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Summary

A phenomenological, thermodynamically consistent quasiparticle model of the quark-
gluon plasma is constructed, taking into account information from lattice QCD simu-
lations. Close to the phase transition, confinement is incorporated by a modification
of the particle distribution function. The formalism is extended to systems with small
quark chemical potential. For the description of ultra-relativistic heavy-ion collisions, a
fireball is developed in accord with the quasiparticle model and a multitude of hadronic
observables. Low mass dilepton radiation and J/ψ suppression are calculated within a
unified framework. Both times, the results are compared with experimental data from
the CERN/SPS, and estimates for the RHIC collider are given. Finally, asymptotic
freedom at high temperatures is derived using an external field method.

Zusammenfassung

Es wird ein phenomenologisches, thermodynamisch konsistentes Quasiteilchenmodell
des Quark-Gluon-Plasmas konstruiert, das Informationen von Gitter-QCD Simulatio-
nen beinhaltet. Confinement wird nahe des Phasenübergangs durch eine Modifikation
der Teilchenverteilungsfunktion eingebaut. Der Formalismus wird zu Systemen mit
kleinem chemischen Potential der Quarks ausgedehnt. Für die Beschreibung von ul-
trarelativistischen Schwerionenstössen wird ein Feuerball entwickelt, der sich im Ein-
klang mit diesem Quasiteilchenmodell und einer Vielzahl an hadronischen Observablen
befindet. Dilepton-Strahlung bei kleinen invarianten Massen und J/ψ Unterdrück-
ung werden innerhalb eines einheitlichen Rahmens berechnet. Beide Male werden die
Ergebnisse mit experimentellen Daten von CERN/SPS verglichen und Schätzungen
für den RHIC Beschleuniger abgegeben. Schliesslich wird asymptotische Freiheit bei
hohen Temperaturen mit der Methode des äusseren Feldes abgeleitet.
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Quantum chromodynamics is conceptually simple.
Its realization in nature, however, is usually very

complex. But not always.

Frank Wilczek

The truth is rarely pure
and never simple.

Oscar Wilde



1 Introduction

In recent years, there has been steadily increasing activity aimed at analysing the
phase structure of Quantum Chromodynamics (QCD), the theory of strong interac-
tions. This effort has been mainly motivated by the expectation that the place in
nature where QCD is not staggeringly complicated, as referred to by Frank Wilczek in
his quotation, is the realm of very high temperature and extremely high density. The
anticipated reduction of complexity is intimately tied to the concept of a running cou-
pling constant in renormalisable quantum field theories. There, the coupling constant
g depends on the momentum scale Q a specific process is probed at. Asymptotic free-
dom, one of the striking properties of non-abelian gauge theories like QCD, implies that
g becomes small at large energy and momentum scales, and a perturbative description
of the physics in terms of weakly interacting partons is possible. The parton model
has subsequently been successfully applied in a number of high-energy processes, most
prominently in deep inelastic scattering. On the other side, at low energies Q ∼< 1 GeV
the coupling constant is large, and QCD shows what is sometimes called infrared slav-
ery: all quarks and gluons are bound in colourless composite objects, the hadrons. The
phenomenon of confinement, the absence of free, observable partons, to date evades
a thorough theoretical description due to its highly non-perturbative nature. The in-
teractions of hadrons are described within effective theories that capture parts of the
initial QCD dynamics and symmetries. However, there is no feasible first-principles
approach based on the fundamental constituents, at least not for the lightest quarks,
that leads us to “understand” the confinement mechanism.

Consider heating up a system that consists of hadrons: the temperature T will ulti-
mately constitute the only relevant energy scale, hence the coupling

g(T ) ∼ 1
(11Nc − 2Nf ) log(T 2/Λ2

QCD)
(1.1)

will become small. We should then be able to treat the hot system in terms of a gas
of weakly interacting partons, instead of a multitude of strongly reacting hadronic
resonances. The same will hold if the system is extremely densely compressed. The
momenta of the particles at the Fermi surface are typically large, of the order of the
chemical potential µ, and g ∼ 1/ log(µ) becomes small, again, which was first realised
by Collins and Perry [1] almost 30 years ago. Consequently, there will be a transition
from the cold, dilute hadronic world to a hot, dense quark-gluon plasma (QGP). This
new state of matter is clearly of great interest. First, it simply tells us what ordinary
matter looks like under extreme conditions. Second, in observing the response of QCD
to the variation of external control parameters like temperature and chemical poten-
tial, a more detailed understanding of its non-perturbative properties (confinement,
chiral symmetry breaking) and their interdependence may be gained.

The transition can be modelled in a first, crude approximation by a percolation sce-
nario: around a critical temperature Tc the hadrons will start to overlap and form a
region where their former constituents can stream almost freely over large distances.
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1 Introduction

We can estimate that this phase transition happens when the hadrons fill up all avail-
able space. For a gas of massless pions, its thermal number density reads

nπ(T, µ) = 3
∫

d3p

(2π)3
1

exp([p − µ]/T ) − 1
� 0.3 T 3 for µ = 0, (1.2)

so the condition for percolation becomes nπ(Tc) � V −1
π . Assuming that the volume

occupied by a single pion is Vπ = (4π/3)r3
π, we obtain

Tc � 1
rπ

.

Then with a typical hadronic scale, represented by rπ � 0.7 fm, Tc = O(200 MeV)1.
In fact, we expect two transitions in QCD that are a priori not correlated: the decon-
finement process, which leads to the liberation of the internal degrees of freedom of
the hadrons, and the restoration of the spontaneously broken chiral symmetry, which
is a low-energy phenomenon and responsible for the large ’constituent’ quark masses
mq ∼ 300 MeV. Lattice QCD, the numerical ab initio simulation of QCD on a discre-
tised Euclidean space-time lattice, has confirmed that qualitative picture of the QCD
phase transition at finite temperature and zero density. Recent advances in computing
power and algorithms have yielded results on the equation of state, the critical tem-
perature and many more observables with unprecedented accuracy. As Tc ≈ 1012 K,
the QGP is likely to be encountered in nature only in astrophysical contexts: accord-
ing to the standard cosmological model, it existed a few microseconds after the Big
Bang and may have left traces in the primordial nuclear abundances. Apart from that,
there are ongoing discussions whether the core of neutron stars, with baryon densities
exceeding 1015 g/cm3, may possibly be composed of one of various manifestations of
deconfinement at high density.

The main reason why the QGP has attracted so much interest over the last years is
that it may be created in earth-bound experiments, the ultra-relativistic heavy-ion
collisions (URHIC). It is expected that the colliding nuclei deposit so much energy in
the collision region that a thermalised system of particles forms which subsequently ex-
pands and cools off. If the initial energy density is above the critical εc ∼ 1 GeV/fm3,
the medium should be describable in terms of a QGP. First dedicated experiments
started at CERN at the SPS, followed by the AGS at BNL where already a c.m.
energy of

√
s � 5 AGeV was reached. Subsequently, further experiments have been

and are still being conducted at CERN with the fixed-target SPS (c.m. energy up to√
s = 17 AGeV), and are underway at BNL with the collider RHIC (c.m. energy up

to
√

s = 200 AGeV). In the future, collision energies will increase by another order of
magnitude at the collider LHC (

√
s = 5500 AGeV) at CERN.

A sketch of the expected phase diagram of QCD is shown in figure 1.1. The (T, µB = 0)
axis is reasonably well constrained by lattice results whereas the exact line of the
phase transition line for non-vanishing baryonic chemical potential is strongly model-
dependent and, consequently, has considerably larger errors. The big dots depict the
chemical freeze-out points of the various experiments mentioned above, based on a
statistical model: the measured abundances of hadrons (π, p, K, ...) are fitted by an

1At zero temperature, but finite baryonic chemical potential, the transition is expected to set in at
a density of ρ = 3 − 10 ρ0 (corresponding to µB = 1 − 1.5 GeV), where ρ0 = 0.17 fm−3 is the
ordinary nuclear density. At much larger densities, a very rich and complex phase structure has
been predicted by a number of perturbative calculations [37], among them colour-flavour locking
and colour superconducting phases. These are of no concern for this work, though.
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Figure 1.1: A sketch of the phase diagram of QCD in the T −µB plane [2]. The dotted line
shows the phase transition line as determined from first lattice QCD (LQCD) calculations
at finite µB [39] that ends in a critical point. The dashed line labels the corresponding line
evaluated in a bag model calculation. For further explanations, see text.

ideal gas formula similar to eq.(1.2). The two fit parameters T and µB then mark
the point of chemical freeze-out (i.e. the point from where on inelastic, particle num-
ber changing interactions cease to be efficient in the fireball evolution) in the phase
diagram. Apparently, the chemical freeze-out at SPS and RHIC occurs within errors
at the phase transition line, indicating (along with other arguments) that the initial
energy density is indeed sufficient to create a QGP in experiments.

However, as pointed out so poignantly by Oscar Wilde, the truth is never simple. The
QGP might very well have been produced, but for us to study its properties, we require
it to leave distinct traces in the detectors. Any signature of the QGP is folded with the
time evolution (and consequently the evolution of volume, temperature, and baryon
density) of the fireball created in a URHIC. Furthermore, this evolution continues after
the system runs through the phase transition and thus, any information is mixed with
signals from the conventional hadronic phase. The simulation of a heavy-ion collision
– multi-particle physics with strong interactions – is in itself a dauntingly complex
task. If the system thermalises (and there are good indications for that), a description
in terms of averaged thermal properties may be helpful. However, notwithstanding
asymptotic freedom, perturbative calculations at finite temperature have failed spec-
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tacularly in describing even the most basic features of the QGP (as evaluated on the
lattice), let alone calculating signatures with a sufficient accuracy. At the moment,
there is no scheme to perform reliable, controllable thermal field theory calculations
at reasonable temperatures, only far beyond the Planck scale the existing series start
to converge.

An all-embracing description of an URHIC from scratch is therefore clearly out of
reach. With that, phenomenology becomes important: heavy-ion physics is a ’data-
driven’ science. A plethora of models has emerged over the last years that are able to
describe isolated pieces of data, at the expense of parametrising parts of the ongoing
physics. It is, however, difficult to construct a consistent picture of an URHIC from
these different approaches. As an example, we mention ref.[121] where the dilepton
data taken at the SPS in Pb(158 AGeV)+Au collisions can be well described when a
fireball with initial temperature of 190 MeV is used, whereas ref.[3] needs an initial
temperature of 335 MeV in order to fit the direct photon data – within the same ex-
perimental setup. That factor of 2 in the temperature translates into roughly an order
of magnitude difference in the calculated initial energy density. Clearly, the theoretical
uncertainties are much larger than any experimental error bars.

There is therefore not much to be gained from models which dial their parameters to
fit a certain piece of data, not regarding that these parameters lead to inconsistent
results when a different observable is looked at. On the other hand, experiments and
lattice simulations2 have accumulated a sufficiently large set of data that eventually
allow to constrain models to quite some degree. In the light of these facts, we believe
that the time is ripe to adopt a more holistic approach: instead of tailoring a model to
every observable, we will explore in a unified description, taking into account as much
information as is available, to what extent the formation of a QGP can be inferred
(with one fundamental assumption, that of local thermal equilibrium) and what its
consequences are – that is the main theme of this thesis. We start out with a new
description of the medium, a quasiparticle interpretation, with aspects of confinement
incorporated, of the QGP for T ∼< 3 Tc, which is the temperature region where current
heavy-ion experiments operate. Various lattice data are used to set up the model and
test its predictions. Following that, we construct a fireball that is constrained by a
multitude of hadronic observables. Its expansion dynamics is largely controlled by
the equation of state of the aforementioned quasiparticle model. Having forged this
space-time arena, signatures of the QGP can be placed into it. We will have a look
at dilepton radiation and J/ψ suppression and compare with experiment, each time
consistently modelling the medium above Tc by our quasiparticle model constrained
by lattice QCD. It is worth stressing that, in our approach, the fireball evolution is
explicitly decoupled from the signatures, it is fixed beforehand and not changed after-
wards. The fireball is eliminated as a free parameter since we aim to describe as many
observables as possible within a single and tightly constrained framework. In doing so,
a small step on the long journey towards a consistent ’standard model’ of heavy-ion
collisions has hopefully been taken. Last but not least, we close the circle with a more
conceptual work and present a simple, yet elegant derivation of asymptotic freedom
at high temperatures that has hitherto not been obtainable in a rigorous calculation.

2We frequently adopt the jargon that lattice QCD simulations produce ’data’. At the moment, these
are the only reliable sources to assess properties of QCD at high temperature. We will, of course,
keep in mind and discuss the inherent limitations of the technique.
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In more detail, this thesis is structured as follows:

Since the field of heavy-ion collisions requires a broad knowledge of QCD phenomenol-
ogy at high temperatures, we present in the second chapter an up-to-date overview
of the thermodynamics of QCD, referring mainly to latest lattice data. Within a toy
model, a non-perturbative treatment of λφ4 theory with spontaneous symmetry break-
ing, we outline the main features of a field theory in the vicinity of a phase transition.
We discuss the order parameters of the QCD phase transitions, the critical temperature
and its dependence on the number of flavours, bare quark mass and quark chemical
potential.

In the third chapter, we construct a novel quasiparticle model of the QGP. First, lat-
tice QCD results of the equation of state (EOS) of pure gauge theory and QCD with
a varying number of flavours are discussed, along with a careful assessment of remain-
ing lattice artefacts. Various interpretations of these data have been attempted, most
prominently as a gas of massive, non-interacting quark and gluon quasiparticles. We
argue that for T ∼< 3 Tc, non-perturbative confinement physics not amenable in an
expansion in g starts to become important. Our main new ingredient, as compared to
previous work, will be a phenomenological parametrisation of (de)confinement, supple-
mented by thermal quasiparticle masses compatible with lattice results. The resulting
model is tested against a number of lattice data and extended to systems with small
quark chemical potential.

We put the quasiparticle formalism to use in two ways in chapter 4: to describe the
dynamics of a URHIC, a fireball model reminiscent of hydrodynamics is set up. As-
suming isentropic expansion, the EOS of the system will link initial and final states
of the collision. The equation of state in the QGP phase for physical values of the
quark masses is taken from our quasiparticle setup. This procedure results in a ther-
modynamically self-consistent description of a fireball evolution which is, for the first
time, in accordance with lattice results. We use this fireball in the calculation of
dilepton rates. Dileptons (correlated e+e− and µ+µ− pairs) or, equivalently, virtual
photons are interesting probes since they do not interact strongly and escape un-
thermalised from the hot fireball region at all stages of the collision. Therefore, in
contrast to hadronic probes which can tell only of the late stages of the fireball ex-
pansion (the freeze-out), dileptons also carry information on the early moments of
the collision. Whereas in the hadronic phase dileptons predominantly stem from pion
and kaon annihilation processes which are enhanced due to the formation of the light
vector mesons ρ, ω and φ, in the QGP phase they originate mainly from qq̄ annihi-
lation processes. If the spectra of the two phases are sufficiently distinct, we might
be able to tell the QGP from the ordinary hadronic phase. As it turns out, the
dilepton rates are indicative of a possible restoration of chiral symmetry that would
imply ’duality’ of those spectra. In the region below Tc, we calculate the depen-
dence of the photon spectral function (that enters the dilepton rate) on temperature
and baryon density using Vector Meson Dominance combined with Chiral Dynamics.
Above Tc, we consistently employ the quasiparticle picture to one-loop order. Fold-
ing the spectra with the fireball evolution, we compare the resulting dilepton rates
with data taken at the CERES/NA45 experiment from the CERN SPS in Pb(40
AGeV)+Au and Pb(158 AGeV)+Au collisions. We also give estimates for Au+Au
collisions with the PHENIX detector setup at RHIC at a c.m. energy of

√
s = 200

AGeV.
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For a second signature, we apply the unaltered quasiparticle and fireball models in
chapter 5 to the phenomenology of J/ψ suppression. At high temperatures, the
gluon density will be so large that the colour interaction between a c and a c̄ quark,
produced during the initial nuclear impact, is Debye screened. The formation of
bound cc̄ states (J/ψ, ψ′, χc) is then aggravated, leading to a suppression of char-
monia in heavy-ion collisions. J/ψ suppression hence constitutes an early QGP probe
and is considered as a direct signal of the deconfinement transition. We use a ki-
netic approach to describe the interactions of the J/ψ with the medium that is,
above Tc, again modelled by the quasiparticle model. Convoluted with the fire-
ball, the resulting suppression pattern is compared with data from the NA50 ex-
periment at the CERN SPS, taken in Pb(158 AGeV)+Pb collisions. RHIC esti-
mates with emphasis on the possibility of colour coalescence are also briefly dis-
cussed.

In the sixth chapter, we shift our scope away from experiments towards a more
conceptual problem: asymptotic freedom lies at the heart of the QGP, but it has
never been explicitly derived at high temperature in a concise manner. We calcu-
late in a transparent fashion perturbatively a running coupling constant in QED and
QCD at very high temperatures where the coupling is small, ultimately justifying
the phenomenological ansatz of Collins and Perry [1] put forward in 1975. Instead
of a loop expansion, we evaluate the energy shift of the thermal vacuum to lead-
ing order in the coupling constant after applying an external (chromo)magnetic field
H, from which we extract an effective, temperature and scale-dependent coupling
constant αeff(H,T ) in the limit H/T 2 � 1, i.e. high temperature and large dis-
tances.

The seventh and last chapter summarises our results, concludes and presents an out-
look regarding future work.

The appendix lists some general properties of particle spectra at finite temperature.
In particular, the perturbative Hard Thermal Loop expressions for quark and gluon
propagation in a heat bath are quoted. Finally, some useful expansions of integrals
that frequently appear in finite temperature calculations are given.

A note on conventions: we use ’God-given’ units h̄ = c = kB = 1 throughout. Indices that appear

twice in a formula are summed over. Temperature is denoted by T and sometimes by β = 1/T . A

thermal average of an operator O reads 〈O〉, unless there is a possibility of confusion, in which case

the T -dependence is explicitly written out as 〈O〉β or 〈O〉T .
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2 QCD at Finite Temperature

This chapter introduces QCD and its non-perturbative phenomena. We summarise
the basics of thermal field theory, the Hard Thermal Loop calculation scheme and how
to “put QCD on the lattice”. The phenomena of phase transitions in a quantum field
theory are exemplified using a thermal renormalisation group analysis of λφ4 theory.
Finally we gather what is quantitatively known about the QCD phase transition and
its dependences on the external parameters temperature, bare quark mass and quark
chemical potential. These results will be extensively referred to in the upcoming
chapters.

2.1 QCD at zero temperature

Within our current understanding, the theory of strong interactions is Quantum Chro-
modynamics (QCD), a non-abelian gauge field theory with the colour gauge group
SU(Nc), and Nc = 3. The spin-1 gauge boson degrees of freedom, the gluons Aa

µ, are
characterised by their colour index a (a = 1..N2

c − 1) and transform as the adjoint
representation of the gauge group. The fermion sector of the theory consists of massive
spin- 1

2 Dirac spinor fields Ψ, the quarks. They belong to the fundamental complex
representation of SU(Nc). Each quark carries one of Nc possible colour charges. The
dynamics and interactions of these particles are described by the Lagrangian

LQCD = Lq + LG = Ψ̄(iγµDµ − m)Ψ − 1
4
GµνGµν , (2.1)

which involves the gluonic field-strength tensor

Gµν = (∂µAa
ν − ∂νAa

µ + gfabcAµ,bAν,c)ta (2.2)

and the gauge covariant derivative

Dµ = ∂µ − igtaAa
µ. (2.3)

The index a = 1..8 is summed over the generators of the SU(3) gauge group ta = λa/2
that are related to the structure constants of the group by [ta, tb] = ifabctc. The strong
coupling constant is denoted by g in the following, and αs ≡ g2/(4π).

Eq.(2.1) is invariant under local gauge transformations G(x)

Ψ(x) → Ψ′(x) = G(x)Ψ(x), Ψ̄(x) → Ψ̄′(x) = Ψ̄(x)G†(x) (2.4)

and
Aµ(x) → A′

µ(x) = G(x)Aµ(x)G†(x) − i

g
G(x)∂µG†(x). (2.5)

Here, G(x) = exp(iωa(x)ta) is a SU(3) rotation matrix in colour space with arbitrary
c-functions ωa(x).
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2 QCD at Finite Temperature

Among the Nf = 6 quark flavours with mu,md,ms ≈ 4, 7, 150 MeV and mc,mb,mt ≈
1.5, 4.5, 170 GeV, there is a natural separation in sectors of ’light’ and ’heavy’ quarks.
We will mainly consider light quarks in this work: As we work within a temperature
range T � mc, the influence of heavy quarks on thermodynamics is negligible. With
Nf = 3 then,

Ψ(x) =

 uα(x)
dα(x)
sα(x)

 (2.6)

(α = 1..3 is a colour index), and the current quark mass matrix in LQCD becomes

m =

 mu

md

ms

 . (2.7)

Since QCD is renormalisable, its bare parameters g and mq depend on the energy scale
µ at which the theory is probed. The renormalisation group equation for the running
coupling αs(µ) reads

µ
d

dµ
αs(µ) = β(αs) = −β0

6π
α2

s −
β1

24π2
α3

s −O(α4
s), (2.8)

where

β0 = 11Nc − 2Nf and β1 = 34N2
c −

(
10Nc +

3
Nc

(N2
c − 1)

)
Nf . (2.9)

Its solution exhibits the famous property of asymptotic freedom in QCD:

αs(µ) =
12π

β0 log(µ2/Λ2
QCD)

−
36πβ1 log(log(µ2/Λ2

QCD))

β3
0 log2(µ2/Λ2

QCD)
+ O

(
log2(log µ)

log3 µ

)
(2.10)

with ΛQCD � 0.2 − 0.3 GeV. Since Nf < 16, the coupling constant therefore becomes
small at high energies (e.g. αs(mτ = 1.77 GeV) = 0.35 and αs(mZ = 91 GeV) = 0.117
[4]), thus allowing the perturbative treatment of the interactions between quarks and
gluons. As we will elaborate on in chapter 6, asymptotic freedom can be explained
semi-classically in terms of a paramagnetic ground state.

In the infrared, the expression for αs, eq.(2.10), features a Landau pole. Hence, αs

is large at low energies <∼ 1 GeV, and the coloured fundamental quarks and glu-
ons become bound into colourless ’white’ hadrons. The phenomenon of the absence
of coloured asymptotic states in particle reactions has been baptised confinement of
colour. Since there are no free quarks observed, the (empty) vacuum of a Fock space is
not a suitable ground state anymore to construct a meaningful field theory. Otherwise
it would be possible to excite a single, stable quark as an asymptotic state. Comparing
experimental upper limits on abundances of free quarks with theoretical expectations
in a world without confinement, the discrepancy between these results amounts to a
factor of 10−15 [5]. This number is unnaturally tiny to be explained in terms of a small
parameter. Confinement is then likely to constitute an intrinsic property of the QCD
vacuum, not a perturbative phenomenon. Confinement also manifests in the potential
between two heavy quarks: the spectra of bound cc̄ or bb̄ states are well described by
the Cornell potential of the form

Vq̄q(r) =
ᾱ

r
+ σr, (2.11)
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2.2 Symmetries and condensates

i.e. a Coulomb-like 1/r term with ᾱ � 0.25 and a linearly rising piece with the
string tension

√
σ � 420 MeV [4] (see also later figure 5.1). A large separation of

the quarks hence would require a very large amount of energy if there were no light
quarks present. In the real world, string breaking occurs at a separation of about 1
fm by quark-antiquark production out of the vacuum, and two colour-neutral mesons
are formed.

2.2 Symmetries and condensates

In the chiral limit mq → 0, the classical QCD Lagrangian shows a wealth of symme-
tries. After quantisation and regularisation of quantum fluctuations, some of these
symmetries are broken. Apart from Poincaré invariance, the classical QCD symmetry
group is the direct product of

S[LQCD]cl = SU(3)c ⊗ SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V ⊗ U(1)A ⊗ C. (2.12)

Invariance under the local colour symmetry SU(3)c determines the dynamics of the
gauge and quark fields. The global U(1)V symmetry enforces baryon number con-
servation, whereas the axial U(1)A symmetry is broken at the quantum level due to
the chiral anomaly. It can be connected to the existence of saddle points with finite
Euclidean action in the path integral, the instantons.

Since LQCD in the chiral limit has only a single dimensionless parameter g, the QCD
action Scl =

∫
d4xLQCD(x) is invariant under global scale transformations C(λ) in

Minkowski space

xµ → λ−1xµ, Aa
µ → λAa

µ(λx), Ψ → λ
3
2 Ψ(λx).

The conserved quantity is the dilatation current

jµ
D = xνTµν , ∂µjµ

D = Tµ
µ = 0,

where Tµν is the energy-momentum tensor of the theory. Renormalisation introduces
a scale ΛQCD to the theory that breaks the conformal symmetry. The divergence of
the current jµ

D becomes

∂µjµ
D =

β(αs)
4αs

Ga
µνGµν

a

with the Gell-Mann-Low beta function of eq.(2.8). To lowest order,

∂µjµ
D = −β0

24
G2, G2 =

αs

π
Ga

µνGµν
a .

The scalar vacuum expectation value associated with this broken symmetry is the
gluon condensate

〈G2〉 ≡ 〈0|G2|0〉 � (1.5 ± 0.5) GeV/fm3
. (2.13)

Its numerical value can be extracted from QCD sum rules for charmonium systems [6].
〈G2〉 itself is a non-perturbative quantity, as an operator of dimension 4 its dependence
on g is non-analytic since 〈G2〉 � exp(−12/[β0g

2]).

The low-energy dynamics of hadrons is driven by the chiral symmetry. In the limit
of vanishing quark masses, LQCD is invariant under global vector and axialvector
rotations in SU(3) flavour space. Considering this limit is justified as the masses in
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2 QCD at Finite Temperature

(2.7) are small compared to typical hadronic scales of 1 GeV. The flavour components
of (2.6) transform for SU(3)V as

Ψ′ → exp(iαiλ
i/2)Ψ

and for SU(3)A as
Ψ′ → exp(iγ5αiλ

i/2)Ψ.

When we decompose the quark fields into right- and left-handed chirality components
ΨR,L = 1

2 (1 ± γ5)Ψ, we obtain a global SU(3)L ⊗ SU(3)R chiral symmetry in flavour
space. The conserved currents are the vector currents

jµ
V,i = Ψ̄γµ λi

2
Ψ

and the axial vector currents

jµ
A,i = Ψ̄γµγ5

λi

2
Ψ,

i = 1..3 labelling the flavour. However, there is strong empirical evidence that chiral
symmetry is spontaneously broken in the physical vacuum:

(i) For massless fermions helicity eigenstates are also parity eigenstates. With chiral
symmetry unbroken, we would expect degenerate hadronic multiplets of oppo-
site parity (so-called parity doublets) in the meson or baryon spectrum. If we
compare the scalar meson octet with the pseudoscalar octet or the axial vector
octet with the vector octet, we find substantial mass differences. For example,
the mass of the ρ meson (JP = 1−) with 770 MeV differs considerably from that
of its axial partner, the a1 meson (JP = 1+) with 1260 MeV.

(ii) There are eight very light (compared to 1 GeV) bosons (π±, π0, K±, K0, K̄0

and η) that interact weakly at low energies. These particles can be interpreted as
Goldstone bosons of the spontaneously broken chiral symmetry. The unnaturally
large mass of the η′ can be traced back to the axial anomaly.

Thus SU(3)L ⊗ SU(3)R is spontaneously broken down to SU(3)V . The axial symmetry
generators do not annihilate the ground state of the theory,

exp(iγ5αiλ
i/2)|0〉 �= |0〉,

thus the symmetry is present in the Nambu-Goldstone realisation whereas the vector
symmetry is in the Wigner-Weyl realisation with exp(iαiλ

i/2)|0〉 = |0〉.

Each spontaneously broken global symmetry implies a massless Goldstone boson, so π,
K and η acquire their masses of 140-500 MeV only from the explicit symmetry breaking
by the finite quark masses (2.7). Another consequence of the Goldstone theorem is
that the axial current matrix element between the vacuum and a Goldstone boson is
non-vanishing:

〈0|jµ
A,i|πj(p)〉 = ipµδij fπe−ipx.

Considering the SU(2) subgroup (i=1..3), πi denotes the pion field and fπ = 92.4 MeV
the pion decay constant.

In the case of chiral symmetry the quark condensate 〈q̄q〉 acts as an order parameter
for the symmetry breaking and can be interpreted as a scalar quark-antiquark pair
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2.3 Thermal field theory

condensate in the ground state. It is defined by the short-distance limit of the full
quark propagator,

〈q̄q〉 = − lim
y→x+

Tr〈0|T [q(x)q̄(y)]|0〉. (2.14)

Here, q(x) is one of the quark fields in (2.6) and T [. . .] denotes the time-ordered
product. Using the Wick theorem,

T [q(x)q̄(y)] =: q(x)q̄(y) : + ̂q(x)q̄(y), (2.15)

where : . . . : is the normal-ordering and .̂ . . the contraction of two field operators. Now,
the perturbative quark propagator

〈0|T [q(x)q̄(y)]|0〉 = SF (x − y) =
∫

d4k

(2π)4
eik(x−y) i(/k + mq)

k2 − m2
q + iε

encodes the ultraviolet physics as y → x, and the normal-ordered terms in eq.(2.15)
vanish in perturbation theory at zero temperature. A non-vanishing 〈q̄q〉 hence stems
from long-range, non-perturbative physics. At finite temperature, the ultraviolet be-
haviour of the theory remains unchanged, but normal-ordered expectation values usu-
ally are non-zero. As we will discuss in section 2.4.3, this fact requires a careful
interpretation of lattice data on 〈q̄q〉β and a re-definition of the order parameter. The
condensate can be related to the pion decay constant fπ via the Gell-Mann, Oakes,
Renner (GOR) relation [7]

m2
πf2

π = −1
2
(mu + md)〈ūu + d̄d〉 + O(m2

u,d). (2.16)

Taking mu = 5 MeV and md = 7 MeV yields a value for the quark condensate,
〈ūu〉 = 〈d̄d〉 � −(250 MeV)3.

2.3 Thermal field theory

The central quantity of a system in thermal equilibrium that incorporates all ther-
modynamic information is the partition function connected to the statistical density
matrix ρ by

Z(T, V ) = Tr[ρ] = Tr[exp(−βH)] =
∑

n

〈n|e−βEn |n〉. (2.17)

Here, β = 1/T , H is the Hamilton operator, and the trace is performed on a complete
set of physical eigenstates. The statistical average of an operator O follows as

〈O〉β ≡ 1
ZTr [ρO] . (2.18)

The thermal excitations of the ground state, the vacuum, are eigenstates of H, that
is, particles. Using (2.15) and taking the thermal average 〈. . .〉β , the free thermal
propagator acquires a thermal contribution due to the non-vanishing normal-ordered
product of field operators and reads, for the bosonic case,

〈T φ(x)φ(x′)〉β =
∫

d4k

(2π)4
e−ik(x−x′)DF (k),

DF (k) =
i

k2 − m2 + iε
+ 2πδ(k2 − m2)fB(|k0|), (2.19)
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2 QCD at Finite Temperature

where we have introduced the Bose-Einstein particle distribution function

fB(k0) =
1

exp(βk0) − 1
.

The second, T -dependent part of the propagator hence describes the propagation of
”on-shell” particles from the heat bath with their respective probability of being there
with the appropriate (positive) energy |k0|. For fermions, the different sign convention
for the time-ordered product of spinor fields has to be taken into account, and we
obtain for the free propagator

SF (k) = (/k + m) ·
(

i

k2 − m2 + iε
− 2πδ(k2 − m2)fD(|k0|)

)
(2.20)

with

fD(k0) =
1

exp(βk0) + 1
, (2.21)

the Fermi-Dirac distribution function [8, 9].

Consider a scalar field φ with a Lagrangian L[φ]. Since the statistical density operator
ρ = exp(−βH) can be regarded as a time evolution operator in imaginary time over the
interval [0, β], the partition function for φ(x) can be expressed in terms of a Euclidean
path integral

Z(T, V ) =
∮

Dφ exp

−
β∫

0

dτ

∫
V

d3xLE [φ(τ, �x)]

 , (2.22)

with the sum restricted over periodic field configurations φ(0, �x) = φ(β, �x). Due to
their spinor nature, fermionic fields obey anti-periodic boundary conditions. Field
theory at finite temperature is then equivalent to a Euclidean field theory in a four-
dimensional space-time with the time component compactified on a ring with circum-
ference β = 1/T . For an observable represented by the operator O[φ] in contact with
a heat bath, its expectation value in the canonical ensemble becomes

〈O〉β =
1
Z

∮
Dφ O[φ] exp

−
β∫

0

dτ

∫
V

d3xLE [φ(τ, �x)]

 . (2.23)

The formal similarity of (2.22) with the generating functional Z[J ] for vanishing ex-
ternal sources J at zero temperature makes both perturbative (Feynman diagram)
and lattice techniques easily adaptable tools to evaluate 〈O〉β . The corresponding
expression of (2.22) for QCD follows as

Z(T, V,m0, µ) =
∮

DAµDΨ̄DΨ exp

−
β∫

0

dτ

∫
V

d3x{LE
G + LE

q (mq) − µΨ†Ψ}

 ,

(2.24)
where LE

G and LE
q are the Euclidean versions of eq.(2.1), and we have introduced an

explicit dependence on the additional external parameters, quark chemical potential
µ and bare quark mass mq.
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2.3 Thermal field theory

2.3.1 Perturbative techniques

In the imaginary time formalism, the only modifications of the usual Feynman rules
at T = 0 arise from the (anti)periodic boundary conditions in (2.22) that lead to a
discretisation of imaginary (Matsubara) frequencies in momentum space [8, 9]. The
loop integrals are replaced by∫

d4k

i(2π)4
→ 1

β

+∞∑
n=−∞

∫
d3k

(2π)3
,

and energy-momentum conserving delta functions become

i(2π)4δ(4)(k) → β(2π)3δn,0δ
(3)(�k).

Furthermore, all frequencies are changed to

k0 → 2πi

β
(n + ζ), n ∈ Z and ζ =

 0 for bosons,

1
2 for fermions.

Perturbation theory can also be formulated directly in real time where the separation
between T = 0 and T -dependent contributions is obvious from the beginning. The
time integration in (2.23) runs then from −∞ to +∞. However, owing to the different
boundary conditions compared to the T = 0 case, the field degrees of freedom are
doubled, and the propagator acquires a 2×2 matrix structure. There is a second ’ghost’
field which has an unphysical complex time component which is, loosely speaking,
necessary to return from t = +∞ to t = −∞ − iβ. Of course, only the field with a
real time component occurs on the external lines of a propagator. However, the ghost
field is essential for a consistent real-time theory. Without it, ill-defined products
of δ-functions with the same argument – pinch singularities – would arise in loop
calculations.

As a simple example, we calculate the tadpole diagram in massless λφ4 theory. The T -
independent part vanishes in dimensional regularisation. Furthermore, in this specific
case it is sufficient to directly integrate over the thermal propagator of eq.(2.19). The
result reads

Π(T ) =
λ

2

∫
d4k

(2π)4
fB(|k0|)(2π)δ(k2 − m2)

= 2
λ

2

∫
d3k

(2π)3
1

2ωk
fB(ωk), (2.25)

the 2 in front counting particle and antiparticle alike. For massless particles, the
integral can be carried out analytically:

Π(T ) = m2
β =

λT 2

4π2

∞∫
0

dx
x

ex − 1
=

λ

24
T 2. (2.26)

Since this result is momentum-independent, Π(T ) can be interpreted as a thermal
mass m2

β that arises from the continuous interaction of the propagating particle with
the heat bath. This is a radiatively generated mass which does not break any chiral
symmetries present in the original Lagrangian since finite temperature only induces a
mixing of states.
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2 QCD at Finite Temperature

Finally, it is worth noting that finite temperature does not destroy the renormalisability
of a theory: renormalisation of the considered theory at zero temperature suffices and
no new counter-terms are needed. The heat bath introduces a new scale, T , in the
system, but this does not change the ultraviolet behaviour of the considered theory as
for k2 � T 2, medium effects are unimportant. This is also clear from the fact that the
Bose- or Fermi-Dirac functions cut off the momentum integrals at values k = O(T ).

2.3.2 Hard Thermal Loops

In a renormalisable theory with no masses, only one dimensional scale Λ, the renor-
malisation point, is present. Consider now the calculation of a loop diagram, say, the
self-energy Π at external momentum pµ and g � 1. At zero temperature, dimensional
arguments and Lorentz invariance dictate Π(p) = g2p2f(p2/Λ2), where f(x) is a di-
mensionless function, and the self-energy can be resummed in the propagator (as long
as f(x) does not blow up) where it modifies the physical mass and the decay width.
Switching on the heat bath introduces a second scale, the temperature T . Owing to
the on-shell character of thermally propagating particles in a loop, the corresponding
loop integrals are dominated by momenta k ∼ T . Since a thermal self-energy leads
to the appearance of a thermal mass term m2

β ∼ g2T 2, it can only be resummed if
p2 � m2

β . If pµ is soft, p ∼ gT , the correction becomes as large as the inverse bare
propagator, and naive perturbation theory breaks down. A resummation of the dom-
inant collective effects from the onset becomes necessary.

The Hard Thermal Loop (HTL) resummation scheme [10, 11] reorganises perturbation
theory such that at least the contributions from the HTLs are consistently resummed.
It starts with the distinction between hard (pµ ∼ T ) and soft (pµ ∼ gT ) momenta.
Subsequently, the thermal mass is generated by a loop integral where the momentum
running inside the loop is hard. Whereas hard external momenta do not require re-
summation, for soft momenta resummed propagators have to be used to include the
collective effects that enter predominantly at these momentum scales. The crucial
point is that HTLs do not only exist in scalar theories, but also in gauge theories (see
appendix B): the general form of the thermal self-energy is always m2

β h(p0, �p, T ),
where h is a dimensionless function. Formally, an effective QCD Lagrangian for the
soft modes that arises from integrating out all hard modes [8, 12] can be written down:

LHTL = m2
f

∫
dΩv

4π
Ψ̄

/v

vνDν
Ψ − 3

2
ω2

plTr
∫

dΩv

4π
Gµα vαvβ

(vνDadj
ν )2

Gµβ . (2.27)

Here, ωpl,mf ∼ gT are the bosonic and fermionic plasma frequencies (B.16) and
(B.25), respectively, and vµ is associated with the light-like four-velocity of the hard
thermal plasma constituents pµ ∼ Tvµ. dΩv stands for a spatial average over v.
Most importantly, it can be shown that LHTL is manifestly gauge invariant and gauge
independent. The covariant derivative Dµ in the denominators makes the Lagrangian
non-local, leading in general to an involved form of the HTL vertices.

2.3.3 Lattice techniques

A complementary way to evaluate Z is based on lattice techniques. Since large fluctu-
ations in (2.24) are exponentially damped (instead of strongly oscillating in Minkowski
space), the numerical evaluation of the path integral is possible within Monte-Carlo
techniques. Furthermore, the introduction of a lattice spacing a introduces a cut-off
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1/a in momentum space that regularises the continuum-inherent ultraviolet diver-
gences. Space-time is then discretised onto a grid of lattice sites, parametrised by

xµ = a (n0, n1, n2, n3)
T

, ni ∈ N.

The total extent of the lattice is given by the number of spatial (N3
σ) and temporal

lattice sites Nτ . Volume and temperature are related to those by

V = (Nσa)3 and β =
1
T

= Nτa.

In order to preserve the underlying gauge symmetry of the QCD Lagrangian (2.1)
even in the discretised version, new degrees of freedom are chosen that transform in
a simple fashion under SU(3) [13]. For LG in (2.1), these are link variables between
adjacent lattice sites x and x + aµ̂:

Uµ(x) = P exp

ig

x+aµ̂∫
x

dx′
µAµ(x′)

 .

Here, P denotes path ordering along the integration contour, and µ̂ is a unit vector
pointing along a lattice link. Since the link variables transform homogeneously under
gauge transformation, Uµ(x) → G(x)Uµ(x)G†(x + aµ̂), the simplest gauge-invariant
object is a traced closed link around a lattice plaquette

Uµν = Tr[Uµ(na)Uν(na + µ̂a)U†
µ(na + ν̂a)U†

ν (na)]. (2.28)

This expression already yields a discretised approximation of the action since

Re Uµν = Nc −
Ncg

2a4

2
GµνGµν + O(a6).

Summing over all lattice sites and introducing an effective temperature β̄, the so-called
Wilson action is then given by

SW
G = β̄

∑
n,0≤µ<ν≤3

Pn,µν (2.29)

with
Pn,µν = 1 − 1

Nc
Re Uµν and β̄ =

2Nc

g2
. (2.30)

Since SG contains no dimensionful parameter, the lattice spacing a enters only by renor-
malisation group arguments: demanding that physical quantities remain unchanged
under a change of a requires g = g(a). For large β̄,

aΛT � exp(−β̄/β0),

where β0 > 0 from (2.9). Hence, for g → 0 also a → 0, indicating the existence of a
sensible continuum limit. The scale parameter ΛT is a constant of integration and is
determined by calculating on the lattice an experimentally measured quantity, usually
taken to be the ρ meson mass or the string tension σ. The Wilson action (2.29) is an
O(a2) approximation to the continuum action. More sophisticated actions exist (tree
level improved Symanzik action [14], tadpole improved actions [15]) that eliminate the
O(a2g0) cut-off terms and also take into account interactions, allowing the use of a
comparably small lattice extension in temporal direction, i.e. Nτ = 4 − 8.
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2 QCD at Finite Temperature

The incorporation of chirally symmetric fermions on the lattice is difficult because of
the antiperiodicity of the fermion fields. Naively taking the difference approximation
for the derivative in Lq, ∂µΨ(x) � [Ψ(x + µ̂) − Ψ(x − µ̂)]/(2a), leads to a different
particle content of the continuum theory than we have started with. The lattice
propagator for a massless fermion has not only a pole at p = 0, as expected, but
also at the end of the Brillouin zone pµa = π. For each dimension, the number of
particles hence doubles, leading to 24 = 16 fermions in the continuum limit. Recently,
formalisms have been developed that both conserve chiral symmetry and avoid the
doubling problem simultaneously by introducing an extra fifth dimension [16]. Since
the required computing power increases dramatically, first studies with these actions
have only been exploratory. The problem can also be circumvented by adding an
effective mass term for the unwanted fermion that diverges as 1/a [17]. This additional
term for the Wilson fermions, however, violates chiral symmetry to O(a), requiring
a careful continuum extrapolation of quantities like 〈q̄q〉. Alternatively, it is possible
to keep a continuous subgroup of the chiral symmetry even at finite a by distributing
the Dirac spinors over several lattice sites (staggered or Kogut-Susskind fermions),
effectively reducing the number of doubled fermions to Nf/4 [18]. The corresponding
discretised action reads, after integrating out the staggered fermions,

Z(Nσ, Nτ , T,mq, µ) =
∫ ∑

n,µ

dUµν

(
DetQKS(mq, µ)

)Nf /4
exp(−βSG). (2.31)

Here, SG stands for a suitably improved gluonic action, and QKS(mq, µ) is the staggered
fermion matrix and includes all dependence on mq and µ. Since the number of flavours
only appears in the power of the determinant, by analytic continuation it is possible
to simulate theories with 2 or 3 flavours with this action.

2.4 The QCD phase diagram

2.4.1 Orders of magnitude

A bosonic massless particle in a weakly interacting heat bath has an average absolute
three-momentum

〈k〉 =
∫

d3k kfB(k)∫
d3kfB(k)

≈ 2.7 T. (2.32)

Furthermore, √
〈k2〉 ≈ 3.2 T, (2.33)

so the fluctuation becomes

∆k =
√
〈k2〉 − 〈k〉2 ≈ 1.7 T. (2.34)

For fermions, 〈k〉 ≈ 3.2 T ,
√

〈k2〉 ≈ 3.6 T and ∆k ≈ 1.7 T . Alternatively, one may
also argue that at high temperatures only the lowest, non-vanishing Matsubara fre-
quencies dominate the thermal physics (because all higher modes become increasingly
suppressed), therefore the relevant scale is

〈k〉 = 2πT for bosons and 〈k〉 = πT for fermions. (2.35)

We will ultimately show in chapter 6 that this is indeed a sensible choice. Assuming
that the average squared momentum transfer between particles is of the order k2, we
may substitute µ2 ∼ 10 T 2 in the running coupling αs(µ) of eq.(2.10) to get at leading
order

αs(T ) =
12π

β0 log(T 2/Λ2
T )

with ΛT � ΛQCD/3 � 100 MeV. (2.36)
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2.4 The QCD phase diagram

Hence, αs should become small as T ∼> (2 − 3)ΛQCD = O(500 MeV), setting the scale
where a perturbative description of the QCD plasma in terms of elementary partons
might become reasonable. The colourless hadrons will then release their parton content
at some critical temperature Tc = O(ΛQCD). The subsequent increase of the thermally
active number of degrees of freedom will reflect in bulk thermodynamical properties
such as the pressure: in the chiral ideal gas limit, the ratio of the pressure of a pion
gas and a QGP becomes

pid
π

pid
QGP

∼ p(T → 0)
p(T → ∞)

=
3

2(N2
c − 1) + 10.5Nf

� 1
12

(2.37)

for a two flavour QGP, and this drastic change is indeed seen in lattice calculations
(see chapter 3). We hence expect a confinement/deconfinement phase transition. In
addition, low energy phenomena like spontaneous symmetry breaking will be absent
at sufficiently high T , so the global chiral symmetry of LQCD is restored at some stage,
accompanied by a vanishing quark condensate. However, since temperature is a new
scale in the system, the conformal symmetry remains broken even for T � ΛQCD, and
the gluon condensate stays non-zero at high T , cf. figure 3.7.
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Figure 2.1: The one-loop running coupling g(T ) as a function of T/Tc in pure SU(3) gauge
theory. The hatched band is obtained by varying the renormalisation point µ in (2.10) from
µ = πT (upper limit) to µ = 4πT (lower limit). The solid line shows g(2πT ).

It is, however, important to keep in mind that at finite temperature, not the smallness
of αs is indicative of the validity of perturbative calculations, rather it is g(T ). The
HTL resummation programme requires g � 1, not αs � 1, for its separation of hard
and soft scales in the plasma. Collective ’soft’ effects are usually of the order gT
(not αsT ) and can only be consistently resummed if they are a small correction to
the ’hard’ physics at a scale T . If g is of order one, there is no distinction between
hard and soft modes, and the HTL programme is not applicable. Figure 2.1 shows
the one-loop running coupling g(T ) =

√
4παs(T ) from (2.36) as a function of T/Tc

in pure SU(3) gauge theory. Tc is taken to be 270 MeV, see eq.(2.51). Even when
varying the renormalisation point µ in eq.(2.10) from πT to 4πT , the coupling g is
never small for all temperatures of interest, and this does not change when the two-
loop result for αs(µ) or quark flavours are included. Inserting numbers, g(T ) < 0.5
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2 QCD at Finite Temperature

for T > 108 GeV and g(T ) < 0.25 only for T > 1036 GeV, which casts serious doubt
on the applicability of perturbative calculations for all temperatures of interest. For
comparison, the Planck scale beyond which gravitation will play a dominant role is
about 1019 GeV. We will discuss perturbative results on the equation of state in section
3.2 and on the Debye screening mass in section 6.2. Comparing these with lattice data,
it will turn out that (bare) perturbation theory does indeed a spectacularly bad job,
necessitating a more phenomenological description of the QGP.

2.4.2 A non-perturbative toy model

In order to get insight into the thermal behaviour of a quantum field theory with spon-
taneous symmetry breaking (SSB) at T = 0, this section outlines the non-perturbative
thermal renormalisation group (TRG) analysis applied to λφ4 scalar field theory with
broken Z(2) symmetry. Although not comparable in complexity with QCD, all the
main features of thermal phase transitions can already be studied within the model
that henceforth may serve as a reference point. The TRG for scalar fields has been
introduced in [19] and subsequently extended to gauge theories [20] and fermions [21].
Applications to the O(1) model [19, 22], the O(N) model [23] and the chiral phase
transition [21] have shown that the TRG is suitable to calculate universal and non-
universal quantities of phase transitions. More recently, the TRG has also been used
to calculate a dynamical quantity, the plasmon damping rate [24, 25]. Here, we want
to study the theory for |Tc − T | ∼< Tc since that temperature region is approximately
covered by heavy-ion collisions to date.

In the following, we consider a single real scalar field φ(x). An extensive discussion of
the TRG and the derivation of the flow equation can be found in [19] and [23]; here we
will only sketch the basic ideas. In the real-time formulation of thermal field theory,
the 2-point Green function separates into a T = 0 quantum part and a finite tempera-
ture part where a Bose-Einstein distribution function appears, as apparent, e.g., from
the 11-component of the thermal matrix propagator, i∆11(k) = DF (k), with DF as in
eq.(2.19). Since the thermal excitations of the vacuum are real particles, the thermal
part acts only on the on-shell sector of the theory. Therefore it is possible to distinguish
between hard and soft thermal modes even in Minkowski space. The TRG introduces
a momentum cut-off Λ acting only on the thermal part of the tree-level propagator,
by replacing fB(|k0|) → fB(|k0|)θ(|�k| − Λ), where θ(x) is the Heaviside step function.
The effective action Γ[φ] which generates the full OPI n-point correlation functions,
depends now on Λ. It is straightforward to derive a functional differential equation for
ΓΛ that tells us how the cut-off dependent effective action evolves as Λ changes:

Λ
∂

∂Λ
ΓΛ[φ] =

i

2
tr

{
Λ

∂D−1
Λ

∂Λ
·
[
δ2ΓΛ

δφδφ
+ D−1

Λ

]−1
}

. (2.38)

Here the trivial kinetic part has been subtracted from ΓΛ. The trace stands for a
sum over the thermal, momentum and possible internal indices, and DΛ is the real-
time matrix propagator of the scalar field, with the cut-off imposed on the thermal
part. For Λ → ∞, the thermal contribution to DΛ is exponentially suppressed, and
we recover the full T = 0, quantum action, which acts as the boundary condition for
(2.38). Lowering Λ corresponds to integrating out thermal modes with a momentum
|�k| > Λ, and in the limit Λ → 0, the full thermal action is obtained. Renormalisation
group flow equations for various Green functions are now simply obtained from (2.38)
by taking functional derivatives with respect to φ.
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Figure 2.2: Ratio of expectation values vβ/v0 = 〈φ〉β/〈φ〉0 as a function of T/Tc for the
couplings λ0 = 0.01, 0.1 and 1. The thermal expectation value vβ is obtained from V ′(vβ) = 0.

The functional integro-differential equation (2.38) is too difficult to solve, so to proceed
we perform a derivative expansion of Γ and keep only the first non-trivial term, the
effective potential V :

ΓΛ[φ] = −VΛ(φ)
∫

d4x.

This approximation amounts to neglecting the momentum dependence of the self en-
ergy and of the four-point vertex. It can be interpreted as an expansion in the anoma-
lous dimension η which is known to be small (η ≈ 0.05). The second approximation
consists in discarding the imaginary part of the self-energy in the full propagator ap-
pearing in (2.38). This runs under the ’quasi-particle’ approximation and is supposed
to be valid as long as λ is small. After some manipulations we end up with the following
flow equation:

Λ
∂

∂Λ
VΛ(φ) = − Λ3

2π2β
ln
(

1 − exp
{
−β
√

Λ2 + V ′′
Λ (φ)

})
θ
(
Λ2 + V ′′

Λ (φ)
)
. (2.39)

Considering V a function of the cut-off Λ and the field φ, eq.(2.39) is a non-linear, par-
tial differential equation, with the boundary condition that V∞(φ) is the renormalised
effective potential at zero temperature. This equation can be solved numerically. We
will be mainly interested in the solutions for the two-point and four-point functions,
i.e. the thermal mass and the coupling constant.

Let us describe a phase with spontaneous symmetry breaking by an interaction La-
grangian Lint = +µ2φ2/2−λφ4/24. For the time being, we do not include T = 0 quan-
tum corrections to the effective potential. The Lagrangian L = 1/2 (∂µφ)(∂µφ)+Lint is
invariant under a global Z(2) transformation, i.e. φ(x) → −φ(x), whereas the ground
state is not. The parameter that describes the strength of the SSB is therefore the
non-vanishing vacuum expectation value of φ, v0 = 〈0|φ|0〉 =

√
6µ2/λ. Since SSB usu-

ally constitutes an infra-red effect, one would expect that the corresponding symmetry
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Figure 2.3: Ratio of the thermal mass m2
β over the zero temperature mass m2

0 = 2µ2 as a
function of T/Tc for the couplings λ0 = 0.01, 0.1 and 1.

becomes restored at high temperatures T � v0, hence a suitable order parameter for
the transition from the broken to the unbroken phase is the thermal expectation value
of φ, vβ = 〈φ〉β . The critical temperature can be defined as the point where vβ = 0,
and, to one-loop order in perturbation theory, is calculated as T

(1)
c = 2v0.

The results of the full TRG calculation for vβ for the couplings λ0 = 0.01, 0.1 and
1 are displayed in figure 2.2. The order parameter vβ smoothly approaches zero, as
expected for a second order phase transition, and the qualitative shape of the curve
remains the same when the coupling strength is increased. Furthermore, to a good
accuracy Tc stays equal to 2v0 even for large couplings, in accordance with an explicit
calculation of Tc/T

(1)
c in [23]. Figure 2.3 shows the evolution of the thermal mass for

µ2 = 1 and λ = 0.01, 0.1 and 1 with increasing temperature on both sides of the phase
transition. The mass follows from

m2
β =

∂2V (φ,Λ)
∂φ2

∣∣∣∣
φ=vβ ,Λ=0

. (2.40)

Starting from its zero temperature value m2
0 = 2µ2, m2

β drops as T grows and reaches
zero at Tc. This confirms the divergence of the correlation length ξ ∼ m−1

β which
characterises the spatial exponential decay of correlation functions.

There have been attempts to describe the phase transition in terms of resummed
perturbation theory. Since in λφ4 theory the only HTL is the simple momentum-
independent tadpole (2.26), the resummations can even be carried out iteratively,
leading to so-called “superdaisy”-resummed perturbation theory. All these techniques,
however, fail to reproduce the correct critical behaviour at the second-order phase
transition [26] which can be traced back to the fact that they do not take into account
the thermal running of the coupling constant, which is a major effect in the vicinity
of the phase transition [27, 28, 19]. In order to exhibit the phenomenon of critical
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Figure 2.4: Ratio of the thermal coupling constant λβ over λ0 as a function of T/Tc for the
couplings λ0 = 0.01, 0.1 and 1.

slowing down, i.e. the vanishing of the thermal damping rate γβ as the correlation
length grows larger and larger, λβ has to approach zero as T → Tc. In figure 2.4, we
plot the results of the TRG calculation for

λβ =
∂4V (φ,Λ)

∂φ4

∣∣∣∣
φ=vβ ,Λ=0

(2.41)

for both phases. The vanishing of the coupling constant is indeed observed at either
side of the transition. Since Lint contains a mass scale, the T -dependence of λ(T ) is
non-trivial, although we did not include quantum corrections to the effective potential.
In the broken phase, for a small coupling λ0 = 0.01 or 0.1, λβ stays almost constant at
its zero temperature value up to |Tc − T |/Tc ∼ 0.1, then abruptly drops to zero at Tc.
The presence of trilinear couplings in the broken phase seems to suppress the thermal
renormalization of the 4-point coupling constant for temperatures not too close to Tc.
For a larger coupling λ0 = 1, the deviation from the zero temperature value starts
earlier, but the most dramatic change happens again near Tc. The behaviour of the
coupling constant in the restored symmetric phase is different: λ increases at a slower
rate from zero to a value close to the classical λ as the system becomes more and more
similar to an initially Z(2)-symmetric system for T 2 � µ2. This is true for both small
and large couplings. Note that the behaviour of λ(T ) close to Tc deviates dramatically
from the expected logarithmic running

λ(T ) ∼ 1/ log(T ),

over the range |T − Tc| < Tc it is better parametrised by

λ(T ) ∼ |T − Tc|γ , (2.42)

where γ is a kind of a critical exponent. The vanishing of λβ also implies that it
takes longer and longer for long wavelength modes to come into equilibrium close to
Tc which may have observable consequences in heavy-ion collisions [29].
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2 QCD at Finite Temperature

To summarise: close to the second-order phase transition investigated here, mass and
coupling constant deviate significantly from perturbative expectations. As anticipated,
both show critical behaviour. The qualitative form of the curves remains the same
when the zero temperature coupling strength is increased by two orders of magnitude.
When we construct a phenomenological model for the QCD phase transition in chapter
3, we will use these results as a guideline.

2.4.3 Order parameters and critical temperature

As outlined above, a phase transition is frequently associated with the restoration of
a spontaneously broken symmetry and hence connected to global symmetries of the
Lagrangian. With the QCD Lagrangian (2.1), a concise order parameter can so far
only be chosen in the chiral (m = 0) or in the m = ∞ limit. The first one is associated
with the chiral symmetry restoration of QCD with Nf massless flavours, restoring the
SU(Nf )V ⊗ SU(Nf )A in (2.12), the second one with the deconfinement transition in a
pure Yang-Mills theory. The chiral condensate 〈Ψ̄Ψ〉 (cf. (2.14)) constitutes a natural
order parameter for the chiral phase transition. Analogously to figure 2.2, we expect
(in the chiral limit, m → 0):

〈Ψ̄Ψ〉

 �= 0 T small,

= 0 T large.

When evaluated on the lattice, 〈Ψ̄Ψ〉 indeed shows a qualitative change in behaviour
when a certain temperature is crossed, as apparent from the right panel of figure 2.51.
However, care has to be taken in interpreting lattice data when the chiral condensate
is evaluated by the derivative of the pressure

〈Ψ̄Ψ〉 =
∂p(T,mq)

∂mq
, (2.43)

as done in figure 2.5. Lattice calculations can so far not be performed in the chiral
limit, so mq will always be different from zero in actual simulations. With definition
(2.43), 〈Ψ̄Ψ〉 is then non-vanishing even for an ideal, massive gas of quarks (which
corresponds to the infinite temperature limit), because

∂pid(T,mq)
∂mq

� −2NcNf

π2
mqT

2

(
π2

12
+

m2
q

4T 2

[
log
(mq

πT

)
+ 0.0772

]
+ . . .

)

for mq/T � 1 and using the expansion formula (C.2)2. Since finite quark masses
break the chiral symmetry explicitly, they act like an external field in a ferromagnetic
spin system and tend to wash out the phase transition, so it is not surprising that
the condensate does not vanish. However, a conceptual problem arises from the T 2-
dependence: regardless of how small mq (and hence the explicit symmetry breaking)
is, 〈Ψ̄Ψ〉 will blow up to arbitrary values at high enough temperatures. This peculiar
behaviour does not contain any interaction physics, though, but is purely a remnant of
the system’s approach to the massive ideal gas. Subtracting that piece enforces that
1What is actually plotted in the graphs are the dimensionless, positive quantities |〈Ψ̄Ψ〉|a3 and

|χm|a2, where a is the lattice spacing. Due to large cut-off effects, the magnitude of these quantities
is expected to change by at least a factor of 2 in the continuum limit. Using the relation 1/T = Nτ a
(Nτ = 4 in the simulation), a can be converted to temperature. For the mass term, mqa = 0.02
accordingly translates into mq/T = 0.08.

2Equivalently, one may argue that the thermal expectation value of the normal-ordered operator
product 〈: q(x)q̄(y) :〉, as appearing in (2.15), does not vanish even in the absence of interactions.
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2.4 The QCD phase diagram

Figure 2.5: Left panel: The Polyakov loop expectation value 〈L〉 and its susceptibility χL as
a function of β̄ = 6/g2, a measure for the temperature (see (2.30)). Right panel: The chiral
condensate |〈Ψ̄Ψ〉|/T 3 and its susceptibility |χm|/T 2 for Nf = 2. All lattice calculations were
performed with a running bare quark mass mq = 0.08 T , corresponding to 14 MeV at Tc.
The critical temperature Tc is defined at β̄ � 5.28 [30].

the condensate drops to zero at high enough temperatures, as it should, so a more
appropriate definition of the order parameter would be

〈q̄q〉 = − lim
y→x+

{
Tr〈0|T [q(x)q̄(y)]|0〉 − Tr〈0̃|T [q(x)q̄(y)]|0̃〉

}
. (2.44)

Here, |0〉 stands for the non-trivial, full QCD vacuum and |0̃〉 for the empty, pertur-
bative vacuum. Now, for g → 0, also 〈q̄q〉 → 0, even in the presence of quark masses.
This subtraction procedure has so far not been applied in the lattice plots of figure 2.5,
that is why all quantities have been divided by the appropriate powers of temperature
there to make them dimensionless and suppress the inherent increase.

The chiral susceptibility

χm =
∂〈Ψ̄Ψ〉
∂mq

(2.45)

exhibits a pronounced peak structure which is commonly used to define a critical
chiral temperature Tχ

c . The narrowness of the peak suggests that drastic changes in
the condensate structure occur only for |T − Tχ

c |/Tχ
c ∼< 0.1, i.e. very close to Tχ

c .
Constructing an effective theory for the order parameter, the phase transition is found
to be first order for Nf ≥ 3 [31], which is confirmed by lattice calculations. For
two flavours, it is expected that the transition belongs to the O(4) universality class.
Available lattice data, however, are not yet decisive on that issue [32].

In the absence of thermally active quarks, owing to the finite temperature boundary
conditions there exists a global Z(Nc) ∈ SU(Nc) centre symmetry that becomes broken
at high T . The order parameter is the gauge invariant Polyakov loop (or Wilson line)

〈L(x)〉 =
1

Nc
Tr

P exp

ig

β∫
0

dτA0(τ, x)

 , (2.46)
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Figure 2.6: The finite temperature phase diagram of QCD as a function of the light (mu, md)
and heavy (ms) quark masses [30].

A0 being the time component of the gauge field Aµ. For a single static quark located
at x = 0, its excess free energy Fq − F0 for a volume V can be expressed by

〈L〉 =
1
V

∫
d3x〈L(x)〉 (2.47)

via
〈L〉 = e−β(Fq(T )−F0). (2.48)

In the confined phase, a coloured source cannot be screened if there are no dynamical
quarks, hence its free energy is infinite and 〈L〉 = 0. In the deconfined phase, the free
energy of a static quark-antiquark pair remains finite as their distance increases which
can be interpreted as the absence of the confining string tension σ of eq.(2.11). The
Polyakov loop is then related to the heavy quark-antiquark potential Vq̄q(r, T ) by

e−βVq̄q(r,T ) = 〈L(r)L†(0)〉, (2.49)

where r is now the distance between the two heavy quark sources. At large separations
r → ∞, eq.(2.49) approaches the value |〈L〉|2 for two uncorrelated sources. Measuring
Vq̄q on the lattice, one can read off the behaviour of the order parameter:

〈L〉

 = 0 T small,

�= 0 T large,
(2.50)

characteristic for an disorder-order transition. For Nc = 3, the effective theory for 〈L〉
becomes a 3-dimensional spin model with global Z(3) symmetry. From universality
arguments it is then expected that the phase transition is first order [33], which is
confirmed by lattice calculations. The order parameter 〈L〉 and its susceptibility χL =
V (〈L2〉 − 〈L〉2) are shown in figure 2.5 (left panel). Again, χL is strongly peaked
around a temperature T d

c . For Nf �= 0, 〈L〉 is not an exact order parameter anymore
because 〈L〉 > 0 for all T now, but nevertheless still shows a strong variation around
Tc.
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2.4 The QCD phase diagram

Since chiral symmetry breaking and confinement are not a priori related phenomena,
there is no reason to expect that Tχ

c and T d
c are equal, there might as well be two

separate phase transitions. This behaviour is indeed seen in theories similar to QCD,
e.g. SU(3) gauge theory with adjoint fermions [34] where T d

c < Tχ
c . However, in QCD

the transitions are strongly correlated and occur within statistical errors at the same
temperature, as can be seen by the peak positions of the corresponding susceptibilities
in figure 2.5. From the arguments in section 2.4.1 we expect Tc = O(ΛQCD), which is
already in surprising agreement with the lattice result for SU(3) gauge theory:

Tc = (271 ± 2) MeV. (2.51)

The addition of thermally active flavours lowers Tc because the critical energy density
that triggers the phase transition can be reached earlier when more degrees of free-
dom are present. The necessary extrapolations are at the moment not as well under
control as in the pure glue case, therefore the error bars on Tc are larger. The critical
temperature in the chiral limit reads [35]

Tc = (173 ± 8) MeV for Nf = 2, (2.52)

and
Tc = (154 ± 8) MeV for Nf = 3. (2.53)

The errors are only statistical, it has to be borne in mind that the systematic errors
are estimated to be of the same order. For two light and a heavy quark flavour,
the transition temperature remains close to the two-flavour value, indicating that the
quark mass dependence of Tc is small. A fit of several lattice calculations of Tc at
different quark mass values suggests a linear behaviour of the form

Tc(mπ) = Tc(0) + 0.04(1)mπ, (2.54)

where mπ stands for the mass of the pseudo-scalar Goldstone particle. The weak mπ-
dependence indicates that the transition is not ’pion’-dominated, rather ’resonance’-
driven.

Finally, figure 2.6 shows the QCD phase diagram as a function of the light u- and d-
and the heavy s-quark mass. The finite quark masses will turn the transition into a
rapid cross-over if it is second order in the chiral limit. For a first order transition,
the discontinuities may prevail up to a critical pseudo-scalar mass mcrit

PS and become
smoothed out only after that. For three degenerate flavours, that value is about 300
MeV. Intriguingly, the physically relevant point with m as in eq.(2.7) lies in the vicinity
of the border line that separates first order and crossover regions in the phase diagram.
Calculations with two light and a strange quark with a mass comparable to Tc indicate
[36] that mcrit

s is about half the value of ms, so in the real world the transition is likely
to be a smooth crossover.

2.4.4 The QCD phase diagram in the T − µ plane

A variety of theoretical models [37] suggests that at large µ and finite T , the transition
becomes first order (although “large” usually really translates into “asymptotically
large”: simply replace g(T ) by g(µ)). The quantitative mapping of the T − µ phase
diagram can so far only be achieved by lattice calculations – at least in principle.
The border line where T �= 0 and µ = 0 is reasonably well understood. At finite µ,
however, the status of lattice QCD is not nearly as advanced. The staggered fermion
determinant in (2.31) is real for vanishing quark chemical potential, but becomes
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Figure 2.7: The T − µ diagram from the lattice calculation of [39]. Note that µB ≡ 3µ.
The critical endpoint is located at TE = 160 ± 4 MeV and µE = 242 ± 12 MeV. The solid
line denotes a first order transition, dashed the crossover. Tc(µ = 0) is determined within the
same calculation as 172 ± 3 MeV.

complex as soon as µ �= 0. Therefore, the application of importance-sampling methods
is no longer feasible, increasing the numerical efforts by several orders of magnitudes.
This constitutes the sign problem of QCD and prohibits so far an accurate lattice
determination of the full T − µ phase diagram. Fugacity expansions of the grand
canonical partition function at finite µ (the Glasgow algorithm [38]) have been studied
in detail, however, so far the results show little physical relevance. Only recently,
improved methods have been proposed that allow a determination of thermodynamics
at reasonably large µ. We briefly dwell on two of them in the following.

In [39], a new reweighting method has been introduced that lifts some of the restrictions
of the Glasgow method. The phase diagram for Nf = 2 + 1 is shown in figure 2.7 for
staggered fermions on lattices Nτ × N3

σ = 4 × 83 with a pion mass at least twice as
large as the physical value. The calculation finds a critical point (TE , µE) = (160 ±
4 MeV, 242 ± 12 MeV) where the first-order transition that separates hadronic and
QGP phases, ends. For smaller T and µ, the transition becomes a crossover. Note
that the data are not yet extrapolated to the continuum and physical quark masses
and that the present lattice size is comparably small.

A different attempt to explore the phase diagram at least for small µ exploits the fact
that derivatives of an observable with respect to µ can be calculated with standard
methods at µ = 0. Hence, the phase transition line close to µ = 0 is obtained by
Taylor expanding [40]:

Tc(µ) = Tc(0) + µ
dTc

dµ

∣∣∣
µ=0

+
µ2

2
d2Tc

dµ2

∣∣∣
µ=0

+ . . . (2.55)

Derivatives with odd powers of µ vanish because of the realness of the partition func-
tion, so it is sufficient to calculate only d2Tc/dµ2(µ = 0) on the lattice. Truncation
errors accordingly enter at O(µ4). Assuming that the transition line remains parabolic,
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Figure 2.8: Sketch of the phase diagram for Nf = 2 using the value for d2Tc/dµ2(µ = 0) [40],
calculated on a 4 × 163 lattice with rotationally improved staggered fermions. The diamond
shows the end point of the first order phase transition from figure 2.7. The arrow marks the
chemical freeze-out point at RHIC Au+Au collisions at

√
s = 130 AGeV [42].

a sketch of the phase diagram for Nf = 2 staggered fermions can be drawn, see fig-
ure 2.8. Using a similar approach, ref.[43] calculated a Taylor expansion of Tc(µ) at
imaginary chemical potential (thus avoiding the problem of the complex determinant)
and analytically continued the corresponding series to real µ. Their results are in
agreement with [40] for µB < πT , the range of applicability of the method. For small
values of µ/Tc ∼< 0.5, the transition behaviour shows no significant deviation from the
µ = 0 case. Since the chemical freeze-out at SPS occurs at about µf.o. � 100 MeV [41]
and at RHIC at µf.o. � 15 MeV [42], neither experiment is expected to come close to
the critical point (TE , µE), and striking phenomenological consequences (like critical
opalescence or anomalously large fluctuations) are not supposed to be present.
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3 Quasiparticle Model of the QGP

From the arguments of section 2.4.1 we expect that QCD undergoes a transition from
a confined hadronic phase to a deconfined partonic phase at a critical temperature of
Tc = O(ΛQCD). A central quantity of matter in thermal equilibrium is the Helmholtz
free energy

F = −T logZ(T, V ), (3.1)

from which the pressure p, energy density ε and entropy density s are derived. These
entities are central for the description of ultra-relativistic heavy-ion collisions at the
CERN SPS and RHIC and have been calculated on the lattice within certain approxi-
mations. Various interpretations of these data have been attempted, most prominently
as a gas of quark and gluon quasiparticles. Since all microscopic dynamics has been
integrated out in the equation of state (EOS), there exists no unique interpretation of
the lattice data, and one must resort to additional information in order to further re-
strict the setup of such models. In a phenomenological framework, quarks and gluons
are simply treated as non-interacting, massive quasiparticles [44, 45, 46, 47]. Their
thermally generated masses are based on perturbative calculations carried out in the
HTL scheme. In this chapter, we extend the quasiparticle approach. We argue that
for T ∼< 3 Tc, non-perturbative confinement physics not amenable in an expansion in
g becomes important, so our main new ingredient, as compared to previous work, will
be a phenomenological parametrisation of (de)confinement, supplemented by thermal
quasiparticle masses compatible with lattice results. The resulting model is tested
against a number of available lattice data and extended to systems with small quark
chemical potential. We also construct the continuum EOS for realistic quark masses
(that cannot be simulated on the lattice to date) which will be used in the forthcoming
chapters to model the fireball. The main body of this chapter has been published in
[48].

3.1 Lattice results

3.1.1 Pure gauge theory

In the limit m → ∞, the EOS for SU(3) gauge theory has been extensively numerically
studied [49, 50, 51, 52]. Figure 3.1 shows the pressure as a function of T/Tc, calculated
with different actions and extrapolated to the continuum limit. Obviously, all curves
agree remarkably well, so the necessary approximations seem to be under control.
Figure 3.2 then summarises the energy density, the entropy density and the pressure
[50], normalised such as to approach the same asymptotic limit. Since the transition is
first order, there is a discontinuity in the energy density at Tc, and the hatched band
marks the latent heat ∆ε � 0.5 − 1 GeV/fm3.

The pressure below Tc is very small, which is naturally explained by the heavy mass
of the bound degrees of freedom, the glue balls. Since already the lightest glue ball
state 0++ has a mass of about 1.5 GeV at zero temperature [53], the Boltzmann
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Figure 3.1: Pressure of the SU(3) gauge theory. The lines are continuum-extrapolated
estimates calculated with different actions [49, 50, 51, 52]. The arrow marks the ideal gas
limit. The shaded band shows an approximately self-consistent HTL calculation [60].

factor suppresses glueball contributions to the pressure. It is therefore surprising
that the phase transition occurs at such a low Tc = 270 MeV because the energy
and particle density are comparably low there. Lattice calculations indicate that at
finite temperature, the 0++ glue ball mass shifts down, but only by about 20% to
mGB = 1.25 ± 0.1 GeV for 0.8 Tc < T < Tc [54], which is still large compared to Tc.
The phase transition is then probably triggered by an increasing number of excited
glue ball states as T grows, not by the increasing density of a single particle species,
rendering an attempt to describe the phase transition in terms of the lightest degree
of freedom only, the mentioned 0++ glue ball, futile.

Literally on the other side, the energy density reaches about 85% of its ideal gas value
at 2 Tc and stays roughly at this value up to 5 Tc. This fact is naturally explained in
a quasiparticle picture where the gluons acquire a thermal mass ∼ g(T )T with g(T )
running logarithmically (see below). Two things are worth emphasising: first, the
gluon plasma deviates significantly from an ideal gas for all temperatures of interest,
and second, the thermodynamics shows a smooth behaviour, there are no wiggles or
peaks present.

3.1.2 Dynamical quarks

Over the last few years, various lattice calculations of the pressure with different
numbers of quark flavours Nf have been performed. In the following we focus on
results of the Bielefeld group [55] where a rotationally improved staggered action on a
163 ×4 lattice was used. There, the Nτ -dependence was found to be small, in contrast
to standard staggered fermion actions which show substantially larger cut-off effects
[56]. Lattice calculations were performed for two and three flavour QCD with quarks
of mass mq/T = 0.4, and for three flavours with two light quarks (mq/T = 0.4) and
an additional heavier quark (ms/T = 1.0). From the experience in the pure gauge
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3.2 Perturbative results

Figure 3.2: Normalised energy density, entropy density and pressure of SU(3) gauge theory
as a function of T/Tc, extrapolated to the continuum limit [50]. The dashed band indicates
the size of the latent heat ∆ε. The dashed line marks the ideal gas limit, and the error bars
at 2 Tc are a measure for the statistical and systematic uncertainties.

sector, it has been estimated that the continuum EOS lies about 10-20% above the
data computed on finite lattices.

Figure 3.3 displays the lattice pressure, normalised to the Stefan-Boltzmann ideal gas
value, for the pure gauge system and for systems with 2, 2+1 and 3 quark flavours. A
striking feature is that, within the errors arising from the cut-off dependence, the QCD
EOS shows a remarkable flavour independence when plotted against T/Tc. This picture
suggests that the flavour dependence is well approximated by a term reminiscent of
an ideal gas,

p(T,Nf ) �
(

16 +
21
2

Nf

)
π2

90
p̃(T/Tc) (3.2)

with a universal function p̃(T/Tc). Since Tc changes with the number of degrees of
freedom present in the thermal system and therefore with Nf , cf. (2.51), (2.52) and
(2.53), p̃ is also implicitly Nf -dependent. Scaling against T/Tc, however, the shape of
p̃ remains almost the same, suggesting that the inclusion of thermally active quarks
does not change the underlying mechanism of the phase transition. Note however
that, after applying the previously mentioned 10-20% correction to the lattice data,
the continuum estimate of the pressure with dynamical quarks becomes closer to the
ideal gas limit than in the pure gauge sector.

3.2 Perturbative results

Perturbative results of the QCD equation of state are available up to order O(g5). How-
ever, for temperatures of interest in the experimentally accessible region, the strong
coupling constant is presumably large: at T = 3 Tc, g(T ) � 2 from eq.(2.36). The
perturbative expansion in powers of g shows bad convergence already for much smaller
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Figure 3.3: The pressure, normalised to the Stefan-Boltzmann ideal gas value, for the
continuum-extrapolated pure gauge system and for systems with 2, 2+1 and 3 flavours on a
163 × 4 lattice, obtained with a p4-improved staggered fermion action. The continuum limit
is estimated to lie about 10-20% above the curves shown (figure adapted from [55]).

values of the coupling, as apparent from the expression for F (T ) in pure SU(3) gauge
theory [57]:

F (T )
F0

= 1 − 0.095g2 + 0.121g3 + [0.212 − 0.086 log(1/g)]g4 − 0.082g5. (3.3)

Here, F0 = −16(π2/90)T 4 is the ideal gas value. With quarks, the resulting series
behaves similarly. Hence, if g is O(1), the series oscillates wildly and even overshoots
the ideal gas limit at order g3 and g4. In order to get a convergent series, the tem-
perature has to be asymptotically high, T ∼> 1010 Tc, which clearly is far beyond any
practical purposes. Furthermore, the more powers of g are included, the more sensi-
tive F (T ) becomes on the renormalisation point of αs(µ), which is the wrong trend.
Even higher orders in g cannot improve the convergence because it is believed from
power-counting arguments that the g5 term is the last one accessible in perturbation
theory. At four-loop order, infrared singularities appear that can be removed by the
introduction of a chromomagnetic screening mass which, however, gives contributions
to O(g6) from diagrams with an arbitrary number of loops [58]. Bare perturbation
series is clearly inadequate to describe the lattice results. However, the series in (3.3)
is not the power series in αs known from zero temperature perturbation theory; col-
lective medium effects lead to the appearance of non-analytic terms of the form α

n/2
s

and α2
s log αs. Therefore, the expansion point of perturbation theory should not be

a bare particle, but a dressed quasiparticle taking into account the medium from the
onset; of course, the resulting series in g has then to be treated self-consistently.

Such a quasiparticle description of QCD thermodynamics has been derived in a more
or less rigorous treatment using resummed, approximately self-consistent HTL per-
turbation theory [59, 60, 12]. Employing the full HTL spectral representions (B.17)
and (B.32), the resulting EOS can be matched to lattice data down to temperatures
T ∼> 3 Tc, see the shaded band in figure 3.1. In interpreting these results, however,
one has to keep in mind three points: first, the structure of the curve is, since there
is no scale around but ΛQCD, entirely governed by αs(T ); all the resummation does is
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3.3 Gluonic quasiparticles

to fix the normalisation. The range of applicability of the method is therefore closely
related to the behaviour of the running coupling that can close to Tc substantially de-
viate from the naive perturbative form (cf. figure 2.4). Second, the non-perturbative
resummation method used to evaluate the pressure, the “Φ-derivable” approximation,
is tailored to the problem, it is not possible to extend it to the calculation of other
important quantities such as the screening mass or dilepton rates. Finally, the in-
fluence of higher order terms has not yet been clarified due to the complexity of the
calculations, leaving the question for the convergence of the series open. Even leaving
aside these points, it is at least safe to say that there exists no perturbative descrip-
tion of the EOS for temperatures Tc < T < 3 Tc which is exactly the region where the
fireball created in heavy-ion collisions at SPS and RHIC lives. In order to get a quan-
titative description of URHIC and the signals for the QGP, a more phenomenological
ansatz seems mandatory today. We believe that one should try to collect all facts that
are known about the phase transition (most prominently, these facts will come from
the lattice) and try to construct simple, yet reasonable models consistent with these
data. Applying these models in different situations will then show their limitations
and successes.

3.3 Gluonic quasiparticles

3.3.1 Basic quasiparticle model

In this section, we consider an SU(Nc) gluon plasma (Nc = 3) at finite temperature.
The use of a quasiparticle model in QCD is based on the observation that in a strongly
interacting system, the complex dynamics often rearranges itself in such a way that
gross features of the physics can be described in terms of appropriate effective degrees
of freedom. From asymptotic freedom, we expect that at very high temperatures the
plasma consists of quasifree gluons. As long as the spectral function of the thermal
excitations at lower temperatures resembles qualitatively this asymptotic form, a glu-
onic quasiparticle description is expected to be applicable. The dispersion equation
for transverse gluons reads ω2 − k2 − Π∗

T (ω, k) = 0. Here, k = |�k|, and Π∗
T is the

transverse part of the thermal gluon self-energy. If, for thermal momenta ω, k ∼ T ,
the momentum-dependence of Π∗

T is weak and its imaginary part small, gluon quasi-
particles will propagate mainly on-shell with the dispersion relation

ω2
k � k2 + m2

g(T ), (3.4)

where mg(T ) acts as an effective mass generated dynamically by the interaction of
the gluons with the heat bath background. Since the existence of a preferred frame
of reference breaks Lorentz invariance, new partonic excitations, longitudinal gluonic
plasmons, are also present in the plasma. However, their spectral strengths (B.19)
are exponentially suppressed in the HTL approximation for hard momenta and large
temperatures, so gluons are expected to retain their νg = 2(N2

c −1) degrees of freedom
despite their masses. A vanishing longitudinal propagator in Coulomb gauge at non-
zero momentum k ∼> 1.5 T was also found in lattice calculations [61].

For homogeneous systems of large volume V , described by a Hamiltonian H and a
conserved charge number operator Q, the standard definitions of the pressure p, the
energy density ε and the number density n become

p(T, µ) =
T

V
log Tr

[
e−β(H−µQ)

]
=

T

V
logZ(T, µ, V ), (3.5)
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3 Quasiparticle Model of the QGP

ε(T, µ) =
1
V

1
ZTr

[
He−β(H−µQ)

]
and (3.6)

n(T, µ) =
1
V

1
ZTr

[
Qe−β(H−µQ)

]
. (3.7)

The Gibbs-Duhem relation connects p, ε and n with the entropy density s:

ε = sT + µn − p. (3.8)

Furthermore, s and n can be derived from p via

s =
∂p

∂T

∣∣∣
µ

(3.9)

and
n =

∂p

∂µ

∣∣∣
T
. (3.10)

If the system is an ideal gas,

H id =
d∑

j=0

∑
k

ωk a†
k,jak,j + E0, (3.11)

where E0 is the (unobservable) zero-point energy and is usually subtracted of. The in-
dex j labels internal degrees of freedom (spin, colour, flavour...), and a†

k,j and ak,j are
the creation and annihilation operators, respectively, for states with quantum numbers
[j] and three-momentum k.

Let us now assume for the moment that the total effect of the strong interactions is
subsumed in the thermal mass mg(T ) and that the gluonic quasiparticles are non-
interacting otherwise, hence constitute an ideal gas. In order to maintain thermody-
namical consistency, however, pressure and energy are not given by their ideal gas
expressions anymore. Since the Hamiltonian becomes medium-dependent via the dis-
persion relation ωk(T ), eqs.(3.8) and (3.9) are not valid anymore because of the addi-
tional ∂mg(T )/∂T terms. In more general terms, let Heff [Fi] be a Hamiltonian that
depends on the n phenomenological functions Fi = Fi(T, µ) (i = 1..n) [44] that en-
code the medium, e.g. F1 = mg(T ) (later on, we will introduce a second function
F2 = C(T )). In order to fulfill the identities (3.8), (3.9) and (3.10), we require the
stationarity condition

∂p

∂Fi

∣∣∣
T,µ,Fj �=i

= 0. (3.12)

With a medium-dependent dispersion relation, the ideal gas Hamiltonian takes the
form

H id
eff =

d∑
j=0

∑
k

ωk[Fi] a†
k,jak,j + E0[Fi]. (3.13)

Now E0 depends functionally on the Fi and is (up to a constant) entirely determined by
them, so it cannot be subtracted anymore because it contains the external parameters
T and µ. Since it represents the energy of the system in the absence of any quasiparticle
excitations, E0[Fi] can be interpreted as the thermal ground state (vacuum) energy.
Note that, because a†

k,jak,j = nk,j counts the number of degrees of freedom in the
state {[j], k}, a special extension of (3.13) would be

H id
eff =

d∑
i=0

∑
k

ωk[F1] nk,j [F2] + E0[F1,F2] + H̄ (3.14)
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3.3 Gluonic quasiparticles

in a theory where the number of quantum field theory degrees of freedom statistically
depends, via F2, on temperature. The second Hamiltonian H̄ should then represent
an effective theory for the ‘bound’ states. Eq.(3.14), which we will put to use below,
is the most general expression for an ideal gas.

Returning to the present framework of a gluon gas of quasiparticles with a medium-
dependent dispersion relation, the explicit expression for the pressure reads

p(T ) =
νg

6π2

∞∫
0

dk fB(ωk)
k4

ωk
− B(T ), (3.15)

where νg = 16 is the gluon degeneracy factor and ωk =
√

k2 + m2
g(T ). The energy

density ε and the entropy density s take the forms

ε(T ) =
νg

2π2

∞∫
0

dk k2fB(ωk) ωk + B(T ) (3.16)

and

s(T ) =
νg

2π2T

∞∫
0

dk k2fB(ωk)
4
3k2 + m2

g(T )
ωk

. (3.17)

The function B(T ) is the ground state energy density

B(T ) =
1
V

E0[mg(T )],

its explicit expression follows (up to a constant) from

∂p(T,mg)
∂mg

∣∣∣
T

= 0.

Note that the entropy density, as a measure of phase space occupation, and the number
density are unaffected by B(T ).

3.3.2 Thermal masses: Debye vs. Asymptotic

It is obvious that with the pressure given by the lattice, one can always construct a
curve mg(T ) to reproduce p(T ). The question arises whether the resulting expression
for mg(T ) looks reasonable. Previous phenomenological quasiparticle models [45, 46,
47] started from the HTL expression for the asymptotic mass m∞, eq.(B.14),

mg(T ) =

√
Nc

6
g̃(T )T, (3.18)

to model the thermal gluon mass1. Phenomenology enters in the effective coupling
constant g̃(T ), modelled after the running coupling (2.36), with the two fit parameters
Ts and λ:

g̃2(T ) =
48π2

11Nc log
(

λ
Tc

[T + Ts]
) . (3.19)

1In the following, we refer to the quasiparticle model with the gluon mass defined by eqs.(3.18) and
(3.19) as the PQP (phenomenological quasiparticle) model.
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3 Quasiparticle Model of the QGP

By identifying the Landau pole of the effective coupling with a temperature close to
Tc, the effective gluon mass (3.18) becomes very heavy in the vicinity of the phase
transition, and s, p and ε drop abruptly to almost zero. The model can be oppugned
in two points.

First, numerical simulations suggest that the deconfinement transition in Yang-Mills
theories is second order for Nc = 2 [62] and, as mentioned, weakly first order for the
physical case Nc = 3 [33]. From the general theory of critical phenomena, it is expected
that the correlation length ξ(T ), which is proportional to the inverse of the gluonic
screening Debye mass mD, grows when Tc is approached from above. The Debye mass
mD measures the exponential spatial decay of the static gluon field correlator

〈Aa
0(�r)Ab

0(0)〉β ∝ δab exp(−mD(T )r)/r. (3.20)

For three colours, the mass gap does not vanish at Tc, so ξ(Tc) remains large, but
finite. This behaviour is indeed seen in lattice calculations [63] : mD drops by a factor
of ten when going down from 2 Tc to Tc (see figure 3.4). In HTL perturbation theory,
mD(T ) and m∞(T ) are connected by the simple relation, cf. eq.(B.14):

mD =
√

2 m∞.

A scenario with heavy masses mg would then imply small correlation lengths close to
Tc. It is therefore not clear how a decreasing gluonic Debye mass can be matched to
heavy, non-interacting quasiparticles (an attempt to describe the Debye mass semi-
classically by integrating over the quasiparticles was made in [45]). Of course, in
a more general non-perturbative framework, mg and mD, although both arise from
the same polarisation tensor, will not be related a priori by a simple constant, as
in eq.(B.14). In fact, this relation already breaks down in HTL perturbation theory
when next-to-leading order corrections to m∞ and mD are included: whereas the
asymptotic thermal mass m∞ starts to exhibit non-localities [60] due to the structure
of the effective Lagrangian (2.27), the Debye mass mD becomes infrared-sensitive to
the intrinsically non-perturbative magnetic mass g2T [64], leading to the appearance
of a g2 log(1/g) term (see the detailed discussion in section 6.2).

Second, the quasiparticle masses at Tc become really large: mg(Tc) � 1.2 GeV with
the parameters of ref.[45], which is already the mass of the lightest glue ball state at Tc

[54] that consists of two ’constituent’ gluons. Within a scenario of heavy ’constituent’
masses at Tc, the formation of bound states at the confinement transition would then
imply extremely large binding energies.

3.3.3 Deconfinement and the quasiparticle model

We will argue that these inconsistencies of the PGP can be traced back to the fact
that the picture of a non-interacting gas is not appropriate close to Tc because the
driving force of the transition, the confinement process, is not taken into account. The
physical picture is the following: below Tc, the relevant degrees of freedom in a pure
SU(3) gauge theory are heavy, colour singlet glueballs. Approaching Tc, deconfine-
ment sets in and the gluons are liberated, followed by a sudden increase in entropy
and energy density, as seen on the lattice. Conversely, when approaching the phase
transition from above, the decrease in the thermodynamic quantities is not caused by
masses becoming heavier and heavier, instead the number of thermally active degrees
of freedom is reduced due to the onset of confinement. As T comes closer to Tc, an
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3.3 Gluonic quasiparticles

increasing number of gluons gets trapped in glue balls which disappear from the ther-
mal spectrum: since mGB(Tc) � 1.2 GeV and Tc ∼ 270 MeV, glue balls are simply
too heavy to become thermally excited in the temperature range under consideration
(up to about 5 Tc). The fact that below Tc, the contribution of glue balls to ε, p and s
is negligible supports this line of reasoning. The important fact is the following: while
the confinement mechanism as such is still not understood, it is not necessary to know
it in detail since we consider a statistical system. All confinement does on a large scale
is to cut down the number of thermally active gluons as the temperature is lowered.
The question remains whether this effect of confinement can be reconciled somehow
with the quasiparticle picture. We will show in the following that it is indeed possible
in a simple, phenomenological way if we allow for an effective, temperature-dependent
number of degrees of freedom νg(T ).

Let us assume that the thermal gluon mass mg(T ) does not increase as Tc is ap-
proached, but instead follows roughly the behaviour of the Debye mass, i.e. it de-
creases. Its detailed T -dependence is not important for the discussion at the moment,
but it will be examined in more detail in the next section. Consider now the entropy of
a gas of massive gluons along eq.(3.17) with such a dropping effective gluon mass. The
result for s(T ) will clearly overshoot the lattice entropy because light masses near Tc

lead to an increase in s(T ). However, since the entropy is a measure for the number of
active degrees of freedom, the difference may be accounted for by the aforementioned
confinement process as it develops when the temperature is lowered toward Tc. This
effect can be included in the quasiparticle picture by modifying the number of effective
degrees of freedom by a temperature-dependent confinement factor C(T ):

νg → C(T ) νg. (3.21)

As shown above, the effective Hamiltonian then takes its most general form for an
ideal gas as

H id
eff =

d∑
i=0

∑
k

ωk[mg(T )] nk,j [C(T )] + E0[mg(T ), C(T )] + H̄GB(T ). (3.22)

Here, the unspecified function H̄GB(T ) includes in principle the dynamics of the glue
balls that is negligible for T ∼< mGB . From the stationarity conditions

∂p

∂mg

∣∣∣
T

= 0 and
∂p

∂C

∣∣∣
T

= 0

the function B(T ) depends on mg(T ) and C(T ) through

B(T ) = B1(T ) + B2(T ) + B0, where (3.23)

B1(T ) =
νg

6π2

T∫
Tc

dτ
dC(τ)

dτ

∞∫
0

dk fB(ωk)
k4

ωk
and

B2(T ) = − νg

4π2

T∫
Tc

dτ C(τ)
dm2

g(τ)
dτ

∞∫
0

dk fB(ωk)
k2

ωk
.

Setting C(T ) = 1 in B2 and B1 = 0, one recovers the PQP model expression for
B(T ). The integration constant B0 is chosen such that the gluonic pressure equals the
very small glue ball pressure pGB (which is taken from the lattice) at Tc, according
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3 Quasiparticle Model of the QGP

to Gibbs’ condition pgluon = pGB . With (3.23), the modification (3.21) leads to the
following expressions which replace eqs.(3.15 - 3.17):

p(T ) =
νg

6π2

∞∫
0

dk [C(T )fB(ωk)]
k4

ωk
− B(T ), (3.24)

ε(T ) =
νg

2π2

∞∫
0

dk k2 [C(T )fB(ωk)] ωk + B(T ) (3.25)

and

s(T ) =
νg

2π2T

∞∫
0

dk k2 [C(T )fB(ωk)]
4
3k2 + m2

g(T )
ωk

. (3.26)

In essence, the factor C(T ) represents a statistical parametrisation of confinement. It
might as well functionally depend not only on the temperature T , but also on energy
ωk and momentum k. For now, our choice in (3.21) is the simplest possibility for C(T ),
but it has the advantage that it allows quantitative calculations the results of which
will a posteriori justify our ansatz. The explicit temperature dependence of C(T ) can
be obtained simply as the ratio of the lattice entropy and the entropy (3.26) calculated
with a dropping input gluon mass mg(T ). Qualitatively, we expect C(T � Tc) ≈ 1
at high temperatures where the deviation from the Stefan-Boltzmann limit of ε, s
and p, as seen on the lattice, is caused solely by the thermal masses mg(T ) (and can
be accounted for perturbatively). As the phase transition is approached from above,
the number of thermally active degrees of freedom decreases and consequently, C(T )
becomes less than one. Finally, the entropy below Tc is small, but non-zero, and we
can estimate C(Tc) ∼ 0.2 from lattice data. We would also expect that C(T ) is a
smooth, monotonously increasing function with T , roughly following the behaviour of
the entropy density.

3.3.4 Thermal masses close to Tc

We must now specify our input thermal quasiparticle mass mg(T ) in eqs.(3.24 - 3.26).
As mentioned earlier, mg(T ) is to be identified with the transverse part Π∗

T (ω, k;T ) of
the gluon polarization tensor at ω, k ∼ T (see eq.(3.4)). Evaluating mg(T ) requires a
detailed non-perturbative analysis of the gluonic two-point correlation function which
lattice calculations could, in principle, provide. In practice this information does not
(yet) exist, so we have to rely on a model.

Suppose we still keep the basic form of eq.(3.18),

mg(T ) = G(T )T, (3.27)

but assume that the dimensionless effective coupling G(T ) shows approximate critical
behaviour at T close to Tc, similar to the result found in λφ4 theory (figure 2.4):

G(T ) � G0

(
1 − Tc

T

)β

, (3.28)

with some characteristic exponent β and a constant G0.The assumption (3.28) implies
that the thermal mass behaves as mg(T ) ∼ (T − Tc)β close to Tc. Asymptotically
at T � Tc, G(T ) should match the HTL perturbative form as in (3.18). In practice
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3.3 Gluonic quasiparticles

we can choose this matching point, for instance, at Tm = 3 Tc. This fixes G0 �√
Nc/6 g(Tm) � 1.3. A similar value for Tm below which an explicit HTL resummation

is expected to fail, was obtained in ref.[65], see also figure 3.1.

The quantity for which lattice information does exist is the Debye screening mass
mD(T ) that is related to the longitudinal part Π∗

L(ω, k;T ) of the polarization tensor.
When defined as m2

D = Π∗
L(0, k2 = −m2

D) [64], the result turns out to be gauge-
independent for a wide class of gauges to arbitrary order in perturbation theory [66]
(unlike the situation for ω = 0, k → 0 where Π∗

L is not gauge-invariant at next-to-
leading order). While there is no a priori reason why mg and mD should still be
related non-perturbatively as they are in perturbation theory (cf. eq.(B.14)), it is
nevertheless instructive to recall what is known about the temperature dependence of
the Debye screening mass above Tc. Explicit values for mD have been extracted from
lattice calculations of (colour-averaged) heavy quark potentials V (R, T ) [63] by the
ansatz

V (R, T )
T

∝ e−µ(T )R

(RT )d
. (3.29)

Perturbation theory predicts d = 2 and µ(T ) = 2mD(T ). As elucidated in [63],
the potential may be better reproduced in terms of a mixture of one- and two-gluon
exchange since the observed behaviour close to Tc favours values of d ∼ 1.5 in eq.(3.29).
It is now interesting to observe that the lattice result for µ(T ) can be parametrised
very well by

µ(T ) � const. · T
(

[1 + δ] − Tc

T

)β

(3.30)

with β � 0.1 and a small gap at T = Tc introduced by δ ∼ 10−6. The form of eq.(3.30)
is indeed reminiscent of approximate critical behaviour and opposite to the perturbative
expectation, showing once more that perturbation theory has little predictive power
near Tc. A non-perturbative analytical calculation of mD(T ) by coupling the gluon
to the finite-temperature gluon condensate [67] is also in good qualitative agreement
with eq.(3.30), supporting the picture of a dropping Debye mass. Remember that the
same behaviour is also seen in the TRG analysis of λφ4 theory, cf. figure 2.3.

Let us then assume that the proportionality (B.14) between the screening mass mD

and the thermal gluon mass mg remains at least qualitatively valid in the vicinity
of the phase transition, i.e. that the exponent β in the characteristic (1 − Tc/T )β

behaviour of both mD and mg is roughly the same. As it turns out, this is not a
serious assumption: we have checked that, as long as mg(T ) and mD(T ) just have
similar trends in their T -evolution close to Tc, our results are not sensitive to the
detailed quantitative behaviour of the quasiparticle mass.

Guided by these considerations, the thermal gluon mass mg is thus parametrised as

mg(T ) = G0T

(
[1 + δ] − Tc

T

)β

. (3.31)

where we allow for a small mass gap at T = Tc, as indicated by the lattice results
for mD(T ) [63]. The small correction δ � 1 encodes this deviation. Finally, G0 is
determined by the asymptotic value of the thermal mass, chosen such that the lattice
mass and the HTL perturbative result from [45] coincide at T ≈ 3 Tc, as mentioned
above. In order to account for uncertainties and the approximate nature of relation
(3.31), we have investigated a range of values for G0, δ and β which can be found in
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3 Quasiparticle Model of the QGP

G0 δ β C0 δc βc

Set A 1.35 10−5 0.2 1.24 0.0029 0.34
Set B 1.30 10−6 0.1 1.25 0.0026 0.31
Set C 1.30 10−7 0.05 1.27 0.0021 0.30

Table 3.1: Parametrisations for the thermal gluon mass mg(T )/T and the corresponding
confinement factor C(T ).

table 3.1. The upper limit of the range is labelled Set A, an intermediate parameter
set Set B and the lower limit Set C. Its plots and the lattice data points for mD(T )
are displayed in figure 3.4.

A decreasing effective coupling strength G(T ) as Tc is approached from above, seems
at first sight counterintuitive: One would expect that, at a scale T ∼ ΛQCD, ’infrared
slavery’ sets in, accompanied by an increasing QCD coupling g. However, it should be
borne in mind that this expectation is based on a perturbative result extrapolated to
large couplings, neglecting non-perturbative effects. As seen in chapter 2.4.2, close to
Tc the coupling can indeed show critical behaviour (if the transition is second or weakly
first order). A heuristic argument to make the dropping effective coupling plausible
in QCD goes as follows. Since we are in a strong coupling regime, the interactions
between gluons cannot be described in terms of single gluon exchange, instead they
are dominated by (non-perturbative) multi-gluon dynamics. As the temperature is
lowered, more and more gluons become confined and form heavy glue balls, as outlined
earlier. The effective glue ball exchange interaction between gluons reduces approxi-
mately to a local four-point interaction proportional to 1/m2

GB . The total interaction
can be interpreted as a superposition of multi-gluon and (weak) glue ball exchange.
Obviously, the more glue balls are formed, the weaker becomes this interaction. The
coupling G(T ) in eqs.(3.28) and (3.31) reflects an interaction between bare gluons from
the heat bath on length scales 1/mGB and larger that turns these bare gluons into
massive, weakly interacting quasiparticles on length scales of order 1/T . From dimen-
sional arguments (the only other mass scale in the system is the temperature), we may
estimate G(Tc) = O(Tc/mGB ∼ 0.2), which is in agreement with our parametrisation
of G(T ).

3.3.5 Results for SU(3) gauge theory

Now that the temperature behaviour of mg(T ) is given, we can explicitly calculate
the entropy density (3.26). Dividing the lattice entropy density by the result of this
calculation, we obtain the T -dependence of the confinement factor C(T ). A very good
fit of the resulting curves again exhibits an approximate critical power-law behaviour:

C(T ) = C0

(
[1 + δc] −

Tc

T

)βc

, (3.32)

which is a non-trivial result. The corresponding parameters of C(T ) for the different
mass parametrisations, sets A, B and C of (3.31), can also be found in table 3.1. Their
plots are shown in figure 3.5. C(T ) is obviously only weakly sensitive to variations of
the mass parameters within a broad band, so the further discussion will be based on
Set B. In the following, the quasiparticle model with the gluon mass (3.31) and the
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Figure 3.4: The thermal gluon mass mg/T . The grey band shows the parameter range of
table 3.1 for eq.(3.31). Set A marks the upper limit and set C the lower, the intermediate set
B is displayed as a solid line. The arrows indicate the mass gap mg(Tc)/Tc of the different sets
at the critical temperature. Symbols display µ(T )/2 of eq.(3.29), with d = 1.5 fixed, for lattice
configurations of different temporal extent Nτ [63]. For comparison the PQP perturbative
mass mg/T of eq.(3.18) is also plotted (dashed line), using the parameters of ref.[45].

confinement factor (3.32) is referred to as ’confinement model’. For the integration
constant B0 appearing in eq.(3.23) we find 0.30 T 4

c ∼ (200 MeV)4. This value is about
a factor of 2 larger than in the PQP model and remarkably close to the value of the bag
constant at T = 0, a welcome feature. As mentioned, we expect the confinement effect
to be negligible for T ∼> 3 Tc where the HTL quasiparticle model sets in. From there
on, C(T ) → 1. The actual deviation of C(T ) from 1 for large temperatures has two
reasons: first, even in the PQP model a gluon degeneracy of νg = 16 does not describe
the data, instead a value larger by about 10% is necessary to account for residual
sub-leading effects not captured by the model. Second, the behaviour of the gluon
mass for larger T is certainly oversimplified since the parametrisation mg ∝ (T −Tc)β

is expected to be valid only in the vicinity of Tc. Its value overestimates the HTL
perturbative result for T ≥ 3 Tc by some 5%, hence the thermodynamical potentials
are slightly smaller than in the PQP model. One should instead apply a smooth inter-
polation between the HTL perturbative mass and the mg(T ) we used for temperatures
close to Tc. This would in turn yield a more complicated expression for C(T ), but it
is in principle straightforward.

In figure 3.6 we compare results of the confinement model to continuum extrapolated
SU(3) lattice data [50]. Obviously, the thermodynamic quantities are very well de-
scribed even close to Tc with our simple and economic parametrisation. The slight
deviations in the region ∼ 5 Tc arise from our over-simplified functional form of C(T )
in that region. We want to stress again that the entropy density is, by construction,
always fitted.
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Figure 3.5: The confinement factor C(T ) as a function of temperature. The grey band
shows the range for the corresponding mass parametrisations of table 3.1. The solid line is
obtained from set B.

A quantity that is sensitive to the finer details of the model is the trace of the energy-
momentum tensor, Tµ

µ = ε − 3p, which is compared to data from a 323 × 8 lattice in
figure 3.7. The so-called interaction measure

∆(T ) = (ε − 3p)/T 4 (3.33)

is connected, via the QCD trace anomaly, to the temperature dependent gluon con-
densate:

T 4∆(T ) = 〈G2〉T=0 − 〈G2〉T . (3.34)

Here [50, 68],

〈G2〉T =
11αs

8π
〈Ga 2

µν 〉T (3.35)

and 〈G2〉T=0 as in eq.(2.13). Again, excellent agreement over the whole temperature
range is observed. The confinement model is even capable of describing the lattice data
in the temperature region between Tc and 1.2 Tc, where the PQP model significantly
underestimates the data.

Finally, figure 3.8 shows the function B(T ) as a function of temperature. Although
the setup of the confinement model is quite different from the PQP model, the shape
of this function remains roughly the same. Note, however, that the B2 term exhibits a
completely different temperature behaviour than in the PQP model: it is monotonously
decreasing and negative from Tc on. The B1 term is vital to reproduce the necessary
peak structure. The maximal value of B(T ) is a factor of ∼ 1.6 larger than in the
PQP model, but it also becomes negative for larger temperatures, with its zero T0

slightly shifted from T0 ∼ 2 Tc to T0 ∼ 2.2 Tc. An intriguing observation is that its
shape now closely resembles the temperature dependence of the spacelike plaquette
expectation value ∆σ. The space- and timelike plaquettes, ∆σ and ∆τ , are related to
the interaction measure (3.33) by ∆ = ∆σ + ∆τ and can be expressed in terms of the
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Figure 3.6: The normalised energy density ε̄ = ε/T 4, entropy density s̄ = 0.75 s/T 3 and
pressure p̄ = 3p/T 4 of our model (solid lines) compared to continuum extrapolated SU(3)
lattice data (symbols) [50]. The size of the symbols reflects the lattice uncertainties. The
arrow indicates the ideal gas limit for massless gluons.

1 2 3 4 5
T / TC

0

1

2

3

(ε
 −

 3
p)

 / 
T

4

Confinement model

32
3
 x 8 

Figure 3.7: The interaction measure ∆ = (ε − 3p)/T 4 of the confinement model (solid line)
versus results (symbols) from a 323 × 8 lattice. The data symbols already represent the
continuum interpolated values [50].

49



3 Quasiparticle Model of the QGP

1 2 3 4 5
T / TC

−0.25

0.25

0.75

B
(T

) 
/ T

4

B(T)/T
4
 (confinement)

B1/T
4

B2/T
4

B(T)/T
4
 (PQP)

1/2 ∆σ

Figure 3.8: The function B(T ) and its components B1 and B2, defined in eq.(3.23). Also
shown is B(T ) in the PQP model. Symbols display the spacelike plaquette expectation value
1
2
∆σ taken from the lattice calculation of ref.[50].

thermal chromomagnetic and chromoelectric condensates 〈B2〉T and 〈E2〉T as

αs

π
〈B2〉T = − 4

11
T 4∆σ +

2
11

〈G2〉T=0 and

αs

π
〈E2〉T =

4
11

T 4∆τ − 2
11

〈G2〉T=0. (3.36)

What we find in fact is B(T ) = 1
2∆σ(T )T 4 (see figure 3.8). This relation between B(T )

and 〈B2〉T may be accidental, but it may also hint at a deeper connection between
B(T ) as a carrier of non-perturbative effects, and the magnetic condensate. After
all, B(T ) represents the thermal energy of the (non-trivial) Yang-Mills vacuum. In
this context it is important to note that this (possible) identification is not caused by
thermodynamical self-consistency (otherwise the PQP model should show exactly the
same behaviour), but really probes the underlying model. That we find empirically a
physical interpretation of B(T ) that is not present in other models strongly supports
our set up.

3.4 Unquenching the quarks

The extension of the mechanism presented in the last section to systems with dy-
namical quarks is not straightforward since no concise continuum extrapolation of the
QCD EOS with realistic quark masses exists to date. Nevertheless, it is still possible
to construct a model of the EOS with ’unquenched’ quarks, using some reasonable ar-
guments based on the available lattice data. Recall that, following the argumentation
of section 3.1.2, the confinement mechanism itself seems to be only weakly flavour-
dependent. Furthermore, there exists evidence that the theory in the limit Nc → ∞,
with g2Nc fixed, is quite similar to the Nc = 3 gauge theory. Since quark loops are
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3.4 Unquenching the quarks

non-leading O(1/Nc) contributions to the physics, they will not influence the confine-
ment/deconfinement phase transition within, say, 10%. Finally, as outlined in section
2.4.3, lattice results on the order of the phase transition in full QCD indicate that
the transition is first order in the case of three light, degenerate quark flavours and
most likely second order for two flavours. If the world as we know it is close to the
two flavour world (i.e. if the strange quark mass is so heavy that it does not alter the
phase transition qualitatively), we can still assume a ’dropping mass’ scenario.

3.4.1 Thermal masses

No lattice data on thermal masses with dynamical quarks are available. We thus
construct effective masses for quarks and gluons by assuming that the Nc- and Nf -
dependence of mg and mq are both given by the HTL asymptotic limit. For the
thermal gluon mass, following (B.9), we employ the ansatz:

mg(T )
T

=

√
Nc

6
+

Nf

12
G̃(T,Nc, Nf ) (3.37)

with the effective coupling

G̃(T,Nc, Nf ) =
G̃0√

11Nc − 2Nf

(
[1 + δ] − Tc

T

)β

. (3.38)

G̃0, δ and β are taken to be universal. Setting G̃0 = 9.4, δ = 10−6 and β = 0.1, the
gluon and quark masses coincide with the two flavour HTL masses at T � 3 Tc, using
the parameters of ref.[89]. The thermal quark mass becomes [89]

mq(T )
T

=

√√√√√mq,0

T
+

√
N2

c − 1
16Nc

G̃(T )

2

+
N2

c − 1
16Nc

G̃(T )2 (3.39)

with the zero-temperature bare quark mass mq,0.

In [72], a non-perturbative dispersion equation for a thermal quark interacting with the
gluon condensate has been calculated, and it has been found that the effective quark
mass is given by mq � 1.15 T in the temperature range between 1.1 Tc and 4 Tc.
Eq.(3.39) is within 10% in agreement with this result. Nevertheless, very close to Tc

the parametrisation (3.39) may be too simple: if the expected chiral phase transition is
second order (or weakly first order), fermions may decouple in the vicinity of the phase
transition because they have no Matsubara zero modes, and the transition dynamics
would be dominated by the bosonic gluons only. In this case gluon masses should
become independent of Nf . However, as in the pure gluon sector, the results are
stable against small variations of the mass parametrisations, and as long as no further
information is available, eqs.(3.39) and (3.37) may be taken as an educated guess.

We now proceed as follows: First, we assume that the continuum limit of the pressure
can be obtained from the Nτ = 4 lattice data by applying a 10% correction, i.e.
pcont � 1.1 plat. Second, using Occam’s razor we employ a universal confinement
function C(T ) for both quarks and gluons, motivated by eq.(3.2). The extension of
eq.(3.24) to systems including quark flavours is straightforward:

p(T ) =
νg

6π2

∞∫
0

dk [C(T )fB(ωg
k)]

k4

ωg
k

+
Nf∑
i=1

2Nc

3π2

∞∫
0

dk
[
C(T )fD(ωi

k)
] k4

ωi
k

−B(T ). (3.40)
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3 Quasiparticle Model of the QGP

C0 δc βc

2 flavours 1.25 0.02 0.28
2+1 flavours 1.16 0.02 0.29
3 flavours 1.03 0.02 0.2

gluon 1.25 0.0026 0.31

Table 3.2: Parametrisations of eq.(3.32) for the confinement function C(T ) in the presence
of dynamical quark flavours. For comparison, the corresponding values of the pure gauge
system (set B) are also shown.

Here ωg
k =

√
k2 + m2

g(T ) as before. The quark energy is ωi
k =

√
k2 + m2

i (T ) for each
quark flavour q = i, and mq(T ) is given by eq.(3.39) with the bare quark masses mq,0.
The function B(T ), the entropy density s(T ) and the energy density ε(T ) follow anal-
ogously. If the confinement model is applicable, we should expect that the parameters
of C(T ) in eq.(3.32), as shown in table 3.1 for the gluonic calculations, are similar
in the presence of quarks. We start therefore with the gluon values for C0, δc and
βc and vary them slightly until good agreement with the lattice pressure is obtained.
To account for the temperature-dependent bare masses used specifically in the lattice
calculations, the quark masses mq,0 in eq.(3.39) are set to mq,0 = 0.4 T (light quarks)
and ms,0 = 1.0 T (heavy quark). Figure 3.9 shows the results for 2 and 2+1 flavours,
the corresponding values for the parameters of C(T ) can be found in table 3.2. We
observe that indeed, the confinement factor C(T ) does not differ much from the pure
gluonic case. The factor B0 is set to 1.4 T 4

c � (180 MeV)4. The larger value for δc is
explained by noting that, for T < Tc, many light quark-antiquark composites (pions,
kaons etc.) are present. They contribute sizably to the entropy in the hadronic phase.
Accordingly, C(Tc) is larger than in the pure gluon case, hence δc has to increase.
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Figure 3.9: The rescaled lattice pressure pcont � 1.1 plat (grey lines) for 2 and 2+1 flavours
and the pressure obtained from the confinement quasiparticle model with running bare quark
masses (dashed lines). Values for the parameters of C(T ) are shown in table 3.2.
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3.4 Unquenching the quarks

3.4.2 Physical quark masses

Pressure, energy and entropy density for physical quark masses are finally obtained
by setting mq,0 in eq.(3.39) to the real-world values mu,d � 0 and ms � 170 MeV.
This procedure assumes that C(T ) is independent of mq,0 which is not clear. In
present lattice simulations, the pions are too heavy, mlat

π ≥ 450 MeV, therefore their
contribution to s(T ) or p(T ) is strongly Boltzmann suppressed. Since

e−mlat
π /Tc

e−mphys
π /Tc

≈ 1
7
,

future computations with lighter, more realistic pion masses are expected to find a
substantially larger pressure and entropy in the hadronic phase below Tc. On the
other hand, the pion- or quark mass dependence of Tc, eq.(2.54), is very moderate,
indicating that the confinement mechanism is insensitive to mq,0. With this caveat, we
assume for now that C(T ) does not depend on mq,0. Figure 3.10 shows a prediction
of ε(T ), s(T ) and p(T ) for massless two flavour QCD. Reassuringly, the pressure of
the confinement model is well within the narrow estimate for the continuum EOS of
ref.[30] for T > 2 Tc that was released after our prediction. In contrast to the pure
gluon EOS, we observe that the energy and entropy are close to the ideal gas limit
already at T = 3 Tc. However, it has to be borne in mind that their normalization
is set by C0 which in turn depends on the continuum estimate of the Nτ = 4 lattice
data. More reliable estimates for the continuum pressure are needed to confirm this
behaviour. It is also worthwhile noting that, going from temperature-dependent bare
masses (as used in the lattice simulations) to the chiral limit, the corresponding change
of the pressure in the confinement model is stronger than expected from an ideal Fermi
gas. It rises by about 7% whereas for an ideal gas with quark mass mq/T = 0.4 the
difference would be only about 3.5% (for Nf = 2).
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Figure 3.10: Pressure, energy and entropy density for two light quark flavours in the con-
finement model. The arrow indicates the ideal gas limit. The grey band is an estimate of the
continuum EOS for massless two flavour QCD, based on an extrapolation of lattice results
[30].
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In figure 3.11, we plot the energy density for three light quark flavours on a 163 × 4
lattice [73] and as obtained in the confinement model. We mention that these lattice
data are not as well understood as the pressure. In particular, a contribution to ε/T 4

proportional to the bare quark mass that vanishes in the chiral limit has been omitted
by hand. In addition, there is no estimate of the continuum limit of these lattice
data, hence our normalisation, set by C0 in eq.(3.32), is substantially smaller than in
previous cases. Apart from that, the data are very well reproduced down to Tc.

Finally, the most important result of this chapter is displayed in figure 3.12: the
calculated pressure, energy and entropy density for “the real world”, a system with two
light quark flavours (mq,0 = 0) and a heavier strange quark (ms,0 � 170 MeV). Here,
the approach to the Stefan-Boltzmann limit is obviously slower than in the two flavour
case because of the mass suppression of the third, heavier flavour. Nf in eqs.(3.37),
(3.38) and (3.39) was set to 2.3. For comparison, also shown are continuum estimates
of lattice data for dynamical staggered fermions with masses mu,0 = md,0 ∼ 65 MeV
and ms,0 ∼ 135 MeV [74]. Since the explicit bare mass dependence of the pressure in
our model is quite moderate2, these data provide another check of our model. Again,
the data have been released after our calculations and show very nice agreement even
close to Tc. The results for ε(T ) and p(T ) are also consistent, for T > 2 Tc, with an
EOS obtained in the PQP model [75]. Closer to Tc, the confinement model predicts a
stronger decrease of the energy density, though. Again, B(T ) resembles the shape of
the corresponding function in the PQP model. However its zero, T0, is considerably
shifted, from T0 ∼ 1.7 Tc to T0 ∼ 2.7 Tc.
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Figure 3.11: Energy density estimate in the chiral limit for three quark flavours on a 163×4
lattice [73] (data points) and as obtained in the confinement model (solid line).

2The corresponding curves of the confinement model with the lattice quark masses quoted in the
text differ by less than 5% of the ones shown in figure 3.12.
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Figure 3.12: Pressure, energy and entropy density for two light quark flavours (mu,d = 0)
and a heavier strange quark (ms � 170 MeV) in the confinement model. The arrow indicates
the ideal gas limit of massless three-flavour QCD, the crosses are continuum estimates of
lattice data for two light and one heavy quark flavour [74] (see text for further details).

3.4.3 Comparison with other work

There have been several attempts in the literature to describe the phase transition
within a more microscopical approach, and we briefly discuss three recent ones, re-
stricting ourselves to the pure SU(3) glue theory. In [69], an evaporation model of
the gluon condensate was set up. There, the thermodynamics below Tc is governed
by a dilaton Lagrangian that mimics the gluon condensate. Gluons are ’frozen’ inside
the condensate, and the dilaton excitations are the heavy glueballs. Crossing the crit-
ical temperature, the gluons evaporate (deconfine) and interact only perturbatively
thereafter. With basically two fit parameters, a critical temperature of Tc = 290 MeV
can be calculated by minimising the thermodynamical potential, and pressure and en-
ergy density are reasonably well described. The fact that the gluon condensate is still
present and large at high temperature (see figure 3.7), however, poses some conceptual
difficulties, as well as the assumption that the dilaton field is treated in the mean-field
approximation which may be more justified for large Nc where the transition becomes
strongly first order.

Ref.[70] starts from an interaction between colour charges in a plasma that is medi-
ated by strings. The modified energy density takes the form ∆ε = nσ〈l〉, where n
is the string density (neglecting spatial correlations), σ the string tension appearing
in eq.(2.11) and 〈l〉 is the average string length. Using a density-dependent mean
field spectrum, a dispersion relation for gluons of the form ωk = k + 2

3σn−1/3 can
be constructed that gives qualitative agreement of pressure and energy density with
the lattice data of figure 3.2. It is then intuitively clear that, approaching Tc from
above, gluons become confined, so the average string length has to increase. The term
n−1/3 ∼ 〈l〉 then acts like an effective, increasing mass, and the model becomes com-
parable in spirit to the PQP models discussed above. Taking 〈l〉 ∼ 1 fm at Tc, one
finds ωk(Tc) = k +O(500 MeV). Again, the model only parametrises the complicated
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3 Quasiparticle Model of the QGP

QCD dynamics, this time by the strings that are assumed to be non-interacting among
themselves.

The QGP has also been described in terms of a condensate of Z3 Wilson lines
[71]. Using as effective degrees of freedom the order parameter of the transition,
the spatially averaged gauge-invariant Polyakov loop (2.47), a mean-field potential
V (〈L〉) = −1/2m2〈L〉2 + λ/4〈L〉4 is constructed to obtain the expected behaviour of
the pressure close to Tc,

p(T ) ∼
(

1 − Tc

T

)γ

T 4.

Note that the form of the potential V (〈L〉) for Nc = 2 is nothing than the λφ4 system
with SSB considered in section 2.4.2, with interchanged limits: the λφ4 system con-
denses at low temperatures whereas the gauge theory develops a non-vanishing VEV
at high temperatures, eq.(2.50). With standard mean-field arguments, a number of
lattice data can be described. This ansatz is presumably closest to our philosophy
because it tries to include the anticipated critical behaviour close to Tc from the onset.
Furthermore, it makes a number of predictions that are testable on the lattice, most
importantly how the phase transition properties change when varying the number of
colours.

To conclude, all available models that try to describe the deconfinement phase tran-
sition at least semi-quantitatively are phenomenological to date; they parametrise in
one way or the other the non-perturbative gluon dynamics and have a more or less
large number of fit parameters. Since that situation does not change when dynamical
quarks are included, we believe that it is at this stage not possible to calculate QGP
signals from first principles. Instead, phenomenological models that cover as much
physics as is known should be used wherever possible.

3.5 Finite quark chemical potential

As we have discussed in section 2.4.4, first lattice calculations at finite quark chemical
potential µ indicate that for µ < 200 MeV, the physics of the phase transition does not
change qualitatively. Since the chemical freeze-out at SPS occurs at about µf.o. � 100
MeV [41] and at RHIC at µf.o. � 15 MeV [42], a description of the QGP phase in
terms of the same degrees of freedom as at µ = 0 is possible for these experimentally
accessible ranges of µ. We will therefore briefly outline in this section the extension
of the confinement model to finite, yet small chemical potential, i.e. µ/T ∼< 1. We
compare to lattice data, where appropriate, and briefly dwell on the phenomenological
implications of our results. A much more detailed discussion of this issue can be found
in the diploma thesis of Michael Thaler [76].

3.5.1 The equation of state

In this section, we will assume flavour symmetry to lighten the notation. At finite µ,
the quark contribution to the pressure is modified from the second term in eq.(3.40)
to:

p(T, µ) =
Nf Nc

3π2

∞∫
0

dk
k4

ωk
C(T, µ)[f+

D (ωk) + f−
D (ωk)] − B(T, µ). (3.41)

56



3.5 Finite quark chemical potential

f+
D (ωk) and f−

D (ωk) stand for the Fermi-Dirac distribution functions for particles and
antiparticles, respectively:

f±
D (ωk) = [exp(β{ωk ∓ µ}) + 1]−1, (3.42)

with the usual energy ωk =
√

k2 + m(T, µ,mq)2. Energy and entropy density follow
accordingly. The net particle density associated with the conserved charge Q is derived
from (3.10) as

nq(T, µ) =
Nf Nc

2π2

∞∫
0

dk k2C(T, µ)[f+
D (ωk) − f−

D (ωk)], (3.43)

which is obviously zero for µ = 0. Since pressure, energy density, particle density and
the entropy density are connected by the extended Gibbs-Duhem relation (3.8), we
obtain B(T, µ) from the same stationarity condition (3.12) as at µ = 0. The main
difference is that the functions Fi(T, µ) now depend on two external parameters, so

0 =
∂p

∂m

∣∣∣
T,µ

=
∂p

∂T

[
∂m

∂T

]−1

+
∂p

∂µ

[
∂m

∂µ

]−1

.

A similar equation exists for ∂p/∂C, leading to the following equation for B(T, µ):

∂B(T, µ)
∂T

+
µ

T

∂B(T, µ)
∂µ

=

− NcNf

2π2

∞∫
0

dk [f+
D (ωk) + f−

D (ωk)]C(T, µ)
k2

ωk

[
∂m2(T, µ)

∂T
+

µ

T

∂m2(T, µ)
∂µ

]

+
NcNf

3π2

∞∫
0

dk [f+
D (ωk) + f−

D (ωk)]
k4

ωk

[
∂C(T, µ)

∂T
+

µ

T

∂C(T, µ)
∂µ

]
. (3.44)

This is a partial differential equation of the type

x
∂f(x, y)

∂x
+ y

∂f(x, y)
∂y

= I(x, y) (3.45)

that has the general solution

f(x, y) =

x∫
dt I

(
t,

y

x
t
)

+ H
(y

x

)
. (3.46)

Here, H(y/x) is a solution of the homogeneous equation. Returning to our case,
H(µ/T ) becomes an arbitrary function of the ratio µ/T that has to be fixed by bound-
ary conditions. In section 3.4, the functional form of B(T, 0) has been derived. For
µ → 0, H(µ/T ) does not depend on T anymore and therefore has to be identified
with the integration constant B0 in eq.(3.23). H(µ/T ) surely is a continuous function
for T > Tc, so for small µ/T , it has to be close to B0. Taylor expanding, the first
derivative vanishes, as in (2.55), and the series starts only at order (µ/T )2. For our
purposes, we therefore identify H(µ/T ) with a constant B0 for all µ under considera-
tion. Assembling all pieces, the final result reads

B(T, µ) = B0 −
NcNf

2π2

∞∫
0

dk

T∫
Tc

dτ C
[
f+

D (ωk) + f−
D (ωk))

]
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× k2

ωk

[
∂m2

∂τ
+

µ

T

∂m2

∂
(

µ
T τ
)]+

NcNf

3π2

∞∫
0

dk

T∫
Tc

dτ
[
f+

D (ωk) + f−
D (ωk)

]

× k4

ωk

[
∂C

∂τ
+

µ

T

∂C

∂
(

µ
T τ
)] , (3.47)

where the explicit τ -dependence in C(τ, µ/T τ), m(τ, µ/T τ) and ωk(τ, µ/T τ) has
been suppressed for the sake of lucidity. In the following, we will assume that C(T, µ)
does not depend on µ. Also G̃ is taken to be eq.(3.38), with no µ-modifications, since
T is still the largest scale. The chemical potential appears only in the effective mass
(3.39), where we replace G̃(T )T → [1 + µ2/(π2T 2)]G̃(T )T , in accordance with the
HTL results (B.25) and (B.26).

How reasonable these assumptions are, can be tested against a lattice calculation of the
pressure at Tc and small µ [40]. There, the quantity ∆p̄ = [p(Tc, µ)− p(Tc, 0)]/T 4 was
evaluated for two flavours with a bare quark mass of 0.1 Tc. The chemical potential
was chosen to be that at RHIC, µ = µRHIC = 0.1 Tc � 17 MeV, and the pressure
at finite µ was calculated using a Taylor expansion about µ = 0, similar to eq.(2.55)
(in fact, the expansion coefficient ∂2p/∂µ2|µ=0 is just the quark number susceptibility
that we will discuss in the next section). As in section 3.4, the measured value of
∆p̄ = 0.0034 has to be continuum-extrapolated, so we take again ∆p̄cont � 1.1 ∆p̄lat.
The final value of ∆p̄cont = 0.00374 compares rather favourably with the prediction
from our model, where ∆p̄ = 0.0040, using eq.(3.41). Since B(T, µ) reduces to B0 at
Tc, all B-dependence cancels in ∆p̄, and the comparison directly tests the ideal gas
ansatz. Note that p̄(Tc, 0) = p(Tc, 0)/T 4 is about 0.5, so the influence of the chemical
potential µRHIC is a very small effect on the 1% level. Consequently, since at RHIC
– and even at SPS – the ratio µ/T will be always small for all reachable values of T
(as we derive in the next chapter), the influence of µ on the parton equation of state
can be safely neglected in the treatment of URHIC. The bare quark mass dependence,
however, is not that well described within our model, as explored in more detail in
[76].

Figure 3.13 shows the ratio of pq(T, µ) over pq(T, µ = 0) as a function of chemical
potential µ and temperature T , calculated in the confinement model and excluding the
gluon contributions. The dependence on µ is rather weak, as mentioned above, and
most pronounced at small temperatures and large µ. In the fugacity approximation,
eq.(3.41) can be re-written as

pq(T, µ)fug ≈ 1
2
[exp(µ/T ) + exp(−µ/T )] [pq(T ) − Bq(T )] ,

where pq(T ) and Bq(T ) are the corresponding functions in the absence of µ and gluons.
For µ/Tc = 1, pq(Tc, µ)fug ≈ 1.5 pq(Tc), which already gives almost the value shown
in figure 3.13. The most drastic effect of the chemical potential hence comes from the
modification of the distribution function.

The existence of quark quasiparticle structures even close to Tc is also evident from
figure 3.14. There, first lattice results [83] on the net quark density nq(T, µ) for 2+1
flavours are compared with our calculation, using eq.(3.43) with C(T, µ) = C(T ).
Obviously, the shape of the lattice data is well described by our model even for µ as
large as 70 MeV, whereas the normalisation is off by ∼ 10−20%. Since the data points
have been normalised to the T → ∞ limit, this lattice continuum extrapolation has to
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Figure 3.13: The ratio pq(T, µ)/pq(T, 0) in the confinement model for Nf = 2 (excluding
gluons) as a function of quark chemical potential µ/Tc and temperature T/Tc.

be still regarded as preliminary, though. The peak in nq/T 3 at T � 1.2 Tc arises very
naturally in a quasiparticle description, because, in the fugacity approximation,

nq(T, µ) � 1
2

[exp(µ/T ) − exp(−µ/T )] ntot
q (T ) = sinh(µ/T )ntot

q (T ). (3.48)

Here, ntot
q (T ) is the total quark density at zero chemical potential, defined in eq.(5.13).

Now ntot
q is an increasing function of T and sinh(µ/T ) is decreasing, at fixed µ. Their

product hence exhibits a peak structure that is a strong indicator of the validity of the
quark quasiparticle concept even close to Tc.

3.5.2 Quark number susceptibilities

Let Q be the conserved number operator associated with a given particle species and
µ its corresponding chemical potential. The mean square deviation of Q is then given
by

〈δQ2〉 ≡ 〈Q2〉 − 〈Q〉2 = T
∂〈Q〉
∂µ

. (3.49)

The quark number susceptibility (QNS) χ measures the response of the net quark
number density n(T, µ)i = 〈Qi〉 of flavour i to an infinitesimal variation of the chemical
potential µj :

χij =
∂ni

∂µj
=

∂2p

∂µj∂µi
(3.50)

and is related to the fluctuations by 〈δQ2〉 = V Tχ. For an ideal gas with a single
flavour, χ0 = NcT

2/3. Since fluctuations of conserved particle numbers or charges
may in principle discriminate the QGP against the hadronic phase in ultra-relativistic
heavy-ion collisions [77, 78], χ is an interesting quantity for event-by-event fluctuation
physics. Moreover, χ can be computed on the lattice for µ = 0 [79] and allows first
steps in the T − µ plane, as the second derivative in the Taylor expansion of p(T, µ)
in small µ. Here, it is used as an independent check of the confinement model that
makes predictions for χ without any adjustments.
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Figure 3.14: Net quark density nq(T, µ)/T 3 for 2+1 flavours as a function of T/Tc. The
data points are continuum estimates of a lattice calculation for dynamical staggered fermions
with masses mu,0 = md,0 ∼ 65 MeV and ms,0 ∼ 135 MeV [83]. The dashed (µ = 33 MeV)
and solid (µ = 70 MeV) line show the corresponding results from the confinement model,
using eq.(3.43) with C(T, µ) = C(T ).

The off-diagonal QNS χud have been measured on the lattice and were found to be
compatible with zero for 1.3 Tc < T < 3.5 Tc within errors of 10−7T 2 [80]. In the
confinement model, χud vanishes by construction because different flavours do not talk
to each other, so our scenario of non-interacting quasiparticles seems to be supported
by these lattice results. In contrast, HTL resummed perturbation theory finds a value
of χHTL

ud (3 Tc) = O(10−4T 2) [81], which is an unresolved issue at the moment.

In ordinary perturbation theory, the diagonal QNS χ ≡ χii is presently known to order
g4 log(1/g) [82]. While the lattice data approach the ideal gas limit from below with
increasing temperature and lie about 20% below the ideal gas limit at about 4 Tc [79],
the perturbative result starts above the ideal gas limit and decreases logarithmically
with increasing T . Again, bare perturbation theory fails badly to even capture the
trend of the lattice results. In the confinement model, the quark number density
n(T, µ) is defined in eq.(3.43). Since the parametrisation of n is fixed by construction
of the quasiparticle model, we can give a parameter-free prediction of χ, again under
the assumption that C(T, µ) does not depend strongly on µ. The QNS for the physical
case of two light and one heavy flavour is shown in figure 3.15 and compared with
estimates of the continuum limit of the lattice data [79] (see [76] for more details).
We observe good agreement with the (coarse) lattice data. The slight overshooting
for T > 3 Tc arises from our insufficient parametrisation of C(T ) in that region. Of
course, more data points with higher statistics and a concise continuum-extrapolation
are needed for definite conclusions, but it is encouraging that the confinement model
seems to work well even when extended to finite chemical potential.
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Figure 3.15: The ratio χ(T )/χ0 in the confinement model for two light flavours (mu =
md = 0.03 Tc) and a heavy flavour (ms = Tc) as a function of T/Tc. The data points are
continuum-extrapolated estimates of the lattice data simulated in [79].

3.6 Intermediate summary

In this chapter, we have constructed a novel quasiparticle description of the QCD EOS
in the temperature region Tc < T ∼< 3 Tc where current heavy-ion experiments oper-
ate. Our main improvement, as compared to previous work, is the schematic inclusion
of confinement that has so far not been taken into account, but should dominate the
dynamics that close to Tc. Since confinement simply reduces the number of thermally
active degrees of freedom in a statistical sense, this non-perturbative behaviour is in-
corporated in a model of quasifree, massive quasiparticles by a modification of the
particle distribution functions with a confinement factor C(T ). This method corre-
sponds to the maximal extension of any ideal gas model. Our model parametrises
the continuum-extrapolated lattice data in a simple and economic fashion, and the in-
teraction measure ∆(T ) is even better reproduced than in previous phenomenological
models. The true challenge of the model, however, lies in confronting it with inde-
pendent lattice data that are not governed by thermodynamic consistency. As a first
intriguing check, a possible physical connection of the thermal energy of the Yang-
Mills vacuum, B(T ), with the chromomagnetic condensate 〈B2〉T has been observed
– a feature that is not presented in the PGP models and strongly supports our setup.

For systems with dynamical quarks, sufficiently precise lattice data are not yet avail-
able. With reasonable assumptions, we can nevertheless extend the model and find
that for Nf = 2 and Nf = 2 + 1 the pressure of our confinement model is well within
narrow lattice estimates for the continuum EOS released after our predictions. Of
course, future simulations with higher statistics and smaller quark masses are needed
to refine the model. The extension of the confinement model to small quark chemical
potential has also proven to be successful. First lattice calculations of the net quark
density at finite µ are well described by simple quark quasiparticle structures even close
to Tc. Our value for p(Tc, µRHIC), with µRHIC � 17 MeV, is within 10% in accord with
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3 Quasiparticle Model of the QGP

a recent lattice calculation and differs only by about 1% from the value at zero chem-
ical potential. Since at RHIC and even at SPS the ratio µ/T is small for all reachable
values of T , the influence of µ on the parton equation of state can be safely neglected
in the treatment of URHIC. In addition, the lattice results on the off-diagonal quark
number susceptibilities (that directly measure the interactions) support our picture of
a quasifree QGP in the vicinity of the phase transition. We also managed to describe,
without any parameter adjustments, the diagonal quark number susceptibility for two
light and a heavy quark, where it should be kept in mind that the lattice data are still
quite coarse and carry large error bars, though.

To conclude, the thermal quasiparticle-plus-confinement model successfully describes
and predicts a variety of lattice data, both in the pure glue sector and for QCD with
dynamical quarks. It incorporates the main physics near the phase transition in a
schematic, yet thermodynamically consistent way. We believe it to be a reasonable
representation of the QGP and use it extensively in the next two chapters, both in the
construction of a fireball and in the calculation of QGP signatures.
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In this chapter, we utilise the quasiparticle formalism developed in chapter 3 in two
ways: to describe the dynamics of a URHIC, a fireball model reminiscent of hydro-
dynamics is set up. Assuming isentropic expansion, the EOS of the system will link
initial and final states of the collision. The EOS in the QGP phase for physical values
of the quark masses is taken from our quasiparticle setup, figure 3.12, whereas in the
hadronic phase a smooth interpolation to a hadronic resonance gas is applied. This
procedure results for the first time in a thermodynamically self-consistent description
of a fireball evolution in accordance with lattice results.

Once the space-time arena is set up, dilepton rates are put into it. Above Tc, we
consistently employ the quasiparticle picture. Special emphasis is put on the sup-
pression of thermally active partonic degrees of freedom as the critical temperature is
approached from above. For the hadronic phase, we calculate the dependence of the
photon spectral function (that enters the dilepton rate) on temperature and baryon
density using Vector Meson Dominance combined with Chiral Dynamics. The main
part of this chapter has been published in [84].

4.1 Dileptons from a fireball

The lepton pair emission rate from a hot domain populated by particles in thermal equi-
librium at temperature T is proportional to the imaginary part of the spin-averaged,
photon self-energy, with these particles as intermediate states. The thermally excited
particles annihilate to yield a time-like virtual photon with four-momentum q which
decays subsequently into a lepton-antilepton pair.

The differential pair production rate is given by

dN

d4xd4q
=

α2

π3q2

1
eβq0 − 1

ImΠ̄(q, T ) =
α2

12π4

R(q, T )
eβq0 − 1

, (4.1)

where the electromagnetic coupling α = e2/4π, and we have neglected the lepton
masses. We have defined Π̄(q) = −Πµ

µ/3 and introduce the averaged photon spectral
function

R(q, T ) =
12π

q2
ImΠ̄(q, T ).

Here Πµ
µ denotes the trace over the thermal photon self-energy which is equivalent to

the thermal current-current correlation function

Πµν(q, T ) = i

∫
d4x eiqx〈T jµ(x)jν(0)〉β , (4.2)

where jµ is the electromagnetic current. Eq.(4.1) is valid to order α in the electromag-
netic interaction and to all orders in the strong interaction.
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The differential rate of eq.(4.1) is integrated over the space-time history of the collision
to compare the calculated dilepton rates with the CERES/NA45 data [85] taken in
Pb-Au collisions at 160 AGeV (corresponding to a c.m. energy of

√
s ∼ 17 AGeV) and

40 AGeV (
√

s ∼ 8 AGeV). The CERES experiment is a fixed-target experiment. In
the lab frame, the CERES detector covers the limited rapidity interval η = 2.1− 2.65,
i.e. ∆η = 0.55. We integrate the calculated rates over the transverse momentum
pT and average over η, given that d4p = MpT dM dη dpT dθ. The formula for the
space-time- and p-integrated dilepton rates hence becomes

d2N

dMdη
=

2πM

∆η

τf∫
0

dτ

∫
dη V (η, T (τ))

∞∫
0

dpT pT
dN(T (τ),M, η, pT )

d4xd4p
A(M,η, pT ),

(4.3)
where τf is the freeze-out proper time of the collision, V (η, T (τ)) describes the proper
time evolution of volume elements moving at different rapidities and the function
A(M,η, pT ) accounts for the experimental acceptance cuts specific to the detector. At
the CERES experiment, each electron/positron track is required to have a transverse
momentum pT > 0.2 GeV, to fall into the rapidity interval 2.1 < η < 2.65 in the lab
frame and to have a pair opening angle Θee > 35 mrad. Eq.(4.3) is then convoluted
with the finite energy resolution of the detector. Finally, for comparison with the
CERES data, the resulting rate is divided by dNch/dη, the rapidity density of charged
particles.

RHIC operates as a collider experiment, so in this case the fireball is centered around
η = 0. Here, the PHENIX detector acceptance can be schematically modelled by
requiring that each electron/positron track falls in the rapidity interval −0.35 < η <
0.35, has transverse momentum pT > 0.2 GeV and a pair opening angle of Θee > 35
mrad. At present, an abundance of data on Au-Au collisions at

√
s = 130 AGeV have

already been analysed, and first data of the run at the higher energy
√

s = 200 AGeV
are available.

4.2 Calculation of the photon spectral function

Since the initial temperature of the fireball is well above Tc for all beam energies
considered here (as we will explicitly show later), we need to calculate the photon
spectral function R(q, T ) that enters (4.1) in both the hadronic and partonic phase.
In the following, we fix Tc to be 170 MeV from eq.(2.52), as appropriate for two light
thermally active flavours. The strange quark mass is too heavy to shift Tc down to
the critical temperature for three massless flavours.

4.2.1 The quark-gluon phase

As long as the thermodynamically active degrees of freedom are quarks and gluons,
the timelike photon couples to the continuum of thermally excited qq states and sub-
sequently converts into a charged lepton pair. The calculation of the photon spectral
function at the one-loop level is performed using standard thermal field theory meth-
ods. The well-known leading-order result for bare quarks and gluons as degrees of
freedom separates, for a virtual photon with four-momentum q = (q0, �q), into the
vacuum part and a temperature-dependent piece:

ImΠ(q0, �q, T ) = ImΠ(q2, T = 0)
[
1 + J (q0, �q;T )

]
, (4.4)
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where

ImΠ(q2, T = 0) = −3
q2

12π

∑
f=u,d,s

θ(q2 − 4m2
f )e2

f

(
1 +

2m2
f

q2

)√
1 −

4m2
f

q2
(4.5)

and

J (q0, �q;T ) = 2


T

|�q|
1√

1 −
4m2

f

q2

log


fD

q0

2
− |�q|

2

√
1 −

4m2
f

q2


fD

q0

2
+

|�q|
2

√
1 −

4m2
f

q2



− 1

 . (4.6)

Here, ef is the quark electric charge and mf the quark mass of flavour f . This
result, however, holds only up to perturbative higher order corrections in g that take
into account collective plasma effects. Here, contributions from soft gluons lead to
strong modifications. The corresponding two- and three-loop contributions show no
clear convergence [86, 87] even at very high temperatures, similar to the case of the
perturbative free energy of the QGP, eq.(3.3). Since the thermodynamic properties of
the QGP are well reproduced by a gas of quasiparticles, as outlined in the last chapter,
we assume that a quark quasiparticle couples to a photon in the same way as a bare
quark (a form factor representing the ’cloud’ of the quasiparticle could in principle also
be included, but in absence of information about the detailed quasiparticle structure
we ignore this point). For a gas of non-interacting quasiparticles, the one-loop result
for ImΠ is already almost sufficient: all higher order QCD effects manifest in the
thermal quasiparticle masses mq(T ), the function B(T ) and the confinement factor
C(T ). Incorporation of the first two features in the calculation is straightforward.
The bare quark masses in eqs.(4.5) and (4.6) simply have to be replaced by the T -
dependent quasiparticle masses for each flavour, see eq.(3.39). The thermal vacuum
energy B(T ) does not contribute to the dilepton rate.

The naive replacement fD → C(T )fD is, however, not permitted in eq.(4.6). Since any
modification of the free particle distribution functions leads to non-equilibrium field
theory, products of delta functions (pinch singularities) may arise in loop calculations.
Therefore, the quasiparticle model as it stands cannot be used in expressions derived
from perturbative thermal field theory. Recalling the physical interpretation of the
confinement factor C(T ), we can use the expression for the dilepton rate, eq.(4.1),
instead. The mechanism for dilepton production at tree-level is the annihilation of a
qq pair into a virtual photon where the quark lines are multiplied by the distributions
fD(ωk), giving the probability of finding a quark or an antiquark in the hot medium.
This also becomes clear when we look at the limit �q → 0 of eq.(4.4). Then,

ImΠ(q0, T ) = ImΠ(q0, T = 0)[1 − 2fD(q0/2)], (4.7)

and the temperature enters only in the Pauli-blocking of the quarks propagating in
the loop. Now, from eq.(4.1)

dN

d4xd4q
∼ fB(q0)ImΠ̄(q, T ). (4.8)

Combining the different thermal occupation factors, we end up with the well-known
result

dN

d4xd4q
∼
[
fD(q0/2)

]2
, (4.9)
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Figure 4.1: Dilepton rates originating from the QGP phase in the quasiparticle model for
different temperatures.

so the differential dilepton rate is proportional to the probability of finding a quark q
times the probability of finding an antiquark q̄ with the correct momentum, as antici-
pated1. The incorporation of the confinement factor is now obvious: since it reduces
the number of thermally active degrees of freedom, it also reduces the dilepton rate
by a factor of C(T )2.

In summary, eq.(4.1) can be used to calculate the dilepton rate originating from a hot
QGP phase, provided an overall factor C(T )2 is applied to account for the reduced
probabilities, and the bare masses mf in the one-loop expression (4.4) are replaced
by the T -dependent thermal masses (3.39). The role of the factor C(T ) is illustrated
in figure 4.1, where the differential dilepton rate originating from a hot QGP in the
quasiparticle approach is shown for different temperatures. Note that the plotted
quantity is independent of the fireball volume, so the resulting differences are only
due to the dropping quasiparticle masses and the squared confinement factor C(T ),
which is responsible for a decrease by more than an order of magnitude at T ∼ Tc as
compared to the highest temperature shown. One also observes that, as expected, the
(negative) slope of the production rate in the region of high invariant mass gets steeper
as the temperature decreases. It is important to note that this setup neglects contri-
butions from hadronic degrees of freedom above Tc. As mentioned, quarks and gluons
become clustered into hadrons (glue balls, mesons) as the temperature approaches
Tc from above. These hadronic excitations are comparatively heavy and thus do not
contribute much to the thermodynamics. Since we do not know in detail how the sta-
tistical re-arrangement of degrees of freedom occurs, we refrain from including these
hadronic sources of dilepton yield above Tc. Our calculation is therefore expected to
give a lower limit on the leptonic radiation from the QGP phase.

1We neglect a possible chemical potential for the quarks. For finite µ, the corresponding expression
would be dN

d4xd4q
∼ fD([q0 − µ]/2)fD([q0 + µ]/2).
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Figure 4.2: Lattice data (crosses) [90] on the vector spectral function R(ω, �q = 0; T ) at 3 Tc

for Nf = 2. The solid line shows our theoretical calculation, deduced from eq.(4.4). The grey
horizontal lines denote an average of the theory curve over the energy bins used by the lattice
measurements which enables a transparent comparison.

The quasiparticle model does not take into account the collective plasma modes, such
as the longitudinal gluonic plasmons and the helicity-flipped quark plasminos. Since
their residues (B.19) and (B.34) are exponentially suppressed in the HTL approx-
imation for thermal momenta k ∼ T , their contributions to the thermodynamical
quantities are negligible. However, in the case of soft dilepton production it is well
known that these modes lead to sharp, distinct structures in the spectrum, referred
to as Van Hove singularities [88]. The plasmino branch has, as visible in figure B.2,
a minimum in its dispersion relation at �k �= 0 (which follows on very general grounds
[89], independent of the HTL approximation). This leads to a diverging density of
states which, in turn, shows up in the dilepton spectrum as a pronounced peak. Our
model cannot exhibit, by construction, such plasmino effects. However, since the peaks
are roughly located at � 2mq(T ), where mq(T ) is the thermal mass of the quasiparti-
cles, these Van Hove singularities would be smeared out by the fireball evolution. The
thermal mass drops as the temperature goes down, dragging along the peak position
with it. Furthermore, since mq(T ) is of the order of the temperature T or smaller in
our model, the singularities appear at low invariant mass (< 500 MeV) where they
are overwhelmed by the hadronic part of the dilepton production, as we will see later.
Therefore the presence of these collective modes would presumably not influence our
results for the dilepton rate in the QGP phase.

Our model of the QGP phase also finds preliminary support from a lattice calculation
[90] of thermal vector meson correlation functions above Tc in quenched QCD with
improved Wilson fermions. Using the maximum entropy method, the vector spectral
function was extracted from the corresponding current correlator. Although the sta-
tistical uncertainties are still considerable, it is interesting to note that the resulting
spectrum resembles the free spectral function, as in our case, and has a gap at low en-
ergies given by a thermal mass threshold of (2− 3)T , which is indeed close to 2mq(T ),
the natural cut-off of the spectrum and, correspondingly, of the thermal dilepton radi-
ation in the confinement model (see figure 4.1). Figure 4.2 compares the lattice data

67



4 Dilepton Rates

and our calculated spectrum. Of course, higher statistics and improved actions are
mandatory to confirm these observations, but at least it is safe to say at the moment
that the full spectral function does not differ by a large factor from its non-interacting
counterpart. In the future, lattice calculations at T = 1.2 Tc are also planned. Since
this close to Tc our quasiparticle model starts to deviate significantly from the PGP
models [45, 46], it might be possible to rule out one or the other model if the lattice
data show sufficient statistical significance.

4.2.2 The hadronic phase

Below Tc, the effective degrees of freedom change to colour singlet, bound qq̄ or qqq
(q̄q̄q̄) states. The photon couples now to the lowest-lying ’dipole’ excitations of the
vacuum, the hadronic JP = 1− states: the ρ, ω and φ mesons and multi-pion states
carrying the same quantum numbers. The electromagnetic current-current correlation
function can be connected to the currents generated by these mesons using an effective
Lagrangian which approximates the SU(3) flavour sector of QCD at low energies. The
appropriate model for our purposes is the improved Vector Meson Dominance model
combined with chiral dynamics of pions and kaons as described in [91]. Within this
model, the following relation between the imaginary part of the irreducible photon
self-energy ImΠ̄ and the vector meson self-energies ΠV (q) in vacuum is derived:

ImΠ̄(q) =
∑
V

ImΠV (q)
g2

V

|FV (q)|2, FV (q) =

(
1 − g/g0

V

)
q2 − m2

V

q2 − m2
V + iImΠV (q)

, (4.10)

where mV are the (renormalised) vector meson masses, g0
V is the γV coupling and g is

the vector meson coupling to the pseudoscalar Goldstone bosons π±, π0 and K±,K0.
Eq.(4.10) is valid for a virtual photon with vanishing three-momentum �q. For finite
three-momenta there exist two scalar functions Π̄L and Π̄T , because the existence of a
preferred frame of reference (the heat bath) breaks Lorentz invariance, and one has to
properly average over them. However, taking the limit |�q| → 0 should be reasonable
for our purposes in view of the fact that the c.m. rapidity interval accessible at CERES
and RHIC restricts |�q| on average to only a fraction of the vector meson mass mV .

Finite temperature modifications of the vector meson self-energies appearing in
eq.(4.10) are calculated using thermal Feynman rules. Our explicit calculations for
the ρ- and φ-meson can be found in ref.[92]. At the one-loop level, the ρ and φ are
only marginally affected by temperature even close to Tc because of the comparably
large pion and kaon masses: mπ � Tc, mK � 3 Tc. The thermal spectral function of
the ω-meson has been discussed by us in detail in [93]. There, the pure in-medium
reaction ωπ → ππ (ω scattering off a thermal pion) was found to cause a consider-
able broadening of the ω spectral function because at temperatures T > 60 MeV, a
substantial fraction of pions become excited. The increase of the ω width with tem-
perature is then, not surprisingly, reminiscent of the rate at which the thermal pion
density grows. However, because of the additional Bose enhancement of the two final
state pions, the scattering rate actually rises even stronger than T 3. In fact, a good
fit over the temperature range considered is

Γωπ→ππ =
(

T

Ts

)5

MeV with Ts = 72.3 MeV � mπ

2
. (4.11)

For T > 120 MeV, this width becomes larger than the pure decay term ω → 3π, rising
up to about 40 MeV at T = 150 MeV. The total decay width Γω(T ), as the sum of

68



4.2 Calculation of the photon spectral function

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
invariant mass ω [GeV]

10
0

10
1

10
2

S
pe

ct
ra

l f
un

ct
io

n 
R

(ω
)

vacuum
150 MeV
200 MeV

ρ = 0
qq

ρ

ω φ

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
invariant mass ω [GeV]

10
0

10
1

10
2

sp
ec

tr
al

 fu
nc

tio
n 

R
(ω

)

vacuum
ρ = ρ0 ω

ρ

φ

T = 0

Figure 4.3: The photon spectral function R(ω) = (12π/ω2) ImΠ̄(ω) at finite temperature
and ρB = 0 (upper panel) and at T = 0 and baryon density of normal nuclear matter,
ρB = ρ0 = 0.17 fm−3 (lower panel). For orientation, the qq̄ line in the left panel shows the
spectral function in the QGP phase with massless u- and d-quarks and ms = 150 MeV for
s-quarks, neglecting αs-corrections.

decay and scattering terms, leads to Γω(100 MeV) � 15 MeV and Γω(150 MeV) � 55
MeV= 8 Γω(0).

At higher invariant masses 1 GeV < M < 2 GeV, πa1 annihilation is the dominant
source of dileptons [94, 95]. The vacuum vector and axialvector spectral functions be-
come mixed to order T 2 with a strength T 2/(6f2

π) (fπ being the pion decay constant)
due to their coupling to the pionic heat bath [96] and should be degenerate at the point
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of chiral symmetry restoration. The effect of the a1 and higher resonances can then be
approximately subsumed in a structureless continuum above 1 GeV [97]. We practi-
cally implement the πa1 contribution by adding a flat 2π continuum to the resonance
ρ meson spectral function that feeds into the photon spectral function, reminiscent of
the perturbative plateau of qq̄ annihilation. The corresponding photon spectral func-
tion with all three vector meson contributions is displayed in figure 4.3 (upper panel).

There is still considerable stopping of the interpenetrating nuclei at SPS energies,
resulting in a net baryon density ρB in the central rapidity region. At RHIC, measure-
ments [98, 99] indicate that the proton over antiproton excess is small, implying that
the baryons are distributed over a larger rapidity interval. Therefore, finite baryon
density effects should not play such an important role at RHIC kinematics. For the
evaluation of density effects which are relevant at SPS conditions, we use the results
discussed in [100]. There it was shown that, to leading order, ΠV is related to the
vector meson - nucleon scattering amplitude TV N :

ΠV (q0, �q = 0; ρB) = Πvac
V − ρBTV N (q), where (4.12)

TV N (q) = − i

3

∫
d4x eiqx〈N |T jµ(x)jµ(0)|N〉,

with |N〉 being zero-momentum free nucleon states. The linear density approximation
used in (4.12) is expected to be valid for baryon densities ρB up to normal nuclear
matter. Since the baryon density at SPS at the phase transition is also of the order
ρ0 and decreases thereafter, it is safe to say that eq.(4.12) constitutes a reasonable
starting point for calculations. In the following, we assume that the temperature-
and density dependences of ΠV factorise, i.e. we replace Πvac

V in eq.(4.12) by the
temperature-dependent ΠV (T ) and leave TV N unaffected. This amounts to neglecting
contributions from matrix elements such as 〈πN |T jµ(x)jµ(0)|πN〉 (nucleon-pion scat-
terings where the pion comes from the heat bath). Furthermore, this approximation
does not take into consideration a possible T -dependent pion or nucleon mass. Some
effective models suggest that, near the phase transition, the nucleon mass follows the
behaviour of the chiral condensate 〈q̄q〉 and drops abruptly as the quarks lose their
constituent masses. Such modifications of particle properties may have a considerable
impact on the spectral functions. However, since the temperature range over which
the dropping takes place is narrow, we expect such effects not to leave distinct signals
in the dilepton spectra which are only sensitive to the integrated time (and hence
temperature) evolution of the system.

The photon spectral function at finite density and zero temperature is depicted in
figure 4.3 (lower panel). The interaction with nucleons causes a strong broadening
of the ρ meson down to the one pion threshold, leading to a complete dissolution of
its quasiparticle peak structure. The modifications of the ω and φ meson spectral
distributions are more moderate: the φ mass stays close to its vacuum value, accom-
panied by a ninefold increased width, whereas the mass of the ω drops by about 100
MeV at normal nuclear matter density, and its width increases by a factor of about
5. This calculated dropping of the ω mass in a nuclear environment may be observed
experimentally in the near future at the HADES spectrometer at GSI. Monte Carlo
cascade simulations of π−Pb reactions at pion beam momenta around 1.3 GeV suggest
that the detector resolution will indeed be sufficient to separate the shifted in-medium
ω peak from its vacuum counterpart [101], allowing for an independent test of the
spectral function at finite density.
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4.2 Calculation of the photon spectral function

To summarise, the most prominent changes of the photon spectral function, when
compared to the vacuum case, arise from the broadening of the ρ due to finite baryon
density effects and the broadening of the ω due to scattering off thermal pions. The
φ meson retains its distinct peak structure even under extreme conditions of density
and temperature. Very close to Tc, however, these results based on perturbative cal-
culations, are not expected to be reliable. As shown in section 3.5, the influence of a
baryon chemical potential on the QGP is negligible in the EOS, both at RHIC and
SPS conditions. The same holds for the partonic spectral function since the chemical
potential would enter it only logarithmically. As µB � T , we can therefore safely
neglect any chemical potential in the QGP phase in the following.

4.2.3 After freeze-out contributions

At the freeze-out stage, there are still vector mesons present. These will decay with
their vacuum properties on their way to the detector and add to the dilepton yield
from the previous thermalised phase. The invariant mass region below approximately
400 MeV is mainly filled by the Dalitz decays of the vector mesons. We take these
contributions from the experimental analysis of the CERES collaboration for SPS
conditions. Since the PHENIX acceptance starts only above 1 GeV, the Dalitz decays
do not play a significant role at RHIC.

For the calculation of the direct decay of a vector meson V into a lepton pair we start
with the following formula:

dNV

dMdη
=

1
∆η

α2

12π4
RV (M,T = 0)

∞∫
τf

dτVf

∫
d3q

M

q0
fB(q0, Tf ) exp

(
− τ − τf

γ(q)τV
0

)
.

Here, Tf and Vf are the fireball temperature and volume, respectively, at freeze-out.
After τf , the freeze-out time, all medium effects are switched off, so the vacuum photon
spectral function RV (M,T = 0) determines the rate. The corresponding momentum
distribution is given by the thermal Bose function, evaluated at the freeze-out tem-
perature Tf . However, the absolute number N of vector mesons as a function of time
is not a constant: since the mesons decay and there is no thermal recombination, N
decreases exponentially like exp

(
−(τ − τf )/(γ(q)τV

0 )
)
. The vacuum life time of the

vector meson V under consideration is denoted by τV
0 , and γ(q) accounts for time

dilatation effects on particles with finite three-momentum:

γ(q) =
1√

1 − v2
=

q0

M
.

After the time integration we end up with:

dN

dMdη
=

1
∆η

α2

12π4
τ0R(M,T = 0)Vf

∫
d3q fB(q0, Tf ).

The averaged space-time four-volume that is available after freeze-out is therefore
VfτV

0 , as anticipated. The integral over d3q now yields the freeze-out particle density
n(M) = N(M)/V of the virtual photons as a function of invariant mass. Note that
the information on the vector mesons remains entirely in the photon spectral function.
With the factor Vf we obtain the total number of photons at freeze-out. When weighted
with RV (M), this gives the dN/dM distribution for the process meson → γ∗ → e+e−.

71



4 Dilepton Rates

We have also checked that a commonly used Breit-Wigner ansatz of the form

dNe+e−

dM
= [Vfn(Tf ,M)] ξ BV

M2 ΓV (M)
(M2 − m2

V )2 + M2ΓV (M)2
(4.13)

yields almost identical results. Here, ΓV (M) stands for the M -dependent decay width,
ξ is the normalization factor and BV the branching ratio for the leptonic decay of the
corresponding vector meson.

4.2.4 Drell-Yan and charm contributions

At invariant masses M > 1 GeV the Drell-Yan mechanism, i.e., hard quark-antiquark
annihilation qq̄ → �+�− at leading order (LO), constitutes another source of (non-
thermal) dileptons. Its differential LO cross section in a nucleus(A1)-nucleus(A2) col-
lision reads

dσ(A1A2)
dy dM

=
8πα2

9M s

∑
q

e2
q × (4.14)[ (

Z1 fp
q (x1) + (A1 − Z1) fn

q (x1)
) (

Z2 fp
q̄ (x2) + (A2 − Z2) fn

q̄ (x2)
)

+ (q ↔ q̄)
]

where
√

s denotes the c.m. energy of the nucleon-nucleon collision and x1,2 =
M/

√
s exp(±y) is the momentum fraction of the beam and target parton respectively.

The Drell-Yan cross section (4.14) is computed using the LO MRST parametrisa-
tion [102] for the parton distributions fp

i (x, µ2) evaluated at the hard scale µ2 = M2.
However, it has been checked that using different LO sets (e.g., CTEQ5L [103] or
GRV98LO [104]) affects the results by only 10 % at SPS and 20% at RHIC energies.
To account for higher order corrections, we multiply the LO expression (4.14) by a K
factor K = 2 fitted from pp data [105]. Finally, nuclear effects like shadowing or quark
energy loss are expected to suppress the Drell-Yan yield by about 30-50% [106, 107].
Since these effects are still poorly known quantitatively, we neglect them and consider
our Drell-Yan rate as an upper limit on the actual rate.

Using the Glauber model of multiple independent collisions, the average dilepton mul-
tiplicity in a A1-A2 collision at impact parameter b is given by

dN(A1A2)
dy dM

(b) = TA1A2(b) × K
dσ(A1A2)

dy dM
, (4.15)

with the normalised thickness function

TAB(b) =
∫

d2s TA(s)TB(s̃), (4.16)

where
TA(b) =

∫
dz ρA(z, b) (4.17)

is the overlap function as longitudinal integral of the nuclear density ρA and s̃ = |�b−�s|.
In eq.(4.15), TA1A2(b) is computed assuming the standard Woods-Saxon nuclear den-
sity profile. The Drell-Yan pair multiplicity (4.15) is then averaged for the 30% and 6%
most central collisions to be compared with CERES and PHENIX data, respectively.
In addition to these centrality cuts, we need to rely on further assumptions to take
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properly into account the acceptance of these experiments. Therefore, we shall assume
the generic form dσ/dp⊥ ∝ p⊥/(1 + (p⊥/p0)2)6 (p0 = 3 GeV) for the p⊥ dependence
of the DY process [105]. Furthermore, neglecting corrections due to the intrinsic k⊥
of the incoming partons, the angular distribution is taken to be dN/dΩ ∝ 1 + cos2 θ
where θ is the angle between the lepton and the beam axis.

Another source of dileptons in the high invariant mass region consists of semileptonic
decays of charmed mesons. Whereas earlier calculations found a considerable yield
from open charm exceeding the thermal radiation [108], the subsequent inclusion of
medium effects like energy loss led to a suppression of the dielectron rate and made
it comparable to or even lower than the Drell-Yan yield [109, 110]. Since the Drell-
Yan contribution plays only a subdominant role in the following, we will not explicitly
include the open charm contributions.

4.3 Fireball model

In this section, we set up a fireball model to describe the dynamics of a URHIC after
thermalisation of the system has occured. A much more detailed discussion of the
model that covers all the finer details can be found in the dissertation of Thorsten
Renk [111].

We assume that the physics of the fireball is the same inside each volume of given
proper time τ , thus averaging over spatial inhomogeneities in density and temperature.
The volume itself is taken to be an expanding cylinder, in which the volume elements
move away from the centre in order to generate the observed flow. There is no global
Lorentz frame in which thermodynamics can be applied. As the fireball expands,
volume elements away from the centre are moving with large velocities and are subject
to time dilatation when seen in the c.m. frame of the collision. We assume a linear
rise in rapidity when going from central volume elements to the fireball edge along the
beam (z)-axis and the transverse axis. As the velocities along the z-axis are typically
large (up to c) as compared to transverse motion (up to 0.55 c) for SPS and RHIC
conditions, we make the simplifying assumption that the proper time is in a one-to-one
correspondence to the z-position of a given volume element, thus neglecting the time
dilatation caused by transverse motion (this introduces an error on the 5% level). The
whole system is assumed to be in local thermal (though not necessarily in chemical)
equilibrium at all times, which is supported experimentally by phenomena like elliptic
flow [112]. Theoretically, only perturbative estimates are possible, which therefore may
only be applicable at LHC or RHIC, but mechanisms like ’bottom-up’ thermalisation
[113] have been proposed that achieve equilibration on time scales of 1 fm/c. This
is also the time scale at SPS for the two colliding nuclei to pass through each other,
τ ∼ 2RA/γ, with the nuclear radius RA and the gamma factor γ ∼ 10.

Given this overall framework, the volume expansion of the fireball is governed by the
longitudinal growth speed vz and the transverse expansion speed v⊥ at a given proper
time. These quantities can be determined at the freeze-out point and correspond to
the observed amount of flow. However, flow is measured in the lab frame and needs to
be translated into the growth of proper time volume. We employ a detailed analysis
of the freeze-out conditions for central Pb+Pb collisions at 160 AGeV [114] to fix the
endpoint of the evolution. The initial state is constrained using the overlap geometry
of the colliding nuclei. The expansion between initial and freeze-out stages is then
required to be in accordance with the EOS for two light quarks and a heavy strange
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quark as determined from the quasiparticle model, see figure 3.12. The resulting
model serves as the basic setup, its extension to different beam energies and collision
centralities is discussed in 4.3.5.

4.3.1 Initial and freeze-out conditions

We use the data set b1 of [114] as the endpoint of our fireball evolution. The data set
has been obtained by a simultaneous fit of the fireball emission function to hadronic
mT spectra and HBT radii, so as to disentangle the contributions from flow and
temperature to these quantities. The fireball is characterised by a transverse box-
shaped density distribution with a radius RB = 12.1 fm. This corresponds to a
root mean square radius of Rf

rms = 8.55 fm (= RB/
√

2). The average transverse
expansion velocity is found to be 0.5 c and the temperature at freeze-out is Tf = 100
MeV. Looking at the longitudinal expansion, a velocity vf

z ≈ 0.9 c at the fireball
front is needed in ±z direction in order to account for the observed shape of dNch/dy
distributions.

The initial conditions in transverse direction can be fixed by the overlap geometry.
Here, R0 ≈ 4.5 fm and v⊥ = 0 for central collisions. The initial longitudinal size of
the fireball is related to the amount of stopping of the matter in the collision and
the time τ0 necessary for the formation of a thermalised system. There is no direct
information on these two quantities. However, pQCD calculations indicate τ0 ≈ 1
fm/c for SPS conditions and shorter times at RHIC. The initial longitudinal velocity
vi

z can be inferred from hydrodynamical calculations. Since the initial state in principle
determines the final state (once the EOS is known), we can fit this parameter to the
observed dN/dy spectra. This procedure points at vi

z ≈ 0.5 c. The initial longitudinal
size of the system at proper time τ0 is then calculated by the intercept of z(t) = vi

z · t
with the τ =

√
t2 − z2 = τ0 line.

4.3.2 Volume evolution

Using the available information on initial and freeze-out conditions and the EOS of
the system, we now reconstruct the evolution of the fireball volume in proper time:

(1) The EOS translates into a temperature (and hence τ) dependent acceleration
profile a = const. · p(T )/ε(T ) that exhibits a soft transition point at T = Tc. The
ratio p/ε is reminiscent of the behaviour of the speed of sound of the system since
c2
s = dp/dε, and hence governs the acceleration. Previous approaches [121, 119] only

assumed a constant acceleration profile, which is clearly insufficient. Comparing initial
and final conditions, we need both longitudinal and transverse acceleration to account
for the velocity gain, and we keep the possibility of having two different constants c⊥
and cz which relate transverse and longitudinal accelerations to p/ε. In practice, the
temperature evolution with τ is calculated starting with a trial solution and iterating
the result to obtain a self-consistent solution.

(2) Starting with an ansatz for the radial expansion velocity,

v⊥(τ) = c⊥

τ∫
τ0

dτ ′ p(τ ′)
ε(τ ′)

(4.18)
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and

R(τ) = R0 + c⊥

τ∫
τ0

τ ′∫
τ0

dτ ′dτ ′′ p(τ ′′)
ε(τ ′′)

, (4.19)

where R0 is the initial overlap rms radius of the collision region, we fix the two unknown
parameters c⊥ and τf by the requirement that R(τf ) = Rf

rms and v⊥(τf ) = vf
⊥.

(3) For the longitudinal expansion we follow the motion of the fireball front in the c.m.
frame and use the expressions

vz(t) = vi
z + cz

t∫
t0

dt′
p(t′)
ε(t′)

(4.20)

and

z(t) = z0 + vi
z · t + cz

t∫
t0

t′∫
t0

dt′dt′′
p(t′′)
ε(t′′)

. (4.21)

The movement of the fireball front in the c.m. frame can now be translated into the
growth of volumes in proper time by finding the intercept of z(t) and τ = const. and
calculating the pathlength along this curve of fixed proper time. The time t starts
running at t0 such that z0 = vi

z t0 is the initial longitudinal extension, vi
z being the

initial longitudinal expansion velocity. The longitudinal position z(t) and t itself define
a proper time curve τ =

√
t2 − z2(t). Solving for t̃ = t(τ) we can construct z̃(τ) = z(t̃).

Then the position of the fireball front z(t) in the c.m. frame can be translated into
the total longitudinal extension L(τ) of the cylinder on the curve of constant proper
time τ :

L(τ) =

z̃(τ)∫
−z̃(τ)

ds

√
1 +

|s|√
s2 + τ2

, (4.22)

the integration accounting for the expansion in both positive and negative z-direction.
The parameters cz and tf (freeze-out in c.m. frame) are fixed by vz(tf ) = vf

z and z(tf )
to lie on the τ = τf line, with τf determined from the radial expansion, as explained
above.

The total volume, as a function of proper time, finally reads

V (τ) = L(t(τ))
[
πR2(τ)

]
. (4.23)

In order to construct a self consistent evolution model, we need to specify the proper
ratio p(T (τ))/ε(T (τ)) corresponding to the volume expansion. The evolution of T (τ) is
dealt with in the next section. For the QGP phase, the ratio is then determined within
the quasiparticle model. Unfortunately, no reliable information on p/ε is available for
the hadronic phase. We can, however, deduce the value of the ratio p/ε at both Tc and
Tf , and interpolate between these limits. As the lattice indicates neither a sharp drop
in ε nor in p when approaching Tc from above, it appears reasonable to assume that
the p/ε ratio stays small in the vicinity of the phase transition even in the hadronic
phase. On the other hand, the decoupling of the system at freeze-out implies that
interactions between its constituents become unimportant, therefore we recover the
ideal gas limit at T → Tf , where standard thermodynamics predicts p/ε = 1/3 (for
massless particles). We now interpolate linearly between these two values to cover the
temperature region inbetween.
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4.3.3 Temperature evolution

The temperature profile T (t) of the fireball is uniquely determined by the assumed
condition of isentropic expansion once the volume expansion is known. In order to
derive the temperature T at a given time, we calculate the entropy density via

s(τ) = S0/V (τ), (4.24)

where S0 is the total entropy of the fireball. The relation between the entropy density
s and the fireball temperature T is fixed by the EOS. By inverting this (unique) rela-
tion numerically, we finally obtain the temperature profile. As mentioned, the EOS of
the QGP phase is taken from figure 3.12. Unfortunately, determining the behaviour
of the hadronic phase is not quite as easy for a number of reasons. First, the large
bare quark masses employed in lattice calculations lead to pion masses mlat

π ∼> 3mphys
π .

The resulting thermal suppression of these degrees of freedom causes a considerable
discrepancy of the lattice EOS with respect to that of the interacting pion gas or the
free hadronic resonance gas. However, since there are indications that the transition is
triggered by the increasing number of resonances (and not by the increasing pion den-
sity), the effect of the large quark masses might not be as important as it seems at first
sight. Second, even the description of the hadronic phase in terms of a non-interacting
or perturbatively interacting system is bound to fail near the phase transition. Only
in the very final stages, near the freeze-out, interactions cease to be important and we
may assume that a non-interacting system describes the situation adequately.

We parametrise our insufficient knowledge close to Tc by interpolating smoothly be-
tween two regimes, the QGP quasiparticle result for T > Tc and the non-interacting
hadronic resonance gas result for T < Tf . Since the transition is likely a smooth
crossover for physical quark masses (cf. section 2.4.3), we can safely assume that there
are no discontinuities in the EOS. The situation is shown for the RHIC scenario in
figure 4.4 and compared to the ideal quark-gluon gas and the hadronic resonance gas
approach used in other works (e.g. [115, 116]). Evidently, the deviations in both the
quark-gluon phase and the hadronic phase from the ideal gas are large, amounting to
a factor of more than two for the entropy density near Tc. Keeping in mind that a
smaller entropy density translates into a higher temperature in an isentropic expan-
sion, we conclude that our model predicts a prolonged lifetime of the QGP phase as
compared to the ideal gas ansatz, whereas the lifetime of the hadronic phase is reduced
somewhat.

At SPS, the measured ratio of protons over antiprotons indicates a partial stopping of
nucleons during the collision phase, resulting in an excess of quarks over antiquarks
in the fireball region [117]. Since baryon number is conserved, this implies the exis-
tence of a T -dependent baryochemical potential µB , which in turn translates into an
approximate fugacity factor λB = exp(µB/T ) multiplying the entropy density created
by baryons. For the thermodynamics of the QGP phase, quark chemical potentials
of the order 100 MeV (∼ µB/3) play no role, as elaborated on in section 3.5. Fur-
thermore, the thermal yield of pions in the fireball is not enough to account for the
observed number of pions. This can be similarly compensated by the introduction of a
chemical potential for pions (and kaons), which in turn influences the hadronic EOS.

By imposing entropy and baryon number conservation, the evolution of µB can be
followed through the fireball expansion. In practice, the evaluation at each T rests on
the assumption of the system being an ideal hadronic gas, which we believe is unrea-
sonable near the phase transition. Fortunately, Tf � 100 MeV is far enough distant
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Figure 4.4: The temperature dependence of the entropy density s(T ) in the RHIC kinemat-
ical scenario as compared to the ideal quark-gluon gas and the massless, non-interacting pion
gas limit (dotted line). The three relevant regions used in the model calculation are given
as ideal hadronic resonance gas (solid line), interpolation (dash-dotted line) and thermal
quasiparticle model (dashed line).

from the phase transition, and that is where we fix the entropy. Furthermore, we
expect pions to be the dominant thermally active degrees of freedom. We use a pion
chemical potential µπ(Tf ) = 123 MeV as obtained in [114], which gives the correct
total pion multiplicity when evaluated with the fireball freeze-out volume.

Correcting the contributions from the different particle species for the corresponding
fugacity factors, we obtain a point of the s(T ) curve, s(Tf ), where our interpolation
starts. This situation is shown in figure 4.5. One observes that, unlike the RHIC
scenario, the entropy density under SPS conditions is larger in the range Tf < T < Tc,
resulting in a faster dropping of temperature during the hadronic expansion phase.
Having now specified the relevant part of the EOS of the system, the temperature
evolution of the fireball is uniquely determined by the total entropy S0 and the evolu-
tion of the volume V (τ) with proper time. The total entropy, finally, can be obtained
by measuring charged particle multiplicities N+ and N− in suitable rapidity bins and
calculating

DQ =
N+ − N−

N+ + N− . (4.25)

The quantity DQ stands for the inverse of the specific entropy per net baryon S/B, and
the product DQ(S/B) roughly measures the entropy per pion [118]. For SPS collisions
at 160 AGeV, we find S/B = 26 for central collisons. For RHIC 6% central Au-Au
collisions at 130 AGeV, the specific entropy S/B = 130 is substantially higher due to
the larger particle multiplicity and the smaller net baryon content in the central region.
For beam energies of 200 AGeV that are of interest here, not enough information on
dN/dy spectra is available at this moment, so we utilise the predictions from a thermal
model calculation [42]. With the ratios p̄/p = 0.75, p̄/π− = 0.09 and K−/π− = 0.15,
we obtain the specific entropy as S/B ≈ 250, as already estimated (albeit with different
parameters) in [119].
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Figure 4.5: Temperature dependence of the entropy density for SPS conditions, including
the interpolation to the fugacity corrected value at freeze-out. As the entropy density below
Tf is irrelevant for the fireball evolution, the interpolation is stopped at this point.

4.3.4 Chemical composition

As already mentioned, the total thermal pion yield of the fireball at freeze-out is not
enough to account for the observed number of pions, and a large chemical potential of
µπ = 123 MeV has to be used to compensate [114]. The common point of view is that
particle numbers are fixed at a chemical freeze-out point [41] and the absence of inelas-
tic reactions then introduces a chemical potential. The statistical model is enormously
successful in describing the finally observed ratio as a fit of chemical freeze-out temper-
ature and baryon density, using the free properties of particles. However, as we have
shown in section 4.2.2, in-medium modifications of particle masses and widths occur,
changing the amount of particle production at the freeze-out temperature. This is not
in direct contradiction to the apparent success of the statistical model, as a different
set of T and µ might be able to explain the observed ratios once the modifications
are taken into account. Furthermore, the absence of all inelastic reactions, leading to
decay processes only, is most likely an oversimplification for some particles, e.g. for
the ρ ↔ ππ system. If we knew the particle properties and the particle abundances
at hadronisation reliably, the correct way to proceed would be to set up a system of
coupled rate equations and follow the various decay and recombination processes to
the thermal freeze-out. Unfortunately, theoretically there is no way to assess these
properties reliably near the phase transition yet. In the following, we will therefore
parametrise the hadrochemistry of the fireball on a phenomenological basis by the
following approach: a pion chemical potential is introduced ad hoc and fitted at the
thermal freeze-out point (µπ = 123 MeV [114]) to the total pion multiplicity. It is
assumed to decrease with temperature linearly up to Tc (as also found in [114]) where
it vanishes, corresponding to a situation where resonance decays continuously feed pi-
ons into the system. All other necessary chemical potentials are adjusted such as to
reproduce the observed pion to particle ratios at all times.
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4.3.5 Variations with beam energies and centralities

It is mainly the detailed information on the final and initial state which enables us
to reconstruct the fireball evolution in the case of the 160 AGeV central collision
scenario. Unfortunately, no such detailed analysis is available for the 30% central
Pb+Au collision scenario for which dilepton data have been taken. The same holds
for the 40 AGeV dilepton data. It is therefore necessary to extend the framework
established above to different centralities and beam energies by a suitable re-scaling
of key quantities characteristic of the evolution.

First of all, the total entropy deposition in the fireball region must be different when
going to more peripheral collisions or lower beam energies. We assume that the entropy
per baryon scales with the number of negatively charged hadrons observed in the final
state and take the SPS value of s/ρB = 26 as a baseline. When going to peripheral
collisions, we assume that this value is still a good estimate. Here, the total entropy in
the system is naturally reduced because the number of nucleons participating in the
collision is smaller. Second, the overlap geometry is different in peripheral collisions,
resulting in a smaller initial fireball volume. We will neglect details of the transverse
geometry and keep parametrising the fireball volume as a cylinder, ignoring all effects
of elliptic flow. Its initial transverse area is adjusted to the value of the calculated
overlap area, hence the cylinder radius is reduced as compared to central collisions.
These approximations should still be valid for not too large impact parameters. Note
that the model breaks down anyway for very peripheral events, since the assumption
of rapid thermalisation certainly ceases to be valid for system sizes of a couple of
nucleons.

The initial velocity vi
z of the fireball front is an important quantity which must change

for more peripheral collisions. As discussed before, vi
z � 0.5 c for central collisions at

SPS. On the other hand it is an empirical fact that in pp collisions leading particles
loose on average about one unit of rapidity. This is the limit we expect for very
peripheral collisions. In order to account for this effect, we assume that the rapidity
loss from incoming nuclei to the bulk of the produced matter scales with the number of
binary collisions per participant (∼ 2.7 for central collisions, 1 for pp) and interpolate
linearly between these limits.

For the 40 AGeV data, we take the total entropy to be about half the entropy at 160
AGeV because N160

π− ≈ 600 and N40
π− ≈ 310, cf. eq.(4.25). The initial energy density,

estimated by Bjorken’s formula from dN/dy at midrapidity, is about 2/3 of the value
at 160 AGeV, but still well above the critical energy density required to form a QGP
plasma. Looking at the final state of the fireball, HBT analyses of NA49 [120] indicate
that the radius parameters are very similar at 40 and 160 AGeV, suggesting that the
reaction dynamics do not significantly change in this energy region.

Obviously, altering the initial entropy deposition results in a correspondingly different
fireball evolution and in general a different freeze-out state. Freeze-out occurs when
the mean free path of particles exceeds the dimensions of the fireball. As pions are
the most abundant particle species in the fireball, we assume that the pion density
determines the mean free path λ of particles in the medium. The freeze-out condition
reads therefore

σλρπ = 1, (4.26)
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where σ stands for a typical hadronic cross section. As the observed HBT radii for
40 and 160 AGeV appear rather similar, we do not expect the total freeze-out volume
to change more than a factor two. This is thermodynamically consistent with fixing
the freeze-out temperature Tf = 100 MeV for all SPS scenarios. As λ scales ∼ 3

√
V ,

this is a sensible ansatz – the resulting freeze-out pion densities are very similar when
looking at (4.26). This is still true if we take modifications of the pion density by a
pion chemical potential µπ into account; about the same value of µπ is needed in all
SPS scenarios to account for the observed total pion yield.

At RHIC, the situation is different since the extension of the model to higher beam
energies poses a more difficult task. While a detailed analysis of the freeze-out stage
is certainly possible with the amount of data collected by RHIC so far, this task
has not been carried out so far. For the time being, we will henceforth aim at a
semi-quantitative description of the RHIC physics. Assuming that the entropy per
participant scales with the total multiplicity, we can calculate the initial entropy S0.
The thermalisation time is assumed to decrease from 1 fm/c at SPS to 0.6 fm/c at
RHIC, which is a conservative estimate. Furthermore, no large pion chemical poten-
tial appears to be necessary to account for the observed total yield and therefore the
thermal pion density at a given temperature is lower, leading to a higher freeze-out
temperature with (4.26). We find that an expansion scenario with Tf = 130 MeV fits
both the observed total particle yield and leads to the correct freeze-out pion density.

The freeze-out volume has now to be adjusted accordingly. From dN/dy particle dis-
tributions, yf ≈ 5.5 and therefore vf

z can be extracted. Moreover, experimental results
indicate that transverse flow and the geometrical freeze-out radius are virtually un-
changed from SPS to RHIC energies [120], so we keep these two parameters equal to
the SPS case. Finally we adjust vi

z consistently with the assumed freeze-out tempera-
ture.

The fireball evolution is now calculated as described above, using re-scaled total en-
tropy, initial radius, final state longitudinal and transverse flow and freeze-out radius
as new inputs. The parameter sets obtained for the different fireball scenarios are
summarised in table 4.1. Note that the corresponding times in the c.m. frame can be
considerably larger. Especially for RHIC conditions, volume elements travel near the
speed of light at the fireball edge and hence live more than four times longer in the
c.m. frame than in their own reference frame.

√
s τ0 τc τf Vf [103 fm3] vf

⊥ vi
z vf

z s/ρB

8.4 (SPS) 1.5 4.0 15.0 7.0 0.36 0.45 0.75 13
17.4 (SPS) 1.0 6.5 16.0 14.4 0.53 0.45 0.9 26
200 (RHIC) 0.6 10.0 18.0 100 0.56 0.9 0.9985 250

Table 4.1: Listed are the proper time for the fireball formation τ0, the phase transition time
τc and the freeze-out time τf for SPS at 40 and 160 AGeV and RHIC at

√
s =200 AGeV. All

times are given in fm/c. The volume at freeze-out and the flow velocities at rms radius vf
⊥ and

maximum longitudinal extention vf
z are also shown. In order to compare the thermodynamic

conditions, we finally provide s/ρ, the entropy per baryon.
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4.3 Fireball model

4.3.6 Discussion of temperature and volume

The resulting volume evolutions for 40 and 160 AGeV are plotted in figure 4.6. Note
that these curves correspond to the volume at proper time τ , which is larger than the
geometrical size of the fireball in the c.m. or the lab frame. For RHIC, the curve
looks very similar, only the scale on the y-axis changes by a multiplicative factor of
about 7. The corresponding temperature evolution is shown in figure 4.7. We observe
that the QGP phase lasts about half of the total fireball lifetime for 160 AGeV, and
considerably less for 40 AGeV.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2 4 6 8 10 12 14 16

SPS central 160 AGeV
SPS central 40 AGeV

τ [fm/c]

V
 [f

m
  ]3

Figure 4.6: The volume expansion for SPS conditions. Shown are the curves for 160 AGeV
(solid line) and 40 AGeV (dashed line) 5% most central collisions.

Since our setup and results differ in some essential points from previous work
[115, 116, 119, 121], we shortly dwell on a discussion of the distinctive features.

In our quasiparticle model there is no mixed phase of coexisting hadronic gas and
QGP. Based on the observation that there is no strong first order transition visible
in the lattice data, the EOS right and left of Tc match smoothly. Inserting the EOS
of an ideal quark-gluon gas instead, a large gap in the s(T ) diagram is created. The
resulting latent heat (∆S)Tc generates a mixed phase of considerable duration (5 -
10 fm/c), as found in previous approaches. This large latent heat, however, is in no
fashion supported by any recent lattice data and entirely an artifact of the poor ap-
proximation of the QGP dynamics by an ideal gas.

By construction of the model, hadronic observables derived from the expanding fireball,
e.g. rapidity distributions of charged particles, pT -spectra, HBT radii and observed
particle numbers, are described adequately. This is an important constraint of the
model. There is very little freedom left to tune the fireball evolution. The initial tem-
peratures are quite large (∼ 300 MeV for SPS central conditions, 420 MeV for RHIC)
and are uniquely determined by the total (measured) entropy, the initial volume and
our EOS for the quark-gluon phase. To some extent these large values are related to
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Figure 4.7: Time evolution of the temperature for SPS (upper panel) and RHIC (lower
panel) conditions as obtained with the fireball model. The critical and freeze-out temperatures
are indicated by the horizontal lines.

our choice of the formation time τ0 = 1.0 fm/c (SPS) and τ0 = 0.6 fm/c (RHIC) of the
thermal system; if τ0 is increased, the initial temperature decreases correspondingly.
However, unlike the results found in [119], we do not observe any strong sensitivity of
the dilepton yields to the choice of τ0: as the fireball expands, differences in the initial
volume become increasingly unimportant. If the total evolution time of the QGP phase
is small, these changes may well matter, but since the lifetime of the QGP phase in
our model is comparatively large, the possible difference affects only a small fraction
of the total lifetime in a region where the fireball volume (and, correspondingly the
dilepton yield) is small anyway.
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Comparing with the Bjorken estimate of the initial energy density, one should keep in
mind that the extrapolation from the final to the initial state is different in the present
approach. In the Bjorken scenario, no longitudinal acceleration is present, therefore
the mapping of final state rapidity distributions to initial state spatial distributions
finds a larger initial volume than our scenario. If we assume no or only small lon-
gitudinal acceleration in order to compare the two approaches, we indeed find initial
temperatures between 220 and 240 MeV, consistent with the Bjorken estimate. This
assumption, however, is incompatible with a freeze-out temperature of 100 MeV and
the measured freeze-out geometry.

We also observe a prolonged lifetime of the QGP evolution phase of the fireball as com-
pared to previous results: within our setup, τQGP � 7 fm/c for SPS and τQGP � 10
fm/c for RHIC, whereas the fireball scenario put forward in refs.[119] and [121] finds,
using an ideal gas EOS, τQGP � 1 fm/c for SPS and τQGP � 4 fm/c for RHIC, each
time accompanied by a mixed phase of duration 3 − 4 fm/c. This discrepancy is a
consequence of our volume evolution and the use of the more realistic EOS of our
quasiparticle model, as opposed to that of the ideal quark-gluon gas. Near the phase
transition, the entropy density in the quasiparticle model is about a factor two smaller
than the one of the ideal quark-gluon gas, and it takes a correspondingly larger volume
(and larger evolution time) to reach this entropy density in an isentropic expansion.
Furthermore, the use of a realistic acceleration profile slows down the expansion close
to Tc, even supporting the longer life time.

4.4 Dilepton invariant mass spectra

Once the time evolution of the fireball is given in terms of the temperature T (τ),
the baryon density ρ(τ) and the volume V (τ), and with the knowledge of the photon
spectral function, we have all the necessary ingredients to calculate dilepton rates using
eq. (4.3). We fold the result with the acceptance of the CERES and the PHENIX
detectors, respectively, and average over the rapidity region covered by these two
experiments. The so-called ’hadronic cocktail’, dileptons produced after freeze-out
through various decay processes, with the exception of vector-meson decays, is taken
from experimental analyses and subsequently added. This contribution fills the region
of very low invariant masses (M < 150 MeV). The dilepton yields resulting from direct
vector meson decays after freeze-out, as described in section 4.2.3, and the Drell-Yan
yield from section 4.2.4 are added to the hadronic cocktail, taking into account the
limited kinematic acceptance and energy resolution of the detector.

4.4.1 SPS data at 40 and 160 AGeV

We start with a discussion of the SPS CERES/NA45 experiment, treating 40 AGeV
and 160 AGeV data in parallel. The final results for the dilepton invariant mass spec-
tra are shown in figures 4.8 and 4.9. Our calculation reproduces the overall spectrum
of the 160 AGeV CERES data quite well. It overestimates the rates somewhat around
invariant masses of 200 to 400 MeV and achieves a good description in the region above
400 MeV up to 1.8 GeV. Recall that our QGP model rate constitutes only a lower limit
on the actual rate because it neglects the radiation from non-partonic (cluster) degrees
of freedom above the critical temperature. Bearing in mind that the region above 1
GeV is mainly populated by dileptons originating from the QGP phase, as evident
from the left panel of figure 4.8, there might still be additional radiation close above
Tc arising from hadronic clusters embedded in a QGP environment. The Drell-Yan
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Figure 4.8: Upper panel: Dilepton invariant mass spectra, normalised to dNch/dη = 250,
in units of (100 MeV)−1, for the SPS CERES/NA45 Pb(158 AGeV)+Au experiment [123].
Shown are the data, the total rate, the cocktail contribution including the after freeze-out
decays of vector mesons, the QGP contribution and the Drell-Yan yield. Lower panel: Contri-
butions from ρ, ω and φ mesons (excluding after freeze-out yield) shown separately, assuming
perfect detector resolution.

contribution is non-negligible, but still outshined by the QGP by a factor of 3.

Changes in the spectra of the vector mesons indicate tendencies towards chiral sym-
metry restoration, so the lower panel of figure 4.8 shows the contributions of ρ, ω and
φ mesons separately, not including the after freeze-out yield. The ρ meson loses its
quasiparticle structure entirely due to strong collision broadening at finite density, and
fills the whole low mass region between the two pion threshold and ∼ 800 MeV. The
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ω meson, a sharp peak in the vacuum, broadens at finite temperature mainly due to
the thermal scattering process ωπ → ππ, cf. eq.(4.11). Furthermore, the mass shift
at finite baryon density smears the remaining peak structure considerably. Effectively,
the remaining signal arises from the direct decays of ω mesons after freeze-out. The
φ meson has become a spread-out but still visible resonance structure, showing only
moderate broadening at finite temperature and baryon density. It might therefore be
a suitable candidate for gauging the strength of vector meson modification.

To test the modelling of the vector meson spectra, we calculate the total number of ω
and φ mesons, suitably averaged over their medium-induced spread in invariant mass,
as

〈Nω〉 =
1

Nch

0.9 GeV∫
0.65 GeV

dM
d2Nω→ee

dηdM
= 9 · 10−7

and

〈Nφ〉 =
1

Nch

1.1 GeV∫
0.95 GeV

dM
d2Nφ→ee

dηdM
= 1.8 · 10−7.

Comparing with numbers from a statistical model calculation, 〈Nω〉 = 4 · 10−7 and
〈Nφ〉 = 2.2 · 10−7 [122], we indeed find reasonable agreement. Note that the relatively
large ω meson yield is primarily caused by the pion fugacity factor [exp(µπ/Tf )]3 at
freeze-out, which reflects the enhanced feeding through the 3π → ω process. Going
from 160 AGeV to 40 AGeV beam energy, analyses of HBT radii and transverse radial
flow [120] indicate that the reaction dynamics do not change dramatically, therefore
we do not expect drastic differences in the rate. Indeed, the data at 40 AGeV look
similar to the 160 AGeV case, and the calculated rate, shown in figure 4.9, also bears
this similarity and achieves a good fit without twisting the setup of the model. Since
the initial temperature is lower and the QGP phase shorter in the 40 AGeV case,
the partonic dilepton contribution is obviously much smaller, but nevertheless still
present. Owing to the greater initial baryonic density, the in-medium modifications of
the vector mesons become more pronounced, most prominently visible in the ω meson
channel. Its downward mass shift drags the peak structure along the time evolution
of the fireball, creating a small bump on top of the completely dissolved ρ meson that
fills up the low-mass region again. Its yield after freeze-out constitutes a visible signal
that may be experimentally observable with suitable energy resolution. The φ meson
contribution clearly sticks out above the smooth ρ meson ’continuum’. To conclude,
we find no distinct differences in our calculation for the two beam energies probing
dilepton production at SPS so far, in accord with experimental findings. This indicates
that the general setup of our model is fairly robust. Future data at 20 and 80 AGeV
will aid to test this statement. The fact that we moderately overestimate the data in
the region between 200 and 300 MeV invariant mass is explained as follows. Since this
range is dominated by the low-mass behaviour of the ρ meson spectral function at finite
density, this behaviour may indicate that the influence of finite three-momentum on
the spectra in that very region is non-negligible. Consider the 160 AGeV and 40 AGeV
data taken for different transverse momenta pT < 500 MeV and pT > 500 MeV, shown
in figures 4.10 and 4.11. We observe that the general shape of the data pattern is well
described by the calculation for both pT regions and both beam energies. However,
for the high pT case, the calculation again overshoots the data in the low mass region
whereas this is not so in the low pT case. This can be traced to the use of the spectral
functions for three-momentum equal to zero in order to describe the photon spectral
function in the hadronic phase. This approximation is of limited validity at high
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Figure 4.9: Upper panel: Dilepton invariant mass spectra, normalised to dNch/dη = 210,
in units of (100 MeV)−1, for the SPS CERES/NA45 Pb(40 AGeV)+Au experiment [124].
Shown are the preliminary data, the total rate, the cocktail contribution including the after
freeze-out decays of vector mesons and the QGP contribution. Lower panel: Contributions
from ρ, ω and φ mesons (excluding after freeze-out yield) shown separately, assuming perfect
detector resolution.

pT where the spectral function ought to become smaller than in our approximation.
Therefore we expect improved agreement with the data for the low invariant mass
region both at 40 and 160 AGeV once this effect is taken into account properly (which
is, however, not an easy task due to the appearance of higher resonances).
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Figure 4.10: Upper panel: Dilepton invariant mass spectra for transverse momenta of the
e+e− pair pT < 500 MeV for the SPS CERES/NA45 Pb(158 AGeV)+Au experiment [123].
Shown are the data, the total rate and the cocktail contribution. Lower panel: Same for
pT > 500 MeV.

4.4.2 RHIC at
√

s = 200 AGeV

For the RHIC scenario, thermally generated dileptons are dominant. Measurements of
proton ratios at

√
s = 130 AGeV indicate that the central collision region remains al-

most net-baryon free, compared to SPS energies. Within a statistical thermal model,
the particle ratios are accounted for by a small baryon chemical potential of about
50 MeV at chemical freezeout [42]. At 200 AGeV, this value is predicted to be even
smaller. Effects of finite baryon density are therefore almost absent and consequently
both the ρ and the φ meson are expected to show up in the spectrum as pronounced
structures, whereas there should be no clear trace of the in-medium ω meson due to its
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Figure 4.11: Upper panel: Dilepton invariant mass spectra for transverse momenta of the
e+e− pair pT < 500 MeV for the SPS CERES/NA45 Pb(40 AGeV)+Au experiment [125].
Shown are the data, the total rate and the cocktail contribution. Lower panel: Same for
pT > 500 MeV.

strong thermal broadening. Contributions from Drell-Yan processes, which dominate
in the very high invariant mass region, are an order of magnitude smaller.

The corresponding prediction for the dilepton yield at 200 AGeV, including the
schematic acceptance for the PHENIX detector, is shown in figure 4.12. The ω and φ
meson resonances clearly stick out over the smooth ρ meson and QGP contributions.
Although PHENIX will only start to measure at M ≥ 1 GeV, it may be possible to
resolve the φ meson peak. However, a significant part of the peak strength is built up
by the after freeze-out contributions, making it difficult to disentangle the in-medium
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Figure 4.12: Upper panel: Dilepton invariant mass spectra, normalised to dNch/dη = 650
[126], in units of GeV−1, for the RHIC experiment PHENIX at

√
s = 200 AGeV. Shown are

the total rate, the cocktail consisting of the after freeze-out decays of ω and φ vector mesons,
the QGP contribution and the Drell-Yan yield. Lower panel: Contributions from ρ, ω and φ
mesons (excluding after freeze-out yield) shown separately.

modifications on the hadrons. For M ≥ 1.3 GeV, the dilepton spectrum is dominated
by thermal QGP radiation, outshining the hard Drell-Yan dilepton yield. Comparing
our prediction for PHENIX with the one shown in ref. [119], we find rough agreement
of the rate for the low mass region below ∼ 1 GeV. Although the dilepton yield from
the QGP phase is suppressed in our case by the factor C(T )2 (cf. section 4.2.1), we still
find an enhancement of a factor of about 4 in the range 1.3 − 2.5 GeV over the rate
in [119] that employs a (perturbative) chemical undersaturation model in the QGP
phase. Owing to the non-perturbative nature of the QGP close to Tc, this model may
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4 Dilepton Rates

not be applicable in that very region. Furthermore, it depends crucially on the value
taken for αs(T ). Note that our rate also constitutes only a lower limit there, so that
the actual rate may even be larger. High precision data will allow to pin down one or
the other model.

4.4.3 Sensitivity to model parameters

We would like to stress that the gross features of our model are set, once the parametri-
sation of the fireball evolution has been matched to the hadronic observables, and the
EOS of both phases has been constructed in accordance with lattice QCD and em-
pirical constraints. The remaining uncertainties, mainly about the initial state of the
fireball, the thermal masses of the quasiparticles and the detailed shape of the EOS,
do not alter the results substantially; they lead to only moderate or even weak de-
pendence on those parameters. Fine-tuning is still possible, but only within the limits
that retain consistency with the overall framework.
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Figure 4.13: Dilepton invariant mass spectra for the SPS CERES/NA45 experiment at 160
AGeV. Shown are data (symbols), the total rate introduced in section 4.4.1 (solid line) and
a band (shaded) that represents the range in the dilepton yield when varying the parameters
τ0, vi

z and Tc. See text for details.

We have investigated the sensitivity of the model to parameter changes in some de-
tail for the SPS scenario at 160 AGeV. In order to get a theoretical ’error band’, we
have explored the extremes of our parameter ranges, a combination of parameters that
yields the largest and the smallest possible QGP contribution. The resulting range
is shown in figure 4.13 as a grey band, together with the data points and the curve
from the previous section. Regarding the initial conditions, the largest uncertainty
comes from the initial fireball formation length z0 or, equivalently, the time τ0. We
let it vary from 0.5 fm/c to 2 fm/c, i.e. from fast to slow equilibration. Consider next
the initial longitudinal flow velocity vi

z. A variation of this quantity from 0.3 c to 0.8
c implies a modification of the pressure-driven accelerated motion in order to arrive
at the same final velocity of 0.9 c, as determined by the rapidity distributions of the
observed hadrons. Strong deviations from vi

z � 0.5 c, however, lead to inconsistent
values for the thermal freeze-out temperature Tf . Finally, modifications of the criti-
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cal temperature Tc influence mainly the relative weight of the contributions from the
QGP phase and the hadronic gas phase to the dilepton yield and hence change the
shape of the dilepton spectra. Lattice data on Tc suggest a range from 140 MeV for
three massless, thermally active flavours to about 185 MeV for two massless flavours
and a realistic pion mass. Due to the self-consistent modelling of the temperature and
volume evolution, there is no simple one-to-one correspondence of these parameters to
the dilepton yield.

The upper limit of the grey band in figure 4.13 now corresponds to the scenario with
a small QGP contribution, i.e. small τ0, large vi

z and high Tc. On the other hand, the
lower limit includes a large QGP contribution with large τ0, small vi

z and low Tc. It
is instructive to note that the shape of the spectrum changes only moderately above
1 GeV invariant mass within these extreme parameter variations. The first scenario,
however, tends to overestimate the data in the region of the ρ peak, whereas the sec-
ond scenario does not leave enough time for the hadronic phase to build up the e+e−

excess in the low-mass region between 200 and 800 MeV, effectively ruling out a large
QGP contribution.

4.5 Intermediate summary

As found in previous approaches, the proposed dilepton excess in the intermediate
mass region at SPS is unlikely to be a direct signal from the QGP, it can be explained
by non-trivial, yet conventional hadronic physics. The experimental resolution in the
region where the QGP presumably shines most prominently is unfortunately too coarse
at the moment to extract a conclusive result. The situation at RHIC might improve
since there is a window above 1 GeV and the region which will be ultimately filled
by semileptonic decays of charm mesons, where the QGP radiation will be dominant.
Since our approach predicts an enhancement of the radiation by a factor of 4 over
the result of [119], it might even be possible to pin down specific models of both the
radiation itself and the fireball evolution.

The most important point at this stage is that we have explored the evolution of a
fireball through the quark-gluon and hadronic phases using, for the first time, input
and constraints from lattice QCD in a thermodynamically self-consistent framework.
The use of the quasiparticle model put forward in chapter 3 in the context of heavy-ion
collisions has significantly improved the modelling of the fireball, eliminating many free
parameters of its evolution in connection with hadronic final-state measurements. It
is remarkable that our quasiparticle model is able to reproduce the measured dilepton
data without any further modification, despite the suppression of dilepton radiation
near the phase transition temperature due to the presence of the factor C(T )2 in
eq.(4.1). Note that the dilepton signatures of previous phenomenological quasiparti-
cle models of the QGP would be qualitatively distinct: since there the quasiparticle
masses rise as Tc is approached from above, the threshold of dilepton production would
shift to invariant masses far above the φ meson peak, leaving the low-invariant mass
region essentially unpopulated. Detailed knowledge of the slope of the invariant mass
spectrum above 1 GeV will also give an indication of the average temperature in the
quark-gluon phase, serving as a constraint for the fireball dynamics in the QGP region.

On the hadronic side, high resolution measurements of the invariant mass spectrum
around the region of the ω and the φ meson mass can reveal information on the av-
erage density and temperature in the hadronic phase. The broadening and mass shift
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of the ω meson with temperature can serve as a ’thermometer’ once the cocktail con-
tribution is reliably assessed. A visible enhancement in the ω region beyond the rate
originating from ω meson decays after freeze-out would hint at a temperature which is
on average lower than assumed in this model and therefore point to a lower freeze-out
temperature or alternative in-medium effects on hadrons. On the other hand, the φ
meson signal, being nearly unmodified by temperature effects over a comparably long
timespan, may be used as a ’standard candle’ at RHIC conditions.

Experimental measurements using different nuclear system sizes or different impact
parameters can provide different relative weights of QGP and hadronic dilepton ra-
diation to the observed yield. One may thus hope to disentangle these contributions
and test the model assumptions above and below the phase transition separately, at
least in a qualitative fashion. It is important to note that fireball thermodynamics, as
described in this work, leads to temperatures well above Tc for a broad range of initial
conditions, making the formation of a QGP unavoidable if one believes in lattice QCD
and thermalisation. These regions of high energy density do not necessarily contribute
significantly to the dilepton yield, though: low-mass dileptons are more sensitive to
aspects of the chiral symmetry restoration, or the duality of hadron and parton spectra
close to Tc. On the other hand, high initial temperatures lead to large gluon densities
in the first few fm/c of the fireball collision that are a direct signal of deconfinement
and predominantly responsible for J/ψ suppression – a topic to which we turn now.
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5 J/ψ Suppression

In this chapter, we apply the quasiparticle and fireball models successfully used to de-
scribe dilepton data in the previous chapter, to the phenomenology of J/ψ suppression
in heavy-ion collisions. Within a kinetic approach, we model the interactions of the
J/ψ with the medium in the space-time arena that was set up in chapter 4. Again, the
medium above Tc consists of the quasiparticle model of chapter 3 in order to maintain
maximal consistency. A more detailed discussion of the whole calculation can be found
in [127], we outline here the main trail of thoughts and stress the implications of the
quasiparticle model.

5.1 Screening and the J/ψ

A possible dissolution of bound quarkonia states, e.g. J/ψ, was proposed long ago
[128] as an experimental signature of the quark-gluon plasma in heavy-ion collisions.
Since c and b quarks are comparatively heavy as compared to typical temperature
scales (mc = 1 − 1.4 GeV, mb = 4 − 4.5 GeV [4]), they can be treated to a certain
extent in a non-relativistic fashion. In particular, the interaction between the heavy c
and c̄ quark can be modelled by the Cornell potential (2.11) for the lowest lying bound
states (J/ψ, ψ′). As temperature rises (but stays below Tc), the parameters of the
potential become temperature-dependent:

V (r, T ) = σ(T )r +
ᾱ(T )

r
exp(−mD(T )r). (5.1)

The string tension σ is expected to decrease as T increases, marking the onset of the
deconfinement transition, and this is indeed seen in quenched lattice calculations [63]:
σ(Tc)/σ(0) = 0.12. Above the deconfinement temperature, the string tension vanishes,
and the potential is perturbatively characterised by an exponentially damped Coulomb
part because the virtual gluons transmitting the interaction between the quarks ac-
quire a thermal screening mass, the Debye mass mD(T ) (B.9). Lattice simulations of
the interquark potential (for infinitely heavy, static test quarks) do indeed show that
the potential flattens at T increases [73], as apparent from figure 5.1. In chapter 6, we
will examine in much more detail the phenomenon of screening.

The very first suggestion to study J/ψ production in heavy-ion collisions was subse-
quently based on a two-fold observation: First, the initial energy density produced in
the collisions is above the critical one that is necessary to produce the QGP. Second,
J/ψ is in essence bound by the potential (5.1) which becomes screened in the QGP.
J/ψs produced in the initial stage of the collision will dissolve and their charm quarks
end up in pairs of D mesons (open charm). We would therefore expect that the J/ψ
production cross section is suppressed in a sufficiently energetic AB collision as com-
pared with extrapolations from proton-proton (pp) collisions. The first systematic signs
of suppression [129] were later on explained by more conventional mechanisms [130],
already present in proton-nucleus (pA) reactions. Only with the advent of Pb+Pb
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Figure 5.1: Temperature dependence of the interquark potential in three-flavour lattice QCD
[73]. All quantities are plotted in units of the zero temperature string tension

√
σ � 420

MeV. The solid lines mark the zero temperature Cornell potential V (r) = ᾱ/r + σr with
ᾱ = 0.25 ± 0.05. The potentials have subsequently been normalised at the shortest distance
available on the lattice (rT = 0.25).

collisions the first signals of anomalous suppression, beyond extrapolations from pA
collisions, were seen by the NA50 collaboration at the CERN SPS [131].

However, as in the case of dilepton radiation treated in the last chapter, J/ψ sup-
pression is always folded with the time evolution of the fireball. Since the evolution
continues after the plasma undergoes a transition from partonic back to hadronic de-
grees of freedom, any information on the early stage is then hidden behind distortions
from the hadronic phase. While much phenomenology has been developed in order to
explain the latest SPS data [132], it is still not clear at the moment whether or not the
seen anomalous suppression can be attributed to the presence of a QGP: realistic mod-
els can be constructed to incorporate well known nuclear effects such as initial state
gluon radiation [133], color excitation [134], initial state parton energy loss [135] and
coherence effects [136]. All of these can potentially account for the observed data with-
out the need to invoke a (thermalised) QGP, albeit with a more or less large number of
free parameters. Our approach will be different: having already constructed a fireball
model that is consistent with a large number of hadronic observables and that has
proven to be successful in describing dilepton data, we are now in a position to explore
whether the same description is consistent with the observed J/ψ measurements of
NA50. The specific time evolution of the medium is hence not constructed or fitted in
order to reproduce the desired J/ψ suppression effect. We have to consistently employ
the quasiparticle model presented in chapter 3 to describe, within the framework of
kinetic theory, the interactions of the J/ψ with the partonic quasiparticles. The result
is then tightly constrained, leaving only very limited room for adjusting parameters.
In the following, we will not distinguish the different charmonium states (J/ψ and
χc) which contribute to J/Ψ production from one another, we will simply indicate a
charmonium by Ψ unless otherwise stated.
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5.2 Initial conditions

5.2.1 Open charm

The production of charmed quarks is commonly described within perturbative QCD.
In the following, we restrict ourselves to the leading order treatment presented in
[138, 139], with suitable adjustments in order to meet phenomenology. This section
bears some similarity with the discussion of the Drell-Yan background for dilepton
radiation, section 4.2.4. We consider the leading processes

qq̄ → cc̄ and gg → cc̄.

In terms of their elementary differential cross sections dσ̂i/dt̂, the spectrum of c quarks
produced in pp collisions at rapidity yc and transverse momentum pT is

dσc
pp

dyc dp2
T

= K

∫
dyc̄

∑
i=u,d,s,g

x1fi/p(x1, µ
2
c) x2fi/p(x2, µ

2
c)

dσ̂i

dt̂
, (5.2)

where x1,2 are the momentum fractions of the partons in the colliding protons. The
factorisation scale is taken at µc = 1.4 GeV, which is of the order of the c quark mass,
and an empirical scaling factor K = 2 is used, as in the Drell-Yan case. We employ the
GRV94LO parton distributions fi/p [140] and neglect the effect of intrinsic transverse
momentum of partons.

To estimate the spectrum of c quarks in AB collisions, the simplest approach is to scale
the pp result with the overlap function TAB(b), defined in eq.(4.16). On the other hand,
as the collision energy increases, shadowing effects are expected to become important,
reducing the total yield [141]. Another correction to be introduced is the Cronin effect
on partons’ transverse momenta, which results in a broader pT spectrum of charmed
quarks. As in the Drell-Yan case, the quantitative consequences of these nuclear effects
are not well under theoretical control, therefore we neglect them for now. The charmed
quark spectrum in AB collisions is then computed as

dN c
AB

dyc dp2
T

(b) =
dσc

pp

dyc dp2
T

TAB(b) . (5.3)

5.2.2 Hidden charm

The description of charmonium production in nuclear collisions is a more complicated
task as compared to cc̄ production because exclusive production of composite particles
in hadronic collisions is basically a non-perturbative process. As above, pp collisions
provide the baseline. The Ψ rapidity modulation can be inferred from the relation

dσ

dy
∼ x1g(x1)x2g(x2), (5.4)

where xg(x) ∼ (1 − x)5 is the gluon distribution in the proton and x1,2 =
(mΨ/

√
s) exp(±y). For the overall normalisation we use the parametrisation for the

total charmonium production cross section [142]

σΨ
pp(s) = 2σ0 (1 − mΨ/

√
s)n , (5.5)

where σ0 = 1.28 µb and n = 12. In addition, we assume a Gaussian form for the
pT -dependent part, with a width parameter Λ = 1 GeV. Assembling the pieces, the
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invariant Ψ spectrum in pp collisions becomes

dσΨ
pp

dy d2pT
= σΨ

pp(s) F (s, y)
[
(πΛ2)−1 exp(−p2

T /Λ2)
]
, (5.6)

where the y-dependent part reads, with eq.(5.4),

F (s, y) = C(s)
[
1 − 2(mΨ/

√
s) cosh y + m2

Ψ/s
]5

, (5.7)

while C(s) is chosen to satisfy the constraint
∫

dy F (s, y) = 1.

We now consider nuclear effects, starting with proton-nucleus (pA) collisions. It has
been shown that the experimental results on charmonium production can be explained
using

σψ
pA = σψ

pp

∫
d2b TA(b) Sabs

A (b) (5.8)

for the total production cross section. TA(b) stands for the overlap function (4.17),
and the factor

Sabs
A (b) =

1 − exp
[
−σabs

ψN TA(b)
]

σabs
ψN TA(b)

(5.9)

is the survival probability for Ψ to escape the nucleus without being dissociated. It
includes the effective absorption cross section σabs

ψN , a quantity of the order of 3 mb
for midrapidity Ψs as measured at Elab = 800 GeV at Fermilab, while it amounts
to 5 − 7 mb for midrapidity Ψs as measured at Elab = 158 − 200 GeV at the SPS.
The absorption cross in (5.9) section parametrises various poorly known effects, with
varying importance depending on the collision energy. Among these effects are the
presence of colour degrees of freedom in the dynamics of colliding nucleons, initial
state parton energy loss and coherence length and shadowing effects. A common
property of all of the above is the linear dependence on the path length, at least to
leading order.

When looking at Ψ production in nucleus-nucleus (AB) collisions, we can estimate the
cross section for a given impact parameter by generalising (5.8). The effects of the
produced medium will be discussed in the next section, so, neglecting them for the
moment, we obtain

dNΨ
AB

dy d2pT
(b) =

dσΨ
pp

dy d2pT
TAB(b) Snuc

AB (b) , (5.10)

where nuclear effects are included in the generalised suppression function

Snuc
AB (b) = T−1

AB(b)
∫

d2s TA(s)Snuc
A (s) TB(s̃)Snuc

B (s̃). (5.11)

Since nuclear effects also depend on energy, we have chosen σ0
ψN = 5 mb at the SPS

energy
√

s0 = 17.3 GeV in order to be in agreement with the pA measurement, and
assumed the relation

σabs
ψN (s) = σ0

ψN (s/s0)
λ (5.12)

with λ = 0.2 in order to simulate nuclear effects as predicted in [136].
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5.3 Thermodynamics of the medium

Having set up the initial conditions for charm and charmonia, we now let them propa-
gate through the medium produced in the collision. Since there exists a sharp separa-
tion of scales (mc, mΨ � T ), these particles will not thermalise, but they will interact
with the medium constituents over the duration of the fireball expansion. Above Tc,
we consistently describe the QGP by the quasiparticle model set up in chapter 3, be-
low the critical temperature, we employ, as in section 4.3.3, a hadronic resonance gas
description, including all particles up to 1.6 GeV mass while assuming no medium
effects on their masses and widths. Although this prescription is oversimplified, we
will see that possible corrections bear no effect on the final result.

It is instructive to plot the total particle density as a function of temperature, which,
in the QGP phase, takes the form

ntot(T ) = ntot
g (T ) + ntot

q (T ) = (5.13)

= νg

∫
d3k

(2π)3
[C(T )fB(ωg

k)] + 4Nc

Nf∑
i=1

∫
d3k

(2π)3
[C(T )fD(ωi

k)],

with the notation already used in eq.(3.40). In the hadronic phase, a similar density
formula applies: In order to smoothly match with the partonic part, the hadronic
degrees of freedom have to be switched off at some stage. In chapter 3, this was not
taken into account since we only considered the region above Tc. Here, we introduce
– mainly for illustrational purposes – a deconfinement factor D(T ) analogous in form
to that in eq.(3.32) (that replaces C(T ) in (5.13)). In this case, the parameters are,
however, chosen arbitrarily simply to suppress hadrons above Tc and to avoid an awk-
ward, unphysical jump in the degrees of freedom. Their detailed values play no role
in the following.
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Figure 5.2: Expected particle densities as a function of the temperature T in the hadronic
and partonic phases. Here, nf.o. denotes the freeze-out density of the fireball, nc the critical
density, ni

SPS the initial quasiparticle gluon density at SPS and ni
RHIC the corresponding value

at RHIC. The vertical line indicates the value of the critical temperature Tc = 170 MeV.
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The total density is shown in figure 5.2, from small temperatures up to � 500 MeV,
according to eq.(5.13). The confinement factor C(T ) accounts for the release of the
partonic constituents of the hadrons as T grows. Since it does not jump abruptly
to one as Tc is reached, some hadronic clusters and hence non-zero hadron densities
persist slightly above the critical temperature. We have indicated the the values of
particle densities at the beginning and the end of the time evolution of the fireball.
Comparing the numbers involved, it is obvious that the number density in the QGP
is always an order of magnitude larger than the hadronic one (note the logarithmic
scale). This should be a robust, model-independent statement and has a crucial im-
pact on Ψ evolution in the produced medium.

Having characterised the matter constituting a strongly interacting system in the ther-
modynamic limit, we take the space-time arena the medium will live in to be the same
as in chapter 4: the fireball reaches local thermal (though not necessarily chemical)
equilibrium within a time of the order of 1 fm/c. As outlined in section 4.3, the fire-
ball evolution is fully constrained by data for central collisions at SPS with Elab = 158
AGeV, and we take over these parameters without further adjustments. An extension
towards different centralities, that is needed for a J/ψ description, and higher beam
energies is not on the same firm ground, but the necessary assumptions have been
discussed in section 4.3.5, and, again, we will use the same setup having proven to be
successful in the case of dilepton radiation. We stress that this fireball model has been
fixed by independent observables and ensures accordance with a multitude of hadronic
measurements. In contrast with previous approaches, we have therefore eliminated the
medium evolution as an adjustable parameter in the Ψ description.

5.4 Charmonium Evolution

5.4.1 Kinetic description of dissociation and formation

We now examine the interaction between Ψ and the produced medium. The natural
framework in which to study the time evolution of Ψ is that of kinetic theory. We will
make use of a semi-classical treatment, setting up a relativistic Boltzmann equation for
the Ψ phase-space distribution fΨ(p, x). The collision term, which contains interaction
cross sections, provides the interface between charm and the medium. One of the
elements of the collision term describes Ψ dissociation, a second piece allows for cc̄
coalescence in the QGP. In the partonic phase, the dominating process is Ψg ↔ cc̄,
leading to

pµ∂µfΨ(p) =
∫

d3k

(2π)3Ek

d3q1

(2π)3E1

d3q2

(2π)3E2
δ(4)(p + k − q1 − q2)

×Wcc̄↔Ψg

[
fc(q1)fc̄(q2) − fΨ(p)fg(k)

]
, (5.14)

which is the Boltzmann equation for fΨ, characterised by a collision term containing
the interaction probability Wcc̄↔Ψg = WΨg↔cc̄. We have chosen the kinematics such
that p is the Ψ and k the gluon momentum, and q1 and q2 are the c and c̄ momenta.
Making use of the momentum-conserving δ-function, some of the phase space integrals
can be eliminated, leading to the intuitive result(

∂t + �v ·�∇r

)
fΨ(�r, �p, t) = −λD(�r, �p, t) fΨ(�r, �p, t) + λF (�r, �p, t) . (5.15)
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5.4 Charmonium Evolution

The dissociation (loss) term

λD(�r, �p, t) =
∑

n

∫
d3k σn

D(s) vrel(�k, �p) fn(�r,�k, t) (5.16)

consists of a sum over the various constituents of the medium, each interacting with
Ψ with a different dissociation cross section σn

D. vrel is the relative velocity between
Ψ and constituent n. The formation (gain) term

λF (�r, �p, t) =
∫

d3q1 σF (s) vrel(�q1, �q2) fc̄(�r, �q1, t) fc(�r, �q2, t) (5.17)

describes the coalescence process of Ψ formation by c and c̄ quarks.

In accordance with the model for the medium, we assume to have a system which
expands as function of proper time in a cylindrical volume where densities are uniform.
Integrating over Ψ transverse momenta, we can reduce (5.15) to a simpler first order
differential equation for the rapidity density of Ψ,

d

dτ
Ny

Ψ = −
∑

n

〈〈σn
D vrel〉〉 ρn Ny

Ψ + 〈〈σF vrel〉〉 ρc̄ Ny
c , (5.18)

which now depends on the proper time τ . The double brackets indicate an average
over the momenta of the initial particles, except for the last rapidity integral which is
left undone. Explicitly,

〈〈σ vrel〉〉 =

∫
d2pT

a [fa(pa)]
∫

d3pb [σ vrel(pa, pb) fb(pb)]∫
d2pT

a [fa(pa)]
∫

d3pb [fb(p)]
, (5.19)

where pa and pb indicate the Ψ and g momenta for dissociation and c and c̄ momenta
for formation, respectively. We note that leaving the y-integration undone is important
since we intend to compute the value of the final Ψ rapidity distribution at midrapidity,
and not the whole yield. While the charm density is denoted by ρc̄ = ρc = Nc/V , the
medium constituent’s density is always labelled ρn.

It is clear that an equation analogous to (5.18) but with opposite sign on the r.h.s.
is necessary for charm in order to ensure its conservation as function of time. This
means that the initial (constant) total amount of charmed quark pairs is N0

c = NΨ+Nc.
However, at each rapidity it is a good approximation to assume that the total charm
distribution equals the distribution of unbound quarks since Ny

c = Ny
c̄ � Ny

Ψ, allowing
to simplify the rate equation to

d

dτ
Ny

Ψ(τ) = −λD(τ)Ny
Ψ(τ) + λF (τ). (5.20)

Within this approximation, the rates take on the form

λD(τ) =
∑

n

〈〈σn
D vrel〉〉(τ) ρn(τ) and λF (τ) = 〈〈σF vrel〉〉N0

c Ny
c / V (τ) , (5.21)

where we have written out the explicit time dependence in the various terms. In par-
ticular, the process of averaging the dissociation cross section introduces an implicit
time dependence because of the temperature dependence in the phase space density
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5 J/ψ Suppression

of the medium. On the other hand, since charmed quark distributions are time inde-
pendent, the formation cross section is so also.

Having reduced the Boltzmann equation to a much simpler one, consistent with the
description of the medium as being spatially uniform, we can now directly integrate
eq.(5.20) in order to obtain a solution in closed form:

Ny
Ψ(t) =

Ny
Ψ(0) +

t∫
t0

dt′ λF (t′) exp

 t′∫
t0

dt′′λD(t′′)

 exp

− t∫
t0

dt′λD(t′)

 .

(5.22)
The structure of the solution is quite self-explanatory. Neglecting the Ψ formation pro-
cess, we obtain the usual exponential suppression, while the formation term becomes
important as soon as the number of charmed quarks becomes large. This is expected
to be the case when the collision energy increases, and the formation will eventually
overwhelm suppression.

It might seem natural at this stage to also incorporate the mentioned Debye screening
of the interquark potential, for example by assuming complete J/ψ dissolution above a
certain temperature [143, 144]. However, it is not clear what an all-embracing descrip-
tion of the interaction of the J/ψ with the medium should be. In a sense, screening
arises from the interaction of the virtual gluons that bind the J/ψ with the gluons of
the environment. After all, such a process can also be viewed as scattering of the J/ψ,
that fluctuates into a cc̄ pair and non-perturbative multi-gluon exchanges, off the ther-
malised gluons. Taking into account both screening and kinetic scattering can amount
to a certain degree to double counting. Disentangling the effects even qualitatively,
however, is a highly non-trivial task. At this stage, we might argue that screening,
as inferred from the lattice, is a purely static concept. Since the produced J/ψs are
not produced at rest with respect to the medium, a kinetic description seems to be
appropriate within the present context.

5.4.2 Cross sections for dissociation and formation

In this section we discuss how open and hidden charm states will interact with the
different degrees of freedom of the produced medium (quarks and gluons at the begin-
ning, hadrons later), considering both dissociation and formation. These cross sections
are the last missing ingredient in (5.22). Starting with the QGP, to lowest order one
might expect that the two processes illustrated in figure 5.3 are contributing to Ψ dis-
sociation. However, a quark can interact with the Ψ only via gluon exchange. Within
the spirit of the quasiparticle model, the process labelled (b) in the figure is effectively
already included in the definition of the temperature dependent gluon mass (remem-
ber that the quasiparticles are non-interacting among themselves on thermal length
scales). Computing both contributions would cause an erroneous double counting. In
other words, Ψs only see quasiparticle gluons in the plasma. This is basically the
same reasoning used in chapter 4.2.1 to calculate partonic dilepton rates, and to stay
consistent, we employ it also in the present context.

Concentrating now on the process labelled (a) in figure 5.3, we come to the problem
of computing a cross section involving a relativistic bound state, which is non-trivial.
In the present case we can argue that the cc̄ system is to a first approximation non-
relativistic, greatly simplifying the treatment. As put forward originally by Bhanot
and Peskin [145, 146], the lowest lying levels of a quarkonium can be described by
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(k)g

(p)ψ

2(q  )c

c

1(q  )c

����

(a) (b)

cψ

q

Figure 5.3: Diagrams contributing to lowest order to Ψ dissociation. The process involving
a gluon quasiparticle (a) exhausts the amplitude since it already takes into account the one
involving a quark quasiparticle (b).

the Coulomb part of the interquark potential (2.11), which is justified to some extent
by the magnitude of the heavy quark mass. Then, using operator product expansion
techniques or more recent non-relativistic factorisation techniques [147], it is possible
to obtain the analytic expression

σD(ω) =
2π

3

(
32
Nc

)2 1
µ3/2ε1/2

(ω/ε − 1)3/2

(ω/ε)5
(5.23)

for the gluon dissociation process of a heavy quarkonium. It is a function of the gluon
energy ω in the rest frame of the quarkonium and contains the threshold energy ε and
the mass scale µ, related to the heavy quark mass. The threshold energy is connected
to the binding energy ε0 by ε = ε0 + ε20/(2mΨ). In the following, the binding energy
is taken to be ε0 = 780 MeV and the mass parameter is µc = 1.95 GeV, as chosen
in [146] to fit the mass values of the first two levels (J/ψ and ψ′) of the charmonium
system.

We now consider the possibility of cc̄ coalescence in the QGP, a method for Ψ formation
which has been recently considered by a number of authors [148]. The number of
charmed quarks produced in a AB collision can be large, and the chance that a c
and a c̄ quark find each other close in phase space can therefore become significant.
Since charm quarks do not thermalise, they can be considered free streaming after
production, which leads to a one-to-one correspondence of space-time and ordinary
rapidity. Their interaction probability is then mainly determined by the width of
the Ψ wave function in momentum space. This has not been taken into account
consistently yet. For the moment, we take as an upper limit on the correlation interval
the rapidity spread of the fireball immediately after thermalisation, when all hard
processes should have ceased to be effective. Using the cross section calculated above
for the Ψ dissociation cross section by gluons, we can apply detailed balance to the
reaction Ψg ↔ cc̄. In the zero momentum frame, flux factors are identical for the
direct and reverse processes, and simple kinematics yield the relation

σF (s) = σD(s)
4
3

(s − m2
Ψ)2

s(s − 4m2
c)

. (5.24)

In the latter equation the factor 4/3 arises by counting the number of degrees of
freedom (spin and colour factors) in the two different channels.
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Figure 5.4: Dissociation and formation cross sections after averaging with momentum dis-
tributions according to eq.(5.19). These are used to construct the solution to the kinetic
equation as given by (5.22).

Coming now to the case of hadronic dissociation, we could, in principle, use one of
the many approaches which have been developed [142, 149]. However, since typical
hadronic cross sections are comparable in magnitude with the partonic ones calculated
above, the effect of hadronic dissociation becomes negligible because of the much
smaller particle number densities in the confined phase. Unless the cross sections
become anomalously large, the density that enters the dissociation term (5.21) will be
at least an order of magnitude smaller than that during the partonic phase, as evident
from figure 5.2 (note the logarithmic scale). Henceforth, since the hadronic phase
exists only at moderately low number densities, it has no bearing on Ψ evolution.

Having discussed how formation and dissociation are realised in terms of cross sections,
we now average them with the distributions of the colliding particles, according to
eq.(5.19). The results are collected in figure 5.4. Some characteristic features arise:
first of all, the magnitude of the dissociation cross section, plotted as a thick continuous
line, is close to 1 mb in the temperature range 200 < T < 300, relevant at SPS energy.
Above 300 MeV the cross section starts decreasing, since the average relative momenta
between Ψs and gluons are growing. For comparison the result obtained with a gluon
mass mg = 0 is plotted as a thin dotted line. As one observes, the mass of gluon
quasiparticles helps overcoming the dissociation threshold, providing a slightly larger
magnitude for the cross section. On the right side of figure 5.4 horizontal dashed lines
are plotted. They indicate the values of the averaged formation cross section (that
are temperature independent). From thin to thick (top to bottom) they correspond
to growing center of mass energy

√
s = 20 (SPS), 30, 50, 100, 200 (RHIC) GeV of the

heavy ion collision.
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Figure 5.5: Result at SPS energy for the ratio Ψ/DY as function of the transverse energy.
The dashed curve includes only nuclear effects, while the full line is the complete result
including gluon dissociation (and negligible formation).

5.4.3 Results

Assembling all elements of the calculation as discussed in the previous sections, we
now make contact with experiment. We start from the case of Pb+Pb collision at√

s = 17.4 Gev (Elab = 158 GeV) and use the solution of the kinetic equation given in
(5.22), converting the impact parameter dependence of the solution into a dependence
on the total transverse energy ET . In this way we arrive at the results plotted in
figure 5.5. The agreement with data is quite remarkable and deserves some detailed
comments. Apparently, all curves end at ET � 110 GeV, which corresponds to zero
impact parameter, b = 0. To go beyond this point it is necessary to include effects
of fluctuations, which are quite straightforward to address [151]. Second, the result
shows that formation at this energy is totally negligible, while suppression is caused
exclusively by collision with quasiparticle gluons.

It is worth stressing again that a purely hadronic dissociation of Ψ is ruled out. This
is not a consequence of small cross sections, but rather of a hadronic number density
that is more than an order of magnitude lower than the partonic one. At Tc we find
nh � 0.5 fm−3, at freeze-out the density goes down another order of magnitude to
0.05 fm−3, as visible in figure 5.2. Apparently, the model fails to describe the data in
the region ET = 10 − 50 GeV. Since this energy range corresponds to very peripheral
collisions, it is clear that the assumption of (rapid) thermalisation that lies at the heart
of our model is not valid anymore for system sizes of a few nucleons only. As soon as
the system size becomes large enough to justify a thermal description, we indeed find
very nice agreement with the data, stressing again that we did not tune the fireball or
a cross section to arrive at the shown curves.
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Figure 5.6: Suppression factor S for Ψ as function of the collision energy. The dashed curve
indicates suppression due to nuclear effects alone, the dotted line shows the effect of the QGP
with enhancement (SΨ > 1) starting at

√
s > 100 GeV. The continuous line is the full result.

Since nuclear suppression is much stronger than formation, the net effect is still S < 1.

As we now increase the collision energy, staying at b = 0, we observe an interesting
feature. Since the amount of charmed quarks grows substantially with increasing beam
energy, we expect that the formation of Ψs via cc̄ coalescence will eventually exceed the
primordial production. Indications of the onset of this mechanism clearly appear in
our calculations: figure 5.6 shows a rise of the amount of secondary Ψs (dotted cuve).
On the other hand, nuclear effects at high energy will further reduce the amount of
primordial Ψs as compared to the SPS case. The net effect is a slowly rising suppression
function S(

√
s), but even at RHIC energy S(200 AGeV) < 1.

We can also examine the centrality dependence of the suppression for central RHIC
collisions. For this purpose we plot in figure 5.7 the suppression factor

SΨ(b) =
Ny

Ψ(b)|AB

TAB(b) Ny
Ψ|pp

(5.25)

as function of the number of participants. It clearly becomes 1 for very peripheral
collisions, steeply drops due to dissociation in the QGP and starts rising again for
sufficiently central events because of cc̄ coalescence. In accord with figure 5.6, we
do not find a net enhancement of Ψ, but this result needs to be confirmed by more
accurate calculations since the RHIC fireball is presently not characterised by the same
data quality as the SPS one. In addition, shadowing effects might be more pronounced,
modifying the initial conditions for the rate equations (initial number of charm), which
in turn influences the coalescence rate. It is encouraging, though, that first results of
the PHENIX experiment at RHIC indicate no net enhancement, either [152].
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Figure 5.7: Survival probability of Ψ at full RHIC energy as a function of centrality by
means of the number of participants. The dashed curve includes only nuclear effects, while
the full line is the complete result including gluon dissociation and cc̄ coalescence.

5.5 Intermediate summary

In this chapter, we have calculated Ψ production from an expanding fireball over a wide
range of centralities and beam energies, from SPS in Pb(158 AGeV)+Pb collisions to
RHIC at

√
s =200 AGeV. Consistently employing the confinement quasiparticle devel-

oped in chapter 3 and the fireball of chapter 4, we set up a Boltzmann equation with
a collision term containing both gain and loss terms. At SPS energy, we were able to
describe the suppression data very well, without the need to invoke hadronic comovers.
These results support the hypothesis that the QGP is actually already produced in
Pb+Pb collisions at the CERN/SPS. It is important to note that, within our outlined
approach, a purely hadronic framework would not be successful in describing existing
data, as in the dilepton case. Moreover, since the hadronic phase exists only at mod-
erately low number densities, it has no bearing on Ψ evolution. We also considered
extrapolations up to RHIC energies where, despite the more extreme conditions as
compared to SPS, a sizable fraction of Ψ still survives. Although a clear trend towards
more copious Ψ production in AB collisions was found, no significant net enhancement
is present in the end, which seems to be in accord with first RHIC data. We stress
once more that, in contrast to previous approaches, we have eliminated the medium
evolution as an adjustable parameter in the Ψ description by fixing it to hadronic
observables and lattice data.

Despite the success of the model, several improvements are desirable. For instance,
we have neglected the effect of the static Debye screening in Ψ binding. A treatment
of both this feature and collisions, as discussed here, would be a further significant
step forward in understanding charmonium properties in hot and dense matter. More-
over, a more constrained description of the expanding fireball at RHIC is needed that
is feasible with improved data (analysis). Finally, more has to be done to describe

105



5 J/ψ Suppression

the initial conditions for charm and Ψ evolution, taking into account the details of
produced spectra and providing a better description of nuclear effects.
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6 Screening at Finite Temperature

In the last chapters, we have successfully applied the confinement quasiparticle model
to the description of two QGP signatures, and all observations are consistent with
the formation of a QGP in URHIC. To round off this work, we now shift our scope
away from experiments towards a more conceptual problem: asymptotic freedom lies
at the heart of the QGP, as mentioned several times, but it has never been explicitly
derived at high temperature in a concise manner. This final chapter will deal with the
calculation of a running coupling constant at very high temperatures in QCD (and
also in QED), ultimately justifying the phenomenological ansatz of Collins and Perry
[1] put forward in 1975. Instead of a loop expansion, we evaluate the energy shift
of the vacuum to leading order in the coupling constant after applying an external
(chromo)magnetic field H, extending the approach of [153, 154] to finite temperature.
From that, we extract an effective, temperature- and scale-dependent coupling con-
stant αeff(H,T ). QCD with a magnetic background field at finite temperature has
been studied in a number of works [155]. In contrast to previous approaches, we lay
out a less technical calculation of charge screening without reference to propagators
or self-energies, resorting to entities that have an immediate physical interpretation
(energy densities and susceptibilities). We also explain how the HTL results can be
recovered from our approach. Eventually, instead of applying the somewhat opaque
and heavy machinery of Bessel and hypergeometric functions, as commonly done, we
use simple integral expansion techniques to obtain a transparent result where explic-
itly all contributions to order g2 are contained in. The main parts of this chapter have
been published in [156].

6.1 Thermal screening

In quantum field theory, fluctuations of the vacuum give rise to the production of pair
quanta which tend to screen (or antiscreen) the charge of a heavy test particle. If one
perturbatively calculates the non-relativistic potential V (r) between two unlike static
charges, say, in QED, the usual Coulomb-like behaviour is modified by the photon
self-energy Π(K2) such that

V (r) =
∫

d3k

(2π)3
ei
k·
r −e2

k2 + Π(K2 = −k2)
, (6.1)

where k = |�k| and K = (k0,�k). Inserting the text-book result for Π(K2) [157] and
expanding for small distances k2 � m2

e, the quantum fluctuations lead to an effective
coupling constant

αeff(k) =
α

1 − α

3π
log
(

k2

Λ2

) , (6.2)

where Λ = exp(5/3)me is a scale related to the electron mass me. This is, of course,
the familiar result of the running coupling in QED which is commonly obtained using
renormalisation group methods. In [153, 154], it has been shown that the running of a
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coupling constant at T = 0 can be understood in physical terms by the polarisability
of the vacuum. The effects of quantum fluctuations can be incorporated to a certain
extent in a scale dependent dielectric permittivity ε that defines an effective charge

αeff =
α

ε
. (6.3)

In vacuum, Lorentz invariance dictates that

µε = 1, (6.4)

where µ is the magnetic permeability. Calculating µ(k) at the momentum scale k
and extracting the leading logarithmic contribution, one finally recovers the familiar
expressions for the running couplings in QED, eq.(6.2), and QCD, eq.(2.10), as we will
recapitulate in section 6.3. Then, asymptotic freedom can be interpreted in terms of
a paramagnetic ground state.

Perturbatively, the quantity that enters the Fourier transform of the potential at finite
temperature is the static limit of the longitudinal gauge boson self-energy ΠL(k0, k;T )
[8]:

V (r, T ) =
∫

d3k

(2π)3
ei
k·
r −e2

k2 + ΠL(0, k;T )
. (6.5)

Equivalently, one can define a dielectric permittivity by [158]

ε(k, T ) = 1 +
ΠL(0, k, T )

k2
. (6.6)

The perturbative one-loop thermal contribution to ΠL has been calculated long ago
as [159]:

ΠL(0, k, T ) =
e2T 2

3
≡ (me

D)2 for QED, (6.7)

and

ΠL(0, k, T ) =
(

Nc +
Nf

2

)
g2T 2

3
≡ (mc

D)2 for QCD, (6.8)

which defines screening masses mD that also follow from eq.(B.7). Since the static
limits of the self-energies are momentum-independent, the poles of the expression in
(6.5) are simply the gauge invariant Debye masses mD defined in eqs.(6.7) and (6.8)
and lead to an exponential damping of the potential V (r) ∼ exp(−mDr)/r, as already
mentioned in chapter 5. In particular, this form of ΠL has the consequence that
gluons screen the strong interaction, in contrast to the zero temperature case, over
long distances. However, the formula for the running QCD coupling constant (2.36),
commonly used in thermal perturbative calculations, assumes that typical momentum
transfers are of the order of the temperature, hence

αs(T ) ∼ 1
β0 log(T )

. (6.9)

In this expression, gluons therefore retain their antiscreening property, reflecting the
ultraviolet sector of the theory. The transition to Debye screening is not obvious.

6.2 The Debye mass on the lattice

In abelian theories like QED, the concept of the Debye mass is well understood: since
the electromagnetic current jem

µ is a gauge-invariant quantity, the Debye mass can be
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extracted from the two-point correlation function of jem
0 , i.e. from Π00 = ΠL (see

above). This is not the case in QCD, which makes the very definition of a Debye
mass conceptually difficult. Due to the nonlinear coupling of the gluons, relation (6.6)
remains valid only within certain gauges (like the temporal axial gauge) [9]. Finally, the
presence of massless gluons in non-abelian theories prevents a perturbative evaluation
of the Debye mass beyond next-to-leading (NLO) order [160]:

m
(2)
D (T ) = m

(1)
D +

Ncg
2T

4π
log

(
m

(1)
D

g2T

)
+ CNg2T, (6.10)

with the leading order (LO) result m
(1)
D given by (6.8). Here, the coefficient CN is a

non-perturbative number that depends on Nc only. It arises from the ad hoc removal
of infrared loop singularities that are associated with the masslessness of magnetic glu-
ons. In perturbation theory, the static limit of the transverse self-energy ΠT vanishes,
as apparent from eq.(B.8), and this feature is expected to persist even after resumma-
tion. Hence the perturbative screening mass mM (T ) is identically zero, which makes
certain loop integrals, together with the infrared behaviour of the Bose distribution
function, diverge.
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Figure 6.1: The gauge-invariant ratio mlat
D /(gT ) for SU(3) [162] as a function of T/ΛM̄S �

T/Tc (upper x-axis). mlat
D is the Debye mass measured on lattices with varying lattice spacing

βG ∼ 1/a and spatial extent, gT the LO perturbative result.

However, there are arguments that the magnetic gluons acquire a screening mass
mM non-perturbatively. Non-abelian gauge theories allow for monopole-like magnetic
field configurations not accessible in an expansion in g. Thermally excited monopole-
antimonopole pairs will therefore screen magnetostatic fields, as electric charges screen
electrostatic fields. From dimensional arguments it is expected that mM is propor-
tional to the mass gap in three-dimensional Yang-Mills theories and thus of the form
mM = C′g2T [161]. This reasoning also finds support from the lattice, as we will show
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6 Screening at Finite Temperature

below. Using that magnetic mass as an infrared regulator, eq.(6.10) can be obtained at
the expense of introducing the unknown, non-perturbative constant C′ that is related
in a unique fashion to CN . Clearly, close to Tc we do not believe eq.(6.10) to be a
good representation of the Debye mass since the coupling constant is large and critical
behaviour is dominant, cf. section 3.3.4. Only for some T � Tc the coupling will
become sufficiently small.

In ref.[162], a Debye mass was extracted from the large distance exponential fall-off of
correlators of gauge-invariant operators O(t, �x)

〈O(τ, �x)O(τ, 0)〉 ∼ |�x|β exp(−mD(T )|�x|).

This correlator was subsequently evaluated with Monte Carlo methods in a dimension-
ally reduced 3D effective theory, put on a lattice. Figure 6.1 shows the result for Nc = 3
and Nf = 0. The LO perturbative1 result is m

(1)
D (T ) = g(T )T , which is obviously only

valid for ridiculously high temperatures T ∼> 10100 Tc. Below that temperature (which
is anyway far above the Planck scale), the measured mass is much larger, by a factor
2 − 3, which can be traced back to the large non-perturbative correction in (6.10):
here, C3 = 2.46 ± 0.15. In the range Tc < T ∼< 100 Tc, the measured Debye mass mlat

D

stays rather constant at ≈ 3.3m
(1)
D (T ).
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Figure 6.2: Electric screening mass (me) over temperature in SU(2) as a function of T/Tc

[163]. The different data points correspond to various lattice sizes and lattice actions. The

dashed line shows the LO result
√

2/3g(T )T , the dot-dashed line the NLO result (6.10), with
mM (T ) (or equivalently C2) determined within the same simulation.

In ref.[163], the finite temperature gluon propagator was calculated in SU(2) lattice
gauge theory, using standard Wilson and improved Symanzik actions. From the long-
distance behaviour of correlation functions of temporal and spatial components of the
gauge fields electric and magnetic screening masses were extracted, cf. eq.(3.20). The
result for mlat

D is displayed as the data points in figure 6.2. As above, the measured
1Here and in the following, the perturbative g(T ) is usually derived from the zero temperature

running coupling constant (2.10), αs(µ), taking as the scale µ the lowest non-vanishing bosonic
Matsubara frequency 2πT .

110



6.2 The Debye mass on the lattice

value is again larger than the LO perturbative result m
(1)
D (T ) =

√
2/3g(T )T (dashed

line) for temperatures up to 104 Tc, this time by about 60%. Even the NLO result
(dot-dashed line), although an improvement, still falls short of describing the lattice
data.

Apparently, the temperature dependence of the Debye mass is nevertheless well de-
scribed by a term of the form Cg(T )T . In figure 6.3, fits of the constant C have been
performed, and the data are very well described by mlat

D (T ) �
√

1.7g(T )T ≈ 1.6 m
(1)
D .

Extractions of the Debye mass from Polyakov loop correlators (which are related to the
interquark potential via eq.(2.49)) find similar values for mlat

D (T ), so this result seems
to be rather robust. In addition, figure 6.3 also shows that the magnetic screening
mass is indeed non-vanishing and can be well parametrised by mlat

M (T ) � 0.5g2(T )T
(i.e. C′ � 0.5), confirming the functional g2-dependence put forward above.
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Figure 6.3: Electric (me) and magnetic (mm) screening mass over temperature in SU(2) as
a function of T/Tc [163]. The simulation was performed on a large lattice of size 322 × 64× 8
with the standard Wilson action. The solid lines show the fits leading to me � √

1.7g(T )T
and mm � 0.5g2(T )T .

Summarising, all available lattice data seem to suggest that the Debye screening mass
runs logarithmically with temperature, mD = Cg(T )T , as expected from asymptotic
freedom. However, the numerical coefficient C does not agree at all with perturbative
expectations for T ∼< 1010Tc. The NLO correction (and especially its non-perturbative
component arising from the magnetic screening mass) seems to be large, which is not
surprising in light of the fact that the coupling g(T ) is still of the order of one for all
temperatures of interest.

It is nevertheless remarkable that these lattice calculations indicate a clear logarithmic
running of g(T ) over large distances. So far, this feature has only been motivated phe-
nomenologically [1], but not derived within a consistent theoretical framework. From
a conceptual point of view, it is of utmost importance to confirm that assumption
(because asymptotic freedom lies at the heart of the QGP), even if its application may
not be that useful in actual calculations. In the rest of the final chapter of this thesis,
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6 Screening at Finite Temperature

we present a calculation of the effective running coupling at high temperatures and
long wavelengths, not relying on a Feynman graph expansion, that will exactly take
us there.

6.3 The zero temperature case

In this section, we define our notation and briefly review the calculation of refs.[153,
154]. To obtain a scale-dependent magnetic permeability µ(H), let us look at the
change in the energy E of the vacuum when an external magnetic field H is applied:

∆E = −1
2

[4πχ(H)] V H2 − Evac, (6.11)

where µ(H) = 1 + 4πχ(H), and χ(H) is the field-dependent magnetic susceptibility.
The expression for the energy in the presence of the field H is completely general
since all scales that characterise the “medium” (e.g. ΛQCD, me) can be combined with
H such as to end up in χ(H). In particular, linear response theory would yield an
H-independent susceptibility, whereas in the mean field approximation a χ(H) may
be derived from the implicit equation

Heff = H + 4πχ(Heff)H, (6.12)

introducing the effective, local field Heff as the sum of the external and the locally
induced field. As soon as the energies at H = 0 and finite H are known to some
approximation, a field-, or equivalently, scale-dependent µ(H) can be extracted. Later,
the external field 2eH is identified with the scale K2 at which the physical process is
probed.

For charged scalar fields, the general expression for the energy spectrum of a single
Fourier mode reads

E±
n,k = ωk

(
n±

k +
1
2

)
, (6.13)

distinguishing between particles (+) and antiparticles (−). The dispersion relation
ωk = k follows from the positive energy solution of the Klein-Gordon equation for
massless, non-interacting particles. At T = 0, the occupation number n±

k for the
ground state is zero. Summing over particle and antiparticle states, we recover the fa-
miliar divergent zero-point vacuum energy E0 =

∑
k ωk. For massless spin- 1

2 fermions,
the energy without an external field becomes

Ef
0 = −2

∑
k

ωk. (6.14)

The factor 2 arises from the spin summation, the factor −1 stems from the anti-
commutation relation fermionic annihilation and creation operators obey. In the pres-
ence of the magnetic field H, we substitute ∂µ → Dµ = ∂µ − igqAµ, where q is the
charge of the (anti)particle in units of the coupling g. Choosing the orientation of the
H-field along the z-axis, we construct a vector potential as Aµ = (0, 0, x1H, 0). This
choice for Aµ obeys ∂µAµ = 0. In the following, we treat QED and QCD in parallel
and define e = qg. We have to solve for the energy spectrum of i/Dψ(x) = 0, which is
basically a relativistic version of the Landau theory for the diamagnetic properties of
an electron gas. The solution for the energy of a single Fourier mode becomes

ω̄n,k3,s3 =
√

k2
3 + 2eH (n + 1/2 + s3). (6.15)
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6.3 The zero temperature case

In addition, the x1 space variable is shifted by −k2/(eH). Note that the energy depends
only on two quantum numbers. The third is “hidden” in the mentioned x1 shift. Here
s3 = ± 1

2 , the z-component of the spin. The Hs3 term clearly shows the coupling of
the spin to the external field, and hence, if the spin of the fermion is antiparallel to
the H-field, the energy is lowered. For QCD, there is also an implicit sum over the
colour charges q hidden in e = gq. Finally, for a vector gauge boson the H-independent
energy is the same as for a scalar field, except that there is an additional factor of 2
counting the transverse spin degrees of freedom:

Eg
0 = 2

∑
k

ωk. (6.16)

The sum over colour degrees of freedom yields an additional multiplicative factor of
N2

c −1. In presence of the magnetic field that couples to the gauge boson (hence QED
is not relevant here), we separate the field Aµ into the classical background part Ab

µ

and the fluctuating quantum part Aq
µ. The equations of motion become DµGµν = 0,

where Gµν is the gluon field strength tensor (2.2). With a suitable choice of background
gauge,

∂µAq
µ + [Ab

µ, Aµ,q] = 0, (6.17)

the energy for the two physical degrees of freedom of Aµ can be written as

ω̄n,k3,s3 =
√

k2
3 + 2eH (n + 1/2 + s3), (6.18)

the same as in the fermionic case, but now with s3 = ±1. Again, summation over the
colour charges is implicitly assumed.

We want to extract the leading log(H) contribution to the energy shift induced by the
external field. With the total spin s of the particle considered and i = f, g:

∆Ei = (−1)2s

 ∑
n,k2,k3,s3

ω̄i
n,k3,s3

−
∑

k1,k2,k3,s3

ωk

 , where (6.19)

ω̄i
n,k3,s3

=
√

k2
3 + 2eH (n + 1/2 + s3). (6.20)

Introducing a quantisation volume V = L3, we replace the sum over k2 and k3 by an
integral weighted with the density of states. Taking into account that the x1 variable
was shifted, k2 is restricted to 0 ≤ k2 ≤ LeH. Then,∑

k2,k3

→ L

2π

∫
dk3

L

2π
(eH · L) =

V

4π2
(eH)

∫
dk3. (6.21)

To regularise the divergence, we will use a UV cut-off Λ such that 0 ≤ n ≤ Λ2

2eH = nΛ

and k2
3 ≤ Λ2. The first idea would be to replace the sum over n by an integral. However,

if we perform the shift n′ = 2eHn, we find that the integral would be independent
of H to leading order. That is, we would have recovered the vacuum result, in the
absence of the field H, that has to be subtracted anyway in the end. So what we need
is the correction to the replacement of a sum with an integral. Such a correction term
suitable for our case here is provided by a specific Euler sum rule

n2∑
n=n1

f(n + 1/2) =
∫ n2

n1

f(x)dx − 1
24

f ′(x)
∣∣∣n2

n1

.
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6 Screening at Finite Temperature

We may now re-define the energy shift as

∆Ei = (−1)2s
∑
s3

{
nΛ∑

n=0

f(n + 1/2 + s3) −
∫ nΛ

0

dn f(n + 1/2 + s3)

}
,

where

f(x) =
V

2π2
(eH)

∫ Λ

0

dk3

√
k2
3 + 2eHx.

Since we are not interested in the soft modes of the order of eH (the leading logarithmic
behaviour is dominated by the UV behaviour of the theory), we split the sum into two
pieces (N � nΛ)

nΛ∑
n=0

=
N∑

n=0

+
nΛ∑

n=N

.

Let us treat s3 formally as a continuous variable. Taylor expanding in s3 (since n ≥
N � s3), we are left with

∆Ei = (−1)2s
∑
s3

nΛ∑
n=N

(
f(n + 1/2) − s3f

′(n + 1/2) +
s2
3

2
f ′′(n + 1/2) + ...

)
+ Φ(eH,N). (6.22)

Now Φ(eH,N), which represents the contributions from soft modes only, does not
depend on Λ. It is thus proportional to (eH)2 for dimensional reasons, a small non-
leading logarithmic contribution, and may be safely neglected. The linear term in s3

vanishes upon summation, and re-substituting e = gq, we find

∆Ei = −1
2
V (gH)2

[
q2(−1)2s

2π2

∑
s3

(
s2
3

2
− 1

24

)
log
(

Λ2

2eH

)]
. (6.23)

The sum over a SU(Nc) multiplet of the squared charges q2 is Nf/2 for the fundamental
representation (Nf quark flavours) and Nc/2 for the adjoint representation (the gluons)
[154]. For QCD, the susceptibility therefore becomes

4πχ → −g2 11Nc − 2Nf

48π2
log
(

2eH

Λ2

)
, (6.24)

which reproduces the leading expression obtained by renormalisation group calcu-
lations, eq.(2.10), if we identify 2eH = K2. Note that the combination eH is a
renormalisation group invariant (otherwise also the covariant derivative (2.3) would
be non-invariant, which would render gauge invariance a mess) and Lorentz invariant
since GµνGµν = H2. For QED, the sum over the charge(s) is simply 1, so we obtain

4πχ → +
e2

12π2
log
(

2eH

Λ2

)
,

again in accordance with the renormalisation group result, eq.(6.2). Having outlined
the calculation of [153, 154], we now switch on temperature.

6.4 The temperature-dependent part

At finite temperature T , the occupation number n±
k appearing in eq.(6.13) does not

vanish anymore for the thermal ground state, instead nk = (exp(βωk)−1)−1 = fB , the
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usual Bose-Einstein distribution function. For fermions, nk = (exp(βωk)+1)−1 = fD,
the Fermi-Dirac distribution function. Thus, when summing over the infinitely many
degrees of freedom, we find for the total vacuum energy2 of a charged scalar field

Es
0 =

∑
k

ωk (1 + 2fB(ωk)) . (6.25)

The result clearly separates into the divergent ground state energy already treated
and a finite, T -dependent part. In the case of a finite magnetic field H, the higher
energy modes (6.20) are occupied with their respective thermal probabilities, and we
can write (i = f, g):

∆Ei = Ei − Ei
0, (6.26)

Ei =
∑

n,k2,k3,s3

ω̄i
n,k3,s3

[
(−1)2s +

2
exp(βω̄i

n,k2,s3
) − (−1)2s

]
, (6.27)

Ei
0 =

∑
k1,k2,k3,s3

ωk

[
(−1)2s +

2
exp(βωk) − (−1)2s

]
. (6.28)

Again, we need to extract the leading thermal contribution to µ(k). However, at finite
temperature, relation (6.4) does not hold any more. One could imagine to continue
with

µ(k)ε(k) = n(k)2, (6.29)

where n(k) is the momentum-dependent index of refraction. This quantity is related
to the photon or gluon phase velocity by vp = 1/n, and vp could be extracted from the
(full) dispersion relation of the corresponding gauge boson since vp = ωk/k. However,
eq.(6.29) holds only for ”on-shell” propagating gauge bosons. Since Lorenz invariance
is formally broken by the presence of the heat bath, µ and ε become functions of k0 and
k, and eq.(6.29) reads, more explicitly, µ(ωk, k)ε(ωk, k) = n(k)2. Using the explicit
expressions for µ(ω, k) and ε(ω, k) as listed e.g. in [158], and the dispersion relation
for the gluons, one indeed recovers in HTL perturbation theory this identity.

Here, however, we consider an off-shell external field, so a relation between µ(0, k) and
ε(0, k) is required that can be obtained by the following argument: the total energy
density of the system can be written as the sum of the field and the induced medium
energy density:

Etot =
1
2
H2 +

1
V

∑
i

∆Ei. (6.30)

With the effective local field Heff defined in (6.12), we rewrite E as

Etot =
1
2
H2

eff =
1
2

(eH)2

e2
eff

.

In the last step we made use of the fact that eH has to be a renormalisation group
invariant, so eH = eeffHeff . The effective coupling constant is now defined by [154, 155]

1
e2
eff

≡ 2
∂Etot

∂(eH)2
=

1
e2

[1 − 4πχ(2eH, T )],

2A short note on notation: in the following, we will split the total energy in two pieces: Ei =
Ei

vac +Ei
th(T ). Ei

vac is referred to as the temperature-independent“ground state energy”, whereas

Ei
th(T ) will be called “thermal vacuum energy”. That notation is not entirely satisfactory since the

vacuum is not empty anymore at finite temperature, it is filled by thermal excitations. “Vacuum”
means in this context absence of external particles.
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using (6.11) and (6.30), similar to the T = 0 case. Replacing 2eH by k2, as at T = 0,
our master formula hence reads

αeff(k, T ) =
α

ε(k, T )
=

α

1 − 4πχ(k, T )
. (6.31)

The thermal piece of eq.(6.27) can be compactly re-written as

Eth(T, b, s, s3)
V T 4

=

=
b

2π2

∑
s3

∞∑
n=0

∞∫
0

dx

√
x2 + b(n + 1/2 + s3)

exp
(√

x2 + b(n + 1/2 + s3)
)
− (−1)2s

, (6.32)

where x is dimensionless and
b =

2eH

T 2

is a measure for the ratio of quantum and thermal effects. We consider the high-
temperature limit b � 1 in the rest of the chapter.

6.4.1 A first (incomplete) approximation

The sum appearing in expression (6.32) obviously cannot be evaluated exactly. It is
instructive to work out the first intuitive approximation to the sum although we will
show in the next section that it is too crude.

Consider the fermionic part. Note that the factor b(n + 1/2 + s3) plays the role of
a mass term in the integral in eq.(6.32), so the contribution of the terms in the sum
becomes exponentially suppressed as n increases. In contrast to the T = 0 case we
are therefore interested in the behaviour of the sum at small n where the s3 spin
component is not negligible. Thus we cannot apply a Taylor expansion in s3, as done
in (6.22), but need an exact summation over s3. Isolating then the lowest lying Landau
mode (LLL) n = 0, s3 = −1/2 and combining the remaining expressions into a single
sum, we find

Ef

V T 4
≡ Ẽf =

b

24
+

b

π2

∞∑
n=0

∞∫
0

dx

√
x2 + b(n + 1)

exp
(√

x2 + b(n + 1)
)

+ 1
. (6.33)

Since b � 1, the terms in the sum vary slowly with n, so we can again try to trade
the sum for an integral over n:

Ẽf =
b

24
+

2
π2

∞∫
0

dr
r2
√

r2 + b

exp
(√

r2 + b
)

+ 1
. (6.34)

Furthermore neglecting terms of order b in the integral, we obtain

Ef
(0) = −1

2
V H2

[
− (me

D)2

2eH

]
+

7
4

π2

15
V T 4 (6.35)

for QED with the HTL Debye mass defined in eq.(6.7). These approximations amount
to ignoring O(e) corrections to the single Landau levels and the density of states. The
second term in (6.35) is simply the energy Ef

0 (T ) of a thermally excited, noninteracting
massless fermion-antifermion pair, i.e. the thermal energy of the unperturbed vacuum
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that has to be subtracted anyway, cf. eq.(6.26). That this term arises from the
calculation is non-trivial, but absolutely necessary for consistency. We have therefore
recovered within our simple framework the perturbative one-loop HTL result from the
LLL contribution to the energy of the magnetically perturbed thermal vacuum. The
energy difference that enters in (6.11) already yields 4πχ(H,T ) as the expression in
square brackets, and the effective coupling constant reads, following eq.(6.31),

αeff(k, T ) =
α

ε(k, T )
=

α

1 +
(me

D)2

k2

,

as within HTL perturbation theory, cf. (6.6).

For QCD with Nf flavours, we obtain

Ef
(0) = −1

2
V H2

[
−

m2
D,f

2eH

]
+ Nf

7π2

60
V T 4 (6.36)

with the fermionic part of the squared QCD Debye mass (6.8), m2
D,f = Nf/6 g2T 2.

For the total evaluation of the QCD susceptibility, we need to add the contribution
from the gauge bosons. At zero temperature, contributions from “unphysical” gluon
states in the calculation of the energy spectrum, eq.(6.18), are exactly cancelled by
Fadeev-Popov ghost contributions within the background gauge condition used here.
Since we only consider excitations of energy levels that were evaluated at T = 0, no
ambiguity in counting degrees of freedom arises at finite T and we still work only with
physical gluon degrees of freedom with two polarisation states. We proceed in close
analogy to the fermionic case: first, we sum over s3 = ±1. A subtlety arises since
the combination n = 0 and s3 = −1 in eq.(6.32), defining the gluonic LLL, gives a
negative value under the square root for small x. We will discard this contribution of
the LLL in this section3, arguing that an energy difference should be a physical, real
quantity with no imaginary part. In section 6.5, we investigate in detail what happens
when the LLL is included, and it will turn out that the final result depends crucially
on the very nature of the LLL. For now, the sum over n in (6.32) for s3 = −1 starts
only at n = 1. Isolating again the new LLL (n = 1, s3 = −1) contribution to the sum,
we are left with

Eg

V T 4
≡ Ẽg =

b

2π2

∞∫
0

dx

√
x2 + b/2)

exp
(√

x2 + b/2
)
− 1

+
b

π2

∞∑
n=0

∞∫
0

dx

√
x2 + b(n + 3/2)

exp
(√

x2 + b(n + 3/2)
)
− 1

. (6.37)

Replacing the sum by an integration, setting b = 0 in the integrals and summing over
colour, the result becomes

Eg
(0) = −1

2
V H2

[
−

m2
D,g

2eH

]
+ 2(N2

c − 1)
π2

15
V T 4. (6.38)

Again, the last term is the thermal energy Eg
0 (T ) of the unperturbed SU(Nc) gluon

vacuum. The expression in square brackets exactly corresponds to the gluonic part of
3The imaginary part of the LLL is, of course, also present at T = 0, and we will discuss its impli-

cations in more detail in section 6.5. It played no role in section 6.3, though, because only the
behaviour of the series at large n was of importance there.
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the squared QCD Debye mass, m2
D,g = Nc/3 g2T 2. Putting all pieces together, the

effective coupling becomes

αs,eff(k, T ) =
αs

1 +
(mc

D)2

k2

,

very similar to the QED case. In our model, the HTL (chromo)electric Debye masses
therefore appear as the LLL contribution to the energy difference that arises when one
probes the thermal vacuum by a (chromo)magnetic field. It is worth noting that, in
this approximation, the alignment of an external field always increases the thermal
energy of the vacuum, regardless of the non-abelian structure of the theory. Therefore
χ(k, T ) is always negative and we conclude, using eq.(6.31), that the static potential
would become screened by both fermions and by gauge bosons.

6.4.2 A better approximation

However, additional contributions to eqs.(6.35), (6.36) and (6.38) of the same order in
e2 arise from two sources. First, the expansion of the integrals (6.34) and (6.37) in b
is similar to the high temperature expansion of loop integrals with massive particles
in the small quantity m0/T . Appendix C contains the relevant formulae. Second, the
correction to the replacement of the sum by an integral yields terms to order b and b2

that are provided by the Euler-MacLaurin formula

N∑
n=0

f(n) =

N∫
0

f(x)dx +
1
2

[f(N) + f(0)] +
1
12

[f ′(N) − f ′(0)] + . . . , (6.39)

where the dots denote terms with higher derivatives in f(n). For our purposes,
eq.(6.39), taking N → ∞, is sufficient, as long as f(x) ∈ C2 for x ∈ [0, N ]. When
calculating the thermal contribution to the vacuum energy, we include these correction
terms to the integral in the following and expand all integrals in the small parameter
b, using the relations presented in appendix C. The summation of all terms to order
e2 then alters the results in (6.36) and (6.38) qualitatively. We stress again that, using
(6.39), all contributions to order e2 are summed up.

6.4.3 Results for QED

For fermions, we start with eq.(6.33). Defining δ2 = b, we obtain to order δ4

Ẽf
(1) =

δ2

24
+

2
π2

∞∫
0

dr
r2
√

r2 + δ2

exp(
√

r2 + δ2) + 1
+

δ2

2π2

∞∫
0

dr

√
r2 + δ2

exp(
√

r2 + δ2) + 1

− δ4

24π2

∞∫
0

dx

{
1√

x2 + δ2
− 1

1 + exp(−
√

x2 + δ2)

}
1

exp(
√

x2 + δ2) + 1
. (6.40)

Using the functions fi(y) and g+(y) defined in appendix C, we re-write

Ẽf
(1) =

δ2

24
+

2
π2

f5(δ) +
5δ2

2π2
f3(δ) +

δ4

2π2
f1(δ) −

δ4

24π2
g+(δ). (6.41)

Expanding in δ and keeping all terms up to O(δ4), surprisingly all terms of order δ2

cancel, and we are left with

Ẽf
(1) =

7π2

60
+

δ4

96π2
log
(
Afδ2

)
(6.42)
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6.4 The temperature-dependent part

with γ = 0.5772..., the Euler-Mascheroni constant, and the constant Af = exp(2γ −
1)/π2 � 0.12. The first term is the well-known thermal vacuum energy in the absence
of the field H. Since δ2 � 1, the alignment of a magnetic field hence decreases the
energy of the vacuum at finite temperature, in contrast to the result of the previous
section. The susceptibility in QED therefore becomes

4πχ(H,T ) = − α

3π
log
(
Af

2eH

T 2

)
. (6.43)

Note that the pre-factor of the logarithm is the same as in the zero-temperature case!
Including this pure quantum correction for the QED running coupling, eq.(6.2), all
field dependence drops out, and we finally obtain with (6.31)

αeff(k, T ) =
α

1 − α

3π
log
(

T 2

Λ2
T

) with ΛT = me
eγ+7/6

π
� Λ

3
, (6.44)

which is valid to order e2 and for momenta

me � k � T. (6.45)

Using the zero-temperature coupling αeff(k) from eq.(6.2), the effective coupling can,
to this order, be rewritten as

αeff(k, T ) = αeff(T ) = αeff(〈k〉 � 3 T ). (6.46)

So the common practice used in perturbation theory to simply take the running of the
coupling at zero temperature and set as the scale the thermally averaged momentum
scale 〈k〉 � 3 T does indeed find support from our calculation for QED. Alternatively,
one may also take for the relevant energy scale the lowest non-vanishing Matsubara
frequency, which becomes πT for fermions.

6.4.4 Results for QCD

For QCD, the fermionic contribution takes a form similar to the QED result,

4πχ(H,T )q = −g2Nf

24π2
log
(
Af

2eH

T 2

)
. (6.47)

Note that the pre-factor of the logarithm is again the same as at zero temperature.
The calculation of the gluonic part of χ runs along the same lines outlined above.
Starting with eq.(6.37) and setting δ2 = b/2, we obtain by use of the functions hi(y)
and g−(y)

Ẽg =
2
π2

h5(
√

3δ) +
δ2

π2

[
7h3(

√
3δ) + h3(δ)

]
+

δ4

π2

[
h1(δ) + 3h1(

√
3δ) − 1

6
g−(

√
3δ)
]

. (6.48)

Expanding, we find that all terms of order δ3 cancel and the result becomes

Ẽg =
2π2

15
− b

12
− 5b2

128π2
log (Agb) , (6.49)

with the constant Ag = exp(2γ − 13/10 + 11/5 log 3)/(32π2) � 0.03. Similar to the
fermionic part, the alignment of a chromomagnetic field hence always lowers the energy
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Figure 6.4: The ratio αs,eff/αs of eq.(6.51) as a function of k/T for a coupling g = 0.1 and
Nf = 0 (solid line). For comparison, the corresponding ratio in the HTL calculation, using
the Debye mass of eq.(6.8), is also plotted (dashed line).

of the gluonic vacuum, however, this time the difference goes linearly in b and not only
logarithmically. Finally summing over colour, the gluonic susceptibility reads

4πχ(H,T )g =
Nc

3
g2T 2

2eH
+ 5Nc

g2

48π2
log
(
Ag

2eH

T 2

)
. (6.50)

In this expression the sign is reversed as compared to eq.(6.47), and 4πχ is always
positive. The total thermal result for QCD, excluding the T = 0 contribution, becomes

αs,eff(k, T ) =
αs

1 − αs
4πNc

3
T 2

k2
− αs

12π

[
5Nc log

(
Agk

2

T 2

)
− 2Nf log

(
Afk2

T 2

)] . (6.51)

Since the gluon contribution dominates by far over the logarithmic fermionic, there
is antiscreening at high temperature and long distances. This result is in contrast to
expectation and lattice results on the interquark potential, cf. figure 5.1. Extrapolating
eq.(6.51) beyond the kinematical region g � k/T � 1 where our approximations are
valid, a Landau pole appears in the infrared region k/T � g. Figure 6.4 shows the
ratio αs,eff/αs as a function of k/T for a weak coupling g = 0.1, compared to the HTL
result. A similar behaviour is also found in more sophisticated renormalisation group
analyses of the running coupling at finite temperature (see, e.g., [164, 165, 166]). We
note that these results compare quite well with the numerical solutions obtained in
ref.[165]. Since eq.(6.51) depends only on the dimensionless quantity k/T , taking the
limit T → ∞ at large k is in a sense equivalent to probing the infrared region k → 0
at smaller T , indicating that non-perturbative, soft physics might play a role even at
high T . It is, however, important to keep in mind that these results were obtained
neglecting the gluonic LLL because of its imaginary part. In the next section, we will
include this mode consistently which will change the results.
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6.5 The gluonic lowest Landau level

The calculation of ∆Eg(T ) in (6.32) involves a sum over all Landau levels

ω̄n,k3 =
√

k2
3 + 2eH (n + 1/2 ± 1),

weighted by the corresponding thermal occupation probabilities. As is well-known,
the LLL with n = 0 and s3 = −1 acquires an imaginary part for small k3 already
at zero temperature [167, 168]. This tachyonic instability signals that the constant
field H will decay to some new, unspecified vacuum state, maybe accompanied by
the formation of a chromomagnetic condensate. In previous approaches, this feature
persisted even at high temperatures [169], despite asymptotic freedom, but could be
avoided by the ad hoc introduction of some thermal electric [170] or magnetic gluon
screening mass [171]. The influence of the LLL on the high-temperature physics was
at best inconclusive. In section 6.4.4, we have therefore discarded the contribution of
the LLL. Now we will include the explicit expression for the LLL, which reads, with
δ2 = eH/T 2,

ELLL = V T 4

 δ2

π2

∞∫
0

dx

√
x2 − δ2

exp(
√

x2 − δ2) − 1

 . (6.52)

An expansion of the integral in small δ (though not a power series) for positive x2 + δ2

exists (see appendix C) as

∞∫
0

dx

√
x2 + δ2

exp(
√

x2 + δ2) − 1
=

π2

6
+

δ2

4

[
log
(

δ

4π

)
+ γ +

1
2

]
+ O(δ6). (6.53)

Since only δ = 0 is a non-regular point in (6.52), we can analytically continue the
expansion to imaginary values of δ. To obtain its sign, we have to pick the correct
Riemann sheet of the square root function. With the usual Feynman ε-prescription,
as applied at T = 0 [168], δ2 → δ2− iε, which leads to

√
−δ2 → −i

√
δ2. As outlined in

the appendix, all higher order terms left out in (6.53) involve x-integrals over functions
of the form √

x2 + δ2

x2 + δ2 + (2πn)2
, with n ∈ N \ {0}.

As long as |δ| < 2π, no poles appear, and the only branch cut comes from the square
root we have dealt with above. In our case, there is henceforth just an imaginary part
of ELLL arising from the complex logarithm:

ELLL � V T 4

{
δ2

6
− δ4

8π2

[
log
(

δ2

16π2

)
+ 2γ + 1

]
+ i

(
δ4

8π

)}
.

Despite the width of the unstable mode being small, ImELLL/ReELLL = O(δ2) � 1,
the positive sign of the imaginary part would indicate a blow-up of the LLL configu-
ration, not a decay, which is unphysical. However, when re-writing δ, the imaginary
part

ImELLL = Im[∆Eth(T )] = +V
(eH)2

8π
(6.54)

turns out to be independent of temperature. At zero temperature, the imaginary
part of the energy difference is calculated to be Im[∆Evac] = −V (eH)2/(8π) [168],
which is exactly the opposite of (6.54). Taking both contributions into account,
the total imaginary part of the energy difference hence vanishes, which renders the
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6 Screening at Finite Temperature

high temperature vacuum stable. This result has been long sought after, but pre-
vious approaches [169, 172] always found a remaining imaginary part of the form
Im[∆Eth(T )] = −V T 4[δ3/(2π)]. All contributions of order δ3 in ∆E(T ) always can-
cel, however, within our approach when all contributions of order g2 are consistently
taken into account. In addition, whereas the squared sum of the charges e = gq (that
is responsible for the factors g2Nc/2 and g2Nf/2 in eq.(6.24) and the following) does
not depend on the direction of the external field in colour space, terms not quadratic
in the coupling, like δ3 ∼ e3/2, are not group-invariant and do depend on the specific
colour choice of the magnetic field [155], a result that is probably unphysical.

Combining now the real part of ELLL with the sum over all higher lying Landau
modes, eq.(6.49), we find that the troublesome −δ2/6 term is exactly cancelled by
ReELLL which henceforth eliminates the Landau pole in the infrared. Furthermore,
the logarithms combine such as to yield, after summing over the colour charges q2,

∆Eg = −1
2
V H2

[
g2 11Nc

48π2
log
(
Āg

2eH

T 2

)]
with Āg = exp(2γ + log 3 − 1/22)/(32π2) � 0.03. The expression in square brackets
already stands for 4πχg(T,H). Together with the quark contribution χq(T,H) of
eq.(6.47),

4πχ(T,H) = g2 11Nc

48π2
log
(
Ag

2eH

T 2

)
− g2 2Nf

48π2
log
(
Af

2eH

T 2

)
,

which looks deceptively similar to the running coupling at T = 0. Indeed, taking into
account the one-loop zero temperature QCD susceptibility (6.24) , we arrive at

αeff
s (T,Λ) =

αs(Λ)

1 +
αs(Λ)
12π

[
11Nc log

(
[Āg2πT ]2

Λ2

)
− 2Nf log

(
[ĀfπT ]2

Λ2

)] , (6.55)

with Āg = exp(−γ − 1/2 log(3/8) + 1/44) ≈ 0.938 and Āf = exp(−γ + 1/2) ≈ 0.926.
This expression looks very similar to what was found in the QED case (6.46): all field
(or momentum) dependence in αeff

s has dropped out. It is just the one-loop running
coupling constant at zero temperature, where the loop particles carry some average
thermal momentum 〈k〉 = O(T ), as originally put forward in [1]. However, we are
now in a position to refine that result: coming from the lowest Matsubara frequencies,
quarks propagating in a thermal loop should have πT as momentum, whereas the
lowest non-vanishing bosonic frequency is 2πT – and these values are indeed very
close to the numbers appearing in the logarithms of (6.55) in front of T .
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6.6 Intermediate summary

We have therefore been able to show for the first time in a self-contained calculation
that, for long wavelength modes, the running coupling at finite temperature becomes
very simple, as has been expected for long on a phenomenological basis [1]: it fol-
lows from the zero temperature renormalisation group equations, with the momentum
scale replaced by a suitable thermal scale that seems to follow from the lowest, non-
zero Matsubara frequencies and is then, of course, different for quarks and gluons.
This distinction of thermal momentum scales for fermions and bosons in the effective
coupling is also a new outcome of our calculation. All collective medium effects over
large distances R � 1/T can therefore be subsumed in a running coupling strength
that does not depend on R.

This result implies that there is no need for the commonly proposed hierarchy of scales
T � gT � g2T � . . . since thermal physics becomes scale-independent at large dis-
tances. It might therefore be sufficient at one-loop order to calculate the physics at
the hard scale T only and incorporate all soft physics of order gT and smaller into a
running thermal coupling constant, without the need for HTL resummation. This line
of reasoning is supported by the fact that we have recovered the HTL results for the
effective coupling in a cruder approximation to ∆Eth, neglecting O(g) corrections to
the single Landau levels and the density of states. The partial resummation of hard
modes only seems to be insufficient and does not capture all effects to a given order
in g.
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7 Summary and Conclusions

“Where shall I begin, please your Majesty”, she asked.
“Begin at the beginning”, the King said, gravely,
“and go on ’till you come to the end: then begin again.”

Lewis Carroll, Alice’s Adventures In Wonderland

In chapters 2 and 3, we have given an up-to-date overview of the thermodynamics of
QCD, referring mainly to latest lattice data. Since QCD is expected to undergo a tran-
sition from a hadronic to a partonic phase at a critical temperature Tc = O(200 MeV),
the possibility of creating a hot system in that temperature regime in heavy-ion ex-
periments has triggered much experimental and theoretical activity in recent years.
By now a multitude of data has been accumulated, but we are still far away from a
consistent, reliable theoretical interpretation of these data. This is due mainly to two
reasons: first, QCD thermodynamics at high temperatures is an intriguing subject.
Superficially simple and analytically tractable, it shows an unexpected level of com-
plexity when explored in more detail, as we have exemplarily demonstrated by the
equation of state and the Debye screening mass. Second, the heavy-ion collision itself
is a very complicated process involving poorly known strong interaction physics. As
a consequence, previous work has mainly focused on interpreting one piece of data
within a specific approach and a certain number of fit parameters. The main goal of
this thesis was to explore to what extent the formation of a QGP can be inferred from
current data – within a unified description, taking into account as much information
as is available. In view of the complications mentioned above, our work is primarily
phenomenological (and hence not the last step, merely a beginning). However, since
we tried to take into consideration as many constraints as possible in the construction
of our model, we significantly improved over previous approaches.

The actual work can be divided in three pieces: (1) specification of the hot medium, (2)
construction of the fireball and (3) calculation of signatures. Following the discussions
of chapter 2, we have constructed in chapter 3 a novel quasiparticle description of the
QCD EOS in the temperature region Tc < T ∼< 3 Tc, based on a model of quasifree,
massive partons. The thermal coupling was taken to exhibit critical behaviour. For
the first time, we have schematically included confinement by a modification of the
particle distribution functions and achieved a simple, thermodynamically consistent
and economic parametrisation of continuum-extrapolated lattice data for the EOS of
SU(3) gauge theory. The lattice data basically constituted the only input of the model,
the rest followed from there. Empirically, a connection of the thermal energy of the
Yang-Mills vacuum, B(T ), with the chromomagnetic condensate 〈B2〉T was found, a
feature not present in previous models. Since this identification is not based on ther-
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modynamic consistency (i.e. not stringent within the framework), but specific to our
model, it strongly supports our setup of the QGP.

Next, we have carefully investigated the currently available lattice data on QCD with
dynamical quarks and subsequently extended the confinement model to Nf �= 0 by
a number of sensible arguments. Our predictions for Nf = 2 and Nf = 2 + 1 were
confirmed by more recent preliminary continuum extrapolations of lattice data. The
extension of the quasiparticle-plus-confinement model to small quark chemical poten-
tial (µ ∼< T ) was straightforward, parameter-free and proved to be feasible: the value
for p(Tc, µ∗ = 0.1 Tc) is within 10% of a recent lattice calculation. Our model is also
capable of describing the first lattice results on the net quark density nq(T, µ). This
supports the validity of our quasiparticle description even close to Tc. In addition, lat-
tice results on the off-diagonal quark number susceptibilities (which directly measure
the interactions) support our picture of a quasifree QGP in the vicinity of the phase
transition. We also managed to describe, without any parameter adjustments, lattice
data on the diagonal quark number susceptibility for two light quarks and a heavy
quark, albeit with the caveat that these data are not yet very well understood. All in
all, the quasiparticle confinement model successfully describes and predicts a variety
of lattice data and seems to be a reasonable representation of the QGP equation of
state.

The function C(T ), introduced in section 3.3.3, parametrises our ignorance about de-
tails of the confinement mechanism. It would be desirable to connect this macroscopic
quantity with microscopic, first-principle QCD dynamics, preferably starting in the
gluon sector. The connection of B(T ) to the chromomagnetic condensate seems to im-
ply that magnetic monopoles indeed play an important role in QCD thermodynamics
close to Tc and provides a starting point for further investigations and more refined
model building. A comparison of B(T ) with lattice data for the spacelike plaquette
∆σ in the presence of quarks will shed more light on such conjectures.

In the shorter run, it should be possible to extend the model self-consistently to larger
values of the quark chemical potential µ using Maxwell relations. So far, we have
neglected any µ-dependence in the confinement function C(T ) and the coupling g(T ).
To improve on that issue, the partial differential flow equations for C(T, µ) and g(T, µ)
that follow from the stationarity condition (3.12) should be solved numerically, with
appropriate boundary conditions. The confinement model can then give results on,
e.g., p(T, µ) close to the transition line even for µ � T – as long as the phase structure
of QCD does not change qualitatively.

Regarding the second step of the program outlined above, a fireball model reminiscent
of hydrodynamics has been developed in chapter 4 for CERN/SPS Pb(160 AGeV)+Au
and Pb(40 AGeV)+Au collisions and RHIC Au+Au collisions at

√
s = 200 AGeV. In

this model, we have assumed that thermalisation constitutes a valid concept for the
description of the produced medium in an URHIC, which allowed us to use the afore-
mentioned quasiparticle interpretation of the QGP. Using entropy conservation, the
EOS of the system links the initial and final states of the collision and accordingly
constrains its evolution inbetween. The EOS in the QGP phase for physical values of
the quark masses was taken from the quasiparticle-plus-confinement model, whereas
in the hadronic phase a smooth interpolation to a hadronic resonance gas was ap-
plied. The final state was chosen such as to comply with a large number of hadronic
measurements (particle abundances, rapidity and pT -spectra, HBT radii), the initial
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state follows from geometrical overlap considerations and the measured entropy per
baryon. A novel feature of our approach was the modelling of the volume evolution
by a time-dependent acceleration profile proportional to the ratio p/ε that naturally
incorporates the soft point in the EOS at Tc. No more input was required, all other
characteristics (initial temperature and energy density, particle densities, temperature
and volume profile, duration of QGP phase, freeze-out volume etc) follow from there.
This procedure resulted, for the first time, in a thermodynamically self-consistent de-
scription of a fireball evolution in accordance with a multitude of lattice results and
hadronic final-state measurements. With initial temperatures well above Tc (420 MeV
at central

√
s = 200 AGeV, 310 MeV at central

√
s = 17.4 AGeV and still 230 MeV at√

s = 8.4 AGeV), the present scenario supports the hypothesis that the quark-gluon
phase is actually reached, at a transient stage, in current heavy-ion experiments. The
life time of the QGP, τQGP = 4− 10 fm/c, is sizable compared to the total life time of
the fireball which lies in the range 14− 18 fm/c, and larger than predicted in previous
approaches – a consequence of our realistic EOS and acceleration profile. The relative
weight of the QGP with respect to the subsequent hadronic phase decreases, of course,
with decreasing c.m. energy. With such a large QGP life time, we next explored if the
QGP leaves any distinct traces in experimental data and focussed on two observables
that are sensitive to different stages of the fireball expansion: dilepton radiation at
low invariant masses and J/ψ suppression. The fireball setup was kept fixed with no
extra adjustable parameter.

Chapter 4 featured the calculation of dilepton rates where experimental data exist for
SPS Pb(160 AGeV)+Au and Pb(40 AGeV)+Au. Above Tc, we have calculated the
photon spectral function (that enters the rate) within the quasiparticle model to one-
loop order, i.e. qq̄ → γ∗ → e+e−. Gross features of the confinement process have been
taken into account by a suppression of dilepton radiation near the phase transition by a
factor C(T )2. The first preliminary lattice calculations of the vector spectral function
have now indeed confirmed – on a qualitative basis – our calculation. Below Tc, the
dominant contributions to dilepton radiation are pion and kaon annihilation processes
that are enhanced by the formation of intermediate vector mesons, e.g. ππ → ρ → γ∗,
πππ → ω → γ∗ or KK̄ → φ → γ∗. These processes have been evaluated at finite
temperature and baryon density using Vector Meson Dominance combined with Chi-
ral Dynamics, utilising results of earlier calculations. At the phase transition, this
perturbative hadronic description cannot be applied, but no better information exists
to date.

Folding the spectral function with the fireball evolution, we have achieved a good de-
scription of the SPS CERES/NA45 data at the two mentioned beam energies, both for
the total rate and in the pT -separated bins. A slight overshooting at very low invariant
masses M < 200 MeV could be traced back to the behaviour of the rho meson spectral
function at large three-momentum where its approximation by the zero momentum
spectrum clearly breaks down. As found in previous approaches, the proposed dilep-
ton excess in the low mass region at SPS is not a direct signal from the QGP, it can be
explained by non-trivial, yet conventional hadronic physics, mainly collisional broad-
ening of the rho meson. The apparent duality of the hadron and parton spectra can,
however, be regarded as a precursor of chiral symmetry restoration accompanying the
deconfinement process: close to the transition, it will not be possible to disentangle a
very broad rho meson from a continuous, perturbative qq̄ spectrum. So in that sense,
the dilepton rate is not an indicator of the QGP itself, but rather an indicator of the
phase transition and the associated symmetry restoration.

127



7 Summary and Conclusions

The experimental resolution in the region where the QGP would presumably shine
most prominently is unfortunately too coarse at the moment to extract a conclusive
result. The situation at RHIC, where no data exist yet, might improve: there is a
window above 1 GeV and the region which will ultimately be filled by semileptonic
decays of charm mesons, where the QGP radiation will radiate dominantly, and RHIC
will cover that energy range. The QGP shows up in an indirect and subtle way in
the SPS dilepton rate, though, because a purely hadronic framework would not be
successful in describing the data within our outlined approach. The relative strength
of hadronic contributions to the high mass region and the low mass region is quite
different as compared to those of the QGP. Purely hadronic scenarios which are able
to account for the low mass region would necessarily fail in the high mass region and
vice versa.

Further improvement on the theory side is not straightforward at this stage. The
future clearly requires reliable calculations of both hadronic and partonic sources of
lepton radiation, reducing the model dependence in the hadronic sector and improving
convergence of the rate in the partonic sector. Due to the highly non-perturbative na-
ture of the transition, this can quite possibly only be achieved by lattice calculations
of the vector (photon) spectral function. Since the spectrum is a dynamical quantity,
lattice theorists presently have, however, to rely on indirect means to extract it (such
as the maximum entropy method), which in turn introduces additional uncertainties.
The resolution and background estimates of current dilepton experiments are still in-
sufficient to distinguish between models for in-medium modifications of hadrons. The
general fireball set up, as it stands, must be improved by introducing a more sophisti-
cated spatial profile, taking into account radial inhomogeneities (to account for elliptic
flow) or more realistic longitudinal baryon rapidity distributions (to improve the RHIC
fireball). Detailed comparisons with more involved hydrodynamical calculations must
be performed. We believe that the fireball modelling should advance on all sides more
or less equally. Fixing one particular item on a 10% level will do no good if another
item is still allowed to vary by 50% (if both have comparable influence on data). Im-
provement on the three-momentum behaviour of the rho meson spectral function, for
example, as mentioned above, seems therefore not to be a very pressing issue at the
moment.

In chapter 5, we have applied the quasiparticle and fireball models, successfully used
to describe dilepton data in chapter 4, to the phenomenology of charmonium Ψ (J/ψ
and χc) suppression in heavy-ion collisions. We solved a Boltzmann equation with a
collision term containing both gain and loss terms, representing Ψ formation due to
coalescence of c and c̄ quarks and Ψ dissociation due to collisions with gluon quasi-
particles, respectively. The elementary process Ψg → cc̄ was modelled by a simplified
dissociation cross section which considered Ψ as a Coulomb bound state, the corre-
sponding back reaction cc̄ → Ψg was obtained by detailed balance. For SPS Pb(158
AGeV)+Pb collisions, we were able to describe the NA50 suppression data very well
as a function of centrality, without additional new ingredients. Coalescence was found
to play no role at SPS energies. Since the hadronic phase exists only at moderately low
number densities, it has no bearing on the Ψ evolution and cannot explain the present
data without introducing anomalously large cross sections. The partonic interaction
cross section, as calculated, is comparable with common hadronic ones, therefore it
is solely the large gluon density (that follows uniquely from the confinement model)
in the initial stage of the fireball evolution that is responsible for the suppression –
a direct signal of the deconfinement process. We also considered extrapolations up
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to RHIC energies where, despite the more extreme conditions as compared to SPS, a
sizable fraction of Ψ still survives. Although a clear trend towards more copious Ψ
production was found, no significant net enhancement is present in the end. This ten-
dency is confirmed by first preliminary results from the PHENIX experiment. Several
improvements of our approach are possible: as in the dilepton case, a more constrained
description of the expanding fireball at RHIC conditions is needed. Only then our esti-
mates can be regarded as predictions. The initial conditions for charm and Ψ evolution
should take into account the details of the produced spectra and provide a better in-
corporation of the (at this stage poorly known) nuclear effects.

To summarise the data-driven part of this work:

• Under the assumption of thermalisation, it is likely that the QGP has been
produced, at a transient stage, in current heavy-ion collisions at CERN/SPS
and RHIC.

• Data of low mass dilepton emission (which are sensitive to the late stage) and
charmonium suppression (which are sensitive to the early stage) are successfully
and consistently described by the quasiparticle model including thermodynamic
aspects of confinement, in combination with a fireball fixed by freeze-out hadron
observables only.

• The tendency towards chiral symmetry restoration shows up in the dilepton data
through the flattened hadronic spectral function. The deconfinement process is
responsible for J/ψ suppression.

• The QGP does not, as initially anticipated, leave extremely pronounced signa-
tures in data, it rather shows up in subtle ways: a purely hadronic description
cannot reproduce these data without introducing anomalous modifications of
standard physics.

Two further immediate tests of our model are feasible: first, data on direct (real)
photons exist from the WA98 collaboration at CERN/SPS in the region 1 GeV < pT <
4 GeV. The calculation of a direct photon rate from the confinement model (that
will involve interactions among the quasiparticles) can be performed because a clear
separation of thermal, T = O(200 MeV), and photon, pT = O(2 GeV), scales exists.
Second, jet quenching will be a prominent candidate for probing the QGP at RHIC.
Energy loss of high-energetic particles is largely governed by partonic particle densities
we can provide a reliable expression for. In both calculations, the fireball has to be
the same as in the dilepton case, to obtain maximal consistency.

Chapter 6, finally, still dealt with QCD phenomenology, albeit in a more conceptual
fashion. Asymptotic freedom lies at the heart of the QGP, but its explicit perturbative
derivation, e.g. within finite temperature renormalisation group equations, has proven
unexpectedly subtle, even for small couplings, and has not been achieved so far in a
concise manner. Although the temperature region with g � 1 is of no relevance to
current and future experiments, it is remarkable that lattice calculations of the Debye
mass do indeed indicate a clear logarithmic running of g(T ) at high temperatures and
long distances, as we have discussed in detail in section 6.2. We evaluated the energy
shift of the vacuum to leading order in the small coupling constant after applying
an external (chromo)magnetic field H, extending the approach of refs. [153, 154] to
finite temperature. From the result, we extracted an effective, temperature- and scale-
dependent coupling constant αeff(H,T ) for QED and QCD.
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In a first approximation, neglecting O(g) corrections to the single Landau levels and the
density of states, we are able to recover the HTL results for the effective coupling in a
transparent way. This has not been achieved by previous approaches. In what followed,
we showed explicitly that the partial resummation of hard modes only is insufficient
and that it does not capture all important effects. Taking into account all contributions
to order g2, we demonstrated for the first time in a self-contained calculation that, for
long wavelength modes, the running coupling at finite temperature indeed becomes
very simple: taken together with its zero temperature counterpart, it does not depend
on the external scale H anymore and follows from the zero temperature renormalisation
group equations, with the momentum scale replaced by a suitable thermal scale that
seems to follow from the lowest, non-zero Matsubara frequencies and is then, of course,
different for quarks and gluons. This distinction of thermal momentum scales for
fermions and bosons in the effective coupling is another new outcome of our calculation.
The same formal result αeff = α(〈k〉 � πT ) was also found in QED, supporting the
setup of the calculation. All collective medium effects over large distances R � 1/T
can therefore be subsumed in a running coupling constant that does not depend on R.

The inclusion of the lowest lying Landau mode (LLL) turned out to be crucial in the
calculation. When it is neglected, an unphysical Landau pole appears at small k/T .
The failure of various thermal renormalisation group approaches to obtain the correct
running of the coupling may have its root there. In addition, the thermal imaginary
part of the LLL exactly cancels its well-known zero temperature counterpart within
our approach and removes the former instability of the vacuum, a welcome feature.
QCD thermodynamics at high temperatures and large distances seems indeed to be
simple, purely perturbative and asymptotically free, which perfectly closes the circle
with eq.(1.1).

To draw a final conclusion, it is worthwhile to go back to the quotation at the beginning
of this chapter: the advice of the king is certainly apt not only for Alice, but also for
heavy-ion theorists. URHIC physics is a growing field – not only in numbers of people
working on it, but also in understanding. It is still far from maturity. Whereas there
is mostly general consensus about the orders of magnitude involved, more specific
predictions often differ by vast amounts. In view of this, it is necessary to really begin
at the beginning: gather everything that is known, build a consistent model and pin
down all assumptions. From there on, go right through to the end and try to describe
as much experimental data as possible. It is of no use to stop somewhere inbetween
after having successfully fitted one single observable. At the end, check where the
model works and where it fails. Go back to the beginning, try to improve on the
weak points and iterate the process. Ultimately, a consistent picture of the elusive
quark-gluon plasma will hopefully emerge.
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A Thermal Spectral Functions

Here we list some general properties of the spectral function [8]. For a bosonic Heisen-
berg field operator φ(xµ), the thermal propagator is defined by

iD(x) = θ(x0)〈φ(x)φ(0)〉β + θ(−x0)〈φ(0)φ(x)〉β = (A.1)
= θ(x0)D>(x) + θ(−x0)D<(x). (A.2)

The argumentation for fermionic fields runs similar, taking into account their Grass-
mann nature. The spectral function is derived from the field commutator as

ρ(x) = 〈[φ(x), φ(0)]〉β = D>(x) − D<(x). (A.3)

The retarded and advanced propagators follow as

iDR(x) = θ(x0)ρ(x) = θ(x0)(D>(x) − D<(x)), (A.4)
iDA(x) = −θ(−x0)ρ(x). (A.5)

In equilibrium, D> and D< are not independent, but connected by the Kubo-Martin-
Schwinger (KMS) relation. In Fourier space,

D>(k) = D<(−k) = eβk0
D<(k). (A.6)

Hence,

D>(k) = ρ(k)[1 + fB(k0)], (A.7)
D<(k) = ρ(k)fB(k0), (A.8)

and the full thermal propagator – both in the imaginary- and the real-time formalism
– can be reconstructed once ρ(k) is known. From the analytical properties of the
Feynman propagator follows that the spectral function in an interacting theory can be
derived from its imaginary part

ρ(k) = −2 sgn(k0)ImDF (k, T ). (A.9)

Assuming a Schwinger-Dyson ansatz for the full Feynman propagator,

DF (k) =
1

k2 − m2 − Π(k, T ) + iε
(A.10)

with the Feynman self-energy Π(k, T ), the (real) spectral density reads

ρ(k) = −2 sgn(k0)
ImΠ(k, T )

[k2 − m2 − ReΠ(k, T )]2 + [ImΠ(k, T )]2
, (A.11)

a Breit-Wigner shape in the time-like region k2 > 0. If ImΠ is non-vanishing for
space-like k2, a continuum contribution – usually associated with damping processes –
is also part of the spectrum. The spectral function therefore contains information on
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the fundamental excitations and their particle properties (pole mass, damping width).
If the imaginary part is small, ρ(k) defines a sharply peaked quasiparticle structure.
Especially, for ImΠ → 0,

ρ(k) = 2π sgn(k0)δ(k2 − m2 − ReΠ(k, T )). (A.12)

If, in addition, ReΠ is only weakly momentum-dependent, the effect of the medium on
the propagating particle is mainly a thermal mass shift. The temperature-independent
spectral function for a free field theory follows immediately as

ρ(k)free = 2π sgn(k0)δ(k2 − m2).

More explicitly, eq.(A.12) can be recast as a sum of in-medium particle (k0 > 0) and
antiparticle (k0 < 0) contributions:

ρ(k) = 2π
[
Z+(k)δ(k0 − ω(k, T )) − Z−(k)δ(k0 + ω(k, T ))

]
, (A.13)

where ω(k, T ) are the solutions of the implicit equation

D−1
F (k0 = ω,�k, T ) = 0, (A.14)

and define the dispersion relation of the medium-modified particles. The residues Z±
gauge the strength of the pole excitations by

Z± =

[
∂D−1

F (k0,�k, T )
∂k0

∣∣∣∣∣
k0=±ω

]−1

. (A.15)

At vanishing temperature, the imaginary part of the self-energy is connected with
the physical decay rate of the particle. Put in a heat bath, particles will acquire
a finite thermal damping width by their interactions with the medium. However,
since a system in thermal equilibrium does not change anymore as time passes, the
interpretation of the damping width is different now – otherwise the medium would
dissolve. Using the Kobes-Semenoff cutting rules for bosons, the imaginary part of the
self-energy is related to the creation rate Γ< and decay rate Γ> by

ImΠ(k, T ) = −k0
(
Γ>(k, T ) − Γ<(k, T )

)
.

In thermal equilibrium, Γ> and Γ< are connected by the KMS-relation: Γ> = eβk0
Γ<.

The recombination of particles encoded in Γ< is a pure plasma effect and therefore
vanishes as T → 0. If the plasma is weakly disturbed out of equilibrium, i.e. if the
perturbed momentum distribution of the particles deviates only slightly from the Bose-
Einstein distribution, it can be shown by a Boltzmann-like equation that Γ = Γ>−Γ<

describes the inverse timescale 1/τ at which the system approaches its equilibrium
state. Then, the damping rate γ of a particle becomes

γ(k, T ) = − ImΠ(k, T )
2|k0| . (A.16)
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B Hard Thermal Loop Self-Energies

This chapter summarises results on the Hard Thermal Loop (HTL) self-energies that
are referred to throughout the main text. We focus mainly on non-abelian gauge
theories with Nc colours and Nf flavours, but quote the corresponding expressions for
QED where necessary.

B.1 Gauge boson HTL self-energies

For gauge bosons, the self-energy Πµν(k) =
(
gµν − kµkν/k2

)
Π̄(k2) is transverse at

zero temperature due to current conservation. At finite temperature or baryon density,
Lorentz invariance is formally broken by the existence of a preferred frame of reference,
namely the rest frame of the heat bath or matter, respectively. A Lorentz-invariant
framework can be recovered by introducing the four-velocity of the matter uµ which
becomes (1,�0) in its rest frame. Now Πµν(k) acquires a longitudinal component

Πµν(k;T ) = −PT
µν(k, u) ΠT (k, u;T ) − PL

µν(k, u) ΠL(k, u;T ).

Factors of k0 appearing in the distribution functions which explicitly break Lorentz
invariance are now substituted by factors of w = kµuµ. The generalisation of the
three-momentum is k̄ =

√
w2 − k2 which reduces to |�k| in the rest frame.

The two independent projection tensors are

PT
µν = gµν − kµkν

k2
+

k2

k̄2
ũµũν , (B.1)

PL
µν = −k2

k̄2
ũµũν , (B.2)

where ũµ = uµ − wkµ/k2. The two scalar invariants are given by

ΠT (k, u) =
1
2

(
Πµ

µ +
k2

k̄2
uµuνΠµν

)
, (B.3)

ΠL(k, u) = −k2

k̄2
uµuνΠµν . (B.4)

The same procedure is applied to obtain the free gauge boson propagator which has
the general structure

DF
µν = PT

µνDF
T + PL

µνDF
L +

iξ

k2

kµkν

k2
, (B.5)

ξ being the gauge parameter. Resumming the self-energies by use of a Dyson equations
hence modifies the transverse and longitudinal components of the propagators, and the
free propagators DF

L,T are replaced by

iDT (k) =
1

k2 − ΠT (k, T )
and iDL(k) =

1
k2 − ΠL(k, T )

. (B.6)
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(a) (b) (c)

The gluon self-energy

The self-energy can be calculated to one-loop order under the assumption of soft
external momentum k0, |�k| � T (see diagrams (a), (b) and (c)), and the leading HTL
terms are given by the expressions

ΠL(k0,�k) = m2
D

[
1 − k0

2|�k|
log

(
k0 + |�k|
k0 − |�k|

)]
, (B.7)

ΠT (k0,�k) =
1
2

[
m2

D +
(k0)2 − |�k|2

|�k|2
ΠL

]
. (B.8)

where

m2
D ≡

(
Nc +

Nf

2

)
g2T 2

3
(B.9)

is the Debye screening mass in the presence of Nf massless flavours. If the flavours
carry conserved charges,

m2
D → m2

D +
∑

f

g2µ2
f

2π2
(B.10)

with the chemical potentials µf . Amazingly, the result in QED – which consists only
of diagram (a), the electron loop – has exactly the same structure with the only
modification

m2
D → e2T 2

3
, (B.11)

where e stands for the electromagnetic coupling.

The poles of the longitudinal and transverse propagators in (B.6) yield the dispersion
law for travelling waves in the plasma, using (A.14),

ω2
L,T = �k2 + ReΠL,T (ωL,T ,�k). (B.12)

The numerical solution for D−1
T = 0 and D−1

L = 0 is shown in figure (B.1). The
transverse mode describes the propagation of the zero-temperature gluons, modified
by the medium. Indeed, for |�k| � mD, the transverse dispersion relation becomes that
of a massive free particle with a T -dependent mass,

ω2
T � �k2 + m2

∞, (B.13)

where we defined the asymptotic mass m∞ by

m∞ =
mD√

2
. (B.14)

Since the mass is generated dynamically, gauge invariance is not violated.
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Figure B.1: The location of the zeros of D−1
T (spatially transverse gauge bosons) and of D−1

L

(longitudinal plasmons) in quadratic scales such as to show propagating modes and screening
phenomena on one plot. The dashed line shows the dispersion relation of a free massless
boson. Figure and caption adapted from [173].

The longitudinal excitation is a pure collective plasma effect, commonly dubbed plas-
mon, and approaches the free dispersion relation exponentially since, for |�k| � mD,

ωL � |�k|
[
1 + 2 exp

(
−

�k2 + m2
∞

m2∞

)]
. (B.15)

Both modes start for �k = 0 from a common, non-zero ω(0), the plasma frequency

ωpl =
mD√

3
. (B.16)

The region ω < ωpl gives information about the screening of the chromomagnetic and
chromoelectric fields. In particular, the static limit ω = 0 yields an inverse screening
length of mD for the electrostatic mode, arising from the longitudinal mode, whereas
the magnetostatic mode remains unscreened: mM = 0.

The spectral function takes the form

ρL,T (k) = 2πZL,T (k)
{
δ(k0 − ωL,T ) − δ(k0 + ωL,T )

}
+ βL,T (k). (B.17)

As elucidated in appendix A, the spectrum of the medium-modified particles consists
therefore of quasiparticle modes with vanishing damping width (since the time-like
imaginary part is zero at this loop order1), and a continuum contribution βL,T that
is only present for space-like momenta k2 < 0. It gives rise to a large imaginary part
below the light cone that is interpreted as Landau damping, the scattering of hard loop
particles off soft gauge bosons. It is important to note that for hard external momenta,
k0, |�k| ≥ O(T ), (B.7) and (B.8) are not valid anymore, except for |k2| � T 2. However,
the poles of the HTL propagators DL and DT exactly lie in that region, hence they

1This can be naturally interpreted in QED as the infinitely strong Pauli blocking of the thermal
loop particles. For a virtual photon at rest, ImΠ(k0, T ) = ImΠ(k0, T = 0)[1 − 2fD(k0/2)] from
the cutting rules, and in the HTL approximation fD(k0/2) � 1/2 −O(k0/T ).
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still yield the correct leading order behaviour of the quasiparticle modes even for hard
momenta.

The residues Z read for large momenta |�k|

ZT (k) � 1

2|�k|
and (B.18)

ZL(k) � 2|�k|
m2∞

exp

(
−

�k2 + m2
∞

m2∞

)
. (B.19)

Since the longitudinal mode is a collective effect, its contribution is only important
for small |�k|, for large momenta the mode decouples with exponentially vanishing pole
strength. The transverse residue approaches the T = 0 result. Hence, physics that is
dominated by hard thermal modes may be describable in terms of in-medium versions
of the physical transverse gauge bosons only.

The time-like damping width

γ(�k, T )L,T = − 1
2ωL,T

ImΠL,T (ωL,T ,�k, T ) (B.20)

becomes non-zero only at order g(gT ) in the HTL calculation. For an excitation at
rest, ΠL = ΠT , and the gauge-independent result reads, for Nf = 0,

γ � 0.09 Ncg
2T. (B.21)

The ratio of the damping width of the gauge boson over its mass determines the range
of validity of the quasiparticle picture of the plasma. For pure glue theory, γ/ωpl �
0.5g for SU(3). Realistic values for g in a QGP are of the order 1, so the damping
is non-negligible, but nevertheless does not invalidate the picture of an identifiable
quasiparticle pole, at least to leading order.

B.2 Fermion HTL self-energies

The self-energy for massless fermions at finite temperature has the general form

Σ(k0,�k) = a(k)γ0 + b(k)[�̂k · �γ], (B.22)

where a and b are c-functions and �̂k = �k/|�k|. In the one-loop HTL approximation,

a(k) =
m2

f

2|�k|
log

(
k0 + |�k|
k0 − |�k|

)
, (B.23)

b(k) =
1

|�k|
[
m2

f − k0a(k)
]

(B.24)

with the thermal fermion mass

m2
f ≡ N2

c − 1
16Nc

g2T 2. (B.25)
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The fermion self-energy

At finite µf ,

T 2 → T 2 +
µ2

f

π2
. (B.26)

As in the gauge boson case (B.9), all T - and µ-dependence is subsumed in the thermal
mass (B.25). Again, the QED result has the same structure with

m2
f → e2T 2

8
. (B.27)

The fermion propagator can be decomposed in the form

S(k) =
1
2
∆+

(
γ0 + �̂k · �γ

)
+

1
2
∆−

(
γ0 − �̂k · �γ

)
, (B.28)

with ∆± = −(k0∓{|�k|+Σ±})−1 and Σ± = b±a. The subscripts (+) and (−) refer to
quasiparticles with positive and negative ratio χ of helicity over chirality, respectively.
At T = 0, the theory is chirally invariant in the limit of vanishing fermion masses, and
fermions with positive energy have χ = +1. The other solution χ = −1 that emerges
at finite T constitutes a purely collective mode, the plasmino.

As in the previous section, the in-medium version of the physical T = 0 mode resembles
a free massive particle for large momenta |�k| � mf ,

ω2
+ � �k2 + m̂2

∞ (B.29)

with the fermionic asymptotic mass

m̂∞ =
√

2 mf . (B.30)

The collective plasma mode approaches the lightcone exponentially fast since

ω− � |�k| + 2|�k|
g

exp

(
−2�k2

m2
f

)
. (B.31)

Calculating the spectral function yields

ρ±(k) = 2π[Z±(k)δ(k0 − ω±) + Z∓δ(k0 + ω∓)] + β̂±(k), (B.32)

very similar to the gauge boson case. The continuum β̂±, again, contributes only below
the light cone as Landau damping. The residues for large momenta take the form

Z+(k) � 1 +
2|�k|2
m2

f

[
1 − log

(
2|�k|2
m2

f

)]
and (B.33)

Z−(k) � 2|�k|2
gm2

f

exp

(
−2|�k|2

m2
f

)
, (B.34)
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Figure B.2: The location of the zeros of ∆−1
± in the HTL approximation in quadratic scales.

The dashed line shows the dispersion relation of a free massless fermion. Figure and caption
adapted from [173].

indicating that for |�k| � mf , the collective mode decouples, like the plasmon. The
(+) mode rapidly moves towards the free particle residue, and the only effect of the
heat bath is the dynamical generation of a thermal mass that does not break chiral
symmetry.

For smaller momenta, a minimum occurs in the (−) dispersion relation at |�k|/mf � 0.4.
This is not a relict of the HTL approximation, but can be traced back to the generic
form of the fermionic self-energy, eq.(B.22) and hence is expected to occur – though
not necessarily at the same position – in any evaluation of Σ [89]. The feature of
a vanishing group velocity at finite �k causes the Van Hove singularities that lead to
distinct peaks in dilepton rates.
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C Integral Expansions

Here we present the formulas used to evaluate the δ-dependent integrals appearing in
eqs.(6.48) and (6.41). Fermionic integrals of the form

fn(y) =

∞∫
0

dx
xn−1√
x2 + y2

1

exp(
√

x2 + y2) + 1

can be expanded for small y (note our slightly different convention compared to [9]).
Using the identity

1
ez + 1

=
1
2
−

∞∑
n=−∞

z

z2 + (2n + 1)2π2

and multiplying each term by x−ε, a series expansion of the integral is obtained. The
potentially diverging terms can be evaluated within dimensional regularisation, and
after integrating term by term and letting ε → 0 at the end, one obtains

f1(y) = −1
2

[
log
( y

π

)
+ γ
]

+ . . . , (C.1)

f3(y) =
π2

12
+

y2

4

[
log
( y

π

)
+ γ − 1

2

]
+ . . . and (C.2)

f5(y) =
7π4

120
− π2

8
y2 − 3

16
y4

[
log
( y

π

)
+ γ − 3

4

]
+ . . . , (C.3)

where γ = 0.5772... is the Euler-Mascheroni constant. For bosons,

hn(y) =

∞∫
0

dx
xn−1√
x2 + y2

1

exp(
√

x2 + y2) − 1
.

With the corresponding identity

1
ez − 1

=
1
z
− 1

2
+ 2

∞∑
n=1

z

z2 + (2πn)2
,

the bosonic expansions read

h1(y) =
π

2y
+

1
2

[
log
( y

4π

)
+ γ
]

+ . . . , (C.4)

h3(y) =
π2

6
− π

2
y − y2

4

[
log
( y

4π

)
+ γ − 1

2

]
+ . . . and (C.5)

h5(y) =
π4

15
− π2

4
y2 +

π

2
y3 +

3
16

y4

[
log
( y

4π

)
+ γ − 3

4

]
+ . . . (C.6)
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For the evaluation of derivative terms, we need the leading log(y) behaviour of integrals
such as

g±(y) = g±1 (y) + g±2 (y) = (C.7)

=

∞∫
0

dx

(
1√

x2 + y2
− 1

1 ± exp(−
√

x2 + y2)

)
1

exp(
√

x2 + y2) ± 1
.

The expansion of the first term in brackets, g±1 , is known since g+
1 = f1 and g−1 = h1.

For the evaluation of the second a trick is convenient. Introduce a parameter α to
write

g±2 (y;α) = −
∞∫
0

dx
exp(α

√
x2 + y2)

(exp(α
√

x2 + y2) ± 1)2
. (C.8)

Obviously, g±2 (y; 1) is the sought quantity. Now g±2 (y;α) can also be written as

∂

∂α

 ∞∫
0

dx
1√

x2 + y2

1

exp(α
√

x2 + y2) ± 1

 =
d

dα
g±1 (αy). (C.9)

Expanding eq.(C.8) for small y hence yields

g−2 (y;α) = − 1
α2

π

2y
+

1
2α

+ . . . for bosons and (C.10)

g+
2 (y;α) = − 1

2α
+ . . . for fermions. (C.11)

Setting α = 1 and putting the pieces together, the leading-log behaviour of eq.(C.7) is

g+(y) = −1
2

[
log
( y

π

)
+ γ + 1

]
+ . . . for fermions and (C.12)

g−(y) = +
1
2

[
log
( y

4π

)
+ γ + 1

]
+ . . . for bosons. (C.13)
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