zeeman interaction of the electronic spin ~S
with the magnetic field, D̂ the fine structure interaction, and Â the hyperfine interaction

between the electronic and a nuclear spin.

To separate the spin and real space operators in such a way, it must be assumed

that a defect ground state wave function can be factorized as the product of a spin state

and some non-degenerate many-particle orbital wave function. The time-independent

Schrödinger-equation

H |ψ〉 = Eψ |ψ〉 , (2.13)

for the spin states |ψ〉 and their eigen-energies Eψ can often be solved analytically. In more

complex spin systems, they must be calculated numerically or via perturbation theory.

The orbital parts of the wave function, and spatial operators like crystal field and spin-

orbit interaction are integrated out and appear only implicitly in the spin Hamiltonian via

effective numerical parameters such as the effective g-tensor, whose deviation from the free

electron’s g-factor g0 = 2.002319 stems from spin-orbit coupling Hso = λ ~L ~S treated by

second order perturbation theory (Sec. 3.1).(9) The form of the spin Hamiltonian is found

either ad hoc, i.e. phenomenologically, motivated by symmetry considerations, or by a

perturbative expansion of the full Hamiltonian.(14) Not only effective parameters, but even

“fictive spins” are sometimes considered in an “effective spin Hamiltonian”, in order to

reflect the ground state degeneracy correctly.(13, 15) In these cases, it is more appropriate

to use the more general term “electron paramagnetic resonance” (EPR) spectroscopy

instead of ESR, which implies the presence of “real” spins. The energy scale of those states

attributed to the ground state manifold is hereby given by the microwave energy employed

in the ESR experiment, which is usually much smaller than the energy separation from

excited electronic states.

At this point, it seems as if most of the information about the quantum-mechanical

system is lost during the reduction of the full Hamiltonian to the spin properties. How-

ever, by parameterizing the observable properties of the spin system, the remaining spin

Hamiltonian provides a valuable language for the interpretation of experimental ESR

data. Furthermore, the actual form and symmetry of the spin Hamiltonian alone often
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gives important clues for the identification and characterization of the spin state un-

der observation. Later, the tabulated parameters might eventually be interpreted via

elaborate theoretical models for the complete quantum-mechanical ground state wave

functions.(2, 16)

A successful interpretation of ESR data at first requires the knowledge of the relation

of the spin Hamiltonian parameters to experimentally observable resonance fields and

intensities. After an introduction to the basic steps in defining and solving a spin Hamil-

tonian in Sec. 2.2.1 to 2.2.3, the most relevant interaction terms of spin Hamiltonians will

be discussed separately in Sec. 3.1 to 3.3.

2.2.1 Matrix representation

Spin operators ~S, which are used in various combinations to form the spin Hamiltonian

H, have the general quantum-mechanical properties of an angular momentum(17)

~S
2
|m〉 = S(S + 1) |m〉 (2.14)

Sz |m〉 = m |m〉 (2.15)

S± |m〉 = (Sx ± iSy) |m〉 =√
S(S + 1)−m(m± 1) |m± 1〉 . (2.16)

These equations are valid for spin S = 1/2 electrons as well as for many-electron systems

with higher values of S. A set of basis vectors for the 2S + 1-dimensional spin space

is defined by unit vectors for the orthonormal states |m〉 with the eigen-values m =

−S, . . . , S of the operator Sz. The spin operators Sx,y,z take the form of matrices with

dimension (2S + 1) × (2S + 1). For a spin-1
2

system, these are the well-known Pauli

matrices, which may be combined in a vector notation of operators to ~S = (Sx,Sy,Sz)
to describe the anisotropic properties of spins. The matrix forms of the spin operators

for all higher values of S are defined by Eqs. (2.14) to (2.16). In short form, all non-zero

matrix elements 〈n| Sx,y,z |m〉 of the operators Sx,y,z can be summarized as

〈n| Sx |m〉 = δn,m±1
1
2

√
S(S + 1)−m(m± 1) (2.17)

〈n| Sy |m〉 = ∓ δn,m±1
i
2

√
S(S + 1)−m(m± 1) (2.18)

〈n| Sz |m〉 = δm,n m . (2.19)

With a spin Hamiltonian built from linear combinations of such matrix operators, the

Schrödinger equation becomes a simple matrix equation, whose eigen-values can be calcu-

lated from the characteristic polynomial det(H− 1Ei) = 0, where 1 is the unity matrix,

and Ei( ~B) is one of the eigen-values of the matrix equation. The corresponding eigen-

vector |ψi〉 defines the spin eigen-state for Ei as a linear combination |ψi〉 =
∑

m αim |m〉
of the pure basis vectors of Sz. These basis vectors |m〉 of Sz are usually the eigen-states
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of the spin Hamiltonian H in the limit of very high magnetic fields along the z-axis, where

all other perturbations can be neglected.

A system of several spins, e.g. one electronic spin S and one nuclear spin I requires

a total of (2S + 1) ⊗ (2I + 1) orthogonal eigen-vectors. The orthonormal basis vectors

|ms,mi〉 of the product space may again be organized as unit vectors, now with a combined

index (ms,mi), which takes all values (−S,−I), (−S,−I + 1), . . . , (S, I). The matrix ele-

ments 〈ns, ni| Sx,y,z, Ix,y,z |ms,mi〉 of the electronic and nuclear spin operators are defined

according to Eqs. (2.17) to (2.19) also in this product space. The operators Sx,y,z leave

the nuclear spin states unaffected and are represented by the unity matrix elements δni,mi

for the nuclear spin, and vice versa Ix,y,z leave the electronic spin states unaffected and

are represented by the unity matrix elements δns,ms for the electronic spin, i.e.

〈ns, ni| Sx,y,z |ms,mi〉 = δni,mi
〈ns| Sx,y,z |ms〉 (2.20)

〈ns, ni| Ix,y,z |ms,mi〉 = δns,ms〈ni| Ix,y,z |mi〉 (2.21)

with the operators on the right-hand side as defined in Eqs. (2.17) to (2.19).

2.2.2 Diagonalization procedures

The spin Hamiltonian matrix needs to be diagonalized in order to obtain its eigen-

energies Ei and eigen-vectors |ψi〉.(18) In cases where it is not possible to solve the matrix

Schrödinger equation Eq. (2.13) analytically, approximate solutions from perturbation

theory, or exact numerical solutions for one set of matrix elements at a time must be ob-

tained. These calculations are somewhat simplified, if the magnetic field is oriented along

the z-axis of the spin Hamiltonian, as typically the Zeeman term dominates the eigen-

energies of the spin. For other orientations of the magnetic field, this can be achieved

by a rotation of the coordinate system of the spin operators ~S ′ = R̂ ~S.(18) In the new

coordinate system, the other possible interactions then introduce only small off-diagonal

elements to the spin Hamiltonian.

As an example, which can be solved analytically by inspection, consider the spin

Hamiltonian

H = µB ~Bg ~S + ~SA~I = µBBgSz + A(SxIx + SyIy + SzIz) (2.22)

with the external magnetic field ~B = (0, 0, B) along the z-direction, the isotropic g-factor

ĝ = 1 g, and the isotropic hyperfine interaction Â = 1 A for S = 1
2

and I = 1
2
. The basis

vectors |ms,mi〉 of the 4-dimensional product basis of Sz and Iz in this example are

|1
2
, 1

2
〉 =

1
0
0
0

; |1
2
,−1

2
〉 =

0
1
0
0

; |−1
2
, 1

2
〉 =

0
0
1
0

; |−1
2
,−1

2
〉 =

0
0
0
1

 . (2.23)
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Figure 2.3: Breit-Rabi diagrams (a) of the first-order solutions and (b) of the exact solutions
of the spin Hamiltonian of Eq. (2.22) with the electronic spin S = 1/2, the nuclear spin I = 1/2,
and the hyperfine interaction A. For better comparison, the first-order solutions are included
in (b) with dashed lines. The energy levels are labelled according to the basis states |ms,mi〉,
which are eigen-states of H at µBBg � A. For µBBg � A, I tends to be coupled with S
to an effective angular momentum J = S − I, . . . , S + I. The vertical lines indicate the two
strongly allowed ESR transitions for a microwave energy hν = 2A. In (b), also the weakly
allowed transitions |±1

2 ,∓
1
2〉 ↔ |∓1

2 ,±
1
2〉 are indicated.

The nuclear Zeeman interaction has been neglected in the spin Hamiltonian of Eq. (2.22),

but could be easily included analogous to the electronic Zeeman interaction. The matrix

form of this spin Hamiltonian is given by

H =


+µBBg

2
+ A

4
0 0 0

0 +µBBg
2

− A
4

A
2

0

0 A
2

−µBBg
2

− A
4

0

0 0 0 −µBBg
2

+ A
4

 . (2.24)

The off-diagonal elements A
2
� µBBg

2
can be neglected for small hyperfine couplings

compared to the Zeeman interaction. In this case, H is already approximately diagonal,

which means that the diagonal elements of H and the |ms,mi〉 basis vectors of Eq. (2.23)

are a first-order approximation to the eigen-energies and eigen-vectors of the system. This

regime, in which both S and I are quantized along the external magnetic field, is called

the Back-Goudsmith regime.(13) These first-order eigen-energies are shown as a function

of B in the energy diagram of Fig. 2.3a.

According to the dipole selection rules, the allowed ESR transitions are those with

|+1
2
,±1

2
〉 ↔ |−1

2
,±1

2
〉 with ∆ms = 1 and ∆mi = 0. For a given transition energy

∆E = hν, these two transitions appear at the magnetic fields B = (hν ± A
2
)/µg in the

first-order approximation. With the characteristic polynomial of the inner 2 × 2 Block
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Matrix, the exact energy eigen-values E1, . . . E4 can be calculated analytically without

approximations over the complete magnetic field range

E1,4 = +
1

4
A± 1

2
µBBg (2.25)

E2,3 = −1

4
A± 1

2

√
(µBBg)2 + A2 . (2.26)

The characteristic anti-crossing between the |±1
2
,∓1

2
〉 levels for small external fields is

shown in Fig. 2.3b. In the low-field regime, the eigen-vectors |E2,3〉 are symmetric and

antisymmetric combinations of the |1
2
,−1

2
〉 and |−1

2
, 1

2
〉 basis vectors. As a consequence,

the transitions |+1
2
,±1

2
〉 ↔ |−1

2
,∓1

2
〉 are not completely “forbidden” in the low-field

regime, as indicated with the smaller dots in Fig. 2.3b. Physically, the system is then

best described via a coupled angular momentum J = S − I, . . . , S + I for µBBg � A.

For A > 0, the J = 0 singlet state with opposite nuclear and electronic spin orientation

has lower energy than the “ferromagnetically” coupled J = 1 triplet state.

The analytical treatment of a more complex spin Hamiltonian often requires approxi-

mations by perturbation theory. For a weakly perturbed spin Hamiltonian H = H0 +λH1

with non-degenerate and diagonal H0, the Schrödinger equation can be expanded in terms

of the basis vectors |m〉(0) of H0. The unknown spin states |ψ〉 then take the form(9)

|ψ〉 = |m〉(0) + λ |ψ〉(1) + λ2 |ψ〉(2) + . . . (2.27)

Eψ = E(0)
m + λE

(1)
ψ + λ2E

(2)
ψ + . . . . (2.28)

With these expansions, the Schrödinger equation of the perturbed Hamiltonian now can

be solved for |ψ〉(i) and E
(i)
ψ for each order of λi separately. The first and second order

corrections are(9)

E
(1)
ψ = (0)〈m|H1 |m〉(0) (2.29)

|ψ〉(1) =
∑
n6=m

(0)〈m|H1 |n〉(0)

E
(0)
m − E

(0)
n

|n〉(0) (2.30)

E
(2)
ψ =

∑
n6=m

(0)〈m|H1 |n〉(0) (0)〈n|H1 |m〉(0)

E
(0)
m − E

(0)
n

(2.31)

|ψ〉(2) =
∑
k 6=m

[∑
n6=m

(0)〈k|H1 |n〉(0) (0)〈n|H1 |m〉(0)

(E
(0)
m − E

(0)
k )(E

(0)
m − E

(0)
n )

− (2.32)

(0)〈m|H1 |m〉(0) (0)〈k|H1 |m〉(0)

(E
(0)
m − E

(0)
k )2

]
|k〉(0) − (2.33)

1

2

∑
k 6=m

(0)〈k|H1 |m〉(0) (0)〈m|H1 |k〉(0)

(E
(0)
m − E

(0)
k )2

|m〉(0) . (2.34)
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As the matrix elements (0)〈m|H1 |n〉(0) of the perturbing spin Hamiltonian are simple linear

combinations of the spin operator matrix elements of Eq. (2.14)-(2.16), no integration is

required to evaluate these energies.

For the spin Hamiltonian of Eq. (2.22), the first- and second-order corrections to the

eigen-energies, and the corresponding corrections to the eigen-vectors are by inspection

E
(1)

± 1
2
,∓ 1

2

= 0, |±1
2
,∓1

2
〉(1) = ± A

2gµBB
|∓1

2
,±1

2
〉(0)

E
(2)

± 1
2
,∓ 1

2

= ± A2

4gµBB
, |±1

2
,∓1

2
〉(2) = −1

2
( A

2gµBB
)2 |±1

2
,∓1

2
〉(0) .

(2.35)

2.2.3 Transition intensities

Without doubt, such a mixing of levels will also affect the transition probabilities between

two spin states |ψ1〉 and |ψ2〉. Usually ESR is induced by linearly polarized electromagnetic

waves, oriented perpendicular to the static magnetic field. These enter the time-dependent

Schrödinger equation via an oscillating magnetic field B1, in the following assumed to be

oriented along the y-direction

ih̄
∂

∂t
|ψ〉 = [H + 2gµBB1Sy sin(ωt)] |ψ〉 . (2.36)

According to Fermi’s golden rule, the first-order transition rate ri↔j under these conditions

is(13, 18, 19)

ri↔j =
y(ω)

4h̄2 g
2µ2

BB
2
1 |〈Ei| Sy |Ej〉|2 (2.37)

with the normalized lineshape function y(ω). Considering Sy = −i(S+ + S−) from

Eq. (2.18), this equation contains the well-known dipole selection rules ∆m = 1 for the

pure spin states |m〉. The non-zero transition matrix elements

|〈m| Sy |m± 1〉|2 = S(S + 1)−m(m± 1) (2.38)

are e.g. |〈1
2
| Sy |−1

2
〉|2 = 1 for S = 1

2
, and |〈m| Sy |m± 1〉|2 = 5, 8, 9, 8, and 5 for the five

allowed transitions of a system with S = 5
2
.

The lineshape function y(ω) for a spin system with S = 1/2 can be obtained con-

veniently from the Bloch equations describing the dynamics of a classical magnetization

vector ~M = 1
V

∑
i〈ψi| gµB ~S |ψi〉 with the sample volume V due to an ensemble of spins

dMx

dt
=

gµB
h̄

(MyB0 − 2MzB1 sinωt)− Mx

T2

(2.39)

dMy

dt
= −gµB

h̄
MxB0 − My

T2

(2.40)

dMz

dt
=

gµB
h̄

2MxB1 sinωt − Mz −M0

T1

. (2.41)



16 CHAPTER 2. LOCALIZED ELECTRONIC STATES

The longitudinal and transverse relaxation times T1 and T2 are usually named spin-lattice

relaxation time and spin-spin relaxation time, respectively, without further specification

of the microscopic relaxation process. The magnetization at thermal equilibrium is

M0 =
gµB
2

(N↑ −N↑) = 1
2
NgµB · tanh

(
gµBB

2kBT

)
≈ N

g2µ2
BB

4kBT
(2.42)

for an ensemble of spins with a total spin density N and the spin densities N↑ and N↓ in

the upper and lower Zeeman levels separated by the energy distance gµBB. This magne-

tization is tilted by the circularly polarized component of the microwave magnetic field

B1, which is constant in a coordinate frame rotating at the incident microwave frequency.

The other circularly polarized component is oscillating rapidly in the coordinate frame of

the magnetization vector, and therefore averages to zero. In this coordinate system, the

steady-state solutions of the Bloch equations are

M ′
⊥ = M0

−(gµBB1/h̄) (ωres − ω) T 2
2

1 + (ωres − ω)2 T 2
2 + (gµBB1/h̄)2 T1T2

(2.43)

M ′′
⊥ = M0

(gµBB1/h̄) T2

1 + (ωres − ω)2 T 2
2 + (gµBB1/h̄)2 T1T2

(2.44)

Mz = M0
1 + (ωres − ω)2 T 2

2

1 + (ωres − ω)2 T 2
2 + (gµBB1/h̄)2 T1T2

, (2.45)

with the dynamic in-phase and out-of phase magnetization M ′
⊥,M

′′
⊥ representing the dis-

persion and absorption components of the magnetic radiation. Usually, the out-of-phase

absorption is recorded in ESR measurements under “slow adiabatic passage” conditions,

i.e. with B0 going in and out of resonance slowly compared to T1 and T2. The lineshape

function y(ω) ∝ M ′′
⊥ is then a Lorentzian function with the homogeneous full width at

half maximum ∆ω = 2/T2 and the ESR amplitude y(ωres) ∝ M ′′
⊥res ∝ M0B1, as long as

(gµBB1/h̄)
2T1T2 � 1 is fulfilled. At higher microwave fields B1, the population difference

(N↑−N↓) is eventually reduced proportional to | ~M | ∝ B−2
1 , and the ESR signal saturates

and decreases with y(ωres) ∝M ′′
⊥res ∝M0/B1.



Chapter 3

Spin-spin interactions

In the following sections, the spin interaction mechanisms at point defects in semiconduc-

tors relevant for this thesis are introduced. After a short review of spin-orbit interactions,

the form and interpretation of the isotropic and anisotropic interactions between several

electronic spins, and the interactions between an electronic spin with several nuclear spins

are discussed in detail, with special focus on the use of the spin Hamiltonian parameters

to describe the wave functions of point defects in semiconductors.

3.1 Spin-orbit interaction

The spin Hamiltonian includes orbital momentum effects only in parameterized form.

For a known non-degenerate orbital ground state, these parameters can be calculated

via second and higher order perturbation theory. Obviously, a state without degeneracy

is also free of orbital degeneracy and of orbital momentum L. This turns out to be

the case for almost all localized states in solids, where the orbitally degenerate wave

functions of isolated atoms are split into multiple states because of the interaction with

the crystal field, or because of Jahn-Teller distortion.(13, 15) Such a splitting results in a

non-degenerate crystalline wave function ψ(~r) without a good quantum number L and

the expectation value 〈ψ(~r)| ~L |ψ(~r)〉 = 0. This consequence of the crystal field is referred

to in the literature as the quenching of orbital momentum.(9, 20)

Because of time-reversal symmetry, pairs of spin states of any odd-electron system

must form undistorted doublets in the absence of magnetic fields. These are called

Kramers doublets,(19) and can be considered as having an effective spin S ′ = 1
2
.

3.1.1 Effective g-factor

Although the orbital angular momentum and the influences of excited states are sup-

pressed as first order perturbations, they affect the ground state spin via spin-orbit inter-

17
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action in second order perturbation theory

H̃so = λ ~L ~S . (3.1)

The spin-orbit coupling constant λ increases approximately as the second power of the

atomic charge Z for neutral atoms (or as Z4 for hydrogenic states(9) ), so that e.g. λGe ≈
7× λSi. Treating spin-orbit coupling and the Zeeman interaction

H̃z = − ~B~µ = µB ~B( ~L+ g0
~S) (3.2)

as small perturbations of the full Hamiltonian with the unperturbed eigen-states |ψn〉(0),
the matrix elements of the spin Hamiltonian can be obtained by integrating out only

the orbital components of the ground state energy E
(2)
0 in second order perturbation

theory. The matrix elements of the spin operators are not integrated, but rearranged and

summarized in short form with the help of the Λ̂-matrix(9)

Λ̂ij = −
∑
n6=0

〈ψ0| Li |ψn〉〈ψn| Lj |ψ0〉
En − E0

, (3.3)

to obtain the spin-Hamiltonian

Hz = µ2
B
~BΛ̂ ~B + µB ~B(g01 + 2λΛ̂︸ ︷︷ ︸

ĝeff

) ~S + ~S λ2Λ̂︸︷︷︸
D̂

~S . (3.4)

The first term contributes only a constant energy to all spin states and can be neglected

in the spin Hamiltonian. It represents the temperature-independent Van-Vleck para-

magnetism. The second term defines the effective g-factor geff ≈ g0 − 2λ/∆E with a

typical energy separation ∆E to higher electronic states.(9) The components of the three-

dimensional tensor ĝeff can be calculated, if the transition matrix elements 〈ψ0| Li |ψn〉
are known. They can often be estimated from experimental data, e.g. from ~k · ~p theory

for the conduction band wave functions,(4, 21) or from optical data for transition metal

centers.(22, 23)

The third term scales with the second power of the spin-orbit coupling constant λ,

and can be treated formally like a spin-spin interaction. For S > 1
2
, this becomes the

dominant contribution to the zero-field splitting of spin states in the absence of external

magnetic fields. Similar to ĝeff, the symmetry of D̂ reflects the symmetry of the ground

state wave function, and is therefore very useful for identification purposes.

3.1.2 Axial anisotropy

It is plausible even without the explicit knowledge of the spatial wave functions of

Eq. (3.4), that for magnetic ions with an axially symmetric environment also the g-

matrix must have axial symmetry. This happens e.g. for dangling bond centers,(24) or
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a) b) c)

Figure 3.1: Zinkblende structure with (a) the four equivalent 〈111〉 directions along the C3

rotation axis, (b) the six equivalent 〈110〉 directions perpendicular to the σ reflection planes,
and (c) the three equivalent 〈100〉 directions along the S2 and C2 rotation axes. The same axes
are found in other cubic lattices, e.g. the diamond lattice with only a single type of atoms. The
lower row shows the unit cell of the Zinkblende lattice, as seen along the respective directions.

for conduction-band like states in group-III nitrides.(4) In the coordinate system with the

principle axes x, y, and z, the Zeeman interaction is given by an effective g-matrix

Hz = µB ~Bĝeff
~S = µB ~B

 g⊥ 0 0

0 g⊥ 0

0 0 g||

 ~S . (3.5)

Typical values for the two parameters g⊥ and g|| are e.g. g⊥ = 2.0084, g|| = 2.0016

for the Pb-center on a Si(100) surface, and g⊥ = 2.022, g|| = 2.005 for dangling bonds

in amorphous germanium. The corresponding eigen-energies form an ellipsoid with the

Zeeman energy g|| µB| ~B| along the z axis of Eq. (3.5), and the energy g⊥ µB| ~B| in the x-y

plane. If the magnetic field ~B = (sin θ, 0, cos θ)B0 is tilted by an angle θ with respect to

the symmetry axis z of the defect, the effective g-factor is given by

g(θ) =
√
g2
⊥ sin2 θ + g2

|| cos2 θ ≈ 2
3
g⊥ + 1

3
g|| − 1

3
(g⊥ − g||) (3 cos2 θ − 1) . (3.6)

This useful first-order approximation is valid for |g⊥ − g||| � |2g⊥ + g|||.
In cubic crystals, there are four equivalent C3 axes(25) along the directions [111], [1̄1̄1],

[1̄11̄], and [11̄1̄], as shown in Fig. 3.1a. The paramagnetic states are distributed equally

among these axis, unless there is a preferential direction, e.g. of Pb-centers pointing out

of the Si(111) surface. For arbitrary orientations of the sample with respect to a fixed

magnetic field, each of the C3 axes has a different tilt angle θ with respect to the magnetic
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Figure 3.2: Resonance
fields B = hν/µBg of ESR
centers with a C3 symmetry
axis along the 〈111〉 axes of
a cubic crystal (lower panel).
Two of the four equivalent
sites coincide for this rotation
axis. The upper panel shows
the probability p(B)dB of
finding a resonance at the
magnetic field position B for
such an axial center in an
amorphous environment with
equal probability for all de-
fect orientations.(9)

field axis. However, all orientations are met at least once for experiments, in which the

sample is e.g. rotated in a (01̄1)-plane. In such an experiment, the rotation angle φ is

usually defined in a way that φ = 0◦ corresponds to a [100] axis (vertical direction in the

lower part of Fig. 3.1b), φ = 54.74◦ to a [111] axis, and φ = 90◦ to a [011] axis (horizontal

direction in the lower part of Fig. 3.1b). Characteristic resonance patterns are observed

between these orientations, as shown in Fig. 3.2.

• For φ = 0◦ with 〈100〉|| ~B, all four C3 axes have the same angle θ = 54.74◦ with

respect to the external magnetic field. Therefore, one finds only one resonance with

the average g-factor ḡ = 1
3
(2g⊥ + g||).

• For φ = 54.74◦ with 〈111〉|| ~B, three of the C3 axes are tilted by θ = 70.53◦ towards

the magnetic field, and the forth is at θ = 0◦. Therefore, one finds two thirds of the

intensity at a resonance with 1
9
(8g⊥ + g||), and one third at g||.

• For φ = 90◦ with 〈011〉|| ~B, two of the C3 axes are at θ = 90◦, and the others are at

θ = 35.26◦. Therefore, one finds half of the intensity at a resonance with g⊥, and

half at 1
3
(g⊥ + 2g||).

In amorphous materials, all possible orientations of the defect axes are equally dis-

tributed, so that the probability of finding an axis with orientation θ is proportional to

p(θ)dθ ∝ sin(θ)dθ, and the probability p(B)dB for resonant transitions at the magnetic
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field B is (9)

p(B)dB ∝ sin θ

(
dB(θ)

dθ

)−1

dB =
(hν/µB)2 dB

B3
√

(g2
⊥ − g2

||)[g
2
⊥ − (hν/µBB)2]

(3.7)

for g|| < hν/µBB < g⊥. This distribution, which is known as powder pattern in the

literature, has been included in Fig. 3.2. Its average field position B̄ is the same as that

observed for B||〈100〉 in a crystalline sample.

3.2 Electron-electron interaction

The electronic ground and excited states are often well approximated by atomic or molec-

ular wave functions (see Sec. 2.1.2). In such systems, the presence of one electron can

strongly affect all other electronic states, as is well known e.g. for the He atom.

In principle, all spins of the ground state electrons can be included in the spin Hamil-

tonian in a similar way to the nuclear spin in Eq. (2.22) in a large product space. This

uncoupled representation(9) with the independent spin operators ~S1, ~S2, . . . is used for the

analysis of experimental spectra only in the limit of very weak coupling, where the reso-

nant spin is almost unaffected by all other spins in the system. Then, e.g. the eigen-values

of ~S1 can be corrected in first order perturbation theory for the possible orientations of

the other spins.

In the case of stronger coupling, the coupled representation S = S1 − S2 . . . S1 + S2

provides the most efficient description of the ground state degeneracy. As shown in

Fig. 3.3, the ground states of two spins S1 = S2 = 1
2

with four uncoupled product states

|↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉 can either be a symmetric triplet

|+1〉 = |↑↑〉
S = 1 : |0〉 = 1√

2
( |↑↓〉+ |↓↑〉 )

|−1〉 = |↓↓〉 (3.8)

or an antisymmetric singlet

S = 0 : |0〉 = 1√
2
( |↑↓〉 − |↓↑〉 ) . (3.9)

According to the Pauli principle, composed wave functions must be antisymmetric under

electron interchange. Therefore, only the singlet state is allowed for both electrons with

the individual spins S1 and S2 occupying the same orbital. As discussed in Sec. 3.2.2,

similar considerations also apply for partially overlapping spatial orbitals, and enter the

spin Hamiltonian via exchange interactions.
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Figure 3.3: Eigen-energies for a system of two isotropically coupled spins with S = 1/2. (a)
In the limit of weak coupling (black lines for equal g-factors, gray lines for different g-factors),
the total energy of the system is given by the sum and difference of the energies of both single
spins. (b) For strong coupling D � hν, the system is better described by a singlet state with
J = 0, and a triplet state with J = 1 and the average g-factor 1

2(g1 + g2). The difference in
resonance positions because of the different g-factors of the individual spins is suppressed in
first order. Note, that the underlying spin Hamiltonian is the same as in Eq. (2.22), however
with an additional term for the Zeeman interaction of the second spin. The half-field transitions
|↑↑〉↔ |↓↓〉 with ∆m = 2 (not shown) become allowed if the magnetic field axis is tilted with
respect to the symmetry axis of D̂.

3.2.1 Dipolar interaction

The dipolar energy between two spins is defined analogously to the classical expression

for two magnetic dipole moments p = µBgm with a spatial extent negligible compared

to their separation ~r. For simplicity, we consider only the parallel orientation of both, as

shown in Fig. 3.4,(9) where θ is defined as the angle between ~r and the direction of both

moments imposed by a strong external magnetic field.

Edip = −µ0

4π

(µBgm)2

r3
(3 cos2 θ − 1) . (3.10)

For g = 2, a separation of r = 1 nm, and θ = 0◦, this dipolar energy would be 0.1 µeV

only, which corresponds to a magnetic field offset of Edip/gµB ≈ 10 G in ESR experiments.

Therefore, up to a concentration of (1 nm)−3 = 1021 cm−3, the dipolar interaction

between two individual spins can be treated as small perturbation to the Zeeman energy

of 38 µeV/gµB = 3300 G in X-band ESR experiments, and it is appropriate to include the

other spins as perturbations in the uncoupled representation of a single-spin Hamiltonian.

The dipolar broadening due to a large number of spins on a regular lattice has been
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Figure 3.4: The energy of two classical point-
dipoles aligned in a strong external field depends
on their relative orientation. Its minimum is
found at the orientation θ = 0◦ of their relative
axis along the external field, and its maximum
for the orientation θ = 90◦ with the relative axis
perpendicular to the external field. At the inter-
mediate orientation with θ = 54.74◦, the dipolar
energy is zero.

calculated by the method of moments in Ref. 26. Other dipolar effects of a large number

of spins will be discussed in more detail in Sec. 5.3.3.

For more strongly coupled states like a defect complex with its total spin being ex-

tended over the nearest lattice sites, the dipole-dipole and the anisotropic exchange in-

teractions are better expressed by a traceless matrix D̂ in the coupled representation for

the total spin S = S1 +S2. Formally, such spin-spin coupling is equivalent to the indirect

spin-orbit-spin coupling summarized in D̂ of Eq. (3.4).

Hdip = ~SD̂ ~S = ~S 1

3

 −D 0 0

0 −D 0

0 0 2D

 ~S = D
(
S2
z − 1

3
S(S + 1)1

)
. (3.11)

The reason for including the constant energy offset 1
3
S(S+1) inHdip is to make D̂ traceless,

i.e. to avoid shifts of the average energy of all spin states. Like the symmetry information

obtained from the effective g-factor (Sec. 3.1.2), the multiplicity and orientation of the

principal axes of D̂ often provides a valuable information about the symmetry of the

observed defect state.

The dipolar energy in an external magnetic field ~B = (B sin θ, 0, B cos θ) is obtained

according to first order perturbation theory as

E
(1)
dip = D

[
m2 − 1

3
S(S + 1)

] 3 cos2 θ − 1

2
, (3.12)

from the diagonal elements of Hdip in the rotated coordinate system with Sz = S ′z cos θ+

S ′x sin θ = S ′z cos θ + 1
2
(S ′+ + S ′−) sin θ. For systems with S > 1

2
, the magnetic resonance

fields are shifted by

∆B |m〉↔ |m−1〉 =
D(m− 1

2
)

µBg
(3 cos2 θ − 1) . (3.13)
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Therefore D, or the corresponding parameter P for nuclear spins are called “magnetic

quadrupole splitting”. Alternatively D is often called “zero-field splitting”, as its de-

termines the separation of states with different m2 at zero magnetic field according to

Eq. (3.11). This name is more general than the term “axial crystal field splitting”, which

implies the presence of crystal fields.(14)

Comparison of the classical dipolar energy of Eq. (3.10) for the magnetic moments

of two point-like spins S = 1/2 in the uncoupled representation and of Eq. (3.12) for

the quantum-mechanical energy in the coupled representation with S = 1 allows the

identification of the spin Hamiltonian parameter D with an effective dipolar distance r

via

D =
3µ0

8π
(gµB)2 1

r3
. (3.14)

However, identical terms in the spin Hamiltonian and in the ESR spectra are also expected

from the parameter D, as defined from spin-orbit interaction in Eq. (3.4). Therefore, both

effects cannot be separated without further knowledge about the defect wave function.

3.2.2 Exchange interaction

The point dipole approximation is insufficient to describe quantum-mechanical systems

with a large number of indistinguishable electrons, for which exchange interactions become

important. The most dramatic exchange effect is summarized in Hund’s rules for the

electronic states of atoms, where a high probability density of several electrons at the

same place is energetically unfavorable because of Coulomb repulsion. This ensures a

spatially antisymmetric ground state, which according to Pauli’s principle must be a

high-spin state, as requested by Hund’s rules.(9, 27, 28)

Intermediate exchange interactions of several eV or less also occur for molecular states,

e.g. for the bonding and antibonding states ( |ψaψb〉 ± |ψbψa〉 )/
√

2 of the hydrogen

molecule constructed from the single-electron atomic states ψa and ψb.
(17) Pauli’s principle

requires the spatially antisymmetric state, i.e. the antibonding state of the hydrogen

molecule, to be a spin triplet. In contrast, the spatially symmetric bonding state is a

spin singlet. Thus, considering spin-spin interactions only, the orbital binding energy

appears indirectly as an antiferromagnetic exchange interaction in the spin Hamiltonian.

Therefore, the isotropic exchange constant Ĵ = 1 · J in the Heisenberg spin Hamiltonian

is given by the exchange overlap integral

Hex = −2~S1Ĵ ~S2 = −2〈ψaψb| e2

4πε0r
|ψbψa〉 ~S1 · ~S2 . (3.15)

with the inter-electron distance r. As the bonding electrons can be thought of inter-

changing their sites rapidly, the energy gain can be understood as a direct consequence

of delocalization. Besides this so-called direct kinetic exchange, also indirect exchange

of two magnetic ions with negligible direct overlap, but with a sufficient overlap with
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intermediate diamagnetic states can enable a magnetic coupling over longer distances.

Both antiferromagnetic coupling with J < 0 (see Fig. 2.3), as well as ferromagnetic cou-

pling with J > 0 can result from these mechanisms, depending on the net phase of the

overlapping wave functions.

For the interpretation of ESR spectra, exchange becomes particularly important if

other spin interactions are active for one of the exchange-coupled spins only. Such in-

teractions could e.g. be a local hyperfine interaction, which becomes averaged out for

sufficiently fast exchange rates. This time-averaging process during exchange or a mo-

tional averaging process are the origin of the vanishing hyperfine satellites in SiC at high

donor concentrations(29) and of the exchange narrowing (19, 30) of the inhomogeneously

broadened ESR of effective-mass donors in AlN.(4) The coupled Bloch equations for two

spins with exchange are analyzed in Ref. 9 (10.5) as an instructive example.

3.2.3 Spin polarization

According to the models introduced in Secs. 2.1.1 and 2.1.2, the electronic wave functions

of shallow and deep defects can be constructed from a few band-like or atomic valence

states. The doubly occupied states from filled energy bands at lower energies, i.e., from the

core shells, are neglected in this approximation. In reality, there are significant interactions

between the core and valence electrons, so that even for isolated ions, corrections to the

core and valence states are required in order to obtain a reliable model of the respective

valence state wave function. These corrections are taken into account in Hartree-Fock

calculations for the isolated ions.

In the case of a paramagnetic valence state, the interactions with the core states,

and therefore also the spatial redistribution of the electronic wave functions are different

for both spin orientations. Therefore, although the net spin of the diamagnetic state is

zero, locally unbalanced spin densities with both positive and negative sign might ex-

ist compared to the unpaired electron’s spin.(2, 13, 16, 19) Consequently, spin-unrestricted

Hartree-Fock calculations are required to calculate the correct charge and spin densities

for paramagnetic ions. Qualitatively speaking, it is favorable to redistribute the majority

spin components of the diamagnetic states towards places with maximum unpaired spin

density.(2) This is illustrated schematically in Fig. 3.5 for the case of an unpaired elec-

tron ψ↑(shaded curve) with majority spin orientation and zero charge and spin density

at the nucleus (at the origin of the distance axis). The diamagnetic core states with

non-zero probability density at the nucleus are indicated schematically by ψdia (straight

line). Because the exchange interaction with the unpaired electron is most attractive for

the majority spin component ψdia ↑, this component is dragged towards the position of

the unpaired electron, leaving behind some oppositely oriented spin polarization. Conse-

quently, the unpaired electron causes a net spin polarization at the nuclear position. The

sign of the net spin polarization depends on the center of gravity of the diamagnetic core
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Figure 3.5: In many-electron systems, the
presence of unpaired spin density |ψ↑|2 induces
non-zero spin density of the net diamagnetic
states |ψdia|2 even at places with vanishing den-
sity of the unpaired electron, e.g. at the nu-
cleus for p and d unpaired electrons. Due to
the spin polarization of core states and bonds,
charge and spin density wave functions can dif-
fer significantly, which adds some ambiguity to
the interpretation of small hyperfine constants.

states. As an example, the majority spin 1s and 2s orbitals are dragged outwards at neu-

tral interstitial iron in silicon Si:Fe0, whereas the 3s orbital is pushed inwards, resulting

in a negative net spin polarization at the nucleus.(2)

The spin-dependent deformation of the diamagnetic states can be described by “con-

figuration interaction” or spin dependent admixture of excited states. Analogously to

the need for spin-unrestricted Hartree-Fock calculations in atoms, the description of spin

polarization in solids requires the Local Spin Density Approximation (LSDA) instead

of the Local Density Approximation (LDA) for the calculation of realistic defect wave

functions.(2, 16, 31) Besides the polarization of core states, in solids one must additionally

take into account that unpaired spin density at a defect atom can cause opposite spin

density in the bonding orbitals of the neighboring atoms. This effect is the dominant

contribution to the total spin wave function in conjugated radicals.(9) Similarly, the “hy-

perconjugation” mechanism is employed to explain qualitatively the spin polarization on

remote atoms via geometric arguments.(9, 32)

Spin polarization effects complicate the interpretation of experimentally determined

hyperfine parameters in most cases. For p- and d-like states, which otherwise would not

show any Fermi contact interaction, this effect can be used to study the polarization of

the bonds and valence band states.

3.3 Hyperfine interaction

One of the most rewarding features of ESR data is the analysis of hyperfine interactions,

i.e. the interactions between electronic and nuclear spins. Because of the weak and almost

point-like nuclear magnetic moment µn = µB
me

mn
= µB/1836, hyperfine interactions are

restricted to an even shorter range than electron-electron interactions. Therefore, the

nuclear spins are ideal local probes for the electronic spin density, if the nuclear positions

in the crystal lattice are known, or can be approximated like for the dangling bonds in

amorphous semiconductors (Chap. 5).
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nuclide natural I gn As Ap
abundance (G×gµB) (G×gµB)

1H 99.9 % 1/2 5.59 0.51× 103 0
13C 1.11 % 1/2 1.40 1.3× 103 38
14N 99.6 % 1 0.40 0.65× 103 20
17O 0.04 % 5/2 -0.76 −1.9× 103 -60
29Si 4.67 % 1/2 -1.11 −1.6× 103 -41
31P 100 % 1/2 2.26 4.7× 103 131

55Mn 100 % 5/2 1.38 1.8× 103 -89
73Ge 7.8 % 9/2 -0.20 −0.84× 103 -17

Table 3.1: Natural abundances, nuclear spins I, and g-factors gn of isotopes relevant to this
thesis (from Ref. 9). The atomic hyperfine constants As and Ap were determined via unrestricted
Hartree-Fock calculations.

According to Sec. 2.1.2, linear combinations of atomic orbitals often provide a reason-

able first approximation to a molecular defect wave function. Ideally, the coefficients of

this wave function can be mapped out from its atomic components by comparison of the

measured hyperfine data with the theoretical data for atomic wave functions, as summa-

rized in Tab. 3.1.(9) A successful example for such a reconstruction of an impurity wave

function in diamond is discussed in Sec. 3.3.3.

Hyperfine interactions Hhf = ~SÂ~I can be understood in terms of local magnetic fields

that shift the ESR transitions by ∆B = −miA/µBg according to the 2I + 1 possible

settings of the nuclear spin. As discussed earlier for the spin Hamiltonian (2.22), this

approximation holds in first order perturbation theory for A� µBBg. The first clue about

the interacting nucleus comes from the number of equidistant satellites. Furthermore,

different nuclei might be recognized by the relative intensity of the satellites with respect

to the central resonance, as this is related to the concentration of this isotope in the

sample, which is usually given by the natural abundance.

The experimentally observed hyperfine tensor Â may be decomposed in its isotropic

and anisotropic components along the principle axes of an axially symmetric center, sim-

ilar to the g-factor in Eq. (3.5)(9, 19)

A =

 A⊥ 0 0

0 A⊥ 0

0 0 A||

 = Aiso · 1 + Aaniso

 −1 0 0

0 −1 0

0 0 2

 . (3.16)

The microscopic interpretations for the experimental parameters Aiso and Aaniso for defect

wave functions in semiconductors are discussed in the following sections.
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3.3.1 Dipolar interaction

Replacing one of the Bohr magnetons µB in Eq. (3.10) with the nuclear magneton µn, the

classical point-dipole approximation of Fig. 3.4 also applies for the interaction between

electronic and nuclear spins. Here, the point-dipole approximation is much more justified,

because of the strongly localized nature of the nuclear spin. Similar to the traceless tensor

D̂ of electronic dipolar interactions (see Eq. (3.11)), only the anisotropic component Aaniso

of Â in Eq. (3.16) is related to dipolar hyperfine interactions. Often, the crystalline

orientation and multiplicity of hyperfine interactions with several equivalent defect sites

provides helpful symmetry information for the identification of the ESR center studied.

The spatial extent of the electronic spin density requires the definition of an effective

dipolar distance between the electronic and nuclear spin via the spatial expectation value

of the dipolar interaction energy (9) Edip ∝ (3 cos2 θ − 1) r−3 (see Sec. 3.2.1)

Aaniso =
2

5

µ0

4π
gµB gnµn〈ψ| 3 cos2 θ−1

r3
|ψ〉 . (3.17)

This expectation value is zero for s wave functions with spherical symmetry around the

nuclear position, however, is nonzero for a p (or d) wave function. The dipolar interactions

of s-wave functions at neighboring atoms with the nucleus at the defect atom are negligibly

small, as the bond lengths typically are of the order of several Å, and the magnetic moment

of the nucleus is much smaller than that of the electron. Therefore, the dipolar hyperfine

interaction Aaniso is associated with the unpaired electron density in an atomic p (or d)

orbital centered on the interacting nucleus.

3.3.2 Fermi contact interaction

The classical description of point-like electronic and nuclear spins breaks down for non-

zero electronic spin density at the nuclear position. In a simplified picture, one can imagine

this nucleus as a sphere with the magnetization M = gnµn/V and a demagnetization field

µ0M/3. The orientation of this magnetization in the magnetic field Bψ = gµB|ψ(0)2| V
due to an electronic spin density ψ(0) at the nuclear position would require the energy

E = M · Bψ.(19, 27) This result happens to coincide with the isotropic hyperfine energy

that comes out of the full relativistic quantum-mechanical calculation as the isotropic

Fermi contact interaction(33, 34, 35)

Aiso =
2

3
µ0 gµB gnµn|ψ(0)|2 . (3.18)

This interaction takes place only for s orbitals, which have a non-zero spin density at

the nuclear position. Therefore, isotropic hyperfine interactions with the spins of p or d

electronic states must arise from spin polarization (Sec. 3.2.3) of diamagnetic inner shells

or of the bonds. For the 1s ground state of the free hydrogen atom

ψ1s(r)
2 =

1

πa3
0

exp

(
−2r

a0

)
, (3.19)
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with the Bohr radius a0 = 0.529 Å, the hyperfine interaction Aiso = 1.42 GHz × h =

508 G × gµB is predicted from Eq. (3.18), which is in very good agreement with the

literature value of Tab. 3.1.

In a many-electron systems, there are possibly several diamagnetic core shells and

bonds contributing to the Fermi contact interaction (Sec. 3.2.3), which in general will have

different nuclear spin orientations with respect to the electronic spin. These contributions

have to be balanced, so that the signs of the net spin polarization |ψ↑(0)|2 − |ψ↓(0)|2

and of Aiso depend on their relative magnitude. In the spin Hamiltonian, the sign of

Aiso indicates whether the magnetic moments of electron and nucleus tend to align either

parallel or antiparallel.(9)

3.3.3 Ligand hyperfine interaction

Usually, the wave functions of localized states are extended at least to the nearest neighbor

atoms. Extended states like P donors in Si even cover as many as 104 nuclei within their

radius of localization. All these nuclear spins are included in the uncoupled representation

of the spin Hamiltonian

H = µB ~S ĝ ~B +
∑
n

~SÂn~In . (3.20)

It is convenient to write an extended wave function Ψ(~r) as a linear combination of s and

p valence orbitals of the respective host atoms according to Sec. 2.1.2. Examples for such

composed wave functions are discussed in more detail in Sec. 5.3.1. Like for Fermi contact

interactions with isolated atoms (Sec. 3.3.2), the multiple isotropic hyperfine parameters

An,iso are then interpreted as local Fermi contact interactions of the s-like component of

the wave function at the n-th host atom. The multiple anisotropic hyperfine parameters

An,aniso are in analogue interpreted as dipolar hyperfine interactions of the respective

atoms (Sec. 3.3.3). Sometimes, the assignment of several hyperfine interactions An to the

various atoms is not unique, and requires additional input from theoretical calculations.(2)

The value of a simple set of hyperfine data will be illustrated now at the P1 center of

nitrogen in diamond.(10) The observed hyperfine constants are summarized in Tab. 3.2.

P1 occurs on 4 equivalent sites with axial symmetry along 〈111〉. The ESR signal of each

site consists of an isotropic central signal with two satellites of equal intensity due to

hyperfine interaction with 14N. Additionally, all lines show two weak hyperfine satellites

due to one nucleus of the rare isotope 13C. The fractions of the s and p wave functions

on both nuclei are listed in Tab. 3.2. Most noticeably, about 70% of the wave function

is transferred from the N impurity to one neighboring C atom, and the p/s-ratio of the

paramagnetic electron is β2/α2 > 3 on both atoms. This suggests that P1 occupies an

antibonding C-N orbital with high p content, and almost sp2 hybridization for the other

bonds. The bond angles concluded from the p/s ratios of Tab. 3.2 suggest the structural
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Figure 3.6: Based on hyperfine data for the P1 center in diamond,(10) a detailed struc-
tural model of its molecular wave function was developed.(11) The solid lines represent the
sp3-coordinated pseudo-molecule CN+ with β2/α2 = 3. As indicated by dashed lines in the hy-
bridization diagram, the additional electron in a molecular C-N defect wave function occupies an
antibonding orbital with much larger p-content β2/α2 = 11.2 at the 13C atom and β2/α2 = 3.8
at the 14N atom due to the structural relaxation along 〈111〉 shown on the right.

atom Aiso α2 Aaniso β2 α2 + β2 β2/α2

(gµBG) (%) (gµBG) (%) (%)
14N 33.1 5.12 3.85 19.4 24.6 3.8
13C 74.3 5.51 23.6 61.6 67.1 11.2

Table 3.2: Hyperfine data of the P1 nitrogen center in diamond. The largest fraction of its
wave function is found on a p orbital at one of the neighboring C atoms. The total wave function
α2 + β2 at one nucleus and the hybridization ratio β2/α2 are essential for the structural model
shown in Fig. 3.6.

model shown in Fig. 3.6,(11) which has been confirmed by elaborate ab initio calculations

later.(36)

For more extended wave functions, a shell of n ligand nuclei might have the same

hyperfine constant. Each nuclear spin then splits all other resonances into 2I + 1 equally

spaced satellites, so that the complete satellite pattern consists of 2nI + 1 equally spaced

lines.(19) At the natural abundance c, the probability of finding an atom with the nuclear

spin is increased to nc. Therefore, for example the inner hyperfine satellites due to 6

equivalent 29Si nuclei have the approximate intensities 6
2
× 4.67% = 11% relatively to the

central line, and the satellites due to 6 equivalent 13C nuclei would have the intensity

3.3%.

Hyperfine interactions at the central defect atom are presented for most ESR signals

reported in this thesis. Unfortunately, the observed linewidths are too large to resolve any

hyperfine satellites from the ligand atoms for the amorphous germanium films discussed

in Chap. 5. At sufficiently small nuclear spin concentrations, the probability of finding

a nuclear spin at large distances from the defect site is relatively high compared to the
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probability at the central atom, because the number of ligand atoms increases rapidly with

increasing distance. Therefore, the number of participating nuclei and the localization

length of the spin wave function can be estimated from the line broadening in isotope-

engineered samples, as described in Sec. 5.3.2.
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Chapter 4

Detection of electron spin resonance

The basic components of a conventional ESR spectrometer are discussed in the following

sections. Access to the detailed microscopic information about paramagnetic centers is

in many cases restricted experimentally by the limited sensitivity of the detection system

because of the small microwave transition energies and the small occupation differences

listed in Tab. 4.1. Today, state-of-the-art spectrometers still require typically a minimum

of 1010 spins per G linewidth for the detection of ESR. For the investigation of a small

number of defects with broad ESR resonance lines, another detection method with much

greater sensitivity than conventional ESR has been used in this thesis. This method,

called electrically detected magnetic resonance (EDMR), will be introduced in Sec. 4.3.

4.1 Spectrometer components

In a conventional continuous wave (CW)-ESR spectrometer (see Fig. 4.1), the magnetic

field is varied at a fixed microwave frequency. This makes it possible to enhance the

microwave amplitude with the help of a resonant cavity. However, it requires a separate

Resonator Frequency ν ∆E λ/2 ∆N/N B (T )

type Band (GHz) (µeV) (cm) [300 K] [g = 2]

LRC circuit L 0.434 1.8 35 3.5× 10−5 0.015

split ring S 2.00 8.3 7.5 1.6× 10−4 0.071

rectangular TE102 X 9.35 39 1.6 7.5× 10−4 0.33

cylindrical TE011 Q 34.0 141 0.44 2.7× 10−3 1.21

Table 4.1: Resonance frequencies ν, transition energies ∆E = hν, and half-wavelengths
λ/2 = c/(2ν) of the microwave cavities used in this work. The spectrometers are named after the
respective microwave frequency bands. Also listed are the corresponding occupation differences
∆N/N ≈ hν/(2kT ) at T = 300 K, and the magnetic fields at which the ESR transitions occur
for defects with g = 2.

33
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Figure 4.1: The ba-
sic components of an ESR
spectrometer. No microwave
bias arm, but the electri-
cal circuit for conductivity
measurements is required for
EDMR measurements.

resonator for each measurement frequency. The frequencies and typical dimensions of

several resonators are listed in Tab. 4.1. All ESR spectra in this work have been recorded

with the TE102 resonator of a commercial X-band spectrometer (Bruker ESP 300). The

other resonators have been used for EDMR measurements, as discussed in Sec. 4.3. The

X-band spectrometer is equipped with a klystron operating at about 9.3 GHz. The

microwave power can be amplified up to 2 W with an optional solid-state amplifier.

Details about the other components of the microwave bridge can be found in Ref. 37. The

klystron is locked to the resonance frequency of the cavity with an automatic frequency

control (AFC) circuit and its frequency is measured accurately with a microwave frequency

counter (HP 5350B). Critical coupling of the waveguide to the resonator is achieved with

an adjustable iris. For optimum sensitivity, the detection diode is biased with a microwave

bias arm. The amplitude and phase of this bias can be adjusted independently from the

microwave amplitude at the sample.

Microwave radiation for the Bruker resonators at 2.00 GHz and 34 GHz is generated

by an HP 83640A microwave source based on Gunn-diodes with maximum power up to

10 mW. Higher microwave powers of 1 W or 250 mW can be achieved with optional solid

state amplifiers, as in the case of the 9.3 GHz system. In these resonators, critical coupling

to the resonator is achieved via mechanical positioning of the coaxial or waveguide antenna

in the resonator. At both frequencies, the detection diodes can be biased, which makes

ESR measurements possible. However, the sensitivity of these basic ESR spectrometers

is about 2-3 orders of magnitude lower compared to the optimized X-band system.

It would be impossible to fit a cavity of a resonator at 0.43 GHz with dimensions of

35 cm into a normal electromagnet. Therefore, the alternating magnetic field is generated

in the coil of a resonant LRC circuit for the home-build spectrometer at 0.43 GHz. For

the samples studied here, conventional ESR cannot be observed in this system, probably
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because of the low quality factor of this resonator. Radio frequency for this spectrometer

is generated by a YAESU UHF ham radio transceiver and can be amplified up to a power

level of 100 W. The coupling to the resonator is monitored with a standing wave ratio

meter instead of the circulator shown in Fig. 4.1. Temperatures from room temperature

down to liquid He temperatures can be adjusted either in a helium flow cryostat within

the microwave resonator (0.43 GHz, 9.3 GHz), or in a helium bath cryostat, in which the

resonator assembly (2.0 GHz, 34 GHz) is embedded. The temperature is measured with

AuFe-Chromel thermoelements.

Highly uniform magnetic fields up to B = 1.4 T are applied with a pole-face electro-

magnet perpendicular to the direction of polarization of the alternating microwave field,

as indicated in Fig. 4.1. The static magnetic field is additionally modulated at frequen-

cies up to 100 kHz, and with modulation amplitudes up to 32 G with two Helmholtz coils

mounted on the resonator walls. Phase-sensitive detection with a Lock-In amplifier of

signal components only at this frequency makes it then possible to distinguish true ESR

or EDMR components from statistically fluctuating noise.

If ESR is possible, i.e. at 2.0, 9.3, and 34 GHz, small offsets of the magnetic field or

the microwave frequency can be corrected with the known g-factor g = 2.0036 of diphenyl-

picrylhydrazyl (DPPH) recorded under identical conditions. At 0.43 GHz, the g-factor

resolution is so low, that the magnetic field corrections were calculated from the g-factors

measured for the same sample at 9.3 GHz.

4.2 Resonance Lineshape

Low frequency noise is suppressed in conventional ESR spectrometers by magnetic field

modulation. As shown in Fig. 4.2, such modulation together with a slope of the microwave

absorption signal y(B0) versus the magnetic field B0 results in an oscillating signal y′(B0)

at the microwave detector, which can be amplified independently from noise at frequen-

cies other than the modulation frequency with a lock-in amplifier. This signal y′(B0) is

proportional to the derivative of the original absorption line with respect to the magnetic

field and will be called the ESR signal in the following.

According to the solution Eq. (2.43) of the Bloch equations, the lineshape function

y(ω) for the resonant microwave absorption of electron spins has a Lorentzian shape, which

is the lineshape of any harmonic system at resonance. The experimental features of the

corresponding derivative curve y′(B) = dy(B)/dB observed in ESR are the magnetic

field Bres of the zero-crossing of the ESR signal, which fulfills the resonance condition

hν = ∆E, the peak-to-peak linewidth ∆Bpp, not to be confused with the full width at

half maximum (FWHM) of the absorption curve, and the peak-to-peak amplitude App.

With the area A =
∫
y(B)dB of the integrated Lorentzian curve, the homogenous ESR
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Figure 4.2: Resonant mi-
crowave absorption and the cor-
responding derivative ESR signal
detected with a lock-in amplifier
using magnetic field modulation.
Also indicated are the resonant
field Bres, the peak-to-peak am-
plitude App, and the peak-to-peak
linewidth ∆Bpp. The area A of the
absorption signal is proportional
to the number of spins in the sam-
ple.

lineshape is given by

y′Lorentz(B) = −A
√

3

π

(
B −Bres

∆B3
pp

) [
3

4
+

(
B −Bres

∆Bpp

)2
]−2

(4.1)

with a peak-to-peak amplitude

App,Lorentz = y′(Bres + 1
2
∆Bpp)− y′(Bres + 1

2
∆Bpp) =

√
3 A

π ∆B2
pp

. (4.2)

Arbitrary derivative lineshapes y′(B) can be characterized conveniently by the lineshape

factor

lLorentz =

∫∫
y′(B)dB2

1
2
App,Lorentz∆B2

pp

= 3.628 . (4.3)

The inhomogeneous ESR lineshape of a large number of spin packets displaced by random

perturbations of the resonance field Bres is given by the derivative of a Gaussian curve

y′Gauss(B) = −A
√

32

π

(
B −Bres

∆B3
pp

)
exp

[
−2

(
B −Bres

∆Bpp

)2
]

(4.4)

with

App,Gauss =

√
32

πe

A

∆B2
pp

and lGauss = 1.033 . (4.5)

The ratio of the Lorentzian and Gaussian derivative amplitudes and lineshape factors

shows that the number spins is about 4 times larger for a Lorentzian curve with the same

observed parameters Bpp and App .
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The ESR amplitude for a Gaussian curve in the X-band spectrometer and S = 1/2

has been calibrated by comparing the signal intensity to a Si:P sample with known doping

concentration NS. The calibration is

NS =
App T ∆B2

pp

V Bmod

√
P
× 5.1× 107

√
mW

(mV/sweep) K G
, (4.6)

where V denotes the sample volume, App the peak-to-peak amplitude at the lock-in am-

plifier per sweep, T the temperature, and P the incident microwave power in front of the

resonator. For other lineshapes, double integration of the ESR signal is required. The

main uncertainty of the concentration measurements comes from the reproducibility of

the sample position in the resonator. For the calculation of NS, care must be taken to

keep the microwave power below saturation and the modulation amplitude below ∆Bpp.

It is important to note that the ESR amplitude App ∝ NS/∆B
2
pp depends strongly on

the linewidth, which makes the same number of spins much harder to detect for broad

resonances. Narrow lines, on the other hand, often require a lower microwave power level

to avoid saturation, and allow only small modulation amplitudes Bmod, which limits the

maximum possible signal amplitude App .

4.3 Indirect detection methods

The ESR sensitivity for a fixed sample volume increases approximately proportionally to

ν2.(9) However, other exponents ν0–ν9/2 of the frequency are obtained, depending on the

actual sample size, the filling factor, the dielectric losses, and the microwave saturation

level.(9) Practically, the choice of frequency is limited by the requirements on the magnet

and microwave compounds. The sensitivity limit of conventional ESR spectrometers is

particularly problematic in studies of high quality samples with small defect densities,

or with small volumes of interest, like thin films and microelectronic devices. Under

the right circumstances, such studies can still be done via indirect detection methods

like optically detected magnetic resonance (ODMR), and electrically detected magnetic

resonance (EDMR). Recent improvements in both methods have enabled the detection of

single spins in ODMR,(38) and of a few hundred spins in EDMR.(39, 40) Both detection

methods can be optimized for the electrical or optical process of choice, respectively, and

therefore can be made insensitive to spins in the substrate material, and elsewhere in the

microwave cavity. Unwanted background absorption, eventually masking the conventional

ESR signal, can therefore be suppressed in ODMR and EDMR. The occupation difference

between the Zeeman levels, which is most relevant for the sensitivity of conventional ESR,

is in these detection methods connected to the transition rates in a spin-dependent process

via the Pauli principle, as illustrated in Fig. 4.3.

For a random distribution of both spin orientations, the populations of all four states

|↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉 of a pair of spins are distributed equally. For small interaction,
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Figure 4.3: The Pauli principle determines the mechanisms for (a) spin-dependent hop-
ping transport and (b) spin-dependent recombination at defects in semiconductors. As spin
is typically conserved during these transition processes, hopping transport and spin-dependent
recombination are allowed only for singlet states with antiparallel spin orientation. Under reso-
nance conditions, both processes are are enhanced, as at spin resonance more triplet states are
converted into singlet states than vice versa.

this uncoupled representation is appropriate to describe the resonance of the individual

spins. The spin selection rules of Fig. 4.3 are described naturally in the coupled rep-

resentation. Of course, also the populations of the singlet ( |↑↓〉 − |↓↑〉 ) /
√

2, and the

three triplet states |↑↑〉, ( |↑↓〉+ |↓↑〉 ) /
√

2, and |↓↓〉 of Eqns. (3.8) and (3.9) are equally

distributed.

According to Pauli’s principle, two electrons in the same spatial orbital must have op-

posite spin orientation. Thus, the hopping and recombination process shown in Fig. 4.3 is

possible only for singlets, but not for triplets. In the case of the occupation not being ran-

dom after thermalization, the overall transition rate is also to be expected to be different

from the transition rate at equal population. Under spin resonance conditions, any such

difference would be reduced and destroyed completely at saturation of resonance, which

would again equalize the occupation. The maximum influence of ESR on transport or

recombination is therefore limited by the initial occupation difference between the singlet

and triplet states.

Two basic mechanisms for this difference have been discussed in the literature: Accord-

ing to Lepine’s model,(41) the thermal Boltzmann population N↑/N↓ = exp(−hν/kBT )

between the Zeeman levels of each spin results in a depopulation of the singlet states, as

N↑↓

N
=

N↑↓

N↑↑ +N↑↓ +N↓↑ +N↓↓
= [ 1−

(
hν

2kBT

)2

+ . . . ]/4 . (4.7)

Therefore, the conductivity change ∆σ/σ at spin resonance is limited to (hν/2kBT )2,

which is of the order of 10−6 at T = 300 K and ν = 9.35 GHz according to Tab. 4.1. This

mechanism depends strongly on temperature, and allows only small EDMR signals at

room temperature. However, as conductivity measurements and optical detectors in the

eV range can be made sensitive enough for single-electron and single-photon detection, it

nevertheless provides an attractive detection scheme, e.g. via the enhancement of hopping
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conduction, the enhancement of photoluminescence, or the quenching of photoconductiv-

ity under spin resonance conditions.

Much larger conductivity changes than predicted by Lepine’s model, and sometimes

independent of ν and T have been observed experimentally.(37, 41, 42) According to a

mechanism proposed by Kaplan, Solomon and Mott,(42) a deficiency of singlets may

also occur, if the thermalization rate of each spin orientation is slow compared to the

singlet recombination rate. The thermalization happens by capture and dissociation of

the correlated spin pair, as indicated by the arrows to the outside reservoirs in Fig. 4.3.

For very slow thermalization, EDMR and ODMR signals could reach the order of one in

this model, and they could become very small, if the exchange and the thermalization

rates are much faster than the rate of microwave depopulation. Because the effective

thermalization rate is not known a priori, the relative importance of either mechanism

is speculative in most cases. Therefore, there is no universal calibration of the spin

density for EDMR as for conventional ESR in Eq. (4.6), unless care is taken to establish

the identical transition rates in different samples, as for example for the Pb centers at

differently prepared Si/SiO2 surfaces in Ref. 43.

Furthermore, spin-independent transport channels like recombination at diamagnetic

defect states, thermally activated transport parallel to hopping conduction, or transport

through grain boundaries cannot be excluded completely in most systems. Such transport

channels are expected to shunt the spin-dependent transport processes and hence to reduce

the intensity of the EDMR signal. An additional decrease of the EDMR intensity must

be expected for spin-dependent hopping, if the correlation energy of the final state is

large compared to the thermal energy. In this case, the energy cost for the hopping

transition from two singly occupied initial states to a doubly occupied final state as shown

in Fig. 4.3a would be significantly higher than the cost for a comparable transition into

an unoccupied final state. As unoccupied states are usually available not far above the

Fermi level, large correlation energies are expected to suppress the EDMR intensity in this

kind of system.(44) Nevertheless, the measurement of Bres and therefore of all other spin

Hamiltonian parameters like the g-factor and the hyperfine tensor is still possible from the

EDMR resonance positions. This makes EDMR the method of choice for the investigation

of broad lines at different microwave frequencies (Chap. 5), and for the detection of spin

resonance in thin, conducting samples on isolating substrates with strong ESR background

(Chap. 6).

Not much additional experimental effort is required for EDMR measurements in an

ESR spectrometer. As indicated in Fig. 4.1, the sample conductivity is, for example,

measured by application of a voltage (source-measure unit Keithley 237) and a current

measurement. The current-to-voltage conversion can either be done by a resistor or

by a current amplifier, which is particularly beneficial at a sample impedance above

1 MΩ. Contact resistance could be avoided by four-point measurements. For highly
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Figure 4.4: Samples are mounted on
the cut end of a 4 mm ESR quartz tube for
EDMR measurements and contacted with
gold wires. A glass plate with large contact
pads is only required for the study of small
samples, or when back contacts are needed,
while large samples, as a-Ge films on glass
substrates can be mounted on the quartz
glass tubes directly.

resistive samples, however, interdigitated contacts are necessary, which makes four-point

measurements impossible. The sample is mounted on a cut quartz glass tube (Suprasil), as

shown in Fig. 4.4. The cables should be close to the tube axis, where the microwave mode

has a node of the electric field. To account for the thermal expansion at low temperatures,

thin and flexible gold wires are used between the contacts on the sample front or back

surface and a twisted pair of coated wires to the outside.



Chapter 5

Dangling bonds in amorphous

germanium

Dangling bonds (dbs) are the intrinsic defect states in group-IV semiconductors and were

found to be responsible for both midgap acceptor and donor levels. Neutral dbs in Si

have been studied in great detail, e.g., at the Si/SiO2 interface(16, 45, 46, 47, 48, 49) and in

amorphous silicon (a-Si).(24, 50, 51, 52, 53, 54, 55) In both cases, their electronic structure can

be described as a linear combination of the valence orbitals of an undercoordinated central

Si atom and of small contributions from the three backbonding hybrid orbitals. This was

quantified experimentally via ESR measurements of hyperfine interactions of the dangling

bond electron spin with the nuclear spins I29 = 1/2 of the central and the backbonding
29Si atoms. Owing to the technological importance of metal/oxide/semiconductor (MOS)

field effect transistors based on crystalline Si, and of large area electronics such as displays

and solar cells based on hydrogenated amorphous silicon (a-Si:H), dbs in Si have been

comparatively well studied.

In particular for photovoltaic applications, amorphous alloys of Si with Ge are fre-

quently used. After deposition, such films suffer from a large concentration of electrically

active dbs in the range of 1018−20 cm−3, which can be reduced by hydrogenation down

to 1016−17 cm−3.(56, 57) The resulting hydrogenated a-Si1−xGex:H films are then suitable

for electronic applications. As shown experimentally by electrically detected magnetic

resonance (EDMR),(58) it is the Ge dangling bond that is responsible for most of the

recombination processes also in Si-rich a-Si1−xGex:H alloys. This makes it important to

understand dbs in a-Ge in detail. In contrast to crystalline and amorphous Si, no de-

tailed model for the structure of the defect orbital is available from measurements of the

hyperfine interaction, for neither crystalline or for amorphous Ge.

For both elemental semiconductors Si and Ge there exists only one isotope with

nonzero nuclear spin and at low natural abundance. The composition of natural Si

is 28Si (92.2%), 29Si (4.7%), and 30Si (3.1%). Natural Ge consists of 70Ge (20.5%),
72Ge (27.4%), 73Ge (7.8%), 74Ge (36.5%), and 76Ge (7.8%). It can be expected that

41
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the hyperfine splitting of a db electronic spin is smaller for 73Ge (I73 = 9/2) than that for
29Si (I29 = 1/2), because the theoretical atomic hyperfine interactions from Hartree-Fock-

Slater integrals at 29Si are about twice as large as those at 73Ge,(9, 32) and because dbs

in a-Ge are expected to be more delocalized than in a-Si.(56) Unfortunately, the peak-to-

peak linewidth ∆Bexp
pp = 48 G observed for dbs in a-Ge at 9.35 GHz is much larger than

∆Bexp
pp = 8 G for dbs in a-Si, so that the chances for the observation of resolved hyperfine

satellites in a-Ge are low. The hyperfine contribution to the ESR linewidth of dbs in

a-Ge was estimated in Ref. 59 from the method of moments(13, 26) to 17 G, assuming a

localization radius of 5 Å. However, the authors suggested that these numbers should be

verified using isotopically enriched samples.

In this chapter we investigate isotopically engineered amorphous Ge samples contain-

ing different concentrations of 73Ge with the help of conventional ESR and EDMR at

different microwave frequencies. We find a hyperfine broadening of 10 G at the natural

isotope concentration, which is somewhat smaller than that predicted in Ref. 59, and

determine the isotropic hyperfine interaction at the central defect atom to 29 G × gµB.

From a numerical simulation of the EDMR linewidth over the complete 73Ge concentra-

tion range, we are able to extract a spin localization radius of 3.5 Å for dbs in a-Ge. After

the description of the experimental details and the electrical properties of the investigated

samples in Sec. 5.1, the EDMR spectra observed are discussed in Sec. 5.2 for a-Ge films

deposited from pure a-70Ge material, from Ge with the natural isotope composition, and

from 73Ge-enriched samples at microwave frequencies from 0.434− 9.35 GHz. Analytical

models and numerical simulations for the interpretation of the observed broadening are

presented in Sec. 5.3 and then discussed with respect to the properties of dbs in a-Si in

Sec. 5.4. Taking into account the similarity of dbs in crystalline and amorphous Si, the

results presented below can also be used as a first estimate for the structure of dbs in Ge

crystals or at the Ge/GeO2 interface. In addition, this investigation is a case study of the

effects of the 73Ge nuclear spins on the electron spins of paramagnetic states, which are

relevant for recent proposals for quantum computation applications.(60)

5.1 Experimental details

The a-Ge films under investigation were deposited on glass substrates (Corning 7059) by

electron-beam evaporation of natural Ge and of isotopically enriched 70Ge and 73Ge target

crystals with 73Ge concentrations of 0.1% and 95.6%, respectively. The preparation of

these crystals is described in more detail in Ref. 61. For the a-Ge films with interme-

diate 73Ge concentrations of 31% and 51%, the appropriate amounts of 70Ge and 73Ge

were electron-beam melted in a single Be crucible before deposition in order to ensure

a homogeneous mixing. The substrates were cooled down to 77 K for the deposition of

amorphous Ge films with a thickness around 1 µm. For the samples with low 73Ge con-
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centration, the densities of dbs could be determined by conventional ESR and were in the

range of 1018−19 cm−3. Defect densities of the samples with higher 73Ge concentrations

were similar, based on conductivity and optical absorption measurements. Care was used

to avoid artificial broadening of the EDMR signal by magnetic field modulation and the

incident microwave power. Unless otherwise specified, the measurement temperature was

adjusted to around 70 K. No temperature-dependent broadening was observed in EDMR

up to 100 K consistent with ESR studies on a-Ge:H, which report lifetime broadening of

dbs in a-Ge above 150 K.(56, 62) At temperatures below 40 K, the detection of the EDMR

signal is difficult because of the small sample conductivity.

For the electrical measurements, interdigitated Cr-Au contacts with finger spacings of

50 µm were deposited on 4 × 10 mm2 sample pieces. Because of substantial peeling off

from the glass substrate during lithography, somewhat larger contacts had to be prepared

manually with silver paint for one sample with [73Ge] = 31%. For the EDMR measure-

ments, a dc voltage around 100 V was applied to the contacts, resulting in typical currents

of the order of 1 µA at 70 K. Resonant current changes below 1 pA, which correspond

to relative changes of the conductivity on a level of ∆σ/σ ≈ 10−6, were resolved with

good signal-to-noise ratio after amplification with a Stanford Research SR570 Low-Noise

current preamplifier via magnetic field modulation, lock-in detection, and, in some cases,

signal averaging for several days.

As shown previously for a-Si,(63, 64, 65) the spin dependence of the hopping processes

between adjacent dbs can be exploited for a very selective and sensitive detection of their

ESR signal, which would be impossible otherwise for the films with high 73Ge concentra-

tions under investigation here. In addition, ESR spectra of thin film samples typically

suffer from background impurities in the glass substrate and in other parts of the spec-

trometer. This is avoided in EDMR of a-Ge, as in measurements of spin-dependent dark

conductivity only the resonant changes of paramagnetic states close to the Fermi level

contribute. Typically, a nonresonant background is observed in EDMR because of the

magnetic-field dependence of the conductivity. A possibility for the separation even of

broad EDMR spectra from this magnetoconductivity background is shown in Fig. 5.1.

While the EDMR intensity scales approximately as ∆σ ∝ T in the investigated tem-

perature range, the magnetoconductivity features were found to scale rather similar to

∆m ∝ T 2. Therefore, the relative intensity ∆σ/∆m ∝ T−1 is greatest at low temper-

atures, as shown in Fig. 5.1. Because of the high overall sample impedance, the best

signal-to-noise and signal-to-background ratio is obtained at temperatures around 70 K.

The inset of Fig. 5.1 shows that the temperature-dependent dc conductivity falls off

as σ ∝ exp[(T/T0)
−1/4], as expected for variable range hopping in unhydrogenated amor-

phous semiconductors with a large density of dbs close to the Fermi level.(56, 66, 67) Ac-

cording to Ref. 68, the average tunnelling range in such a material is proportional to

T−1/4, since with increasing temperature a larger number of localized states is involved in
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Figure 5.1: Example for the temperature dependence of the EDMR signal normalized to
the background caused by magnetoconductivity. The broad EDMR can be separated from the
nonresonant background via its different temperature dependence. The inset shows the temper-
ature dependence of the dc dark conductivity with the exp[(T/T0)−1/4] dependence typical for
variable range hopping. The microscopic interpretation of T0 in terms of the density of states
and the localization radius is discussed in the context of Eq. (5.12).

the tunnelling processes. To exclude significant exchange narrowing of the EDMR signals

due to wave function overlap at large defect densities,(29) we additionally investigated

hydrogenated a-Ge:H films with natural isotope concentration, where due to the much

lower defect density of the order of 1017 cm−3, the hopping rates are so small that no

spin-dependent dark conductivity can be observed. To perform EDMR on these samples,

charge carriers were exited into the bands by illumination with white light or with the

visible lines of a 5 W argon ion laser, and the spin-dependent effects on recombination

were monitored through photoconductivity measurements.(58) In contrast, no significant

photoconductivity was observed in the unhydrogenated a-Ge films because of the higher

defect density.
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5.2 EDMR results

5.2.1 Isotopically pure a-70Ge

The unhydrogenated a-70Ge sample is virtually free from nuclear spins and therefore allows

one to investigate the origin and magnitude of the contributions to the spin resonance

linewidth other than hyperfine interaction. The remaining broadening mechanisms are

dipolar and exchange broadening with neighboring dbs, lifetime broadening, as well as

broadening by a distribution of g-factors. The former mechanisms are expected to depend

only weakly on the magnetic field, whereas the last mechanism is directly proportional to

the field and to the microwave frequency (see Sec. 5.3.1). As shown in Fig. 5.2, where the

EDMR spectra are given as a function of the applied magnetic field B, the experimental

linewidth for a pure a-70Ge sample depends strongly on the employed microwave frequency

and varies from only 2.6 G at 0.434 GHz to 43 G at 9.35 GHz. This indicates that it

is mostly determined by g-factor broadening. Therefore, the same spectra are shown

versus g = hν/µBB in Fig. 5.3, with Planck’s constant h, Bohr’s magneton µB, and the

microwave frequency ν. Much closer similarity of the three spectra is indeed observed in

this plot, as expected for g-factor broadening. However, also in Fig. 5.3 the linewidths

and lineshapes still do not coincide completely.

The dashed lines in Figs. 5.2 and 5.3 show a simultaneous curve fit assuming a distri-

bution of g-factors according to the same powder pattern for all spectra due to the random

orientation of dbs in the amorphous network. This powder pattern is indicated by the

dotted lines in Figs. 5.2 and 5.3 and is defined by the extremal g-factors g⊥ = 2.026 and

g|| = 2.013 for the orientations of the external magnetic field parallel and perpendicular

to the defect axis, i.e., the long axis of the dangling bond hybrid orbital.(9, 24) In addi-

tion, a Gaussian distribution of g-factors needs to be considered for the simulation of the

observed lineshapes, similar to the fitting procedures of Refs. 24, 50, 51. Typically, the

width ∆BSO
pp (θ) of such a distribution will depend on the orientation θ of the defect axis

with respect to the external field. To reduce the number of possible fitting parameters,

∆BSO
pp (θ) was assumed here to be proportional to the g-factor shift ∆g(θ) = g(θ) − g0

from g0 = 2.0023 of the free electron. Such a proportionality implies that the g-factor

fluctuations causing the frequency-dependent broadening are caused by fluctuations of

the spin-orbit interaction, which is also responsible for the g-factor shift with respect to

the free electron value. The validity of this assumption is supported by the scaling of the

linewidth ∆Bexp
pp = 8 G of dbs in a-Si with the average g-factor shift ḡa-Si−g0 = 3.2×10−3

in comparison to a-Ge dbs with ∆Bexp
pp = 48 G and ḡa-Ge − g0 = 20 × 10−3, which is

proportional to the magnitudes of the spin-orbit coupling constants λSi = 149 cm−1 and

λGe = 940 cm−1.(56, 69) The average g-factor ḡ = 2.022 of the powder patterns in Figs. 5.2

and 5.3 agrees with the reported values for ḡ = 1
3
g|| + 2

3
g⊥, which were found in the

range of 2.0018–2.023, and below 2.018 only for complex formation due to significant oxy-
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Figure 5.2: EDMR signal of pure a-70Ge at different microwave frequencies. The magnetic
field axes are offset such that the fields corresponding to the resonance of free electrons with
g0 = 2.0023 coincide. The dashed lines are fits based on the powder patterns indicated by the
dotted lines and an additional Gaussian broadening ∆BSO

pp (θ) due to disorder. ∆BSO
pp|| and θ = 0◦

correspond to dbs oriented parallel to the magnetic field direction, and ∆BSO
pp⊥ and θ = 90◦ to

dbs in perpendicular orientation.

gen contamination.(70, 71, 72) For dbs at the Ge/GeO2 interface of crystalline germanium,

g⊥ = 2.022 and g|| = 2.005 according to Ref. 73.

The width of the g-factor distributions visible in Fig. 5.3 (or the ratios of the linewidths

and the corresponding microwave frequencies given in Fig. 5.2) seems to decrease at higher

microwave frequencies, indicating a frequency-independent broadening mechanism of the

order of 1 G. It can be estimated from the linewidths of the 73Ge-enriched samples that

such a broadening could only be accounted for by hyperfine interactions with 73Ge, if

the 73Ge-concentration in this nominally pure a-70Ge-sample was around 1%. This is

not the case, as the residual 73Ge concentration of the target crystal is only 0.1%, which

suggests the presence of another frequency-independent broadening process in addition to

the hyperfine interaction. Most probably, this process is the dipolar interaction between

adjacent dangling bonds due to the high defect concentration in the investigated samples.

An estimate for this dipolar broadening can be calculated based on the statistical theory of

dipolar broadening (Sec. 5.3.2). For dipolar coupling between the electronic spins S = 1/2
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Figure 5.3: Spectra and fits of Fig. 5.2, but now plotted versus a decreasing g-factor axis. In
the absence of nuclear spins, the linewidth is almost proportional to the microwave frequency,
indicating that it is influenced dominantly by g-factor anisotropy. The smaller width at 9.35 GHz
indicates a frequency-independent broadening mechanism, probably caused by dipolar electron-
electron spin interactions of the order of 1 G at NS = 1019 cm−3.

of adjacent dbs, the calculation of Ref. 59 predicts a Lorentzian line with a width

∆Bdip
pp = π

9
µ0µBgNS = NS × 0.82× 10−19 G cm3. (5.1)

Dipolar broadening of the order of 1 G is indeed expected from this calculation for the

spin density NS of this a-70Ge sample, which is about 1019 cm−3. Therefore, dipolar

electron-electron spin interactions probably account for a significant fraction of the EDMR

linewidth of the a-70Ge films at 0.434 GHz. At X-band microwave frequencies, this contri-

bution can be neglected for the analysis, because the observed linewidths are larger than

40 G. The effective dipolar distance would be reduced for an inhomogeneous distribution

of dbs, so that Eq. (5.1) gives a lower limit for the effective dipolar broadening. As the

linewidth broadening observed is close to this limit, we can exclude strongly clustered

dbs in our a-Ge films, unless exchange narrowing exactly compensates for the dipolar

broadening.

A further peculiarity of EDMR of amorphous Ge, which was already reported earlier in

Ref. 58 for a-Ge:H with natural isotopic composition, however without a detailed analysis,
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is found in the nuclear-spin free a-70Ge-film in an even more pronounced way. As shown

in Fig. 5.4, the ESR and EDMR spectra of the same a-70Ge film show a very different

lineshape, although the experimental conditions such as the applied microwave power, the

modulation amplitude, and the speed of the magnetic field sweep were the same in both

experiments. In particular, the EDMR line is somewhat broader and more asymmetric

than the resonance line observed in conventional ESR. In contrast to the experiments

of Ref. 58, in which spin-dependent photoconductivity was measured under illumination,

lifetime broadening due to recombination does not play a role here, where the hopping

conductivity of an a-70Ge sample was monitored in the dark. The possible influence

of the hopping processes on the linewidths will be shown to be negligible in Sec. 5.2.2.

It therefore appears most likely that the main contribution to the spin-dependent dark

conductivity comes from a particular subensemble of dbs in a-Ge, whereas all spins present

in the sample, possibly also complexes of dbs with oxygen,(72) contribute equally to

the microwave absorption in conventional ESR measurements. A subensemble of dbs

dominating the EDMR signal could for example be composed of those defects, which

have a greater overlap than typical of their wave function with that of adjacent dbs.

Consequently, the hopping rates will be increased at these dbs, which makes them more

likely to participate in electronic transport, and the EDMR linewidth to be increased by

dipolar interaction. Alternatively, a subensemble with increased coupling to neighboring

spins could be characterized by relatively large g-factor fluctuations due to site-dependent

fluctuations of the spin-orbit coupling. The hopping rate between such adjacent dbs is

not high enough for the opposite effect on the linewidth to occur, a significant motional

narrowing as observed in nearly metallic Si or SiC samples with similar concentrations of
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Figure 5.5: EDMR signals of a-Ge with natural isotope concentration at different microwave
frequencies. The magnetic field axes are offset such that the fields corresponding to g0 = 2.0023
coincide. The dashed lines are spin-dependent photoconductivity measurements of hydrogenated
a-Ge:H samples with significantly lower defect density. Under resonance conditions, the dark
conductivity of a-Ge is enhanced, while the photoconductivity of a-Ge:H is quenched. For
better comparison, the EDMR signals of a-Ge:H are therefore inverted. The larger linewidth of
unhydrogenated a-Ge compared to a-Ge:H is probably caused by dipolar interactions between
the electronic spins at 0.434 GHz.

shallow donors.(29, 74) In the 73Ge-enriched samples discussed below, the ESR background

caused by defects in the substrate completely overwhelms the very broad ESR signals of

the dbs. However, since the densities of dbs were around 1018 − 1019 cm−3 for all a-Ge

samples studied, the same subensemble of dbs will participate in hopping transport in the

different films, independent of the nuclear spin concentration. The additional broadening

observed in samples with higher nuclear spin concentrations must therefore be related to

hyperfine interactions.

5.2.2 a-Ge and a-Ge:H with natural isotope composition

The EDMR linewidths observed for the sample free of 73Ge nuclear spins now enable us to

identify the additional broadening due to hyperfine interactions in 73Ge-enriched samples.

A comparison of Fig. 5.5 with the EDMR spectra of a-Ge with natural 73Ge concentration

c = 7.8%, and of Fig. 5.2 for pure a-70Ge shows that the EDMR lines of natural a-
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Figure 5.6: The EDMR spectra of a-Ge with natural isotope concentration of Fig. 5.5
plotted versus a decreasing g-factor axis. Note the much wider g-factor scale in comparison to
Fig. 5.3. The EDMR signals of a-Ge:H were again inverted for better comparison. Whereas
the unresolved hyperfine broadening due to the nuclear spins is negligible at 9.35 GHz, it is
significant at lower microwave frequencies.

Ge broaden significantly at microwave frequencies of 0.434 and 2.00 GHz, while only a

small broadening is caused by the 73Ge nuclear spins at 9.35 GHz. The difference of the

broadening effects is even more evident from a comparison of Figs. 5.6 and 5.3, where the

spectra are again shown versus the g-factor. The linewidth at 0.434 GHz increases to 11 G

by more than a factor of four in the sample with natural 73Ge concentration compared

to the nuclear-spin free a-70Ge sample. However, the relative probability c/(1 − c) to

find dbs at a central 73Ge nucleus is still below 10% for this nuclear spin concentration.

Therefore, this broadening must originate from hyperfine interactions with a large number

of surrounding nuclei.

To compare the effects of different spin-dependent processes and the total defect den-

sity on the EDMR signal, hydrogenated a-Ge:H samples of natural isotopic composition

were available. In Figs. 5.5 and 5.6, the spectra obtained via spin-dependent recombi-

nation in a-Ge:H are compared to the spectra obtained for spin-dependent hopping in

a-Ge at the same 73Ge concentration, but at a much lower density of dbs in the a-Ge:H

sample. While an enhancement of spin-dependent hopping occurs in a-Ge under spin

resonance conditions, a resonant quenching of the photoconductivity is observed in a-

Ge:H.(58) For better comparison, the EDMR spectra for a-Ge:H have been inverted in
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Figs. 5.5 and 5.6. For spin-dependent recombination at low defect concentrations, both

the resonance of holes in the valence band tail, as well as a superposition of the resonances

of dbs and electrons in the conduction band tail are observed in the spin-dependent pho-

toconductivity of a-Si:H. However, at defect concentrations of 1017 cm−3 and above, the

signal from dbs dominates in that material, as the spin-dependent hole diffusion process

in the valence band tail is replaced by direct spin-independent tunnelling of the hole to

a doubly occupied dangling bond.(75) The same appears to be the case in our a-Ge:H

films, where no indication of the valence band tail resonances with g = 2.054 is found in

spin-dependent recombination.(56) The nearly identical EDMR resonances of a-Ge:H with

NS ≈ 1017 cm−3 and a-Ge with NS ≈ 1019 cm−3 at 2.00 GHz and 9.35 GHz show that

at this 73Ge concentration, hyperfine and g-factor broadening are much stronger than the

dipolar broadening of adjacent dbs, and that the effects of exchange interactions and the

lifetime dependence of hopping and recombination are negligible for the low-temperature

linewidth.(59) Only at the lowest microwave frequency of 0.434 GHz, the EDMR spectra

of a-Ge:H and a-Ge differ significantly (see Fig. 5.6). The observed linewidth change is

opposite to the hyperfine broadening expected from the nuclear spins of hydrogen in a-

Ge:H, which is expected to be below 1 G, similar to the observations of Ref. 76 for a-Si:H.

Therefore, the different low-frequency linewidths are most probably again related to the

electron-electron spin dipolar broadening in the unhydrogenated a-Ge sample, to which

already the frequency-independent part of the EDMR linewidth of the 70Ge sample was

attributed before. Here, it is observed directly under the same experimental conditions

as a linewidth difference in two samples with very different defect densities.

5.2.3 73Ge-enriched samples

A further increase of the concentration c of 73Ge nuclear spins does not lead to a resolved

hyperfine structure in EDMR, as shown in Figs. 5.7 and 5.8. Instead, the spectrum

broadens continuously to a linewidth of about 300 G at 9.35 GHz for the pure 73Ge

sample. This type of broadening is remarkable, as sudden increases of the linewidth or

the development of substructure in the outer parts of some spectra would be expected for

any characteristic hyperfine interaction. Because of the magnetoconductivity background

and the large EDMR linewidth, no resonances were resolved for 2.00 GHz at c = 95.6%,

and for 0.434 GHz at c ≥ 31%. Besides the EDMR linewidth, which varies over more

than two orders of magnitude due to the variation of the concentration of nuclear spins,

the lineshapes are changing significantly from a close to Lorentzian shape at c ≤ 51% to

a Gaussian shape at c = 95.6%. The arrow in Fig. 5.8 indicates the onset of a shoulder in

the spectrum with c = 51%, which is interpreted as a remainder of the unresolved central

Fermi contact interaction in the following sections. A similar shoulder around ±(100-

200) G from the center of the spectrum is weakly observed in the wings of the 2.00 GHz-

spectrum of the sample with c = 51%. In this case, it overlaps less with the central line,
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Figure 5.7: Broadening of the EDMR spectra measured at 2.00 GHz of a-Ge depleted of
73Ge, with natural 73Ge concentration, and enriched with 73Ge. The spectra are normalized for
the same peak-to peak amplitude and shifted to a common zero-crossing magnetic field.

but cannot be separated from the magnetoconductivity background unambiguously.

The peak-to-peak linewidths measured by EDMR in this work at different isotope

concentrations and microwave frequencies are summarized in Tab. 5.1. As discussed

above, the linewidths increase significantly with the 73Ge concentration. The largest

change is observed at 9.35 GHz between c = 51% and c = 95.6%. The uncertainties of

∆Bexp
pp listed in Tab. 5.1 arise mostly from the possible errors during the subtraction of

the magnetoconductivity background. Also included in Tab. 5.1 are the lineshape factors

obtained via double integration from the measured derivative EDMR spectra according to

Eq. (4.3). For the double integration, a spectral range of at least 8×∆Bpp was employed for

all values except for the lineshape factors marked explicitly. Mostly Gaussian lineshape

factors are found for the spectra at 9.35 GHz and low 73Ge concentrations, as these

spectra can be understood to be caused by a powder pattern and a Gaussian distribution

of g-factors. At higher 73Ge concentrations, the lineshape factors increase towards the

Lorentzian value at all microwave frequencies. Only the very broad EDMR spectrum at

c = 95.6% shows a clear Gaussian lineshape again. The reasons for this characteristic

behavior will be discussed in detail in the following sections.
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Figure 5.8: EDMR spectra at 9.35 GHz for the complete range of 73Ge-concentrations. Note
that the narrow spectrum with c = 0.1% is identical with the broadest spectrum of Fig. 5.2.
The arrow indicates the onset of a shoulder in the spectrum with c = 51%.

[73Ge] Linewidth ∆Bexp
pp (G) Lineshape factor l

(%) 0.4 GHz 2 GHz 9 GHz 0.4 GHz 2 GHz 9 GHz

a-Ge 0.1 2.6±0.2 12±1 43±2 2.4±0.3 2.6±0.3 1.6±0.2

a-Ge 7.8 11±1 21±1 48±2 2.2±0.4 2.8±0.2 2.1±0.2

a-Ge:H 7.8 9±1 21±1 47±2 2.8±0.4 2.9±0.3 2.2±0.2

a-Ge 31 52±3 73±4 3.0∗±0.4 2.6±0.3

a-Ge 51 78±5 112±7 3.3∗± 0.7 3.0±0.3

a-Ge 95.6 300 ± 10 1.1∗± 0.2

Table 5.1: Observed peak-to-peak linewidths ∆Bexp
pp and lineshape factors l for the derivative

EDMR spectra of Figs. 5.2–5.8. The uncertainties of ∆Bexp
pp arise mostly from the possible errors

due to the the substraction of the magnetoconductivity backgrounds. For the double integration,
a spectral range of 8×∆Bexp

pp was employed for all lines except when a narrow integration range
of 3 − 6 × ∆Bexp

pp is indicated by (∗). In these cases, approximate wings had to be estimated
from the well resolved central part of the EDMR spectra.
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5.3 Hyperfine interactions with 73Ge

5.3.1 Spin Hamiltonian

The spin Hamiltonian of isolated, singly occupied dangling bonds with spin S = 1/2

is dominated by the Zeeman interaction given by the axial g-tensor ĝ and the external

magnetic field ~B. Additionally, the Hamiltonian of Eq. (3.20) contains all hyperfine in-

teractions Ân with the surrounding nuclear spins In. Clearly, variations in ĝ lead to much

larger Zeeman broadening at higher magnetic fields, whereas the hyperfine broadening is

independent of B. For axial hyperfine tensors with only small anisotropic components,

the effective hyperfine interactions are given by An = An,iso + An,aniso(3 cos2 θ − 1) for

orientations of the hyperfine axes at an angle θ with respect to the magnetic field. At the

microwave frequencies used, the resonance fields for ESR transitions are given approxi-

mately by

B =
hν

gµB
−

∑
n

An
gµB

mn

−
∑
n

A2
n

2gµB hν
[I(I + 1)−m2

n] + . . ., (5.2)

where the magnetic quantum number takes the valuesmn = −I, . . . ,+I for the 73Ge nuclei

with nonzero nuclear spin I = 9/2. Higher-order terms and cross-coupling terms between

different nuclear spins have been omitted in Eq. (5.2). The energy eigenvalues and the

magnetic fields, at which the strongly allowed ESR transitions occur at ν = 0.434 GHz and

2.00 GHz are shown in Fig. 5.9 for an isotropic Zeeman interaction with g = 2.022, i.e., for

hν/gµB = 154 and 707 G, and for an isotropic hyperfine interaction A0,iso = 29 G× gµB
with a single nuclear spin. To first-order perturbation theory, the transition fields are

given by 2I +1 equally spaced hyperfine satellites centered around the dominant Zeeman

field. Additionally, all transitions are shifted towards lower magnetic field due to the

second-order term of Eq. (5.2). For the example shown in Fig. 5.9 the first-order shifts

are −130 G to +130 G, and the second-order shifts at 0.434 GHz are −12 to −67 G,

which cannot be neglected at this microwave frequency. At 2.00 GHz, the second-order

corrections are only −3 to −15 G, which is only 2% of the Zeeman field. Clearly, second

and higher order terms due to hyperfine interaction of this magnitude must be taken

into account in Eq. (5.2) for an accurate determination of the g-factor and the hyperfine

splittings at low frequencies, similar to the hyperfine splittings around 280 G×gµB of
73Ge-atoms in the [GeO4]

− centers in α-quartz at X-band frequencies.(9, 77)

We will show below that hyperfine interactions as large as 29 G × gµB are present

in a-Ge, but have significant influence on the linewidth only at c > 60%. Since the

EDMR spectrum of the sample with c = 95.6% could be separated clearly from the

magnetoconductivity background only at ν = 9.35 GHz, and since also the other hyperfine
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Figure 5.9: Breit-Rabi diagram for the spin Hamiltonian (3.20) with a single isotropic g-
factor g = 2.022 and hyperfine interaction A0,iso = 29 G×gµB. The transition fields for electron
spin resonance at 0.434 and 2.00 GHz are shown by the vertical lines. Indicated by the dashed
lines are the energy levels and transition fields without perturbations by a nuclear magnetic
moment.

broadenings listed in Tab. 5.1 do not exceed the respective resonant magnetic fields by

more than 12%, it is sufficient to restrict the linewidth analysis to the first-order terms

of Eq. (5.2) only.

A purely isotropic hyperfine interaction Aiso as discussed above is characteristic for

spin states with spherically symmetric (s-like) dangling bond wave functions. The simplest

approach for a complete microscopic description of a dangling bond wave function Ψdb

involves the linear combination of the 4s and 4p valence orbitals Ψs and Ψp of the outer

shell of Ge atoms at the atomic sites ~rn

Ψdb(~r) =
∑
n

αnΨs(~r − ~rn) +
∑
n

βnΨpx,py ,pz(~r − ~rn). (5.3)

Neglecting the overlap of the different atomic orbitals within this superposition, and the

core states and bonding orbitals like the 3d-states not included in this form of Ψdb, a

one-to-one correspondence between the hyperfine parameters An,iso and An,aniso, and the

projections α2
n and β2

n of the dangling bond wave function onto the atomic wave functions
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Figure 5.10: As an illustration for the
concept of Eq. (5.3), the hyperfine tensors
as calculated in Ref. 16 for the Pb wave
function at the Si-SiO2 interface are shown
as ellipsoids, with A0,iso = −129 G × gµB,
and A0,aniso = −30 G × gµB at the defect
atom labelled Si’. The hyperfine tensors
found at the three backbonding atoms la-
belled Sis1 were A1−3,iso = +1.2 G × gµB,
and A1−3,aniso = −0.8 G × gµB, and those
at the next-nearest neighbors labelled Sib2
were A4−6,iso = −10 G×gµB, and A0,aniso =
−1.6 G× gµB.

Ψs(~r − ~rn) and Ψp(~r − ~rn) is obtained for locally axial symmetry.(9, 24, 32) The isotropic

hyperfine parameters An,iso are then interpreted as local Fermi contact interaction of the

s-like components of the model wave function of Eq. (5.3). The anisotropic parameters

An,iso are interpreted as the local dipolar interaction of the p-like components of the

electronic spin with the 73Ge nucleus with index n, so that

An,iso = α2
nAΨs = α2

n

2µ0

3
gµBgnµn|Ψs(0)|2

An,aniso = β2
nAΨp = β2

n

2µ0

5 · 4π
gµBgnµn〈r−3〉, (5.4)

where µ0 = 4π×10−7 Vs
Am

, gn and µn denote the nuclear g-factor and the nuclear magneton,

|Ψs(0)|2 and 〈r−3〉 are the characteristic atomic spin density and dipolar distance, and n =

0 is used to label the central defect atom (see Fig. 5.10). The atomic hyperfine interactions

AΨs = 843 G × g0µB and AΨp = 17 G × g0µB have been calculated using Hartree-Fock-

Slater integrals,(9) so that in principle the fractions α2
n and β2

n of the dangling bond wave

function can be mapped out with the measured hyperfine parameters.

Although the symmetry information and therefore β2
n is not directly accessible in amor-

phous materials, the anisotropic contribution of the hyperfine interaction with respect to

the symmetry axis of the g-tensor can in principle be extracted from differences in the

satellite widths. In a-Si:H, the total spin density α2
1 + β2

1 in the sp3 hybrid of least one

backbonding orbital to the atoms Sis1 with n = 1 . . . 3 in Fig. 5.10 was estimated from the

broadening of the central line and its hyperfine satellites. It was concluded that at the

central defect atom α2
0 = 6% of the spin wave function is contributed from a 3s orbital

and about β2
0 = 50% of a nonbonding 3p orbital. About α2

1 + β2
1 ≈ 10% - 20% of the

dangling bond spin wave function in a-Si:H comes from at least one backbonding sp3 hy-

brid orbital.(24, 51, 52, 53) Similar to 29Si, which is the only Si isotope with non-zero nuclear

spin I29 = 1/2, only 73Ge with a natural abundance of 7.8% has a non-zero nuclear spin
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Figure 5.11: Experimentally determined peak-to peak linewidths ∆Bexp
pp of the spectra

shown in Figs. 5.2-5.8. The continuous lines were calculated from a convolution assuming (1) a
frequency-dependent Gaussian broadening due to a g-factor distribution, (2) a central hyperfine
interaction of 29 G×gµB, which itself would lead to a spread of hyperfine satellites over 261 G,
and (3) a Lorentzian broadening ∆Bconv

pp due to the surrounding spins, which increases linearly
with the nuclear spin concentration c. The intensity patterns for c = 50% and 90% shown in
the inset explain the qualitative change around c = 70% due to contribution (2), which causes
the sudden increase of the linewidth by more than 100 G.

I73 = 9/2. The relative intensity of each of the 2I + 1 hyperfine satellites at a given

nuclear spin concentration c in a-Ge is expected to be c/(2 I73 + 1) = c/10, which is five

times smaller than c/(2 I29 + 1) = c/2 in a-Si. In addition to this lower intensity, the

smaller atomic hyperfine interactions of Ge compared to Si would lead to smaller hyper-

fine splittings in a-Ge,(9) even if the wave functions would be the same in both materials.

Even smaller hyperfine splittings can be expected from the larger delocalization of the

dangling bond wave function in a-Ge estimated from electrical measurements.(56)

In contrast to dbs in a-Si:H, no resolved satellite peaks are therefore observed for a-Ge

in Figs. 5.7 and 5.8. However, characteristic changes in the EDMR linewidth ∆Bexp
pp are

found upon 73Ge dilution and enrichment, as summarized in Fig. 5.11, where the exper-

imental peak-to-peak linewidth is shown for all a-Ge samples and resonance frequencies

investigated. In a first approach, the large range of linewidths can be understood empir-

ically by a convolution of three contributions, which are indicated by the dotted lines in
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Fig. 5.11. The first contribution is an approximately Gaussian g-factor broadening inde-

pendent of the 73Ge concentration, but dependent on the employed microwave frequency.

This contribution is known explicitly from the nuclear-spin free a-70Ge film discussed in

Sec. 5.2.1. Secondly, a hyperfine pattern is taken into account, which is caused by a single

isotropic hyperfine constant Aiso = 29 G× gµB arising from the Fermi contact interaction

with the central defect atom. As shown by the inset in Fig. 5.11, the intensity of the

hyperfine satellites of a single 73Ge nucleus is small at c ≤ 50% and comparable to the

intensity of the central line only at c ≥ 90%, so that this contribution can be extracted

best from the linewidth of the sample with c = 95.6%. The third, at this point empirical

component is a Lorentzian line whose peak-to-peak linewidth ∆Bconv
pp = c× 130 G varies

linearly with the 73Ge concentration c. This component is important for the increase of

the linewidth from c = 7.8% to 51%. The resulting linewidths from the convolution of

these three contributions are included as solid lines for the different measurement frequen-

cies in Fig. 5.11. One of the most characteristic features of this calculation is the slow

increase of the linewidths at low nuclear spin concentrations, and the sudden increase by

more than 100 G around c = 70%. As indicated by the inset of Fig. 5.11, this feature

is not unexpected, and based on the intensity ratios of the hyperfine patterns of a sin-

gle 73Ge nucleus. The central resonance dominates the experimentally observed linewidth

∆Bexp
pp at 73Ge concentrations below 70%, and the much broader envelope of the hyperfine

satellites above. The only free parameters in such a convolution are the magnitude of the

central hyperfine interaction, and the slope ∆Bconv
pp /c of the linearly increasing broadening

component, which can be estimated from the observed linewidths ∆Bexp
pp at low microwave

frequencies. Such a simple convolution seems to describe simultaneously all linewidths

and lineshapes obtained. However, particularly the third component lacks a microscopic

interpretation, and will therefore be discussed in detail in the following sections.

First, a limit will be defined in Sec. 5.3.2 for the number of interacting spins at a given
73Ge concentration, for which EDMR spectra with a resolved envelope of such a hyperfine

structure could be expected. Although this limit is based on a hypothetical example, it

agrees fairly well with the more realistic numerical calculations presented in Sec. 5.3.4.

Close to this limit, the well known analytical models of line broadening summarized in

Sec. 5.3.3 are known to be unreliable, which are the method of moments for a convolution

of many discrete hyperfine constants An, and statistical theory for a continuous distri-

bution function of hyperfine constants A(r). Therefore, the spin localization radius r0 is

obtained in Sec. 5.3.4 by comparing ∆Bconv
pp to the numerical calculations.

5.3.2 Convolution of multiple hyperfine interactions

The large broadening without resolved substructure observed at 0.434 GHz even at the

natural 73Ge concentration can only be explained by hyperfine interactions with a large

number of Ge nuclei. At the defect concentration of the sample, the large majority of
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Figure 5.12: Hyperfine patterns of an electronic spin with 1, 3, or 10 atoms with a probability
of c = 50% to have I = 9/2 and An = 29 G × gµB. All patterns have been normalized to the
maximum intensity. The spectra have been calculated with two different Gaussian lineshapes
with ∆Bconv

pp × gµB/An = 0.1 and 1. Even without any resolved hyperfine lines (∆Bconv
pp =

29 G), the shoulders resulting from the interaction with a single 73Ge spin are visible if only a
small number of nuclei with a hyperfine interaction An/gµB ≈ ∆Bconv

pp are participating in the
hyperfine interaction.

atoms around the defect atom are fourfold coordinated with a hybridization close to sp3,

so that α2
n ≈ 1

3
β2
n and An,iso � An,aniso, since it is known from the atomic interactions that

AΨs � AΨp . In a disordered material, the average over many sets of hyperfine constants

must be calculated for a quantitative description of the observed EDMR spectra, as the

orientation and the microscopic wave function are expected to vary from one defect site to

another. Methods have been developed to account for many dipolar hyperfine interactions

analytically. However, in particular for the present problem of a dominant Fermi contact

interaction, the analytical approaches are not applicable for the complete range of the

nuclear spin concentrations. Although all approaches yield very similar results in the low

concentration limit and for concentrations close to c = 1, they disagree depending on the

underlying assumptions in the regime of intermediate concentrations.(78)

The basic convolution problem is illustrated with the help of the very simple example

shown in Fig. 5.12. For clarity, only a single hyperfine splitting An = 29 G×gµB has been

considered here at a nuclear spin concentration of c = 50%. According to Eq. (5.2), the

pattern produced by hyperfine interaction with one single Ge nucleus consists of 2I + 1
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equidistant satellites if this nucleus happens to be a 73Ge atom with nuclear spin, and of

a central resonance otherwise, as shown in Fig. 5.12a. This corresponds to the situation

of a very localized dangling bond wave function interacting only with a single nucleus.

Figs. 5.12b and c show the result of a threefold and tenfold convolution of this pattern

with itself, which would be caused by the spread of the dangling bond wave function over

three or ten nuclei with the same hypothetical hyperfine interaction An = 29 G × gµB.

The intensity of the hyperfine satellites for these patterns increases as the probability

of finding at least one nuclear spin increases with the number of nuclei involved. More

than 2I + 1 satellites are visible in the wings of the pattern of Fig. 5.12b due to the

interaction with multiple nuclear spins. As the probability of an individual configuration

of nuclear spins is shared among a large number of satellites at I = 9/2, their individual

intensity is still lower than the central resonance up to rather high 73Ge concentrations.

The individual satellites are completely resolved in the example of Fig. 5.12 with an

additional Gaussian broadening of ∆Bconv
pp = 0.1 × An/gµB. However, they are smeared

out with ∆Bconv
pp = An/gµB. The reason of such a broadening could, e.g., originate

from a different set of nuclear spins with a smaller unresolved hyperfine splitting. Note

that a different pattern would arise from fluctuations of the hyperfine constant An itself,

which would dominantly broaden the outer hyperfine satellites. As shown in Fig. 5.12,

the envelope structure of the satellite groups can still be resolved even if the individual

broadenings ∆Bconv
pp are larger than the hyperfine splitting An. Approximately Gaussian

lineshapes are obtained only with a large enough value N × c for the number of nuclei

contributing with one nuclear spin.

A quantitative criterion for the number of Ge nuclei participating in a spectrum with-

out resolved satellites, but with a structured envelope function can be estimated from the

relative intensities of the narrow central line and the broad structures in Fig. 5.12. In

the case of interaction with a single nucleus only (Fig. 5.12a), the area under the central

resonance is proportional to the fraction 1− c. Therefore its intensity is proportional to

(1 − c)/∆Bconv
pp , if all lines are convoluted with the same broadening function of width

∆Bconv
pp . No resolved hyperfine satellites are expected for ∆Bconv

pp ≥ An. In this case, the

shape of the envelope function depends on the broadening function only in the wings, and

it is flat in the central region, as all hyperfine satellites occur with the same probability

for hyperfine interactions with a single 73Ge nucleus only. The area of this structure is

proportional to the fraction c of interacting 73Ge nuclear spins, so that its intensity is

proportional to c/[2I(An/gµB) + ∆Bconv
pp ]. The shape of the satellite intensity pattern is

different for each number of interacting nuclei, e.g., rectangular for a single nucleus, tri-

angular for two, and of Gaussian shape for many nuclei. Up to high 73Ge concentrations,

the contribution of configurations with more than one 73Ge nucleus is small compared to

the rectangular pattern formed by the interaction with only one nuclear spin because of

the larger number of satellites. This can be seen in Fig. 5.12b, where a similar shape is
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found for the broadened envelope function of three nuclei compared to the case of only

one nucleus even at c = 50%. The probability is Nc(1 − c)N−1 for finding exactly one

nuclear spin out of N nuclei, which could interact with the dangling bond wave function.

Therefore, the intensity of the rectangular structure caused by interactions with one nu-

clear spin is now increased to I1 ≈ Nc(1 − c)N−1/[2I(An/gµB) + ∆Bconv
pp ]. At the same

time, the intensity of the central line is reduced to I0 ≈ (1− c)N/∆Bconv
pp . Neglecting the

rounding effects on the spectrum by multiple interactions I2, I3, . . . with several nuclear

spins, which become important at larger 73Ge concentrations only, the ratio of intensities

I0/I1 ≈ 1 defines a critical number Nc of interacting nuclei, below which a resolved wing

structure and above which a Gaussian lineshape is expected

Nc =

[
2I (An/gµB)

∆Bconv
pp

+ 1

]
1− c

c
. (5.5)

For a given number of atoms, one could similarly define a critical nuclear spin concentra-

tion, above which no resolved wings are observed. This criterion provides a first estimate

for the number of interacting nuclei responsible for a significant broadening at a given con-

centration c. Although it is based on very simple considerations, it agrees very well with

the numerical lineshape simulations discussed below, which also show that the lineshape

changes from a line with characteristic wings to Gaussian shape above the critical number

Nc of nuclei interacting with similar hyperfine interaction given by Eq. (5.5). This critical

number is around 10 for ∆Bconv
pp ≈ An/gµB and c = 50%, while a structureless Gaussian

shape at 73Ge concentrations of c = 10% would require around 90 nuclei with similar

hyperfine interactions. The transition from the narrow central line to the broad Gaussian

shape is not as distinct in this regime, as shown in Fig. 5.13. However, the peaked curve

calculated for n = 64 and c = 10% still has rather Lorentzian than Gaussian shape. For
29Si nuclei with the smaller nuclear spin I29 = 1/2, only one third of these nuclei would

be sufficient to lead to a Gaussian line at the same nuclear spin concentration. The cri-

terion (5.5) is similarly valid for the derivative lines observed in ESR experiments, which

particularly emphasize the slopes at the edges of the central line and of the flat region of

the hyperfine satellites.

5.3.3 Analytical lineshape calculations

Analytical expressions for the second moment M2 and some higher moments Mn =∫
y(B)BndB/

∫
y(B)dB of the lineshape functions y(B) have been calculated for the

full range of nuclear spin concentrations taking into account dipolar variations of the

hyperfine constants An.
(26, 79, 80, 81, 82, 83) Because second moments add up linearly for

convolutions of symmetrical lines, the second moment of any resonance pattern resulting

from the interaction with a series of nuclei with I = 9/2, concentration c, and an arbitrary
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Figure 5.13: Hyperfine patterns calculated for various numbers of atoms with the same
hyperfine interaction An and for several 73Ge concentrations. Additional broadening with
∆Bconv

pp = An was assumed for this calculation. A Gaussian lineshape is obtained above the
critical number of atoms defined by Eq. (5.5). Resolved wings are obtained with fewer atoms,
or at a lower nuclear spin concentration. Note that the line shape expected, e.g., for 2 atoms
at c = 80% is very similar to that for 256 atoms and c = 1%. At a given isotopic composition,
however, the line shape is indicative for the number of interacting nuclei, and the line width for
their interaction strength.

set of hyperfine interactions An is given by

M2(c) = c
33

4

∑
n

(
An
gµB

)2

. (5.6)

According to Ref. 26, this expression even holds for the second moment of the transition

fields of the true eigenstates of the Hamiltonian (3.20), which are not equidistant. For the

dipolar interactions between point-like magnetic moments in a regular lattice, the rapidly

decreasing An,aniso ∝ (1−3 cos2 θn) r
−3
n let the sum converge despite the increasing number

N(rn) ∝ r3
n of interacting spins within a sphere of increasing radius rn. Therefore, one

expects M2 ∝ c over the whole range of concentrations. For a purely Gaussian lineshape,

the second moment can be compared directly to the experimentally observed linewidth, as

∆BGauss
pp ∝

√
M2 and therefore ∆BGauss

pp ∝
√
c. For other lineshapes, the higher moments

must be calculated, as they influence significantly the observable peak-to-peak linewidth
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∆Bexp
pp ≈ π/3

√
M3

2/M4.
(13) For example, the moments of a Lorentzian line diverge, and

become finite only after an arbitrary cut-off, which removes the divergence(13) and leads

to ∆BLorentz
pp ∝M2 and to ∆BLorentz

pp ∝ c.

It has been shown from the analysis of dipolar interactions between identical I = 1/2

nuclear spins in a cubic lattice, that in such a system approximately Gaussian lineshapes

are expected for c > 0.1, because in this regimeM4 ∝ c2. For c < 0.01 however, Lorentzian

lineshapes are expected,(80) as in this regime M4 ∝ c. The empirical deconvolution of

the experimental data shown in Fig. 5.11 is only possible with a broadening component

∆Bconv
pp ∝ c, corresponding to a Lorentzian lineshape, at least up to c = 51%. The

lineshape factors of the experimental EDMR spectra given in Tab. 5.1 also show that in

the intermediate range of concentrations from 7.8% to 51%, where a linear increase of

the linewidth is observed besides the g-factor broadening at high microwave frequencies,

the EDMR lines are nearly Lorentzian. Such a hyperfine broadening is in agreement with

Eq. (5.6), however it requires the low concentration limit to be extended over a much larger

concentration range in a-Ge compared to the calculations of Ref. 80 for I = 1/2 nuclear

spins in a regular lattice. This can be understood with the help of Eq. (5.5), taking

into account the higher nuclear spin I73 = 9/2 and a smaller number Nc of effectively

similar hyperfine constants in a-Ge. Besides due to structural disorder, Nc is smaller at

large distances r(n) here, as the hyperfine interactions of the dangling bond wave function

probably fall off exponentially, i.e., faster than the long-range dipolar interactions.

It has been discussed previously by other groups that the few nearest neighbor spins

are over-weighted in a linewidth calculation based on the method of moments, as the

(rare) cases of nearest neighbors with nuclear spin contribute strongly to all finite mo-

ments. If the wings of the resonance lines cannot be measured with sufficient accuracy, the

results from the method of moments can therefore be misleading.(82, 84) In this case, the

statistical theory discussed in Refs. 13, 81, 82, 83, 84 provides a very powerful alternative

to obtain the Fourier-transformed lineshape. This method is well suited for the contin-

uum approximation required in an amorphous network. It becomes particularly simple in

the low concentration limit, but might also be applied at high concentrations, eventually

requiring the exclusion of a central volume, or concentrations close to c = 1.(85) Assum-

ing symmetric, linear, and uncorrelated contributions from the hyperfine interactions at

different atoms, the lineshape function y(B) is given by

y(B) ∝
∫ ∞

0

cos[(gµBB − hν)x] · exp[−J(x)] dx (5.7)

with

J(x) =
∑
mn

∫
c %(r)

2I + 1

[
1− exp

(
i
A(r)

gµB
mnx

)]
dr3

where x is the inverse hyperfine energy and %(r) the density of possible lattice sites.(82)

In the case of dipolar interactions and a constant density %, this integration results in
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a Lorentzian line for the whole concentration range, in agreement with our assumptions

in Fig. 5.11.(13, 84) At high nuclear spin concentrations, however, correlations in the

occupation of the hypothetical continuum of possible nuclear positions become inevitable.

Therefore, the assumption of an uncorrelated occupation of defect sites is valid only in

the dilute limit. For a typically exponential fall-off of a delocalized dangling bond wave

function, complicated hypergeometric functions are obtained from the volume integration,

so that the derived lineshapes and scaling laws for the linewidth cannot be compared easily

with the experimental data. As only few atoms with almost discrete hyperfine constants

are expected to dominate the linewidth in this regime, instead numerical simulations for

one or many discrete sets of hyperfine constants will be considered in the following section.

5.3.4 Numerical lineshape simulation

To circumvent the low concentration limit assumed for the derivation of Eq. (5.7) and

to make predictions over the full concentration range, many hyperfine patterns similar to

those of Fig. 5.12 with different hyperfine constants have been convoluted numerically via

the fast Fourier transform algorithm. Averaging of several hundred atomic configurations

is possible in small steps of c on a desktop computer with a resolution sufficient to study

the effects of a variation of the hyperfine constants over more than three orders of mag-

nitude. We start with the description of a simple numerical example without anisotropic

contributions of the hyperfine interaction (β2
n = 0) and without fluctuations of α2

n to

avoid the averaging process over many random configurations. For the wave function

amplitudes at the nuclear spin sites rn, a hydrogenic envelope function

Ψdb(rn) ∝ e−rn/r0 (5.8)

is used, which according to Eq. (5.3) and (5.4) leads to

An,iso(rn) ∝ α2
n ∝ Ψ2

db(rn) ∝ e−2rn/r0 . (5.9)

This kind of wave function is commonly assumed for the description of the delocalization

of dbs in transport experiments, however, it is a very crude assumption compared to the

set of hyperfine constants calculated for the Pb-center in Ref. 16 (see Fig. 5.10). It is

not thought to be a realistic description of a true dangling bond wave function, but it

is very helpful to understand the limits to which information can be extracted from the

experimental data.

To define a set of hyperfine constants An via Eq. (5.9), the positions ~rn of the host

atoms need to be modelled in addition to the shape of the dangling bond wave function.

The probability of finding a Ge atom at a certain distance r from a central Ge atom is

given by the radial distribution function (RDF) D(r), which has been determined from

x-ray or electron diffraction experiments. The local environment of Ge atoms consisting
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Figure 5.14: (b) Radial distribution functions of crystalline germanium (N(r), bars), of a-Ge
(D(r), dash-dotted line, after Ref. 86), and of a homogenous medium with D(r) = 4πr2% (solid
line). The discrete atomic positions rn = 3

√
3n/4π% are chosen from D(r) for a homogeneous

medium such that the area below each of the resulting segments corresponds to a single atom.
(a) Set of hyperfine constants An,iso resulting from Fermi contact interaction of the dangling
bond wave function of Eq. (5.8) with different localization radii r0.

of the nearest neighbors and the next few shells of atoms in amorphous Ge still resembles

that of crystalline Ge, however, broadened by structural disorder.(86) In particular, the

maximum of the RDF around 2.44 Å in Fig. 5.14 can be identified with the four nearest

Ge neighboring atoms, one of which is missing in the radial distribution function of dbs in

a-Ge. For larger distances, D(r) rapidly approaches the limit of a homogenous medium,

for which D(r) = 4πr2% with the macroscopic atom density % of a-Ge, which is similar

to that of crystalline Ge (% = 0.0442 Å
−3

). Fig. 5.14 illustrates how a set of discrete

nuclear positions rn were chosen for the first numerical example discussed here. A new

Ge atom with index n is placed at each distance rn, at which the area under the continuous

distribution function
∫
D(r)dr = 4/3πr3% = n corresponds to a full atom

rn = 3
√

3n/4π%, n = 0, 1, . . . . (5.10)

This ensures, that at large distances the macroscopic atomic density % ≈ 0.0442 Å
−3

is

obtained. In this approximation, the nearest-neighbor positions are distributed between
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Figure 5.15: Simu-
lated spin resonance
spectra for the model
of Fig. 5.14. The
resolved shoulders
originate from the
hyperfine interaction
A0,iso = 29 G × gµB
with the central 73Ge
defect atom. In the
experimental spectra,
these shoulders are
averaged out because
of fluctuations of the
hyperfine constants,
e.g. due to a dipolar
hyperfine interaction
A0,aniso ≤ 5 G× gµB.

1.8–2.8 Å, which is a significantly larger spread than of 2.2–2.7 Å in the RDF of a-Ge.

However, the results from simulations based on Eq. (5.10) were virtually the same as those

from simulations with r1−3 = 2.44 Å. The errors introduced by the actual choice of rn are

therefore negligible, in particular compared to the effects of spin polarization discussed

in Sec. 5.4.2. The resulting hyperfine constants from Eqs. (5.10) and (5.9) are shown in

Fig. 5.14a for three different localization radii and A0 = 29 G × gµB. Note that for a

spin density of dbs of about 1019 cm−3, each defect occupies the volume of a sphere with

a radius of 20 Å � r0. The sum of the different sets of hyperfine constants of Fig. 5.14a

is of interest for the normalization condition
∑

n α
2
n + β2

n = 1 of the dangling bond wave

function. It is about 190 G for the set of hyperfine constants with r0 = 3.5 Å, and about

85 G and 620 G for those with r0 = 2.5 and 5.3 Å, respectively.

The derivative spectra, which result from the convolution of the hyperfine patterns

obtained for the three sets of hyperfine constants of Fig. 5.14a are shown in Fig. 5.15.

Whereas the second moments of the simulated spectra fulfill Eq. (5.6) for all concentra-

tions, their lineshapes are obviously different than both Gaussian and Lorentzian curves.

The overall shape of the simulated spectra is more similar to a Lorentzian curve up to

c = 60%, and to a Gaussian curve for higher c. A shoulder structure similar to that found
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Figure 5.16: Peak-to-peak linewidth ∆Bnum
pp extracted from the maximum and minimum

field positions of the spectra obtained for the three sets of hyperfine constants of Fig. 5.14a.
The satellite structures causing the step around 80% in the linewidth at localization radii of (c)
r0 = 2.5 and (b) r0 = 3.5 Å vanish at a localization radius of (a) r0 = 5.3 Å because of the
larger number of similar hyperfine constants (see Fig. 5.14a). The dashed line was simulated
without a central atom (n > 0), and the shaded areas indicate the linewidths calculated for the
hyperfine constants with the nearest n < 20, and n < 100 nuclei.

in Fig. 5.12 and at the position of the experimentally observed wings of Fig. 5.8 is resolved

at low concentrations. These shoulders determine the linewidths at c ≥ 80%. Obviously,

the assumed hyperfine interaction A0,iso = 29 G × gµB of the central 73Ge defect atom

differs enough from An≥1 < 11 G× gµB assumed for the backbonding neighbors, so that

in this model the shoulders of Fig. 5.12 remain visible.

The peak-to-peak linewidth ∆Bnum
pp of the simulated derivative spectra can be deter-

mined numerically from the magnetic field separation of its global maximum and mini-

mum. The theoretical linewidths obtained via this method for the three different radii of

localization are shown in Fig. 5.16, with the linewidths corresponding to r0 = 3.5 Å in
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Figure 5.17: The line-
shape factors l determined
from the calculated spectra
for the three sets of hyper-
fine constants of Fig. 5.14a
(full lines). (a) For a local-
ization radius r0 = 5.3 Å, l
is close to the Gaussian value
of 1.033. (b,c) For smaller
r0, a Gaussian line is only ex-
pected for large 73Ge concen-
trations. In the intermedi-
ate concentration range, l is
closer to 3.628, which would
be expected for a purely
Lorentzian line. Also in-
cluded are the lineshape fac-
tors expected for the three
cases when Gaussian g-factor
broadening ∆BSO

pp ≈ 40 G at
9.35 GHz is included (dotted
lines).

Fig. 5.16b. An increase of the linewidth approximately linear with the 73Ge concentration

is observed up to c = 60% for r0 = 3.5 Å. Above c = 80%, the linewidth rapidly ap-

proaches ∆Bnum
pp ≈ 300 G. The resulting step of the linewidth around c = 80% is related

to the cross-over between the central line of this pattern from dbs centered at nuclei with

I = 0 and the 2I+1 equally intense contributions of hyperfine satellites already discussed

in the context of Fig. 5.11.

This step is not present assuming a larger r0 = 5.3 Å (Fig. 5.16a). In that case, the

linewidth of the spectrum at c = 60% shown in Fig. 5.15b is large enough to cover the

satellite pattern of the central atom, mainly because of the smaller difference between the

largest hyperfine constant A0 = 29 G × gµB of the central atom and A1 ≈ 15 G × gµB
attributed to one of the backbonding neighbors in this model. As the linewidth of the

central line for r0 = 5.3 Å is around 200 G at c = 60%, the satellites collapse with the

central line for the solid curve in Fig. 5.15b. Because an accumulation of sufficient nuclei

with similar hyperfine constants occurs for this localization radius according to Eq. (5.5)

already for concentrations above 5%, the lineshapes are more Gaussian, as shown in

Fig. 5.17a, where the lineshape factor l determined numerically from the simulated spectra

is plotted with solid lines for the same model used in Fig. 5.15 and 5.16. As expected

for a Gaussian lineshape, ∆Bnum
pp ∝

√
c over almost the entire concentration range (see

Fig. 5.16a).
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In contrast, the satellite structure is clearly resolved for spectra simulated with a

shorter localization radius r0 = 2.5 Å. In this case, a central line is resolved between

two distinct satellite peaks, which makes the definition of a single linewidth ∆Bnum
pp dif-

ficult. Consequently, a jump of the linewidth occurs again, when the intensity of the

outer satellites becomes larger than the intensity of the central line. At sufficiently low

concentrations, the linewidth increases almost linearly with the 73Ge concentration, as

appropriate for a Lorentzian lineshape. The lineshape factors obtained numerically for

these spectra are shown in Fig. 5.17c and are close to the Lorentzian value in the interme-

diate concentration range. They can be compared better with the experimental values of

Tab. 5.1, if the additional broadening mechanisms at the different microwave frequencies

are taken into account. The dominant mechanism at 9.35 GHz is g-factor broadening, as

discussed in Sec. 5.2.1 with ∆BSO
pp ≈ 40 G and an approximately Gaussian shape. The

lineshape factors of the numerical spectra with such an additional broadening are shown

by the dotted lines in Fig. 5.17. In agreement with the experimental data, the lineshapes

start from a Gaussian shape at low nuclear spin concentrations, where g-factor broaden-

ing dominates, become Lorentzian at intermediate concentrations, and Gaussian again at

c > 80%.

The validity of Eq. (5.5) not only for one fixed hyperfine constant, but also for the

sets of hyperfine constants discussed here, is shown numerically in Fig. 5.16 for a partial

convolution of the hyperfine patterns of the nearest 20 or 100 neighboring nuclei only,

and for the convolution of the complete set without the central defect atom. The steplike

structure above c = 80% can be attributed unambiguously to the central atom, as it is not

observed if the central atom is removed from the convolution. As seen by the steps in the

curves with n ≤ 20 and 100 atoms, the simulated linewidth is dominated by interactions

with the central 20 nuclei for c ≥ 40% and with the central 100 nuclei at c ≥ 10%. Both

numbers are in good agreement with Eq. (5.5) for ∆Bconv
pp ≈ 2I(An/gµB).

Obviously, most of the information on individual hyperfine constants is lost during the

convolution process. It is therefore not surprising that similar lineshapes and linewidths

can be obtained numerically not only for the specific set of hyperfine constants shown in

Fig. 5.14a, but also for other wave function envelopes with similar localization lengths

and for other radial distribution functions consistent with the macroscopic density of a-

Ge. A quasi-continuous RDF can be modelled numerically e.g. with a large number of

dbs, each with its characteristic distribution function of atomic distances rn and hyperfine

constants An. The average ESR spectra for these dbs, and the corresponding linewidths

and lineshapes are not much different from the results of Figs. 5.16 and 5.17. Independent

of the specific defect model, the approximately Lorentzian lineshape and ∆Bnum
pp ∝ c up to

c = 60%, as well as the sudden increase to a linewidth of about 300 G are typical for those

sets of hyperfine constants with A0,iso = 29 G× gµB and a localization parameter around

3.5 Å. The available experimental data points, which indicate a hyperfine broadening of
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10 G at c = 7.8%, of 70 G at c = 51%, and of 300 G at c = 95.6% could be reproduced

best by those defect models containing 1–2 atoms with An ≈ 29 G× gµB, 3–6 atoms with

An ≈ 4 − 10 G × gµB, and 100–200 atoms with An ≈ 0.5 − 1 G × gµB, irrespective of

the exact distribution functions. Within the given ranges, the larger number of nuclei

is always to be used in conjunction with the smaller hyperfine constant. The ranges of

validity were obtained by numerical simulations, but could have been determined as well

with the numbers of nuclei from Eq. (5.5) for a given concentration and a typical set of

hyperfine constants, and the linewidths from the ratio of the cumulated moments M2 and

M4.

The sum of all isotropic hyperfine interactions with the dangling bond wave function is

always in the range of 160–190 G for those sets of hyperfine constants, which are consistent

with the experimental data. Also for the model of Fig. 5.14 this sum is about 190 G at

a localization radius of 3.5 Å. Compared to the tabulated atomic hyperfine interaction

of 843 G × g0µB for an ideal 4s-orbital, this suggests that about 19-23% of the db wave

function occupies s-like atomic orbitals. Only 3.4% of an atomic s-wave function is found

at the central Ge atom. The non s-like 77-81% of the wave function are expected to

occupy p-like atomic orbitals, probably with an s/p ratio significantly smaller than 1/3

at the central atom and significantly larger at remote atoms. Note that the sums of the

isotropic hyperfine constants of Fig. 5.14 for r0 ≈ 2.5 and 5.3 Å of 85 and 620 G × gµB
would be unrealistic, so that all An,iso would need to be scaled up or down for these cases

by a factor of 2–4 to fulfill the normalization condition. Then, however the linewidth at

c = 100% would be far from the experimentally observed values.

Until now, we have not taken into account any contributions of An,aniso. Because all

orientations of dbs are distributed randomly in amorphous materials, this will lead to

powder pattern distributions of hyperfine constants between An,⊥ = An,iso − An,aniso and

An,|| = An,iso + 2An,aniso in addition to the random fluctuations of An,iso due to disorder.

Such fluctuations of A0,iso are required to account for the observation of a structureless

spectrum, even if ∆Bexp
pp � A0,iso, which is the case at 0.434 GHz and 2.00 GHz and

c = 7.8%. Without such fluctuations, the simulations of Fig. 5.15a show a local minimum

around B0 ± 120 G and a maximum around B0 ± 150 G. These features would overlap,

if their position fluctuated by about 30 G, i.e., with fluctuations of An of at least 20% or

6 G × gµB. Because of the sharp peak of the powder pattern distribution at A0,⊥, the

interpretation of these fluctuations as anisotropic hyperfine interaction would require even

larger fluctuations of A0,aniso ≥ 5 G×gµB in order to average out the wings of the spectra

shown in Fig. 5.15a according to numerical simulations including A0,aniso. For very large

values of A0,aniso, the true value of A0,iso would be somewhat higher than 29 G × gµB
because of the asymmetry of the hyperfine powder patterns.

To summarize the results of the numerical simulations, the experimental linewidths

and lineshapes can be explained by a dangling bond model wave function with A0,iso =
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29 G × gµB and a radius of localization r0 = 3.5 Å, irrespective of the particular model

employed. In agreement with the simple estimate from Eq. (5.5), at least 20 central nuclei

are found to contribute to the linewidth at c ≈ 40%, and at least 100 central nuclei to

the linewidth at c ≈ 10%. More complicated statistical models with fluctuating hyperfine

constants or A0,aniso ≥ 5 G × gµB are required to account for the structureless wings of

the experimental spectra.

5.4 Discussion

Based on these conclusions for the hyperfine parameters of dbs in a-Ge from the hyperfine

broadening of the EDMR signal, some specific aspects of the observed parameters will be

discussed in more detail in the following sections. After a summary of the relevance of the

other line broadening mechanisms in Sec. 5.4.1, the microscopic structure suggested from

this work for dbs in a-Ge is discussed in Sec. 5.4.2, taking into account the effects of spin

polarization. This defect structure is then compared to the localization radius obtained

from transport experiments and to the structure of dbs in a-Si:H in Sec. 5.4.3.

5.4.1 Line broadening mechanisms

The model wave function of Eq. (5.3) takes into account only local Fermi contact and

dipolar interactions of the dangling bond wave function with a particular 73Ge nucleus.

The influence of other interactions like the distant dipolar interactions of the electron spin

centered at the defect site with the nuclear spins of the surrounding 73Ge nuclei will be

considered now. This long-range coupling can be calculated without further assumptions

in the point-dipole approximation and is most significant for the remote nuclear spins

In with small fractions of the total wave function. In analogy to the calculations of

Refs. 13, 81, 82, 84, the Fourier transform of the ESR lineshape function caused by

such dipolar coupling with Adipolar(r) = µ0

4π
geµegnµnr

−3(3 cos2 θ− 1) is given according to

Eq. (5.7) for In = 9/2 in the continuum approximation and the low concentration limit

by

J(x) = exp

(
−5πµ0

9
√

3
geµegnµn c% |x|

)
(5.11)

with the nuclear g-factor gn = −0.195, and the Bohr and nuclear magnetons µB and

µn. With the atomic density % = 0.0442 Å
−3

, this characterizes a Lorentzian lineshape

function with a width of about 0.5 G × c. At large nuclear spin concentrations, higher

order terms in c enter Eq. (5.11), but still, the overall dipolar broadening from the nuclear

spins is of the order of 1 G. Therefore, this contribution to the observed linewidths cannot

account for a broadening ∆Bconv
pp /c = 130 G, as required for the Lorentzian component

(3) in the empirical model of Fig. 5.11.
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The other broadening mechanisms such as broadening due to a distribution of g-

factors, lifetime broadening, exchange or motional narrowing, and the dipolar coupling

between adjacent electronic spins are independent of the nuclear spin concentration, so

that the experimental spectra of the a-70Ge sample can be used to determine the broad-

ening due to these mechanisms. As is obvious from the spin Hamiltonian (3.20), the effect

of the g-factor distribution is particularly large at high microwave frequencies. According

to the linewidths given in Fig. 5.2 and in Tab. 5.1, g-factor broadening contributes with

about 4.4 G× ν/GHz to the overall linewidth at 70 K.

For both a-Si and a-Ge, drastic increases of the ESR linewidth have been reported at

temperatures above 100–200 K.(70, 72) This temperature-dependent lifetime broadening

has been correlated with the known hopping rates from conductivity, as discussed in

detail in Ref. 67. At 70 K and below, hopping in a-Ge is so slow that the ESR linewidth

is determined only by other, temperature-independent linewidth contributions.(67, 70, 72)

As shown in Figs. 5.5 and 5.6, defect concentrations of the order of 1019 cm−3 lead

to an increase of the EDMR linewidth by 1 G at maximum, confirming that the influ-

ence of exchange or motional broadening is negligible at the investigated concentrations.

The magnitude of dipolar broadening due to other electronic spins, which have a larger

magnetic moment geµB/gnµn = 1.88 × 104 than the 73Ge nuclear spins was estimated

in Eq. (5.1) with the help of the statistical method.(59) Due to the much smaller con-

centrations of dbs of around 1019 cm−3 or 2.3× 10−4 × %, the broadening due to dipolar

interactions between different dbs is again of the order of 1 G only.

Thus, the dipolar interaction with remote 73Ge nuclei and between different dbs leads

to line broadenings of the order of 1 G, whereas the distribution of g-factors leads to a

frequency dependent broadening of 2-43 G. The effects due to hyperfine interactions are

expected to dominate the observed linewidths in the 73Ge enriched samples.

5.4.2 Spin polarization

According to Eq. (5.3), the hyperfine parameters An,iso and An,aniso are usually evaluated

in terms of the fractions αn and βn of s- and p-like atomic orbitals contributing to the full

dangling bond wave function. The corresponding spin densities α2
n and β2

n are obtained

via Eq. (5.4) by comparison of the experimental parameters with the atomic values from

Hartree-Fock calculations. Accordingly, A0,iso = 29 G × gµB corresponds to an s-like

contribution of α2
0 = 3.4% at the central atom.

A0,aniso ≥ 5 G can be estimated roughly from the missing structure of the experimental

spectra at c = 7.8%, which requires a certain random variation of A0. If these variations

were dominated by anisotropic hyperfine interaction, the p-wave fraction at the central

atom would be β2
0 ≥ 30%, and the s/p hybridization ratio at the central defect atom

α2
0/β

2
0 ≤ 11%, as compared to the ratio of about 12% determined from α2

0 = 6% and

β2
0 ≈ 50% for dbs in a-Si:H in Refs. 24, 51. For SiH3 and GeH3 radicals with negligible
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delocalization and small spin polarization of the bonds, the ratios of hybridization α2
0β

2
0

were evaluated to be around 21% and 11.5%, respectively.(87, 88) As the value for GeH3 is

based on the rather small atomic Fermi contact interaction of AΨs = 535 G× g0µB from

Ref. 32, even smaller fractions of α2
0/β

2
0 around 7% would be obtained for dbs in GeH3

radicals based on the more recent value AΨs = 843 G×g0µB of Ref. 9 used here. Therefore,

the hybridization ratio at the Ge atom in GeH3 is probably even lower, indicating nearly

complete sp2 configuration of the Ge-H bonds and a significant relaxation of the defect

atom into the plane of the backbonding H atoms. Taking into account the smaller s/p

ratio of dbs in a-Si:H with respect to the SiH3 radical, one could expect a hybridization

ratio even below 7% for dbs in a-Ge, resulting in β2
0 ≥ 50% and A0,aniso ≥ 9 G.

However, as indicated by the localization radius forAn,iso in Sec. 5.3.4, large parts of the

dangling bond wave function in a-Ge seem not to be located on the dangling bond defect

atom itself. For those sets of hyperfine constants compatible with the experimental data in

Sec. 5.3.4, the sum of the isotropic hyperfine interactions with remote nuclei
∑

n≥1An,iso
is typically around 130–160 G × gµB, suggesting that about 15–19% of the dangling

bond wave function occupies s-like states at Ge atoms other than the central defect atom.

Assuming a hybridization ratio with an s fraction around 1/4 (sp3 configuration) for these

remote atoms, this would correspond to 60-76% of the complete defect wave function.

The sum of the three contributions α2
0 = 3.4%, β2

0 ≥ 50%, and
∑

n≥1 4α2
n = 60 − 76% is

somewhat larger than 100%, but at least of the correct order of magnitude. The difference

could indicate a lower p fraction than 3/4 at the remote atoms, or, alternatively, some

of the atomic spin densities α2
n to be negative, which could not be distinguished in the

experimental broadenings discussed above.

Negative spin densities are one of the effects of spin-polarization discussed in the

literature for dbs in a-Si:H. Although the model wave function of Eq. (5.3) provides a

reasonable approximation for the dangling bond charge density, the same wave function is

probably inappropriate to give a realistic description of the dangling bond spin densities.

Hartree-Fock calculations for the atomic hyperfine constants include the contributions

from core polarization as a spin-dependent deformation of the Ge inner 1s-3s shells,

described by configuration interactions.(32) As is known from the hyperfine interactions

in small molecules, such a core polarization strongly depends on the unpaired spin density

in the valence state. In different bonding configurations, the spin polarization might vary

with respect to the atomic values. A single experimental hyperfine parameter α2
n or β2

n

is then insufficient to quantify these multiple effects, so that the calculated localization

based on α2
n + β2

n is incorrect for the charge density in most cases.(16) Furthermore, even

in the absence of net charge or unpaired spin density at one Ge atom, charge density on

neighboring Ge atoms will cause locally unbalanced positive and negative spin densities

at the central atom by local polarization of the bonds. This spin density then occurs with

the opposite sign at the other atoms.
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For the GeH3 radical, this spin polarization of the bonds was measured from the proton

interaction to contribute with 13 G× gµB to the total isotropic hyperfine coupling of the
73Ge nuclei of 75 G× gµB.(87, 88) Such a shift of positive spin density from the ligands to

the central atom would be significant compared to A0 = 29 G×gµB and A1 = 10 G×gµB
of the model wave function with r0 = 3.5 Å, and hence the s-like charge density at the

central atom is possibly even lower than 3.4%. In a-Ge, the spin polarization at the

central atom is probably smaller than in GeH3 because of charge delocalization. However,

as pointed out in Ref. 16, also for dbs at the Si/SiO2 interface the spin density at the

neighboring atoms is almost cancelled by the transfer of spin density towards the central

atom. This spin polarization also explains the difference between the charge and spin

densities calculated for dbs in a-Si in Ref. 55, which predict a charge localization below

20%, but a spin localization around 50% at the central atom.

Because the fraction of the dangling bond wave function is largest at the central atom,

the negative contributions to the spin density are largest on the backbonding atoms. At

these atoms, the balance of opposing contributions may cause a reduction of the actual

hyperfine interaction to zero or below, which once more justifies the assumption of a

distinct isotropic hyperfine interaction A0,iso � An,iso at the central defect atom, which

is one of the characteristic results of the numerical simulations of Sec. 5.3.4. The remote

atoms, which determine the linewidth at smaller nuclear spin concentrations with their

small hyperfine constants, are therefore an alternative and possibly more universal basis

for the definition of the spin localization parameter of dbs in different materials, as they

do not suffer such large spin polarization effects as the central defect atoms.

As a consequence of spin-polarization, a spin-unrestricted wave function in contrast to

Eq. (5.3) cannot be easily identified with the experimentally accessible hyperfine parame-

ters. Therefore, detailed theoretical calculations are required to interpret the experimental

parameters quantitatively. Such calculations could also clarify, whether the postulated

fluctuations of A0 around A0,iso can indeed be ascribed to anisotropic hyperfine interac-

tions.

5.4.3 Charge localization

The low temperature transport properties of a-Ge are strongly influenced by the extent

of the dangling bond defect wave function. The characteristic hopping rates of spin-

independent transport are determined by charge, not spin localization. However, both

types of wave functions must be considered in a realistic model for the dangling bond

wave function, as pointed out previously for the Pb center and dbs in a-Si:H.(16, 55) The

charge localization radius rc of dbs in a-Ge:H has been determined from dc transport

measurements in Ref. 56. According to the Mott model, the variable range hopping
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Figure 5.18: The peak-
to-peak linewidths for dbs in
a-Si:H at low 29Si concentra-
tions have been extrapolated from
low-frequency measurements in
Ref. 51. The simulations are
based on the numerical model of
Sec. 5.3.4, however with I29 =
1/2, and A0,iso = 70 G × gµB.
More than 50 atoms contribute to
the linewidths at nuclear spin con-
centrations below 20%. Appar-
ently, the broadening at low nu-
clear spin concentrations is consis-
tent with r0 = 3.0 Å, as deter-
mined independently from the hy-
perfine broadening due to the 1-3
backbonding atoms.

conductivity for delocalized dbs described by Eq. (5.8) is given by

σ ∝ e−η(T/T0)−1/4

, (5.12)

where T−1
0 = r3

cNFkB, and with the factor η in the range between 0.9 and 1.3, depending

on the employed theoretical model. The density of states at the Fermi level NF is linked to

the spin densityNS via the density of states according toNF = NS×11 eV−1, which can be

obtained from deep level transient spectroscopy.(89) From Eq. (5.12), a localization radius

of the order of 1 Å would be obtained with T0 = 2×108 K from the inset of Fig. 5.1. How-

ever, because unwanted influences of temperature cannot be excluded in measurements

of σ(T ), the determination of rc from T0 is regarded as being very unreliable. Therefore,

the dependence of σ(NF ) on the spin density was evaluated for a-Ge:H in Ref. 56 at a

fixed temperature T = 200 K with spin densities of dbs in range of 1017 to 1018 cm−3

after electron irradiation and stepwise annealing, resulting in a charge localization radius

around rc = 11 Å. The same hopping processes are also believed to be responsible for the

lifetime broadening of the ESR signals at higher temperatures.(59, 66, 67, 70, 90)

The charge localization radius r0 = 11 Å of dbs in a-Ge:H is about three times larger

than the spin localization radius r0 = 3.5 Å determined from the hyperfine broadening in

this work. For dbs in a-Si:H, a charge localization radius around 4 Å has been determined

from transport experiments at 200 K in Ref. 56, while the resolved hyperfine data of the

central atoms in a-Si:H would be consistent with a spin localization radius of 3 Å.(50)

It remains to be shown, whether the localization parameters determined from the

central hyperfine interactions at the few central atoms of the dbs in a-Si are equivalent

to the parameter r0 extracted from the more than 100 remote atoms in this work, and
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independent of the relaxation at the central atom. The comparison of both models is

possible for dbs in a-Si, for which both the hyperfine interactions at the central atom

as well as the hyperfine broadening at low 29Si concentrations(51) have been measured.

Hyperfine broadenings of ∆Bconv
pp /c ≈ 40 G are predicted from numerical simulations for

c ≤ 10% with a model wave function for dbs in a-Si similar to that of Fig. 5.14a, but with

I29 = 1/2 and A0,iso ≈ 70 G×gµB, as measured in isotopically enriched a-29Si:H in Ref. 50,

and with r0 = 3.0 Å. This is in good agreement with the experimental low-frequency

data of Ref. 51, which shows ∆Bexp
pp /c ≈ 40 G for isotopically diluted a-Si:H samples, as

shown in Fig. 5.18. No experimental data exists for dbs in a-Si:H in the intermediate

concentration range 10% < c < 90%. The critical number of nuclei of Eq. (5.5) is lower

in a-Si than in a-Ge because of the smaller nuclear spin. Therefore, and because of the

smaller localization radius, the linewidth in a-Si is not expected to rise linearly up to 50%

for a hydrogenic model wave function, but to show a second step-like structure at 29Si

concentrations around 20% due to the backbonding atoms. In the investigated range of

concentrations for a-Si:H, however, the spin localization radius derived from the central

atom and the outer atoms agree.

The consistency of the spin localization radius and the central hyperfine constant can

be checked independently via the normalization condition for the dangling bond wave

function in a-Ge. The volume occupied by a delocalized spin wave function scales like r3
0,

so that the spin density at the central atom would be expected to be about (3.5/3.0)3 = 1.6

times smaller for dbs in a-Ge compared to a-Si based on the localization radii, consistent

with α2
0 + β2

0 ≈ 50− 70% for a-Si and about 30-50%, which is most probable for a-Ge.

Therefore, both the broadening at low nuclear spin concentrations and the central

hyperfine constants support a spin localization radius of r0 = 3.5 Å for dbs in a-Ge com-

pared to r0 = 3.0 Å for dbs in a-Si. In a-Ge, however, this spin delocalization parameter

is significantly smaller than the charge localization radius of 11 Å of Ref. 56, which shows

that spin-unrestricted calculations will be indispensable to model the dangling bond wave

functions in amorphous germanium.

5.5 Conclusions and outlook

Broadening of the spin resonance signal of dbs in a-Ge from 2.6 to 300 G was ob-

served in EDMR investigations of isotope-engineered a-Ge samples over the whole 73Ge

concentration range from 0.1% to 95.6%. The contributions of g-factor broadening of

∆BSO
pp = 4.4 G × ν/GHz and of dipolar broadening of the order of 1 G were investi-

gated separately from these hyperfine contributions with the help of measurements on

a nuclear-spin free a-70Ge sample. An additional hyperfine broadening of 10 G due to

the 73Ge spins is observed at the natural isotope concentration. Although no hyperfine

satellites are resolved due to the continuously increasing linewidth and the large number
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of contributing nuclear spins, a central hyperfine interaction of A0,iso = 29 G× gµB and a

spin localization radius r0 = 3.5 Å have been extracted from numerical simulation of the
73Ge concentration dependence of the spin resonance linewidth and lineshape. The spin

density is found to be three times more localized than the charge density at the charge

localization radius of a-Ge determined from transport measurements.

Further experimental investigations of dangling bond wave functions in a-Ge beyond

this localization parameter will be difficult because of the lack of resolved hyperfine inter-

actions. Only for the Fermi-contact interaction at one or two backbonding atoms, reliable

values could possibly be obtained from detailed measurements of the linewidths and line-

shapes in 73Ge-enriched samples with 60% < c < 90%, which were not available in this

work. In a-Si:H, even more information about the spread of the db wave function over the

next-nearest neighbors could be obtained from samples with intermediate 29Si concentra-

tions. To our knowledge, no ab initio calculations for the charge and spin wavefunctions of

dbs in a-Ge have been made up to now. A significantly larger number of atoms compared

to the calculations for dbs in a-Si(55) and at the Si/SiO2 interface(16) will be required

for calculations of the dangling bond wave function in a-Ge, at the Ge/GeO2 interface,

and in SiGe alloys. Meanwhile, such enormous computational efforts can be accomplished

routinely with highly efficient program packages and modern supercomputers. The results

of these calculations would greatly help to resolve the experimental uncertainties because

of spin polarization, and to improve the model wave function, which was assumed to be

hydrogenic for the lineshape simulations of this work.

The evaluation of the hyperfine broadenings in terms of Fermi-contact interactions

with many nuclei developed during this work could stimulate similar investigations of

point defects in many other systems, e.g. of dbs in microcrystalline germanium, at the

GeO2 interface, and in amorphous SiGe alloys. Furthermore, the results could help to

estimate unresolved hyperfine broadenings of the ESR signals of shallow defects in binary

semiconductors, like GaN, AlN, or SiC. These estimates could be confirmed later, if

eventually isotope enriched or diluted samples become available.
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Chapter 6

Shallow donors in diamond

Diamond has many outstanding properties as a potential semiconducting material. How-

ever, a major obstacle for the realization of bipolar diamond-based electronic devices is

still the lack of shallow n-type dopants. Shallow donor states are formed e.g. in Si by P

impurities and other elements of the fifth column of the periodic table with one extra va-

lence electron compared to Si. Similarly, N has one extra electron compared to C, so that

one could expect substitutional nitrogen NC to form a shallow donor level in diamond.

However, due to the electron transfer from the N impurity atom to one of the neighboring

C atoms accompanied by a strong lattice relaxation, a 1.6 eV deep defect level is formed

at NC. The microscopic structure of this defect, called “P1 center”, was first identified

by ESR, as described in Sec. 3.3.3.(10, 11)

An alternative candidate for a shallow donor state in diamond is substitutional P,

which unfortunately is much harder to incorporate into diamond than into silicon. The

mismatch in atomic radii between P and C, which is the reason for the very high formation

energy of this impurity, is illustrated in Fig. 6.1. Despite this difficulty, several groups

have reported phosphorus incorporation into diamond during growth from the gas phase

C
N

P

Figure 6.1: Unit cell of dia-
mond seen from a 〈110〉 direction.
The covalent radii of N and P are
indicated by dashed lines at a sub-
stitutional site. Because the ra-
dius of P is 46% larger than the
covalent radius of C, the formation
energy of substitutional P is very
high.(36, 91) As known from ESR
studies on the P1 center,(10, 11) N
undergoes a lattice relaxation to-
wards one of the C neighbors, so
that a deep defect is formed in-
stead of a shallow donor.
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Figure 6.2: Infrared excitations to excited donor
states observed in P-doped diamond.(94) The en-
ergies of all excited states can be approximated by
effective-mass theory. However the ground state at
Ea ≈ 600 meV below the conduction band, as de-
duced from the thermal activation of the carrier con-
centration in Hall measurements(98) and from the
energy of recombination of a donor-bound exciton
around 5.2 eV(95, 96) is about three times larger than
the effective-mass value of 218 meV.

without the lattice damage typically caused by ion implantation.(92, 93) A significantly

more shallow donor state than the nitrogen defect level was observed in expitaxial samples

grown using phosphine as a dopant source. N-type conductivity was found with activation

energies of the Hall carrier concentration of 0.4 eV-0.6 eV.(92) For the same samples, in-

frared absorption peaks were observed at 0.52 eV and 0.56 eV, as summarized in Fig. 6.2,

and were related to a photo-ionization onset in photoconductivity measurements.(94) Pho-

toluminescence measurements of the recombination of donor-acceptor pairs and of the

P-related exciton point to an energy depth of 630±50 meV of P-related donors.(95, 96)

Recently, the first diamond-based bipolar device, an ultraviolet light-emitting diode, has

been realized from a pn-junction at the interface between boron and phosphorus doped

diamond layers.(97)

At present, the microscopic structure of the phosphorus donor in diamond is still

incomplete. Compared to the estimated energy of an effective-mass donor in diamond,

much larger optical and thermal ionization energies have been observed experimentally

for states attributed to substitutional phosphorus,(99) but no lattice relaxation of the

phosphorus atom away from the substitutional site could be detected in channelling ex-

periments in the same n-type samples.(100) Hyperfine information from ESR experiments

could provide a critical test for the symmetry and localization of this donor ground state.

6.1 ESR of phosphorus in diamond

One of the most sensitive probes for the symmetry and extend of the donor wave

function are nuclear hyperfine coupling constants, which are experimentally accessible

by electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR).

ESR of phosphorus-related states in diamond has been observed in poly-crystalline

powders,(101) in crystals using a phosphorus catalyst,(102) and in CVD films implanted

during growth(103) or after growth with subsequential annealing.(104) In the crystalline

films, isotropic hyperfine lines with a characteristic splitting of 27-28 G were observed

and attributed to the I = 1/2 nuclear magnetic moment of substitutional 31P. Unfortu-
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type appearance nitrogen contamination nat. abundance

Ia transparent A,B-aggregates 500..2000 ppm most natural samples

Ib yellow – greenish P1 centers (NC) 50..500 ppm most synthetic samples

IIa transparent < 50 ppm rare, natural gemstone

IIb transp. – bluish less N than B, % < 104 Ωcm very rare

Table 6.1: Classification of diamonds as type Ia, Ib, IIa, and IIb according to their optical
absorption features in the visible and infrared region (from Ref. 105). Type Ia, Ib, and IIa
diamonds are highly insulating at room temperature because of the the large energy depth of
nitrogen centers compared to the thermal energy.
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Figure 6.3: [100] rotation plane of the magnetic field for the investigation of ESR along all
principle axes of a diamond crystal with a [111] oriented surface.

nately, these samples have a large number of implantation defects besides the phosphorus

donors, so that n-type conductivity has never been observed for these samples. Only re-

cently, 28 G split hyperfine lines were observed by ESR in P-implanted samples together

with the characteristic infrared absorption at 0.52 eV and 0.56 eV,(104) which has also

been found in the samples of Ref. 94, suggesting that shallow states give rise to this ESR

signal.

Up to now, n-type samples doped from the gas phase were mostly grown on Ib diamond

substrates. Unfortunately, the large amount of nitrogen P1 centers in these substrates

is causing a huge background in conventional ESR experiments. Therefore, electrically

detected magnetic resonance (EDMR), which provides high sensitivity and selectivity to

spin-dependent transport at the Fermi level, seems to be the most promising approach to

access paramagnetic states in P-doped epilayers.(63) As electrical detection is particularly

sensitive to the paramagnetic states within the path of conductivity, efficient suppression

of the P1 background from the insulating substrate can be achieved.
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Figure 6.4: a) ESR signal
dominated by P1 centers in the
Ib substrate. b, c) EDMR spec-
tra at bias voltages of 10 V and
30 V corresponding to 2 kV/cm
and 6 kV/cm, assuming a ho-
mogeneous field distribution. In
the regime of low electric field,
carbon dangling bonds dominate
spin-dependent transport, while
at higher electric fields the signal
shows a complex structure with
several resonances. The normal-
ized EDMR intensity is ∆σ/σ =
∆Ipp/IDC ≈ 10−6 for the maxi-
mum components of the signal.

6.2 EDMR of n-type diamond

Doping of the particular homoepitaxial film investigated was performed by plasma-assisted

chemical vapor deposition on a polished [111] surface of a 2 × 2 × 0.5 mm3 type Ib

synthetic diamond with the relative gas concentrations CH4/H2 = 0.075% and PH3/CH4

= 0.1%. Photoconductivity and infrared absorption measurements have been reported

in Ref. 94, where this sample is labelled #4. The nominal phosphorus concentration

of 5 × 1018 cm−3 of the film is below that of the metal-insulator transition expected

for effective-mass donors in diamond. Approaching the metallic regime, the hyperfine

satellites from the nuclear spin I = 1/2 of 31P would be eliminated by delocalization

due to exchange or due to fast hopping on the timescale of the spin lifetime.(29) In the

investigated samples, hopping rates are much lower, but still high enough to contribute

significantly to conductivity at room temperature and below. At higher temperatures the

dark conductivity is found to be thermally activated with about 0.6 eV. Therefore, room

temperature EDMR measurements seem to be a suitable tool to measure the hyperfine

interaction at the 31P donors in this n-type diamond film.

To ensure thermal equilibrium for charges metastably trapped within the diamond

crystal, the sample was heated to about 600 K in the dark and subsequently transferred

to the ESR system. Sample orientation and g-factor calibration were checked with the

help of the anisotropic ESR signal from P1 nitrogen centers in the substrate shown in

Fig. 6.4.(10) For EDMR measurements, coplanar interdigitated Au contacts with 50 µm

spacing were deposited on top of the epitaxial film. The differential resistance of 10 MΩ

at bias voltages above ±20 V is consistent with the reported data for n and µ for this

film.(94)
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6.2.1 Bias dependence

Fig. 6.5 shows the IV-characteristics of the film at room temperature in the dark. Above

±20 V, the behavior is almost ohmic as indicated by the dashed line that corresponds

to a differential resistance of 10 MΩ and a conductivity of 10−6 Ωcm−1. However, the

IV-curve at lower bias voltages is nonlinear, indicating that the current is limited by some

kind of barrier, such as the space charge region of a Schottky contact below breakthrough

in reverse-bias. Obviously, any electrical measurement such as EDMR should be analyzed

with regard to the bias voltage that determines the dominant resistance. In the regime

of high voltages, the applied electric field is able to overcome the barriers so that the

measured current is limited by the epilayer of interest, whereas in the low-field regime the

space charge layers limit the overall current. The different EDMR signatures observed

at high and low bias voltages shown in Fig. 6.4 support this qualitative explanation.

While in the high-field regime at 30 V bias, a complex anisotropic signal is observed

that will be discussed in more detail below, the low-field signal at 10 V bias can be

identified directly by its isotropic g-factor g = 2.0028 and the peak-to-peak linewidth

∆Bpp ≈ 7 G. These parameters are commonly associated with carbon dangling bonds in

amorphous hydrogenated carbon,(106) in polycrystalline diamond,(107) and in crystalline

thin CVD diamond films after implantation.(103, 104) EDMR of carbon dangling bonds has

been demonstrated previously in polycrystalline CVD diamond films with a high defect

density.(108) In the present homoepitaxial film, the EDMR sensitivity to carbon dangling

bonds is particularly high, as these defects limit conductivity through the space charge

regions of the interdigitated contacts. Therefore, a small amount of such defects can

be detected even in a single-crystal. The sign of the EDMR signal at low electric fields

indicates a resonant quenching of the current due to a spin-dependent capture process of

conduction band electrons.

In contrast, the signal at high electric field corresponds to a resonant enhancement

of the current, which is typical for hopping transport at the Fermi level. As seen in the

spectrum of Fig. 6.4, new features appear in the EDMR signal of the n-type layer when the

bias voltage is increased to 30 V. In this regime, the electric field is sufficient to overcome

the barriers at the contacts and to obtain the EDMR signal of the n-type epilayer. At

the same time, the background spectrum of the carbon dangling bonds at the contacts

is reduced. EDMR spectra measured under these conditions for the three fundamental

crystal orientations with respect to the magnetic field B0 are shown in Fig. 6.6. Within

the overlapping resonances, the outer pairs of satellites are recognized clearly as part of

the P1 spectrum observed simultaneously in conventional ESR. Although the substrate

has a higher thickness than the epilayer, its room temperature dark conductivity is too low

for a contribution to an EDMR signal with ∆σ ≈ 1 pA. This could indicate that deep P1

centers are present in the epitaxial film. Alternatively, since the identical signal is strongly

observed in the substrate ESR, heating of the sample upon microwave absorption has to
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Figure 6.5: Room temperature IV-characteristics of the phosphorus doped diamond film
with 50 µm interdigitated finger contacts (++). The dotted line indicates the IV-characteristics
of an ohmic resistor, but offset from zero voltage due to a voltage drop of about 10 V at the
non-ideal contacts. Open and closed circles show the intensities of the two signal components
in EDMR.

be considered as another possible origin for the increased conductivity at spin resonance.

Such thermal crosstalk could not be distinguished from spin-dependent hopping for the

P1-related EDMR signal.

6.2.2 Anisotropy at high bias voltage

Besides the signal due to P1 centers, all spectra measured at high bias voltage show an

isotropic line at 3329 G and several anisotropic lines with C3v symmetry at about 3347 G.

For these features, thermal crosstalk can be excluded, as no absorption is visible at those

field positions in conventional ESR. If both lines were interpreted separately, their g-

factors would be g = 2.009 and g ≈ 1.998, which is outside the typical range of g-factors

known for diamond.(25) More consistently, they might be interpreted as a hyperfine pair

caused by the interaction with the nuclear spin I = 1/2 of the 31P atom. In this case, the

spin Hamiltonian for the unpaired electron with axial symmetry is given by

H = µB ~B0ĝ ~S + ~SÂ~I (6.1)
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Figure 6.6: Aniso-
tropy of the EDMR sig-
nal at 30 V. The crystal
is rotated around a [110]
axis. The outer tran-
sitions and the central
line around 3340 G be-
long to P1 triplets that
dominate the ESR sig-
nal of the Ib substrate
and to dangling bond
centers. The inner set
of lines is attributed to
hyperfine satellites of a
phosphorus-related cen-
ter, which has a very low
spin density on the 31P
nucleus.

with the axial tensors ĝ and Â, and Bohr’s magneton µB. To first order, the magnetic

fields at which transitions occur are(19)

B0 =
hν

gµB
± A

2gµB
(6.2)

with

g =
√
g2
|| cos2 θ + g2

⊥ sin2 θ and (6.3)

A =
1

g

√
A2
||g

2
|| cos2 θ + A2

⊥g
2
⊥ sin2 θ, (6.4)

Planck’s constant h, the microwave frequency ν, and the angle θ between the magnetic

field and the defect axis. Without g-factor-anisotropy, all pairs of hyperfine lines would

appear symmetrically around one central magnetic field, as it is the case for the P1

center. For small anisotropic contributions from g and A, both angular dependencies can

be separated, so that

A ≈ Aiso + Aaniso(3 cos2 θ − 1). (6.5)

As indicated in Fig. 6.6, we interpret the experimental resonance positions by a combi-

nation of the anisotropies in g and A, which cancel on the left satellite, so that here the

splitting is below the experimental linewidth of ∆Bpp ≈ 5 G. In contrast, the anisotropies

add up on the three satellites on the right, separating these lines with only little over-

lap. Accordingly, we find an axial center with C3v symmetry, g⊥ = 2.0026, g|| = 2.0042,
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Aiso = 17.6 G, and Aaniso = 1.8 G. Two of the four symmetry-related sites coincide for

the investigated orientations. Assuming the parameters given above, the positions and

intensities of the measured spectra are described satisfactorily. To our knowledge, a sim-

ilar set of parameters has not been reported for paramagnetic centers in diamond before.

In particular, they are distinct from the phosphorus-related centers of Tab. 6.2. One of

these centers (NIRIM 8)(102) has been identified as P-C-N+ complex with most of the

electron density localized at the nitrogen atom. The same complex is possibly present

in the polycrystalline powder of Ref. 101 with the outer satellites broadened beyond de-

tection. The second, almost isotropic center from Ref. 103 and 104 has been observed

recently together with the characteristic infrared absorption at 0.52 eV and 0.56 eV also

present in the n-type samples of this study, suggesting that shallow states give rise to

this ESR signal.(104) Because the implanted samples have a large number of additional

defects besides the phosphorus-related states, n-type conductivity has not been confirmed

for them yet. The set of parameters for the new EDMR center is also different from the

hydrogen-vacancy complexes H1 and H2,(107) and the µ∗- and µ-centers that correspond

to interstitial and bond-centered hydrogen in diamond. Scaled from the ratio of nuclear g-

factors, these would have the hyperfine constants A∗
iso = 23.4 G and A∗

aniso = 21.1 G×gµB,

or Aiso = 421 G× gµB. The line positions are also different from the forbidden hyperfine

transitions within the P1 manifold.(25) The natural abundance of I = 1/2 nuclei other

than 31P and 1H is too small to account for the observed resonance pattern.

The measured Fermi contact and dipolar hyperfine parameters are converted into

atomic spin densities α2 and β2 in the atomic 3s and 3p orbitals of phosphorus with

Eq. (3.17) and (3.18) and the help of the Hartree-Fock-Slater integrals Aiso ≈ 4748 G

and Aaniso ≈ 131 G of Tab. 3.1 from Ref. 9 for unpaired s an p electrons. The ratio of

the measured constants and these numbers directly gives the hybridization ratio spx with

x = β2/α2 and the total spin density α2 + β2 at the phosphorus atom. Note, that in

the defect molecule picture, the hybridization ratio x = 3 corresponds to a bond angle

of 109.47◦ and sp3-coordination of the backbonding atoms, whereas x � 3 corresponds

to a bond angle close to 90◦ and sp2-coordination. The results for the P-related EDMR

center are listed in Tab. 6.2. The last but one row shows that for the center reported

here, the remaining spin density at the phosphorus atom is about 1%, similar to the

phosphorus-nitrogen complex of Ref. 102. Consequently, the unpaired donor electron has

been transferred almost completely to nearby atoms. The spin density at the impurity

atom is even lower than in the case of the strongly distorted P1 center, where about 20%

of the spin density resides at the donor atom and most of the wave function is shifted to

one carbon neighbor.(25)

In Ref. 109 a stable Phosphorus-Vacancy (P-V) complex is predicted, which has axial

symmetry and very low spin density at the donor atom, as the large phosphorus impu-

rity occupies the space of two adjacent carbon atoms. However, this defect complex is
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expected to be in its neutral charge state only from 0.6 eV to 1.1 eV above the valence

band edge.(110) In n-type samples, this complex would act as an acceptor, become dia-

magnetic, and therefore be invisible for ESR. Since for similar samples a large fraction

of phosphorus atoms was found on substitutional rather than on bond-centered sites in

channelling experiments,(100) and because of the small number of β2, this center should

not be expected as the origin of the observed EDMR signal. Unfortunately, no further

hyperfine satellites are observed within the experimental resolution, which could clarify

the location of the remaining 98% of the electron wave function. Most likely, atoms with

a low fraction of nuclear spins such as 13C are involved, so that the satellite intensity is

well below the noise level of our experiment. In conclusion, only the axial symmetry and

the spin density at the phosphorus atom were obtained for this electronically active center

close to the Fermi level.

6.2.3 Additional signal after illumination

One additional series of EDMR measurements was performed with the sample in a

metastable state after illumination without subsequential heating in the dark, leaving

it in thermodynamical non-equilibrium. This pretreatment did not affect the DC con-

ductivity significantly, but as shown in Fig. 6.7, it revealed a new EDMR center with

the hyperfine satellites of at least two non-equivalent sites. This signal disappeared af-

ter measuring the sample orientation by x-ray diffraction and subsequential heating to

600 K in the dark, which hindered us to check the full signal anisotropy, which is assumed

to be axial along [111] similar to the spectra of Fig. 6.6. The magnetic field was not

oriented along one of the principal crystalline axis for the spectrum of Fig. 6.7, but its

direction cosines towards the [111] axis were recovered to be cos2 φ = 0.94, 0.27, 0.15, and

0.00 from the ESR of P1 centers in the same sample orientation close to a [112] axis.

Assuming I = 1/2 and axial symmetry along a [111] axis, the hyperfine tensor is given

by Aiso = 380 G and Aaniso = 15 G. Due to the large isotropic component, the first-order

approximation to the resonance fields from above has to be corrected by second order

terms that shift both satellites to lower magnetic fields

B0 =
hν

gµB
± A

2gµB
− A2

4hνgµB
± . . . (6.6)

Considering this so-called Breit-Rabi shift, the g-factor of this EDMR signal is g = 2.006,

which shows clearly that the satellites are not part of the central structure, which probably

is a convolution of the various centers within g = 2.0042 to 2.0026 from above, broadened

in Fig. 6.7 due to the experimental conditions. Compared to the hyperfine interaction of

an isolated phosphorus atom, the hybridization ratios β2/α2 and the total spin density

α2 + β2 are evaluated and listed in the last row of Tab. 6.2. This center is more isotropic

and about 10 times more localized at the phosphorus atom than the previous one. Also
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Figure 6.7: EDMR signal of the sec-
ond 31P-related center with large, but still
anisotropic hyperfine interaction. This cen-
ter was observed in a sample state without
prior heating in the dark, so that thermal
equilibrium has not been reached on the
timescale of the experiment of one week.
For this spectrum, the sample was oriented
with the magnetic field along a [112] axis,
as reconstructed from the ESR signal of the
P1 center in the substrate. The central line
around 3340 G is a broadened convolution
of the signals shown in Fig. 6.6.

for this electron, no additional hyperfine interaction was observed within the experimental

signal-to noise ratio.

6.3 Discussion of the EDMR signals

In general, a low spin density at the donor atom would be characteristic for shallow donor

electrons, which might extend over hundreds of lattice sites. In the case of phosphorus

in silicon, the 31P Fermi contact interaction is only 42 G, corresponding to about 0.9%

of an atomic 3s wave function.(5) By ENDOR, the hyperfine interaction of this donor

electron with many surrounding shells of Si atoms has been determined and consistently

interpreted in terms of an improved effective-mass model.(6) In diamond, the effective-

mass approximation successfully predicts the excited donor level energies, and at least

gives a reasonable trend for the description of the ground state energy.(99) A simple

extrapolation of this effective-mass model to substitutional P in diamond is discussed in

the following.

6.3.1 Effective-mass donors in diamond

The most sensitive check for the approximated wave function certainly is the Fermi contact

interaction at the central nucleus. In the effective-mass approximation, the donor wave

function is build from a combination of the hydrogenic envelope function F (r) and Bloch

functions at the conduction band minima at ~k0 along the D axes of the Brillouin zone. In

the absence of better crystal wave functions, these Bloch functions are best approximated
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with the help of atomic solutions u(~r) of the Hartree-Fock equation,(5) so that

Ψ(~r) =
√

1
6

6∑
j=1

F (~r)ju(~r)j exp(i~kj0~r), (6.7)

where the summation is over all conduction band minima. The probability density at the

phosphorus donor with a central wave function u(r) is described in this approximation

by the envelope-function F , the scaling of which is done by an ellipsoidal hydrogenic

potential with the anisotropic effective masses m∗
t and m∗

l . Outside of the central cell,

the dielectric constants ε∗Si and ε∗C of silicon and diamond, respectively, are screening

the strong coulombic potential. As the ratio m∗
t/m

∗
l is similar for silicon and diamond,

the hydrogenic energy levels E∗ ∝ m∗/ε∗2, the radius of localization of the envelope

function a∗ ∝ ε∗/m∗, and the probability density |ψ(0)|∗2 ∝ a∗−3 ∝ (m∗/ε∗)3 scale simply

with the ratios ε∗C/ε
∗
Si = 5.7/11.7 ≈ 0.5 and m∗

C/m
∗
Si ≈ 1.5.(99) The scaling factor for

the extrapolation from silicon to diamond is (m∗
C/m

∗
Si)/(ε

∗
C/ε

∗
Si) ≈ 1.5/0.5 = 3, which

means, that the probability density and hyperfine constant have to be scaled by a factor

33 = 27 from silicon to diamond. Starting with α∗2 ≈ 0.9% in silicon, the portion of

the donor wave function on the donor atom would be of the order of 24% in diamond,

and the expected isotropic hyperfine interaction larger than 1000 G × gµB. Due to the

increased contribution from the central cell with an even smaller dielectric constant, the

experimental ground-state energy appears underestimated by this simple approximation.

For this reason, the true localization and hyperfine constant should be even larger for P in

diamond. Corrections in the opposite direction are discussed in Ref. 103 due to the relative

electronegativities, which might reduce the wave function amplitude at the phosphorus

atom in diamond compared to the situation in silicon. Additionally, the admixture of

antisymmetric combinations of wave functions from opposite conduction minima to the

donor ground state wave function leads to a reduction of the central hyperfine constant in

Si:P.(111) This “valley orbit” coupling mechanism can be expected to be less pronounced

for diamond compared to silicon because the excited states are at larger energies there.(99)

6.3.2 Hyperfine values from the literature

For comparison, the observed hyperfine parameters and the corresponding spin densities of

both centers are summarized in Tab. 6.2 together with the spin Hamiltonian parameters of

P-related ESR signals reported previously for phosphorus-doped diamond samples without

n-type conductivity.

Strong P1-like hyperfine satellites were observed in addition to the phosphorus-related

ESR signals in poly-crystalline diamond powder,(101) and in single crystals grown from

phosphorus catalyst.(102) Therefore, it was suggested in Ref. 102 that these signals could

possibly be related to a N1-like defect complex involving an ionized phosphorus atom
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method of P g Aiso α2 Aaniso β2 α2 + β2 β2

α2

incorporation (gµBG) (%) (gµBG) (%) (%)

high pressure [101] 2.0025 20.8 0.4 1.2 0.9 1.3 2

from catalyst [102] ≈2.003 ≈20 0.4 ≈1 0.9 1.3 2

coimplanted [103] 2.0023 27 0.6 - - 0.6 0

impl. & ann. [104] 2.0024 28 0.6 - - 0.6 0

from the gas phase, anisotr. 17.6 0.4 1.8 1.4 1.7 3.7

PECVD [this work] 2.006 380 8.0 15 11 19 1.7

Table 6.2: Spin Hamiltonian parameters of phosphorus-related centers in diamond obtained
from ESR and EDMR experiments. The relative spin densities have been evaluated with the
help of the atomic values from the Hartree-Fock-Slater integrals Aiso = 4748 G × gµB and
Aaniso = 131 G× gµB of Tab. 3.1.(9)

next to a substitutional nitrogen impurity. Such a complex would have about 25% of the

spin density localized on the nitrogen atom, and the remaining 73% of the spin density

on adjacent carbon atoms (see Sec. 3.3.3). The low spin density of 2% at the phosphorus

atom in such a complex is not related to an extended donor wave function, but rather to

the significantly higher electronegativity of at least one of the neighboring atoms. Other

defect complexes with vacancies,(109) or hydrogen atoms(91, 110) as nearest neighbors have

been predicted from theory, however, without quantification of spin densities or hyperfine

constants. All theoretical calculations suggest that these defect complexes are deeper

in energy than substitutional phosphorus donors. Weaker exciton binding energies have

been observed only for the isoelectronic P-B complexes, which are not expected to have

donor or acceptor activity.(96)

According to the calculations of Ref. 112, the C-P bond lengths around a substitu-

tional phosphorus atom are expected to have between 109% to 112% of the ideal C-C

bond length. However, calculations with a larger numbers of atoms eventually find equal

bond lengths and Td symmetry for the isolated substitutional phosphorus donors.(91, 112)

It would therefore be intriguing to assign the isotropic center observed in P-irradiated

diamond samples(103, 104) to substitutional phosphorus donors. However, as these sam-

ples do not show n-type conductivity because of the high level of radiation damage, their

Fermi level is probably not located at 0.6 eV below the conduction band. This would be

consistent with the observation of other defects besides the 27 G split hyperfine satellites

in ESR.(103, 104) If, however, the Fermi level is below the phosphorus donor level, most

donor electrons must be expected to be trapped at other defects, leaving the shallow

donors ionized, diamagnetic, and therefore invisible to ESR. Finally, the hybridization

ratios β2/α2 of the centers listed in Tab. 6.2 can be compared to that of the P1 center

introduced in Sec. 3.3.3 with β2/α2 ≈ 3.8. The phosphorus-related centers observed in
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this work seem to undergo a less pronounced axial distortion, which would be consistent

with a more symmetrically delocalized electron wave function.

6.4 Conclusions

Effective-mass like delocalization determining the 31P hyperfine splitting in silicon clearly

does not account for the extremely low spin density, smaller than 2%, observed in the

case of the first diamond center described in this chapter (Fig. 6.6) and in those reported

previously by conventional ESR. Significantly higher spin densities of α2 + β2 ≈ 19% are

found for the second center (Fig. 6.7). However, the anisotropic part β2 ≈ 11% of this

signal still suggests a strong relaxation for this donor state, too.

It is evident from the detection scheme used that the defects observed via EDMR in

this work are strongly involved in room temperature transport in this n-type diamond

film. Theoretical modelling of the microscopic structure and hyperfine constants of these

phosphorus-related states in diamond would therefore be highly desirable.

6.5 Outlook: Alternatives to n-type diamond

At present, phosphorus is known as the shallowest donor in diamond. However, the

preparation of purely diamond-based bipolar devices is a challenge because of the low

solubility and large ionization energy of phosphorus atoms in diamond. In contrast, p-

type doping of diamond is readily available via boron acceptors located at 374 meV above

the valence band edge. This situation is the opposite of what is known about many

other wide band gap materials, such as GaN, AlN, or ZnO. For these materials, n-type

conduction occurs naturally, and p-type doping is a major challenge. It is therefore of

interest to combine both natural preferences, and to replace the n-type diamond films

with layers of other n-type materials like AlN:Si, in which the Si donors are known to

form DX centers at 320 meV below the conduction band edge.(113)

Growth and characterization of such a heterojunction device between a cubic [001]-

oriented boron-doped IIb diamond substrate and a wurtzite [00.1]-oriented silicon-doped

AlN epitaxial film has been reported recently.(114) The structural quality of this AlN film

was surprisingly good, considering the mismatch of lattice symmetries and periods, and

of the thermal expansion coefficients. Under forward bias, ultraviolet electroluminescence

at 4.8 eV has been observed from this AlN/diamond interface, and was ascribed to the

recombination of electrons and holes. In addition, strong blue light emission was observed

around 2.7 eV, and ascribed to recombination at defect states at the interface.(114)
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Figure 6.8: Bias dependence of the
EDMR signal from an AlN/diamond
heterojunction. All EDMR intensi-
ties ∆IAC have been normalized to
the DC currents IDC. The multi-
ple resonance lines observed at suffi-
ciently large forward bias are ascribed
to recombination at deep defect cen-
ters. A qualitatively different EDMR
signal is observed in reverse direction.
This is most probably related to spin-
dependent processes in the leakage cur-
rent through the space charge region.

6.5.1 Spin-dependent recombination

Apparently, the minority carriers injected into the p-n junction under forward bias are

very likely to be trapped at defects and are therefore lost for radiative recombination in

the ultraviolet energy range. The defect states responsible for this parasitic recombination

process can be identified via EDMR measurements of the spin-dependent contributions

to this recombination process, as described in Sec. 4.3.

As shown in Fig. 6.8, EDMR observed under forward bias in such a diode is indeed

sensitive enough to detect defects which cannot be observed in conventional ESR. EDMR

experiments on the AlN/diamond heterojunction of Ref. 114 at several bias voltages are

shown in Fig. 6.8. The asymmetry of this EDMR signal with respect to the bias conditions

confirms that the active defect states are confined to a region close to the heterointerface.

High leakage currents under reverse bias were already noticed from the IV-characteristics

of this particular LED device.(114) Possibly, the interface defects involved in this leakage

path dominate the EDMR signal under reverse bias. However, from the bias dependence

alone it is unclear whether the active defect levels under forward and reverse bias are

located on the AlN side of the interface, at the interface itself, or on the diamond side of

the interface.

6.5.2 Anisotropy of the EDMR signal

The symmetry of the defect state observed under forward bias can be obtained from

EDMR measurements at various orientations of the sample with respect to the magnetic
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Figure 6.9: The largest splitting of
the EDMR signal under forward bias
occurs at magnetic field orientations
close to [100]. The grey lines indicate
the anisotropy pattern calculated for
fine-structure interactions along [100]
and equivalent axes. Better agreement
with the experimental data is obtained
with a [912]-oriented fine-structure pat-
tern, as shown in Fig. 6.10.

field, as is shown for magnetic field orientations along the principal cubic axes in Fig. 6.9.

The observed pattern has the symmetry properties of the bulk diamond lattice, as EDMR

signals similar to the spectrum labelled with B0||[100] in Fig. 6.9 have been observed not

only for the orientation of the magnetic field along the [100] direction tilted by about 6◦

with respect to the surface normal, but also for one of the perpendicular [010] directions in

the sample plane. In the case of hexagonal AlN, such a similarity would necessarily imply

D⊥ = D||, and therefore the absence of axial anisotropy. Different EDMR spectra are

observed for intermediate orientations, e.g. for one of the four equivalent [111] axes tilted

by 54.74◦ towards the sample plane, and for one of the four [011] axes in the sample plane

and for one of the two [110] axes within the sample plane. This symmetry information

has been verified experimentally from EDMR signals of two rotation planes, namely a

rotation around the [01̄1] axis from [100] via [111] to [011] and a rotation around the [001]

axis from [100] via [110] to [010].

The overall intensity of the satellite lines exceeds the central line by far. Therefore,

the spin state under investigation has probably spin S = 1, and the central line does not

originate from the same defect as the outer lines. Possibly, this central line is the same,

as that observed under reverse bias. The first-order angular variation pattern calculated

for a defect with S = 1 and fine structure interactions

Dzz = −540 MHz× h, Dyy = 360 MHz× h, and Dxx = 180 MHz× h

oriented along the principal tetragonal axes ~ez||[100] and ~ey||[010] (6.8)

is shown by the grey lines in Fig. 6.9. A defect with this symmetry could fit the observed

six satellite lines at B0||[100] approximately. However, the description fails to describe

the observed spectra at most other crystal orientations. Up to now, no defect with this

symmetry has been observed in diamond, despite the large number of defects with S = 1
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reported in the literature.(25, 115) Only few low-spin defects like the tetra-interstitial cluster

I4 in silicon have been observed with this uncommon symmetry.(116) Therefore, and

because even larger fine structure splittings are observed at small tilt angles away from

the [100] axis, the angular anisotropy pattern for a lower defect symmetry with

Dzz = −600 MHz× h, Dyy = 400 MHz× h, and Dxx = 200 MHz× h

and the principal axes ~ez||[912] and ~ey||[1̄1̄5] (6.9)

has been considered and is shown by the grey lines in Fig. 6.10. Also shown there is a set

of EDMR spectra at intermediate magnetic field orientations for an axis of rotation, which

is tilted by about 5◦ from the [01̄1] axis. This pattern fits the observed line positions and

intensities much better than the pattern calculated with the fine structure parameters of

Eq. (6.8). Apparently, most line positions could be fitted reasonably well with a S = 1

center and the fine structure tensor of Eq. (6.9). A more accurate determination of the

components of the fine structure tensor and its principle axes are at present hindered

by the large number of lines and the limited signal-to-noise ratio of this experiment.

No other defects with similar fine structure parameters have been reported in diamond

before.(25, 115)

A very rough estimate for the extent of this defect structure is possible via the point

dipole approximation of Sec. 3.2.1 and with D = 3
2
Dzz ≈ −320 G × gµB. According

to Eq. (3.14), the dipolar distance between two non-overlapping spins with a total spin

S = 1 is

r = 3
√

3µ0(gµB)2/8πD = 4.42 Å . (6.10)

This dipolar distance is almost equal to the size of a = 3.57 Å of the unit cell of diamond,

which would be a typical extent of a defect complex with [100] symmetry (see Fig. 3.1c).

The true dipolar distance could be overestimated from the simple point-dipole approxi-

mation because of charge delocalization effects and the considerable off-axis component

E = 1
2
(Dxx −Dyy) ≈ −36 G× gµB.

The microscopic model for this new recombination center observed under forward bias

at the AlN/diamond heterojunction is still incomplete. However, it is clear from the

EDMR data that this center is located on the diamond side of the p-n junction. Because

the growth conditions of AlN are not expected to induce many additional defects in the IIb

diamond substrate, the defect complexes were probably already present in the substrate

before the growth of the AlN film. This assumption would not be in conflict with the lack

of an ESR signal from the diamond substrate, as the defect complex could be diamagnetic

in the Boron-doped p-type material. Only in the space charge region of the investigated

p-n junction, the Fermi level could be lifted far enough to transfer additional electrons

to this defect complex and make it visible for EDMR. This suggests that the growth of a

high-quality p-type diamond film below the n-type AlN:Si film is indispensable for better

performance of future diamond-based heterojunction devices. It also makes clear that the
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Figure 6.10: Anisotropy pattern of the EDMR signal measured under forward bias with
a rotation axis tilted by about 5◦ from the [01̄1] axis. At the orientation closest to [100], the
outer satellite groups split into pairs, which might indicate that the innermost satellites do not
belong to the same defect as the outer two groups of satellites. No appropriate set of spin
Hamiltonian parameters was found for such a scenario. Therefore, the grey lines again indicate
the line positions calculated with the parameters of Eq. (6.9), neglecting the misalignment of
the sample.

challenge of making n-type diamond films depends not only on the availability of suitable

shallow donors in diamond, but also on the quality of the diamond film itself. As long

as deep compensating defects can not be avoided, the characterization and application of

n-type diamond films will remain problematic.
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Chapter 7

The Mn3+/2+ acceptor level in

group III nitrides

As discussed in the previous chapters, hyperfine interactions of point defects are very

useful in order to verify theoretical predictions for their electronic properties like thermal

activation energies or optical absorption cross sections, which are based on calculations of

the corresponding defect wave functions.(2, 117, 118) In contrast, the investigation of the ac-

ceptor level of Mn impurities in GaN discussed in this chapter is motivated by the shape of

the electron spin wave function and the spin-spin interactions themselves. As discussed in

Sec. 3.2, direct dipolar coupling between electronic spins of several defects is weak, e.g. of

the order of 10 G×gµB ≈ 10−3 K×kB for spin concentrations around 1020 cm−3. Stronger

coupling is only possible if some spin density or induced spin polarization of one defect

can also be found at the next impurity site, so that several spin states overlap. Strongly

delocalized spin states have been observed e.g. in dilute magnetic semiconductors, which

become ferromagnetic even at high temperatures. Various coupling mechanisms, such

as spin-spin interactions mediated via band states, bound magnetic polarons, or virtual

transitions to the valence band have been suggested to mediate the remarkably strong

ferromagnetic interactions (see Sec. 7.5). However, the dominant mechanism is still under

debate. From a fundamental point of view, a better understanding of the ferromagnetic

coupling could be obtained from materials for which the coupling is particularly strong,

and from a systematic variation of the essential properties of the spin wave functions in

a series of similar materials.

Technologically, there is great interest in the optimization of the spin wave function

properties to improve the stability of the magnetic interaction up to room temperature.

Semiconductor materials showing ferromagnetism at high temperatures are one of the

basic prerequisites for the realization of a new class of electronic devices, which utilize

both the charge and spin degrees of freedom, and are therefore also called “spintronic”

devices.(119, 120) Using spin injection into a non-magnetic light emitting diode, the genera-

tion of spin polarized currents has e.g. been demonstrated with the help of ferromagnetic

97
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Figure 7.1: The neutral Mn acceptor
state in GaAs is composed of an effective-
mass acceptor state and of a core of highly
localized 3d electrons. As shown by ESR in
Ref. 134, the antiferromagnetically coupled
neutral acceptor state with j = S − J = 1
is lowest in energy. Ferromagnetic interac-
tions exist between the acceptor states of
adjacent Mn sites in case of overlapping hole
states.

Ga1−xMnxAs contacts at low temperatures.(121) Particularly high Curie temperatures

Tc have recently been predicted for the diluted magnetic semiconductor (DMS) mate-

rial GaN:Mn and other wide bandgap-semiconductors upon heavy Mn doping, if Mn

doping could provide a sufficient number of localized spins as well as itinerant holes in

the valence band.(122, 123) Due to the large potential of room-temperature ferromagnetic

semiconductors in spintronic devices, this perspective has triggered significant research

activities.(124, 125, 126, 127, 128, 129, 130, 131, 132, 133) Recently, ferromagnetism at high temper-

atures has indeed been reported in epitaxial GaN:Mn films,(125) but despite their high

Mn concentration, these films still show n-type conductivity, which contradicts the as-

sumption that Mn provides valence band holes similar to a shallow acceptor level in

GaN. In contrast, it has been established previously that effective-mass acceptor states

are formed by substitutional MnGa in GaAs:Mn in such a way that bound holes do not

recombine with the core electrons from the half-filled 3d shell. As shown in Fig. 7.1,

the neutral Mn acceptor in GaAs instead consists of a core of highly localized 3d elec-

trons and of an extended hole state with their respective magnetic moments coupled

antiferromagnetically.(134) Long-range ferromagnetic coupling between the randomly dis-

tributed Mn spins is enabled via the large spatial extent of the effective-mass holes.

As in the case of GaAs,(134) electron spin resonance (ESR) experiments are essential

to examine the microscopic nature of the Mn electronic states in wide band-gap semi-

conductors. The ESR results obtained on the Mn2+ spin states in GaN and AlN films

in this work will be presented in Sec. 7.3, and discussed with respect to ESR studies

reported previously for Mn2+ in nominally undoped GaN bulk crystals.(135, 136, 137) No

indication for the ESR signal of neutral acceptors was observed in our films. This does

not necessarily indicate a diamagnetic Mn3+ ground state. Most probably the crystal field

splitting of the corresponding Kramers doublets could become broadened or shifted out of

the energy range of an ESR spectrometer. Therefore, the Mn3+ ground state and excited

states have been investigated by optical measurements at much larger energies. Optical

studies of GaN:Mn reported previously,(128, 138) have also indicated a deep Mn-related
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Figure 7.2: Schematic configuration of valence electrons in tetrahedrally coordinated III–
V and II-VI semiconductor materials. In a covalent picture, the number of valence electrons
contributed from each element to the bonds is given by its column in the periodic table. The
bonds then become polarized because of the different electronegativity of the bonding partners.
In the hypothetical case of complete ionization, this corresponds to threefold and twofold ionized
cations, e.g. Ga3+ or Zn2+.

level and identified it tentatively with Mn2+. However, a reliable microscopic identifica-

tion of the optically active Mn-related gap state is essential to understand whether the

exchange mechanism given in Ref. 122, which is based on the coexistence of Mn2+ spins

and extended holes, could take place in GaN:Mn.

After a brief introduction to the concepts and the nomenclature used in the liter-

ature for transition-metal states in semiconductors in Sec. 7.1, and a summary of the

most important details of the growth of the GaN:Mn films investigated in Sec. 7.2, the

information about the Mn2+ ground state in GaN and AlN obtained from ESR experi-

ments will be discussed in detail in Sec. 7.3, and the information about the location of

the Mn3+/2+ acceptor level and an excited (Mn3+)* state obtained from optical measure-

ments in Sec. 7.4. The consequences which can be drawn from these observations for the

prospects of carrier-mediated ferromagnetism in GaN will then be outlined in Sec. 7.5.

7.1 Transition-metal states in semiconductors

For the description of transition-metal states in semiconductors, the physics of a contin-

uum of electronic states must be combined with the physics of a many-electron system

in a consistent way. The nomenclature for the resulting transition-metal states, and the

typical problems arising from a simplified description of such different systems adopted for

the experimentally observable parameters, will be introduced at a qualitative level in this

section. More profound introductions into this field can be found in Refs. 15, 118, 139, 140,

which are highly recommended for a more detailed discussion.

In III–V and II–VI semiconductors with zinkblende or wurtzite crystalline structures,
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Figure 7.3: A Mn atom with five 3d electrons and two 4s valence electrons on a group
III lattice site lacks one valence electron. This results in a hole, which is located either in the
bonds, i.e. in the valence band (left side), or is transferred to the Mn 3d shell (right side). A
combination of the properties of these two extremes is expected for realistic hole states.

the elements from one column of the periodic table, e.g. the group III cations, are tetra-

hedrally coordinated with elements from the other row of the periodic table, e.g. the

group-V anions, as shown for the zinkblende structure in Fig. 3.1. As shown schemati-

cally in Fig. 7.2, three of four valence electrons per atom are contributed from the group

III elements in III-V materials, and two from the group II elements in II-VI materials.

Unlike in group-IV materials, where both bonding partners are equivalent, the electron

clouds of the bonds are polarized, and shifted towards the group V or group VI anions

because of their higher electronegativity. To preserve charge neutrality during substitu-

tion of the cations with transition-metal impurities, it is important to track the number

of electrons contributed to the valence states from each element before substitution. This

is most easily done in the ionic picture, using the (formal) oxidation states Ga3+ and N3-

of the bonding partners. In reality, the bonding partners are of course much less ionized

than the anions and cations in salts like Na+Cl-.

The electronic configuration of neutral Mn atoms is [Ar]3d54s2, where [Ar] denotes

the electronic configuration of Ar, i.e. filled inner shells up to 3p6. Regarding only the

two outer electrons as valences and the five 3d electrons as core states, Mn is therefore

isoelectronic to the group II elements of Fig. 7.2 and can be substituted for other group

II elements without any electronic change. In III–V semiconductors, however, Mn lacks

one of the valence electrons, which was contributed from the group III cation before

substitution. In the semiconductor language, this would be considered as a divalent

acceptor impurity on a trivalent site, which introduces a hole in the valence band, as

shown on the left hand side of Fig. 7.3. As the formal charge associated with the Mn2+

core is more negative by one electron compared to the formal charge of the group III

cations, the valence band hole is not completely free to move through the crystal, but is

weakly attracted to the Mn atom. However, its shape and extend is dominated by the



7.1. TRANSITION-METAL STATES IN SEMICONDUCTORS 101

E
F

cb

vb

Mn

cb

E
F +

-

Mn 2+h+ +

3+

Figure 7.4: Energy diagrams for the two cases shown in Fig. 7.3. The d states of Mn are
filled with electrons from the valence band only, if they are located below the valence band
edge (left side). In a hole picture this charge transfer can be written formally as Mn3+(d4) →
Mn2+(d5)+ h+. In GaAs, the thus created band-like holes are then weakly attracted by the
local negative charge of the Mn2+ centers, so that a weakly coupled effective-mass like state is
formed. As shown on the right, the reverse process Mn2+(d5)+ h+ → Mn3+(d4) is expected
to occur for transition-metal states located within the band gap. In this case, the Fermi level
remains above the valence band edge, and the presence of Mn2+ is possible only with additional
electrons from the conduction band, i.e., Mn3+(d4) + e- → Mn2+(d5). In such a system, the 3d
states act as localized trap states for carriers in the bands.

sp3-like valence band states, similar to the effective-mass states introduced in Sec. 2.1.1.

It is itinerant, e.g. it occupies the valence band when ionized from the Mn2+ site, as

shown in a schematic energy diagram in Fig. 7.4. This situation has been confirmed

experimentally for Mn acceptors in GaAs:Mn.(134)

On the right hand side of Fig. 7.3, the hole in the valence band has been filled by one

electron from the Mn 3d shell. This charge transfer of the hole from the valence band to

the Mn2+(d5) core leads to a Mn3+(d4) core instead. It is energetically favorable, if the

valence band states are at lower energy than the Mn 3d shell, as shown on the right hand

side of Fig. 7.4. Compared to complete band structure calculations, the reduction of the

Mn acceptor state to purely d-like core states and purely sp3-like valence states appears

somewhat artificial, as the true valence electron density is composed of all of these states.

Realistic defect wave functions are therefore expected to combine the properties of the

limiting cases shown in Figs. 7.3 and 7.4. However, very different ionization energies and

ground state degeneracies are expected in the limiting cases, as in the Mn2++h+ ground

state, the Mn2+ core has a spin S = 5/2 and no angular momentum, and the valence

band hole has the total angular momentum J = 3/2. The antiferromagnetically coupled

ground state of Mn2++h+ has a total angular momentum j = S − J = 1, as shown in

Ref. 134. In contrast, the spin of Mn3+ is expected to have the spin S = 2 and the angular

momentum L = 2. The latter is, however, quenched by the crystal field or the Jahn-Teller
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III–V 3d3 3d4 3d5 3d6 II–VI

A- - Cr1+ Mn1+ A-

A- Cr2+ Mn2+ Fe2+ A0/D0

A0/D0 Cr3+ Mn3+ Fe3+ D+

D+ Mn4+ Fe4+ D+ +

Spin 3/2 2 5/2 2

Table 7.1: Nomenclature for transition-metal states according to the oxidation states of
free Cr, Mn, and Fe ions, and the corresponding charge states of single and double donors
and acceptors in semiconductors. The wave functions are labelled by their formal d-electron
configuration, although the neighboring host atoms contribute significantly to the impurity
ground state wave function. Similar as for the free ions, the high-spin ground states predicted
by Hund’s rule are observed for these transition-metal impurity states and included in the table.

effect in most cases, e.g. for GaAs:Cr2+(d4).(15)

The negatively charged acceptor state Mn2+ will occur in both cases, if additional

electrons are provided from the conduction band or from shallow donors:

e- + Mn2+(d5)+h+ → Mn2+(d5)

or e- + Mn3+(d4) → Mn2+(d5) .

Single and double donor levels D0/+ and D+/++, and single and double acceptor levels A0/-

and A-/- - are associated with the different oxidation states of Cr, Mn, and Fe transition-

metal impurities in III-V and II-VI semiconductors, as compiled in Tab. 7.1. Therefore,

the ionization processes of donors and acceptors can be observed as the charge-transfer

processes

D0(Cr/Mn/Fe)3+ → D+(Cr/Mn/Fe)4+ + e-

and A0(Cr/Mn/Fe)3+ → A-(Cr/Mn/Fe)2+ + h+

in III–V materials, and as

D0(Cr/Mn/Fe)2+ → D+(Cr/Mn/Fe)3+ + e-

and A0(Cr/Mn/Fe)2+ → A-(Cr/Mn/Fe)1+ + h+

in II–VI materials. Since most spectroscopic properties of the impurity states resemble

those of the free ions, screened by the host material, similar properties can be expected for

the neutral Mn2+ state in II–VI materials, and the negatively charged Mn2+-acceptor in

III–V materials.(118, 140, 141, 142) Consequently, the wave functions are labelled according

to their formal d-electron configuration, even if the neighboring host atoms contribute

significantly to the impurity ground state wave function. Similar to the free ions, the

high-spin ground states predicted by Hund’s rule are observed for these transition-metal

impurity states and included in the Tab. 7.1.
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Td {E} {3C2} {6σ} {6S4} {8C3} Basis functions

A1 1 1 1 1 1 xyz

A2 1 1 −1 −1 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y4)

E 2 2 0 0 −1 {(x2 − y2), z2 − 1
2
(x2 + y2)}

T1 3 −1 −1 1 0 {x(y2 − z2), y(z2 − x2), z(x2 − y2)}
T2 3 −1 1 −1 0 {x, y, z}

Table 7.2: Character table of the tetrahedral point group Td with the basis functions of the
irreducible representations A1, A2, E, T1, and T2 (from Ref. 1). The 24 symmetry operations
of Td are divided into five classes containing the identity operation {E}, the two-fold rotations
{3C2} and the four-fold improper rotations {6S4} about the [100] axes, the reflections {6σ} on
the (110) planes, and the three-fold rotations {8C3} about the [111] axes. Note, that the Koster
notation Γ1, Γ2, Γ3, Γ4, and Γ5 is often preferred to the molecular notation A1, A2, E, T1, and
T2 for band structure calculations. The character tables of the double group required to include
spin-orbit interactions are also given in Ref. 1.

C3v {E} {3m} {2C3} Basis functions

Λ1 1 1 1 x+ y + z

Λ2 1 −1 1 xy(x− y) + yz(y − z) + zx(z − x)

Λ3 2 0 −1 {(x− y),
√

2
3
[z − 1

2
(x+ y)]}

Table 7.3: Character table of the point group C3v, which has a lower symmetry and less
irreducible representations than Td (from Ref. 1). In particular, the symmetry classes {3C2}
and {6S4} are missing here. Besides this, the irreducible representations Λ1, Λ2, Λ3 correspond
to A1, A2, and E of the Td point group. Using the orthogonality betweens the rows of Tab. 7.2,
one finds that under trigonal distortion the representations T1 and T2 of Td split into Λ2 + Λ3

and Λ1 + Λ3, respectively.

Up to now, the Mn d-states were treated to be located at a single energy level above or

below the valence band edge, neglecting electron-electron interactions completely. How-

ever, the interactions between the d electrons of free transition-metal ions are known to

be of the order of tens of eV. According to Hund’s rules, the high-spin states of Tab. 7.1

are expected as ground states of the complex many-electron transition-metal systems. In

the absence of crystal fields, the total orbital degeneracy and the angular momentum of

these states is labelled by the spectroscopic notation with capital letters S, P, D, F, G,

. . . for the total angular momentum L = 0, 1, 2, 3, 4, . . . , respectively, according to the

L-S or Russell-Saunders coupling scheme. As the effect of spin-orbit coupling is small

compared to the energy differences between orbitals with different values of L, this addi-

tional interaction is usually treated by perturbation theory for ions of the transition-metal

series.

The arrangement of the nearest cations in III–V or II-VI semiconductors is approxi-
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Figure 7.5: In a tetrahedral
environment the orbitals of a sin-
gle d-electron are split into the e-
orbitals dx2−y2 and dz2 , and the t2
orbitals dxy, dxz, and dyz known
from textbooks on quantum me-
chanics. As the t2-orbitals would
be closer to four anions in a tetra-
hedral configuration, their energy
is higher for electrons on substitu-
tional cation sites in tetrahedrally
coordinated semiconductors (from
Refs. 143, 144).

term S P D F G . . .

(2L+ 1) (1) (3) (5) (7) (9) . . .

Td A1 T2 E + T2 A2 + T1 + T2 A1 + E + T1 + T2 . . .

C3v Λ1 Λ1 + Λ3 Λ1 + 2Λ3 Λ1 + 2 Λ2 + 2 Λ3 2 Λ1 + Λ2 + 3 Λ3 . . .

Table 7.4: Irreducible representations spanned by the tetrahedral point group Td and the
C3v point group of the wurtzite lattice. As introduced in Tabs. 7.2 and 7.3, the one-dimensional
representations are designated by A1,2, and Λ1,2, the two-dimensional representations by E and
Λ3, and the three-dimensional representations by T1 and T2.

mately tetrahedral, i.e. the environment and orbital eigen-states belong to the Td sym-

metry group with only small corrections of lower symmetry. Therefore, the multiplicities

and symmetries of the 2L + 1-fold degenerate many-electron states can be summarized

in Tab. 7.4 according to the irreducible representations defined by the character table

(Tab. 7.2) of Td.
(1, 145) For a system with only one d electron like Mn6+(d1) or Ti3+(d1),

there are two e orbitals dx2−y2 , and dz2 , which belong to the two-dimensional irreducible

representation E of the five-dimensional rotation group, and three t2 orbitals dxy, dxz,

and dyz, which belong to the three-dimensional irreducible representation T2. These

well-known atomic one-electron d-orbitals are shown in Fig. 7.5. For an octahedral con-

figuration of negative point charges on the coordinate axes, the energy of the e orbitals

with their charge density concentrated mainly on the coordinate axes will be increased

more than the energy of the t2 orbitals, whose charge density is mainly concentrated be-

tween the axes. In the opposite way, a cubic or tetrahedral arrangement of point charges

between the coordinate axes is expected to make the e orbitals energetically favorable

with respect to the t2 orbitals. Both arrangements are closely related, considering that

additional positive point charges can be introduced in between the negative point charges
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Figure 7.6: The degeneracies of transition-metal states in a crystal field of tetrahedral sym-
metry are depicted in “Tanabe-Sugano” diagrams(146) and labelled according to the irreducible
representations of Tab. 7.4, which is a somewhat different nomenclature than the original one
of Ref. 146. The free ion states are labelled S, P, D, . . . according to their total angular mo-
mentum, and are indexed by their spin degeneracies 2S + 1. According to Hund’s rules, the
free ion state with highest spin and lowest angular momentum is at the lowest energy. In the
presence of a tetrahedral crystal field, these orbital degeneracies are lifted, and the states must
be classified by the irreducible representations A1,2, E, and T1,2 of the Td symmetry group. The
symmetry considerations apply even in a semiconductor environment, although the point-charge
approximation of crystal field theory breaks down there.

to preserve charge neutrality. These are naturally arranged on the corners of a cube for

an octahedral arrangement of negative point charges on the face centers of the cube, and

vice versa. The main difference between tetrahedral and octahedral crystal fields besides

this opposite sign is, that for point charges at the same distance the tetrahedral crystal

field is only 4/9 as large as the octahedral crystal field. The energy considerations for the

single-electron orbitals also apply for many-electron systems, if the effects of the crystal

field is much stronger than electron-electron interactions responsible for the level split-

ting of the free ion. In this high-field limit, the energy of an electronic configuration is

dominated by the number of electrons occupying t2 and e orbitals respectively. For large

tetrahedral crystal fields, the lowest energy is therefore expected for the highest number of

electrons in e orbitals. This configuration does not necessarily correspond to a high-spin

ground state according to Hund’s rules.

The energy levels at intermediate crystal fields are summarized in the so-called

“Tanabe-Sugano” diagrams calculated first in Ref. 146, and shown schematically for Mn3+

and Mn2+ in Fig. 7.6. The states are labelled according to their spin degeneracy with the

upper left index, and with capital letters for the A1,2, E, and T1,2 representations accord-

ing to their orbital degeneracy (see Tab. 7.4). The energy splitting of the free ion terms,
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can be adjusted via the so-called Racah-parameters. For other than the trivial cases of an

empty or completely filled d shell, the diagrams must be calculated by matrix diagonaliza-

tion for each particular number n of d-electrons separately. The configurations dn(txen−x)

with n = 1 . . . 9 electrons in tetrahedral crystal fields are characterized by the number of

electrons in t-orbitals x = 0 . . . 6, and the number of electrons in e-orbitals n−x = 0 . . . 4,

which dominate the energies in the limit of high crystal fields. The Tanabe-Sugano di-

agrams for the configurations dn(txen−x) in tetrahedral fields, as shown in Fig. 7.6, are

qualitatively the same as the corresponding diagrams for n holes, i.e. 10 − n electrons,

in an octahedral crystal field, which are more commonly found in the literature,(9, 13, 145)

as far as spin-orbit interactions are neglected. The (txen−x) many-electron terms then

correspond to the (t6−xe4−(n−x)) terms in the hole picture. Similarly, the lowest T2 and

E terms with four of the five spin-up orbitals occupied have the same degeneracy as one

single electron occupying a t2 or e orbital, however, the energy difference between the

two levels is reversed, as the remaining spin-up level remains unoccupied, i.e. occupied

by a single t2 or e-like hole, for which the electrostatic repulsion discussed before for a

single electron turns into electrostatic attraction. This explains the similarities of the

d1(e1) ground state orbital with the d6(5E, t3e3) ground state and the d4(5E, t3e1) excited

state, and of the d1(t1) excited state orbital with the d6(5E, t4e2) excited state and the

d4(5E, t2e2) ground state.

For clarity, all energies are shown in Fig. 7.6 without subtraction of the respective

ground state energy. In the more usual diagrams, the slopes of all lines change at the

dashed line, where one of the low-spin states reaches a lower energy than the high-spin

ground state at lower fields. Typically, the crystal fields present in semiconductors are

too weak to reach this limit, although they are often predicted erroneously from LSDA

calculations.(2, 118) However, this limit is often reached in molecules. The energy axes

have been scaled with the electron repulsion Racah parameters BMn2+ = 960 cm−1

and BMn3+ = 1140 cm−1 of the free Mn ions. For GaN:Mn2+, a reduction down to

BGaN:Mn2+ = 726 cm−1 has been estimated in Ref. 22. For comparison with other

transition-metal ions, it is interesting to note that BCr2+(d4) is typically about 20% smaller

than BMn3+(d4), and BFe3+(d5) about 10% larger than BMn2+(d5). There is some confusion

in the literature(9) concerning the low-spin ground state of Mn3+(d4) at high tetrahedral

crystal fields. According to Ref. 147, not the 3T1(te
3), but the 1A1(e

4) level crosses the
5T2(t

2e2) level first, so that the ground state has either the spin degeneracy S = 2 or

S = 0. The T1,2 levels in tetrahedral symmetry split even further in crystal fields of lower

symmetry like the C3v configuration of the wurtzite lattice of GaN (see Tab. 7.4).

In Sec. 7.3, we will show that the ground state of Mn2+ has spin S = 5/2 and no orbital

degeneracy in group III nitrides, i.e. its electronic configuration is 6A1(t
3e2) without the

influence of spin-orbit interaction and of axial crystal fields. These perturbations result

in the admixture of excited states to the spherically symmetric 6A1 ground state, which
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enter the spin Hamiltonian parameters, and can be understood quantitatively by the

superposition model of crystal fields.(148) The 6A1 ↔ 4T1 transition to the first excited

state 4T1(t
2e3) is spin-forbidden, but it has been observed for Mn2+ in other materials. In

GaN, this state is probably located within the conduction band. As discussed in Sec. 7.4,

an excited state of Mn3+ is observed for GaN:Mn and AlN:Mn, which is most probably

the 5E(t3e) state of Fig. 7.6. This observation strongly supports the assignment of Mn in

group III nitrides to a deep trap state, which makes the achievement of carrier-mediated

ferromagnetism improbable for GaN:Mn, as discussed in Sec. 7.5.

7.2 Growth of GaN:Mn films

The samples under investigation were grown by plasma-induced molecular beam epitaxy

(PIMBE) on 2 inch c-plane oriented sapphire, as described in detail in Ref. 149. The

substrates were metallized on the backside by Ti/Pt (800 nm/ 80 nm) to ensure a ho-

mogeneous temperature profile over the whole wafer.(150) After growth of a 10 nm thick

AlN nucleation layer, Mn-doped GaN films with Ga-face polarity and a thickness of about

1.2 µm were deposited at a growth rate of 1.5 Å/s. In order to vary the Mn concentration

of different GaN samples without changing the growth rate, the substrate temperature

was lowered from 820 to 690◦C, and the beam equivalent pressure (BEP) of the Ga-flux

from 1.3 × 10−5 to 4 × 10−6 mbar, respectively in a series of eight samples. A series of

AlN:Mn samples was grown at a substrate temperature of 850◦C and varying the Mn flux

only. For all GaN:Mn samples discussed here, the Mn-flux was kept constant at about

2.0× 10−7 mbar BEP. Nitrogen radicals were provided by an Oxford plasma source oper-

ated at an input power of 425 W and a nitrogen flux of 2 sccm, which resulted in process

pressure of 3× 10−5 mbar inside the MBE chamber. All samples were grown under metal

rich conditions, which caused the formation of metallic Ga, Mn, or GaMn droplets at low

substrate temperatures. The droplets were removed from the GaN:Mn epilayer surface

by HCl etching at 50◦C. To investigate the effect of additional codoping with shallow

donors, some samples were grown at the conditions mentioned above with simultaneous

incorporation of Mn and Si at a substrate temperature of 820◦C.

The crystalline quality of all films was investigated by x-ray diffraction (XRD) with

the results shown in Fig. 7.7. Typically, the full width at half maximum of the (00.2)

reflex for GaN:Mn layers was about 500 arcsec for rocking curves (Ω scans) and 50 arcsec

for 2Θ-Ω scans. Only at the lowest growth temperature (690◦C), metal clusters were

observed in the GaN film with an optical microscope, and the presence of a second phase,

possibly Mn3N2, became visible in the x-ray diffraction pattern (upper trace in Fig. 7.7).

The widths of the (00.2) x-ray diffraction peaks confirm the structural quality of the GaN

and AlN films. They would correspond to variations of the out-of plane lattice constant

c of about 0.04%, if they were caused by a spread of c only.
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Figure 7.8: Reciprocal space maps of the asymmetric (20.5) reflex of GaN:Mn grown at
Ts = 690◦C, of GaN:Mn:Si grown at Ts = 820◦C, and of AlN:Mn. The bulk lattice constants
are indicated by dotted lines. Because of the lattice mismatch to the sapphire substrate and
the mismatch of the respective thermal expansion coefficients, the a lattice constant of the GaN
films is reduced and the c lattice constant increased compared to the bulk values.

As reported for example in Ref. 151, the lattice mismatch to the sapphire substrate

and the mismatch of the respective thermal expansion coefficients causes biaxial strain

in GaN and AlN thin films. In addition, hydrostatic strain is expected at high doping

concentrations. Therefore, the in-plane lattice constant a of expitaxial GaN films on

sapphire is typically compressed with respect to the bulk value a0 = 3.1878 Å, and

c is expanded with respect to c0 = 5.1850 Å.(151) These changes were monitored in

reciprocal space maps of the asymmetric (20.5) reflex for all samples investigated here.

The relative deviations of the in-plane lattice constant εa = (a − a0)/a0 varied from

−0.04% to −0.25%, and the deviations in growth direction εc = (c − c0)/c0 from 0.03%
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to 0.15%, with the codoped GaN:Mn:Si samples grown at 820◦C showing the largest

strain. A linear dependence between both relative changes with εc/εa = −0.6 ± 0.02

is observed for the investigated films, which corresponds to the effective Poisson ratio

ν = −(εc/εa)/[(εc/εa)− 2] = 0.23 reported earlier in Ref. 151

Electrical measurements on the uncompensated GaN:Mn layers were performed with

interdigitated Ti/Al contacts with a spacing of 50 µm. Their high resistivity prohibits

unambiguous Hall measurements on this type of samples. Even at Mn concentrations

around 1020 cm-3, their resistivity is so high that the formation of an impurity band and

a metal-insulator transition can be excluded. This allows estimation of an upper limit of

the localization radius of the acceptor states to less than 1 nm. The dark conductivity

is thermally activated with about 370 meV, with absolute conductivities ranging from

σ(T = 170 K) ≈ 3 × 10−14 (Ωcm)−1 to σ(T = 500 K) ≈ 10−6 (Ωcm)−1. Possibly this

activation energy is determined by hopping conductivity through other defect levels rather

than the Mn impurities under investigation. The low dark conductivity enables a dynamic

range of many orders of magnitude for the photoconductivity measurements discussed in

Sec. 7.4.1.

7.2.1 Elastic recoil detection

The total amount of Mn incorporated into the samples was determined by elastic recoil

detection (ERD)(152) and is shown by closed symbols in Fig. 7.9. Because of the high ion

energies of 100-250 MeV used here, ERD is insensitive to the Mn position, either in the

GaN lattice, in micropipes, or small metallic clusters. Note that ERD does not require

a calibration standard like secondary ion mass spectroscopy (SIMS), and is sensitive to

Mn concentrations of about 1017 cm−3. Within the depth resolution of 30 nm of ERD,

the samples were found to be homogeneously doped with Mn. The concentration of

other unintentionally introduced impurities was 1018 cm-3 for O and 1017 cm-3 for Si at

maximum. In the non-codoped GaN:Mn samples, the Mn concentrations observed were

between 5 × 1019 and 6 × 1020 cm−3, and decreased slightly with an increase in growth

temperature. Possibly a small contribution by other phases like Mn4N, Mn2N, MnN,

MnO, and Mn3N2 is included in this total Mn concentration at low growth temperatures

besides substitutional Mn on Ga lattice sites.(153) Therefore, the ERD results provide an

upper limit for the real substitutional Mn concentration. In samples codoped with Mn

and Si, concentrations of 3× 1019 cm−3 were determined by ERD for both dopants.

The concentration of Mn atoms per cm3 is often quoted in the literature as a fraction

of the number of Ga sites in GaN. There are two Ga sites in the unit cell of GaN with a

volume

c× a× a
2

√
3 = 5.185 Å× (3.1878 Å)2 × 0.8660 = 45.63 Å

3
. (7.1)

Therefore, the concentration of Ga sites in GaN is 4.38× 1022 cm−3, and a concentration
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Figure 7.9: Total Mn con-
centration determined by ERD
in comparison with spin densities
measured by ESR. The large dif-
ference observed for GaN:Mn at
high growth temperatures is at-
tributed to the dominance of the
Mn3+ charge state. Codoping
with Si donors removes this dif-
ference in concentration because
Mn3+ is converted to Mn2+ by
compensation.

of Mn atoms of 1020 cm−3 corresponds to an occupation of 0.23% of the Ga sites with Mn

atoms.

It still is unclear at this point whether these Mn atoms indeed occupy substitutional

Ga sites of the GaN crystal structure, or perhaps aggregate in microscopic Mn-containing

clusters embedded in the GaN matrix. The defect wave function and the magnetic and

optical properties of substitutional Mn atoms will furthermore depend strongly on the

oxidation state, which cannot be determined from ERD. Experiments concerning the

structural environment, spin states, and the electronic structure of Mn ions in group III

nitrides will be discussed in detail in the following sections. Before going into detail,

we will first give a brief outline of the conclusions which can be drawn from the various

experimental observations:

SQUID measurements (see Sec. 7.2.2) of the magnetic properties of our GaN:Mn thin

films are challenging because of the small sample volumes around 5 × 10−3 cm−3.

Additionally, the paramagnetic and diamagnetic contributions from the sapphire

substrate, and possible ferromagnetic inclusions make it difficult to interpret the

mostly paramagnetic magnetization curves. The SQUID results are, however, con-

sistent with the Mn concentrations observed in ERD, if one assumes that Mn is

present as Mn2+ or Mn3+ in our films.

ESR experiments (see Sec. 7.3) provide direct microscopic information about the S = 5/2

high spin state of paramagnetic Mn2+ impurities in GaN, which substitute for Ga

with a slightly distorted tetrahedral symmetry. ESR experiments on strained films

confirm that the observed axial distortion is caused by a displacement of the Mn2+

ions of about 8.5 pm from the substitutional Ga sites.

The Mn2+ concentrations evaluated from the observed ESR intensities in Sec. 7.3.5

are included in Fig. 7.9. For the pure GaN:Mn samples, these concentrations are far

below the total Mn concentrations determined by ERD. For the Si-codoped samples,
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however, the Mn2+ concentrations determined via ESR agree well with the total Mn

concentrations from ERD. This confirms that not the negatively charged acceptor

state Mn2+(A-), but the neutral acceptor state Mn3+(A0), or a Mn2++h+(A0) com-

plex (see Fig. 7.3) are present in the pure GaN:Mn samples. Unfortunately, A0

seems to be invisible in X-band ESR.

Optical absorption measurements (see Sec. 7.4) of the pure GaN:Mn samples with

[Mn]ERD ≈ 1020 cm−3, but with [Mn2+]ESR ≈ 2× 1018 cm−3 show two characteristic

absorption bands at 1.5 eV and 1.8 eV. Based on photoconductivity measurements,

the two transitions are assigned to a 5T2 → 5E internal excitation of Mn3+, and to

the charge-transfer process Mn3+ +hν → Mn2++h+, respectively. According to this

assignment, the Mn3+/2+ acceptor level is located at 1.8 eV above the valence band

edge of GaN, which can be understood qualitatively from the concepts established

previously for other transition-metal impurities in semiconductors. Based on these

concepts, the prospects for carrier-mediated ferromagnetism will be discussed in

Sec. 7.5 in view of the qualitative difference between the very deep Mn3+/2+ acceptor

level in GaN:Mn compared to GaAs:Mn, where Mn is known to form effective-mass

like acceptor states.

7.2.2 SQUID measurements

As is usual in studies of diluted magnetic semiconductors,(124, 125, 138) the magnetization of

the samples was investigated by superconducting quantum interference device (SQUID)

measurements at temperatures down to T = 2 K and at magnetic fields up to 7 T.

The temperature dependence of the magnetization of two GaN:Mn samples grown at

Ts = 820◦C and Ts = 740◦C is shown in Figs. 7.10 and 7.11. For the samples grown at

high temperatures, it can be well described by the Brillouin function

M(T,B) = NgµB

[
(S + 1

2
) coth

gµBB(S + 1
2
)

kBT
− 1

2
coth

gµBB

2kBT

]
(7.2)

for the equilibrium magnetization of an ensemble of paramagnetic states. This magneti-

zation follows Curie’s law at high temperatures and saturates at low temperatures and

large magnetic fields

M(T,B) ≈


NgµBS at gµBB � kBT

N
g2µ2

BB

kBT
S(S + 1) at gµBB � kBT .

(7.3)

For g ≈ 2, the critical temperature per applied field is about gµB/kB ≈ 1.3 K/T, which

makes it possible to estimate the spin density N from the saturation magnetization at

T = 2 K and B = 7 T.
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Figure 7.10: Magnetic moments detected by SQUID measurements at T = 2 K, T =
20 K, and T = 300 K of GaN:Mn samples grown at Ts = 820◦C and Ts = 740◦C. The large
diamagnetic background from the sapphire substrate has been subtracted from all curves. The
jump at zero magnetic field in all curves is most probably caused by trapped flux quanta in the
superconducting magnet that show up as magnetization after a linear background subtraction.
A close-up of the region around zero magnetic field is shown in Fig. 7.11.

The results for GaN:Mn at the two extreme growth temperatures Ts = 690◦C and

820◦C, for GaN:Mn:Si and for an undoped GaN reference sample are shown in Fig. 7.12.

As in Figs. 7.10 and 7.11, the linear diamagnetic background due to the sapphire substrate

was subtracted from all curves. From the Brillouin shape of the magnetization curves, it is

clear that all samples investigated here are mostly paramagnetic. However, a small step-

like contribution to the magnetization curve is observed up to room temperature for the

GaN:Mn sample grown at Ts = 690◦C. We attribute this to a ferromagnetic MnxNy minor-

ity phase similar to the phases reported for microcrystalline GaN samples before etching

in aqua regia.(124, 153) A paramagnetic contribution is also observed in the magnetization

curve of the undoped GaN sample. This contribution is related to transition-metal impu-

rities in the sapphire substrate, which are also clearly visible in ESR, and which are not

eliminated by linear background correction of the diamagnetic contribution of the sub-

strate. Despite the low concentration of these impurities, their contribution to the total

magnetization cannot be neglected, because the thickness of the substrate is much larger

than that of the GaN film. However, to enable a better comparison between the signals

from the GaN:Mn samples and the background contribution from the substrate, the refer-

ence data have also been divided by the volume of the GaN film rather than by that of the

substrate. Taking into account this background contribution and assuming a high-spin
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Figure 7.11: The magnified curves of Fig. 7.10 show more clearly the jump at zero magnetic
field and the hysteresis below T = 20 K of the sample grown at Ts = 740◦C. As discussed in
detail in Ref. 154, part of this magnetic moment is observed to decay slowly on a timescale of
hours at T = 2 K, and therefore indicates a spin-glass state of GaN:Mn.

configuration of the Mn ions with S = 2− 2.5 and g ≈ 2 for both Mn2+ or Mn3+ centers,

we find good agreement between the total Mn concentrations [Mn] = Msat/(gµBS) with

the Bohr magneton µB = 9.3×10−21 emu, determined from the saturation magnetization

Msat indicated on the right axis of Fig. 7.12, and the total Mn concentrations determined

by ERD. As is obvious from the temperature-dependent SQUID measurements shown in

Fig. 7.10, about 20-30% of the Mn atoms are incorporated into ferromagnetic minority

phases also in the GaN:Mn sample grown at Ts = 740◦C. In contrast, nearly all of the Mn

contributes to the paramagnetism in the GaN:Mn and GaN:Mn:Si samples grown at higher

substrate temperatures. SQUID measurements, however, do not provide the possibility

of determining the magnetic moments or the g-factors of the contributing Mn2+ or Mn3+

oxidation states separately. This is only possible with the help of ESR measurements.

7.3 ESR of GaN:Mn2+ and AlN:Mn2+

ESR identification of Mn2+ in GaN has previously been reported in unintentionally doped

bulk crystals prepared by the sublimation sandwich method at small Mn concentrations

of 1017 cm−3.(135, 136, 137) This growth method is quite useful for the preparation of large

GaN crystals,(155) however, most device-quality epitaxial GaN films are presently grown

by molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD)

because of higher purity and better doping control. Although at first sight the ESR spec-
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Figure 7.12: Magnetiza-
tion at T = 2 K of the three
representative GaN:Mn and
GaN:Mn:Si samples. The
magnetization of the GaN
reference sample is caused
by paramagnetic impurities
in the sapphire substrate that
are clearly resolved in ESR
(see also Fig. 7.31). The
Mn concentrations indicated
on the right axis of the figure
are obtained from the satura-
tion magnetization with g ≈
2 and S ≈ 2− 2.5.

tra of our highly doped MBE-grown GaN:Mn2+ films are similar to those reported for

the lower doped bulk crystals, the extracted fine- and hyperfine-structure parameters dif-

fer significantly. The differences in the axial fine-structure parameter can be dominantly

ascribed to the biaxial strain from the substrates, as described below. Because in our

samples the degree of relaxation varies with the film thickness and the growth condi-

tions, the influence of the crystal field on the Mn2+ ground state can be studied without

application of external pressure. Some features of the numerical simulation reported in

Refs. 135, 136, 137 are neither present in the experimental spectra nor in our numerical

results. However, some additional “forbidden” transitions neglected in Refs. 135, 136, 137

have been observed in our experimental spectra. To review their origin and to describe

the spin properties of Mn2+ in GaN and AlN more accurately, a refined experimental and

numerical investigation of the spin Hamiltonian is presented here.

So far, only few other ESR studies on Mn in group III nitrides are available. In addi-

tion to Refs. 135, 136, 137, Mn-related ESR was reported in microcrystalline GaN grown

by the ammonothermal method and doped intentionally with different concentrations of

Mn.(124) In this study, the identification was restricted to the isotropic part of the ESR

spectrum, and therefore no direct evidence for the oxidation state of Mn could be ex-

tracted. Intentionally doped GaN:Mn crystals have been prepared by MOCVD (127, 128)

and MBE ,(125, 126) but to our knowledge, these samples have not been studied by ESR

yet. In polycrystalline AlN, some Mn-related ESR spectra with g-factors in the range

of 1.8-10 were reported together with Mn2+- and Mn4+- related photoluminescence.(156)

Again, no ESR anisotropy of Mn-related centers in AlN crystals was reported up to now,

which is necessary for a detailed analysis of the spin Hamiltonian. Preliminary ESR re-
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sults have also been published in Ref. 125 for the ferromagnetic GaN:Mn films of Ref. 157.

These results indicate the presence of a paramagnetic phase in these films with spin prop-

erties similar to those reported for GaN:Mn2+ in Refs. 135, 136, 137. Additionally, the

ferromagnetic resonance (FMR) signal of an unidentified second phase was observed,(157)

which is very similar to the FMR signal of MnAs clusters in GaAs:Mn.(158) No experi-

mental evidence of the presence of corresponding Mn–N clusters in GaN:Mn was found

in Ref. 157, however, the methods employed were insensitive to clusters of nm-size.(154)

In the following, we first analyze in detail the spin Hamiltonian parameters of the

pure GaN:Mn2+ and AlN:Mn2+ films, which are mostly relaxed. Later, these values are

compared with the spin Hamiltonian parameters of the more strained GaN:Mn2+:Si films

and those of the bulk GaN:Mn2+ crystal of Refs. 135, 136, 137. The spin densities of the

pure and Si-codoped GaN:Mn2+ and GaN:Mn2+:Si films are evaluated in Sec. 7.3.2.

7.3.1 Crystal field spin Hamiltonian

Starting from the [Ar]3d54s2 electronic configuration of free Mn atoms, Mn2+ denotes the

Mn oxidation state with a half-filled 3d5 shell. Within a semiconductor lattice, this for-

mally twofold ionic charge is distributed over the neighboring host valences and screened

by the valence-band electrons, so that the ionization threshold is effectively reduced in

comparison to free Mn ions.(31, 118) The electronic spin S = 5/2 of the five 3d electrons of

the Mn2+ Kramers ion is conserved and typically combined to a 6A1 ground-state config-

uration with orbital momentum L = 0. This ground state is additionally coupled to the

nuclear spin I = 5/2 of the natural isotope 55Mn.

Generally, it is incorrect to employ crystal field theory to describe the zero-field split-

ting of impurity ground states in semiconductors because of the presence of continuum

electronic states that hybridize with the atomic Mn orbitals.(15, 118) However, the phe-

nomenological form of the crystal field spin Hamiltonian is still correct, even if the true

origin of the occurring parameters fails to agree with real crystal fields.(15) Therefore, the

effective Mn2+ ground state manifold of (2S+1)(2I+1) = 36 spin states can be described

by the Hamiltonian (13, 18, 159, 160)

H = µB ~Bg ~S +D
(
S2
z − 35

12

)
+ ~SA~I

+1
6
ã

(
S4
ξ + S4

η + S4
ζ − 707

16

)
+ 7

36
F

(
S4
z − 95

14
S2
z + 81

16

)
+P

(
I2
z − 35

12

)
− µn ~Bgn~I (7.4)

with all parameters introduced in the following. As an example, the Breit-Rabi diagram

of the eigen-energies plotted as a function of the external field ~B ‖ ~ez ‖ c (lattice vector of

the wurtzite crystal) is shown in Fig. 7.13 using the parameters for g,D,A, . . . determined

for AlN:Mn2+ below.

The 36 eigen-states are denoted by ms and mi according to their Sz and Iz quantum

numbers at large magnetic fields. As indicated, the allowed transitions follow the selection
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Figure 7.13: Breit-Rabi Diagram for Mn2+ in AlN with the magnetic field ~B0 oriented
parallel to the c-axis of the film. At this orientation, the spin quantization axis is well oriented
along this direction at low and high magnetic fields because of the combined effect of the Zeeman
and the axial fine-structure interactions. The parameters used are gAlN ≈ 2.000, DAlN ≈ −8 µeV,
AAlN ≈ −0.8 µeV, and hν ≈ 40 µeV.

rule ∆ms = ±1 and ∆mi = 0 in this orientation. In X-band ESR experiments, the total

eigen-energies are mainly determined by the Zeeman energies up to gµBBms ≈ 100 µeV

forms = +5/2 and B = 3300 G. The axial crystal field parameterized byD dominates the

fine-structure of the levels in the zero-field limit. It distributes the electronic spin states

into three Kramers doublets separated by about 20 µeV, as indicated in Fig. 7.13. The

hyperfine interaction A of the electronic spin with the nuclear spin of 55Mn further splits

the energies levels by an amount of the order of 2 µeV. The fine-structure parameters ã and

F of the cubic crystal field for S = 5/2 states are even smaller and of the order of 0.1 µeV

only. Sξ, Sη, and Sζ are the spin operators rotated onto the axes of the cubic crystal

field, as discussed below. Further contributions such as the nuclear Zeeman interaction of

the 55Mn nuclei characterized by gnµn ≈ 0.000 377× g0µB (see Tab. 3.1), and the nuclear

quadrupolar interaction characterized by P give rise to even smaller energy corrections.

The nuclear spin parameters gn and P cancel out for the “allowed” electron spin resonance
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transitions, for which mi remains unchanged, but they contribute significantly to the

positions of the “forbidden” transition doublets of Eq. (7.18). Therefore, they should

be included in Eq. (7.4). However, since the nuclear properties gn and P are extremely

similar in different materials, both parameters were taken from ZnO:Mn2+(161) to also

describe the Mn2+ states in GaN and AlN.

The large number of ESR transitions, which is expected within this ground state

manifold has been studied in detail for hexagonal ZnO:Mn2+ crystals earlier. The tran-

sition intensities calculated numerically from Eq. (7.4) for ZnO:Mn2+ with DZnO =

−252.5 G× gµB, AZnO = −79.3 G× gµB, ãZnO = +6.6 G× gµB, FZnO = +1.0 G× gµB,

gnµn = 0.000 377 × gµB, and P = 0.17 G × gµB are shown in Fig. 7.14 together with

experimental ESR spectra of a ZnO bulk substrate crystal contaminated with Mn2+ and

Fe3+ impurities at concentrations around 1016cm−3. The linewidths observed in these bulk

crystals is even narrower than 0.1 G, which makes it much easier to analyze this signal

compared to the overlapping signals of the GaN:Mn2+ and Aln:Mn2+ samples discussed

below.

In the ideal wurtzite structure, the coordination of the four nearest nitrogen neighbors

is tetrahedral, but the symmetry is lowered to C3v in the group III nitrides. The most

general fine-structure Hamilton for a Mn2+ center with such trigonal symmetry can be

written as

Hfs = B0
2O0

2 +B0
4O0

4 − 2
3
B4(O0

4 + 20
√

2O3
4) (7.5)

with the crystal field operators from Ref. 13 [see Eq. (7.88) and Tab. 16]

O0
2 = 3 S2

z − S(S + 1)

O0
4 = 35 S4

z − 30 S(S + 1)S2
z + 25 S2

z − 6 S(S + 1) + 3 S2(S + 1)2

O3
4 = 1

4

[
Sz(S3

+ + S3
−) + (S3

+ + S3
−)Sz

]
. (7.6)

According to Ref. 14, an opposite sign appears at the last term of Eq. 7.5 in case of a

left-handed coordinate system with exchanged x and y in-plane coordinate axes, as used

e.g. by Ref. 18 [see Eq. (4.54)] and others.(162) The more common form(13, 14, 159) of

Eq. (7.4) is obtained from Eq. (7.5) with

ã = 120 B4; D = 3 B0
2 ; F = 180 B0

4 (7.7)

and the Spin operators

Sξ = −
√

2
3
Sx +

√
1
3
Sz

Sη =
√

1
6
Sx +

√
1
2
Sy +

√
1
3
Sz

Sζ =
√

1
6
Sx −

√
1
2
Sy +

√
1
3
Sz (7.8)

along the cubic axis indicated in Fig. 7.15, and with

S4
ξ + S4

η + S4
ζ − 1

5
S(S + 1)(3S2 + 3S − 1) = − 1

30
(O0

4 + 20
√

2O3
3) . (7.9)
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Figure 7.14: Measured ESR signal (solid lines) and calculated transition intensities of
ZnO:Mn2+ for a rotation of the magnetic field in the (10.0) plane. In the perpendicular (12̄.0)
plane, the number of lines would even be twice as large. An additional, more intense and highly
anisotropic signal belonging to Fe3+ impurities is observed as well in these crystals. These were
simulated with the spin Hamiltonian of Eq. (7.4), however with D = −637 G×gµB and without
hyperfine interactions.

Several other notations, e.g. a parameter D′ = D/3 as used e.g. in Ref. 163, and many

typical errors in the use of these parameters are summarized in Ref. 14.

The axial distortion, which is expressed by the crystal field parameter D, is assumed to

be oriented along the sample c-axis in agreement with the observed ESR signals discussed

below. For the notation (7.4) of the spin Hamiltonian, the z coordinate axis is chosen along

this axis of D and fixed with respect to the sample, although the axis of spin quantization

will rather be oriented along ~B. To investigate all possible relative orientations, the angle

θ between ~B and the c-axis of the sample is varied between 0 and 90◦ by a rotation of ~B

within the (12̄.0) and (10.0) planes, as shown in Fig. 7.15.

For the tetrahedral substitutional sites, those two rotations are indistinguishable in

quadratic terms like the Zeeman and hyperfine interaction, as the corresponding energy
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Figure 7.15: The
two magnetically
nonequivalent A and
B lattice sites of the
wurtzite lattice. The
largest cubic fine-
structure splitting
between the Mn2+

ESR of the two sites is
expected for magnetic
fields tilted by θ = 60◦

from the (00.1) axis
towards (10.0). How-
ever, this splitting is
below the experimental
linewidth of the exper-
imental data reported
for group III nitrides
here.

ellipsoids do not reflect the threefold crystalline symmetry around c. This is different for

the cubic crystal field described with three perpendicular axes ξ, η, and ζ, which are tilted

by 35.26◦ with respect to the (00.1) plane and oriented parallel to the edges of the cubes,

as indicated in Fig. 7.15.(159, 160, 161) There are two distinct cubes for the A and B site

of the wurtzite AB stacking sequence, each containing one central atom and four nearest

tetrahedral neighbors on the corners. The orientation of these cubes with respect to the

external field ~B can be expressed by a single parameter φ = l2m2 + m2n2 + n2l2 with

l, n,m being the direction cosines of ξ, η, and ζ, respectively, with respect to the field

axis.(13, 160) As can be deduced from Fig. 7.15, this parameter is symmetric with respect

to the sign of θ for rotations within the (10.0) plane and asymmetric for rotations within

the (12̄.0) plane for A and B sites, respectively. Geometrical considerations result in

φ10.0 =
1

96
[21 + 4 cos(2θ) + 7 cos(4θ)] ,

φ12̄.0 = φ10.0 ±
√

2

96
[8 sin(2θ)− 4 sin(4θ)] . (7.10)

As the anisotropy of the cubic crystal field is described in terms of φ only, its symmetry

reappears in the solutions of the spin Hamiltonian. The maximum difference between the

eigen-energies of the magnetically inequivalent A and B sites of the wurtzite lattice is

expected for a maximal splitting of φ12̄.0 at θ = 60◦ in the (12̄.0) plane.(160)
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Figure 7.16: X-band ESR spectra of Mn2+ with the magnetic field oriented parallel to
the c-axis of GaN and AlN at T = 6 K. In both spectra, five (2S) groups of six (2I + 1)
hyperfine satellites indicate the presence of 55Mn2+. Increased broadening of the outer fine-
structure groups reveals fluctuations in the zero-field splitting of about 5%. In the spectra
shown, microwave saturation helps to suppress the background ESR dominated by impurities
in the sapphire substrate.

7.3.2 Spin Hamiltonian analysis with ~B ‖ c

Most of the properties of Mn2+ in GaN and AlN are conveniently extracted from the

spectra of Fig. 7.16 at θ = 0◦, where the splitting of adjacent lines is maximum. In this

orientation, the electronic part of the Spin Hamiltonian can be diagonalized analytically,

as the axis of the crystal field D coincides with the magnetic field axis.(159, 160) The

parameters from the analysis of the spectrum at θ = 0◦ are then used in Sec. 7.3.3 to

investigate the full anisotropy of the spin Hamiltonian. Neglecting hyperfine interactions,
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one obtains the analytical eigen-energies

W±5/2 = ±gµBB + 1
3
D − 1

2
(ã− F )

±
√

[±3
2
gµBB + 3D + 1

6
(ã− F )]2 + 20

9
ã2 ,

W±3/2 = ±3
2
gµBB − 2

3
D + (ã− F ) ,

W±1/2 = ∓gµBB + 1
3
D − 1

2
(ã− F )

±
√

[±3
2
gµBB − 3D − 1

6
(ã− F )]2 + 20

9
ã2 . (7.11)

According to the first-order approximation of large microwave energies hν � |D| �
|ã− F |, the cubic crystal field parameters always occur in a combination ã− F , so that

additional measurements at intermediate angles are required for the determination of

these parameters separately. The solutions for the resonance condition hν = Wms−Wms−1

define the magnetic-field positions Bms↔ms−1 of the resonances |ms〉 ↔ |ms − 1〉. The

parameters g = hν/(µBB+1/2↔−1/2) ≈ 2.000, and D and ã − F are then calculated in

terms of these fields, which are indicated in Fig. 7.16 by the centers of gravity of the

fine-structure resonance groups:

|D| = (gµB/56) |5 (B+5/2↔+3/2 −B−3/2↔−5/2)

+4 (B+3/2↔+1/2 −B−1/2↔−3/2)| ,

|ã− F | = (gµB/28) | − 3 (B+5/2↔+3/2 −B−3/2↔−5/2)

+6 (B+3/2↔+1/2 −B−1/2↔−3/2)| . (7.12)

For the spectrum of a GaN:Mn2+ film with c = 5.187 Å and a = 3.187 Å shown in

Fig. 7.16, we find

|DGaN| = (236± 2) G× gµB = 220× 10−4 cm−1 × hc ,

|ã− F |GaN = (6± 3) G× gµB = 5× 10−4 cm−1 × hc ,

and correspondingly for an AlN:Mn2+ film with c = 4.981 Å and a = 3.112 Å

|DAlN| = (648± 3) G× gµB = 605× 10−4 cm−1 × hc ,

|ã− F |AlN = (10± 4) G× gµB = 9× 10−4 cm−1 × hc .

In units of frequency, the larger fine-structure zero-field splitting δ ≈ 4|D| between the

electronic Kramers doublets with |ms| = 3/2 and |ms| = 5/2 at B = 0 is obtained as

δ ≈ 0.66 GHz for GaN and δ ≈ 1.8 GHz for AlN. As experimentally the outer fine-

structure splittings |B+5/2↔+3/2 − B+3/2↔+1/2| and |B−1/2↔−3/2 − B−3/2↔−5/2| are larger

than the inner splittings |B+3/2↔+1/2−B+1/2↔−1/2| and |B+1/2↔−1/2−B−1/2↔−3/2|, it can

be deduced from Eq. (7.11) that D and ã − F have opposite signs. The relative sign of

D with respect to g, the latter of which is assumed to be positive because of the small

deviation from g0, has to be deduced by other means, as discussed below.
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Up to now, the hyperfine interaction between electronic and nuclear spins has been

neglected in the calculation of the eigen-energies. Treating this additional interaction

as a small perturbation, the magnetic-field offsets ∆bms,mi↔ms−1,mi
of the transitions

|ms,mi〉 ↔ |ms − 1,mi〉 from the transitions |ms〉 ↔ |ms − 1〉 resulting from Eq. (7.11)

have been calculated to third order in A in Ref. 161

∆bms,mi↔ms−1,mi
= Bms,mi↔ms−1,mi

−Bms↔ms−1

= − A
gµB

{
mi +

A
hν

[
(ms − 1

2
) mi +

1
2

(35
4
−m2

i )
]

+ A2

(hν)2

[
(35

4
−m2

i )(2ms − 1)− 1
2
mi(

35
4
− 3m2

s + 3ms − 2)
]

+ AD
(hν)2

[
(35

4
−m2

i )(2ms − 1)−mi(
35
4
−m2

s +ms − 1)
]}

. (7.13)

The hyperfine constant |A| is given approximately by the splitting of about 70 G within

one of the fine-structure groups. At X-band energies, higher-order terms are shifting the

hyperfine resonances significantly, increasing both the apparent g-factor and the effec-

tive hyperfine splitting. In Fig. 7.17, the resonance positions of the ms = 1/2 central

fine-structure group are shown according to first-, second-, and third-order perturbation

theory, i.e. including terms proportional to A
hν

, to
(
A
hν

)2
, and to

(
A
hν

)3
or A2D

(hν)3
of Eq. (7.13),

respectively. The result of a numerical diagonalization of the complete spin Hamiltonian

(7.4) for GaN and AlN is also shown. The numerical shifts ∆bms,mi↔ms−1,mi
within this

group are of the order of−6 to 0 G (−7 to +7 G) for GaN:Mn2+ (AlN:Mn2+). The constant

first-order splitting A/(gµB) has been reduced by a factor of five in Fig. 7.17 for better

visibility of the higher-order effects. Obviously, the change in |D| between both materials

influences both, the average positions as well as the splitting of the central hyperfine sextet.

According to the exact numerical calculations, |A| = (69±1)G×gµB = 65×10−4 cm−1×hc
is obtained both for the GaN and AlN spectra of Fig. 7.16. After calibration of the mag-

netic field positions with diphenyl-picrylhydracyl (DPPH, g = 2.0036), corrected g-factors

g = 1.9994± 0.0008 for Mn2+ in GaN and g = 2.0004± 0.0008 in AlN are obtained.

For other transitions than |+1/2,mi〉 ↔ |−1/2,mi〉, also the second-order corrections

[−
(
A
hν

)2
(ms − 1

2
) mi] of (7.13) modify the effective hyperfine splitting, as they contain

terms proportional to mi. From the differences in hyperfine splitting, the relative sign of

A with respect to that of D can be determined, as, e.g., the transitions | + 3/2,mi〉 ↔
|+1/2,mi〉 are shifted towards lower or higher magnetic field for positive or negative sign

of D, respectively. To illustrate this, the spectrum of GaN:Mn2+ has been reversed in the

inset of Fig. 7.18 in a way that some inner and outer hyperfine pairs overlap. For these

groups, a larger splitting between adjacent hyperfine lines is observed at lower magnetic

fields (full line) than in the reversed signal that occurs at higher magnetic fields (dashed

line). The stronger overlap of the high-field satellites is also responsible for their smaller

ESR amplitude compared to the low-field satellites. These observations show that the sign

of A is negative, if the transition |+ 3/2,mi〉 ↔ |+ 1/2,mi〉 occurred at higher magnetic
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Figure 7.17: For
the Mn2+ spin system
with both fine and
hyperfine interactions,
the resonance positions
B1/2↔−1/2 without
nuclear spin are shifted
by ∆b1/2,mi↔−1/2,mi

,
defined in Eq. (7.13) ac-
cording to perturbation
theory. The numerical
calculation shows that
mixing terms with the
axial crystal field D of
higher order become
important in AlN:Mn2+

even at θ = 0◦. The
first-order splitting has
been reduced to A/5 in
this plot.

fields, i.e. if D was negative. Such a combination of negative D and A is depicted in the

level diagram of Figs. 7.13 and 7.17.

However, it still remains to be shown that D is indeed negative in GaN and AlN. To

determine the sign ofD, one needs to clarify whether the transitions with positivems occur

at high or low magnetic fields. Because the transition intensity Ims↔ms−1 is proportional

to the population difference between the levels |ms〉 and |ms−1〉, the situations for positive

and negative D can be distinguished at low temperatures. Below microwave saturation,

and for kBT � hv � |D|, the thermal occupation of the levels |ms〉 and |ms− 1〉 is given

by a Boltzmann series:(18)

Ims↔ms−1 ∝ Nms−1 −Nms∑
nNn

=
1− exp −hν

kBT∑
n exp Wms−1−Wn

kBT

≈ 1

6

(
hν

kBT

)
− ms − 1/2

6

(
hν

kBT

)2

. (7.14)

To first order in hν/kBT , the occupation differences follow Curie’s law for all levels, but

as energetically lower pairs of levels have both a higher average population as well as

a higher difference in population, their ESR absorption are larger in second order. At

X-band frequencies, hν/kB ≈ 0.43 K, so that at 2.8 K, which is the lowest temperature

achievable with our cryostat, we expect relative second-order changes of about 30% for

the outer transitions | ± 5/2,mi〉 ↔ | ± 3/2,mi〉 and about 15% for the inner transitions

|±3/2,mi〉 ↔ |±1/2,mi〉. Two integrated ESR spectra recorded at 2.8 and 6 K are shown

normalized for the first-order Curie term in Fig. 7.18. The satellites in the region of lower
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Figure 7.18: Integrated GaN:Mn2+ spectra with the intensities corrected for the measure-
ment temperature. The intensity ratio of the fine-structure groups is consistent with the ideal ra-
tio 5:8:9:8:5 of an S = 5/2 spin system discussed below. The intensity ratio at lower temperatures
requires the assignment of these transitions to the ms quantum numbers, as shown in Fig. 7.13.
Microwave power has been reduced in these spectra in order to avoid microwave saturation.
Therefore, some substrate resonances, e.g. a narrow line at 3750 G are not suppressed com-
pletely. The inset shows that second-order effects increase the hyperfine splitting of the low-field
transitions |ms = −1/2〉 ↔ |ms = −3/2〉 compared to the transitions |ms = 3/2〉 ↔ |ms = 1/2〉,
which have been plotted on a reversed magnetic-field axis. Therefore, the sign of A is determined
to be negative, as that of D.

magnetic fields grow faster than linearly in hν/kBT with decreasing temperature. Thus,

they can be identified to belong to negative ms. According to Fig. 7.13, this ordering of

the fine-structure lines indicates a negative sign of D. From the earlier conclusions about

the relative signs, A follows to be negative and ã− F to be positive, respectively.

As shown in Fig. 7.19, the spin resonance signal of Mn2+ in GaN and AlN can be mea-

sured up to room temperature. Within the experimental errors, no change was observed

in the spin parameters and densities. The paramagnetic susceptibility is well described

by Curie’s law at all accessible temperatures, confirming the presence of an unchanged

amount of isolated Mn2+ states below their ionization temperature (see Fig. 7.19a). The

inhomogeneous linewidth of the central fine-structure group, which is about 30 G in GaN

and about 15 G in AlN, did not change up to room temperature, which indicates a small
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Figure 7.19: Temperature dependence of (a) the ESR signal intensity and (b) the microwave
saturation power, which is representative of the spin relaxation rates. The GaN:Mn2+ and
AlN:Mn2+ ESR signals can be traced up to room temperature, indicating a low coupling of the
Mn2+ spins to the surrounding lattice.

contribution of spin-lattice relaxation processes in group III nitrides to the linewidth. By

the continuous saturation method, it is possible to obtain a rough estimate of the product

T1 × T2 of the spin-lattice relaxation time T1 and the spin-spin relaxation time T2, as

displayed in Fig. 7.19b. The observed approximately inverse proportionality to temper-

ature would be consistent with a direct spin-lattice relaxation process without a phonon

bottleneck.(164) Recently, changes of the spin-lattice relaxation time T1 with the carrier

density have been observed in degenerately doped n-type bulk GaN:Mn crystals(165) and

attributed to the Korringa mechanism of Ref. 166. This enabled an estimate of an upper

limit for the very small sd-exchange interaction around 14 meV.

The resonances of the central fine-structure group are well resolved in the sample

orientation ~B ‖ c, while the hyperfine resonances of the fine-structure satellite groups

tend to overlap each other. As any spread due to a mosaic structure of the GaN film is

small for orientations of B parallel to the principal crystalline axis, the excess linewidth of

these satellites is most probably caused by an inhomogeneous distribution of fine-structure

constants.

The good agreement of the experimental ESR intensities and of the magnetic-field
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Figure 7.20: Simulated and measured ESR spectra of GaN:Mn2+ for the sample orientation
~B ‖ c. The upper spectrum (dotted line) was simulated for a single axial crystal field D =
−236 G × gµB and a residual linewidth of 25 G. A weighted average of similar spectra for a
Lorentzian distribution of axial crystal parameters around −236 G × gµB with a full width at
half maximum of 30 G× gµB results in the middle spectrum (dashed line), which is very similar
to the experimental spectrum shown at the bottom (solid line).

positions for ~B ‖ c with simulated spectra for a Lorentzian distribution of axial crystal

fields D with a FWHM of 30 G is shown in Fig. 7.20. According to Eq. (7.11), the sepa-

ration of the fine-structure satellites from the unperturbed resonance position B−1/2↔+1/2

is roughly proportional to D, so that the broadening of the fine-structure satellites is

proportional to the variation of that separation for a distribution of D. Experimentally,

the central transition group is best resolved also at intermediate orientations of the mag-

netic field with respect to the sample c-axis, where the magnetic field separation of the

fine-structure groups is small, as discussed below. Therefore, possibly also fluctuations

of the cubic crystal field parameters ã and F must be considered. The observed vari-

ations of the crystal field are probably caused by residual inhomogeneous strain within

the GaN layers.(13, 135, 136, 137) It would be interesting to compare this with independent

measurements of local strain, e.g., from micro-Raman spectroscopy or excitonic photolu-

minescence. No additional broadening due to electrostatic or magnetic interaction with

neighboring Mn centers as claimed in Ref. 124 was observed at the Mn concentrations of
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our GaN films. Despite the differences in amplitudes, the same resonance positions are

obtained for spectra simulated for an average crystal field and the distribution shown in

Fig. 7.20.

Due to the differences in linewidth, the relative intensities of the fine-structure groups

can be compared best after numerical double integration. The theoretical intensity for

the five transition groups |ms ↔ ms−1〉 is proportional to the transition matrix elements

from time-dependent perturbation theory. In the strong field limit, they are given by

S(S + 1) −ms(ms − 1).(13, 18) Therefore, with S = 5/2, the intensity ratios for the five

fine-structure transition groups are 5:8:9:8:5, which are satisfactorily reproduced by the

experimental ratios 5:8:11:7:3±1, as can be seen in Fig. 7.18.

7.3.3 Arbitrary orientations

One of the advantages of ESR spectroscopy in single crystals is the symmetry informa-

tion, which is accessible by rotation of the sample with respect to the external magnetic

field. The resonance positions for θ > 0◦ allow a critical check of the spin Hamiltonian

parameters determined earlier and the verification of the orientation of the axial crys-

talline field along the c-axis of the epitaxial layers. The presence of other interactions of

Mn spins such as exchange interactions besides the fine and hyperfine interaction of Mn2+

or possible ESR signals from centers which might overlap with the signal from Mn2+ at

θ = 0◦ can also be investigated by such experiments.

Approximate solutions for the transitions between the eigen-states of the spin Hamil-

tonian have been calculated via perturbation theory by Ref. 167, including the forbidden

transitions with |∆mi| > 0 discussed below. Those results were supplemented in Ref. 141

by the forbidden half-field transitions with |∆ms| > 1. Today, the available computing

power conveniently enables the exact numerical diagonalization of the spin Hamiltonian

matrix. The resonance field positions and transition intensities were obtained with the

help of a MATHEMATICA (168) code developed during this work and are shown in

Figs. 7.21 and 7.22 with the theoretical intensity of the transitions coded by a gray scale.

The experimentally observed resonance positions are included in the same plot, with

the intensity of the transition coded by the diameters of the dots. The good agreement

with the experimental resonance positions measured for Mn2+ in GaN and AlN confirms

the symmetry of the spin Hamiltonian assumed earlier and the parameters that were

determined above from the spectra at ~B||c. Neglecting the contributions from the nuclear

spins, the analytical resonance positions B(θ)ms↔ms−1 have been calculated to second
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Figure 7.21: Anisotropy of the ESR resonance fields of GaN:Mn2+ for sample rotations
within the (12̄.0) plane. The experimental resonance positions are indicated by different dot sizes
corresponding to their relative intensities. The underlying gray-scale map shows the transition
intensities calculated by numerical diagonalization of the spin Hamiltonian. The significantly
smaller linewidth of the central |ms = 1/2〉 ↔ |ms = −1/2〉 fine-structure group makes it
possible to distinguish this group from the other resonances even in the strongly overlapping
regime around θ = 60◦.

order in D and to first order in ã and F in Refs. 13 and 18

B(θ)±5/2↔±3/2 =
[
hν ∓ 2D(3 cos2 θ − 1)

∓2pã∓ 1
6
Fq

]
/(gµB)− 32∆1 + 4∆2,

B(θ)±3/2↔±1/2 =
[
hν ∓D(3 cos2 θ − 1)

±5
2
pã± 5

24
Fq

]
/(gµB) + 4∆1 − 5∆2 ,

B(θ)+1/2↔−1/2 = hν/(gµB) + 16∆1 − 8∆2 , (7.15)

with the geometry parameters p = 1 − 5 φ and q = 35 cos4 θ − 30 cos2 θ + 3, and the

second-order fine-structure shifts

∆1 = D2/(gµBhν) cos2 θ sin2 θ and

∆2 = D2/(4gµBhν) sin4 θ .
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Figure 7.22: Anisotropy of the ESR resonance fields of AlN:Mn2+. The hyperfine-structure
of the outer resonance groups is mostly unresolved because of variations in the fine-structure
parameters. However, the lineshapes are sometimes still indicative of a group of overlapping
lines. In these cases, the positions of the left and right wings of the resonances are indicated by
the dots instead of the central resonance positions. Resonances at the positions marked with
open circles have been found in the bare sapphire substrate as well, and are therefore not related
to the AlN:Mn2+ film under investigation.

The direction cosines φ are defined in Eq. (7.10) for the (10.0) and (12̄.0) rotation planes,

respectively. The resulting cubic crystal field splitting between the A and B lattice sites

is visible in the simulations of Figs. 7.21 and 7.22; however, no difference between ESR

spectra recorded in the two rotation planes was observed experimentally (not shown).

From the analytical line positions of Eq. (7.15), the maximum splitting due to the cubic

crystal field occurs at θ = 60◦ for the | ± 3/2,mi〉 ↔ | ± 1/2,mi〉 transition, and is of

the order of 6 G for |ã| < 10 G × gµB, which can be assumed in the nitride epitaxial

films in analogy to ZnO.(160) Therefore, it is not unexpected to find no experimental

difference between the (10.0) and (12̄.0) rotation planes. The splitting between the A and

B lattice sites cannot explain the splitting of the central fine-structure group indicated in

the simulations of Refs. 135, 136, 137.

The asymmetry of the resonance pattern of AlN:Mn2+ (Fig. 7.22) is much more pro-
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nounced than that of the resonance pattern of GaN:Mn2+ (Fig. 7.21). This is a conse-

quence of the much larger spin Hamiltonian parameter D from Eq. (7.12). Analytically,

Eq. (7.15) provides a good approximation to the ESR spectra of GaN:Mn2+, as |D|
hν
≈ 7%

there. The competition between the Zeeman- and fine structure interactions is much

stronger in AlN:Mn2+, where |D|
hν

≈ 20%, and the transitions | − 5/2〉 ↔ | − 3/2〉 occur

almost at zero magnetic field. At intermediate orientations, the quantization axis is there-

fore tilted away from the direction of ~B by the influence of the internal axial crystal field.

Therefore, the hyperfine shifts ∆bms,mi↔ms−1,mi
of the allowed transitions in Eq. (7.13)

have to be corrected by higher order terms in A and mixing cross-terms with D, as calcu-

lated to second order in Refs. 13 and 161 for the center group |+ 1/2,mi〉 ↔ | − 1/2,mi〉

∆b(θ)1/2,mi↔−1/2,mi
= − A

gµB

{
mi +

A

2hν

(
35
4
−m2

i

)
+

(
D

hν

)2 [
36 sin2(2θ)− 2 sin4(θ)

]
mi

}
. (7.16)

Note, that for D ≈ 1
10
hν, as it is the case in these X-band experiments, the magnitude of

the third term is almost half of that of the first, so that this correction is indeed required

for the analytical field positions.

An even more pronounced effect of the off-diagonal terms IxSx + IySy in the spin

Hamiltonian is shown in Fig. 7.23, where numerical results for the eigen-energies and the

strongest magnetic dipole transitions for AlN:Mn2+ at θ = 60◦ are shown. Compared to

Fig. 7.13, multiple level repulsions and an increased number of hyperfine transitions are

observed. As at θ > 0◦ the selection rules for the forbidden magnetic dipole transitions

are modified due to the mixing of electronic and nuclear quantum numbers, the intensity

of the “forbidden” ∆mi 6= 0 transitions eventually becomes even larger than that of the

formerly “allowed” transitions with ∆mi = 0. According to Refs. 161 and 167, the ratio

between the intensity If of the first “forbidden” transition |ms,mi〉 ↔ |ms−1,mi±1〉 and

Ia of the “allowed” transition |ms,mi〉 ↔ |ms−1,mi〉 is given to second-order perturbation

theory by

If/Ia ≈
[
3

4

D

hν
sin(2θ)

(
1 +

35

12 ms(ms − 1)

)]2

· (35/4−m2
i +mi) . (7.17)

Comparison with the exact numerical intensities for GaN in Fig. 7.24 shows that although

qualitatively similar, this analytical result is insufficient to describe the central hyperfine

group of Mn2+ in GaN correctly at tilt angels of θ ≈ 10◦, at which the “forbidden” tran-

sitions with ∆mi = ±1 (dashed lines in Fig. 7.24) have grown strongly at the expense

of the “allowed” transitions (full lines). At larger tilt angles, only the outmost “allowed”

transitions |+ 1/2,±5/2〉 ↔ | − 1/2,±5/2〉 remain visible, and many “forbidden” transi-

tions with |∆mi| > 1 occur at intermediate angles. Note that the resonance positions for

GaN in Fig. 7.24 have not been assumed fixed as in the simplified calculation of Ref. 167.
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Figure 7.23: Breit-Rabi Diagram for AlN:Mn2+ with the magnetic field oriented at θ = 60◦

with respect to the c-axis of the film and otherwise identical parameters as in Fig. 7.13. At
this orientation, the spin quantization axis results from a competition between the Zeeman and
the axial fine-structure interaction. The arrows indicate only the strongest magnetic dipole
transitions. As shown in Fig. 7.22, additional weak half-field transitions with ∆ms > 1 are
expected at this orientation.

However, in order to reduce the number of 36 possible traces, the outer and inner transi-

tions for each ∆mi were averaged to a single line. In the case of AlN, the axial crystal field

is tilting the quantization axes even stronger away from the magnetic-field orientation.

Therefore, the intensities of the “forbidden” transitions with ∆mi = ±1 increase even

more rapidly compared to GaN upon rotation of the sample with respect to the magnetic

field and exceed the “allowed transitions” already at θ ≈ 5◦. The numerical results for

the central fine-structure group of both GaN and AlN are shown as gray-scale maps in

Figs. 7.25 and 7.26. It can be seen from these figures that in contrast to the simulations

in Refs. 135, 136, 137, the forbidden lines do not split gradually from specific allowed lines

at θ = 0◦, but rather vanish at magnetic field positions in between those of the allowed

transitions.

In GaN, the experimental linewidth is too large to spectrally resolve both “allowed”

and “forbidden” transitions. Rather, the increased number of lines tend to interfere with



132 CHAPTER 7. THE Mn3+/2+ ACCEPTOR LEVEL IN GROUP III NITRIDES

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5
central |+½, mI〉 → |-½, mI±∆mI〉

transitions of GaN:Mn2+  
 

 ∆mI = 0     ∆mI = 1
 ∆mI = 2     ∆mI = 3
 ∆mI = 4     ∆mI = 5  

 
R

el
at

iv
e 

In
te

ns
ity

Rotation Angle θ

Figure 7.24: Angular variation of the |+1/2,mi〉 ↔ |−1/2,mi±∆mi〉 transition intensities
for GaN:Mn2+ at a fixed X-band microwave frequency. In order to reduce the number of 36
possible traces, both the two “allowed” and four “forbidden” outer transitions | ± 1/2,±5/2〉 ↔
| ∓ 1/2,±5/2∓∆mi〉 were averaged to a single line. Similarly, the intensities of the remaining
inner transitions have been averaged and are shown with a second thinner line of the same type
for each |∆mi|.

each other, as can be seen in Fig. 7.25, where the inner resonances cancel out at θ ≈ 10◦.

It is also evident that at θ ≈ 20◦ five new resonances appear between the two outmost

resonance fields, which correspond to the outer of the six “allowed” transitions at θ ≈ 0◦.

In ZnO:Mn2+, the spectral resolution was limited by similarly broad lines,(160) until high-

quality and strain-free crystals made it possible to separate the extremely large number

of narrow individual resonance positions shown in Fig. 7.14.(169) In GaN or AlN, this

might be impossible due to ligand hyperfine coupling with the highly abundant nitrogen

isotope 14N with I = 1, while the natural abundance of the only oxygen isotope 17O with

nuclear spin is very low in ZnO.

Due to somewhat smaller linewidths in the central transition group in AlN, some

“forbidden” transitions with ∆mi = ±1 are resolved for small misorientations θ < 5◦

(Fig. 7.26). To second order perturbation theory,(161) the doublets | + 1/2,mi〉 ↔ | −
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Figure 7.25: Magnified view of the inner fine-structure group | + 1/2,mi〉 ↔ | − 1/2,mi ±
∆mi〉 of GaN:Mn2+. In the ESR spectra, the “forbidden” hyperfine satellites are interfering
destructively with the “allowed” transitions at tilt angles around θ ≈ 10◦. The gray-scale
map shows the transition intensities of the central fine-structure group obtained from the exact
numerical diagonalization without the outer groups, which are broadened experimentally because
of the variation of the fine-structure parameters. A large number of resonances at intermediate
angles is caused by the appearance of “forbidden” fine-structure transitions, rather than by axial
or cubic crystal field splittings of the inequivalent wurtzite lattice sites.

1/2,mi − 1〉 and |+ 1/2,mi − 1〉 ↔ | − 1/2,mi〉 are split by

∆b(θ)1/2,mi↔−1/2,mi−1 −∆b(θ)1/2,mi−1↔−1/2,mi

= 17A2/(2gµBhν) + 2hν(gnµn/gµB)/gµB

−25A3/[gµB(hν)2] · (mi − 1
2
)

+8DA2/[gµB(hν)2] · (mi − 1/2) · (3 cos2 θ − 1)

−2P/gµB(mi − 1
2
) · (3 cos2 θ − 1) . (7.18)

Each of the listed terms contributes shifts of several G to the forbidden transition doublet

splitting and therefore cannot be neglected in the calculation of these transition fields.
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Figure 7.26: Magnified view of the inner fine-structure group |+1/2,mi〉 ↔ |−1/2,mi±∆mi〉
of AlN:Mn2+. In the ESR spectra, the “forbidden” hyperfine satellites interfere destructively
with the “allowed” transitions at tilt angles around θ ≈ 5◦. The “forbidden” lines are small,
but still visible at the orientation closest to θ = 0◦. The distinct line moving to lower magnetic
fields with increasing tilt angle θ can be attributed to impurities in the sapphire substrate.

The observed spacing of the five pairs of transitions decreases from 30 G on the low-field

side to overlapping lines on the high-field side (Fig. 7.26). This is consistent with the

ratio (gnµn)/(gµB) ≈ 0.000 377 and the reported nuclear quadrupolar moment of 55Mn,

which is P = 0.17 G× gµB in ZnO.(160, 169)

In summary, no indication of interactions between adjacent centers was found at a

doping level around 1020 cm−3. The effective spin Hamiltonian for isolated Mn2+ centers

sufficiently describes all features of the observed ESR spectra in GaN and AlN at an

arbitrary orientation. In contrast, exchange narrowing is observed in the ESR spectra of

GaAs:Mn2+ at doping concentrations around 0.1% indicating the wave function overlap

required for spintronic devices.(170)
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Figure 7.27: Unit cell of the hexagonal
lattice of GaN with one Mn atom substitut-
ing a Ga cation. The strong axial crystal
fields observed by ESR indicate a displace-
ment δ of Mn2+ along the c-axis of 0.085 Å,
which is as large as 4% of the Ga-N bond
length of 1.95 Å an even larger displacement
of 0.13 Å in AlN:Mn2+.

7.3.4 Discussion of the ESR parameters

Manganese is expected to occupy the substitutional cation site in GaN and AlN,(118) as

shown schematically in Figs. 7.3. The geometry of the surrounding ligands is shown in

Fig. 7.27. Other lattice sites have been reported for Mn in group III arsenides(171) and will

be discussed further below. On the substitutional site, partly ionic and partly covalent

bonds to the four nitrogen neighbors bind three electrons of the free Mn [Ar]3d54s2 config-

uration, resulting in the deep neutral acceptor state Mn3+ (A0), e.g., in GaP,(172) or the

antiferromagnetically coupled shallow Mn2+-hole complex in GaAs:Mn,(134) as introduced

in Sec. 7.1. Due to the Jahn-Teller instability of its orbital ground state, large distortions

are expected for Mn3+ similar to Cr2+.(172, 173) Because there is no unperturbed Kramers

doublet in the S = 2 ground state manifold of these oxidation states, the electron spin

resonance transitions are possibly shifted outside the range of X-band spectrometers.(173)

Additionally, the multiple lines are possibly broadened inhomogeneously by strain effects,

so that the spin resonance signature of Mn3+ has been observed in a few III–V semicon-

ductors only, most notably GaP.(172) In this work, the neutral Mn3+ oxidation state was

reduced to the negatively charged acceptor Mn2+ (A−) by the presence of residual donors

in GaN:Mn grown at low growth temperatures, or by the Si donors in the GaN:Mn:Si

samples.(174)

Theoretical predictions of the parameters g and D of the spin Hamiltonian need to

consider spin-orbit coupling in perturbation theory up to very high orders.(22) Without

the symmetry-breaking presence of nearby ionic charges, the expected deviations of g

from the free-electron value g0 = 2.0023 are small. For substitutional Mn2+, the g-

factor is typically somewhat reduced from g0 because of spin-orbit coupling due to the

admixture of excited states and due to small covalent contributions, in agreement with

our observations.(13, 22)
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Various mechanisms have been suggested to contribute to the observed spin Hamil-

tonian parameter D. The dominant contributions are crystal fields causing spin-orbit

interaction in higher orders, and intermixing from excited Mn2+ configurations.(148, 175)

On the substitutional sites, both contributions are of the order of 10 µeV in magnitude,

but of opposite sign. In contrast, the magnitude of D typically exceeds the Zeeman split-

ting by far for defect complexes.(148, 176) In the group III nitrides, the axial crystal field

is probably enhanced by the different bond lengths and the asymmetric charge compen-

sation of Mn2+ along the c lattice direction.(177) However, theoretical estimates of the

zero-field splitting D based on higher-order perturbation formulas of the spin-orbit mech-

anism turned out to be one order of magnitude too small in GaN.(22) As, at the same

time, D is at least one order of magnitude smaller than expected for a defect complex,

it was concluded from the experimental result in Refs. 135, 136, 137 for bulk GaN:Mn

crystals, that the Mn2+ ion does not occupy the exact Ga3+ site, but is displaced by δ

towards the N ligand along the c lattice direction,(22) as shown in Fig. 7.27. Unfortu-

nately, some equations appear inconsistent in the printed version of Ref. 22. Correcting

the obvious typographic errors, the axial crystal field parameter due to spin-orbit coupling

in the weak-field scheme(148) is given by

Dweak ≈
−3ζ2

dB
2
20 − 63ζ3

dB20

70 P 2D′ +
−10ζ2

dB
2
40 + 7ζ2

dB
2
43

126 P 2G
(7.19)

with the trigonal crystal field parameters

B20 ≈ Ā2

[
2

(R0

R1

)t2
+ 3 (3 cos2 Θ− 1)

(R0

R2

)t2]
,

B40 ≈ Ā4

[
8

(R0

R1

)t4
+ 3 (35 cos4 Θ− 30 cos2 Θ + 3)

(R0

R2

)t4]
,

B43 ≈ −6
√

35 Ā4 sin3 Θ cos Θ
(R0

R2

)t4
, (7.20)

the spin-orbit coupling coefficient ζd ≈ 317 cm−1, P ≈ 25.3 × 103 cm−1, D′ ≈ 26.9 ×
103 cm−1, G ≈ 21.9 × 103 cm−1, Ā2 ≈ 10.5 × 103 cm−1, and Ā4 ≈ 878 cm−1, which can

be obtained from the Racah parameters estimated for Mn2+ in GaN in Refs. 13 and 22 at

the reference distance R0 = 1
4
R1(0) + 3

4
R2(0), and with the exponents t2 ≈ 3 and t4 ≈ 5.

The distance R1(δ) from the Mn2+ ion to the N neighbors along c and the distances R2(δ)

to the three other neighbors oriented at Θ(δ) from the Mn site are given by

R1(δ) = u c− δ,

R2(δ) =
√
a2/3 + [c(u− 1/2)− δ]2,

Θ(δ) = arccos
c(u− 1/2)− δ

R2(δ)
, (7.21)

with the u-parameter uGaN ≈ 0.377(178) as indicated in Fig. 7.27, and the lattice constants

cGaN = (1 + εc) 5.1850 Å, and aGaN = (1 + εa) 3.1878 Å (see Fig. 7.27).(151) As aGaN and
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cGaN were measured by x-ray diffraction at room temperature, both lattice parameters

have been reduced by approximately 0.06% to account for the cooling down to 6 K,(179) at

which the ESR parameters were evaluated. A more precise approach for the calculation

of the lattice parameters of bulk GaN at low temperatures would need to include the

anisotropy of about 13% of the thermal expansion coefficients perpendicular and parallel

to the c-axis of GaN, which are αGaN,⊥ ≈ 4.3×10−6/K and αGaN,|| ≈ 3.8×10−6/K at room

temperature.(179, 180, 181) The in-plane thermal expansion coefficient of GaN films grown

on sapphire substrates is effectively determined by the thermal expansion coefficient of

the sapphire substrate αAl2O3,⊥ ≈ 5.4 × 10−6/K, which strongly increases the effective

anisotropy of the thermal expansion coefficients. As a consequence of this external in-

plane compression, the effective out-of-plane thermal expansion coefficient is reduced even

further, so that the anisotropy of the thermal expansion can be expected to be as large

as 40%. This would require additional corrections around 0.02% of εa and εc at low

temperatures for all investigated samples, in contrast to the bulk samples of Refs. 135,

136, 137.

With the parameters discussed in Ref. 22, the reported displacement δ = 0.07 Å can

be reproduced only, if the variation of Θ(δ) is ignored. Using the Θ(δ)-dependence of

Eq. (7.21), the assumed crystal field parameters of Ref. 22, the u-parameter of Ref. 178,

and the measured lattice constants cGaN and aGaN, the observed spin Hamiltonian pa-

rameter D is consistent with a displacement of δGaN = +0.085 Å from the Ga site. For

AlN:Mn2+, a displacement δAlN = +0.13 Å would be suggested by the measured lattice

constants with uAlN ≈ 0.382(178) and the identical set of crystal field parameters, which

were estimated based on the optical properties of AlN:Mn2+ and on the similarity of the

Mn-N bond in GaN:Mn and AlN:Mn. The approximately quadratic dependence of the

D(δ) predicted from Eq. (7.19) is shown in Fig. 7.28, where the experimental values of

D are indicated with horizontal lines. Apparently, these could also be obtained with

δGaN = −0.15 Å and δAlN = −0.22 Å. Such negative displacements are, however, in-

consistent with the slope dDGaN/dεa observed for strained GaN films, as discussed below.

Certainly, the accuracy of the deduced displacements is limited by the various assumptions

that are needed for the evaluation of Eq. (7.19). It is impossible to verify these assump-

tions and the validity of the crystal field approach with a single experimental crystal field

parameter, because the displacements δ are unknown a priori, and were chosen to fit this

experimental parameter. Also, the good agreement of the weak- and strong-field schemes

in Ref. 22 merely supports the validity of the perturbation approximation. It does not

verify the assumed parameters and the dominant influence of the spin-orbit coupling over

the other contributing mechanisms.

However, this can be verified independently with the help of ESR measurements on

strained GaN films, for which the lattice distortions εa and εc are known. Similar ex-

periments have been performed and discussed previously for Mn2+ in some other host
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Figure 7.28: Axial crystal field parameters Dweak predicted from the weak-field scheme as a
function of the displacement δ of Mn2+ from the substitutional Ga sites in bulk GaN:Mn2+ and
AlN:Mn2+. The measured values of DGaN = −236 G×gµB and DAlN = −648 G×gµB indicated
by the horizontal lines would be consistent with δGaN = +0.085 Å and δAlN = +0.13 Å, but
also with somewhat larger negative displacements. However, the experimentally observed strain
dependence is more consistent with the positive displacement δ for GaN:Mn2+.

crystals.(148, 175, 182) ESR spectra obtained on several of our GaN:Mn2+ and GaNMn2+:Si

films are shown in Fig. 7.29. Although all spectra are appear similar at first sight, a sys-

tematic narrowing is observed from the bottom spectra to the top. The axial crystal field

parameters D evaluated from these spectra are summarized in Fig. 7.30. As discussed

before, a variation of the strain is caused in these samples by the heteroepitaxy and the

high doping concentrations. The inset of Fig. 7.30 shows that the ratio of the strains in

these films is εc/εa = −0.6, as expected.(151)

Also shown at the position of the bulk lattice constant of GaN is the axial crystal

field parameter measured on a bulk GaN:Mn2+ crystal in Refs. 135, 136, 137. The ESR

amplitude of the fine-structure satellites of this bulk sample is suppressed similar to the

fluctuations responsible for the broadening shown in Fig. 7.20. Therefore, fluctuations of

D and the presence of residual strain must be expected also in this bulk crystal. The

reevaluation of the published data of Refs. 135, 136, 137 turns out to be consistent with

a value of |D| below 250 G×gµB as well, which would give a better agreement with the

fine-structure parameters determined in this work. The dashed lines in Fig. 7.30 were
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Figure 7.29: ESR spectra for ~B0||c of the GaN:Mn sample grown at Ts = 690◦C and of
several GaN:Mn2+:Si samples grown at Ts = 820◦C with larger strain. The splitting between
the outer and middle transition groups on the left and right hand sides becomes narrower from
the spectra shown at the bottom to those at the top. Evaluation of D according to Eq. (7.12)
results in values of DGaN from −218 G× gµB to −236 G× gµB, in correlation with the strain
observed by XRD.

calculated according to Eq. 7.19 with δ = 0.084, 0.085, and 0.086 Å, and εc = −0.6 εa.

The middle line corresponds to

D(δ ≈ +0.085 Å, εc ≈ −0.6 εa) ≈ (−240− 1.0× 104 εa)G× gµB , (7.22)

without the assumption of any additional free parameters. The first-order dependence of

D(δ, c, a, u) at δ = +0.085 Å, δ = 0.0 Å, and δ = −0.15 Å is summarized in Tab. 7.5. For

the opposite displacement of δGaN = −0.15 Å, the slope dD/dεa would be six times smaller

and therefore inconsistent with the experimental data. The quantitative agreement of

Eq. (7.22) with the measured data convincingly supports the validity of the superposition

model for the spin-orbit coupling of Ref. 22. Nonlinear contributions to D(εa) would be

expected from covalent contributions to the spin-orbit coupling,(184) or from strain effects

on δ and u, which were assumed as constants here.

An overview of recent results for the isotropic hyperfine splitting AGaN calculated with

the Green’s function method is given in Ref. 31. This splitting is mostly caused indirectly
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Figure 7.30: The inset shows the variation of the lattice constants of several GaN:Mn and
GaN:Mn:Si samples measured by reciprocal space maps of the asymmetric (20.5) reflex as shown
in Fig. 7.8. The linear dependence between the relative changes εc/εa = −0.6 corresponds to an
effective Poisson ratio ν = 0.23.(151) The results obtained for bulk GaN in Refs. 135, 136, 137 and
evaluated from the data of Ref. 183 are included with the bulk lattice parameters. The dashed
and dotted lines are calculated with Eq. (7.19) and the parameters of Ref. 22 without additional
free parameters. The good agreement with the experimental data supports the validity of the
superposition model for the spin-orbit coupling.

δ0 D0 ∂D/∂εc ∂D/∂εa ∂D/∂u ∂D/∂δ

(Å) (G×gµB) (G×gµB) (G×gµB) (G×gµB) (G×gµB/Å)

0.085 −240 7.4× 103 −5.8× 103 23× 103 −4.7× 103

0.00 −7.1 4.8× 103 −4.7× 103 5.0× 103 −1.0× 103

-0.15 −245 3.0× 103 0.12× 103 −19× 103 +3.8× 103

Table 7.5: First order-dependence of the axial crystal field parameter D(εc, εa, u, δ) on
the lattice parameters according to Eq. (7.19). At δ = 0.085 Å, the combination of biaxial
compression εa and axial expansion εc result in dD/dεa ≈ −10 × 103 G × gµB, as observed
experimentally (see Fig. 7.30). The model is not restricted to a constant displacement δ during
the deformation of the crystal. One might e.g. consider a linear variation ∂δ/δ ∝ ∂a/a = ∂εa
during the deformation of the lattice. However, the expected additional contribution to dD/dεa
would be of the order of ∂D× (∂δ/δ)−1 ≈ −0.4×103 G×gµB and therefore negligible compared
to the direct influence from the deformation.
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χl p(χl) A D g Reference

(eV) (%) (G×gµB) (G×gµB)

GaAs (zb.) 2.0 23 −56 (< 2 ) 2.004 170, 185

ZnS (zb.) 2.6 20 −68 – 2.003 13, 186

ZnS (wz.) 2.6 20 −70 −113 2.002 186

GaN (wz.) bulk 3.0 17 ±75 ±257 1.999 135, 136, 137

relaxed film 3.0 17 −69 −236 1.999 this work

strained film 3.0 17 −69 −218 1.999 this work

AlN (wz.) 3.0 17 −69 −648 2.000 this work

ZnO (wz.) 3.5 14 −79 −253 2.001 160, 169, 187

Table 7.6: The chemical trend of the isotropic hyperfine constant A is related to the relative
electronegativities of the ligands χl and the Mn ions χMn ≈ 1.5 eV and to Pauling’s covalency
parameter p(χl) for the nearest neighbors of the Mn atoms. The axial crystal field is given
for the wurtzite materials and for strained GaMnAs, with the conversion factors 1 G × gµB =
0.934× 10−4 cm−1 × hc = 2.80 MHz× h = 11.6 neV. The values listed above for bulk GaN are
those of Table 1 of Ref. 135. (The conversion factor was possibly omitted in the evaluation of
the hyperfine splitting |AGaN| = 75 G × gµB = 70 × 10−4 cm−1 × hc of Refs. 135, 136, 137, as
a splitting of approximately 70 G was discussed in the text and is shown in the experimental
data of Ref. 135.)

by a Fermi contact interaction of 3d-induced s orbital spin polarization at the 55Mn

nucleus. In the free Mn2+ atom, the total core polarization of the inner 1s, 2s, and 3s

orbitals sums up to about −110 G×gµB,(171) generating a local magnetic field opposite to

the external quantizing field. The induced negative spin density is partly compensated by

a positive 4s spin density of about +90 G×gµB. In a covalent bond, however, this positive

contribution is reduced, as the spins are paired off in the binding 4s4p3 hybrid orbitals.

Therefore, a lower electronegativity of the surrounding ligands leaves a larger negative

overall spin density at the Mn nucleus. This subtle balance can be exploited to estimate

the valence-band spin polarization at the Mn site, which might be of special interest for the

determination of the exchange constants required for ferromagnetism in diluted magnetic

semiconductors. Additionally, delocalization of the 3d electrons and direct 4s admixture

of the order of 1% can reduce the magnitude of A significantly. These contributions seem

to be overestimated in the calculations of Ref. 31, where |A| = 40 G × gµB has been

predicted for Mn2+ in GaN, in contrast to the value of 69 G × gµB reported here. The

same difference between theory and experiment is found by the authors of Ref. 31 for

other transition-metal states.

Alternatively to ab initio calculations, the expected hyperfine splitting can be esti-

mated with the help of chemical trends between closely related materials. According

to Ref. 171, the electronegativities χl (see Table 7.6) of the four ligands and of the Mn
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ion χMn ≈ 1.5 eV can be used to calculate Pauling’s covalency parameter p(χl) of the

Mn-ligand bond

p(χl) = [1− 0.16(χl − χMn)− 0.035(χl − χMn)
2]/4 . (7.23)

Selected semiconductor materials with anion electronegativities χl close to that of nitrogen

are listed in Tab. 7.6, together with the covalency p(χl) of the Mn-anion bond and the

hyperfine constants for substitutional Mn2+ on the cation site. Obviously, the hyperfine

constants for GaN:Mn2+ and AlN:Mn2+ fit in between the numbers for ZnS and ZnO, as

would be expected from the electronegativity of N, which is between those of S and O.

Twice as large hyperfine constants have been reported for Mn2+ on tetrahedral interstitial

lattice sites in GaP and GaAs,(171) which confirms the substitutional nature that was

assumed above. With respect to the covalency and hyperfine constants, similarities to

Mn in II–VI semiconductors rather than to III–V materials such as GaAs are expected,

as long as the neutral Mn3+ centers can be reduced to Mn2+ by residual donors or Si

codoping, as in the samples discussed here.

7.3.5 Mn2+ spin density

From the calibrated ESR amplitudes, absolute Mn2+
Ga concentrations can be determined

with an accuracy of about a factor of two.(188) In some of the samples investigated,

the width of individual ESR lines is broder than the hyperfine splitting. Therefore,

overlapping of adjacent hyperfine lines has to be taken into account even for the best

resolved center group, whose peak-to-peak linewidth ∆Bpp varied between 30 and 60 G,

without any obvious correlation to the spin density or growth temperature.

Typical X-band ESR spectra of this center group recorded at T = 10 K and an incident

microwave power of 1 mW are shown in Fig. 7.31. Also included is the ESR spectrum

of paramagnetic impurities in the sapphire substrate recorded at higher temperature and

lower microwave power. For crystal orientations other than those with the crystalline

c axis along the external magnetic field, the sapphire ESR spectrum splits into many

characteristic resonances and is thus clearly distinct from the ESR signal of the GaN:Mn

films. It is easily saturated with an increase in microwave power because of its longer spin

relaxation time and it can therefore be suppressed under the experimental conditions

used to record the GaN:Mn ESR spectra shown also in Fig. 7.31. However, it will be

prominent in the total magnetization measurements. Simulations of the width, lineshape

and amplitude of the prominent center group of transitions were chosen as the most

reliable way of evaluating overall spin densities. All results were calibrated with the ESR

signal of Si:P,(7) taking into account the ratio of the transition matrix elements

rs = 1
2
g2S(S + 1)−ms(ms − 1)

2S + 1
= 3 (7.24)
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Figure 7.31: The spin
density of GaN:Mn grown at
Ts ≈ 820◦C (second spec-
trum) is almost two orders of
magnitude smaller than that
of GaN:Mn grown at Ts ≈
690◦C (first spectrum) and
compensated unintentionally
by structural defects. High
Mn2+ spin densities are also
observed in samples grown
at Ts ≈ 820◦C, which were
compensated intentionally by
Si codoping (third spectrum).
For comparison, also the ESR
signal of the paramagnetic
impurities in the sapphire
substrate is shown (last spec-
trum), which was recorded at
higher temperature and lower
microwave power to avoid mi-
crowave saturation. It can be
distinguished clearly from the
GaN:Mn signal because of its
characteristic anisotropy.

for the S = 5/2 system under investigation compared to the spin-1/2 system of Si:P,(188)

and for ms = 1/2 for the center group of transitions. As included in Fig. 7.9 of Sec. 7.2.1

(open symbols), we observed Mn2+ spin densities in the range of 1018 − 3× 1019 cm−3 in

our samples.

No signal of Mn oxidation states other than Mn2+ was observed by ESR, probably

because of excessive broadening due to residual strain. This situation has been discussed

previously for the neutral Mn acceptor state in GaP and GaAs.(139) The 6A1 orbital

singlet of the Mn2+ (A-) ground state is unaffected by crystal fields, whereas the Mn3+

(A0) ground state 5T2 multiplet is subject to Jahn-Teller distortion in tetrahedral crystal

fields and, additionally, to trigonal strain in GaN,(134) as shown schematically in Fig. 7.32.

Because of these distortions, the zero-field splittings typically become as large as several

cm-1.(172) Note that no central Kramers doublet remains unperturbed for a paramagnetic

state with an odd number of eigen-states. Even larger zero field splittings would be

expected for displacements of Mn3+ from the Ga lattice sites of the order of δ ≈ +0.085 Å

as discussed for Mn2+ in in the context of Fig. 7.30. Indeed, displacements of the order

of 3% have been observed for neutral substitutional Mn in GaN:Mn in extended x-ray

absorption fine structure (EXAFS) studies.(189) Therefore, the resonant transitions are
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Figure 7.32: One-electron schemes for the ground state splitting of Mn2+ and Mn3+. The 6A1

ground state of Mn2+ is not affected by tetrahedral crystal fields, trigonal distortions, random
strains, and Jahn-Teller distortions because of its lack of angular momentum. Therefore, the
Mn2+ spin states are only marginally split at zero magnetic field because of second and higher
order perturbations via the excited states. In contrast, the 5T2 ground state of free Mn3+

ions has nonzero orbital momentum, which is quenched in crystals because of the multiple
perturbations. This causes the presence of several excited states not far from the Mn3+ ground
state, which enhances spin-orbit interactions. Inhomogeneous strains can therefore lead e.g. to
large variations of the g-factor and the zero-field splitting D. ESR detection becomes particularly
difficult, when the zero field splittings exceeds the Zeeman energy of 40 µeV.

possibly shifted out of the range of an X-band spectrometer or broadened excessively

due to residual strain, as shown in Fig. 7.33. Inhomogeneous broadening probably also

inhibited the observation of a FMR signal similar to that for the films in Ref. 157 for the

film grown at Ts = 690◦C, for which ferromagnetic minor phases were observed by SQUID

measurements. As shown in Fig. 7.9, the total Mn concentration determined by ERD is

significantly higher than the Mn2+ spin density in non-codoped GaN:Mn, but becomes

similar to [Mn2+] within experimental accuracy in codoped GaN:Mn:Si. All further ESR

signals found were identified as due to paramagnetic transition-metal impurities in the

Al2O3 substrate, and no indication for interstitial Mn and Mn-Mn clusters was observed

by ESR, although these clusters have been predicted to have lower formation energies

than isolated substitutional Mn impurities.(190)

7.4 Identification of the Mn3+ state

Whereas ESR experiments on Mn2+ provide detailed microscopic information about the

localized spins, no information can be deduced from ESR about the Mn-bound holes,

which are absent in the case of a negatively charged acceptor, as they are either compen-

sated or transferred to the valence band. While total Mn concentrations around 1020 cm-3

are present in the GaN:Mn samples, as shown in Fig. 7.9, the Mn2+ concentration mea-
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Figure 7.33: (a) Breit-Rabi diagram for the S = 2 ground state of Mn3+ with a large zero-
field splitting D compared to the Zeeman energy gµBB0. The zero-field splitting of d4 states is
typically much larger than the microwave energy,(173) so that only the transitions α and β within
the two undisturbed Kramers doublets remain possible, as indicated in (a) for a typical value for
Mn3+ of hν = D/5. In contrast, hν ≈ 5D, as observed for AlN:Mn2+ is a very large interaction
for a Mn2+(d5) orbital singlet. The transitions α and β are forbidden at most orientations, and
have nonzero intensities only for θ ≈ 90◦. Their intensities for this orientation are shown in
(b) assuming g ≈ 2.0 and X-band microwave frequencies. The corresponding resonance fields
are shown in (c). As the resonance fields depend on the magnitude of D for both transitions,
broadening on the order of 1000 G would result from relative variations of D on the order of
10%, which makes the detection of ESR impossible.

sured by ESR is below 2×1018 cm-3, indicating that less than 2% of the Mn impurities

were negatively charged by the capture of an extra residual electron from the GaN host

crystal. In contrast, the number of negatively charged Mn2+ acceptors is increased to

3×1019 cm-3 in intentionally codoped GaN:Mn:Si samples with [Mn]≈[Si]≈ 3×1019cm-3,

where additional electrons are provided from the shallow Si donors. Within the experi-

mental error of ERD and ESR, the compensation is complete in these samples. Compared

to other GaN:Mn samples grown under similar conditions, the Mn2+ concentration of the

Si-codoped films is increased by almost two orders of magnitude to about 100%, as shown

in Fig. 7.9. In the pure GaN:Mn samples, the remaining 98% of the Mn centers are there-

fore supposed to be in the neutral Mn3+ (or Mn2+-h+) acceptor state, since a higher total

concentration of Mn is found in ERD, but at the same time a significantly lower Mn2+
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concentration is found in ESR. In samples with lower growth temperatures, more Mn2+

is detected in ESR, which can be explained by an increasing number of structural defects

that act as compensating donors and convert Mn3+ to Mn2+ via the charge transfer Mn3+

+ D0 → Mn2+ + D+. This is consistent with Hall-measurements and measurements of

the Seebeck coefficient of these samples, and with the n-type conductivity of GaN:Mn

samples reported in Refs. 124, 125 and 126.

The neutral Mn acceptor states in pure GaN:Mn films are invisible for X-band ESR

experiments. Therefore, optical experiments were used to investigate these states, as

discussed in the following sections.

7.4.1 Optical absorption measurements

Figure 7.34 shows room-temperature optical absorption spectra of Mn-doped GaN,

GaN:Si, and AlN samples with [Mn]≈ 1020 cm-3, measured with photothermal deflection

spectroscopy (PDS) in the region of low absorbance, and with transmission and reflection

measurements at higher absorbance close to the band gap. Details of these experiments

can be found in Ref. 149. The spectrum of the pure GaN:Mn sample shows a characteristic

absorption band A with onset hνA ≈ 1.8 eV, and a peak B around hνB ≈ 1.5 eV. In the

codoped GaN:Mn:Si samples of Fig. 7.34, the only optical absorption feature is the band

gap absorption above 3.4 eV. Additional low-temperature transmission measurements of

peak B in the pure GaN:Mn samples have recently been performed in the spectral region

of 1.37–1.57 eV by A. Hoffmann’s group at the Technical University Berlin. Typical re-

sults of these measurements are shown in Fig. 7.35. Most interestingly, the FWHM of the

absorption peak is reduced to only 3 meV as compared to 200 meV at room temperature.

The peak position and linewidths vary significantly between the studied samples, most

probably related to variations of the residual strain. A splitting seems to take place in

samples grown at temperatures above 800◦ C. This could either be related to a large

strain-induced crystal field splitting, or more likely to a laterally inhomogeneous strain

distribution in these samples. Reciprocal space maps of the investigated sample pieces

could help to clarify this issue. The main Mn-related absorption features have been re-

ported previously with a lower dynamical range in optical absorption and by deep level

optical spectroscopy (DLOS).(128, 191) In these previous studies, the absorption band A,

for which the onset was determined as hνA ≈ 2.0 eV, was tentatively assigned to the emis-

sion of an electron to the conduction band. By comparing the transition energy to those

of other transition-metal states,(118) the initial gap state for both transitions was assumed

to be the Mn2+ oxidation state. For the resonant absorption peak B, a zero-phonon line

at hνB ≈ 1.42 eV was resolved at temperatures around 20 K.

In Refs. 128, 191, a zero-phonon line at 1.42 eV was resolved for transition B at

lower temperatures with vibrational modes at 20 and 73 meV that are well-described by

the mass defect approximation. The broadening at temperatures above 60 K has been
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Figure 7.34: Optical absorption of GaN:Mn, GaN:Mn:Si, and AlN:Mn with [Mn]≈ 1020 cm-3.
Transition A with an onset around 1.8 eV in GaN is assigned to the direct emission of holes from
Mn3+ acceptors to the valence band, and transition B around 1.5 eV to the internal spin-allowed
5E→5T transition of the deep neutral Mn3+ state, as shown in the inset with the spin-polarized
one-electron densities of states D↑(E) and D↓(E).

ascribed to the excitation of phonon modes during the optical transition in Ref. 128.

Fig. 7.35 reveals that the position of the zero phonon line (ZPL) strongly depends on

residual strain in the GaN thin films, similar to the axial crystal field ESR parameter D

of Mn2+ discussed previously.

The transition energies of 1.4-1.8 eV suggest that the Mn3+/2+ acceptor level involved

is located deep within the band gap of GaN. It would be desirable to identify the type

of optical absorption process directly via light-induced electron spin resonance (LESR)

similar to the investigations in Ref. 192. However, as might be expected for very high Mn

doping concentrations, the light intensity provided by the available light sources (100 W

halogen lamp, 100 W xenon lamp, or the 514 and 488 nm lines of a 5 W argon ion laser)

were insufficient to ionize a detectable fraction of Mn acceptors, although they spectrally
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overlap the Mn3+-related optical absorption bands. Recently, LESR consistent with the

results summarized in Fig. 7.9 have been observed on bulk GaN:Mn crystals with 2-3

orders of magnitude lower Mn doping concentrations than our GaN:Mn films.(193)

In Ref. 128, transition B at 1.5 eV was tentatively assigned to the emission of a hole

to the valence band, so that the energy gap of GaN of 3.4 eV resulted as the sum of the

transition energies of 2 eV (A) and 1.4 eV (B). This interpretation can be summarized by

Mn2+ + hνA → Mn3+ + e
−

(Ref. 128)

Mn2+ + hνB → Mn1+ + h
+

(Ref. 128) .

This previous model is even questionable on the basis of the data of Ref. 128. First,

one would expect a similarly broad absorption band both for the photoionization into

the continuum of the valence and conduction band. However, at low temperatures, the

width of the resonant peak B and its phonon replica is only 3-10 meV, whereas the

photoionization A has a width of almost 2 eV. Secondly, the energy gap as the result

of a summation of electron and hole emission energies would imply a correlation energy

close to zero, which is extremely unlikely for the axially distorted Mn2+ oxidation state

observed in ESR. Furthermore, since much larger concentrations of Mn2+ are found by

ESR in GaN:Mn:Si samples, which do not show the Mn-related absorption (dashed curve

in Fig. 7.34), this assignment has to be revised. Instead, the initial state of both transitions

seems to be the neutral Mn acceptor state.

The observed behavior of transition B indicates that it occurs due to an internal

absorption of the Mn3+ system without emission of carriers into one of the GaN:Mn

bands. A similar absorption peak at about 1.5 eV is also observed for AlN:Mn in Fig. 7.34

and assigned to the same Mn3+ internal transition. A photoionization shoulder similar

to A is observed in AlN:Mn as well, but shifted to higher energies around 2.6 eV, as

expected for a transition from a deep Mn level into the valence or conduction band. The

relative intensities of the two features are similar in both materials. In the case of AlN,

no systematic codoping was performed, and the second spectrum for AlN with lower total

Mn concentration is shown only as an indication of the typical background absorption of

our undoped AlN samples. The spectral differences at the band edge are probably due to

a reduced material quality for high Mn concentrations or due to the limited dynamical

range of the optical measurements.

An even clearer picture of the Mn-related transitions is obtained from the photocon-

ductivity measurements of pure GaN:Mn samples shown in Fig. 7.36 as a function of

temperature. Only those absorption processes that affect the number of carriers in the

bands contribute to photoconductivity. At all temperatures, the broad absorption band

A above 1.8 eV is observed, confirming that carriers are excited directly to the valence

or conduction band. This associates the energy position of the onset hνA either with the
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Figure 7.35: Low temperature measurements with high energy resolution of transition
B in several GaN:Mn samples. The peak intensities have been normalized in this plot, but
correlate well with the total Mn concentration in these samples, as determined by ERD. The
peak energy varies between 1.412 and 1.420 eV, depending on the growth temperatures Ts. This
could possibly be related to the higher strain of samples grown at higher temperatures. The
two peaks observed in those samples grown at temperatures above 800◦ C could be related to a
crystal field splitting or to laterally inhomogeneous strain distribution in these samples.

Mn3+/2+ acceptor or a Mn3+/4+ donor level, and transition A with the

ionization of donors: Mn3+ + hνA → Mn4++ e
−

or

ionization of acceptors: Mn3+ + hνA → Mn2++ h
+

.

Of both interpretations, the large absorption coefficient αmax ≈ 5 × 103 cm−1 at

[Mn]≈1020 cm-3 suggests hole emission from Mn3+ acceptors, which involves stronger pd

coupling to the valence band. The large optical absorption cross-section of both processes

is indicative for the pd mixing of the Mn3+ ground state, as otherwise either the internal

d shell transition or the direct transition to the valence band would be parity-forbidden

by dipole selection rules. Note that the ionization energies of the ground state and the

excited state at 1.8 and 0.3 eV are far from the values for effective-mass acceptors in GaN,
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whose ground state is expected to be only a few hundred meV above the valence-band

edge.

In addition to the emission of holes from the neutral Mn3+(A0) acceptor states in

pure GaN:Mn at 1.8 eV, one could also expect to observe the emission of electrons from

the negatively charged acceptor states Mn2+(A-) in n-type GaN:Mn:Si. This transition

has indeed been observed at 2.1 eV in n-type GaN:Mn bulk crystals,(183) which were

unintentionally doped at a degenerate level. However, the optical cross-section of this

sd-like transition was at least an order of magnitude weaker than the optical cross-section

of the pd-like transition A discussed above. Because of the substantial lattice relaxation

involved in the Mn2+ and Mn3+ states,(189, 194) the sum of both transition energies 3.9 eV

turns out to be much larger than the band gap of GaN of 3.4 eV.

The energy position of the transition B is unaffected by the temperature shift of the

GaN band gap, which again points to an internal d shell transition. The dependence of

the intensity of the photoconductivity at this photon energy on temperature shows that

transition B is not related to a direct photoionization. Instead, a two-step photothermal

process is observed. The internal optical excitation B of Mn3+ to an excited state (Mn3+)*

is followed by a thermal ionization of (Mn3+)* to Mn2+ and a free hole h+ with a thermal

activation energy EA ≈ 0.3 eV (see inset of Fig. 7.36). This is confirmed by the total

energy difference hνA = hνB+EA = 1.8 eV between the final and initial state of transition

A. To summarize, the photoionization processes in GaN:Mn have been identified as

(A) Mn3+ + hνA → Mn2+ + h+

(B) Mn3+ + hνB → (Mn3+)∗

followed by (Mn3+)* + EA → Mn2+ + h+.

Further evidence for the latter assignment is presented below, based on the band alignment

of various III–V materials. Although transition A can be measured in photoconductivity

over a wide dynamical range, the precision of hνA is limited by the failure of standard

models to describe the shape of the complete photoionization band. Because the energy

dependence of the transition matrix elements is not known a priori, the energy hνA =

1.8 eV was estimated from the onset of A, assuming low-energy tails similar to those

below the band gap and below the zero-phonon line of transition B. Photoconductivity

experiments on AlN:Mn, similar to those shown for GaN:Mn in Fig. 7.36, would require

very high temperatures to show the thermal excitation of transition B because of the

large energy difference hνA − hνB ≈ 1.1 eV in AlN:Mn. This thermal excitation is not

necessary to observe the optical absorption spectra shown in Fig. 7.34.

A schematic one-electron level scheme for these processes is shown in the inset of

Fig. 7.34. The tetrahedral crystal field of the surrounding N ligands splits the five d

orbitals of the Mn ion into two e orbitals and three t2 orbitals. The latter are split once

more by the trigonal distortion present in group III nitrides (see Tab. 7.3). In a more
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Figure 7.36: Temperature dependence of the spectrally resolved photoconductivity spectra of
GaN:Mn. Photoionization across the band gap is observed around 3.4 eV. At high temperatures,
this threshold decreases by 0.4 meV/K, in good agreement with the numbers reported for the
excitonic luminescence in Ref. 195. Absorption around 1.8 eV enables the emission of holes
from deep neutral Mn3+ acceptors, which occurs photothermally in a two-step process B via an
internal transition to an excited (Mn3+)* state assigned to the zero-phonon absorption line of
Ref. 128, followed by thermal emission with an activation energy EA ≈ 0.3 eV, as seen in the
inset.

appropriate covalent model, the t2 orbitals are hybridized with those of the surrounding

nitrogen atoms, shifting the occupied bonding t2 orbitals (not shown) into the valence

band, and the antibonding t2 orbitals above the two nonbonding e orbitals.(196, 197) The

spin-up and spin-down levels are drawn separately on the left and right sides of the energy

axis in Fig. 7.34, as they are offset by the exchange energy ∆Eex. In the case of the Mn3+

ground state with 5T2 symmetry, four electrons occupy the localized Mn states within the

band gap. One t2 orbital remains unoccupied or, in other words, is occupied by a strongly

acceptor-bound hole. If additional electrons are provided via codoping, the Mn acceptor

receives another electron and is converted into Mn2+ (6A1), as observed by ESR.

For Mn3+, one of the t2 orbitals remains unoccupied, or in the hole picture occupied

by a mostly d-like hole. Under illumination with photons of about 1.5 eV energy, an
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e electron is excited into the t2 orbital. Thus, transition B can be interpreted as the
5T2 →5E transition of one electron (or hole) between the t2 and e gap levels with the

same spin orientation. This process is spin-allowed, consistent with the observed large

optical absorption cross-section σ ≈ 10−16 cm2. Several phonon modes can be excited

during this transition, as seen in Ref. 128. In the excited state, a d-like hole occupies

the e-level closer to the valence-band edge. At high temperatures, the hole in the e-

level eventually acquires enough thermal energy to escape to the valence band or, in the

electron picture, the neutral Mn3+ acceptor accepts one electron from the valence band

and is converted to Mn2+. Accordingly, the photoionization process A can be understood

as an excitation of electrons from the valence band into the unoccupied t2 level, or as hole

emission from the neutral Mn acceptor into the valence band.

To summarize, the transition to the excited (Mn3+)* state must be ascribed to an

internal excitation of the many-electron system of the deep Mn3+(d4) acceptor. These

excited states are expected to be very similar to those of the isoelectronic Cr2+(d4) ions,

for which the 5T2 → 5E internal excitations have been observed in ZnS:Cr and GaP:Cr at

0.6 eV and 0.9 eV, respectively.(115, 118, 198) Higher excited states have been observed for

Cr2+ as well, however, their transitions to the 5T2 ground state are expected to be weak

in absorption due to spin-selection rules. Compared to the Cr2+ system, the 5T2 → 5E

internal transition of GaN:Mn3+ occurs at a significantly higher energy of 1.42 eV.(128)

Probably this energy difference is related to the different crystal fields of GaN and GaP. In

addition, the splitting due to the covalent coupling with the ligand dangling bonds seems

to be particularly strong for GaN:Mn, as discussed below. In contrast, the spin-forbidden

internal transition 6A1 →4 T1 of Mn2+ or Fe3+ is typically observed in photoluminescence

only. In some materials, the Mn spin-down e orbitals are located within the conduction

band, as drawn in Fig. 7.34. Therefore, this 6A1 → 4T1 transition is not observed in

GaAs, unless the band gap is increased under pressure or by alloying, for example, for

AlxGa1−xAs with x > 0.3.(199) In AlN, this transition has been ascribed to a green Mn-

related luminescence band around 2.0 eV.(156) If ∆Eex were similar in GaN:Mn2+, the

unoccupied spin-down e orbitals of Mn2+ would be within the conduction band similar to

GaAs:Mn2+. However, the PL energy of a zero-phonon line ascribed to this internal tran-

sition was reported to be as low as 1.53 eV in GaP:Mn2+,(23) so that further experimental

studies are required to identify this transition in GaN:Mn2+.

Not only the internal Mn levels, but also their relative position within the gap

can be compared between different materials. The energy required for a charge trans-

fer at the Mn3+/2+ level can be estimated from the internal-reference related band

offsets.(200, 201) Since the valence-band offset between GaN and GaP is known to be about

∆VB ≈ 1.4 eV,(202) the energy position of the Mn3+/2+ acceptor level can be extrapo-

lated to GaN with the help of the known acceptor ionization energy EGaP = 0.4 eV of

GaP:Mn3+,(23, 118, 172) as shown in Fig. 7.37. The resulting energy EGaN ≈ EGaP +∆VB =
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0.4 eV + 1.4 eV is consistent with the energy of 1.8 eV of both photoionization pro-

cesses A and B. The same level alignment also works reasonably well for AlN with

EAlN ≈ 0.4 eV + 2.2 eV.(202) Although strong hybridization probably makes this ex-

trapolation invalid for GaAs, it is interesting to note that the valence-band edge would

be located above the Mn t2 orbitals in GaAs, which would make it energetically favorable

for valence-band electrons to enter these, or in other words, for holes to occupy extended

effective-mass acceptor states Mn2+-h+ instead of the localized d orbitals, enabling the

long-range mediation of magnetic interactions in ferromagnetic DMS, as indeed observed.

7.4.2 Tight-binding picture

As obvious from Fig. 7.37, the properties of Mn3+ and (Mn3+)* are very likely to be

similar in GaN and AlN. However, significant differences are expected between the Mn

acceptor states in GaN:Mn and GaAs:Mn, where Mn acceptors form a very shallow state.

Classical crystal field theory, which is very useful in describing transition-metal states

in insulators, cannot be applied to semiconductors easily because of the continuum of

states in the valence and conduction bands. However, as shown based on a spin-polarized

unrestricted Hartree-Fock model for the transition-metal impurity and a tight-binding

Green function calculation for the host crystal in Ref. 142, and as shown more recently

via LSDA calculations with GGA in Ref. 197, the properties of transition-metal impurity

states in a semiconductor result from the strong coupling of the majority spin t2↑(dyz)

orbitals of the Mn3+ ion on the Ga site to the sp3
↑ hybrid orbitals of the ligand atoms

associated with a Ge vacancy V 3−
Ga .

The optical transitions observed in the absorption spectra of GaN:Mn3+ in Fig. 7.34

accordingly can be understood on the basis of the single-electron scheme of Fig. 7.38. In
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this picture, only the t2↑(dyz) orbitals of the Mn3+ ion on the Ga site are expected to couple

to the sp3
↑ hybrid orbitals of the ligand atoms, as the d↓-states (not shown in Fig. 7.38)

are offset by the exchange energy at one Mn3+ site. The resulting levels can be understood

qualitatively with the help of a defect molecule picture as shown in Fig. 7.38. The fivefold

degenerate 3d↑ orbitals of the Mn-ion are split into the two e↑-orbitals (dx2−y2) and the

three t2↑ orbitals (dyz) by the tetrahedral crystal field of the surrounding nitrogen ligands.

Their degeneracy is lifted furthermore by the trigonal crystal field of wurtzite GaN (not

shown in Fig. 7.38). From linear combinations of the four 3sp3
↑↓ dangling bonds pointing

towards the transition-metal impurity, an s-like a1↑↓ orbital (not shown in Fig. 7.38) and

three p-like t2↑↓ orbitals are formed. Hybridization occurs between the impurity and the

host t2↑ orbitals. According to Ref. 142, the host a1↑↓ orbital and the transition-metal

4s↑↓ states form a doubly occupied bonding state deep in the semiconductor valence band,

and an empty antibonding state high in the conduction band, which are also not included

in Fig. 7.38. The e↑-orbitals of the transition-metal impurity cannot hybridize with the

host orbitals and remain nonbonding. As the d↓-orbitals are offset into the conduction

band by the exchange energy, their influence on the host t2↓ orbitals is small.

According to Fig. 7.38, the nature of the impurity gap states depends critically on the

ordering of the non-interacting host t2↑↓ (sp3) dangling bond levels and the Mn3+ t2↑(3d
4)

atomic levels. The nature of the transition-metal induced gap state derived from the

antibonding t2 hybrid is dominantly p-like, if the hosts t2↑↓ orbitals are initially located

above the 3d↑ levels like for Mn3+ in in GaAs:Mn.(142) The opposite ordering results in

a dominantly d-like gap state, as for Mn3+ in GaN:Mn.(197) Because the influence of the

ligands on this transition-metal state is very small, such a state is well approximated with

standard crystal field theory. The observed splitting between the resulting t2 and e gap

states in GaN:Mn is much larger than the corresponding splitting for Cr2+ impurities in

ZnS and GaP because of the level repulsion of the Mn3+ and the V3−
Ga t2↑ orbitals.

More elaborate ab initio calculations based on the local-spin-density approximation

(LSDA)(31, 117, 190, 196, 197, 206) obtain a similarly deep Mn3+/2+ acceptor level in GaN and

additionally predict a Mn3+/4+ donor level about 1.4 eV below the Mn3+/2+ acceptor

level.(31) If this amphoteric character of deep Mn states in GaN is correct, high Mn con-

centrations would strongly hinder the presence of free electrons or holes in GaN, resulting

in a semi-insulating film with the Fermi-level pinned around midgap by deep trap lev-

els. This is consistent with the experimental observation of high resistivity, also reported

in Ref. 128. In the codoped GaN:Mn:Mg samples of Ref. 138, a large number of PL

transitions was observed around 1.1 eV, which could be interpreted as the spin-allowed
4T2 →4 T1 internal transitions of the 3d3 system of ionized Mn4+ donors.(118) In Ref. 117,

not only the electronic structure shown in Fig. 7.39, but also the magnetic moments inside

the Mn spheres and the optical properties of GaN:Mn were calculated and discussed in

the context of the known properties of GaAs:Mn. The gap states of GaN:Mn calculated
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Figure 7.38: Defect molecule picture for transition-metal gap states of Mn3+ in narrow- and
wide-bandgap semiconductors like GaAs and GaN. In this picture, the transition-metal induced
gap states are derived from the antibonding t2↑ orbitals caused by the hybridization of the
transition-metal t2↑ orbitals and the dangling bond t2↑ orbitals pointing towards the transition-
metal ion from its ligands. These orbitals form the Ga vacancy defect states in the absence of
substitutional Mn, in particular V3−

Ga if no electrons or holes are transferred to the crystal. Note
that according to the calculations of Refs. 203, 204, 205 the relaxed V3−/4−

Ga acceptor level is
located at about 0.1 eV above the valence band maximum of GaN. The character of the Mn-
related gap states depends of the relative energy position of the Mn3+ levels and the dangling
bond t2↑↓ orbitals. If the Mn3+ levels are above the dangling bond t2↑↓ orbitals, the hybrid gap
states are mostly d-like and localized, as in GaN:Mn. However, if the Mn3+ levels are below
the dangling bond t2↑↓ orbitals, the hybrid gap states are mostly p-like and delocalized, as in
GaAs:Mn. In the case of Mn3+, one of these t2↑ levels is occupied by a hole, which therefore
either has valence-band (p-like) or ionic (d-like) character.

there agree well with the interpretation of our experiments. In particular, internal optical

absorption around 1.3 eV is predicted between the e and t2 orbitals, which agrees well

with the zero-phonon line at 1.42 eV of Fig. 7.35 and of Ref. 128. The calculated acceptor

wave functions are more strongly localized and less hybridized with the valence band in

GaN:Mn compared to GaAs:Mn because of the different energy positions of Mn in the

two materials.(117, 197)

According to the LSDA calculations(117, 196, 197) and to the optical experiments de-

scribed above, d-like t2↑ and e↑-levels appear above the valence band of GaN, which are

derived from the host 3sp3
↑↓ states. According to all theoretical calculations, the t2-
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Figure 7.39: Energy bands of GaAs:Mn and GaN:Mn at [Mn]=3.125% according to LSDA
Band structure calculations from Ref. 117. Whereas two localized Mn-related gap states occur
in the band gap of GaN:Mn with an energy distance of 1.3 eV, the Mn-related states hybridize
completely with the valence band in the case of GaAs:Mn.

level, which is occupied by a hole in the single-electron scheme of Fig. 7.38, is a very

localized state whose properties are dominated by atomic d-orbitals. This is in con-

trast to GaAs:Mn, where an effective-mass like Mn2+-h+ complex has been confirmed

experimentally.(134) Here, the mostly p-like antibonding t2↑-level is very close to the

valence-band edge derived from the GaAs 3sp3
↑↓ states. This explains the qualitatively

different character of the calculated band structures of GaAs:Mn and GaN:Mn shown in

Fig. 7.39 of Ref. 117, and agrees well with the different character calculated for the valence

bands of the hypothetical compounds MnN and MnAs.(207)

Unfortunately, the statement that “Mn2+ introduces a hole on substitutional Ga3+-

sites” often found in the GaAs:Mn-related literature lacks a closer specification of the

microscopic character of the type of hole. The discussion above shows that in the case of

GaN this hole has mostly d-like character. Therefore, it is immobile and strongly localized,

and not suitable for the mediation of ferromagnetism as proposed in Refs. 122, 208. In

GaP:Mn, which lies between the cases of GaN:Mn and GaAs:Mn, it was possible to show

by ESR that the neutral Mn acceptor is also in the Mn3+ state, which points to a similar

interpretation as discussed for GaN:Mn.(172) However, some observations also suggest

properties of a Mn2++h+-like complex in GaP and still require interpretation.(23, 209)
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Figure 7.40: Curie Temperatures predicted for carrier-mediated ferromagnetism in various
materials with [Mn2+] ≈ 5% and a hole concentration p ≈ 3.5× 1020 cm−3 (from Ref. 122).

7.5 Outlook: Ferromagnetism in GaN

According to the exchange mechanism proposed in Ref. 122, the magnetic ordering in

dilute magnetic semiconductors results from the exchange interaction between localized

magnetic spins and delocalized carriers. In particular, the extended wave functions of free

or weakly bound holes enable long-range magnetic ordering, which should be adjustable

by charge control, e.g. via external gates,(210, 211) even for low Mn concentrations up

to high temperatures. The highest Curie temperatures with Tc ≥ 300 K according to

a mean-field Zener model are expected for a d5 configuration (as found e.g. for Mn2+)

and valence-band holes as carriers mediating the magnetic coupling. In GaAs:Mn, the

pd exchange energy N0β is typically about 1 eV, where N0 is the concentration of cation

sites and β the pd exchange integral between the mostly p-like valence-band states and

the mostly d-like Mn2+ orbitals. It is assumed in Ref. 122 that the states involved and

the exchange integrals β are similar for all tetrahedrally coordinated semiconductors,

so that the exchange energy N0β is approximately proportional to the inverse unit cell

volume a−3
0 . Because Tc ∝ N0β

2 ∝ a−3
0 , compounds with small anions like nitrogen and

oxygen are expected to lead to particularly high Curie temperatures. As an example,

Tc ≈ 400 K was calculated for GaN:Mn with a Mn2+ concentration [Mn2+] ≈ 5% and a

hole concentration p ≈ 3.5× 1020 cm−3,(122) as shown in Fig. 7.40. The values for Tc can

be scaled easily to different Mn2+ concentrations, as according to this model Tc ∝ [Mn2+].

Similarly, Tc can be scaled to different hole concentrations. For the simple assumption of

a parabolic dispersion of the valence band, the magnetic susceptibility of itinerant holes

is proportional to the kinetic energy of the holes, so that Tc ∝ kF ∝ 3
√
p, where kF

is the Fermi wave vector. However, due to the complicated shape of the valence band,

the dependence on the hole concentration is not such a simple power law in GaAs, but

depends even stronger on the hole concentration and scales roughly proportional to
√
p
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Figure 7.41: Scaling
of the carrier-mediated
ferromagnetic coupling
with the hole concentra-
tion for GaAs:Mn with
[Mn2+] ≈ 5% (from
Ref. 122). The dashed
line were calculated for
valence bands with a
parabolic dispersion.

as shown in Fig. 7.41 from Ref. 122. Obviously, high concentrations of both [Mn2+] and

of holes p are required for a high Curie temperature, in addition to a small unit cell

volume a3
0, which is a principal advantage of GaN. Similar prerequisites are required for

the polaronic and exchange-correlated interaction schemes of Refs. 212, 213, 214.

Obviously, large concentrations of valence band holes are only possible, if the Fermi

level is located not too far above the valence band edge. As discussed in Ref. 215, va-

lence band holes are required as carriers for strong ferromagnetic coupling because of the

weakness of the sd exchange interaction. The transition-metal states, which are formed

at such a Fermi level position according to the charge-transfer level schemes of Fig. 7.43

and 7.42 are listed in Tab. 7.7.

7.5.1 Charge-transfer levels of Cr, Mn, and Fe

From Fig. 7.2 and Tab. 7.1, it becomes immediately clear that the prerequisites for suf-

ficiently large hole densities in the valence band must be discussed separately in III–V

and II–VI semiconductors due to the different cation charge for these two classes of semi-

conductors. As in Mn-doped II–VI diluted magnetic semiconductors the isovalent Mn2+

ion does not introduce any charge-transfer levels in the band gap, the hole concentration

can be controlled independently of the Mn doping. This makes Mn unique among the

transition-metal impurities in II–VI semiconductors and particularly attractive for the

individual control of spin and charge degrees of freedom in Mn-based dilute magnetic

semiconductors.(211, 216, 217, 218, 219) In III–V semiconductors, this situation is more com-

plex. Therefore, the energy position of the charge-transfer levels of Cr, Mn, and Fe in

selected II–V and III–V semiconductor materials will be treated separately in detail in
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Figure 7.42: Charge-transfer levels A0/-(circles) and D0/+(squares) of the transition-metal
impurities Cr, Mn, and Fe in Zn-based II–VI semiconductors with the band edges Ec and Ev
aligned according to the internal reference rule.(118, 140, 142, 200) The band gaps and valence-band
offsets were taken from Refs. 202, 220, and the experimentally observed charge-transfer levels
(closed symbols) from Refs. 115, 118 and references therein. Theoretically predicted charge-
transfer levels (open symbols) were taken from Refs. 31, 201. The lines separating the existence
ranges of the transition-metal oxidation states are guides to the eye. See Fig. 7.43 for the
charge-transfer levels in Ga-based III–V semiconductors.

the following. As discussed in the context of Fig. 7.37, charge-transfer levels of transition-

metal impurities in various materials are aligned with respect to an internal reference

energy, unlike the ionization energies of shallow hydrogenic donors and acceptors, which

are defined with respect to the conduction-band minimum or valence-band maximum.

According to this so-called Langer-Heinrich rule, the energy distances between the

charge-transfer levels of different transition-metal ions are similar in various host materi-

als, which makes it possible to relate their energies to an internal reference level and to

the experimentally observed band offsets,(142, 200, 201) as shown on a relative energy scale

in Figs. 7.42 and 7.43. The acceptor levels of Cr, Mn, and Fe are located high above the

valence-band edge in II–VI semiconductors, so that additional shallow doping is required

to achieve the necessary hole concentrations. Unfortunately, such additional shallow ac-
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Figure 7.43: Charge-transfer levels similar to Fig. 7.42, but for Ga-based III–V semicon-
ductors, for which hybridization and screening effects are more important than for the II–VI
materials with a lower charge density of the valence electrons at the transition-metal site. How-
ever, as for the free ions, the most stable electronic configurations are observed for the d5

configuration Cr1+, Mn2+, and Fe3+ with S = 5/2. In particular, the correlation energy of
Mn2+(A0) even exceeds the band gap in II–VI materials. For the same reason, the Mn-acceptor
level A0/- is shifted towards the valence band in III–V materials, and the Fe3+/2+ (Cr2+/1+)
charge-transfer levels are shifted up (down) in energy, respectively.

ceptors are compensated by transition-metal-induced donor levels in the cases of Cr and

Fe doping. Only for the exceptionally stable d5 configuration of the neutral Mn2+ ion

is the correlation energy so high that the Mn2+/3+ donor level is not located within the

band gap, but shifted into the valence band.

Also in III–V compounds, Mn2+ is desirable for a high Curie temperature, because

of its high spin S = 5/2 and the high exchange energy N0β. However, here the Mn2+

oxidation state with the large correlation energy due to the half-filled d shell corresponds

to the negatively charged acceptor state A-. Therefore, both the Mn2+/3+ acceptor level

and the Mn3+/4+ donor level are shifted towards the valence band, so that Mn becomes

a shallow acceptor in GaAs:Mn.(118, 221) A consequence of the location of both charge-
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transfer levels within the band gap of III–V materials is the reduction of free electrons

and holes, unless the number of carriers exceeds the number of transition-metal centers

n-type: e- + A0 (Mn3+) → A- (Mn2+)

intrinsic: A0 (Mn3+) ↔ D0 (Mn3+)

p-type: h+ + D0 (Mn3+) → D+ (Mn4+) .

(7.25)

Because of these reactions, the Fermi level is said to be pinned by the Mn2+/3+ and

Mn3+/4+ charge-transfer levels in the band gap of the semiconductor material. A presence

of carriers in the bands would require codoping in excess of the very high concentrations

of transition-metal centers.

Without additional codoping, the presence of Mn2+ in III–V materials implies a po-

sition of the Fermi level at or above the Mn3+/2+ charge-transfer level. Significant con-

centrations of free holes are only possible when the Fermi level resides within the valence

band, or within a few kBT above the valence-band maximum. Both conditions cannot

be fulfilled at the same time if the Mn3+/2+ charge-transfer level is located significantly

above the valence-band edge. In GaAs:Mn, however, both conditions can be fulfilled be-

cause of the formation of a Mn2+-h+ complex with only 0.1 eV ionization energy. The

valence-band like character of the Mn2+-bound holes has been confirmed experimentally

in this material.(134, 222) Therefore, GaAs:Mn becomes metallic at sufficiently high dop-

ing concentrations, and GaAs:Mn can be made ferromagnetic with Tc = 110 K at doping

concentrations around 5%.(122)

For high concentrations of valence-band holes, also the Mn3+/4+ donor level must be

located below the valence-band edge. Otherwise, all introduced holes would be com-

pensated by these donors, similar to the case of Cr and Fe in II–VI materials. Refer-

ences 221 and 218 claim that a configuration with the Mn donor and acceptor levels

deep in the valence band is possible in most III–V semiconductors. In contrast, localized

gap states with largely d-like character were predicted theoretically for Mn and other

transition metals in GaN based on the local spin density approximation (LSDA) in the

atomic-spheres approximation,(190) with the Green’s function method,(31) with ab initio

pseudopotentials and a plane-wave basis,(206) with the tight-binding linear-muffin-tin-

orbital method,(117) with the Korringa-Kohn-Rostoker method, which additionally takes

into account disorder,(196) and with fully relaxed calculations, including the generalized

gradient approximation (GGA).(197, 223) Examples for the calculated charge-transfer lev-

els from Ref. 31 are included in Fig. 7.43 with open symbols. Generally, LSDA seems

to underestimate the correlation energies, which are predicted significantly smaller than

observed experimentally from the charge-transfer levels. No significant difference besides

broadening of the impurity bands appears between the most dilute and the most highly

doped case according to the LSDA calculations.(117)
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GaN GaP GaAs GaSb ZnO ZnS ZnSe ZnTe

Cr D+ D+ D+ A-? D+ D+ D+ A0?

Mn D+? A0 A- A- A0? A0 A0 A0

Fe D+? A0 A0 A- D+ D+ D+ D+

Table 7.7: Oxidation and charge states expected for Cr, Mn, and Fe impurities from Fig. 7.43
and 7.42 in the presence of large concentrations of valence-band holes, i.e. with the Fermi level
located close to the valence-band edge. The question marks indicate that no experimental data
concerning this oxidation state are available and that the extrapolation via the internal reference
rule is uncertain.

7.5.2 Prospects for carrier-mediated ferromagnetism

Only small concentrations of valence-band holes can be generated in those materials with

transition-metal centers acting as hole traps or compensating donors D0/+ according to

Eq. (7.25). In these materials, the number of holes will be strongly reduced because of

the recombination h+ + D0 → D+. Consequently, materials with the D0/+ state in the

band gap cannot be used to generate hole-mediated ferromagnetism.

As shown in Tab. 7.7, codoping of transition metals with shallow acceptors is possible

in materials like GaP:Mn, GaP:Fe, and GaAs:Fe, and in all Mn-doped II–VI materials,

where the D0/+ level is in the valence band, but the A0/- level is not. In these ma-

terials, the neutral transition-metal acceptor state A0 is expected to be stable in the

presence of valence-band holes. Indeed, ferromagnetism with Tc < 3 K has been achieved

in ZnTe:Mn:N.(218, 224) As shown in Tab. 7.1, neutral Fe3+ acceptors would have the

largest possible spin S = 5/2 and would therefore be preferred for carrier-mediated fer-

romagnetism rather than Mn3+ with S = 2, for which, furthermore, antiferromagnetic

contributions to the spin-spin interaction are expected.(215) The prospects for GaN:Fe,

which is a special case with a predicted Fe3+/4+ donor level close to the valence-band

edge, will be discussed separately in the following section.

From Fig. 7.43, the hole emission A0 → h+ + A- is expected to occur spontaneously

in GaAs:Mn, GaSb:Mn, and GaSb:Fe, where the A0/- level is also in the valence band or

within a few kT of it. Therefore, transition-metal doping alone is expected to generate

holes and localized spins at the same time in these materials, consistent with the metallic

and ferromagnetic behavior of GaAs:Mn.(225) Because of the smaller lattice constant and

higher exchange energy N0β ∝ a−3
0 in GaAs, and because of the large spin S = 5/2 of

Mn2+, GaAs:Mn seems to be the optimum combination of properties to achieve both high

concentrations of holes and localized spins at the same time.

The alignment of charge-transfer levels in related materials according to the Langer-

Heinrich rule suggests that wide band gap semiconductors like AlN and GaN are rather

unsuitable as candidates for carrier-mediated ferromagnetism. Similar to GaN, the valence
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band of the narrow-gap material InN is mostly formed from nitrogen orbitals, so that the

tight-binding picture of Fig. 7.38 probably also applies for InN:Mn. It is therefore unlikely

that the Mn3+/2+ acceptor level is much closer to the valence band of InN compared to

GaN. Because of the narrow band gap of 0.7 eV of InN,(226) it could rather be located

close to the conduction-band edge of InN, consistent with the calculated valence- and

conduction-band offsets between InN and GaN of 0.8 eV and 1.8 eV, respectively.(227)

Further studies on the strength of the s-d coupling are required to judge the prospects of

InN for carrier-mediated ferromagnetism.

7.5.3 Other exchange mechanisms

Because of the intrinsic difficulties in preparing transition-metal-doped GaN with sufficient

hole concentrations for the application of the Zener model of Ref. 122, it might be a

more promising route to obtain ferromagnetic GaN by inspection of the predictions of

other theoretical models, which can be applied to the transition-metal states found in

GaN. Some important exchange mechanisms, which are believed to be responsible for

ferromagnetism in other materials, are discussed in the following. Ab initio methods like

those of Refs. 117, 196 can help to decide between the different possible mechanisms.

Bound magnetic polarons

A possible extension of carrier-mediated ferromagnetism based on strongly localized mag-

netic polarons for GaN is put forward for GaN in Ref. 221. The idea of bound mag-

netic polarons (BMPs) has been discussed many years ago for materials like EuO or

CdMnTe,(228, 229, 230) where many localized spins interact with few weakly bound carriers

of intermediate spatial extent. The spatial extend of these carriers is determined by the

effective-mass radius a∗ = a0ε
∗(m0/m

∗) of hydrogenic effective-mass states with the Bohr

radius a0 = 0.53 Å of the hydrogen atom and the material’s effective dielectric constant

ε∗ and the carrier mass m∗, and is typically of the order of 2 nm. At carrier densities

above Mott’s critical density Nc ≈ (0.25/a∗)3 ≈ 2 × 1018cm−3, their overlap eventually

enables significant long-range interactions. Thus, in the presence of simultaneous overlap

with the localized spins, a macroscopic spin polarization becomes favorable. As discussed

in Ref. 231, the interaction mechanism of a BMP depends strongly on the configuration

of the magnetic ions. The Brillouin-type permanent polarization of the isolated d5 multi-

plets of Mn2+- and Fe3+-based BMP is determined either by fluctuations in the weak sd

coupling regime, or saturates in the strong pd coupling regime. Note that sd exchange

energies as small as N0α ≈ 14 meV have been determined for Mn2+ in n-type GaN:Mn

from measurements of the spin-relaxation times.(165) In contrast, the energy spectrum

of Van-Vleck type ions like Fe2+ (d6) consists of several states close to the ground state,

which enable an nonzero spin-flip energy even in the absence of a permanent magnetic
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field. Both contributions have to be taken into account for Cr2+(d4)- or Mn3+(d4)-based

materials, as discussed in Ref. 231. However, the sd exchange energy N0α ≈ 0.2 eV for

CdS:Cr2+ is not high enough to enable room-temperature ferromagnetism in the d4-based

systems at realistic doping concentrations.

In GaAs:Mn, the localized spins would correspond to the Mn2+ states with S=5/2,

whereas the weakly bound carriers would correspond to holes in the valence band or to

weakly bound holes in the Mn2+-h+ complexes. The local coupling between both magnetic

moments at the Mn sites is antiferromagnetic.(134, 232) Particularly for GaAs:Mn, the

valence-band holes required for the carrier-mediated exchange can therefore be replaced

by valence-band-like effective-mass-acceptor states with similar properties as real valence-

band holes, supporting the validity of the Zener model of Ref. 122 for this material

system. In GaN:Mn no such coexistence of localized and extended states is provided by the

Mn3+/2+-acceptors. Nevertheless, extended holes could be introduced independently by

codoping the GaN:Mn crystal with shallow acceptors like Mg. Due to the high ionization

energy of Mg acceptors in GaN,(233, 234) only a small fraction of these holes will be

transferred to the valence band, so that the Zener model of Ref. 122 does not apply to this

situation. Still, the polaronic picture of Ref. 221 does apply, as long as the holes remain

in their extended effective-mass acceptor states. However, since Cr3+/4+, Mn3+/4+, and

Fe3+/4+ donor levels are predicted in the band gap of GaN according to the calculations

of Ref. 31, the Fermi level will be pinned at these levels, and the extended holes will

be captured in the charge-transfer process (Cr/Mn/Fe)3+ + h+ → (Cr/Mn/Fe)4+, as

discussed above. According to Fig. 7.43, the theoretical predictions for a Cr3+/4+ donor

level are supported from experimental data in GaP and GaAs and the internal reference

rule. Therefore codoping most probably does not lead to the presence of free or weakly

bound holes in GaN:Cr:Mg. The situation is similar in GaN:Mn:Mg, where crystals have

been prepared and characterized in Ref. 138. The optical and electrical properties of these

crystals are consistent with a Mn4+ oxidation state within the band gap of GaN, which

would once more oppose carrier-mediated ferromagnetism in codoped GaN:Mn:Mg.

Considering the difficulties in predicting charge-transfer energies from theory, the lo-

cation of the Fe3+/4+ donor level in GaN is not sufficiently clear up to now to make a

reasonable judgement on GaN:Fe:Mg. Similar to the unique role of Mn2+ in II–VI ma-

terials, the most stable neutral charge state in III–V materials is the d5 configuration of

neutral Fe3+ with a stable region covering almost 3 eV. Therefore, the BMP model could

be very much appropriate for codoped GaN:Fe:Mg with localized Fe3+ spins and extended

Mg-bound effective-mass acceptor holes, if the Fe3+/4+ level is at lower energy than the Mg

acceptor level in GaN. However, the doping efficiency of Mg in GaN has been reported to

decrease at high Mg concentrations, with a maximum acceptor concentration of 1020 cm−3

achieved.(234, 235) Therefore, it is questionable whether high enough hole concentrations

could be provided to overcome the inherent tendency of 3d5 transition-metal ions to form
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a spin-glass phase,(122, 215) and whether the pd exchange integral N0β would indeed be as

high as assumed, since it is known from ESR that the Fe3+ state is strongly distorted in

the axial crystal field of GaN.(22, 164) The most important experimental parameter to be

determined to judge the possibility of ferromagnetism in GaN:Fe:Mg is the exact energy

position of the Fe3+/4+ donor level in relation to the valence band of GaN.(236)

Virtual transitions

A rather universal exchange mechanism for the pd exchange of e.g. Mn in GaN has been

pointed out in Ref. 237, based on virtual excitations from magnetic impurity levels to the

valence band. In accordance to the Bloemberg-Rowland mechanism, the ferromagnetic

Curie temperature was calculated from the energy gap for virtual excitations of about

0.1 eV in p-type GaAs:Mn. Assuming gap energies in the range of 0.2-0.3 eV for GaN:Mn,

Curie temperatures around 200 K were predicted for a Mn concentration of 5%. However,

regarding the experimental energy depth of 1.8 eV of the Mn3+/2+ acceptor level in GaN,

the Curie temperature predicted by this mechanism would be still far below 10 K at [Mn]≈
5%, so that the chances for ferromagnetism according to this mechanism are rather small

in GaN:Mn.

Transition-metal ion states are coupled to the occupied valence bands via spin-

dependent kinetic exchange due to the short-range superexchange interaction. In the

standard atomic picture, this can be understood in terms of virtual transitions to the

neighboring anion p orbitals. The superexchange interaction thus leads to antiferromag-

netic spin orientation for most but some Cr- and V-based II–VI semiconductors,(238) and

it is thought to be overcome by the ferromagnetic interaction in GaAs:Mn.(122) Also in

Eu(S,O) and the Cr spinels, this competition between direct ferromagnetic and indirect

antiferromagnetic superexchange is observed.(239) Antiferromagnetic or spin-glass inter-

actions are of minor interest for spintronic devices, and will therefore not be discussed

further for GaN:Mn here.

Double exchange

It is well established that the high Curie temperatures observed in the manganites are

caused by a dynamical double exchange due to hopping between the Mn3+(d4) ↔ M4+(d3)

levels, e.g. Tc ≈ 350 K in (La,Sr)MnO3. The parallel orientation of the local moments is

then favorable assuming the hopping process to be spin-conserving, so that the spin-up

orientation of the itinerant electron is required because of Hund’s coupling on each Mn

site. Similarly, a short-range dd interaction could be strong enough for room-temperature

ferromagnetism in highly transition-metal-doped (or alloyed) GaN. In Refs. 117, 196, the

total energies were calculated for configurations of parallel, antiparallel, and unpolarized

Cr, Mn, and Fe spins in GaN, which allowed the estimation of the stability of the ferro-
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magnetic, antiferromagnetic and spin-glass phases. Without codoping, the ferromagnetic

state was found to be very stable for Cr and Mn doping at concentrations around 10%.

These results could be interpreted in terms of a dd double-exchange mechanism, suggesting

that ferromagnetism in GaN might be possible via partly filled itinerant t2 bands without

free holes in the valence band. As p states are not involved directly in this mechanism,

it is independent of the energy separation of the valence band and the transition-metal d

states. However, without coupling to extended hole states, the long-range mediation of

magnetic interactions is lost as well. At large doping concentrations, an impurity band

of interacting d states is formed in the semiconductor band gap. Double exchange is

energetically favorable, as the bottom of this impurity band stems from adjacent d states

with parallel spin orientation. Therefore, the Curie temperature scales like the half-width

of the impurity band, which according to the mean-field approximation is proportional to√
[Mn].(240)

According to Ref. 196, this mechanism requires that the t2 bands with a chance to

become itinerant at high Mn concentrations should be partly filled for ferromagnetism

in GaN. This is not the case for Mn2+(d5) in n-type GaN, but it is for Mn3+(d4) in

intrinsic and Mn4+(d3) in p-type GaN. As typically even nominally undoped GaN tends

to be n-type due to residual donors, additional electrons are expected to compensate the

Mn3+/2+ acceptors, filling the t2 band and lowering the Curie temperature, in agreement

with the calculations of Ref. 240. Hole doping would stabilize the ferromagnetic phase,

but a Fermi level in the middle of the t2 band could be achieved more easily via Cr

doping, in case of sufficiently high Cr solubility.(240) Both for Cr2+(d4) in n-type GaN, as

well as for Cr3+(d3) in intrinsic GaN, partly filled t2 bands would enhance the relevance

of the ferromagnetic double-exchange mechanism. Because of the short-range nature

of the double-exchange interaction, high doping concentrations are required to achieve

ferromagnetism at room temperature via this approach. From the LSDA calculations

of Ref. 240, Curie temperatures above room temperature were predicted for GaN:Cr

and GaN:Mn with [Cr] > 2%. Experimentally, these predictions are supported by the

observation of room-temperature ferromagnetism in GaN:Cr.(241) However, as free carriers

are not involved in this dd double exchange any more, injection of spin polarization into

nonmagnetic semiconductors and control of the magnetic properties via gates might be

possible, but less promising for such materials.

Ferromagnetic clusters

Whereas the prospects for carrier-mediated ferromagnetism in GaN are found to be

rather poor, significant experimental efforts have been triggered by the predictions of

Ref. 122. These efforts led to the incorporation of very high concentrations of Mn into

GaN.(125, 126, 127, 128, 157, 242, 243) Ferromagnetism with Curie temperatures as high as 940 K

was reported for some of these GaN:Mn layers. However, high Curie temperatures have
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been predicted(190, 244) and measured(153, 245, 246) also for various MnxNy phases, so that

the magnetization data alone are insufficient to verify the existence of carrier-mediated

ferromagnetism in GaN:Mn films. Small magnetic MnxNy clusters, as observed in Ref. 246

would be effectively invisible for macroscopic characterization techniques like x-ray diffrac-

tion or electron or ion scattering spectroscopy. Because of their strong magnetic moments,

such clusters, or even small metallic droplets on the GaN:Mn surface(247) could dominate

the magnetic properties of the investigated samples.(248) Similar considerations also apply

for microscopic inclusions of CrxNy and FexNy phases, some of which are known to be

ferromagnetic at high temperatures.

The magnetic properties of such microscopic inclusions are probably difficult to in-

vestigate and to control, but could still enable efficient spin injection also in nitride

semiconductors.(244) However, in this type of devices the external control of the mag-

netic material properties via illumination or electric fields is not possible any more, so

that the major advantages of ferromagnetic semiconductors are lost. Depending on the

type of device, microscopic ferromagnetic inclusions could as well be created in other well

established semiconductors like Si and GaAs,(158) and would eventually provide little ad-

vantage compared to the deposition of a ferromagnetic metal contact on a semiconductor

material.(249)

7.6 Conclusions

The incorporation of Mn2+ spins into GaN and AlN films at high concentrations has

been confirmed unambiguously by ESR measurements. The observed ESR transitions are

consistent with the spin Hamiltonian for isolated substitutional 55Mn2+ centers close to

the ideal Ga sites of the wurtzite lattice, and coordinated by four N atoms. Displacements

from the ideal Ga and Al sites of a few percent of the ideal bond length were estimated

from the axial distortion of the 6A1 ground state observed in ESR. A correlation of the

axial crystal field parameters and the macroscopic strain in GaN:Mn films was established,

and found to agree with the predictions of the superposition theory of crystal fields. At

the investigated Mn concentration of 1020 cm−3, Mn2+ is present as isolated paramagnetic

centers, and exchange effects are negligible.

It was concluded from the total Mn concentration observed in ERD measurements in

comparison to the density of Mn2+ spins observed in ESR, that the majority of Mn ions

in pure GaN:Mn samples with a low density of structural defects are not present in the

Mn2+, but in the Mn3+ state in GaN. Therefore, the assignment of the optical properties of

GaN:Mn to Mn2+ has to be revised. A level scheme with the Mn2+/3 charge-transfer levels

located at 1.8 and 2.6 eV above the valence-band edge of GaN and AlN was established

and compared to the expectations from the internal reference rule. In addition, an excited

state of the neutral Mn3+ acceptors was observed at 1.4 eV above the Mn3+ ground state.
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Trigonal crystal fields, biaxial strain, and Jahn-Teller distortions are probably responsible

for the residual linewidth of 3 meV of this optical transitions. Further investigations will be

required to determine the ground state fine structure of Mn3+ taking into account these

orbital interactions. All observations suggest a strongly localized neutral Mn acceptor

state in GaN, as compared to the effective-mass like acceptor state of Mn in GaAs. It

is therefore questionable whether extrapolation of the Curie temperature in Ref. 122 is

valid for materials with such different acceptor charge states as GaAs:Mn and GaN:Mn.

The coexistence of Mn2+ and valence-band holes is not possible with the developed level

scheme. One could argue that alternatively to Mn2+ also Mn3+ spins could provide local

magnetic moments and that holes could be provided via codoping of GaN both with Mn

and Mg. Concerning that scenario, however, one should keep in mind the predictions for

a Mn3+/4+ donor level, suggesting that Mn must be regarded as a deep trap for electrons

and holes in GaN and seems a priori not suitable for possible applications in spintronics.

The prerequisites of free carrier-mediated ferromagnetism proposed by Ref. 122 seem

to be unattainable in GaN:Mn. There is some chance of obtaining sufficiently high hole

concentrations via codoping of GaN:Fe with Mg, if the Fe3+/4+ donor level falls below the

valence-band edge of GaN, or at least below the Mg acceptor level. GaN:Fe:Mg could then

show ferromagnetism due to the overlap of the resulting bound magnetic polarons.(212)

However, like for ZnO:Mn the stability of the spin-glass component due to the half-filled

d-bands of GaN:Fe3+ is likely to suppress the carrier-mediated ferromagnetic interaction

at the experimentally accessible hole concentrations around 1020 cm−3.(234)

Alternatively, double exchange in GaN:Cr at [Cr] > 2% could lead to room-tempera-

ture ferromagnetism. As no host electronic states are directly involved in this exchange

mechanism, the calculated Curie temperatures are similar for GaN:Cr and GaAs:Cr .(240)

Here, the role of the semiconductor host is merely to provide a matrix that accommodates

the Cr ions, and a dielectric background that helps to spread out the atomic d-orbitals.

Their occupation and spin state could be manipulated indirectly via illumination, doping

or gates in spintronic devices, which do not require spin transport. The solubility, which is

typically low for deep defects and high for shallow dopants like GaAs:Mn, and the occur-

rence of Cr–Cr and Cr–N clustering(190) are important issues that have to be addressed

experimentally in this respect. Curie temperatures up to 940 K have been reported for

MBE-grown GaN:Mn films. It is most likely that these are related to microscopic mag-

netic inclusions. Their magnetization could eventually enable efficient spin injection in

nitride semiconductors, although this interaction is not expected to respond to optical

irradiation or to electric fields from gates.
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Various examples of spin-spin interactions have been investigated in this work, and de-

tailed discussions of results for the dangling bond wave function in amorphous germanium,

the phosphorus donor state in diamond, and the Mn acceptor state in group III nitrides

have been presented in the respective chapters. Also, outlooks concerning the desired

properties of dopants and defects in these specific materials have been given at the end of

each chapter. In particular, an extensive outlook concerning the prospects of ferromag-

netism in GaN:Mn has been presented in Sec. 7.5.

Rather than to reiterate these discussions at this point, we want to stress here the

magnitude and usefulness of the various spin-spin interactions for the characterization of

this wide variety of defect states. Note, that the ionization energy of the midgap dangling

bond state in amorphous germanium is not significantly larger than the phosphorus donor

level at 0.6 eV below the conduction band of diamond and the Mn acceptor level at

1.8/2.6 eV above the valence band of Ga. In both latter cases, more extended and more

shallow states would be desirable for the envisioned applications that require effective

electronic and magnetic doping. However, the electronic and spin wave functions of both

defect states were observed to be strongly localized and to undergo significant lattice

relaxations.

Microwave energies in the range of hν = 1.8 − 39 µeV were used to measure spin-

spin interactions in the energy range of 2 neV–8 µeV. These were observed as small

offsets from the dominant Zeeman interaction of the electronic spins with the applied

magnetic field. Hyperfine interactions of the electronic spins with the nuclear spins of the

defect atoms provided the most important clues for the identification of the defect states

under investigation. Fermi contact interactions of |Aiso| = 0.20− 4.6 µeV were observed

in the P-doped diamond film, and |Aiso| = 0.33 µeV and Aiso = −0.80 µeV in the a-

Ge and GaN/AlN:Mn films, respectively. These were accompanied by dipolar hyperfine

interactions with the defect nuclei of |Aaniso| = 0.021− 0.17 µeV in the phosphorus-doped

diamond crystals. From the viewpoint of these hyperfine interactions, the localization of

the electron wave function at the central atom was smaller than expected. As no spin

density at the nucleus is to be expected for pure d states at all, the observed Fermi-

Contact interaction in GaN/AlN:Mn must be interpreted as a result of spin polarization.

The magnitude of this effect was found to agree well with the chemical trend based on

169



170 SUMMARY

the ligand electronegativity. The collective broadening of the spin resonance of dangling

bond defects in amorphous germanium could be attributed to hyperfine interactions with

more than n = 100 73Ge nuclei of the order of |An| = 0.01 µeV, indicating a localization

radius r0 = 3.5 Å of the defect wave function.

In the amorphous germanium films, these results could clearly be separated from

dipolar interactions of the order of |An| = 0.01 µeV between the electronic spins, from

distant dipolar hyperfine interactions with remote nuclear spins of |Aeff| ≤ 6 neV, and

from broadening due to fluctuations of the spin-orbit interaction of 0.02− 0.5 µeV. Zero-

field splittings of D = 3.7 µeV were observed at an S = 1 high-spin state in diamond,

and related to dipolar interactions between two adjacent electronic spins. The zero-field

splittings of D = 2.4 − 7.4 µeV at Mn2+-centers in GaN and AlN were related to an

axial distortion of the spin states and successfully described by the weak-field scheme of

spin-orbit interactions via excited configurations.

The method of electron spin resonance was not successful for the characterization of

the Mn3+ ground states in the group III nitrides, most probably because of the strong

crystal field interaction of its ground state wave function with tetrahedral and trigonal

crystal fields of the wurtzite lattice. Strain broadening, which is probably causing the

optical linewidth of the internal transition of Mn3+ of 3 meV in GaN:Mn is expected

to strongly affect the spin-spin and spin-orbit interactions of the Mn3+ ground state,

and therefore inhibit the investigation via X-band ESR. Therefore optical methods were

employed to investigate the ground and excited states of GaN:Mn3+. The conclusions

of this study are based on the combination of electron spin resonance measurements of

Mn2+, and of optical measurement at the same samples with much larger energies. The

results suggests that the theoretical prediction of room-temperature ferromagnetism due

to carrier-mediated exchange interactions cannot be fulfilled in Mn-doped III nitrides.

This shows the significance of the measurement of spin-spin interactions even at very

small energies for today’s materials science and for the development of modern electronic

device applications.
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Figure 8.1: Energy scale of the interactions investigated in this work. Dipolar and Fermi
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• Dr. Sebastian T. B. Gönnenwein, for the great discussions and brainstorming

sessions. In the end, we almost managed to not get excited about the same physics

at the same time.

• My former colleagues Dr. Martin Bayerl, Dr. Günther Vogg, Dr. Andreas

Janotta, Dr. Christopher Eisele, and Dr. Roland Zeisel, who were the back-

bone of E25 during my PhD work.
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