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Chapter 1

Introduction

The development of heavy ion accelerators towards greater beam intensities [1�3] o�ers
new possibilities for the physics of high energy density in matter. The present work
deals with cylindrical implosions driven by heavy ion beams. The intention is to study
the generation of high energy density in matter for fundamental research, e.g. equations
of state and transport properties of dense plasmas, and to explore the potential for
inertial con�nement fusion. This work is related to future research at the Gesellschaft
für Schwerionenforschung (GSI), Darmstadt.

When beams of energetic heavy ions (Ei = 10 � 1000MeV/u) are focused on solid
matter, they naturally deposit their energy in cylindrical volumes. Implosions of hollow
shells, which help to enhance the �nal energy density by means of cylindrical convergence,
have been studied sporadically for a long time [4�7]. The particular point of the present
work is to add an axial magnetic �eld (see Fig. 1.1), strong enough to suppress heat losses
in radial direction during implosion and central stagnation. Such magnetic �elds are
consistent with the cylindrical target geometry. They may compensate for the inherently
lower compression in cylindrical implosions, as compared to the spherical ones [8].

Heavy Ion
Beam
Driver

B

magnetic field

pusher

fuel plasma

Figure 1.1 Schematic view of a magnetized cylindrical target. The target consists of a metallic

tube �lled with fuel plasma at low density. An axial magnetic �eld (B) is applied externally.

The driving ion beam heats the outer part of the hollow cylinder; it expands radially and drives

the inner part of the tube (pusher) towards the axis, as indicated by arrows. A typical size of

the targets is approximately 1� 3mm in radius and 10� 30mm in length.
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2 1 Introduction

Magnetized Targets For Heavy Ion Fusion

Heavy ion beams are attractive drivers for inertial con�nement fusion (ICF) because of
the high e�ciency, the repetition rate and the reliability of accelerators. So far, targets
for heavy ion fusion (HIF), which is ICF with heavy ion beam drivers, have been studied
almost exclusively in spherical geometry. In order to achieve spherically symmetric im-
plosions, the fuel capsules are placed in so-called hohlraum cavities; as the cavities are
heated by driver ion beams, thermal x-rays are generated which drive the pellet implo-
sions. In this indirect-drive scenario [9], much energy is lost in the cavity. In contrast,
the present work is devoted to cylindrical implosions, which can be driven directly by a
single ion beam incident with high symmetry relative to the target axis. Another signif-
icant advantage of the cylindrical target geometry is that axial magnetic �elds can be
applied in order to reduce heat losses. This is the scheme of magnetized target fusion
(MTF) driven by heavy ion beams. The present thesis is the �rst systematic study of
this approach. Similar fusion schemes have been investigated earlier, but they use high
explosives [4] or lasers [5] to drive the implosions.

The purpose of such implosions is the same in spherical and cylindrical geometry,
namely to concentrate energy in a small amount of fuel in order to reach thermonuclear
fusion conditions. The ignition threshold of non-magnetized fuel can be given as a crite-
rion on fuel temperature T0 and density-radius product �R. For deuterium-tritium (DT)
fuel, one needs T0>�5�10 keV and �R>�0:2�0:3 g=cm2 for ignition [9]. In the presence of
a magnetic �eld, however, the ignition condition on �R relaxes substantially due to the
heat insulation. When the magnetic �eld is strong enough to con�ne also the trajectories
of alpha particles from nuclear reactions (then alpha particles can escape only along the
�eld lines), the ignition criterion on the �R product is strongly reduced [8], see Chapter 2.
This relaxation of the ignition threshold is a distinct property of magnetized ICF. It al-
lows to signi�cantly reduce the driver power required for MTF [8], while pulse energies
remain comparable to those required for non-magnetized ICF [10], see Chapter 5.

Due to the lower fuel densities at peak compression, the characteristic fuel burn times
in cylindrical targets are much longer than those in the spherical ones. Therefore, mass
con�nement is necessary for ignition and relies on heavy tampers. It is found in the
present work that the ignition condition for the fuel �R in magnetized cylindrical targets
depends strongly on the tamper, in particular on its material properties at the time of
stagnation [11], see Chapter 3. Energy, on the other hand, is con�ned by the magnetic
�eld. For that reason, magnetized target fusion (MTF) is an intermediate approach to
nuclear fusion between inertial con�nement and magnetic con�nement [12].

Hot-Spot Ignition

Hot-spot ignition is a method to achieve high energy gain in ICF targets by igniting the
fuel from a small spark, similar to the use of a match. Sustained burn then relies on the
propagation of a burn wave into a fuel reservoir. In cylindrical con�gurations, the burn
wave has to propagate along the target axis. Results of corresponding 2D simulations
have been published by Avrorin et al. [13] and are reproduced in Fig. 1.2. The present
work, on the other hand, is based on 1D simulations, which cannot treat the axial burn
wave; but they are su�cient to describe the dynamics of hot-spot formation. The present
work is therefore restricted to a study of ignition conditions, where the hot spot is viewed
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Figure 1.2 Numerical results for hot-spot ignition in cylindrical geometry, taken from Ref. [13].

(a) Initial con�guration for a detonation wave running along a DT fuel column. Region (1) is

the hot spot at �0 = 10; T0 = 10, where the fuel ignites. Regions (2) with �0 = 10; T0 = 0,

and (3) with �0 = 30; T0 = 0 correspond to the cold fuel into which the wave propagates (units

are g/cm3 for density � and keV for temperature T). (b) Temperature pro�les on the cylinder

axis for times t = 0:051 : : :3:06ns.

as an axially uniform sector of an extended cylindrical con�guration.

The cylindrical implosions considered in this work are relatively slow and it is a major
problem to reach ignition temperatures, due to the absence of strong shock heating.
Therefore, it is necessary to start from high initial fuel temperatures (50 eV or more)
which could be brought into the fuel from outside the target, e.g. by an axially incident
laser pulse. This is essentially the scheme of injected entropy, as suggested recently by
Caruso et al. [14].

Magnetized Implosion Experiments

Intense beams of heavy ions, planned for the near future at heavy ion accelerator labora-
tories like GSI, Darmstadt [1], may achieve magnetized implosion experiments at pulse
energies below 100 kJ and speci�c heating powers of 1TW/g. Magnetization e�ects would
manifest themselves in enhanced peak temperatures and corresponding neutron yields
from D2 fusion reactions. To prevent the rapid di�usion of magnetic �ux during the
implosions, it is necessary to provide certain minimum values of initial fuel temperature
and of the product (UR)0 of implosion velocity and initial fuel radius [15]. Still, a major
problem of magnetized implosions is the accumulation of fuel material in a 'boundary
layer' near the pusher. This mechanism is responsible for lower peak temperatures of
magnetized implosions, as compared to idealized implosions with uniform pro�les. The
boundary layer formation depends mainly on the driver pulse energy: the relative amount
of fuel mass in the boundary layer is found to decrease with increasing pulse energy, see
Chapter 4.

Stagnation Pressure Scaling

The last chapter of the present work deviates from the main line in that it deals with
a fundamental aspect of implosions on the basis of a highly idealized model. It analyzes
the stagnation pressure of converging �ows by means of a similarity solution [16] of the
ideal gas-dynamic equations.
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While this model is directly related to the topic of the present work because it helps
to understand general features of cylindrical implosions, the particular interest in the
similarity solution was triggered by recent work of Herrmann et al. [17] devoted to a
scaling of the ignition energy Eign of spherical ICF capsules. As pointed out by Atzeni
et al. [18], the similarity model provides a simple interpretation of Herrmann's results; it
yields a relation between the stagnation pressure of imploding hollow shells and external
parameters, such as drive pressure and properties of the imploding shell material. The
merits of the present work consist in deriving this formula for the �rst time analytically
and in general form [19].

Computer Simulations

The numerical results presented in Chapters 3�5 have been obtained by means of the one-
dimensional (1D) three-temperature Lagrangean magneto-hydrodynamics (MHD) code
DEIRA [15]. The code solves a 1D system of single-�uid dissipative MHD equations
in cylindrical geometry with a purely axial magnetic �eld, derived from the Braginskii
equations [20]. E�ects of the magnetic �eld on the transport coe�cients � including elec-
tron and ion heat conductivities, electrical conductivity, ion viscosity and alpha particle
di�usion � are accounted for. The physical model on which the code is based will be
described brie�y in Appendix A.



Chapter 2

Ignition Conditions (I) Power Balance

The principal objective of introducing a magnetic �eld into ICF targets is to reduce
the ignition threshold value of the fuel �R product at stagnation. First of all, this is
required by the cylindrical geometry itself, due to inherently lower volume compression
of cylindrical implosions. Secondly, by lowering the fuel �R at ignition, one can reduce
the driver power [8], which is a particularly sensitive issue for heavy ion drivers.

This chapter investigates ignition conditions in stagnating uniform deuterium-tritium
(DT) cylinders by means of a thermal power balance. The hot DT volume is assumed to
be tamped by a cold wall of either dense fuel or by external tamper material. Although
the tamper properties do not appear explicitly in the analysis below, its presence is
tacitly assumed to provide a sink for the energy carried away by the heat conduction
out of the hot DT. The most important contribution to the power balance at stagnation
is the heating by fast alpha particles from fusion reactions. An approximate formula for
the fraction of alpha particle energy which is re-deposited in the fuel volume is given in
Sec. 2.1.

The main conclusion is that a signi�cant reduction of the �R ignition is possible
only if the alpha particles become at least marginally magnetized, so that their Larmor
radius is smaller than the DT cylinder radius. This implies an ignition threshold of
BR>� 6� 105Gcm for the product of magnetic �eld B and fuel radius R at stagnation.

2.1 Energy Deposition by Alpha Particles

The energy deposition fraction f� measures the energy which is deposited in a cylindrical
DT plasma volume by thermonuclear alpha particles. The alpha particles originate from
the thermonuclear reaction D + T �! He4(3:52MeV) + n(14:07MeV). Their kinetic
energy E� corresponds to an initial velocity v0 = (2E�=m�)

1=2 = 1:3 � 109 cm/s. For
simplicity, the volume in which these reactions occur is assumed to be a uniform cylinder
of radius R, with an embedded uniform magnetic �eld B directed along the cylinder axis.
The quantity f�, with 0 � f� < 1, can be represented as a function of two dimensionless
parameters; they are chosen as

�R = R=l� and b = R=r�L ; (2.1)

5
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α B

Figure 2.1 Schematic view of a magnetized, uniform fuel cylinder. The curved dotted line

indicates the trajectory of an alpha particle after its birth in the fuel volume. The trajectory is

bent by the magnetic �eld and may eventually leave the cylinder.

where l� is the mean free path of the alpha particles given by Eq. (2.14) below. Their
Larmor radius is r�L = v0=!�, where !� = 2eB=m�c denotes the Larmor frequency of
the alpha particles in the magnetic �eld B [20].

Following Basko et al. [8], the energy deposition fraction f� can be calculated by
integrating individual trajectories of alpha particles between the moment of their birth
and the time when they leave the fuel volume: such a trajectory is depicted schematically
in Fig. 2.1. Averaging over all possible birth positions and initial directions of the alpha
particles yields numerical results for f� as a function of cylinder radius R, fuel tempera-
ture T , and magnetic �eld B. This approach is equivalent to to solving the corresponding
transport equation for the distribution function of alpha particles, as described for ex-
ample in Ref. [21].

I. Asymptotical Behavior and Numerical Results

First of all, the special case of a non-magnetized plasma with b = 0 is considered. Here
the absorbed energy fraction f� is a function of one parameter �R = R=l� only. While
f� can be calculated analytically for spherical fuel volumes [22], this is not possible in
cylindrical geometry. Here only the asymptotical behavior in the limits of �R � 1 and
�R� 1 can be established analytically [8] as

f�( �R; b = 0) =

8><
>:

8

3
�R+O( �R2); �R� 1

1� 1

6 �R
+O

�
1
�R2

�
; �R� 1 :

(2.2)

Next, the qualitative dependence of f� on the magnetic �eld B is examined in the
limit R � l�, corresponding to �R � 1. In this case, all alpha particles born inside the
DT cylinder can be roughly divided into two groups: those propagating nearly radially
outwards, and those born in the narrow `capture cone' with small pitch angles. The latter
is de�ned as the angle between birth velocity of the alpha particle and the cylinder axis,
i.e. 0 < �<��c � 1, or 0 < ���<��c � 1. In the limit of a weak magnetic �eld, r�L � R, all
the `nearly radial' alphas escape the cylinder along almost straight trajectories, leaving
only a small fraction f�s / �R of their initial energy in the DT plasma. The alphas
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born within the capture cone deposit all their energy in the DT cylinder, so that their
contribution to f� is proportional to the solid angle occupied by the capture cone, i.e.
proportional to �2c . The width of the capture cone can be readily evaluated as

�c �

8>><
>>:

R

l�
; R� l� � r�L

R

r�L
; R� r�L � l� :

(2.3)

Therefore, the asymptotical behavior for the total absorbed energy fraction in the limit
of a weak magnetic �eld is given by

f�( �R; b) �

8>>>>>>><
>>>>>>>:

8

3
�R+O( �R2); R� l� � r�L (b� �R� 1)

8

3
�R+O(b2); R� r�L � l� ( �R� b� 1)

1�O

�
1

b

�
; r�L � R� l� ( �R� 1� b) :

(2.4)

In the limit of a very strong magnetic �eld, r�L � R, only a small fraction of alphas
born in a narrow surface layer of width r�L escape the DT cylinder.

Figure 2.2 shows the dependence of f�( �R; b) on b for three di�erent values of �R,
calculated numerically [8]. These results are in good agreement with the asymptotical
formulae of Eq. (2.4). In particular, it is clearly seen that the transition from the `optically
thin' limit of f� � 8 �R=3 � 1 in the non-magnetized case to a full absorption with
f� � 1 in the limit of strong magnetization, where b� 1, does indeed proceed along the
intermediate asymptote

f� ' 0:08 b2 : (2.5)

For practical applications, it is important to be aware of this intermediate asymptotical
regime.

II. Approximate Formula

In order to have a simple expression for the alpha energy deposition fraction f�, the
Padé approximant

f�(x�) =
x� + x2�

1 + 13x�=9 + x2�
(2.6a)

x�( �R; b) =
8

3

�
�R+

b2p
9b2 + 1000

�
; (2.6b)

is used, where �R ' 65:4 �RT
�3=2
keV , and b ' 3:7 � 10�6 BR (assuming cgs-units). This

expression has the following properties

� For the case of a non-magnetized plasma, when b = 0, the Padé formula conforms to
both asymptotic limits in Eq. (2.2), and never deviates from the numerical results
by more than 3:5%; the maximum deviation of 1� f� amounts to 10%.
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Figure 2.2 Energy fraction f� deposited by the thermonuclear alpha particles in a uniform

magnetized DT cylinder of radius R, plotted versus the fuel magnetization b / BR. Symbols

correspond to numerical results [8] at three di�erent values of the parameter �R, given in the

�gure. Dotted lines refer to the approximate formula (2.6) at corresponding values of b and R,

for de�nitions see Eq. (2.1). The dashed straight line refers to the asymptotic behavior described

in Eq. (2.5).

� The dependence on b in Eq. (2.6b) is chosen such as to describe both limits of b� 1
and b� 1 as given by Eq. (2.4), and to �t the numerical results shown in Fig. 2.2.
It has two numerical constants under the square root. The free term 1000 �ts the
numerical results along the intermediate asymptote (2.5), while the coe�cient 9 by
b2 is chosen on the basis of the di�usion approximation [8].

� The error of formula (2.6) is below 3% whenever f� < 0:05, but may become as
large as 50% for the values of f� = 0:1 � 0:5. It is not attempted to improve the
accuracy of Eq. (2.6) in the latter region, which corresponds to R ' r�L, because
this would make little sense from the practical point of view due to the re-entry
problem of the gyrating alpha particles.

� The results of the Padé expression (2.6) di�er strongly from those obtained by
simply reducing the alpha di�usion coe�cient of non-magnetized plasmas [20] by
a factor [1+ (!�=��)

2]�1, as for example assumed by Jones et al. [23]. The present
treatment goes beyond this simpli�ed approach.

A similar problem as the one described in this section has been treated earlier [21]
for the case of a uniform sphere embedded in a uniform magnetic �eld. This situation
is, however, qualitatively di�erent from the one considered here. Since each �eld line of
the uniform magnetic �eld pierces the spherical surface of the DT volume, the deposited
alpha energy fraction f� / �R remains signi�cantly below 1 for �R � 1 even in the
limit of an in�nitely strong magnetic �eld. In the case described here, the �eld lines run
parallel to the surface of the DT volume. For this reason, f�( �R; b) approaches unity in a
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su�ciently strong magnetic �eld for arbitrarily small �R� 1.

2.2 Thermal Power Balance in the Fuel Volume

The thermal power balance in magnetized fuel volumes at stagnation is governed by
three physical processes: energy deposition by alpha particles �analyzed in the previous
section� acts to heat the fuel material; thermal conduction from the hot fuel into the cold
tamper material, as well as radiative losses, act to cool the fuel material. If conduction
and radiative losses from the fuel are too large, ignition never occurs. Only if the energy
deposition by the thermonuclear alpha particles exceeds the losses, the fuel can be burnt
e�ectively.

A simple analytic model [24] can help to illustrate these requirements in a qualitative
manner. The net speci�c heating rate of the fuel at stagnation can be written

c0
dT

dt
= qtn � qbr � qhc ; (2.7)

where c0 = 1:16 � 1015 erg g�1keV�1 is the heat capacity of equimolar DT,

qtn = 8:18 � 1040 � h�viDT f� (erg g�1 sec�1) (2.8)

is the rate of thermonuclear heating by alpha particles, where h�viDT is the fusion reac-
tion rate averaged over a Maxwellian distribution. An approximate formula for h�viDT
is given in Appendix A. Further,

qbr = 3:11 � 1023 �T
1=2
keV (erg g�1 sec�1) (2.9)

is the rate of bremsstrahlung cooling, and

qhc =
2(�e + �i)kT

�R2
(2.10)

is the heat conduction energy loss. Heat balance Eq. (2.7) is written for cylindrical fuel
volumes surrounded by either a cold metallic tamper or a cold dense fuel shell at the
time of maximum compression. At this time, the power of PdV work against the hot fuel
is zero. A remarkable property of the heat balance equation is that the ignition condition
dT=dt > 0 can be expressed by a relationship between the parameters �R and T only.
Therefore, a two-parameter family of targets with di�erent masses and temperatures can
be described by a single ignition curve in the �R; T plane. The graphical representation
of these ignition boundaries is called Lindl-Widner (LW) diagram [25].

A key issue of the present analysis is to investigate how the ignition boundary in
the �R; T plane for uniform DT cylinders at stagnation is in�uenced by the presence
of a strong magnetic �eld. With one more parameter B to characterize the fuel state,
one expects a single ignition boundary in the �R; T plane to become a one-parameter
family of ignition curves. The topology of the ignition domain depends on the speci�c
choice of the parameter which is kept constant along each ignition curve. Figures 2.3�2.5
below illustrate three di�erent choices of the 'ignition curve parameter', leading to three
di�erent topologies of the LW diagrams.
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Figure 2.3 Thermal balance of magnetized DT cylinders in the �R; T plane. The solid curves

are the ignition boundaries calculated from dT=dt = 0 in Eq. (2.7). They are shown for four

�xed values of the parameter B=�, given near each curve in units of G cm3/g. The corresponding

ignition domain, where dT=dt > 0, is indicated forB = 0. The dotted curve illustrates the e�ect

of synchrotron radiation losses at fuel density � = 1 g/cm3 and magnetic �eld B = 108G. These

values correspond roughly to the parameters of a magnetized ICF target at stagnation; note

that implosion A in Chapter 5 operates at B=� = 5� 107Gcm3/g, see Table 5.1. The dashed

arrow indicates how the fuel state would advance towards the ignition boundary in the process

of a quasi-adiabatic implosion.

In Fig. 2.3, the ignition curve parameter is taken to be the ratio B=�. This is a natural
choice in view of the functional form of the Braginskii formulas [20] for the electron and
ion heat conduction coe�cients in the presence of a magnetic �eld; these formulas depend
on the ratio B=� and the temperature T . The parameter B=� is also most appropriate
because it is a constant of motion for the interesting case of quasi-adiabatic implosions, cf.
Chapter 4. Note that alternative ignition curve parameters can give physically interesting
results as well. Two examples will be discussed in Sec. 2.4.

For a neutral plasma of hydrogen isotopes with particle density n = ne = ni the
Braginskii heat conduction coe�cients assume the form

�e =
nkT�e
me

11:92 + 4:664x2e
3:770 + 14:8x2e + x4e

; xe = !ce�e ; (2.11)

�i =
nkT�i
mi

2:645 + 2x2i
0:677 + 2:70x2i + x4i

; xi = !ci�i ; (2.12)

where !ce = eB=mec, and !ci = eB=mic are, respectively, the electron and ion cyclotron
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frequencies in the magnetic �eld B, while

�e =
3
p
me(kT )

3=2

4
p
2�e4nLe

; �i =
3
p
mi(kT )

3=2

4
p
�e4nLi

(2.13)

are the electron and ion collision times [20]. For the corresponding Coulomb logarithms,
�xed values Le = 7 and Li = 9 are used, roughly corresponding to a DT plasma with
� = 1 g/cm3 and T = 10 keV. Under the conditions of interest, the ion heat conduction
is no less important than that by electrons; this is due to the fact that one has �i � �e
in the strongly magnetized case when !e�e � 1 and !i�i � 1.

The fraction f� of the alpha particle energy deposited in the DT region is evaluated
from Eq. (2.6). The required formula for the mean free path of alpha particles is

l� =
3

4
p
2�

m�v0(kT )
3=2

Z2
�e

4n
p
meL�

= 0:107T
3=2
keV=�L� (cm) : (2.14)

This expression accounts for the stopping by the free plasma electrons at temperatures
T > 1 keV. The Coulomb logarithm L� for the interaction of fast alpha particles with
plasma electrons is �xed at L� = 7.

The physical meaning of the Lindl-Widner diagram shown in Fig. 2.3 is the follow-
ing. For a target to ignite, the fuel parameters at stagnation must reach the domain
dT=dt > 0. If the ignition domain is reached in the process of hydrodynamic implosion,
the optimum `entry point' corresponds approximately to the minimum of the triple prod-
uct �RT ; this occurs at T = 6�8 keV, depending on the magnetic �eld. Note that, in this
base version of the LW diagram for the magnetized fuel, no second ignition island at
low �R values appears, unlike suggested by Fig. 1 of Ref. [25]. Instead, the `standard'
ICF ignition region simply expands monotonically towards lower �R as the parameter
B=� is increased. Namely, one gets (�R)ign / (B=�)�1 in the limit of a strong �eld. This
scaling is explained in the next section. In the ideal case of a quasi-adiabatic implosion,
the ratio B=� is conserved in the process of cylindrical implosions (cf. Chapter 4). Under
this condition, the point representing the state of the imploding fuel in the �R; T plane
advances towards a stationary ignition boundary as indicated by the dashed arrow in
Fig. 2.3.

In the LW diagrams of Figs 2.3 and 2.4 no account is taken of synchrotron radiation
losses. It has been argued earlier [26] that they are not relevant for magnetized ICF
targets. This is illustrated in Fig. 2.3 by a dotted curve: it is calculated for � = 1 g/cm3

and B = 108G, including the synchrotron loss term [26]

qsr = 1:50� 106 TkeVB
2 [1 + 4:9 � 10�3 TkeV] (erg g

�1 sec�1) (2.15)

in the heat balance Eq. (2.7). Note that the presence of qsr in the heat balance equation
violates the similarity law which reduces the solution of the equation dT=dt = 0 to a one-
parameter family of curves in the �R; T plane. This is due to the fact that, in contrast
to the ratios qtn=�, qbr=�, and qhc=�, the ratio qsr=� / TB2=� cannot be expressed as a
function of T , �R, and B=� only.
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Figure 2.4 Alternative representation of the thermal balance of magnetized DT cylinders.

Ignition boundaries in the �R; T plane are calculated for three �xed values of the product

mB = ��R2B. Each curve is marked by the corresponding mB value in units of 104Gg/cm.

The ignition domain for mB = 104 Gg/cm is shaded. Compare also Fig. 2.3.

2.3 Ignition Criteria for the MTF Mode

The well-known ICF ignition criterion for non-magnetized DT fuel is usually quoted as a
lower bound on the fuel T and �R values [9]. For DT cylinders, inferred from the B = 0
curve in Fig. 2.3, it reads

T = 5�7 keV

�R � 0.2 g/cm2 :
(2.16)

The MTF ignition mode aims at igniting the DT fuel at �R values considerably lower
than the ICF threshold of 0:2 � 0:3 g=cm2. Hence, the constraint on the �R product
should be replaced by another condition. This condition is found by taking a closer look
at the thermal balance of stagnating fuel.

First of all, a necessary condition for ignition is that the heating qtn due to the depo-
sition of thermonuclear alpha particles exceeds the bremsstrahlung losses qbr. Consider
the ideal case of f� = 1 and no heat conduction losses, corresponding to a 'magnetically
insulated' plasma. Here the balance between qbr and qtn gives a minimum temperature of
about 5 keV, independent of �R. This limit can be seen in all LW diagrams, Figs 2.3-2.5.
However, in the case of �nite magnetic insulation, the power balance between qbr and
qtn implies

f� > 3:8� 10�18
T
1=2
keV

h�viDT ; (2.17)
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according to Eqs (2.8) and (2.9). The function T
1=2
keV=h�viDT has a minimum of 8:1 �

1015 keV1=2 sec�3 at T = 40 keV. But the focus of this work lies on the temperature
interval T � 7�10 keV, where the optimum `entry' point into the ignition domain lies.
Here, condition (2.17) yields

f� > 0.25�0.1 : (2.18)

From Fig. 2.2 one can infer that for R � l�, inequality (2.18) implies a lower bound on
the parameter

b � R

r�L
> 1.5�1.0 ; (2.19)

or, equivalently, a lower bound on the product BR. In other words, ignition in the MTF
regime requires the thermonuclear alpha particles to be at least marginally magnetized,
so that their Larmor radii r�L be at least about equal to the hot fuel radius R.

Constraint (2.19) simpli�es the evaluation of the role of heat conduction losses. For
temperatures T >� 6 keV, inequality (2.19) implies that the magnetization parameter for
the plasma ions [20]

!ci�i >
0.015 g/cm2

�R
(2.20)

exceeds unity for �R<�0:01 g/cm2. As a consequence, the electron heat conduction can be
neglected, because in the limit of strong magnetization the ratio of the two conductivities
becomes

lim
xi!1

�e
�i

= 2:33
mi!

2
i �i

me!2e�e
= 2:33

r
2me

mi
� 1 ; (2.21)

here the electrons and ions are assumed to have equal temperatures and Coulomb loga-
rithms. Adding heat conduction cooling

qhc =
2�iT

�R2
= 1:145 � 1024

�T
1=2
keV

b2
(erg g�1 sec�1) (2.22)

in the limit of !ci�i � 1, to the ignition condition qtn > qbr + qhc, one obtains

f� > 3:8� 10�18
T
1=2
keV

h�viDT

�
1 +

3:68

b2

�
: (2.23)

In the limit R� l�, where f�( �R; b) becomes a function of only b in the relevant parameter
range, the inequality (2.23) can be resolved to yield

b > 2.3�1.5 (2.24)

for temperatures T = 7�10 keV. Finally, one arrives at the following ignition criteria for
the magnetized cylindrical targets

T = 7�10 keV

BR � (6.5�4.5) � 105Gcm :
(2.25)
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Figure 2.5 Another alternative representation of the thermal balance of magnetized DT cylin-

ders. Along each ignition curve, the product BR is kept constant at a corresponding marked

value. Compare also Figs 2.3 and 2.4.

They replace the ICF ignition criteria (2.16). Conditions (2.25) must be ful�lled in the
magnetized DT fuel at the time of stagnation, if ignition is to occur at a �R value
signi�cantly below the ICF threshold of 0.2�0.3 g/cm2. As one can infer from Fig. 2.2, the
error introduced into the BR threshold by the inaccuracy of formula (2.6) for f� � 0:1�
0.3 is below 20%, which is comparable to the accuracy of the other assumptions made.

The lower bound on the BR product, as given by Eq. (2.25), is in perfect agreement
with the numerical results for B=� >� 108Gcm3/g shown in Fig. 2.3. It explains also
the scaling (�R)ign / (B=�)�1 for the ignition threshold observed in Fig. 2.3. Note that
inequality (2.23) implies that there is no regime with qhc � qbr for strongly magnetized
targets, since bremsstrahlung is always at least comparable to, if not exceeding, heat
conduction as cooling mechanism near the ignition threshold of magnetized targets.

2.4 Alternative Ignition Curve Parameters

Alternative ignition curve parameters can be obtained as arbitrary functions of the pa-
rameters B=�, �R and T . For other parameters that cannot be expressed in this way,
the LW diagrams fail to be universal in the sense that they become dependent of the
fuel mass m = ��R2 per unit length. Since the choice of an ignition curve parameter
emphasizes di�erent physical constraints or corresponds to di�erent physical situations,
it is revealing to consider mB / (B=�) (�R)2 and BR = (B=�) (�R) as two alternative
parameters.

The �rst parameter examined here is the mB product. In the LW diagram shown in
Fig. 2.4, each ignition boundary is calculated for a �xed value of mB. For small values of
mB, there are two disconnected ignition regions with dT=dt > 0. One region is at large
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�R, corresponding to the ICF ignition mode at �R � 0:1 g=cm2, another one is at small
�R. Note that the fuel burn in this regime is 'too slow' for the ICF ignition mode, see
Chapter 3. For mB>� 3� 104Gg/cm, both regions merge and ignition becomes possible
at any value of the fuel �R, provided that a long enough con�nement time is ensured.
Such LW diagrams might be appropriate for situations when either the fuel mass m
or the the magnetic �eld B are limited by external constraints. A typical situation is
the case of magnetic fusion, where the maximum magnetic �eld is limited by technical
constraints [12].

Now consider the product BR as ignition curve parameter. Figure 2.5 shows what
the corresponding LW diagram looks like. Its topology is intermediate between the two
cases of Figs 2.3 and 2.4. The ignition domain dT=dt > 0 is always single-connected,
and for BR < (BR)� � 3 � 105Gcm, it looks similar to the ignition region in the �rst
LW diagram (Fig. 2.3). If the BR parameter exceeds the threshold value (BR)�, the
dT=dt > 0 region extends to in�nitely small �R and ignition becomes possible at any �R
value (in the absence of other possible limiting e�ects such as inverse Compton scattering,
or synchrotron radiation cooling). It is also seen that for a practically interesting case of
ignition temperatures around 10 keV, the BR threshold is close to 6� 105Gcm.

Figure 2.6 demonstrates the origin of the di�erent topologies in the LW diagrams
Figs 2.3�2.5 by plotting the alpha energy deposition fraction f� versus �R for �xed fuel
temperature T = 10 keV, and for a characteristic value of each ignition curve parameter.
One can see that the function f�(�R) grows over the full range of �R only for B=� =const,
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ρR (g/cm2)

0.1

1.0
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mB=104
G g cm
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BR=6x105
G cm

B/ρ=107
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B/ρ

Figure 2.6 Energy deposition fraction f� versus �R, for three di�erent ignition curve parame-

ters. For these parameters, representative values of the corresponding LW diagrams are chosen.

All curves are calculated for a temperature T = 10 keV. The ignition curve for B=� = const

re�ects the decreasing values of the alpha particle magnetization as �R falls. The mB = const

curve, on the other hand, re�ects the two distinct regimes for signi�cant alpha particle deposi-

tion in the fuel. These are (i) the regime of a magnetized plasma for low �R values, and (ii) a

regime at large �R, where the plasma is 'optically thick' for the alpha particles. Note that for

large values ofmB the intermediate region, where f� � 1, becomes less pronounced. The third

curve for BR = const refers to constant magnetization b of the alpha particles. Nevertheless,

the deposition fraction f� decreases with falling �R, as the plasma becomes 'transparent' for

alpha particles.
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while it behaves di�erently for the BR and mB curves. Large deposition fractions f� at
small �R, characteristic for the last two ignition curve parameters (as seen in Fig. 2.6), are
re�ected by the appearance of dT=dt > 0 regions in the corresponding LW diagrams (see
Figs 2.4�2.5). The behavior of the function f�(�R) for �xed mB or BR is connected with
the two di�erent energy deposition mechanisms for alpha particles in magnetized plasmas
described by Eq. (2.6). These are (i) Coulomb collisions in the case of an 'optically thick'
(with respect to alpha particles) plasma, i.e. �R � 1, and (ii) the magnetization of alpha
particles in plasmas which are 'transparent' for alpha particles, i.e. �R � 1 � b. As
Fig. 2.6 demonstrates, both e�ects can bring the deposition fraction of alpha particle
energy f� close to unity.

2.5 Reduction of the Drive Power

Previous authors [27, 28] have already emphasized that fuel magnetization could reduce
the requirements on the peak drive power, which is a particularly sensitive issue for a
heavy ion driver. This point will be illustrated by a scaling law derived in the framework
of the following simple model.

Assume that a uniform cylindrical volume of DT plasma is imploded by a massive
tamper of mass mt per unit length. Setting the kinetic energy of the implosion equal to
the internal energy of the fuel when the implosion comes to halt, one can write

E =
1

2
mtv

2
imp =

3�

2
pmR

2
m ; (2.26)

where vimp is an average implosion velocity, and Rm and pm are the fuel radius and pres-
sure at maximum compression. Now the implosion time ti, and the time of con�nement
tc which is determined by the acceleration of the tamper by fuel pressure pm, are related
by

ti ' R0

vimp
= Cr

�
mt

3�pm

�1=2

' Crtc : (2.27)

Here, R0 is the initial fuel radius, and Cr = R0=Rm is the radial convergence ratio. The
drive power Wdr per unit cylinder length is then given by

Wdr ' E

ti
=

3�

2

pmR
2
m

Crtc
: (2.28)

If the fusion energy yield is equal to the implosion energy i.e.

1

4
n2e h�viDTEDT tc = 3ne T ; (2.29)

one can eliminate the con�nement time tc from Eq. (2.28). This gives the scaling

Wdr / (�R)2

Cr
h�viDT : (2.30)

In Eq. (2.29), ne is the electron density per unit length, and EDT = 17:6MeV is the DT
reaction energy. The DT reaction rate h�viDT is a function of the temperature T only.
It is always close to 10 keV near the ignition threshold, cf. Appendix A.
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Equation (2.30) says that for a �xed ignition temperature T the drive power for
cylindrical targets scales as the square of the fuel �R needed to achieve ignition. Hence,
by bringing down the �R value at ignition, fuel magnetization allows to reduce the
required driver power. Evidently, higher values of the radial convergence Cr would help
to reduce Wdr as well. Note that the key assumptions behind scaling (2.30) are (i) the
necessary con�nement is provided by a massive tamper, and (ii) ignition occurs over the
entire fuel volume, at 'breakeven', see Eq. (2.29).
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Chapter 3

Ignition Conditions (II)
Hydrodynamic Approach

The con�nement of the fuel by means of heavy walls (tampers) at stagnation is a cru-
cial point for magnetized cylindrical targets, as pointed out in the previous chapter. In
the following, the in�uence of the tamper material on the performance of cylindrical
implosions is investigated. The fuel plasma enclosed by the tamper is assumed to be
magnetically insulated, which means that heat conduction losses as well as the di�usion
of alpha particles are suppressed in radial direction. The main conclusion is that the
minimum fuel �R required for ignition depends sensitively on material properties (i.e.
equation of state) of the tamper.

Below, the results of one-dimensional computer simulations of pre-assembled fuel�
tamper con�gurations are presented. Numerical results have been calculated with the 1D
hydrodynamics code DEIRA, described in Appendix A. Similar con�gurations, without
magnetization, have been widely studied for spherical geometry [29]. Here, this matter
is reconsidered for magnetically insulated cylindrical targets. Note that questions of
symmetry and stability will not be considered in this chapter.

3.1 Fuel-Tamper Initial Con�guration

Since ignition of ICF targets occurs approximately when the target implosion has come
to a halt, one can, as a �rst step, investigate the basic properties of the ignition process
by starting with pre-assembled fuel-tamper con�gurations at the time of stagnation.
Such a con�guration consists of hot deuterium-tritium (DT) fuel surrounded by a layer
of dense tamper material to provide inertial con�nement. It is assumed that the pressure
is constant throughout the compressed core at the time of stagnation [30], and that
the pro�les of density and temperature are uniform in the fuel and the tamper layer.
This simplifying assumption is consistent with one-dimensional simulations of cylindrical
implosions.

I. Target Magnetization

The aim of this chapter is to explore the in�uence of a tamper on the ignition thresh-
old of magnetized targets in the most favorable situation concerning the e�ect of the

19
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Figure 3.1 Radial pro�les of pressure, density and temperature in the initial con�guration,

assuming a cylindrical geometry. The tamper thickness is characterized by the ratio �t.

magnetic �eld. Therefore one can work in the limit of high magnetic �elds, such that
the electron and ion heat conduction as well as the di�usion of alpha particles along
the radial direction are suppressed. This limit is adequate if the collision frequencies of
the alpha particles and the electrons are small compared to the corresponding cyclotron
frequencies. The energy relaxation time between the alpha particles and the electrons is
not a�ected by the magnetic �eld [31, 32].

There is a wide range of fuel parameters where the e�ects of magnetic �eld pressure
on the plasma dynamics can be neglected. In this situation, one can account for magnetic
�eld e�ects simply in terms of modi�ed coe�cients for the heat conduction and the alpha
particle di�usion, and perform purely hydrodynamic, rather than full MHD simulations.
This simpli�cation helps to bring out more clearly the important role of the tamper
material.

II. Initial Con�guration and Basic Parameters

Figure 3.1 shows a schematic picture of the initial con�guration. It consists of a cylindrical
volume of hot DT fuel, surrounded by a tamper shell of heavy metal at a high density �t
and a temperature Tt. The pressure p0 is uniform throughout the fuel and the tamper.
The tamper thickness is characterized by the ratio �t of the outer tamper radius to the
outer fuel boundary at stagnation. In order to account for di�erent heating situations
of the tamper during target implosion, the initial liner temperature Tt is varied in the
range from 1 eV to 100 eV.

Throughout this chapter, the fuel is described in terms of its stagnation temperature
T0, the fuel con�nement parameter �R and the fuel mass per unit length m = ��R2.

The initial fuel temperature has been chosen as T0 = 7 keV above the DT ignition
threshold value of 4 � 5 keV, set by the power balance between alpha particle heating
and bremsstrahlung losses. Varying T0 between 7 and 10 keV does not change the �nal
result signi�cantly.
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Figure 3.2 Initial pressure and fuel radius in terms of the principal fuel parameters. The dash-

dotted lines refer to the two outer ignition curves of Fig. 3.6 below. The corresponding fuel

energy at T0 = 7keV is given on the upper axis. Additionally, the fusion time scale as de�ned

in Eq. (3.1) is given. Note that the implosion time scale is typically by a factor 10� 100 larger

than the fusion time scale.

The choice of �R and m as the basic parameters, instead of � = �(�R)2=m and
R = m=��R, is made for the following reasons. For inertially con�ned fuel, the amount
of burnt fuel (the burn fraction) depends on two times, the fusion time

tf / 1=�h�viDT ; (3.1)

where h�viDT is the rate coe�cient of the DT fusion reactions, and the con�nement time
tc / R=cs, where cs is the sound velocity of the con�ning mass. The burn fraction �b
depends on the ratio of these times

tc=tf / h�viDT
cs

�R : (3.2)

For bare fuel without any tamper, one has to take the sound velocity cs /
p
T0 of the fuel

itself, which depends only on the temperature T0, just as h�viDT and is �xed by ignition
physics. Therefore, the burn fraction depends only on �R, and an approximate formula
is �b = �R=(HB+�R), where the burn parameter HB depends on temperature; one �nds
HB = 6:3 g=cm2 for T0 = 7keV [33]. Concerning tamped cylindrical con�gurations, the
essential di�erence is that the relevant sound velocity is that of the tamper, and corre-
sponding burn fractions are discussed below. The fuel mass m, which is the other main
parameter, determines the initial amount of thermal energy in the fuel E = �DTmT0,
with �DT = 1:15 � 108 J g�1 keV.

In the following, results will be plotted as functions of �R and m. For reference,
Fig. 3.2 shows the relevant fusion times, see Eq. (3.1), pressures and fuel radii in the
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Figure 3.3 Fuel burn fraction and energy gain of magnetically insulated targets vs. tamper

thickness �t. In this and all the following �gures in this section, each symbol represents the �nal

result of a hydrodynamic simulation run.

�R; m plane. The upper axis gives the initial energy of the compressed fuel. The dash-
dotted lines in Fig. 3.2 refer to the outer ignition curves of Fig. 3.6. They will be discussed
in Sec. 3.2 below.

3.2 Ignition Scaling with Fuel Mass

The simulations described below have been performed with the Lagrangean, one-
dimensional hydrodynamics code DEIRA [34], described in AppendixA. In order to
account for the magnetic insulation of the target in the sense discussed in Sec. 3.1, the
di�usion coe�cient for the fast alpha particles, see Eq. (A.18), and the coe�cients for
both ionic and electronic heat conduction, see Eq. (A.12)�(A.13), are set equal to zero
in the code, while the �nite 'heat capacity' of the alpha particles is retained.

I. Optimum Tamper Thickness

The dependence of burn fraction and energy gain on the tamper thickness �t are shown in
Fig. 3.3 for typical values of �R and m. The energy gain is de�ned here as the ratio of the
thermonuclear energy yield to the energy of the con�guration at stagnation, including
the tamper energy. For thin tampers, the energy gain increases rapidly with �t; for large
values of �t, energy gain and burn fraction both saturate and the energy gain even falls
slightly. The saturation of the energy gain for large tampers results from the high fraction
of energy invested in the tamper. This energy fraction, given approximately by (�2t � 1),
is the ratio of the tamper to the fuel volume at stagnation. Since the con�guration is
assumed to be isobaric initially, the ratios of energies and volumes of fuel and tamper
are approximately equal.

As a working point near the optimum, �t = 1:7 has been selected, corresponding to a
tamper volume twice the fuel volume and a temperature of Tt = 100 eV. It will be shown
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Figure 3.4 Fuel burn fraction vs. initial fuel �R of targets with and without magnetic insulation.

The empty circles represent results for the case of bare fuel without magnetic insulation.

later how the �nal results are a�ected by the choice of tamper thickness and temperature.
In all simulation results presented here, gold has been used as tamper material, but any
other heavy metal will give similar results.

II. Fuel Burn in Magnetically Insulated Targets

In Fig. 3.4, the burn fraction of fuel�tamper con�gurations with and without magnetic
insulation is plotted as a function of fuel �R. One observes a dramatic increase of the
fuel burn fraction at low �R for the magnetized case. Another distinct feature is the lack
of a sharp ignition boundary. The burn fraction increases gradually with the fuel �R,
similar to the burn in magnetically con�ned fusion plasmas. The reason for this is the
complete re-deposition of alpha particles in the fuel, even at low fuel �R values.

In non-magnetized targets, however, there is an 'ignition cli�', a marked increase of
the burn fraction when passing a certain �R threshold as seen in Fig. 3.4. It results from
the bootstrap heating by alpha particles when the fuel �R exceeds the stopping range of
approximately 0:3 g=cm2. For smaller �R and without magnetic �eld, most of the alpha
particles leave the fuel.

Additionally, Fig. 3.4 shows the fuel burn fraction of bare fuel without tamper and
magnetic insulation, corresponding to the situation discussed in Sec. 3.1. Without the
additional con�nement owing to the tamper, the ignition cli� moves to larger fuel �R
and becomes less sharp.

III. Ignition of Magnetically Insulated Targets

Figure 3.5 shows the peak fuel temperature reached in various target explosions as a
function of the initial fuel �R. While each point in the plot represents an individual
history of a target evolution with given initial values of fuel mass m and �R, the curves
connect points with constant fuel mass. Targets are called 'ignited' if the peak fuel tem-
perature during disintegration exceeds 21 keV, i.e. if the fuel temperature rises at least
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to three times the initial value of T0 = 7keV. Such a de�nition is necessary here since
there is no clear ignition 'cli�', as in the case of the non-magnetized targets; see Figs 3.4
and 3.5. The de�nition is consistent with the ignition threshold of non-magnetized tar-
gets. In Fig. 3.5 one observes that the ignition threshold moves systematically to lower
fuel �R values as the fuel mass increases.

The dependence of the �R ignition threshold on the fuel mass is shown explicity in
Fig. 3.6. Various curves are presented for di�erent values of the tamper parameters in
order to account for di�erent implosion histories. The scalings of the ignition threshold
�R with the fuel mass (�R)ign / m�� are indicated by dashed lines, where � � 0:65 for
small fuel mass (� 1 mg=cm) and approaches � � 1:0 for larger m. It turns out that the
position of the ignition threshold �R for large fuel masses m � 1:0 mg=cm depends on
the initial temperature Tt of the tamper material. For 'warm' tampers with Tt � 100 eV,
it remains above 0:01 g=cm2. For cold tampers with Tt � 100 eV however, it can drop
signi�cantly below this value. In this regime the fusion time scale, as given by Eq. (3.1)
and shown in Fig. 3.2, is in the �s range. Also shown in Fig. 3.6 is the dependence on the
tamper thickness �t. The ignition �R of targets with a thin (�t = 1:4) and those with a
large (�t = 1:7) tamper di�ers by about a factor of two.

IV. Ignition Scaling with Fuel Mass

As will be shown in the following, the simulation results presented above can be un-
derstood in terms of equation of state (EOS) properties of the tamper. For the tamped
con�guration, the con�nement time tc is essentially the time of tamper disintegration.
Therefore, the ignition scaling is found from Eq. (3.2) for a �xed ratio tc=tf in the form

(�R)ign / ct ; (3.3)

where ct / (dp=d�)
1=2
t is now the sound velocity of the tamper, determined by its EOS.

The pressure EOS for gold, which is the tamper material used in the simulations, is
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Figure 3.6 Ignition �R vs. fuel mass for di�erent choices of thickness �t and initial temperature

Tt of the tamper. The ignition scalings at low and high fuel masses are indicated by dotted lines,

see Sec. 3.2 For the shaded area, see Sec. 3.3. The fuel energy corresponding to a fuel temperature

of T0 = 7keV is given on the upper axis.

shown in Fig. 3.7 in the form of four isotherms. One can distinguish two regions: �rstly,
the 'degenerate' regime close to the T = 0 isotherm, where pressure can be approximated
by p / �
t with 2:3 � 
 � 3:0 in the relevant density and temperature regime; and
secondly the thermal regime where p / �tTt.

In order to express ct in terms of the fuel �R and mass m, one can make use of the
assumption that initially the pressure is equal in both fuel and tamper layer; one �nds

�T0 / p � pt /
8<
: �
t (degenerate regime)

�tTt (thermal regime) :
(3.4)

for the initial con�guration, where pt; �t; Tt refer to the tamper and p; �; T0 to the fuel.

For the degenerate regime, one obtains ct / �
(
�1)=2
t / �(
�1)=2
 , and from Eq. (3.3)

together with m / �R2

(�R)ign / m�� ; (3.5)

with � = (
 � 1)=2 = 0:65 for 
 = 2:3 and � = 1:0 for 
 = 3:0. Apparently, these values
of � explain the shapes of the ignition curves in Fig. 3.6 for cold tampers (Tt = 1 eV). For
higher temperatures (Tt = 100 eV), the tamper is in the thermal regime with ct /

p
Tt,

and Eq. (3.3) therefore leads to

(�R)ign = const ; (3.6)

independent of fuel mass. This explains the lower bound of (�R)ign � 0:01 g=cm2 seen
in Fig.3.6 for m � 1 mg=cm and Tt = 100 eV.
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Figure 3.7 Gold pressure isotherms for T = (0; 1; 10; 100) eV, taken from the EOS table

which has been used for the numerical simulations. The scalings responsible the ignition scalings

of Fig. 3.6 are indicated by dotted lines.

For a more quantitative understanding of the dependence of the constant in Eq. (3.6)
on �t and Tt, one would have to analyze the tamper dynamics in more detail. At this place,
it should be emphasized the central result that (�R)ign of tamped fuel con�gurations has
in principle no lower bound in the parameter region of interest for ICF (m � 10 mg=cm),
at least not in a 1D treatment, provided that the tamper material can be kept at low
entropy during the implosion.

Note also that the result (3.5) could be written alternatively in the form �(
+1)=2
R =
const, which is the invariant for the degenerate regime. In this presentation, ignition of
magnetized cylindrical targets with cold tampers scales with �2=3R, setting 
 = 3.

3.3 Fuel Parameter Window for Ignition

The investigation of the fuel�tamper dynamics after stagnation shows that the minimum
�R necessary for ignition and e�ective burn of the fuel depends signi�cantly on the
fuel mass, the tamper volume and tamper entropy. (a) For a �xed tamper entropy and
fractional volume, ignition occurs only when a minimum fuel �R is reached at stagnation.
The value of the fuel �R at ignition scales with the fuel mass m per unit length as m��,
where 0:65 � � � 1:0 depending on the fuel mass. (b) The (�R)min saturation level
decreases with decreasing tamper entropy, but this leads to higher fuel masses beyond
the scope of ICF. (c) Larger tampers can also help to reduce the ignition �R.

The results of this chapter can give a good guidance in the vast parameter space when
designing cylindrical MTF targets. A possible window for MTF operation with heavy
ion beams is indicated by the shaded area in Fig. 3.6. The boundaries have been selected
such that the lowest possible (�R)ign is obtained at fuel energies of a few MJ/cm, which
may be available from future heavy ion drivers. The window corresponds to fuel radii up
to 1 mm and pressures below 10 Gbar, as one may check from Fig. 3.2. A simple estimate
of the target implosion time (in di�erence to the con�nement time), necessary to reach
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the window, gives times of the order of 100 ns at a convergence ratio of Cr ' 10�20. This
is consistent with the pulse times of heavy ion beam drivers, cf. Chapter 5. Compared
to non-magnetized ICF targets, magnetization of cylindrical DT targets allows to reduce
the ignition �R threshold at least by a factor of 10 � 30, depending on the implosion
history, i.e. the tamper volume and entropy. Since the driver power necessary for ignition
in cylindrical ICF targets scales as Wdr / (�R)2ign, see Sec. 2.5, this leads to a signi�cant
reduction in the required driver power for heavy ion beam-driven magnetized cylindrical
targets in the MTF ignition mode.
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Chapter 4

Magnetized Implosions
with Heavy Ion Beams

The heavy ion beams currently planned at GSI, Darmstadt [1] and ITEP, Moscow [3]
are well suited for implosion experiments in cylindrical geometry. In such implosions, the
initial pressure generated by direct beam heating will be enhanced signi�cantly due to
cylindrical convergence. When an additional magnetic �eld, strong enough to suppress
heat conduction in radial direction, is introduced in the targets, keV temperatures and
signi�cant neutron yields are predicted here.

In order to suppress the radial di�usion of magnetic �ux out of the fuel during
implosion, the electrical conductivity sets (i) a lower limit for the (UR)0 product of the
implosion velocity U and the initial fuel radius R and, (ii) in combination with the heat
conduction, a lower limit for the initial fuel temperature. Following Basko [15], these two
constraints de�ne the regime of self-sustained magnetized implosions (SSMI) which is
described below. However, �nite �ux losses out of the fuel cause the fuel to accumulate
at the fuel-pusher interface. The relative amount of fuel mass in this 'boundary layer' is
determined by (UR)0, which is related to the driver pulse energy deposited in the target.

The main conclusion from the results presented in this chapter is that magnetized
implosions experiments can be carried out at beam energies below 100 kJ and pulse
durations around 100 ns. Numerical results have been obtained by means of the 1D-
MHD code DEIRA, cf. Appendix A.

4.1 Set-Up for Implosion Experiments

The main objective of the cylindrical implosions discussed here is to concentrate energy
in a small amount of fuel mass in order to reach states of high energy density in mat-
ter [35]. Figure 4.1 presents a schematic view of the cylindrical target con�guration for
experiments with heavy ion beams. The target consists of metal tube (pusher, deposition,
and tamper layer) �lled with deuterium (D2) gas at low density. The gas is referred to as
the thermonuclear fuel. The boundary between fuel and metal tube is initially at radius
r = Rf and the overall target radius is Rtot. Note that the target proportions shown in
Fig. 4.1 are not to scale. The target proportions of three basic con�gurations considered
in the following are given for reference in Table 4.1 below.

29
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Figure 4.1 Schematic view of a cylindrical target for implosion experiments with heavy ion

beams. The ion beam driving the implosion is indicated by arrows from the left. It heats the

metallic tube (shaded) in the annular regionRp < r < Rb. The e�ect of the beam irradiation is

a rapid expansion of the heated material in radial direction. This expansion drives the implosion.

Note that the proportions shown in the �gure are not to scale. The values used in the simulations

are given in Table 4.1.

Energy has to be brought into the target from an external driver, namely the heavy
ion beam. The conversion mechanisms in between the driver energy and the fuel at
maximum compression are depicted in Fig. 4.2; implosion e�ciencies are typically of the
order 5% [9]. The beam energy is deposited in the deposition layer of the target, and
converted into heat energy. This causes the material to expand in the radial direction.
As the pusher material is stopped by the fuel pressure, its kinetic energy is converted
into thermal energy of the fuel. In order to convert a maximum amount of pusher energy
into fuel heat energy, the pusher material should be as cold as possible to make it
incompressible. For this reason, one has to introduce an additional layer of non-heated
pusher material between fuel and deposition layer, the 'cold pusher' layer. This section

heating layer

(t.e.)
ion beam

(k.e.)
impl. pusher

(k.e.)

(3) fuel

(t.e.)

(1) (2)

Figure 4.2 Diagram for the energy �ow from ion beam to fuel. Each step in between is consid-

ered separately in the text: (1) energy deposition by the ion beam, (2) conversion from thermal

energy (t.e.) of the deposition layer into kinetic energy (k.e.) of the pusher, (3) conversion to

fuel heat.

will go through the three stages of Fig. 4.2, and explain more quantitatively why cold
pushers are important for optimum peak pressure results in cylindrical implosions.
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Figure 4.3 Stopping power of 1:1GeV/u Xe ions in solid gold vs. range R̂ � �l along the

beam direction; results are calculated from the DEIRA model (see Appendix A). The ion beam

consists of 2� 1014 cm�2 ions. Hydrodynamic motion is suppressed.

I. Energy Deposition by Heavy Ion Beams

When an intense beam of heavy ions impinges on a solid matter target, the ions gradually
lose their energy as they run through the target material [35]. This energy is converted
into heat energy in the target. The speci�c heating power Pi of an ion beam in matter
can be calculated from the stopping power dEp=dR̂ via

Pi = jb
dEp

dR̂
; (4.1)

where dR̂ = � dl is the range increment, Eb is the ion particle energy, and jb is the beam
particle current density. Stopping powers and total ion ranges h�li in matter depend in
a non-trivial manner on the properties of the target material, as well as on the pro-
jectiles [35, 36]. These quantities have have been measured at GSI, Darmstadt for ion
energies up to 10MeV/nucleon, for a number of projectile/target combinations [37�39].

In order to obtain meaningful results from implosion experiments with cylindrical
targets, it is important to have a uniform energy deposition throughout the deposition
layer. If this is not the case, the implosion will become either non-symmetric or cone-like
(or both). While the �rst problem is inherently two-dimensional and will not be treated
here, the question of lateral uniformity is addressed in Fig. 4.3. It presents the stopping
power of a beam of 2 � 1014 ions of 131Xe

+54 at an initial energy of Ep = 1:1GeV/u
in solid gold, versus the ion range R̂ in gold at � = 19:5 g=cm3 . Assuming a focal spot
radius Rb = 0:4mm, the parameters of the ion beam correspond to approximately 20 kJ
of pulse energy. Results are calculated from the stopping power model implemented in the
DEIRA code, cf. Appendix A. The conclusion from Fig. 4.3 is that the ion beam heating
will be uniform to within 10% along the �rst 50 � 60% of the total ion range in gold,
which corresponds to a cylinder length of about 1:0� 1:5 cm. In order to make sure that
the energy deposition is uniform along the target axis, the cylindrical targets should be
designed as 'sub-range' targets. This means that the region of strongly enhanced energy
deposition, seen at large R̂ >� 30 g=cm2 in Fig. 4.3, is outside the target. In general, the
stopping power of materials with the nuclear charge Z scales / Z2 [35]. This explains
why gold is chosen as the target material for the numerical simulations presented below.
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Figure 4.4 Temporal evolution of density, temperature and pressure on the axis of a solid

cylindrical target, calculated by a 1D simulation. The sample is heated uniformly during 100 ns

by an ion beam with speci�c deposition power Pi = 2:5 TW/g. At time tH ' 50ns, a rarefac-

tion wave reaches the target axis. Therefore the density on the target axis drops, as well as

temperature and pressure. Notice that the beam parameters of this case coincide with those for

the solid target for tp = tH, cf. Fig. 4.5

II. Target Structure: Role of the Cold Pusher

Before examining the cylindrical implosions in more detail, a solid target is considered as
an example. The target is assumed to be irradiated axially by a uniform ion beam on its
full cross-section, i.e. 0 < r < Rtot. Figure 4.4 presents the temporal evolution of density,
temperature and pressure on the axis. The initial target radius is equal to the focal spot
radius Rb of the heavy ion beam, R = Rb = 0:4mm. The beam is characterized by a
speci�c energy deposition power of Pi = 2:5TW/g, acting over a time of tp = 100 ns. As a
result of the beam irradiation, the material temperature in the target rises at a constant
rate until t = tH. At this time a limiting value of 10�15 eV is reached. A rarefaction front
from the outer target boundary reaches the axis, and the temperature rise is stopped by
expansion cooling. Then, the ion beam continues heating the expanding material, while
density and pressure on the axis drop rapidly. The rarefaction front travels approximately
at the velocity of sound, given by

cs ' �1=2 ' (Pi tH)
1=2 : (4.2)

Hence, the time tH = Rb=cs, at which the rarefaction front reaches the target axis, can
be written as [35]

tH =
�
R2
b=Pi

�1=3
: (4.3)

Here Rb is the radius of the uniformly heated cylinder, and Pi denotes the speci�c energy
deposition power in the target. Numerical factors of order unity are omitted.

Formula (4.3) has important consequences with respect to the target design: if the
total pulse duration tp of the ion beam is much longer than the heating time tH, the beam
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tail (t > tH) will impinge on hot, expanding material at low density. Energy density, i.e.
pressure, will stop growing at t >� tH, as seen in Fig. 4.4. For the target design to be
consistent with the ion beam pulse, one should therefore chose targets with tp ' tH.
There are three simple irradiation schemes for cylindrical targets, each corresponding to
a distinct implosion pattern
(a)Solid targets. They contain no fuel and are heated uniformly by the ion beams.
(b) 'Exploding liner' targets. The targets consist of metal tubes �lled with fuel gas, as
seen in Fig. 4.1. Their cross-section is heated uniformly over the region

0 < r < Rb ; (4.4)

while the tamper layer at Rb < r < Rtot is not heated by the beam.
(c) 'Cold pusher' targets. They are similar to case (b); but the inner part of the tube
('pusher') and the fuel are not heated by the ion beam, i.e. the beam covers all layers
with

Rp < r < Rb : (4.5)

The proportions of the three three target con�gurations described here are given in
Table 4.1.

The 'hollow' ion beam
# Rf=Rb Rp=Rb Rtot=Rb

(a) solid target - 0.0 1:5

(b) exploding liner 0:7 - 1:5

(c) cold pusher 0:55 0:6 1:5

Table 4.1 Radial proportions of the cylindrical con�gura-

tions discussed in Fig. 4.5. Given are the initial radius of the

fuel-liner boundary Rf , the inner beam radius Rp, and the

total target radius Rtot, all with respect to the focal spot

size Rb of the ion beam.

pro�les, essential for experi-
ments with cold pusher tar-
gets, can be generated ei-
ther by means of simple
beam blockers, or by de�ect-
ing the beam in the trans-
verse direction, e.g. by lense-
like tools. The imaging of an
initially full ion beam onto
an annular beam pro�le of
variable diameter has been
demonstrated experimentally

by Neuner et al. [40] at GSI, Darmstadt recently.
Figure 4.5 presents a comparison of di�erent target con�gurations. The main inten-

tion is to demonstrate that the cold pusher targets (c) yield better fuel compression
than the exploding liner con�gurations. Fig. 4.5 (i) gives the peak pressure values on the
cylinder axis reached in cylindrical implosions. All implosions are driven by heavy ion
beams with speci�c energy deposition � = 100 kJ/g. Their pulse duration tp, and their
speci�c deposition power Pi are varied simultaneously, so that � = Pi tp remains constant.
Pressure is plotted versus speci�c deposition power Pi, as obtained from 1D computer
simulations without magnetic �eld. The usual heat loss mechanisms, i.e. bremsstrahlung
and heat conduction by electrons and ions are fully taken into account. For all cases
shown in Fig. 4.5, the focal spot size is �xed at Rb = 0:4mm. The conclusion from
Fig. 4.5 (i) is, �rstly, that the peak pressures in the exploding liner targets are slightly
larger than those in the solid target and, secondly, that peak pressures in cold pusher
implosions are typically by one order of magnitude larger than the corresponding results
from exploding liner implosions.
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Figure 4.5 Comparison of the peak pressures reached in exploding liner and cold pusher targets

with a solid target. Part (i) shows peak pressure results of the three distinct target con�gurations

vs. the speci�c deposition power Pi. Initial target proportions are given in Table 4.1. Part (ii)

compares the pulse duration tp of the ion beam with the heating time scale tH, see Eq. (4.3).

For all results in this �gure, the focal spot size of the beam is kept constant at Rb = 0:4mm;

the pulse duration tp and the speci�c deposition power Pi are varied simultaneously, so that

the speci�c energy deposition � = 100kJ/g remains constant. The deposition power Pi, which

corresponds to equal values of tp and tH, is marked by a dotted vertical line; this value has

been chosen for the example shown in Fig. 4.4.

Figure 4.5 (ii) gives pulse duration tp and heating time tH, de�ned in Eq. (4.3), versus
speci�c deposition power Pi. Due to their di�erent scalings with Pi, the curves for tp and
tH cross each other at Pi ' 2:5TW/g and tH ' tp ' 50 ns. These parameters have been
chosen for the example given in Fig. 4.4.

Notice in Fig. 4.5 (i) the saturation of peak pressure values for large values of driver
power Pi. It can be explained as follows: in a solid target, beam deposition powers Pi
beyond 2:5TW/g will not yield larger peak pressures, since the heating time tH becomes
larger than the pulse duration tp. For long pulses with tp > tH, shown in the left part of
Fig. 4.5, the peak pressure values pmax in the target scale with Pi according to

pmax / � �max / (Pi tH) / P
2=3
i ; (4.6)

assuming constant target material density � and radius Rb. For 'too short' beam pulses
with tp � tH, corresponding to large values of Pi, the maximum pressure is simply related
to the total amount of speci�c heat energy � =const deposited in the target.

The enhanced peak pressure results in cold pusher implosions can be explained by
the self-similar solution of the ideal gas-dynamic equations discussed in Chapter 6. The
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central result of the similarity analysis is that the peak pressure ps of imploding hollow

shells scales with the Mach numberM0 � vimp=cs / T
�1=2
s of the imploding shell material

as

ps=p0 /M
2(n+1)=(
+1)
0 : (4.7)

Here p0 is the drive pressure of the implosion, and the scaling depends on shell geometry
(n = 2 for cylindrical shells) and adiabatic exponent 
 of the shell material. For 
 = 5=3,

one obtains ps / T
�9=8
s .

This is con�rmed qualitatively
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Figure 4.6 Dependence of the peak fuel pressure

on the initial pusher temperature T0. Results are

shown for non-magnetized adiabatic implosions of

target A (see Table 4.2 below), where all energy loss

mechanisms are suppressed. The initial fuel density

is 1� 10�4 g/cm3, the initial fuel temperature is

20 eV, and the focal spot size of the heavy ion beam

is Rb = 0:4mm in all cases. The peak pressure scal-

ing pmax / T
�9=8
0 , given in Eq. (4.7), is indicated by

a dotted line. The drop of the peak pressure values

at T0 � 3 eV comes from the EOS of the cold pusher

material.

by the results from hydrodynamic
simulations presented in Fig. 4.6.
The simulations correspond to non-
magnetized implosions of target A de-
scribed below (see Table 4.1), with
�xed initial values of fuel density
�0 = 10�4 g=cm3 and fuel tempera-
ture 20 eV; only the initial temper-
ature T0 of the cold pusher is var-
ied in a range from the usual value
T0 = 0:03 eV, up to a maximum value
of 10 eV. The conclusion of Fig. 4.6
is that for small T0, the compression
is nearly independent of temperature,
while it drops noticeably at about
3 eV. This behavior can be explained
by means of EOS properties of the
pusher material; cf. Chapter 3.

To reach optimum fuel compres-
sion, only cold pusher con�gurations
will be considered in what follows. An
immediate consequence of the �xed

target proportions, given in Table 4.1 is that the radial layer structure of each tar-
get can be characterized by a single number, e.g. the spot radius Rb of the ion beam.
The radial target proportions used here correspond to an initial aspect ratio Ar of the
cold pusher

Ar =
Rp

(Rp �Rf)
= 12 : (4.8)

This value has been chosen for two reasons: �rstly, the ratio of the cold pusher mass mp

to the deposition layer mass mh is hereby �xed at a value of about

mp

mh
� R2

p �R2
f

R2
b �R2

p

' 0:1 ; (4.9)

close to the optimum payload�to�shell mass ratio of an ideal rocket [9]. It yields an
optimum conversion e�ciency between the kinetic energies of exhaust gas and payload.
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The second reason for this choice of the pusher aspect ratio is hydrodynamic stability
of the imploding pusher. In order to prevent the pusher from breaking up during the
implosion, it should not be too thin. Stability will be brie�y discussed in Sec. 4.5 below.

Expansion in axial direction is not accounted for in the present 1D simulations. This
should be no problem for su�ciently long target cylinders; more detailed investigations
in the future will have to use 2D simulations.

4.2 Energy Loss Mechanisms in Quasi-Adiabatic Implosions

Before discussing the magnetized implosions in detail, it is helpful to examine the be-
havior of the main fuel parameters in idealized 'quasi-adiabatic' implosions, in which
the pro�les of fuel temperature and density are assumed to be uniform in space during
the implosion. Under this assumption, their scalings with the in-�ight convergence ratio
Cr(t) = Rf(t0)=Rf(t) are given by

� = �0 Cr
2 ; �R = (�R)0 Cr ; T = T0 Cr

4=3 : (4.10)

In such idealized implosions, it is possible to reach keV temperatures in the fuel by
starting from initial values of T0 ' 20 � 30 eV, and assuming �nal convergence ratios
of Cr ' 20 � 30. Final keV temperatures in D2 fuel would correspond to a signi�cant
generation of thermonuclear fusion neutrons.

I. Bremsstrahlung and Heat Conduction

The major heat loss mechanisms out of the fuel are bremsstrahlung and thermal heat
conduction. In a quasi-adiabatic implosion, one can determine the relative role of these
two mechanisms by considering the typical time scales on which the plasma loses energy
by the respective process; this time is compared to the implosion time ti = Rf=U . Here Rf

denotes the initial position of the fuel-pusher boundary and U is the averaged implosion
velocity. The bremsstrahlung loss time tbr is calculated from the speci�c energy loss rate

qbr = 4:8� 1023 � T
1=2
keV erg g�1 sec�1, given in Chapter 2, and from the fuel temperature

T via

c0
dT

dt
' c0

T

tbr
' qbr ; (4.11)

where c0 = 1:5� 1015 erg g�1 keV�1 is the heat capacity of deuterium plasma. Note that
the above expression for qbr is pessimistic: it assumes that the gold pusher is optically
thin for the radiation, which is not the case in general. In a D2 plasma, the ratio of the
bremsstrahlung cooling time scale tbr to the implosion time ti assumes the form

�br � tbr
ti
' 4:0 � 10�9

UT
1=2
keV

�R
/
T
1=2
0;keV

(�R)0
UCr

�1=3 ; (4.12)

where the last expression has been calculated by means of the scaling (4.10), and
Cr = Cr(t) refers to the time-dependent radial convergence of the pusher. Obviously,
the dependence of �� on Cr is only weak. Hence, bremsstrahlung losses out of the fuel
volume can be reduced by choosing appropriately low initial values of (�R)0.
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Analogously, the role of heat conduction losses from the fuel volume can be estimated
from the speci�c energy loss rate qhc ' �kT=(�R2). Here � is the heat conduction
coe�cient [20]. The corresponding loss time thc is calculated from an equation similar
to Eq. (4.11). The ratio of the loss time thc and the implosion time ti coincides with the
de�nition of the Peclét number

Pe � thc
ti

=
�UR

�
: (4.13)

In the case of a non-magnetized ideal plasma, Spitzer's formula [20] can be used for the
heat conduction � / T 5=2, and one obtains the scaling

Pe / (�R)0

T
5=2
0

UCr
�7=3 : (4.14)

This means that the Peclét number decreases rapidly as the implosion proceeds. As soon
as it drops below unity, the fuel starts losing entropy. Note that the Peclét number scales
directly with (�R)0, while the analogous parameter �br for the bremsstrahlung losses
scales inversely proportional with (�R)0. This means that, trying to maximize both �br
and the Peclét number simultaneously, one can �nd an optimum value for the initial fuel
density radius product (�R)0 for each cylindrical implosion.

II. Magnetic Field Di�usion and Heat Conduction

Now assume that, prior to the implosions, a magnetic �eld B is introduced into the
cylindrical target. It is directed along the z-direction parallel to the target axis, or, in
other words, transverse to the radial direction of heat losses. The key parameter entering
the description of the plasma and including the e�ect of the magnetic �eld on the plasma
electrons is the magnetization [20]

xe � !e�e = 3:18 � 10�7 �A
B

�

T
3=2
keV

Lei
/ Cr

2 : (4.15)

Here !e = eB=mec is the electron gyrofrequency, the electron-ion collision time is given
by �e, cf. Eq. (2.13), �A = 2 is the atomic number of the D2 fuel, and Lei is the Coulomb
logarithm [20]; it depends only weakly on the fuel parameters. The last relation in
Eq. (4.15) gives the scaling of xe with the radial convergence ratio Cr. If the Bragin-
skii formula (2.11) is substituted for the transverse electron heat conduction coe�cient
� = �e? into Eq. (4.13), one obtains the following expression for the Peclét number

Pe = 3:15 � 10�5UR
�Lei

�AT
5=2
keV

3:77 + 14:79x2e + x4e
11:92 + 4:66x2e

: (4.16)

In a magnetized plasma, where xe � 1, the electron heat conduction is suppressed by
a factor of approximately x�2e , and the Peclét number increases correspondingly. This
means that the heat insulation will improve as

Pe / UCr
�1Cr

�10=3 Cr
4 = UCr

5=3 : (4.17)
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Regarding the role of heat conduction by ions and by electrons, note that the elec-
tronic heat conduction dominates in non-magnetized plasmas, i.e. �e=�i '

p
mi=me,

while the ionic heat conduction dominates in magnetized plasmas; in strong mag-
netic �elds, i.e. xe � xi � 1, the ion heat conduction will dominate by a factor
�i=�e '

p
mi=me. However, in the present analysis of the loss mechanisms, only qual-

itative aspects of the heat conduction losses will be treated. For simplicity, the e�ects
of ion heat conduction are neglected for the moment, and only electron heat conduction
is considered. In the numerical simulations, both electron and ion heat conduction are
fully accounted for.

A central mechanism in magnetized implosions is the radial di�usion of the magnetic
�eld. Full conservation of the magnetic �ux occurs only in the case of the so-called 'ideal'
MHD with in�nite electrical conductivity. In implosions with �nite plasma conductivity,
however, the magnetic �elds tends to di�use out of the plasma during the characteristic
time tmd, which can be derived as follows. The evolution of the axial magnetic �eld B
in cylinder geometry is described by the di�usion equation [41]

@B

@t
+
1

r

@

@r
(rUB) =

1

r

@

@r

�
c2

4��
r
@B

@r

�
; (4.18)

where U denotes the radial �uid velocity, and � � �? is the transverse electrical con-
ductivity of the plasma. In the static case (U = 0), one �nds the di�usion time scale

tmd =
4��L2

c2
: (4.19)

Here L denotes a typical length scale of the plasma, e.g. the initial fuel radius Rf . For
short times t� tmd, the magnetic �eld can be considered to be 'frozen-in'. This means
that the conductivity � is large enough to neglect the right-hand side of the di�usion
equation (4.18). An immediate consequence of this approximation is that the quantity
B=� is conserved for each mass element in cylindrical implosions. In the opposite case
of large times t � tmd, one has a �nite conductivity �. The magnetic �eld di�uses out
of the plasma. For typical plasma velocities U , one can distinguish both situations, the
frozen-in and the di�using �eld, by using the magnetic Reynolds number

Rm =
tmd

ti
=
Utmd

R
=

4��

c2
UR : (4.20)

This means that for Rm� 1, the magnetic �eld will be almost frozen into the plasma.

In order to con�ne the magnetic �ux in the fuel volume, i.e. Rm� 1, it is necessary
to have high electrical conductivity either in the fuel plasma or in the pusher material
(or both). Figure 4.7 presents the dependence of the electrical plasma conductivity for
fuel and pusher versus temperature. While the fuel conductivity at large temperatures is
almost density-independent, and follows the Spitzer formula [42], the pusher conductivity
is given for two di�erent densities of gold. At low temperatures, the pusher conductivity
scales inversely with temperature. The electrical conductivity of a plasma is essentially
independent of the magnetic �eld [20].

It turns out that the con�nement of magnetic �ux by the fuel itself, and by the pusher
material are both important for the magnetized implosions. Their respective role in the
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course of the implosion will be examined in the next section. For simplicity, however,
the following analysis will mainly consider the fuel conductivity. The magnetic Reynolds
number is then given by

Rmf =
4��

c2
UR = 0:02URT

3=2
keV=Lei / UCr : (4.21)

The last relation gives the scaling of Rm with the convergence ratio Cr in quasi-adiabatic
implosions, cf. Eq. (4.10).

4.3 Self-Sustained Magnetized Implosions

Having introduced the key dimensionless parameters xe; Pe; Rmf ; Rmp for the descrip-
tion of heat- and magnetic di�usion in cylindrical implosions, these parameters will be
used to derive initial conditions for well-magnetized implosions. The di�erences between
characteristic magnetized implosions, and corresponding non-magnetized cases will be
discussed quantitatively.

The scalings of the key dimensionless parameters with the radial convergence ratio
Cr, discussed in the previous section, are given here for reference

xe / Cr
2 ; Pe / UCr

5=3 ; Rm / UCr : (4.22)

Thermal insulation, characterized by Pe, as well as that of the magnetic �eld in the fuel
plasma, characterized by Rm, improve during magnetized implosions. Once the values

xe � 1 ; Pe� 1 ; Rm� 1 (4.23)

are established, an initially magnetized implosion will remain so. On the other hand,
if the implosion is not magnetized initially (xe <� 1), the scaling Pe / Cr

�7=3 given in
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Eq. (4.14) shows that the fuel entropy is lost rapidly. As a consequence, the magnetic
Reynolds number of the fuel will drop and the magnetic �ux will di�use out as well. One
can thus conclude that magnetized implosions are particularly sensitive to the choice of
initial conditions.

I. Initial Conditions for Self-Sustained Magnetized Implosions

In order to have a well-magnetized implosion, it is not necessary to provide xe � 1 from
the very beginning: starting with a non-magnetized plasma xe<�1 and a su�ciently large
magnetic Reynolds number is also possible. In this situation the fuel will lose entropy
until the magnetization xe / Cr

2 is large enough that the fuel enters the scaling (4.22).
If, however, the magnetic Reynolds number drops below unity before this happens, the
implosion will continue to lose entropy and magnetic �ux.
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Figure 4.8 Initial conditions for self-sustained magnetized implosions, represented in a para-

metric plane spanned by the initial fuel temperature T0 and the product of implosion velocity

and initial fuel radius (UR)0; the lines that mark the SSMI regime are de�ned in Eq. (4.26)�

(4.27). While the limit / T corresponds to heat conduction losses, the curve / T�3=2 corre-

sponds to the magnetic di�usion. The optimum values of T0 and (UR)0 for an initial magnetic

B0 = 3� 105G are indicated by dotted lines. They correspond to Lei ' 7, and Pe0 = Rm0 ' 1.

The initial parameters of the targets A and target B are marked by dots; they are discussed in

Table 4.2 below.

In view of the scaling Pe / UCr
�7=3 for the Peclét number in non-magnetized plasmas

and xe / Cr
2, one can combine the two initial conditions xe � 1 and Pe� 1 to

xePe1 = 1:18 � 10�11
U0R0B0

T0;keV
� Pe0 ; (4.24)

where Pe1 denotes the Peclét number for xe = 1, and Pe1 >� 1. The second requirement
for a well-magnetized implosion is the constraint

Rm = 0:02
T
3=2
0;keV

Lei
UR0 � Rm0 (4.25)
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on the Reynolds number (4.21), with Rm0>� 1. These two relations are the initial condi-
tions for the regime of self-sustained magnetized implosions (SSMI). They are illustrated
by Fig. 4.8, which shows the borders of the SSMI regime as given in Eqs (4.24)-(4.25).
The combination of both conditions gives an 'optimum' initial fuel temperature

T opt
0 = 20 eV

�
B0

105G

�2=5

; (4.26)

and a minimum for (UR)0

UR0 � 1:8 � 104
cm2

s

�
105G

B0

�3=5

Pe
3=5
0 (Rm0Lei)

2=5 : (4.27)

Note that the lower limit on (UR)0 is independent of the initial fuel temperature T0,
density �0 and the fuel volume radius R. The fuel density �0 does not enter the initial
conditions (4.26) for the magnetized implosions either. It a�ects only the role of the
bremsstrahlung losses (4.12). Like the initial value of the magnetic �eld B0 it has to be
adjusted for each implosion in order to �nd an optimum value.

Deriving the initial conditions for the SSMI regime with regard to the magnetic
Reynolds number Rmp of the pusher, as mentioned at the end of the previous sec-
tion, is less interesting from a physical point of view. When combining conditions (4.24)
and (4.25), the T�1 dependences cancel out and one obtains no lower limit for the
fuel temperature. This would apply only to magnetized implosions at low temperatures,
where the pusher conductivity is always larger than that of the fuel.

II. Evolution of the Fuel Parameters

This section studies two particular magnetized implosions A and B in detail. Both implo-
sions are driven by ion beams with the same speci�c deposition power Pi = 1TW/g and
100ns pulse duration. Initial parameters, and results of MHD simulations are given in
Table 4.2. The main di�erence between casesA and B lies in the choice of the beam radius
Rb, which is re�ected in the (UR)0 product. Since the implosion velocity U / � =

p
PitH,

one has UR / P
1=3
i R

4=3
b , as explained in Sec. 4.4. The corresponding (UR)0 values of

implosions A and B are represented in Fig. 4.8 above and in Table 4.2.

Further di�erences between implosions A and B are their respective initial values of
fuel density �0 and the magnetic �eld B0. As already mentioned, �0 is a free parameter
for magnetized implosions; this is to say that it has to be adjusted for each individual
implosion, in order to reach optimum neutron yields. For too small fuel densities, the
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# Rb �0 B0 (UR)0 Tm Nn Tm(B = 0) Nn(B = 0)

mm g/cm3 T cm
2=s keV cm

�1 keV cm
�1

A 0.8 1� 10�4 30 2:4� 104 0:3 10
4 0.2 10

3

B 4.0 3� 10�5 10 1:7� 105 1:1 10
9 0.4 2� 106

Table 4.2 Parameters of magnetized implosions A and B. Given are the focal spot radius

Rb of the ion beam, initial fuel density �0, initial magnetic �eld B0, and the value of the

(UR)0 product. Corresponding target proportions can be derived from Rb and Table 4.1.

Both implosions are driven by an ion beam with Pi = 1TW/g, the initial fuel temperature

is T0 = 20 eV. Also given are the implosion results, i.e. peak temperature Tm and expected

neutron yield Nn from D2 thermonuclear reactions. Results of corresponding non-magnetized

implosions are given as well.

yield drops because of a too little amount of fuel; for too large densities, the yield drops as
a result of bremsstrahlung cooling. Similarly, the optimum value for the initial magnetic
�eld B lies in between negligible magnetic insulation e�ects, and strong magnetic �elds,
hindering the fuel compression by means of the magnetic pressure pm. Notice that pm =
B2=8� / �2 in quasi-adiabatic implosions with frozen-in magnetic �eld. This growth is
faster that that of the thermal pressure p / �5=3. Hence, the magnetic pressure typically
dominates the fuel at large compression, as will be discussed below.

The choice of the focal spot radius Rb = 0:8mm in implosion A is guided by the
parameters of the heavy ion beam envisioned at the TWAC accelerator [3]. Target A ab-
sorbs a total pulse energy of approximately 20 kJ. The �ve-times-larger target B, on the
other hand, corresponds to a well-magnetized implosion. It would absorb a total beam
energy which is approximately 75 times larger than the pulse energy for target A, follow-
ing the pulse energy scaling derived in Sec. 4.4 below. Additionally, a third magnetized
implosion with Rb = 0:4mm and Pi = 1TW/g has been considered. This case, however,
is not discussed here, since peak temperature and neutron yield are essentially equal
to the corresponding non-magnetized implosion. The reason for this negative result is
that the (UR)0 product lies signi�cantly below the SSMI threshold. In other words, the
magnetic Reynolds number of the implosion is too low, and the magnetic �eld di�uses
rapidly out of the fuel volume, followed by the heat energy.

Qualitatively, the results of the comparison between implosions A and B are the
following: (i) only if the SSMI conditions are ful�lled, the magnetized implosions yield
larger peak temperatures than corresponding non-magnetized implosions. (ii) The en-
hancement of the peak fuel temperature, caused by the magnetic insulation, grows with
the (UR)0 product. These two statements will now be examined quantitatively in terms
of the parameters introduced by the previous section.
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Figure 4.9 Evolution of fuel and pusher parameters in the magnetized implosions A, with

Rb = 0:8mm, and B, with Rb = 4:0mm vs. the radial convergence Rf (0)=Rf (t); see Table 4.2

for details. The left (right) part of the �gure refers to target A(B). Time is given explicitly on

top of the diagrams. The upper parts (a) and (b) show the evolution of fuel temperature and

the magnetic �eld on the axis (full curves), and their respective values in the limit of a quasi-

adiabatic implosion with a fully frozen-in magnetic �eld, following the scalings (4.28), given also

in the �gure (dashed curves). The time at which the peak fuel temperature is reached is marked

by vertical dotted lines. Also given is the evolution of the fuel temperature in the corresponding

non-magnetized implosions (dotted curves). The lower parts (c) and (d) discuss the evolution of

relevant dimensionless parameters of fuel and pusher in the magnetized implosions, cf. Sec. 4.3;

these are the magnetization xe, the Peclét number Pe, the magnetic Reynolds number of the

fuel Rmf , and the magnetic Reynolds number of the pusher Rmp. As soon as both Reynolds

numbers have dropped below unity, the magnetic �eld rapidly di�uses out of the fuel. This limit

is marked by dotted horizontal lines.

Figure 4.9 presents the evolution of the principal parameters in the implosions of the
two targets A and B versus the radial convergence Cr(t) � Rf(0)=Rf (t). The correspond-
ing time is given explicitly on top of the diagrams. First consider the upper parts (a) and
(b) of Fig. 4.9: one can see that the fuel parameters evolve approximately as predicted
by the scalings

B / � ; T / �2=3 (4.28)

for the quasi-adiabatic limit, where � / (Cr(t))
2. Scalings (4.28) hold up to Cr = 20�30

in implosion A, and even further in implosion B. Deviations from the ideal scalings at
low Cr(t) are related with deviations from the uniform �ow pattern; this phenomenon
will be examined in the next section.

The lower parts (c) and (d) of Fig. 4.9 discuss the behavior of the dimensionless
quantities, i.e. magnetization xe, Peclét number Pe, magnetic Reynolds number of the
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Figure 4.10 Radial pro�les of density, temperature, pressure, and the magnetic �eld during

the implosion of A for three di�erent times; these are t = 60 ns when the pusher has traveled

half the distance to the target axis, t = 80 ns when the convergence ratio Cr = 24 is reached,

and t = 81ns when the peak temperature is achieved in the fuel. The radial position of the

fuel-pusher boundary at the peak fuel temperature is indicated by vertical dotted lines.

fuel Rmf , and magnetic Reynolds number of the pusher Rmp. One observes that, once
the Reynolds number of the pusher falls below unity at Cr = 30 (Cr = 70) in implosion
A(B), the fuel starts loosing magnetic �ux and entropy, as observed in the subsequent
decrease of xe and Pe. This underlines the importance of the the magnetic �eld insulation.
Parts (c) and (d) of Fig. 4.9 also demonstrate the di�erent roles of fuel and pusher in
con�ning the magnetic �eld, re�ected by the two Reynolds numbers Rmf and Rmp of
fuel and pusher, respectively.

In the well-magnetized implosion B, presented in part (d) of Fig. 4.9, the time when
the peak fuel temperature is reached coincides with the time when Rmp, the magnetic
Reynolds number of the pusher, drops below unity. This suggests that the pusher takes
the main responsibility for the magnetic �eld con�nement in the initial stage of the im-
plosion, due the large electrical conductivity of the pusher material at low temperatures,
cf. Fig. 4.7.

Next, consider the neutron yields from implosions A and B, as given in Table 4.2. A
comparison of the total neutron yields from the two magnetized cases with the results
from corresponding non-magnetized cases shows that the enhancement of the neutron
yield in target A due to the magnetic insulation is below a factor of 10. Simulations
indicate that most of the neutrons from implosions A and B are generated at extremely
large compression, i.e. Cr > 100; however, such compressions may be not achievable in
real experiments. Neglecting in implosion A those neutrons generated at convergence
ratios Cr(t) > 30, which is a more realistic value for implosion experiments, the neutron
yield enhancement rises up to a ratio of 1000. This di�erence would yield a much better
experimental signature of the magnetic �eld e�ect than the factor of 10mentioned earlier.
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Figure 4.11 Radial pro�les of density �, ion temperature Ti, magnetic �eld B, and the (nega-

tive) �ow velocityU in the inner part of target B (cf. Table 4.2), at time t = 260ns, correspond-

ing to Cr = 20. The region of strong density and magnetic �eld gradients is called boundary

layer (marked by a grey band). Domains of fuel and pusher material are marked by arrows on

top of the �gure.

Implosion A is described in more detail in Fig. 4.10. Radial pro�les of density, the
total pressure (magnetic plus thermal pressure), ion temperature and the magnetic �eld
are given for three times: for 80 ns corresponding to Rf(0)=Rf (t) = 2; for 80 ns, where
Rf(0)=Rf (t) = 24; and at the time of peak temperature at 81ns, where Rf(0)=Rf (t) =
48. The total pressure remains uniform in space, demonstrating that the implosion is
subsonic, i.e. no shock waves are present in the fuel. Notice that the fuel becomes non-
uniform already early in the implosion. This phenomenon is due to the generation of a
magnetic boundary layer, which will be examined in the next section.

4.4 Magnetic Boundary Layer and Energy Scaling

Figure 4.11 shows radial pro�les of density, ion temperature, the magnetic �eld and �uid
velocity in the well-magnetized implosion B (cf. Table 4.2) at time t = 260ns. At this
time, the radial convergence ratio is Cr = 20. The most important feature of Fig. 4.11
is the 'magnetic boundary layer' of cold, dense plasma at the fuel-pusher interface, in
which the plasma parameters have strong radial gradients. The corresponding region is
marked by a vertical shaded band in the �gure.

I. Evolution of the Boundary Layer

Figure 4.12 studies the evolution of the boundary layer in several magnetized implosions.
The boundary layer is characterized by the following working de�nition: a mass element
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4
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m is part of the boundary layer if its density �(m) is twice as large as the minimum
density in the fuel volume. Figure 4.12 plots the ratio xm = Mbl=Mf of the amount of
fuel mass in the boundary layer Mbl to the total fuel massMf versus the time-dependent
radial convergence ratio Cr(t) = Rf(0)=Rf (t). Results are shown for targets A and B (cf.
Table 4.2), and an additional target C with Rb = 20mm; its parameters are equal to
those of target B, except from its initial radius, and a pulse duration tp scaled according
to Eq. (4.3). The main results from Fig. 4.12 can be given in the following two statements

(i) The amount of fuel xm(t) in the boundary layer evolves with the convergence ratio
Cr(t) of an implosion as

xm(t) = gc lnCr(t) + xm0 ; (4.29)

where gc and xm0 are constants in each implosion. An important result of the
numerical simulations is that the value of gc depends essentially on the (UR)0
product, and only weakly on the initial fuel density �0 and temperature T0. This
holds as long as the SSMI initial conditions (4.26) for T0 and (UR)0 are satis�ed.

(ii) The slope gc in Eq. (4.29) scales with (UR)0 as

gc / (UR)�0:350 : (4.30)
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Comparing the amount of cold fuel mass accumulated in the boundary layer in cases A
and B (see Fig. 4.12) reveals the origin of the di�erence in the neutron yields, cf. Table 4.2.
While the boundary layer in implosion A has accumulated more than 95% of the fuel
mass up to maximum compression, it is only half of this value in implosion B.

The formation of the boundary layer in magnetized implosions is caused by the radial
di�usion of the magnetic �eld. The ratio

� = pth=pm (4.31)

of thermal pressure pth to magnetic pressure pm = B2=8� in the magnetized fuel drops
below unity at large compression. As a consequence, the magnetic �eld pressure contri-
bution starts to dominate the pusher equation of motion. At the same time, the magnetic
�eld loss enhances the thermal heat conduction losses out of the fuel volume. The reduced
fuel temperature, and the enhanced pusher temperature then act back on the di�usion
of the magnetic �eld via the temperature dependence of the electrical conductivity. The
full mechanism behind the formation of the boundary layer has, to the author's best
knowledge, not been described in the literature yet; the only related article [43] refers
to implosions with in�nitely thin non-conducting shells, which is not an adequate de-
scription of the present situation. The formation of the boundary layer discussed here is
also principally di�erent from the so-called 'snowplow' e�ect in Z-pinch implosions [44].
The main di�erence lies in the fact that Z-pinch implosions are supersonic, while the ion
beam-driven implosions are subsonic in general.

II. Energy Scaling of Magnetized Cold Pusher Implosions

In order to underline the special importance of the (UR)0 parameter for magnetized
implosions, an alternative set of implosions (A�,B�, C�) is presented in Fig. 4.12. In the
alternative set, each case is characterized by the same values of (UR)0 and initial con-
ditions (�0; T0; B0) as the corresponding case in the �rst set, while speci�c deposition
power Pi and beam radius Rb di�er. They are modi�ed simultaneously according to

Rb(A�)=2Rb(A), Pi(A�)=Pi(A)/16 ,

such that the product PiR
4
b remains constant for each pair of sets like A and A�. The

cases B and C are scaled accordingly. As one can see, evolution of the boundary layers
in the scaled targets and their counterparts, as seen in Fig. 4.12, is quite similar.

It will now be shown how the scaling parameter (UR)0 is related to the total driver
pulse energy Eb. First of all, note that equal target proportions are assumed for all
targets, given in Table 4.1 above. Therefore, the deposition layer dimensions Rp < r < Rb

are �xed by the choice of the ion beam focus Rb. Further, the total pulse duration tp of the

ion beam is assumed to be consistent with the e�ective irradiation time tH ' R
2=3
b =P

1=3
i .

This is the optimum irradiation time for an ion beam to reach maximum pressure in the
deposition layer, cf. Fig. 4.4 and Eq. (4.3). Since the mass of the deposition layer per unit
cylinder length scales with R2

b for �xed target proportions, the total irradiated beam
energy Eb is given by

Eb / tH PiR
2
b = (PiR

4
b)

2=3 : (4.32)
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The (UR)0 parameter, on the other hand, can be expressed in terms of beam intensity Pi
and beam radius Rb, as well. This is possible since the fraction of beam energy, converted
to kinetic energy of the pusher, is approximately independent of the absolute target size
(see the remark in Sec. 4.1). One can thus write the implosion velocity as U / � =

p
PitH,

giving

(UR)0 /
p
PitHRb

/ (PiR
2=3
b P

�1=3
i )1=2Rb

= (PiR
4
b)

1=3 ; (4.33)

In combination with Eq. (4.32), Eq. (4.33) leads to

Eb / (UR)20 : (4.34)

Together with the minimum (UR)0 value for the SSMI regime given in Eq. (4.26), this
gives a lower bound on the driver pulse energy Eb required for well-magnetized implo-
sions. Using the value given in Eq. (4.26), this energy is

Ebmin = 20� 40 kJ/cm ; (4.35)

depending on the exact fuel parameters. Assuming, for example, that the speci�c driver
power Pi is �xed at a value Pi = 1TW/g chosen here, the SSMI conditions yield a lower
limit on the focal spot radius Rbmin >� 1 cm of the ion beam, as expected from Fig. 4.8.

The results from these scaling relations are the following statements

� The parameter (UR)0 controlling magnetization is directly related to the external
parameter Eb. The quality of the magnetic insulation improves with increasing
driver pulse energy Eb, i.e. the more energetic the driver pulse of a magnetized
implosion, the less fuel mass ends up in the boundary layer.

� The SSMI conditions set a lower limit on the driver pulse energy for well-magnetized
implosions Eb >� 20 � 40 kJ/cm. Below this limit, the magnetic �eld and the fuel
heat di�use away before the implosion is over.

4.5 Hydrodynamic Stability of the Pusher

Finally, some remarks about the hydrodynamic instability of the cold pusher layer [15].
The Rayleigh-Taylor (R-T) instability occurs in �ow patterns where gradients of density
and pressure are antiparallel. Two well-known examples are a heavy liquid initially resting
on top of a light gas in a gravitation �eld, and the deceleration of a solid shell by gas
of low density. The latter situation occurs in ICF capsule implosions, and also in the
cylindrical implosions discussed here.

A central issue in the context of shell implosions is: over which distance can a po-
tentially unstable pusher travel before it is disrupted by R-T instabilities ? � due to the
complexity of this subject, only a qualitative answer can be given here on the basis of
the one-dimensional simulation results presented above. In a simple linear mode analysis
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Figure 4.13 Part (a) shows trajectories of the layer boundaries Rf (t); Rp(t); Rb(t) and

Rtot(t) vs. time in target A, cf. Table 4.2. The beam deposition region Rp(0) < r < Rb(0)

is marked by a shaded band. Part (b) presents the fuel-pusher boundary immediately before

stagnation; the corresponding free-fall line, which assumes no deceleration of the pusher, is

marked by a dashed line. Note that the free-fall line reaches the axis r = 0 at a time t > 81 ns

after the peak temperature is achieved.

of the R-T instability [9, 45] at the interface of two adjacent �uid layers with densities
�1 > �2, the amplitude � of the mode k grows with time according to

� / e
(k)t ; (4.36)

where the growth rate 
(k) is given by


(k) =
p
At g k : (4.37)

Here g is the acceleration, and At = (�1��2)=(�1+�2) is called Atwood number. During
an implosion of a cylindrical shell, there are two regions of instability

(a) The deposition/pusher interface is potentially unstable during the acceleration
stage of the pusher. This regime is not critical in the present context.

(b) The fuel/pusher interface becomes unstable during the deceleration stage. This
regime of instability is essential for the cylindrical implosions.

The acceleration stage instability of the pusher/deposition interface is not critical here:
following Kull [45], a heavy pusher of incompressible gas which accelerates a low-density
gas (i.e. At ' 1) should travel 7� 10 times its own thickness before it breaks up. Since
the pusher aspect ratio Ar = (Rp=Rf � 1)�1 decreases with time, as seen in Fig. 4.13,
and since its initial value has been chosen as 12, cf. Eq. (4.8), the pusher will not break
up due to the acceleration instability.

During the deceleration stage, however, the fuel/pusher interface can become R-T
unstable. In the worst case, the pusher breaks up and fragments reach the cylinder axis,
deteriorating the peak pressure and neutron yield results of the implosion. However, the
earliest time at which this can happen is determined by an analysis of the free-fall line
shown in Fig. 4.13. The free-fall line is the trajectory of the fuel/pusher interface assuming



50 4 Magnetized Implosions with Heavy Ion Beams

a constant velocity, i.e. not taking account of the deceleration. The conclusion of this
analysis is that the peak fuel temperature can be reached before pusher fragments have
reached the axis, cf. Fig. 4.10. Thus, there is hope that the 1D results are not strongly
a�ected by fuel-pusher 'mixing' during the deceleration stage. Additional constraints,
which cannot be estimated in the framework of 1D studies, are due to non-uniformities
of the ion beam irradiation, and from target fabrication errors. The e�ect of the magnetic
�eld on instabilities has not been considered in this work.

Figure 4.13 gives only a rough estimate of the time it takes for the heavy shell to
penetrate into the central gas during deceleration. More detailed analysis [45] shows that
the actual mixing time between heavy pusher and central gas is about a factor 5 smaller
than the free-fall time. One can conclude that there is at least a time interval of 5 ns
in which the compressed gas in the center exists and can be observed. Moreover, the
neutron yield should not be strongly a�ected by R-T instabilities, since most neutrons
are generated long before peak compression, cf. Sec. 4.3.



Chapter 5

Magnetized Fusion Targets

The investigation of magnetized implosions is concluded by applying the results of the
previous chapter to magnetized target fusion (MTF) with heavy ion beams. The intention
is to present an igniting magnetized implosion, operating at the lowest driver pulse
energy possible. A reference case is presented, and the scaling of the ignition threshold
of magnetized fusion targets with key parameters is discussed. The reference case is then
compared with results of the HIDIF design study [10, 46] for non-magnetized, spherical
heavy-ion fusion (HIF) targets.

The central conclusion is that magnetized implosions can achieve ignition conditions
at signi�cantly reduced values of implosion velocity, peak driver intensity, as well as
relaxed conditions on driver pulse duration and convergence ratios of the implosions.
One has to bear in mind, however, that high-gain fusion targets require hot-spot ignition.
This means that a burn wave has to propagate along the axis, starting from an ignition
sector of the cylindrical target. This chapter describes such an ignition sector.

The present chapter is divided in three parts. Firstly, the ignition threshold of a
reference case is determined with respect to the speci�c driver power, assuming the
focal spot radius of the beam to be �xed. Ignition then still depends on a set of three
parameters determining fuel temperature, density, and the initial magnetic �eld in the
target prior to implosion. The dependence of ignition on these parameters is studied
systematically. Secondly, the ignition and burn stage of magnetized fusion targets is
discussed in more detail for a reference case. Thirdly, scaling properties of magnetized
targets with the target radius are discussed.

The numerical results presented in this chapter have been obtained by means of the
1D-MHD code DEIRA, including di�usion equations for charged fusion products and
nuclear burn equations for the relative abundances of the thermonuclear fuel among
other features, cf. Appendix A.

High Gain and Hot-Spot Ignition in Cylindrical Targets

Uniform fuel compression in ICF implosions leads only to low energy gain in spherical
and cylindrical geometry. For example, it takes about 1:15MJ to heat 1mg of DT fuel
to the ignition temperature of 10 keV. If implosions had an overall e�ciency of 5%,
determined by the driver-fuel coupling e�ciency, about 20MJ of driver energy would
be required. Assuming a burn e�ciency of 30%, the thermonuclear energy yield were
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100MJ, corresponding to an overall energy gain of 5. This is not su�cient for fusion
energy applications. On the other hand, if the targets could be ignited from a hot spot
at one end of a cylindrical target, the energy gain could be enhanced signi�cantly.

Sustained burn in cylindrical fusion targets could be achieved by igniting a short
section of the cylinder, which ignites the cold fuel by a burn wave running down the
cylinder axis. Note that an axial burn wave is guided by the magnetic �eld lines along
the cylinder axis. In radial direction, on the other hand, it is suppressed due to magnetic
insulation. Results of corresponding 2D simulations without axial magnetic �eld have
been published by Avrorin et al. [13] and are reproduced in Fig. 1.2 in Chapter 1. With
1D simulations, on which the present work is based, axial burn waves cannot be treated.
Here, only the formation of the hot spot is described; the hot spot is now viewed as an
axially uniform sector of an extended cylindrical con�guration.

5.1 Ignition Threshold

In magnetized implosions, ignition can be de�ned by comparing the peak fuel tempera-
ture reached in a given implosion with that of a corresponding case without thermonu-
clear reactions. If this ratio is greater than three, the con�guration will be called ignited.
Such a measure is a well-known ignition criterion, widely used in ICF research [47].

The discussion starts with a brief sketch of the initial con�guration and assumptions
about the beam-target interaction, which is essentially the same as explained in the
previous chapter. Then, some estimates for the initial fuel density, temperature, and the
magnetic �eld guide the design of an igniting reference case. Afterwards, these estimates
are veri�ed by systematically studying the dependence of the ignition threshold on initial
parameters of fuel and magnetic �eld.

I. Sketch of Set-Up and Initial Conditions

The initial con�guration for the magnetized fusion targets discussed here is essentially
the cold pusher con�guration introduced in Chapter 4; it is brie�y summarized here
for reasons of clarity. Figure 5.1 shows a schematic view of the set-up, consisting of
a metallic tube �lled with deuterium-tritium (DT) fuel gas at low density. The tube
material is gold. Prior to implosion, an axial magnetic �eld B is introduced into the
target. For the magnetic insulation to work, and in order to reach fusion temperatures at
peak compression, the fuel also has to be heated to temperatures of at least 50 eV, as will
be explained below. The heat could be brought into the fuel from outside, e.g. by axially
incident laser beams. This is essentially the scheme of injected entropy, as proposed by
Caruso et al. recently [14].

The beam heating, characterized by the speci�c deposition power Pi (TW/g), is
assumed to be uniform throughout the deposition region, i.e. over an annular region

Rp < r < Rb ; (5.1)

where Rp and Rb are �xed values given in Table 5.1. The outer radius Rb of the focal
spot is assumed to be Rb = 3:0mm in this section, corresponding to the focal spot size
of the HIDIF driver for the non-magnetized target discussed below. Relative proportions
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Figure 5.1 Schematic view of a cylindrical fusion target. The ion beam driving the implosion

is indicated by arrows from the left; it heats the liner in the annular region Rp < r < Rb, and

drives the implosion in the radial direction. A magnetic �eld B, directed along the target axis,

is introduced into the target before the implosion starts. The fuel gas is assumed to be a DT

mixture. Note that the target proportions in the �gure are not to scale. The values used in the

simulations are given in Table 5.1.

of the cylindrical fusion targets are equal to those of the targets discussed in the previous
chapter, i.e. the ratios Rp=Rb etc. are the same. This particular choice aims at optimum
conversion e�ciency between driver pulse and kinetic energy of the imploding pusher,
cf. Chapter 4. Further, the pulse duration tp is assumed to be consistent with the target
radius, as explained in Chapter 4. The optimum pulse duration can be calculated from
the focal spot radius Rb of the ion beam and the speci�c driver power Pi according to
Eq. (4.3), i.e.

tH =
�
R2
b=Pi

�1=3
: (5.2)

II. Ignition Threshold in Terms of Speci�c Driver Power

Once a value of Rb �denoting the focal spot radius of the ion beam� is chosen, the target
geometry is determined and the remaining free beam/target parameters are initial fuel
density �0, temperature T0, the initial magnetic �eld B0, and the speci�c driver power Pi.
These parameters are now determined on the basis of a simple estimate and checked later
by simulations. The choice of the beam focus in a consistent target set-up immediately
determines the heated mass Mh ' � (R2

b�R2
p)�h per unit cylinder length. Together with

Eq. (5.2), the speci�c driver power Pi is related to the beam energy via

Eb ' tH PiMh : (5.3)

For 1mg/cm of DT fuel in the target, one needs about 20MJ/cm of driver energy,
following the argument about the energy gain of uniform implosions given above. The
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# Rf Rp Rb Rtot T0 B0 �0

Case A 1.65 1.8 3.0 4.5 300 eV 50T 1� 10�2 g/cm3

Case B 2.75 3.0 5.0 7.5 300 eV 70T 3� 10�3 g/cm3

Table 5.1 Initial parameters for magnetized fusion targets. Case A is discussed in Sec. 5.1,

while case B is considered in Sec. 5.3. Given are the fuel radius Rf (in units of mm), the outer

pusher boundary radius Rp, the focal spot radius Rb of ion beam, and the total target radius

Rtot. The ion beam is irradiated in the annular region Rp < r < Rb; see also Fig. 5.1. Also

given are the initial fuel temperature T0 and the initial value of the magnetic �eld B0 in the

target.

resulting speci�c driver power Pi is then given by

Pi ' Eb tH
�1M�1

h / E
3=2
b R�4b � 100� 200TW=g : (5.4)

Due to the low implosion velocities that correspond to such driver parameters
(U<�107cm/s), no strong shock heating occurs during implosions [48]. Therefore, the fuel
heating in magnetized implosions can be determined in the approximation of a quasi-
adiabatic compression, in the best case. (In general, �nite losses cannot be avoided).
This approximation (see Sec. 4.2) assumes that fuel density �, temperature T and the
magnetic �eld B scale with the radial convergence ratio Cr(t) � Rf(0)=Rf (t) as

� / Cr
2; T / Cr

4=3; B / Cr
2 : (5.5)

In order to reach ignition temperatures of 5�10 keV in such implosions, the fuel needs to
have T0 = 100�200 eV initially, assuming radial convergence ratios Cr = 20�30 at peak
compression. Such values have been obtained experimentally, in cylindrical implosions
driven by high explosives [49]. To reach the fuel magnetization BR >� 6 � 105Gcm=
60Tcm required for ignition,a see Chapter 2), the initial magnetic �eld B0 needs to be
about B0 >� 20� 30T under the same assumptions about Cr as above.

Figure 5.2 demonstrates how the ignition threshold of magnetized implosions is deter-
mined numerically for �xed values of T0 = 300 eV and B0 = 70T. For each combination
of Pi and �0, two simulations are carried out: one with fusion reactions, one without
fusion reactions. The ratio of the resulting peak fuel temperatures is plotted versus the
driver power Pi for three values of the initial fuel density �0. Only if the peak tempera-
ture ratio is greater than three, the fuel is called ignited. The resulting curves connecting
implosions with equal values of �0 are called 'ignition curves'.

Similar to the magnetized implosions discussed in Chapter 4, the initial fuel den-
sity has to be optimized numerically for each set of parameters B0; T0. The reason for
the existence of an optimum fuel density resembles that given in the previous chapter.
However, there are di�erences, namely that (i) the present case includes also thermonu-
clear burn, so that the neutron yield depends even more sensitively on the fuel density
(note that for smaller �0, there is less fuel material per unit length in the cylinder), and
(ii) the convergence ratios are now strongly a�ected by the choice of the fuel density,

aWhile Chapter 2 uses cgs units, here the more 'practical' unit Tesla is chosen.
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since the fuel pressure is now signi�cantly larger compared to the implosions discussed
in Chapter 4.

III. Dependence of the Ignition Threshold on Initial Parameters

To verify the estimates used for the choice of initial parameters for case A in the previous
section, the initial fuel density �0, temperature T0 and the magnetic �eld B0 are now
varied systematically. The corresponding numerical results are presented in Fig. 5.3. Each
combination of T0; B0 and �0 in the range

30 eV <� T0 <� 1000 eV

5T<� B0 <� 200T (5.6)

1� 10�4 g=cm3 <� �0 <� 1� 10�2 g=cm3

is checked for ignition and marked by a symbol in a T0; B0 plane. Full symbols represent
ignition, while empty symbols correspond to cases ignition did not occur. For all implo-
sions presented in Fig. 5.3, target size and driver power are kept constant at Rb = 3:0mm
and Pi = 230TW/g respectively. The ion pulse is assumed to heat the target up to the
moment of stagnation.

The �rst observation in Fig. 5.3 is that ignition occurs only in a narrow region of the
T0; B0 parameter space. The limits of this 'ignition island' are mainly set by the condi-
tions for well-magnetized implosions (SSMI), see Chapter 4, and by magnetic pressure.
Initial con�gurations with B0<� 20T or T0<�20 eV will not meet the SSMI requirements,
i.e. heat di�uses rapidly out of the fuel. For too large values of B0 > B0max / T 0:75, on
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the other hand, ignition will not occur as the implosion is stopped by magnetic pressure
(see Sec. 4.3). Note that the ignition island is also bounded towards large initial temper-
atures, for the following reason: as T0 is increased, the fuel compression, and therefore
also the maximum fuel �R decrease. As a consequence, �nal yield and peak temperature
drop slightly. At the same time, the peak fuel temperatures in the reference implosions
(without burn) increase with growing T0, causing the ignition ratio to drop below three.

Figure 5.3 also presents the maximum convergence ratios Cr for each igniting con-
�guration, taken at the largest density �0m for which ignition still occurs. The Cr values
decrease from extremely large values (Cr = 100), as found in implosions with B0 = 20T
and T0 = 30 eV, down to Cr ' 16 for B0 = 200T and T0 = 300 eV. In addition to the
limits of the ignition island as seen in Fig. 5.3, the radial convergence ratios Cr provide a
means to select acceptable implosion parameter combinations B0 and T0. For example,
in order to reduce the e�ect of R-T instabilities during an implosion (cf. Chapter 4), one
might restrict oneself to convergence ratios Cr <� 30; see Sec. 4.5.

It turns out that the largest density �0m for which ignition still occurs at given values
of T0; B0, grows with T0. At the same time, the convergence ratios Cr decrease, as seen
in Fig. 5.3. This is connected with the ignition conditions for thermonuclear fusion, i.e.
the minimum fuel temperature and �R that have to be achieved at peak compression.
Going from an igniting case to a larger initial temperature, the compression drops and
so does the �nal �R. This has to be compensated by a larger initial fuel density. The
sensitivity of ignition with respect to the initial fuel density �0 it is also re�ected by
the ignition curves shown in Fig. 5.2. In order to make sure that the survey shown in
Fig. 5.3 is complete, a wide range of initial value for �0 needs to be covered. It is therefore
essential that none of the cases in the survey is at the interval borders for �0 as de�ned
in Eq. (5.6).
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5.2 Ignition and Burn

The igniting magnetized implosion case A introduced in the previous section will now be
discussed in more detail and compared with a non-magnetized, spherical ICF capsule.
A reference case has been de�ned in the HIDIF (Heavy Ion Driven Inertial Fusion)
study [10, 46], a comprehensive design study of indirectly driven, non-magnetized ICF
capsules in spherical geometry. The underlying indirect-drive approach to ICF [9] assumes
that small DT pellets (R � 1mm) are placed in metal cavities which are heated by
external drivers. The capsule implosions are then driven by thermal x-rays from the
hohlraum walls. Due to the stronger compression in spherical implosions, as compared
to the cylindrical ones, the peak fuel densities in such capsules exceed those in cylindrical
implosions signi�cantly; therefore, burn is much faster. Additionally, hot-spot ignition
with radial burn waves propagating into cold fuel brings the energy gain up to large
values G ' 100 [10].

I. Reference Case A in Detail

In order to present characteristic features of an igniting magnetized implosion, Fig. 5.4
shows the evolution of the average fuel temperature and magnetic �eld on the target axis.
In addition, it presents the free-fall line for this implosion, which characterizes the time
(t ' 45ns) when instabilities can reach the cylinder axis, in the worst case. This plot
is, in principle, similar to Fig. 4.13 that describes the implosion of a magnetized target
at Pi = 1TW/g. The distinct feature of the present implosion, however, is that the fuel
temperature is raised �due to DT fusion reactions� by a factor of three, in comparison
to an implosion without burn (cf. Fig. 5.2). As a consequence, the fuel temperature in
implosion A is still growing when the free-fall line reaches the axis; this is not the case in
the magnetized implosion A of the previous chapter. However, the stability of the pusher
during the formation of the hot spot in magnetized implosions is not discussed here.
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Figure 5.5 shows radial pro�les of temperature and density in implosion A at the time
of peak compression (t = 44:5ns) and at peak fuel temperature (t = 46:5 ns). Notice
the gradients in fuel density, temperature and magnetic �eld, as discussed in Sec. 4.4,
which are characteristic for the magnetic boundary layer (cf. Fig. 4.11). At ignition,
about 40 � 50% of the fuel are contained in the boundary layer and, therefore, cannot
contribute to the burn. Figure 5.5 also presents the radial dependence of the quantity
B=�. In a quasi-adiabatic implosion with a fully frozen-in magnetic �eld, this quantity
is uniform in space and time. Here, it remains constant throughout the main part of the
fuel volume and drops only in the magnetic boundary layer.

II. Comparison with a Spherical Fusion Capsule

Table 5.2 compares the reference case A of a magnetized fusion target with results of the
HIDIF study [10,46], corresponding to an indirectly-driven fusion capsule in a hohlraum
cavity heated by ion beams. The value for the speci�c driver power Pi in this case cor-
responds to a peak value and the pulse duration given here is the time scale of one
sub-pulse (see Fig. 3 of Ref. [10]). The strong time-dependence of the ion pulses neces-
sary in indirect-drive ICF makes great demands on the performance of accelerators. It
is, however, needed in order to obtain optimum implosion results in terms of the fuel
density, temperature distributions required for hot-spot ignition. For the directly driven
cylindrical targets discussed here, on the other hand, the beam pulses of the heavy ions
are assumed to be uniform in space and time. From the target physics point of view, the
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Case Rb Eb tp Pi(max) U (�R)m Cr �b G

HIDIF 3mm 5MJ 10 ns 10
4 TW/g 3� 107 2:75 30 35% 90

MTF 3mm 1MJ/mm 30 ns 230TW/g 5� 106 0:01 20 2:8% 1

Table 5.2 Comparison between the magnetized cylindrical target A and HIDIF results [10].

Given are the following quantities: pulse energy Eb, driver focal spot radius Rb, pulse duration

tp, peak speci�c driver power Pi, implosion velocity U (in cm/s), peak fuel �R value (�R)m (in

g/cm2), maximum radial convergence ratio Cr, burn fraction �b and the gain G. Note that the

gain of the cylindrical target A refers only to the ignition section discussed here.

distinct feature of the magnetized implosion lies in (i) the lower implosion velocity and
(ii) lower fuel �R at maximum compression. Regarding the implosion results in terms
of gain G and burn fraction �b, one has to be aware of the fact that the magnetized
target represents only an ignition section of a longer cylindrical target. High gain can be
reached only with hot-spot ignition, as discussed above.

5.3 Scaling Properties

Having found the ignition threshold for one particular value of the target size Rb =
3:0mm in the previous section, it revealing to study the dependence of ignition on this
parameter. Here, an alternative case B is presented with Rb = 5:0mm. Similar to the
previous section, some initial estimates about the target parameters are made and then
veri�ed by means of simulations. Regarding the driver power required for ignition, one
can now take the ignition threshold Pi = 230TW/g found for case A, and scale it such
that the resulting driver pulse energy Eb is approximately the same in both cases. The
appropriate scaling procedure has been discussed in the previous chapter, cf. Eqs (4.32)�
(4.34). The main result of that analysis has been that the energy Eb is related to the
driver power Pi and the focal spot radius Rb via

Eb / (PiR
4
b)

2=3 : (5.7)

For the present case, this means that the driver power in case B has to be

Pi(case B) =

�
3

5

�4

Pi(case A) ' 30TW/g : (5.8)

Using similar initial fuel parameters (T0; B0) to those chosen in the previous case A,
Fig. 5.6 now shows simulation results that check the ignition threshold of case B. The
main conclusions of Fig. 5.6 are that (i) the ignition threshold of case B is approxi-
mately Pi ' 30TW/g, as predicted on the basis of the scaling (5.8), and (ii) that the
corresponding value of the initial fuel density �0 is smaller than that for case A.

The dependence of ignition on the choice of initial parameters T0 and B0 is character-
ized in Fig. 5.6. Analogously to Fig. 5.3, it gives the initial parameters for which case B
ignites. One can see that the ignition island for the case B is signi�cantly smaller in the
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Figure 5.6 (a) Ignition curves for target B, cf. Table 5.3 and the caption of Fig. 5.2. (b) 'Ignition

island' for case B. Shown are igniting and non-igniting implosions in a plane of initial implosion

parameters, cf. the caption of Fig. 5.3.

MTF Rb Eb tp P
max
i U (�R)m Tm �b

Case A 3mm 1MJ/mm 30 ns 230TW/g 5� 106 0:01 18 keV 2:8%

Case B 5mm 1.8MJ/mm 75 ns 30TW/g 3� 106 0:012 19 keV 2:5%

Table 5.3 Comparison of the two scaled magnetized fusion targets A and B. Given are pulse

energy Eb, driver focal spot radius Rb, pulse duration tp, peak speci�c driver power Pi, im-

plosion velocity U (in cm/s), peak fuel �R (in g/cm2), the peak fuel temperature Tm and the

burn fraction �b. The corresponding convergence ratios can be taken from Figs 5.3 and 5.6.

parametric T0; B0 plane, and that the fuel density values for which ignition occurs are
generally smaller than in case A, as mentioned earlier.

The scaling that leads from case A to case B has also another important consequence,
namely that the (UR)0 parameter is the same in both implosions. This follows from the
relation

(UR)0 / (PiR
4
b)

1=3 / E
1=2
b ; (5.9)

compare Eq. (4.34). The value of the (UR)0 product of the implosions discussed here
is given in Fig. 5.7. The �gure discusses the growth of the magnetic boundary layer in
the respective implosions. It presents the mass fraction of fuel in the cold boundary
layer in implosions A and B. In order to compare their evolution with the self-sustained
magnetized implosions presented in Sec. 4.4, this �gure includes the the magnetized tar-
gets A and B, cf. also Fig. 4.12. Similar to the magnetized implosions discussed earlier,
the boundary layer evolution of cases A and B agrees well.

Following the scaling relation (5.9) for the (UR)0 product, one could �in principle�
design targets for �xed driver energy, but with extremely large pulse durations and cor-
respondingly low driver intensities. These targets would become very large, see Eq. (5.7).
However, the results presented here indicate that the ignition island in the B0; T0 para-
metric plane shrinks for decreasing driver intensity, and �nally vanishes. This sets a lower
limit for the possible driver intensity. In addition to that, the range of fuel densities �0
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for which ignition occurs shifts to smaller values with decreasing driver intensities Pi. As
a consequence, the fusion yield would become decrease. This will a�ect the propagation
of the burn wave in axial direction, which is required for hot-spot ignition.
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Chapter 6

Self-Similar Description of Imploding
Hollow Shells

This chapter deviates from the main line of the the present work in that it deals with
a fundamental aspect of implosions on the basis of a highly idealized model. It analyzes
the stagnation pressure of converging �ows, given general material properties such as the
implosion velocity vimp, pressure p0 and entropy measured by the parameter �if / p0=�



0 .

The analysis is based on pure gas dynamics of a polytropic gas with adiabatic exponent

 and so-called similarity solutions of the gas dynamic equations discussed below.

Of course, the stagnation pressure or, equivalently, maximum energy density of the
imploding material directly relates to the basic topic of this thesis, and the analytic
results of this chapter help to understand general features of magnetized target fusion.
However, the particular interest in this topic came up during the course of this work
triggered by recent work of Herrmann et al. [17], investigating ignition energy Eign scal-
ing of spherical implosions of fusion capsules. These authors have extracted the scaling
relation

Eign / �1:88�0:05if p�0:77�0:030 v�5:89�0:12imp (6.1)

from a large number of implosion simulations.a A striking observation made by Atzeni et
al. [18] was that this important relation can be determined directly from simple model
considerations, invoking the isobaric ignition model [30] and the self-similar stagnation
pressure discussed in this chapter.

The isobaric ignition model postulates the pressure-radius product of the stagnating
fuel

psRs / �sRsTs = const (6.2)

to be an ignition constant set by DT fusion physics, which requires certain values for the
ignition temperature Ts>�10 keV and �sRs>�0:2 g=cm2 (to stop 3:51MeV alpha particles
inside the hot spot) [9]. This leads to

Eign / psR
3
s / (psRs)

3=p2s / p�2s : (6.3)

aA similar scaling, also based on simulations, has been proposed recently by Saillard [50].

63
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The second ingredient is provided by self-similar imploding shells [16] which give

ps=p0 /M3
0 (6.4)

for the stagnation pressure of spherically imploding hollow shells; here M0 = vimp=c0
is the Mach number and c0 the sound velocity of the shell material. Using in addition

�if / p0=�
5=3
0 for a 
 = 5=3 gas, one easily converts Eqs (6.2)�(6.4) into

Eign / p�20 M�6
0 / �1:8if p�0:80 v�6imp : (6.5)

The intriguing coincidence of Eqs (6.1) and (6.5) calls for a deeper analysis of the stag-
nation pressure scaling, Eq. (6.4), which had been found numerically in Ref. [16]. In the
present work it is derived analytically in a general form, i.e. for plane, cylindrical and
spherical implosions and arbitrary adiabatic exponents [19].
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Figure 6.1 Self-similar solution of spherically imploding shell in r; t diagram for

� = 0:7; � = 3; 
 = 5=3. Inner surface of shell (�F = 0:96) and trajectory of re�ected shock

(�S = 0:198) are represented by thick � = r=t� lines. The t = 0 axis corresponds to � =1.

Fluid elements move on dotted trajectories with almost constant velocity. Inserts show density

pro�les at di�erent times; also shown are entropy at t=t0 = �1 as well as pressure and temper-

ature distributions at t=t0 = 1:6. Normalization is such that sonic point B is at �B = r0=t
�
0 = 1

and �0; T0; p0 refer to the �uid element at r = r0 and t = t0; it is considered as an outer

boundary.

The self-similar description of converging �ows is based on the assumption that in-
terfaces, like shock waves or material boundaries, move along trajectories

R(t) = � jtj� : (6.6)

This concept leads to the so-called similarity coordinate � = r=jtj�, where r and t are
now interpreted as spatial coordinate and time. The basic assumption here is that �ow
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functions like pressure and density depend mainly on �. Figure 6.1 shows a particular
example for such a self-similar �ow pattern. It describes the implosion of a hollow spher-
ical shell in a radius-time diagram. Inserts illustrate self-similar density pro�les close to
the time of void closure at t = 0 (the latter means that the hollow region inside the
shell disappears). This �gure is presented here to give a �rst �avor of the hollow shell
implosions; it will be explained below.

The discussion of the stagnation pressure scaling in self-similar implosions of hollow
shells, which is the main issue of the present chapter, is organized in two steps. Section 6.1
introduces the basic equations and mathematical tools used for the similarity analysis.
Sec. 6.2 presents the central approximation, which is then applied to derive the stagnation
pressure scaling (6.4) in a general form analytically.

6.1 Self-Similar Solution of the Equations of Gas Dynamics

I. Self-Similar Ansatz

The basic equations of gas dynamics for one spatial coordinate r can be written in the
form [51]

@t�+ @r(�u) + (n� 1)�u=r = 0 (mass conservation)

@tu+ u@ru+ (1=�) @rp = 0 (momentum balance) (6.7)

@t(p=�

) + u@r(p=�


) = 0 (entropy equation) :

Here the parameter n refers to plane (n = 1), cylindrical (n = 2) or spherical (n = 3)
geometry, while 
 is the adiabatic exponent. An ideal gas equation of state is used with
p = �c2=
, where c denotes the local sound velocity; the entropy p=�
 of each �uid
element is conserved, except across shock boundaries.

The similarity ansatz for the �elds of �ow velocity u(r; t), sound velocity c(r; t), and
density �(r; t) is chosen in the form [16]

u(r; t) = (� r=t)U(�)

c(r; t) = (� r=t)C(�) (6.8)

�(r; t) = r�G(�) ;

where the similarity coordinate � is de�ned by

� = r=j t j� : (6.9)

Note that radial coordinates r and times t are given in units r0; t0 and velocities are
given in r0=t0. As a result of the above construction, the similarity coordinate � and the
reduced functions U(�), C(�), G(�) are invariants with respect to scale transformations
of time, radius, and mass [52]. The corresponding scaling group [53] contains the two
exponents � and � as free parameters.

Ansatz (6.8) has some immediate consequences. It implies that, at the time of void
closure t = 0, corresponding to � = 1, all �ow functions can be represented by power
laws

u(r; t = 0) = u0r
��; c(r; t = 0) = c0r

��;

�(r; t = 0) = �0r
�; A(r; t = 0) = A0r

�� ; (6.10)
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provided that the limits for t! 0 exist. The constants u0; c0; �0; A0 are obtained from
Eq. (6.8) with jtj = (r=�)1=� in the limit � ! 1. Often-used combinations of the basic
parameters (n; 
; �; �) are given here for reference

� = 1=� � 1; � = �(
 � 1) + 2�; � = 2=(
 � 1) ; (6.11)

� = n� ��; � = n
 + �� 2�; � = (
 + 1)=(
 � 1) :

The entropy distribution at void closure is determined by an exponent �. For values � > 0,
it diverges in the centre. This behavior resembles that of ICF fuel close to stagnation;
see Ref. [16] for a discussion of this point. However, in approaches including e.g. heat
transport among other loss mechanisms, the entropy divergence in the centre is prevented
by corresponding di�usive heat losses out of the shell.

Another important consequence of ansatz (6.8) is that the value of the Mach number
M0 � u0=c0 at void closure does not depend on the mass coordinate.

II. Particle Trajectories and Characteristics

Figure 6.2 discusses the radius-time phase plane of self-similar converging �ows, showing
a particle trajectory, several �-lines, and a characteristic line (=characteristic) for a self-
similar �ow in the r; t diagram.

� Trajectories of gas elements a can be represented by curves R(a; t) in a space-time
plot, where the Lagrangean coordinate a � R(a; t0) labels each gas particle by its
position R(a; t0) at a �xed time t0.

� Lines of constant �, or �-lines, emerge from r = t = 0. In some important cases,
they coincide with material interfaces, like the inner surface of a hollow shell or a
shock fronts.

� Particle trajectories R(a; t) can be expressed in terms of the similarity coordinate
�. The corresponding derivative dR(a; �)=d� along �-lines can be evaluated as fol-
lows. On the one hand, the derivative of � = R=jtj� with respect to R yields the
expression

d ln �

d lnR
= 1� d ln jtj�

d lnR
: (6.12)

On the other hand, the second expression on the right-hand side of Eq. (6.12) is
equal to the reduced particle velocity U(�), since, by de�nition, one has dR(t)=dt =
�R jtj� U(�). This yields

d lnR

d ln �
=

U(�)

U(�)� 1
: (6.13)

Expression (6.13) is important for understanding why the particle trajectories
shown in Fig. 6.1 are almost straight lines; this will be explained below.

Note that R(a; �) is interpreted now as a function of �, and time t is obtained from
jtj = (R(a; �)=�)1=�. It follows immediately from Eq. (6.13) that

U = 1 (6.14)
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is the condition for a particle trajectory to coincide with a �-line. Self-similar motion
of a free surface is therefore described by U = 1.

Integrating Eq. (6.13) between any two �1 and �2 for a given particle a, one �nds
that the ratios R(a; �2)=R(a; �1) of particle positions do not depend on which par-
ticle is considered; such ratios are the same for all mass elements a. This important
observation holds also for the ratios of density, pressure, and other physical quan-
tities.

� Characteristics, denoted as R�(a; t), can be used to describe the propagation of
small perturbations, i.e. sound waves. Their trajectories are de�ned by

dR�=dt = u(R�; t)� c(R�; t) : (6.15)

In terms of the self-similar coordinates, this relation writes

d lnR�

d ln �
=

U � C

U � C � 1
; (6.16)

after applying the same transformation as to Eq. (6.13). For this reason, character-
istics R�(a; t) coincide with �-lines exactly if the condition

U � C = 1 (6.17)
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is ful�lled. These so-called limiting characteristics play an important role with
respect to causality in the �ow. They divide regions which are in causal contact
with the gas at r = t = 0 from those which are not. Figure 6.2 shows an example
of a limiting characteristic in a convergent �ow.

III. Reduced Di�erential Equation

With a self-similar ansatz (6.8), the three basic equations of gas dynamics (6.7) reduce
to two ordinary di�erential equations [16]

a1dU + b1dC + d1d ln � = 0

a2dU + b2dC + d2d ln � = 0 (6.18)

with coe�cients

a1 = C=� ; a2 = U � 1 ;

b1 = U � 1 ; b2 = �C ; (6.19)

d1 = C[U(1 + n=�)� 1=�] ;

d2 = U(U � 1=�) + C2[�+ (�+ ��)=(
(1 � U))] :

The remarkable feature of this reduction, �rst noticed by Guderley [54], is that the
coe�cients (6.19) are independent of the space-time variables r; t and �; instead, they
depend solely on the reduced velocities U; C and on the free parameters n; 
; �; �. The
problem therefore reduces to one ordinary di�erential equation

dU

dC
=

�1(U(C); C )

�2(U(C); C )
: (6.20)

Integration of Eq. (6.20) gives solutions of the form U(C). Then, U and C can be ex-
pressed in terms of � by quadrature of

d ln �

dC
=

�0(U(C); C )

�2(U(C); C )
: (6.21)

Here, the determinants �i of system (6.18) are de�ned by

�0 = a1b2 � b1a2 ; �1 = b1d2 � d1b2 ; �2 = d1a2 � a1d2 : (6.22)

Figure 6.3 shows a numerical solution of Eq. (6.20) in the U; C plane. The positions
of the singular points (given below), but not the structure of the solution curve, depend
exclusively on the particular values of the free parameters n; 
; �; � [16]. A unique
feature of the present class of solutions is that the description covers times before and
after void closure; the solution curves (see Fig. 6.3) consist of two distinct branches in
di�erent domains of the U; C plane, separated by the point O at U = C = 0. While the
upper branch in the U > 0 half-plane corresponds to times t < 0 before void closure, the
lower branch refers to times t > 0.

Each point in Fig. 6.3 refers to a distinct singularity in Eq. (6.20); in these singular
points, both determinants vanish simultaneously

�1(U;C) = 0 ; �2(U;C) = 0 : (6.23)
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There are many di�erent ways to satisfy Eq. (6.23). Some important choices are listed
for example in Ref. [16]. For the description of hollow shell implosions, one needs only
four of these singular points, characterized in the following.

� Point O is located at U0 = C0 = 0; it connects both branches of the solution curve
for t < 0 and for t > 0, and refers to void closure at time t = 0, corresponding
to � ! 1. Additionally, point O describes the �ow for r ! 1 at times t 6= 0.
The absolute values of the slope jdU=dCj for U > 0 and for U < 0 are equal, and
correspond to the Mach number M0 = jU=Cj at void closure.

� Points B and D are both located on the sonic line U +C = 1, where �0(U;C) = 0.
They correspond to the two limiting characteristics before and after void closure,
respectively. The physical solution curves in the U; C plane which connect �ow
regions U + C > 1 with U + C < 1, have to cross the sonic line through B or D.
The position of these points is given by the quadratic equation

(n� 1)
 U2
B;D + [�� 2�� 
(n� 1� �)]UB;D � (�� 2�) = 0 : (6.24)

The solution of Eq. (6.24) yields UB;D and CB;D � 1�UB;D. Crossing the sonic line
at other points than B or D would lead to double valued, non-physical solutions.
Since the shock, that travels through the shell after void closure, is faster than sound
waves, only singular point B is relevant for the present solution. It guarantees the
existence of solutions for a continuous set of � and � values. Point B is of great
signi�cance in the present context, because it determines the Mach number M0 of
the imploding shell as a function of the free parameters. This relationship is �xed
by Eq. (6.24). The position of point B also provides the initial values for integrating
di�erential equation (6.20).

� Point E is located at UE < 0, and CE = 1. It refers to a central explosion
with diverging temperature at the origin. In the present context, it describes the
stagnated gas after the re�ected shock has passed. Remarkably, this state can be
derived analytically from Eqs (6.20) and (6.21). The state of the gas behind the
re�ected shock is described by the separatrix running toward point E at

UE = �(�� 2�)=n
; CE !1 ; (6.25)

where �E = 0. The explicit solution for the �ow functions after stagnation, valid
asymptotically for r ! 0 and t > 0, is given by

u(r; t) = ��(�� 2�)=(n
) r t�1

�(r; t) / rn�=� t�(��n�=�) (6.26)

p(r; t) / r0 t�(��2�) ;

with � = n
 + � � 2�. For � > 0, the density vanishes in the centre, while the
temperature T / c2 diverges such that the pressure p / �T is uniform. In the
special case � = 2�, these asymptotic results hold even globally; then they describe
an isobaric gas at rest. In this case, the solution branch S2E coincides with the
U = 0 axis in Fig. 6.3.
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� Point F is located at UF = +1 and CF = 1. In this point, the condition (6.14)
for a trajectory to coincide with a �-line is ful�lled. This means that there are
neighboring particle trajectories only on one side of the trajectory RF(t). Since
this is possible only for entropy parameters � > 0 [16], point F refers to the inner
material boundary of non-isentropic imploding hollow shells.

It is important to note that the imploding shell solution presented here is almost identical
with the imploding shock wave solution �rst discussed by Guderley [54]. In both cases,
the t < 0 branch has to cross the sonic line C = 1�U at singular point B. For Guderley's
converging shock in a uniform gas, where � = 0, the solution has to satisfy strong shock
conditions at the inner boundary. This means that it has to hit the strong shock point
A at

UA = 2=(
 + 1); CA =
p
2
(
 � 1)=(
 + 1) ; (6.27)

as shown in Fig. 6.3. This singles out a unique value of �. On the other hand, the
imploding shell solutions considered here have to reach the inner surface point F at
UF = 1 and CF =1, which is possible for a continuous set of � and � values. Figure 6.3
also shows the shock points S1 and S2. They correspond to one characteristic Rs = �s t

�,
describing the re�ected shock after void closure.
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Figure 6.3 Self-similar solution of Fig. 6.1 in U; C plane. The points O, B, D, and also E,

F located at C!1 represent singular points, where dU=dC! 0=0. The solid curve OBF

corresponds to the imploding shell, and curve OS1S2E to the gas after void closure (t > 0);

they match at point O where � = r=jtj� =1, which describes the solution at t = 0 and also

outer gas layers at r!1 for jtj 6= 0. The jump S1S2 describes the re�ected shock at �s and

S2E refers to the stagnating gas at 0 � � � �s. Physical solutions have to cross the dash-dotted

line U+C = 1 at the sonic point B.

IV. Shock Jump Conditions

After void closure, the imploding shell material stagnates behind the re�ected shock. In
the U; C plane, this corresponds to a jump between the points S1 and S2; the value of
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� does not vary across the shock. The locations of the shock points S1 and S2 in the
U; C plane are related by the Hugoniot relations, expressing the conservation of mass,
momentum and energy across shock discontinuities. In the frame of reference of the
moving discontinuity, they can be written [51]

[�1u1]1;2 = 0

[p1 + �1u
2
1]1;2 = 0 (6.28)

[w1 + u21=2]1;2 = 0 :

Here [q]1;2 denotes the jump of the quantity q between the undisturbed region 1 in front
of the shock and region 2 behind the shock wave. The heat function of the gas is given
by w � c2=(
 � 1).

In order to write the Eqs (6.28) in terms of U and C, one has to transform velocities
from shock- to the laboratory system according to

us = ul � d ; (6.29)

where d is the shock front velocity. Since the shock propagates on a �-line, its trajectory
can be written as d(r; t) = (�r=t)D(�s), with a reduced velocityD = 1. Mass conservation
across the shock then assumes the form

�s=�1 = G2=G1 = (1� U1)=(1 � U2) (6.30)

with the reduced density G, while momentum and energy conservation lead to the ex-
pressions

(1� U2) = (1� U1)

"

 � 1


 + 1
+

2


 + 1

�
C1

1� U1

�2
#
;

C2
2 =

2
(
 � 1)

(
 + 1)2
(1� U1)

2 (6.31)

+

"
1� 2

�

 � 1


 + 1

�2

� 2

 � 1

(
 + 1)2

�
C1

1� U1

�2
#
C2
1 :

These equations can be found as the solutions of quadratic equations, emerging from the
conservation relations (6.28). Noting that large Mach numbers M1 = U1=C1 in front of
the shock imply also large values of (1�U1)=C1, the jump conditions for density reduces
to

�s=�1 ' �; (6.32)

where � = (
 + 1)=(
 � 1). Furthermore, the pressure jump over the shock SR = ps=p1
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can be approximated by

SR =
�s
�1

C2
2

C2
1

=

�
2
(
 � 1)

(
 + 1)2
(1� U1)

2

C2
1

+

+

"
1� 2

�

 � 1


 + 1

�2

� 2

 � 1

(
 + 1)2

�
C1

1� U1

�2
#)

1� U1

1� U2

' 2



 + 1

�
1� U1

C1

�2

: (6.33)

6.2 Analytical Calculation of the Shell Compression

Figure 6.4 shows results from the numerical integration of the reduced di�erential equa-
tion (6.20). Presented are the stagnation pressure ratio ps=p0 and the �nal compression
�s=�0 versus Mach number M0 at void closure. It makes sense to consider these ratios
because, as shown above, they are unique throughout the shell, i.e. their value is inde-
pendent of the mass coordinate. The dots correspond to a set of � and � values chosen
to cover the range 2 < M0 < 25 and 0:3 < � < 6. For spherical shells (n = 3) of an ideal

 = 5=3 gas, the results are well represented by the scaling relations ps=p0 ' 3:6M3

0

and �s=�0 ' 2:4M
3=2
0 for pressure and density, while ps=p0 / M

9=4
0 and �s=�0 / M

3=4
0

in cylindrical geometry (n = 2). Numerically [16], it turns out that results for di�erent
values of the entropy parameter �, at �xed values of the Mach number M0, are almost
identical. In other words, the �nal compression ratios depend strongly on the Mach num-
ber of the imploding shell, but they are rather independent of the entropy distribution.
This remarkable result will be derived analytically below.

The line of the argument goes as follows. Determinants �i of the reduced di�erential
equation are decomposed into terms Li and Ri. Whenever it is necessary for the present
approximation, one has Ri � Li, as will be shown. This has two consequences. Firstly,
adiabatic compression of the shell material between void closure and the time when the
re�ected shock passes can be expressed analytically. This is closely related to the fact
that particle trajectories, plotted in Fig. 6.1, are almost straight lines. Secondly, it is
possible to give an analytic expression for the Mach number M0 at void closure. The
combination of both steps leads to an analytic expression for the shell compression.

I. Reduction of the Determinants

The determinants �i for the reduced di�erential equation (6.20) and (6.21) can be written
as a sum of two expressions Li and Ri, so that the di�erential equations (6.20) take on
the form

dU

dC
=

�1

�2
� L1 +R1

L2 +R2
; (6.34)

d ln �

dC
=

�0

�2
� L0 +R0

L2 +R2
: (6.35)
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Figure 6.4 Compression ratios ps=p0 and �s=�0 of �uid elements between times of void closure

(index 0) and passage of re�ected shock (index s) plotted vs. Mach numberM0. Dots represent

numerical solutions of the similarity model and lines refer to analytical scaling formulas (open

dots correspond to cylindrical, full dots to spherical geometry). The small scatter of the results

around the power laws re�ects di�erent values of the entropy parameter �.

The expressions Li and the rest terms Ri are given by

L0 = �(1� U)2 ; R0 = C2 ;

L1 = U(1� U) (1=�� U) ; R1 = �C2 [nU + (�� 2�)=
] ; (6.36)

L2 = C f(1� U) (1=�� U) + U [1=� � U � n(1� U)] =�g ;
R2 = C3

�
(2
=�)�1 (U � 1)�1 � 1

�
:

The approximation, which is the main result of this chapter, assumes that the Mach
number at void closure is large

lim
�!1

����UC
����� 1 ; (6.37)

and that the shell material is almost at rest behind the re�ected shock,

jUEj � j(�� 2�)=(n
)j � 1 ; (6.38)

and that � � 1. Here, UE has been de�ned in Eq. (6.26). This choice of parameters
corresponds to an almost isobaric steady gas behind the re�ected shock, which is a
typical situation for ICF capsule implosions [30]. The last two conditions further yield
�=2
 ' �� 1.

With the assumptions (6.37) and (6.38) in mind, one �nds that

R1 � L1 ; R2 � L2 (6.39)

along the branch BOS of the solution curve, and

R0 � L0 ; R2 � L2 (6.40)
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along branch BO, as will be shown below. Neglecting the small termsRi, one can integrate
Eqs (6.34) and (6.35) analytically along the respective branches. This yields the desired
results for (i) the adiabatic compression of the shell after void closure, and for (ii) the
relation between the Mach numbers at void closure and in the sonic point B.

Ignoring the terms Ri in Eq. (6.34) leads to

dU

dC
' L1

L2
=

U(1� U)(1=� � U)

C f(1 � U)(1=� � U) + U [(1=� � U)� n(1� U)]=�g ; (6.41)

where � = 1=�� 1 is used. Then Eq. (6.34) can be written as

d lnC

dU
' 1

U
+

1=�

1� U
� n=�

1=� � U
: (6.42)

For the last equation to hold one needs jdU=dCj 6= 0; this condition is ful�lled in the
solution branch BOS1, as long as � < 1 and U < 1. Equation (6.42) can be integrated
directly, leading to the following expression for the Mach number

M �=M0

�
1� U

(1� �U)n

�1=�
: (6.43)

Eq. (6.43) can be used, �rstly, to relate the analytic expression for the Mach number MB

in the sonic point, cf. Eq. (6.24), with the Mach number M0 at void closure. Secondly,
Eq. (6.43) allows to determine adiabatic compression of the shell material between void
closure and passage of the re�ected shock.

II. Analysis of the Reduction

This section checks the approximations (6.39) and (6.40) at three characteristic points
of the relevant solution branch BOS1. First the shock point S1 in the lower half plane
U < 0 of the solution space with jU j � 1 is considered. Here one can write

jL0j
jR0j '

�
U

C

�2

� 1 ;

jL1j
jR1j ' jU j3

nUC2
=

1

n

�
U

C

�2

� 1 ; (6.44)

jL2j
jR2j ' CU2[1� (n� 1)=�]

C3
= [1� (n� 1)=�]

�
U

C

�2

� 1 ;

demonstrating that approximation (6.39) is valid in the close to point S1. Near void
closure, one has 0 < C � jU j � 1. Therefore

jL0j=jR0j ' 1

C2
� 1 ;

jL1j=jR1j ' U=�

nC2(U � UE)
� 1 ; (6.45)

jL2j=jR2j ' C=�

C3(��=(2
) � 1)
� 1 ;
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showing that the approximation works close to point O, as well.
The position of singular point B is characterized as the solution of the quadratic

equation (6.24) in the U > 0 half plane. Using � � 1=� � 1, one obtains

UB ' 1 ;

1� UB ' �=n

1� UE
; (6.46)

1� �UB ' �=(�+ 1) ;

where UE = �(�� 2�)=(n
) denotes the position of singular point E, and CB � 1�UB.
At point B, the expressions Li; Ri can be approximated by

jL0j
jR0j = 1 ;

jL1j
jR1j ' (�=n)(1 � UE)

�1�=(�+ 1)

[(1 � UE)n=�]�2n(1� UE)
' 1

�+ 1
' 1 ;

jL2j
jR2j ' (1 � UB)f(1� UB)(1=� � UB) + UB [1=� � UB � n(1� UB)]=�g

(1� UB)3[�(1� UB)�1 � 1]

' (�2=n)(1 � UE)
�1 f(�=n)� UE=(1 � UE)�

�1g
(�=n)3(1� UE)�3[n(1� UE)� 1]

� n=(n� 1) : (6.47)

In the sonic point B, the approximation Li � Ri is obviously invalid. Nevertheless,
approximation (6.43) for the Mach number M0 in point B gives reliable results, for
the following reason: examining the relative change of the Mach number between the
points O and B, it turns out that the derivative jM�1dM=dU j, calculated from the
approximate solution (6.43), drops to small values in the vicinity of point B. Under the
assumptions (6.39) and (6.40) given above, one has�

1

M

dM

dU

�
U'UB

=
1

�

� �1
1� UB

+
�n

1� �UB

�

' n

��
[(UE � 1) + 1] (6.48)

=
n

��
UE � 1

��
� 1 ;

for appropriate combinations of � and �. Note that the solution works even when UE 6= 0.
While the above argument is carried out for the approximate solution (6.43), it applies

also to the full expressions for the Mach number

1

M

dM

dU
=

1

U

�
1�M

dC

dU

�
: (6.49)

Since the expressions L1 and R1 in the denominator of the term dC=dU have equal signs,
the full expression for dM=dU is of the same order of magnitude as its approximated
counterpart (6.48). Finally, note that, after shock passage, i.e. at S2 and the branch S2E,
one has U=C � 1.
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III. Shell Compression after Void Closure

The compression of shell material between void closure and the passage of the re�ected
shock can be divided into two steps. In the �rst step, the converging shell material is
compressed adiabatically between void closure and the re�ected shock. This compression
occurs even in the plane geometry (n = 1), where it is caused by the homologous �ow
pattern for � < 1, cf. Eq. (6.54) below. In the second step, the gas is further compressed
as it passes through the re�ected shock. The combination of both steps yields the �nal
compression of the shell material.
(1) Adiabatic Compression. The compression of �uid elements between void closure and
the time before the re�ected shock passes is given by � / c�; this results from Poisson�s
adiabatic relation � / p1=
 / (c2�)1=
 , with 
 � 1 + 2=�. It is important to note that
�uid elements move at almost constant velocity between void closure and the passage of
the re�ected shock, i.e.

du=d ln � ' 0 : (6.50)

This can be seen from the following argument. Consider the particle trajectory R(a; �)
of the mass element a, written in terms of �. The particle velocity u = dR=dt can be
expressed as

u(a; �) = �R(a; �)1�1=� �1=� U(�) : (6.51)

Using Eq. (6.13) derived above, one arrives at

du

d�
/

�
(1� 1=�)

d lnR

d ln �
+

1

�
+
d lnU

d ln �

�

=

�
1=�� U

1� U
+
d lnU

d ln �

�
: (6.52)

Invoking the main assumption U=C � 1 and using the de�nitions of expressions Li given
in Eq. (6.36), one can write the last term in the square bracket as

d lnU

d ln �
=

1

U

�1(U;C)

�0(U;C)
' L1

L0
=
U � 1=�

1� U
: (6.53)

This yields the desired result (6.50), and it explains why the particle trajectories in
Fig. 6.1 are almost straight lines. As a consequence, the sound velocity c is proportional
to M�1 along each particle trajectory between void closure and passage of the re�ected
shock. Together with the approximate integral (6.43) for the Mach number, this yields
an expression for the adiabatic compression,

�1
�0
�= (1� �U1)

n

1� U1

�= �n(1� U1)
n�1 : (6.54)

The last approximation in Eq. (6.54) holds for values of �� 1, and jU j � 1. Under these
conditions one can approximate 1� �U by �(1 � U).
(2) Shock Compression. In the re�ected shock, the shell material is further compressed
by a factor �s=�1 ' �. Using jump condition (6.32) across the shock to write 1�U1, the
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total compression between void closure and passage of the re�ected shock takes on the
form

�s
�0

=
�s
�1

�1
�0
�= (��)n(1� U2)

n�1 : (6.55)

Similarly, the pressure ratio between void closure and passage of the re�ected shock
can be split up into an adiabatic contribution p1=p0 = (�1=�0)


 , and the strong shock
contribution (6.33). Combining these relations with Eq. (6.32) for the density ratio, and
expressing C1 = U1=M1 via Eq. (6.43), one obtains

ps
p0

�= 2



 � 1

(1� U2)
n+1

[1� �(1� U2)]
2 (��)

nM2
0 : (6.56)

This expression holds for n = 1; 2; 3, corresponding to plane, cylindrical and spherical
geometry, as will be shown below.

IV. Mach Number at Void Closure

The next step is to eliminate the expressions 1�U2 from Eqs (6.55)�(6.56), and to replace
them by expressions in the Mach number M0. This is done as follows: the solution curve
U(C) has to cross the sonic line U + C = 1 through singular point B in the U > 0
half-plane, as shown in Fig. 6.3. The Mach number MB in point B is found by solving
quadratic equation (6.24). Substituting expressions (6.46) for UB in the approximate
integral (6.43) for the Mach number, one obtains the desired expression for the Mach
number in terms of the reduced velocity 1� U2

M0
�= (��)n=� (n=�)1+1=� (1� U2)

1+1=� : (6.57)

V. Analytic Expressions for the Final Compression

Now, expression (6.57) for the reduced velocity 1 � U2 is inserted into relations (6.55)�
(6.56) for the shell compression. The density ratio (6.55) then assumes the �nal form

�s=�0 �= f(�)M
2(n�1)=(
+1)
0 ; (6.58)

with a pre-factor f(�) = �nn1�n�(1� �)(1�n=�)(n�1). For typical cases with n < �, the
factor f(�) depends only weakly on � and can be replaced by a constant in the relevant
range of 0:6 < � < 0:9, see Fig. 6.5. This corresponds to M0 and � values covered in
Fig. 6.4. For spherical geometry, n = 3, and an adiabatic exponent 
 = 5=3 one obtains
fmax

�= 2:7, while 2(n� 1)=(
 + 1) = 3=2. This is in good agreement with the numerical
results shown in Fig. 6.4.

The pressure ratio (6.56) is not immediately of power law structure in x � 1 � U2,
but approximating the function F (x) � xn+1=(1 � �x)2 by the power law F (x) � F1x

�

at x = 1, one �nds � = n� 
 and F1 = (
 � 1)2=4. This leads to

ps=p0 �= g(�)M
2(n+1)=(
+1)
0 : (6.59)

For n = 3 and 
 = 5=3, Eq. (6.59) reproduces the central scaling relation ps=p0 / M3
0 .

Again, the front factor g(�) = 
(
�1)�nn
�n�
(1��)(1�n=�)(n�
)=2 is a weak function
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Figure 6.5 Pre-factors f(�) and g(�) of the compression in cylindrical (n = 2) and spherical

(n = 3) geometry vs. the self-similarity parameter �, for 
 = 5=3. Note that the values of �

are restricted by the condition � � 1� �� > 0 to 0:6 < � < 1 in cylindrical geometry, and to

0:5 < � < 1 for spherical geometry, assuming 
 = 5=3.

of � and can be replaced by its maximum. For n = 3 and 
 = 5=3, we �nd gmax ' 3:4 in
reasonable agreement with the numerical result, cf. Fig. 6.5.

From the above derivation, it should be clear that the power formula (6.59) is only of
approximate validity in an intermediate range of Mach numbers M0. This is also visible
in Fig. 6.4, where the straight-line power law (6.59) touches tangentially the somewhat
curved numerical results. The curvature in the scaling of ps=p0 with M0 re�ects the
transition from the scaling (6.59) valid at x � 1, to another scaling for x � 1. In this
limit, the function F (x) approaches the scaling F (x) / xn�1, and therefore ps=p0 /
M

2(
+n)=(
+1)
0 . For n = 3; 
 = 5=3, this yields an exponent of 3:5, which is slightly

larger than the exponent for the limit x = 1. Notice, however, that the �tting point
x � 1 � U2 = 1 chosen above is the most natural one, because it corresponds to U2 '
(�� 2�)=n
 = 0, and therefore to the distinguished special case in which the stagnated
gas is uniform and at rest, see Eq. (6.26).

The scaling laws (6.58) and (6.59) also describe the numerical solutions in Fig. 6.4 for

cylindrical (n = 2) geometry, giving ps=p0 /M
9=4
0 and �s=�0 /M

3=4
0 for 
 = 5=3.

VI. Converging Flows in Plane Geometry

The case of a plane converging �ow (n = 1) is di�erent from the cylindrical and the spher-
ical shell implosions in that there are no e�ects of geometric convergence. Nevertheless,
the 'shell' material is compressed between void closure and passage of the re�ected shock,
i.e. along the branch BOS1, because of the self-similar �ow pattern for � < 1. Like in the
cylindrical or spherical geometry, one can apply the formulas (6.58) and (6.56) using the
approximation �(1�U2)� 1. This approximation is more appropriate than assumption
(6.38) in the case of n = 1, since the values of � and � are restricted to larger values,
compared to the spherical or cylindrical case; that comes from the requirement � > 0.
In physical terms, the latter approximation means that the shell material is assumed to
be not at rest behind the re�ected shock.
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Under these assumptions, the compression of the shell material between void closure
and passage of the re�ected shock in the plane geometry is given by

�s=�0 ' � ; (6.60)

while the pressure ratio is

ps
p0
' 2



 � 1
��1M2

0 : (6.61)

Equations (6.60)�(6.61) are in good agreement with the numerical results, even including
the pre-factors as one can check in Fig. 6.6.

It seems appropriate to compare the
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Figure 6.6 Compression ratios ps=p0 and �s=�0
vs. Mach numberM0 at void closure for the plane

case with n = 1. Dots represent numerical solu-

tions of Eq. (6.20) with similarity parameters in

the range 0:77 � � � 0:95 and 1 � � � 5. Lines

refer to the analytical scalings (6.60) and (6.61).

The scatter of the results around the power laws

re�ect di�erent values of �.

self-similar convergent �ow for n = 1
with the standard textbook example [51]
of a shock wave which is re�ected by a
rigid wall in a uniform gas. This com-
parison, however, does not match here:
the gas behind the traveling shock wave
in this example case has a Mach number
number

M̂1 =

s
2


(
 � 1)
; (6.62)

which is determined by the adiabatic ex-
ponent 
 only. Further, the ratio of the
pressures behind the ingoing and the re-
�ected shock is

p3
p2

=
3
 � 1


 � 1
; (6.63)

in the limit of a strong ingoing shock
wave. Mach number (6.62) and compres-
sion (6.63) do not satisfy the relation (6.61) for the self-similar �ows.
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Appendix A

Description of the
Magneto-Hydrodynamics Code DEIRA

DEIRA is a one-dimensional (1D) magneto-hydrodynamics (MHD) code for simulating
ICF targets driven by beams of fast ions, written by M. Basko [15, 55, 56]. The struc-
ture and main properties of the underlying physical model are brie�y characterized in
the following. For reasons of brevity, however, details about the calculation of kinetic
coe�cients, radiation transport, equations of state and about the numerical algorithm
are omitted here; instead, the corresponding references are given. Note that cylindrical
symmetry will be assumed below, although the code can also treat plane-parallel and
spherical geometries.

As an overview, the main features of the DEIRA model are listed here. It includes

� Equations of 1D single-�uid two-temperature dissipative MHD with electron and
ion heat conduction and physical viscosity.

� A di�usion equation for the axial component of the magnetic �eld.

� A di�usion equation for the energy density of radiation in single-group approxima-
tion, i.e. radiation is described by a separate radiation temperature.

� Di�usion equations for the energy densities of the various species of charged fusion
products; these are alpha particles and protons for deuterium (D2), or deuterium-
tritium (DT) mixtures.

� Nuclear burn equations for the relative abundances of D, T and 3He isotopes.

� A stopping equation for the propagation of fast ions from an external driver in
the approximation of straight-line trajectories. The latter is used only in one case,
namely in Fig. 4.3 describing the deposition characteristics of heavy ion beams in
matter.

The equation of state (EOS) is given in the form of functions Pe(V; Te), Pi(V; Ti),
�e(V; Te), and �i(V; Ti), where Pe, Pi and �e, �i are, respectively, the electron and the
ion components of the pressure, the internal energy per unit mass, and V � 1=� is the
speci�c volume. Additionally, it gives the ionization degree y(V; Te), where 0 < y � Z

81
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for materials with nuclear charge Z. Usually, tabulated EOS are used. The underlying
physical model [57] approximates realistic properties of matter in the region of strong
coupling, treats multiple ionization of atoms (both pressure and thermal), and accounts
for the Fermi degeneracy of electron gases at high densities.

To solve the magneto-hydrodynamic equations numerically, an explicit �nite-
di�erence scheme with arti�cial viscosity is used on a Lagrangean mesh. For the solution
of all di�usion equations and heat conduction terms in the MHD energy equations, a
linearized implicit di�erencing scheme is used, in which the values of heat capacities and
transport coe�cients are taken from the previous time step.

A.1 Basic Equations

I. Nuclear Reactions

In target shells containing thermonuclear fuel, the following nuclear reactions are ac-
counted for

D+ T! 4He (3.52 MeV) + n (14.07 MeV) ; (A.1)

D+D! 3He (0.82 MeV) + n (2.45 MeV) ; (A.2)

D+D! T (1.01 MeV) + p (3.02 MeV) ; (A.3)

D+ 3He! 4He (3.67 MeV) + p (14.68 MeV) : (A.4)

When describing matter undergoing nuclear transformations, it is convenient to assume
that it consists of identical 'molecules', with each 'molecule' containing Xk atoms (nuclei)
of species k. The total number of such imaginary 'molecules' in each target shell is
arbitrary: it is de�ned by the initial normalization of concentrations Xk. Later on, in the
course of nuclear transformations of one species into another, the number of 'molecules'
in each Lagrangean mass interval remains constant: only concentrations Xk change. It
is convenient to introduce a 'molecular' mass Amol de�ned as

Amol =
X
k

XkAk : (A.5)

This quantity changes only little in the course of nuclear transformations (A.1)�(A.4),
and it is assumed that

Amol =
X
k

Xk0Ak = constant ; (A.6)

where Xk0 are the initial values of the element concentrations and Ak is the atomic mass
of species k.

II. Notation

The variables used in the following equations are listed here for reference.

t (time) Er; E�; : : : (energy density)
r (length) �ee; �ei (collision frequency)
u (velocity) �e; �i; �r (heat conduction coe�cients)
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� = V �1 (density) �ei; �er (temperature relaxation coe�'s)
B (magn. induction) �? (speci�c resistivity)
M , m (mass) �i;sc, �i;tn (ion viscosity coe�'s)
E (energy) ��; �p3; �p14 (fusion energy relaxation coe�'s)
Pe; Pi (pressure) d�; dp3; dp14 (fusion energy di�usion coe�'s)
�e; �i (speci�c internal energy) Wb (beam power)
Te; Ti; Tr (temperature) Eb (fast ion energy)
qik (nuclear reaction rate) Sb (stopping power)
Qe; Qi; : : : (speci�c heating rate)

III. Di�erential Equations

The DEIRA code solves the basic di�erential equations of magneto-hydrodynamics, given
here in the Lagrangean form that is used for the numerical scheme. As independent
variables, time t and the reduced mass

m =

Z r

0
� r dr (A.7)

are used. The latter is related to the mass coordinate by a factor of 2�. The principal
dependent variables are

r; u; Te; Ti; Tr; B; E�; Ep3; Ep14; XD; XT ; XHe; XB : (A.8)

The transformation of di�erential operators from Eulerian to Lagrangean form is accom-
plished as

@

@t
+ u

@

@r
! @

@t
;

@

@r
! � r

@

@m
: (A.9)

In Lagrangean coordinates, the MHD equations take on the form

@r

@t
= u ; (A.10)
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Here �i;sc and �i;tn are the coe�cients of the ion (physical) viscosity, de�ned as

�i;sc =
1

3
�i0 ; �i;tn = �i1 ; (A.16)

where �i0 and �i1 are the coe�cients of the ion viscosity of the magnetized plasmas as
de�ned by Braginskii [20]. Without magnetic �eld, one has simply �i0 = �i1. Then �̂e, �̂i,
and �̂r are the electron, �e, the ion, �i (both transverse with respect to the magnetic
�eld), and radiative, �r, heat conduction coe�cients corrected for the corresponding
�ux limits [56]. Transverse electrical resistivity is given by �?. The quantities Qecl and
Qicl are the speci�c heating rates for plasma electrons and ions by slow charged fusion
products, which deposit their energy locally. Qen and Qin are the corresponding heating
rates by thermonuclear neutrons. The speci�c energy deposition by an external power
source (driver) is described by Qdr. The energy density of radiation is given by

Er = aSBT
4
r ; (A.17)

where aSB = 4�SB=c = 1:372 � 1014 erg cm�3 is the radiation density constant related
to the Stefan-Boltzmann constant �SB [42]. Equation (A.15) for the axial magnetic �eld
B is derived from the system of two-�uid 2-T Braginskii equations [20] with the Nernst
e�ect being neglected.

Di�usion of the energy density E of fast fusion products is described by

V
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+
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3
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�
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For the calculation of the di�usion coe�cients, no �ux limits are imposed [56]. The
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depletion of thermonuclear fuel is described by the equations

@XD

@t
=

1

V Amol

��XDXT qDT � 2X2
D qDD �XDXHe qDHe

�
; (A.21)

@XT

@t
=

1

V Amol

�
�XDXT qDT +

1

2
X2
D qDD

�
; (A.22)

@XHe
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1

2
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D qDD

�
: (A.23)

Here

qik =
h�viik
mA

(A.24)

is the rate of nuclear reaction between species i and k. The two reactions (A.2) and (A.3)
are assumed to have the same rate qDD.

The speci�c volume V � 1=� is given by

V =
1

2

@(r2)

@m
: (A.25)

In particular, from Eqs (A.10) and (A.25) one has

@V

@t
=
@ (ur)

@m
� _V : (A.26)

The additive pressure component due to the scalar arti�cial viscosity is given by

Pav = ��av;sc@ (ur)
@m

� ��av;sc _V : (A.27)

Here �av;sc � 0 and �av;tn � 0 are, respectively, the coe�cients of scalar and tensor

components of the arti�cial viscosity [58]. In equations (A.12)�(A.20), the derivative
@

@r

is understood as the operator �r
@

@m
.

IV. Energy Deposition by the Driver

The driver is de�ned as an external source of energy. There are two important cases
relevant for the present context

(a) First the case of a uniformly heated target, as it is considered for the magnetized
cylindrical implosions in Chapters 4�5. Here one takes

Qdr � Pi(r; t) =

8<
: const ; Rp < r < Rb ;

0 ; otherwise.
(A.28)

Here Rp and Rb are �xed values, given e.g. in Fig. 4.1.
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(b) The second case refers to a situation where the beam of fast ions propagates nor-
mally with respect to a planar surface. This situation is considered in Fig. 4.3
checking the characteristics of energy deposition of an ion beam in matter. In Eu-
lerian coordinates, the energy of individual ions Eb(t; r) is determined by solving
the equation of beam propagation

@Eb

@r
= �Sb(Eb; �; Te; Ti) (A.29)

with the boundary condition Eb(t; R) = Eb0; here R is the outer target radius, Sb =
Sb(Eb; �; Te; Ti) is the stopping power of matter, which is a known function of its
arguments [59]. In the present model, the driver energy is assumed to be transferred
exclusively to the electron component of the plasma. The speci�c heating rate in
Eq. (A.12) is

Qdr(t; r) =Wb(t)
Sb(Eb; �; Te; Ti)

Eb0
; (A.30)

where Wb(t) is the total beam power.

V. Thermonuclear Burn Rates

The Maxwell-averaged fusion reaction rates h�viik depend only on the fuel ion temper-
ature Ti. They are related to the corresponding qik via

h�viik (cm3 s�1) = 1:66 � 10�16 qik ; (A.31)

where the qik are given in units of 108cm3 g�1 sec�1. For the burn rate of DT reactions,
the following approximate formula [60] is used

qDT = 1:58� 104 T
�2=3
i

(
(1 + 0:16Ti) exp

"
�19:98

T
1=3
i

�
�

Ti
10:34

�2
#
+

+0:0108 exp

�
�45:07

Ti

��
: (A.32)

Burn rates of other nuclear reactions can be found in Ref. [56]. Temperatures Ti are given
in units of keV. The formula (A.32) is used for the thermal power balance in Chapter 2.
The speci�c heating rate of thermonuclear energy sources is then given by

Qfus =
�

A2
mol

�
1:70� 105XDXT qDT + 7:04 � 104

1

2
X2
D qDD+

+1:77 � 105XDXHe qDHe

�
(1022 erg g�1 sec�1) : (A.33)
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A.2 Boundary Conditions

At r = 0, the boundary conditions for a �xed center of symmetry are used; as a conse-
quence, all di�usion �uxes are zero

u(t; 0) = 0 ; (A.34)

@Te
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=
@Ti
@r

=
@Tr
@r

=
@B

@r
= 0 ; (A.35)

@E�
@r

=
@Ep3
@r

=
@Ep14
@r

= 0 : (A.36)

The conditions at the outer boundary, r = R, are
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; (A.37)

P (t; R) = Pb(t) +
1

3
aSBT

4
rex +

B2
b

8�
; (A.38)

B(t; R) = Bb(t) ; (A.39)

E�(t; R + 0) = Ep3(t; R+ 0) = Ep14(t; R + 0) = 0 : (A.40)

Here, boundary pressure Pb(t), boundary magnetic �eld Bb(t), and boundary radiation
temperature Trex(t) are assumed to be given. The values used throughout the present
work are Pb = 0, Trex = 0, Bb = B0 � B(0; r).

A.3 Kinetic Coe�cients and Radiation Energy Transport

The following kinetic coe�cients are contained in Eqs (A.10)�(A.20) of magneto-
hydrodynamics, radiation di�usion, and energy di�usion of fast fusion products. The
coe�cients of transverse (with respect to the magnetic �eld) heat conduction and tem-
perature relaxation �e, �i, �r, �ei, �er; ion (physical) viscosity coe�cients �i0 and �

i
1; the

transverse electrical conductivity coe�cient �?; the coe�cients of di�usion and relax-
ation of the energy of fast fusion products d�, dp3, dp14, �� = �e�+�i�, �p3 = �ep3+�ip3,
�p14 = �ep14 + �ip14. The formulae for these coe�cients are based on the expressions
published earlier in Refs [20, 32, 61�64].

The present radiation transport model is based on the approximation of a single-
frequency group or, in other words, a separate radiation temperature. It describes
radiation-matter interaction by taking into account the processes of Compton scattering,
free-free absorption, free-bound / bound-bound absorption. The free-free absorption (in-
verse bremsstrahlung) coe�cient is calculated for a partially degenerate Fermi gas of free
electrons. The contribution of the bound-bound and bound-free transitions is evaluated
on the basis of the model proposed in Ref. [63].
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Conclusions

The aim of the present thesis has been to examine the concept of axially magnetized,
cylindrical implosions driven by heavy ion beams. In particular, the intention has been
to study the generation of high energy density in matter for fundamental research and to
explore the potential for inertial con�nement fusion. Results have been obtained by means
of one-dimensional (1D) magneto-hydrodynamic (MHD) computer simulations [15], and
by simple analytic modeling. In the following, the main conclusions are listed by the
order of their appearance in the text.

(1) The thermal power balance of magnetized cylindrical DT fuel volumes at stagnation
has been analyzed. The results help to understand the e�ect of magnetic insulation
in fusion targets at stagnation. The results have appeared in Nuclear Fusion [8,65].

(2) Due to the slow fuel burn in magnetized cylindrical fusion targets, which is caused
by the lower volume compression as compared to spherical implosions, the fuel has
to be con�ned by a heavy tamper layer. An important result of this work is that
the ignition threshold of tamped, magnetically insulated fuel volumes depends on
the equation of state of the tamper material. Corresponding results have appeared
in Nuclear Fusion [11].

(3) A problem of magnetized cylindrical implosions is the di�usive loss of magnetic
�ux out of the fuel volume, followed by an accumulation of fuel material next to
the imploding pusher. The formation of this boundary layer has been investigated
by means of 1D-MHD computer simulations.

(4) Ignition conditions for magnetized fusion targets, in terms of the driver pulse en-
ergy, have been discussed. The important new result is that magnetized targets
ignite at signi�cantly reduced implosion velocities and fuel �R values, compared to
spherical ICF targets. This leads to relaxed conditions on the power and the pulse
duration of the driver. Hot-spot ignition, i.e. the propagation of a burn wave along
the axis, is essential for high fusion energy gain in the cylindrical targets.

(5) The stagnation pressure in converging �ows has been analyzed by means of a
similarity solution for the equations of ideal gas-dynamics (for spherical, cylindrical
or plane �ow patterns). Analytical scaling relations, relevant for an ignition energy
scaling of ICF targets and for a general understanding of the shell implosions
discussed here, have been derived. These results have appeared in Physical Review
Letters [19].
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