Polymorphismen des Cytochrom P 450 2D6 und
ihr Einfluss auf den Erfolg der Psychopharmakotherapie.
Eine einjährige Querschnittsstudie im stationären Patientengut der psychiatrischen Klinik

Julia Bachofer

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. D. Neumeier
Prüfer der Dissertation:
1. Priv.-Doz. Dr. W. Steimer
2. Univ.-Prof. Dr. J. Förstl

Die Dissertation wurde am 03.01.2006 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 29.03.2006 angenommen.
Inhaltsverzeichnis

1. Verzeichnis der verwendeten Abkürzungen .. 4
2. Einleitung .. 6
 2.1. Pharmakogenetik und Psychopharmakotherapie ... 6
 2.2. Das Cytochrom P4502D6 (CYP2D6) .. 7
 2.3. CYP2D6 und unerwünschte Arzneimittelwirkungen (ADE) 11
 2.4. CYP2D6 und Ansprechen auf die Psychopharmakotherapie 12
 2.5. Zielsetzung der Arbeit ... 13
3. Material und Methoden .. 14
 3.1. Chemikalien- und Geräteliste .. 14
 3.1.1. Geräte ... 14
 3.1.2. Polymerasen und Puffer .. 14
 3.1.3. Sonstiges ... 14
 3.2. Allgemeines ... 15
 3.2.1. PCR .. 15
 3.2.2. Analyse der PCR-Produkte ... 17
 3.3. CYP2D6-Genotypisierung ... 19
 3.3.1. Bereits etablierte Methoden .. 19
 3.3.2. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*35-Allels 22
 3.3.3. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*41/2-Polymorphismus ... 23
 3.3.4. Real-Time PCR zur Unterscheidung zwischen Homozygotie oder Heterozygotie des CYP2D6*2 und CYP2D6*41-Allels ... 25
 3.3.5. PCR zur Unterscheidung zwischen CYP2D6*1XN, *2XN und *4XN 26
 3.4. Studie ... 28
 3.4.1. Studiendesign ... 28
 3.4.2. Studienaufbau und erhobene Variablen ... 29
 3.4.3. Auswertung der Daten .. 32
4. Ergebnisse ... 33
 4.1. CYP2D6-Genotypisierung ... 33
 4.1.1. Bereits etablierte Methoden .. 33
 4.1.2. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*35-Allels 34
 4.1.3. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*41/2-Polymerismus ... 35
 4.1.4. Real-Time PCR zur Unterscheidung zwischen Homozygotie oder Heterozygotie des CYP2D6*2 und CYP2D6*41-Allels ... 36
1. Verzeichnis der verwendeten Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenosin</td>
</tr>
<tr>
<td>ADE</td>
<td>adverse drug event (unerwünschte Arzneimittelwirkung)</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumine</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Cytosin</td>
</tr>
<tr>
<td>CGI</td>
<td>Clinical Global Impression</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>Cytochrom P450 2D6</td>
</tr>
<tr>
<td>CYP2D7</td>
<td>Cytochrom P450 2D7</td>
</tr>
<tr>
<td>CYP2D8</td>
<td>Cytochrom P450 2D8</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>DNA</td>
<td>Dexoxy-Ribonucleic-Acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxy-Ribonucleosid-Tri-Phosphat</td>
</tr>
<tr>
<td>DOTES</td>
<td>Dosage Record and Treatment Emergent Symptom Scale</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen-Diamin-Tetra-Acetat</td>
</tr>
<tr>
<td>EM</td>
<td>Extensive Metabolizer</td>
</tr>
<tr>
<td>evtl.</td>
<td>eventuell</td>
</tr>
<tr>
<td>FRET</td>
<td>Fluoreszenz-Resonanz-Energie-Transfer</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>G</td>
<td>Guanosin</td>
</tr>
<tr>
<td>GDG</td>
<td>Gendosis-Gruppe</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Code of Diseases, Version 10</td>
</tr>
<tr>
<td>IM</td>
<td>Intermediate Metabolizer</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>kg KG</td>
<td>Kilogramm Körpergewicht</td>
</tr>
<tr>
<td>LC</td>
<td>LightCycler™</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>mmol/l</td>
<td>Milli-Mol/Liter</td>
</tr>
<tr>
<td>mM</td>
<td>Milli-Molar</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>MR</td>
<td>Metabolic Ratio</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction (Polymerase Ketten Reaktion)</td>
</tr>
<tr>
<td>PD-S</td>
<td>Paranoid-Depressivitäts-Skala</td>
</tr>
<tr>
<td>PM</td>
<td>Poor Metabolizer</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriktionsfragment-Längenpolymorphismus</td>
</tr>
<tr>
<td>s</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selektive Serotonin-Reuptake-Inhibitoren</td>
</tr>
<tr>
<td>T</td>
<td>Thymin</td>
</tr>
<tr>
<td>TBE</td>
<td>Triboressigsäure</td>
</tr>
<tr>
<td>UM</td>
<td>Ultraextensive Metabolizer</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
2. Einleitung

2.1. Pharmakogenetik und Psychopharmakotherapie

Pharmakogenetische Phänomene können sowohl die Pharmakokinetik als auch die Pharmakodynamik eines Arzneimittels beeinflussen. Genetisch bedingten Variationen der Pharmakokinetik, die in der Regel darauf zurückzuführen sind, dass aufgrund von Mutationen bestimmte arzneistoffabbauende Enzyme in ihren katalytischen Eigenschaften
verändert werden, sind in den letzten Jahren eingehend dokumentiert und charakterisiert worden.

2.2. Das Cytochrom P4502D6 (CYP2D6)

Für alle Cytochrom-P450-Enzyme gilt, dass ihre hepatische Expression individuell sehr variabel ist. Ursächlich hierfür sind neben pathologischen Zuständen und Umwelteinflüssen vor allem Polymorphismen in den kodierenden Gensequenzen oder deren Promotorregionen (Gonzalez et al. 1994; Ingelman-Sundberg et al. 1999).

Bisher am besten untersucht ist der Polymorphismus des Cytochrom P450 2D6 (CYP2D6). Er wird auch als Spartein-Debrisoquin-Polymorphismus bezeichnet – nach den beiden Arzneimitteln, die in den 1970ern zu seiner Entdeckung führten (Mahgoub et al. 1977; Eichelbaum et al. 1979).

Das CYP2D6-Enzym ist verantwortlich für den Metabolismus von über 100 verschiedenen Arzneimitteln (Bertilsson et al. 2002). Viele dieser Substanzen finden Anwendung in der Psychiatrie, unter anderem ältere tricyclische Antidepressiva, einige der neueren selektiven Serotonin-Reuptake-Inhibitoren (SSRI) sowie einige klassische und atypische Neuroleptika. Eine Auswahl der gebräuchlichsten Präparate ist Tabelle 1 zu entnehmen. Auch endogene Substanzen wie Tryptamin und Tyramin werden durch das CYP2D6-Enzym verstoffwechselt (Hiroi et al. 1998).
Tabelle 1: Antidepressiva und Neuroleptika, die über das CYP2D6-Enzym abgebaut werden

<table>
<thead>
<tr>
<th>Antidepressiva</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptylin</td>
<td>(Mellstrom et al. 1983)</td>
</tr>
<tr>
<td>Clomipramin</td>
<td>(Balant-Gorgia et al. 1996)</td>
</tr>
<tr>
<td>Desipramin</td>
<td>(Musa et al. 1994)</td>
</tr>
<tr>
<td>Doxepin</td>
<td>(Haritos et al. 2000)</td>
</tr>
<tr>
<td>Fluoxetin</td>
<td>(Hamelin et al. 1996)</td>
</tr>
<tr>
<td>Fluvoxamin</td>
<td>(Carrillo et al. 1996)</td>
</tr>
<tr>
<td>Imipramin</td>
<td>(Brosen et al. 1986b)</td>
</tr>
<tr>
<td>Maprotilin</td>
<td>(Firkusny et al. 1994; Brachtendorf et al. 2002)</td>
</tr>
<tr>
<td>Mianserin</td>
<td>(Dahl et al. 1994)</td>
</tr>
<tr>
<td>Mirtazapin</td>
<td>(Stormer et al. 2000b)</td>
</tr>
<tr>
<td>Paroxetin</td>
<td>(Sindrup et al. 1992)</td>
</tr>
<tr>
<td>Trimipramin</td>
<td>(Eap et al. 2000)</td>
</tr>
<tr>
<td>Venlafaxin</td>
<td>(Otton et al. 1996)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuroleptika</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpromazin</td>
<td>(Yoshii et al. 2000)</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>(Tyndale et al. 1991; Fang et al. 1997)</td>
</tr>
<tr>
<td>Perazin</td>
<td>(Stormer et al. 2000a)</td>
</tr>
<tr>
<td>Perphenazin</td>
<td>(Dahl-Puustinen et al. 1989)</td>
</tr>
<tr>
<td>Risperidon</td>
<td>(Huang et al. 1993)</td>
</tr>
<tr>
<td>Thioridazin</td>
<td>(Yoshii et al. 2000)</td>
</tr>
</tbody>
</table>

Das CYP2D6-Gen ist auf dem langen Arm des Chromosoms 22 lokalisiert (Eichelbaum et al. 1987; Gough et al. 1993) und besteht aus neun Exons und acht Introns. Zusammen mit zwei flankierenden Pseudogenen (CYP2D8P und CYP2D7P) umfasst der CYP2D6-Genlocus etwa 45 kb (Kimura et al. 1989; Heim et al. 1992). Bis jetzt sind über 70 verschiedene Allele dieses Gens beschrieben worden (Ingelman-Sundberg et al.), welche nach dem internationalen Nomenklatsursystem mit arabischen Zahlen gekennzeichnet werden (Daly et al. 1996).

Wenigstens 15 der bisher bekannten Mutationen sind dafür verantwortlich, dass das CYP2D6-Enzym nicht gebildet wird (Meyer et al. 1997). Diese sog. „Nullallele“ führen zu Fehlern im Splicing (z.B. bei CYP2D6*4 und *11), zu Frame-shift-Mutationen (z.B.
CYP2D6*3, *6, *13 und *15), zur Deletion des gesamten Gens (CYP2D6*5), Stopp-Kodon-Mutationen (CYP2D6*8) oder Missense-Mutationen (CYP2D6*7).

Bei anderen Allelen wie dem CYP2D6*9, charakterisiert durch eine Deletion, oder dem CYP2D6*10, *17 oder *41, charakterisiert durch Substitutionen, kommt es durch die resultierenden spezifischen Veränderungen in der Aminosäureabfolge des Genprodukts zu einer Einschränkung der katalytischen Aktivität des CYP2D6-Enzyms (Masimirembwa et al. 1996; Sachse et al. 1997; Griese et al. 1998; Raimundo et al. 2000; Raimundo et al. 2004).

Das Genprodukt des CYP2D6*2-Allel entspricht in seiner Metabolisierungskapazität weitgehend dem vom Wildtyp-Allel CYP2D6*1 kodierten Enzym (Zanger et al. 2001).

Die Phänotypisierung ist aber mit einer Reihe von Nachteilen behaftet, die einen routinemäßigen Einsatz verhindern. So beinhaltet die Applikation einer Testsubstanz immer das Risiko von Nebenwirkungen, die Testdurchführung ist langwierig, teuer und erfordert eine gute Patientencompliance. Darüber hinaus kann die Begleitmedikation das Ergebnis verfälschen, so dass eine zeitaufwende Auswasch-Periode für alle interagierenden Arzneimittel nötig wird und dadurch der Therapiebeginn verzögert werden kann bzw. eine bereits begonnene medikamentöse Therapie unterbrochen werden muss. Im Gegensatz dazu stellt die Genotypisierung eine wenig eingreifende, sichere und reproduzierbare Methode dar, die mit Hilfe einer kleinen Blut- oder Gewebeprobe rasch die gewünschte Information liefert.

Aus diesem Grunde wurden in den letzten Jahren zahlreiche Untersuchungen zur Phänotyp-Genotyp-Korrelation für CYP2D6 mit dem Ziel durchgeführt, mittels alleiniger Genotypisierung eine Vorhersage des CYP2D6-Phänotyps zu ermöglichen und so auf die
Verabreichung eines Testarzneistoffes verzichten zu können (Dahl et al. 2000; McElroy et al. 2000).

Neuerdings konnte nämlich in einigen Studien ein CYP2D6-Gen-Dosis-Effekt auf die Pharmakokinetik CYP2D6-abhängiger Medikamente (Dalen et al. 1998; Kvist et al. 2001;

2.3. CYP2D6 und unerwünschte Arzneimittelwirkungen (ADE)

Zahlreiche Fallbeschreibungen in der Literatur haben das Interesse auf die Beziehung zwischen CYP2D6 und dem Auftreten von unerwünschten Arzneimittelwirkungen (ADE) nach der Applikation CYP2D6-abhängiger Medikamente gerichtet (Bertilsson et al. 1981; Swanson et al. 1997; Sallee et al. 2000; Kohnke et al. 2002). So zeigte z.B. eine ältere Patientin, die eine niedrige Tagesdosis Nortriptylin erhalten hatte, ungewöhnlich ausgeprägte Nebenwirkungen wie Müdigkeit, Schwindel und Verwirrtheit. Die Nortriptylin-Plasmaspiegel lagen weit über dem therapeutischen Bereich und eine retrospektiv durchgeführte CYP2D6-Phänotypisierung ergab einen PM-Phänotyp (Bertilsson et al. 1981). In einem anderen Fall verstarb ein neun Jahre altes Kind mit einem CYP2D6-PM-Genotyp nach der Einnahme von Fluoxetin an toxischen Fluoxetin- und Norfluoxetin-Konzentrationen (Sallee et al. 2000).

2.4. CYP2D6 und Ansprechen auf die Psychopharmakotherapie

Es darf davon ausgegangen werden, dass der Einfluss des CYP2D6-Phäno- bzw. Genotyp auf das Therapieansprechen insbesondere dann von Bedeutung ist, wenn für ein bestimmtes Medikament, dass über das CYP2D6-Enzym verstoffwechselt wird, eine
Beziehung zwischen therapeutischen Plasmaspiegeln und klinischem Ansprechen existiert (Scordo et al. 2002).

2.5. Zielsetzung der Arbeit

Einige retrospektive Studien haben aufgezeigt, dass die CYP2D6-Genotypisierung ein mögliches Instrument sein kann, um die Psychopharmakotherapie kosten-effektiv und patienten-orientiert zu individualisieren (Chen et al. 1996; de Leon et al. 1998; Chou et al. 2000).

Die vorliegende Arbeit beschäftigt sich ebenfalls mit dem Einfluss des Cytochrom P4502D6 auf den Therapieverlauf, Wirkungen und Nebenwirkungen einer verabreichten Psychopharmakotherapie.

Zunächst werden im experimentellen Teil der Arbeit neue Analysemethoden entwickelt, um die wichtigsten der bisher beschriebenen Polymorphismen des CYP2D6-Gens in einer kaukasischen Bevölkerung in Kombination mit bereits etablierten Methoden erfassen zu können.

Im zweiten Teil der Arbeit werden dann die Ergebnisse einer prospektiven Studie vorgestellt, deren Ziel es war, die Beziehung zwischen dem CYP2D6-Genotyp und dem Verlauf einer psychiatrischen Therapie zu beurteilen.

Hierzu wurden die Zusammenhänge zwischen semiquantitativer Gendosis und der angewandten Psychopharmakotherapie, den aufgetretenen Nebenwirkungen und dem Ansprechen auf die Therapie untersucht. Ein besonderes Augenmerk richtete sich dabei auf die Frage, ob neben den Patienten mit extremen Genotyp-Varianten, d.h. Individuen mit einer Gendosis von 0 (entsprechend einem PM-Genotyp) oder einer Gendosis von mehr als 2,5 (entsprechend einem UM-Genotyp), auch Individuen mit einer semiquantitativen Gendosis von 0,5 oder 1 (entsprechend dem IM-Genotyp) von ihrem Genotyp hinsichtlich des Therapieverlaufs beeinflusst werden.

Sollte der Genotyp tatsächlich auch bei Patienten mit dem IM-Genotyp ein valider Prädiktor für den Therapieverlauf sein, so könnte die Psychopharmakotherapie durch einfache und dann auch kosten-effektive Genotypisierung vor Therapiebeginn optimiert werden und zeitraubende suboptimale Therapieversuche ebenso vermieden werden wie belastende Überdosierungen. Dadurch würden Qualität und Effizienz dieser Therapie entscheidend verbessert, Behandlungszeiten verkürzt und somit auch Kosten gesenkt.
3. Material und Methoden

3.1. Chemikalien- und Geräteliste

3.1.1. Geräte

Centrifuge 5415C (Zentrifuge) Eppendorf, Hamburg
Circomix (Vortexer) Braun, Melsungen
GeneAmp PCR Systems 9700 PE Applied Biosystems, Weiterstadt
LightCycler™ Roche, Mannheim
LightCycler™ Carousel Centrifuge Roche, Mannheim
Mini Gel Migration Through, Mupid 2 Cosmo Bio Co, LTD, Offenbach
Photoprint PP-IP-008SD Ltf-Labortechnik, Wasserburg
SL-Pette® Autoclavable (Pipetten) Süd-Laborbedarf GmbH, Gauting
Thermostat 5310 (Thermoblock) Eppendorf, Hamburg
1702 MP 8 (Waage) Sartorius AG, Göttingen

3.1.2. Polymerasen und Puffer

LC-DNA Master Hybridization Probes Roche, Mannheim
LC-FastStart DNA Master Hybridization Probes Roche, Mannheim
´Sawady´ Long Range PCR System-Enzym Peqlab, Erlangen
1,67 U/µl Reaktionspuffer Peqlab, Erlangen
´Sawady´ Long Range PCR System-10x MasterAmp 2xPCR Premix D Epicentre Technologies, Oldendorf
Reaktionspuffer Q-Biogene, Grünberg

3.1.3. Sonstiges

alle Primer und Hybridisierungssonden TIB MolBiol, Berlin
Aqua Spüllösung DeltaSelect DeltaSelect, Pfullingen
Auftragspuffer Roche, Mannheim
Bovine Serum Albumin Roche, Mannheim
Desoxy-Ribonucleosid-Tri-Phosphate (dNTP) Eurogentec, Köln
Eppendorf-Cups Eppendorf, Hamburg
Ethidiumbromid (1%ige Lösung) Merck, Darmstadt
1 Kb Plus DNA Ladder, 50 bp Ladder Invitrogen, Karlsruhe
3.2. Allgemeines

3.2.1. PCR

Die LightCycler™-Technologie folgt dem Prinzip der konventionellen PCR und bietet dabei den Vorteil, dass die Dauer der Temperaturprogramme deutlich verkürzt und der Verlauf
der PCR anhand von Fluoreszenzsignalen direkt am angeschlossenen Computer verfolgt werden kann.

Das Verfahren der Real-Time PCR auf dem LightCycler™ der Firma Roche, Mannheim, ermöglicht so eine größtmögliche Verkürzung der Reaktions- und Arbeitszeit und eine direkte Darstellung des PCR-Produktes ohne weitere Arbeitsschritte. Dadurch wird auch die Gefahr einer Kontamination der DNA minimiert.

3.2.1.1. Allgemeine Durchführung der PCR
Alle Komponenten der Stock-Lösungen der unten aufgeführten PCR-Reaktionen wurden jeweils in ein steriles Eppendorf-Gefäß pipettiert, vermischt und zentrifugiert. Anschließend wurde ein Aliquot der Lösung in ein 200 µl-Tube (für die konventionelle PCR) bzw. in eine LightCycler™-Kapillare (für die Real-Time PCR) überführt und DNA dazugegeben. Die Reaktionslösung für die konventionelle PCR wurde abschließend mit einem Tropfen Mineralöl überschichtet, die Reaktionslösung in der LightCycler™-Kapillare
musste noch einmal zentrifugiert werden. Für alle PCR-Reaktionen wurde gleichzeitig eine Leerkontrolle mitgeführt, um eine unspezifische Amplifikation von kontaminiertener DNA auszuschließen.

Beide Ansätze wurden dann ohne Verzögerung in das jeweilige Gerät (GeneAmp PCR Systems 9700 oder Roche LightCycler™) eingebracht und die Amplifikationsreaktion gemäß den angegebenen Programmen gestartet.

3.2.2. Analyse der PCR-Produkte
Für die weitere Analyse der amplifizierten PCR-Produkte standen mehrere Methoden zur Verfügung.

3.2.2.1. Gelelektrophorese

3.2.2.1.1. Herstellung des Gels
Zur Herstellung eines Agarosegels mit einer definierten Agarosekonzentration wurde eine entsprechende Menge Agarose (PeqGold Universal Agarose) in einen sterilen Erlenmeyerkolben eingewogen (0,21 g für ein 0,7%iges Gel, 0,6 g für ein 2%iges Gel und 0,75 g für ein 2,5%iges Gel) und mit 30 ml 1xTBE-Puffer aufgegossen. Die Mischung wurde in der Mikrowelle drei Mal aufgekocht, anschließend unter dem Abzug mit 3 µl 1%igem Ethidiumbromid versehen und auf einen Gelträger aufgebracht. Dann wurde ein Rasterkamm in das noch flüssige Gel gesteckt. Nach ca. 10 Minuten konnte das nun feste Gel mit einer Mischung aus 10 ml 1xTBE-Puffer und 1 µl 1%iger Ethidiumbromidlösung überschichtet werden. Das fertige Agarosegel wurde dann für mindestens 30 Minuten im Kühlschrank gekühlt.
3.2.2.1.2. Auftragen der PCR-Produkte und Durchführung der Elektrophorese

Jeweils 5 µl PCR-Produkt wurde mit 1 µl Auftragspuffer vermischt und 5 µl dieser Probenpuffer-Mischung in je eine Tasche des vorbereiteten Gels pipettiert. Zum Abschätzen der Fragmentgröße wurde eine Bahn des Gels mit einem Längenmarker beschickt (1 Kb Plus DNA Ladder oder 50 bp Ladder). Das Gel wurde dann in die Elektrophoresekammer (Mini Gel Migration Through, Mupid 2 der Firma Cosmo Bio Co, Offenbach) eingelegt, und zwar so, dass die aufgetragenen Proben kathodenseitig zu liegen kamen.

Die Laufzeiten der Elektrophoresen betrugen jeweils 30 Minuten bei 100 Volt. Dabei wanderten die Fragmente je nach Größe unterschiedlich weit in Richtung Anode.

Die Fragmente wurde nach Anregung durch UV-Licht photographiert und ein Bild auf Thermopapier ausgedruckt (Photoprint PP-IP-008SD der Firma Ltf-Labortechnik, Wasserburg).

3.2.2.2. RFLP-Analyse

Die verwendeten Restriktionsenzyme, die von der Firma New England Biolabs, Schwalbach, bezogen wurden, und ihre spezifischen Restriktionsstellen sind in Tabelle 2 aufgeführt.

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Restriktionsstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ban II</td>
<td>5´…GPuGCPy/C…3´</td>
</tr>
<tr>
<td>Hph I</td>
<td>5´…GGTGA(N)₈/…3´</td>
</tr>
<tr>
<td>Nla III</td>
<td>5´…CATG/…3´</td>
</tr>
<tr>
<td>Sma I</td>
<td>5´…CCC/GGG…3´</td>
</tr>
</tbody>
</table>

3.2.2.2.1. Durchführung der RFLP-Analyse

Alle Komponenten der Stock-Lösungen (Tabelle 3) wurden in ein steriles Eppendorf-Gefäß pipettiert, anschließend gemischt und zentrifugiert. Jeweils 10 µl der Stock-Lösung (15 µl bei Nla III) wurden in ein neues Eppendorf-Gefäß überführt und je 10 µl PCR-
Produkt hinzugefügt (5 µl bei Nla III). Der Ansatz wurde mit einem Tropfen Mineralöl überschichtet und entsprechend den Vorschriften für das betreffende Enzym im Thermoblock (Thermostat 5310) inkubiert (siehe Tabelle 3).

<table>
<thead>
<tr>
<th>Enzym</th>
<th>H₂O</th>
<th>Neb4</th>
<th>BSA</th>
<th>Reaktionsbedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ban II</td>
<td>2 µl</td>
<td>6 µl</td>
<td>2 µl</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37 °C, über Nacht</td>
</tr>
<tr>
<td>Hph I</td>
<td>2 µl</td>
<td>6 µl</td>
<td>2 µl</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37 °C, über Nacht</td>
</tr>
<tr>
<td>Nla III</td>
<td>1,5 µl</td>
<td>11,3 µl</td>
<td>2 µl</td>
<td>0,2 µl</td>
</tr>
<tr>
<td>Sma I</td>
<td>0,5 µl</td>
<td>7,5 µl</td>
<td>2 µl</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 °C, über Nacht</td>
</tr>
</tbody>
</table>

Die entstandenen Fragmente wurden wie die nativen PCR-Produkte mittels Gelelektrophorese zur Darstellung gebracht, dabei wurde für alle Reaktionen ein 0,7%iges Agarosegel verwendet.

3.3. CYP2D6-Genotypisierung

3.3.1. Bereits etablierte Methoden

Die bereits etablierten Methoden zum Nachweis des CYP2D6*3-, *4-, *5-, *6-, *7-, *8-, *9-, *10- und *17-Allels sowie der Genduplikation wurden am Institut für Klinische Chemie und Pathobiochemie des Klinikums rechts der Isar der Technischen Universität München entwickelt oder nach bereits publizierten Methoden adaptiert.

3.3.1.1. Präamplifikation

Die Präamplifikation des gesamten CYP2D6-Gen erfolgte als Adaptation einer Methode von Stüven et al. für die Anwendung auf dem LightCycler™ (Stuven et al. 1996; Muller et al. 2003). Tabelle 4 zeigt die Sequenz der verwendeten Primer CYP2D6-F und CYP2D6-R und das benutzte Temperaturprogramm.

3.3.1.2. Detektion der CYP2D6*3-, *4-, *6-, *7- und *8-Allele

Die verwendeten Primer (MF, A1, A2, B1, B2, E3, E4, T1, T2, G1 und G2 für die Multiplex-PCR) und das Temperaturprogramm können Tabelle 4 entnommen werden.

3.3.1.3. Detektion der Gen-Duplikation und –Deletion (CYP2D6*5-Allel)
Sowohl die Gen-Duplikation als auch die Gen-Deletion wurden mit Hilfe von Hybridisierungssonden auf dem LightCycler der Firma Roche, Mannheim, analysiert (Muller et al. 2003). Primer und Hybridisierungssonden (Del-F, Del-R, Dup-F, Dup-R, Rep 1 und Rep 2) der Reaktion sind in Tabelle 4 aufgeführt.

3.3.1.4. Detektion des CYP2D6*10-Allels

3.3.1.5. Detektion des CYP2D6*9- und *17-Allels
Tabelle 4: Primer und Reaktionsbedingungen

<table>
<thead>
<tr>
<th>Primer</th>
<th>PCR-Bedingungen (Roche LightCycler™)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präamplifikation</td>
<td></td>
</tr>
<tr>
<td>C2D6-F</td>
<td>5´-GGT AAG GGC CTG GAG CAG GAA-3´</td>
</tr>
<tr>
<td>C2D6-R</td>
<td>5´-GCC TCA ACG TAC CCC TGT CTC-3´</td>
</tr>
<tr>
<td></td>
<td>2 min bei 95 °C; 35 Zyklen à 10 s bei 95 °C, 10 s bei 68 °C, 180 s bei 68 °C; Schmelzkurve von 50 bis 80 °C</td>
</tr>
<tr>
<td>Multiplex-PCR</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>5´-GTG GGG CTA ATG CCT T-3´</td>
</tr>
<tr>
<td>A1</td>
<td>5´-GGG TCC CAG GTC ATC CT-3´</td>
</tr>
<tr>
<td>A2</td>
<td>5´-GGG TCC CAG GTC ATC CG-3´</td>
</tr>
<tr>
<td>B1</td>
<td>5´-CGA AAG GGG GGT CT-3´</td>
</tr>
<tr>
<td>B2</td>
<td>5´-CGA AAG GGG GGT CT-3´</td>
</tr>
<tr>
<td>E3</td>
<td>5´-GCT GCA CAT CCG GAT-3´</td>
</tr>
<tr>
<td>E4</td>
<td>5´-GCT GCA CAT CCG GAG-3´</td>
</tr>
<tr>
<td>T1</td>
<td>5´-CTC CTC GGT CAC CCA-3´</td>
</tr>
<tr>
<td>T2</td>
<td>5´-CTC CTC GGT CAC CCA-3´</td>
</tr>
<tr>
<td>G1</td>
<td>5´-TCT GCC CAT CAC CCA CC-3´</td>
</tr>
<tr>
<td>G2</td>
<td>5´-TCT GCC CAT CAC CCA CA-3´</td>
</tr>
<tr>
<td></td>
<td>2 min bei 94 °C; 15 Zyklen à 10 s bei 94 °C, 10 s bei 75-57 °C, 150 s bei 72 °C; 8 min bei 72 °C (Gerät: PE 9700)</td>
</tr>
<tr>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>Del-F</td>
<td>5´-ACC GGG CAC CTG TAC TCC TCA-3´</td>
</tr>
<tr>
<td>Del-R</td>
<td>5´-GCA TGA GCT AAG GCA CCC AGA C-3´</td>
</tr>
<tr>
<td>Rep 1</td>
<td>5´-TGC TGC CTC CCA CTC TGC AGT GCT C-3´fluorescein</td>
</tr>
<tr>
<td>Rep 2</td>
<td>5´-LCRed640-ATG GCT CAC TGG GAC CCA CGC T-3´phosphate</td>
</tr>
<tr>
<td></td>
<td>2 min bei 95 °C; 35 Zyklen à 10 s bei 95 °C, 10 s bei 68 °C, 180 s bei 68 °C; Schmelzkurve von 50 bis 80 °C</td>
</tr>
<tr>
<td>Duplikation</td>
<td></td>
</tr>
<tr>
<td>Dup-F</td>
<td>5´-CCC TCA GCC TCG TCA CCT CAC-3´</td>
</tr>
<tr>
<td>Dup-R</td>
<td>5´-CAC GTG CAG GGG ACC TAG AT-3´</td>
</tr>
<tr>
<td>Rep 1</td>
<td>5´-TGC TGC CTC CCA CTC TGC AGT GCT C-3´fluorescein</td>
</tr>
<tr>
<td>Rep 2</td>
<td>5´-LCRed640-ATG GCT CAC TGG GAC CCA CGC T-3´phosphate</td>
</tr>
<tr>
<td></td>
<td>wie Deletion</td>
</tr>
<tr>
<td>CYP2D6*10</td>
<td></td>
</tr>
<tr>
<td>L10mut</td>
<td>5´-GGG GGC CTG GTG A-3´</td>
</tr>
<tr>
<td>L10wt</td>
<td>5´-GGG GGC CTG GTG G-3´</td>
</tr>
<tr>
<td></td>
<td>5 min bei 94 °C; 35 Zyklen à 30 s bei 94 °C, 20 s bei 57 °C, 20 s bei 72 °C; 3 min bei 72 °C (Gerät: PE 9700)</td>
</tr>
<tr>
<td>CYP2D6*9</td>
<td></td>
</tr>
<tr>
<td>CYP9F</td>
<td>5´-CTC CTA TCC ACG TCA GAG AT-3´</td>
</tr>
<tr>
<td>CYP9R</td>
<td>5´-GAG AGC ATA TCC GGG ACA G-3´</td>
</tr>
<tr>
<td>CYP9sens</td>
<td>5´-AGA GAT GGA GAA GGT GAG A-3´fluorescein</td>
</tr>
<tr>
<td>CYP9an</td>
<td>5´-LCRed640-TGG CTG CGA CGG TGG G-3´phosphate</td>
</tr>
<tr>
<td></td>
<td>3 min bei 95 °C, 35 Zyklen à 5 s bei 95 °C, 13 s bei 50 °C, 45 s bei 72 °C, Schmelzkurve von 32 bis 75 °C</td>
</tr>
<tr>
<td>CYP2D6*17</td>
<td></td>
</tr>
<tr>
<td>CYP17F</td>
<td>5´-GGT GGT GGT CCA GAT-3´</td>
</tr>
<tr>
<td>CYP17R</td>
<td>5´-GGT GGT GGT GGT AT-3´</td>
</tr>
<tr>
<td>CYP17sens</td>
<td>5´-LCRed640-GCC CAT CAC CCA GAT CCT-3´phosphate</td>
</tr>
<tr>
<td>CYP17an</td>
<td>5´-LCRed640-GCC CAT CAC CCA GAT CCT-3´phosphate</td>
</tr>
<tr>
<td></td>
<td>wie CYP2D6*9</td>
</tr>
</tbody>
</table>
3.3.2. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*35-Allels

Zum Nachweis des *35-Allels wurde eine PCR auf dem LightCycler™ der Firma Roche, Mannheim, etabliert. Das Produkt der Präamplifikation (siehe 3.3.1.1) wurde im Verhältnis 1:10 mit Wasser (steriles Aqua dest.) verdünnt und in die Reaktion eingesetzt. Die verwendeten Primer und Sonden (Cyp31F, Cyp31R, Wildtyp*35 und Anchor*35) können Tabelle 5 entnommen werden.

Tabelle 5: Primer und Hybridisierungssonden der *35-PCR

<table>
<thead>
<tr>
<th>Primer/Sonde</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyp31F</td>
<td>5´-TCA ACA CAG CAG GTT CA-3´</td>
</tr>
<tr>
<td>Cyp31R</td>
<td>5´-ACG GCA CTC AGG ACT AAC TC-3´</td>
</tr>
<tr>
<td>Wildtype *35</td>
<td>5´-GTG AGG CAG GTA TGG GGC TAG AAG CAC TG–3´fluorescein</td>
</tr>
<tr>
<td>Anchor *35</td>
<td>5´-LC Red640–GCC CCT GGC CGT GAT AGT G–3´phosphate</td>
</tr>
</tbody>
</table>

In einem Gesamtvolumen von 20 µl wurden nachfolgende Reagenzien eingesetzt (siehe Tabelle 6).

Tabelle 6: Zusammensetzung der Reaktionslösung der *35-PCR

<table>
<thead>
<tr>
<th>Reagens</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>13,8 µl</td>
</tr>
<tr>
<td>MgCl2 (25 mM)</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Primer 31F</td>
<td>0,6 µl</td>
</tr>
<tr>
<td>Primer 31R</td>
<td>0,6 µl</td>
</tr>
<tr>
<td>Sonde Cyp31M</td>
<td>0,8 µl</td>
</tr>
<tr>
<td>Sonde Cyp31Anchor</td>
<td>0,8 µl</td>
</tr>
<tr>
<td>LC-DNA Master Hybridization Probes</td>
<td>2 µl</td>
</tr>
<tr>
<td>DNA (Verdünnung der Präamplifikation)</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Die MgCl₂-Endkonzentration des Reaktionsgemisches betrug 1,5 mmol/l.

Das folgende Temperaturprogramm wurde benutzt: einer Denaturierungsphase von 10 Sekunden bei 95 ºC folgte die Amplifikation mit 26 Zyklen, bestehend aus je 10 Sekunden bei 95 ºC, 10 Sekunden bei 58 ºC und 30 Sekunden bei 72 ºC. Die Schmelzkurve begann bei einer Temperatur von 51 ºC und endete bei 75 ºC, die Rampengeschwindigkeit betrug 0,1 ºC pro Sekunde.
Es entstand ein Fragment mit einer Größe von 689 bp, welches zusätzlich zur Real-Time PCR mittels Agarosegelelektrophorese auf 2%igem Agarosegel zur Darstellung gebracht wurde.

Zur Validierung der Methode wurden 60 DNA-Proben parallel mittels Verdau durch das Restriktionsenzym Nla III analysiert (Lovlie et al. 2001; Steimer et al. 2002a; Muller et al. 2003).

3.3.3. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*41/*2-Polymorphismus

<table>
<thead>
<tr>
<th>Tabelle 7: Primer und Hybridisierungssonden der *2-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up F’14</td>
</tr>
<tr>
<td>5´-GCC TGG ACA ACT TGG AAG AAC C-3´</td>
</tr>
<tr>
<td>10 B</td>
</tr>
<tr>
<td>5´-GTG GTG GGG CAT CCT CAG G-3´</td>
</tr>
<tr>
<td>C2D6-1584C</td>
</tr>
<tr>
<td>5´-LCRed640–TTG TAG AGA CCG GGT TCT T–3´ phosphate</td>
</tr>
<tr>
<td>Anchor-1584</td>
</tr>
<tr>
<td>5´-GCA CCC AAT CCC AGC TAA TTT TGT ATT-3´fluorescein</td>
</tr>
<tr>
<td>F-Sma</td>
</tr>
<tr>
<td>5´-CTG GAC AAC TTG GAA GAC CC™-3´</td>
</tr>
<tr>
<td>R-Sma</td>
</tr>
<tr>
<td>5´-ATG TTG GCC AGG CTA GTC TT-3´</td>
</tr>
</tbody>
</table>

Das Gesamtvolumen der Reaktion betrug 20 µl. Es wurde mit folgendem Ansatz gearbeitet, der eine MgCl2-Endkonzentration von 0,8 mmol/l aufwies (siehe Tabelle 8).
Das Enzym „Sawady Long Range PCR-System“ der Firma Peqlab, Erlangen, wurde zusammen mit dem empfohlenen Puffer verwendet.

Das Reaktionsgemisch wurde in das folgende Temperaturprogramm auf dem LightCycler™ eingesetzt: Die Denaturierungszeit betrug 210 Sekunden bei 95 °C, dann folgte die Amplifikation mit 32 Zyklen aus je 10 Sekunden bei 95 °C, 10 Sekunden bei 64 °C und 85 Sekunden bei 68 °C. Die Schmelzkurve begann bei 40 °C und endete bei 70 °C mit einer Rampengeschwindigkeit von 0,1 °C pro Sekunde.

Das entstandene DNA-Fragment wurde mittels Gelelektrophorese (2%iges Agarosegel) zur Darstellung gebracht.

<table>
<thead>
<tr>
<th>Reagens</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>12,86 µl</td>
</tr>
<tr>
<td>Puffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>0,64 µl</td>
</tr>
<tr>
<td>DTNP (5mM)</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Primer 10B</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Primer UpF14</td>
<td>0,9 µl</td>
</tr>
<tr>
<td>Sonde C2D6-1584C</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Sonde Anchor -1584</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Albumin</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Polymerase</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µl</td>
</tr>
</tbody>
</table>
Tabelle 9: Zusammensetzung der Reaktionslösung der *2-nested PCR

<table>
<thead>
<tr>
<th></th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>42,5 µl</td>
</tr>
<tr>
<td>Puffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>dNTP (5mM)</td>
<td>0,2 µl</td>
</tr>
<tr>
<td>Primer F-sma</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer R-sma</td>
<td>1 µl</td>
</tr>
<tr>
<td>Polymerase</td>
<td>0,3 µl</td>
</tr>
<tr>
<td>DNA (1:50-Verdünnung der Präamplifikation)</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Das entstandene 151 bp große Produkt wurde mittels des Restriktionsenzymes Sma I verdaut (Raimundo et al. 2000; Muller et al. 2003).

3.3.4. Real-Time PCR zur Unterscheidung zwischen Homozygotie oder Heterozygotie des CYP2D6*2 und CYP2D6*41-Allels

Tabelle 10: Primer und Hybridisierungssonden der *1/*2 _*41-PCR

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2/1-F</td>
<td>5´-CAC CAT GGT GTC TTT GCT TTC-3´</td>
</tr>
<tr>
<td>*2/1-R</td>
<td>5´-CAG CCT CAA CGT ACC CCT-3´</td>
</tr>
<tr>
<td>*2/1-Anch</td>
<td>5´-CCA TTC TAG CGG GGC ACA GCA CAA A-3´fluorescein</td>
</tr>
<tr>
<td>*2/1-Mut</td>
<td>5´-LC Red640-CTC ATA GGG GGA TCG GCT CAC-3´phosphate</td>
</tr>
</tbody>
</table>
Folgende Reagenzien wurden in einem Gesamtvolumen von 20 µl verwendet (siehe Tabelle 11).

<table>
<thead>
<tr>
<th></th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>13,8 µl</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer *2/1-F</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Primer *2/1-R</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Sonde *2/1-Mut</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>Sonde *2/1-Anch</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>LC-FastStart DNA Master Hybridization Probes</td>
<td>2 µl</td>
</tr>
<tr>
<td>DNA (Verdünnung der Präamplifikation)</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Das Reaktionsgemisch wies eine MgCl₂-Endkonzentration von 3,5 mmol/l auf.
Das entstehende Produkt hatte eine Größe von 260 bp und wurde zusätzlich zur Real-Time PCR mittels Agarosegelelektrophorese sichtbar gemacht (2,5%iges Agarosegel).
Zur Bestätigung der Ergebnisse wurden 60 DNA-Proben parallel mittels Verdau durch das Restriktionsenzym Ban II analysiert.

3.3.5. PCR zur Unterscheidung zwischen CYP2D6*1XN, *2XN und *4XN
Tabelle 12: Primer der Reaktion

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>12Lx2F</td>
<td>5’-GCC ACC ATG GTG TCT TTG CTT TC-3’</td>
</tr>
<tr>
<td>12Lx2R</td>
<td>5’-ACC GGA TTC CAG CTG GGA AAT G-3’</td>
</tr>
<tr>
<td>12AP92-1R</td>
<td>5’-CTC AGC CTC AAC GTA CCC CT-3’</td>
</tr>
<tr>
<td>12BP11-4F</td>
<td>5’-TCA ACA CAG CAG GTT CA-3’</td>
</tr>
<tr>
<td>12BP124R</td>
<td>5’-CTG TGG TTT CAC CCA CC-3’</td>
</tr>
</tbody>
</table>

Einer ersten PCR (Reaktion 12) mit den Primern P2x2f und P2x2r folgten zwei „nested PCRs“ (Reaktionen 12A und 12B) mit den Primern 12Lx2F und 12AP921R (Reaktion 12A) bzw. 12BP11-4F und 12BP124R (Reaktion 12B).

Für die erste PCR (Reaktion 12) wurde mit folgendem Ansatz in einem Gesamtvolumen von 37,5 µl gearbeitet (siehe Tabelle 13).

Tabelle 13: Zusammensetzung der Reaktionslösung der Reaktion 12

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>24,25 µl</td>
</tr>
<tr>
<td>Puffer</td>
<td>3,75 µl</td>
</tr>
<tr>
<td>MgCl₂ (25 mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTP (5mM)</td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer 12Lx2F</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Primer 12Lx2R</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Polymerase</td>
<td>2 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>2,5 µl</td>
</tr>
</tbody>
</table>

Es wurde die Taq DNA Polymerase der Firma Q-Biogene zusammen mit dem empfohlenen Puffer verwendet.

Für die Reaktionen 12A und 12B wurden die nachstehenden Ansätze (siehe Tabelle 14) verwendet, außerdem ein einheitliches Temperaturprogramm mit einer Denaturierungszeit von 120s bei 94 °C, gefolgte von der Amplifikation, bestehend aus 15 Zyklen mit je 20 Sekunden bei 94 °C, je 30 Sekunden bei abfallender Temperatur beginnend im ersten Cycle mit 75 °C und endend im letzten Cycle mit 57 °C und anschließend je 150 Sekunden bei 72 °C. Die Schlußelongation betrug 8 Minuten bei 72 °C.
Tabelle 14: Zusammensetzung der Reaktionslösung der Reaktion 12A bzw. 12B

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>10,05 µl</td>
</tr>
<tr>
<td>Primer 12Lx2F (12A) bzw. 12BP11-4F (12B)</td>
<td>0,8 µl</td>
</tr>
<tr>
<td>Primer 12AP921R (12A) bzw. 12BP124R (12B)</td>
<td>0,4 µl</td>
</tr>
<tr>
<td>MasterAmp 2xPCR Premix D</td>
<td>12,5 µl</td>
</tr>
<tr>
<td>Taq DNA Polymerase</td>
<td>2 µl</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Die Reaktionsprodukte aller drei Ansätze wurden mittels Gelelektrophorese aufgetrennt und sichtbar gemacht (0,7%iges Gel für Reaktion 12; 2,5%iges Gel für die Reaktionen 12A und 12B). In der Reaktion 12 entstand ein Produkt mit einer Größe von 10 000 bp. Das Produkt der Reaktion 12A umfasste 264 bp und wurde mit dem Restriktionsenzym Ban II verdaut, das Produkt der Reaktion 12B mit 433 bp durch das Restriktionsenzymes Hph I.

3.4. Studie

3.4.1. Studiendesign

Es handelte sich um eine prospektive, stationäre und in Bezug auf den CYP2D6-Genstatus doppelt-blind angelegte Studie, die an der Klinik für Psychiatrie und Psychotherapie des Klinikums rechts der Isar der Technischen Universität München durchgeführt wurde. Verantwortlicher Projektleiter war Herr PD Dr. W. Steimer, Oberarzt des Instituts für Klinische Chemie und Pathobiochemie. Außerdem wurde die Studie von Herrn PD Dr. W. Kissling und Herrn PD Dr. S. Leucht, beides Oberärzte der Klinik für Psychiatrie, und Herrn Dr. S. Heres, Assistenzarzt der Klinik für Psychiatrie, supervidiert. Die Bewilligung zur Durchführung der Studie erfolgte durch die Ethikkommission der Fakultät für Medizin der Technischen Universität.

3.4.1.1. Einschlusskriterien

In die Studie wurden Patienten beiderlei Geschlechts eingeschlossen, die zwischen dem 01. Mai 2002 und 01. Mai 2003 in die Klinik für Psychiatrie aufgenommen wurden und folgende Einschlusskriterien erfüllten: die Patienten mussten mindestens 18 Jahre alt und einwilligungsfähig sein, außerdem musste eine Grunderkrankung bestehen, die eine
Behandlung mit Antidepressiva oder Neuroleptika erforderlich machte (also depressive Störungen, Erkrankungen aus dem schizophrenen Formenkreis, Zwangsstörungen und Angststörungen).

Voraussetzung für die Teilnahme an der Studie war die schriftliche Einwilligung des Patienten, die nach einer ausführlichen Aufklärung über Nutzen und Risiken der Studie erfolgte und jederzeit widerrufen werden konnte.

3.4.1.2. Ausschlusskriterien
Ausschlusskriterien waren andere Erkrankungen als die oben aufgeführten, insbesondere Demenzen und Drogen- oder Alkoholabhängigkeit.

3.4.2. Studienaufbau und erhobene Variablen
Nach Einwilligung der Patienten zur Aufnahme in die Studie wurden in einem ausführlichen Gespräch folgende Daten erhoben: neben demographischen Daten wurde die medizinische Anamnese und speziell die psychiatrische Vorgeschichte und Vorgeschichte der aktuellen Erkrankung erfasst.

Im Rahmen der routinemäßigen Blutabnahmen wurde den Patienten zusätzlich ETDA-Blut zur Bestimmung des CYP2D6-Genotyps abgenommen.

Die Therapie erfolgte dann entsprechend dem jeweiligen Krankheitsbild und gemäß dem aktuellen Stand medizinischer Kenntnis.

3.4.2.1. Bildung der Gendosisgruppen
Entsprechend dem Ergebnis der Genotypisierung wurde für jeden Patienten unter Berücksichtigung der neuesten Erkenntnisse in der Literatur eine semiquantitative Gendosis ermittelt, wobei Anzahl und Aktivität der nachgewiesenenAllele berücksichtigt
wurden. Anschließend wurden die Patienten in Gendosis-Gruppen zusammengefasst (siehe Tabelle 15), um eine statistischen Auswertung zu ermöglichen. Die Gendosis-Gruppen 0, 1, 2 und 3 entsprechen in etwa der bisher in der Literatur verwendeten Nomenklatur des PM-, IM-, EM- und UM-Genotyps.

Tabelle 15: CYP2D6-Genotypen, semiquantitative Gendosis und Zuordnung zu Gendosis-Gruppen

<table>
<thead>
<tr>
<th>CYP2D6-Genotyp</th>
<th>Anzahl aktiver Allele</th>
<th>Aktivität der Allele(^a)</th>
<th>Semiquantitative Gendosis</th>
<th>Gendosis-Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1XN/*1</td>
<td>≥3</td>
<td>+/+</td>
<td>≥3</td>
<td>3</td>
</tr>
<tr>
<td>*1XN/*2</td>
<td>≥3</td>
<td>+/+</td>
<td>≥3</td>
<td>3</td>
</tr>
<tr>
<td>*2XN/*1</td>
<td>≥3</td>
<td>+/+</td>
<td>≥3</td>
<td>3</td>
</tr>
<tr>
<td>*2XN/*2</td>
<td>≥3</td>
<td>+/+</td>
<td>≥3</td>
<td>3</td>
</tr>
<tr>
<td>*1XN/*9</td>
<td>≥3</td>
<td>+(+)</td>
<td>≥2,5</td>
<td>3</td>
</tr>
<tr>
<td>*2XN, *2/*41, *17</td>
<td>≥3</td>
<td>+(+)</td>
<td>≥2</td>
<td>?</td>
</tr>
<tr>
<td>*1XN/*3</td>
<td>≥2</td>
<td>+/-</td>
<td>≥2</td>
<td>?</td>
</tr>
<tr>
<td>*1XN/*4</td>
<td>≥2</td>
<td>+/-</td>
<td>≥2</td>
<td>?</td>
</tr>
<tr>
<td>*1/*1</td>
<td>2</td>
<td>+/+</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>*1/*2</td>
<td>2</td>
<td>+/+</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>*2/*2</td>
<td>2</td>
<td>+/+</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>*41XN/*41</td>
<td>≥3</td>
<td>(+)/(+)</td>
<td>≥1,5</td>
<td>?</td>
</tr>
<tr>
<td>*1/*9</td>
<td>2</td>
<td>+/(+)</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>*1/*10</td>
<td>2</td>
<td>+/(+)</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>*1/*41</td>
<td>2</td>
<td>+/(+)</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>*2/*9</td>
<td>2</td>
<td>+/(+)</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>*2/*41</td>
<td>2</td>
<td>+/(+)</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>*1/*3</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*1/*4</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*1/*5</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*1/*6</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*2/*3</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*2/*4</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*2/*5</td>
<td>1</td>
<td>+/-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*41/*41</td>
<td>2</td>
<td>+(+)/(+)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
CYP2D6-Genotyp

<table>
<thead>
<tr>
<th>CYP2D6-Genotyp</th>
<th>Anzahl aktiver Allele</th>
<th>Aktivität der Allele</th>
<th>Semiquantitative Gendosis</th>
<th>Gendosis-Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>*41/*10</td>
<td>2</td>
<td>(+)/(+)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*9/*10</td>
<td>2</td>
<td>(+)/(+)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*41/*4</td>
<td>1</td>
<td>(+)/-</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>*41/*6</td>
<td>1</td>
<td>(+)/-</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>*9/*6</td>
<td>1</td>
<td>(+)/-</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>*10/*3</td>
<td>1</td>
<td>(+)/-</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>*3/*4</td>
<td>0</td>
<td>-/-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*3/*5</td>
<td>0</td>
<td>-/-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*4/*4</td>
<td>0</td>
<td>-/-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*4/*5</td>
<td>0</td>
<td>-/-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a + normale Enzymaktivität
(+)* eingeschränkte Enzymaktivität
- keine Enzymaktivität

Klinisches Zustandsbild

Unerwünschte Arzneimittelwirkungen

In Anlehnung an die DOTES (Dosage Record and Treatment Emergent Symptom Scale) (Collegium Internationale Psychiatriae Scolarum 1996) wurde eine Begleitsymptomliste erstellt. Diese gliederte sich in die Beurteilungskategorien a) Verhalten, b) Neurologische Symptome, c) Vegetative Symptome, d) Kardiovaskuläre Symptome und e) andere Symptome, welche die verschiedenen Begleitsymptome als Items enthielten (vgl. Anhang). Außerdem diente eine globale Beurteilung der Einschätzung, inwieweit der Patient durch die Begleitsymptome beeinträchtigt war (1=gar nicht bis 5=niemand beurteilbar). Eine aufgetretene unerwünschte Arzneimittelwirkung wurde als solche gewertet, wenn der behandelnde Arzt eine mindestens mäßige Beeinträchtigung konstatierte.
3.4.3. Auswertung der Daten
Für qualitative Merkmale wurden Kreuztabellen erstellt, die mit dem Chi-Quadrat Test bezüglich ihrer Signifikanz untersucht wurden. Quantitative Variablen wurden mittels des Kolmogorov-Smirnov Tests auf Normalverteilung getestet. Da eine Normalverteilung in keinem Falle nachgewiesen werden konnte, wurden weiterhin nicht-parametrische Tests zur Analyse genutzt. Im Falle der Untersuchung mehrerer unabhängiger Variablen wurde der Kruskall-Wallis Test durchgeführt, für die Analyse zweier unabhängiger Variablen der Mann-Whitney U Test. Als Signifikanzniveau α wurde ein Wert von 0,05 festgelegt. Die statistische Auswertung erfolgte mittels des Programms SPSS Version 11.5 für Windows (SPSS Inc., Chicago, Ill.)
4. Ergebnisse

4.1. CYP2D6-Genotypisierung

4.1.1. Bereits etablierte Methoden

4.1.1.1. Präamplifikation

4.1.1.2. Detektion der CYP2D6*3-, *4-, *6-, *7- und *8-Allele

Das Allel CYP2D6*3 zeichnet sich aus durch das Fehlen der Base Adenin an der Stelle 2549. Durch diese Rasterschubmutation kommt es zu einer Veränderung des Leserasters des Gens, genau wie bei dem CYP2D6*6-Allel, bei dem die Base Thymin an der Stelle 1707 deletiert ist. Die Allele CYP2D6*4, *7 und *8 sind charakterisiert durch Punktmutationen. Bei CYP2D6*4 ist die Base Guanin an der Stelle 1846 durch die Base Adenin ersetzt, bei CYP2D6*7 die Base Adenin durch Cytosin an der Stelle 2935 und bei CYP2D6*8 findet sich die Base Thymin anstelle von Guanin an der Stelle 1758. In jedem Fall münden diese Mutationen in ein nicht-funktionelles Genprodukt. Die Analyse der fünf genannten Allele erfolgte mit Hilfe einer bereits etablierten Methode, der sogenannten Multiplex-PCR. Die entstandenen Fragmente wurden mittels Agarosegelelektrophorese unter UV-Licht sichtbar gemacht. Für das *3-Allel entstand ein Produkt aus 1010 bp, für *4 aus 304, für *6 aus 166, für *7 aus 1394 und für *8 aus 219 bp.

Die Genotypisierung ergab in der Studienpopulation ein Allelfrequenz von 0,036 (11/304) für CYP2D6*3, 0,161 (49/304) für CYP2D6*4 und 0,013 (4/304) für CYP2D6*6. Weder das CYP2D6*7- noch das *8-Allel konnten in der untersuchten Stichprobe nachgewiesen werden.
4.1.1.3. Detektion der Gen-Duplikation und –Deletion (CYP2D6*5-Allel)
Sowohl Gen-Duplikation als auch Gen-Deletion konnten in der Real-Time PCR mittels eines Fluoreszenzmaximums bei 71,5 °C in der Schmelzkurve identifiziert werden. Die Gen-Deletion war bei 8 von 304 untersuchten Allelen nachweisbar (Allelfrequenz 0,026), die Gen-Duplikation bei 10 von 304 Allelen (Allelfrequenz 0,033).

4.1.1.4. Detektion des CYP2D6*10-Allels
Das *10-Allel zeichnet sich dadurch aus, dass an der Stelle 100 die Base Cytosin durch Thymin ersetzt ist. Die Analyse des *10-Allels erfolgte mit Hilfe einer bereits beschriebenen PCR, die dabei entstandenen Fragmente wurden mittels Agarosegelelektrophorese unter UV-Licht sichtbar gemacht. Für das *10-Allel entstand ein Produkt von 137 bp.
Das CYP2D6*10-Allel zeigte in der Studienpopulation eine Allelfrequenz von 0,030 (9/304).

4.1.1.5. Detektion des CYP2D6*9- und *17-Allels

4.1.2. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*35-Allels
Das Wildtyp-Allel (31G) erreichte das Maximum der Fluoreszenz in der Schmelzkurve der Real-Time PCR bei 64 °C, das Mutations-Allel (31A) bei 59 °C (siehe Abbildung 1).
Die Allelfrequenz des CYP2D6*35-Allels betrug in der Studienpopulation 0,053 (16/304).

Abbildung 1: Schmelzkurve der Real-Time PCR zur Detektion des CYP2D6*35-Allels mit je einer Probe für jeden Genotyp und einer Leerkontrolle

4.1.3. Entwicklung einer Real-Time PCR zur Detektion des CYP2D6*41/*2-Polymorphismus

Der *41/*2-Polymorphismus liegt in der Promotorregion der *2-Allels an der Stelle -1584. Bei einem *41-Allel ist hier die Base Guanin durch Cytosin ersetzt.

Das Maximum der Fluoreszenz der Schmelzkurvenanalyse lag für das *41-Allel bei 56 °C, für das *2-Allel bei 49 °C (siehe Abbildung 2). Bei *2-negativen Individuen konnte keine Fluoreszenz detektiert werden.

4.1.4. Real-Time PCR zur Unterscheidung zwischen Homozygotie oder Heterozygotie des CYP2D6*2 und CYP2D6*41-Allels

Alle Proben, die in der PCR zur Unterscheidung zwischen dem CYP2D6*2 und *41-Allel nur einen Peak aufwiesen und bei denen das Vorhandensein eines anderen Allels mittels der oben beschriebenen Analyseverfahren ausgeschlossen worden war, wurden in der hier beschriebenen Real-Time PCR analysiert. Da sowohl das CYP2D6*2- als auch das CYP2D6*41-Allel im Gegensatz zu CYP2D6*1 die Base Cytosin statt Guanin an der Stelle 1661 aufweisen, konnte mittels dieser PCR entschieden werden, ob das entsprechende Allel in homozygoter oder heterozygoter Form vorlag.

Das *1-Allel (1661G) erreicht in der Schmelzkurvenanalyse der Real-Time PCR das Maximum der Fluoreszenz bei 58 °C, das *2 oder *41-Allel (1661C) bei 48 °C.

Auch hier wurde zur Bestätigung der erhaltenen Ergebnisse ein Restriktionsenzymverdau mittels Ban II angeschlossen. Während das *2- und das *41-Allel nicht in Restriktionsfragmente geschnitten wurde, erhielt man bei *1-Allelen zwei Fragmente aus je 229 und 31 bp. Das kleinere, 31 bp große Fragment kann in der Gelelektrophorese auf einem 2,5%igen Agarosegel nicht differenziert werden (siehe Abbildung 3). Auch hier fand sich eine völlige Übereinstimmung zwischen den Ergebnissen beider Methoden.

Das CYP2D6*1-Allel kam in der untersuchten Stichprobe mit einer Allelfrequenz von 0,457 (139/304) vor, das CYP2D6*2-Allel mit einer Frequenz von 0,145 (44/304) und das CYP2D6*41-Allel mit einer Frequenz von 0,105 (32/304).
4.1.5. PCR zur Unterscheidung zwischen CYP2D6*1XN, *2XN und *4XN

Das Vorliegen einer Genduplikation wurde mittels Real-Time PCR nachgewiesen. Ob die Duplikation ein CYP2D6*1-, *2/*41- oder *4-Allel betraf, konnte anhand der Kombination der Restriktionsverdaue der Reaktionen 12A (Ban II) und 12B (Hph I) identifiziert werden. Für das *1-Allel entstanden aus der Reaktion 12A zwei Fragmente mit je 231 und 33 bp, aus der Reaktion 12B ebenfalls zwei Fragmente mit 362 und 71 bp. Das *2/*41-Allel wurde durch Ban II nicht verdaut, im Verdau der Reaktion 12B entstanden wie bei *1-Allelen zwei Fragmente mit je 362 und 71 bp. Für das *4-Allel blieb das Produkt der Reaktion 12A ebenfalls unverdaut, aus dem Produkt der Reaktion 12B entstanden allerdings drei Fragmente mit je 262, 100 und 71 bp.

Die Genotypisierung der Studienpopulation ergab eine Allelfrequenz von 0,020 (6/304) für die Duplikation des CYP2D6*1-Alles und eine Frequenz von 0,013 (4/304) für eine Vervielfachung des CYP2D6*2/*41-Alles. Eine Duplikation des CYP2D6*4-Alles kam in der Stichprobe nicht vor. Diese PCR erlaubt allerdings nicht die Unterscheidung zwischen einer Duplikation des *2- oder des *41-Alles.
4.2. Studie

4.2.1. Studienpopulation

4.2.1.1. Demographische Daten und Krankheitsmerkmale
150 Fälle konnten in die statistische Studienauswertung einbezogen werden, darunter 62 Männer (41,33%) und 88 Frauen (58,67%). Das Durchschnittsalter betrug 43,23 ± 15,17 Jahre (18-78 Jahre), das Körpergewicht 73,74 ± 14,23 kg (40-120 kg) und die Körpergröße 171,66 ± 14,23 cm (155-195 cm). 62 Patienten (41,33%), darunter 27 Männer und 35 Frauen, waren Raucher.

Tabelle 16: Übersicht über die ICD-10 Diagnosen in der Studienpopulation

<table>
<thead>
<tr>
<th>Diagnosen</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenie (F20.0-F20.9)</td>
<td>53</td>
</tr>
<tr>
<td>schizotype Störung (F21)</td>
<td>2</td>
</tr>
<tr>
<td>anhaltende wahnhafte Störung (F22)</td>
<td>1</td>
</tr>
<tr>
<td>akute polymorphe psychotische Störung mit Symptomen einer Schizophrenie (F23.1)</td>
<td>1</td>
</tr>
<tr>
<td>schizoaffective Störungen (F25.0-F25.8)</td>
<td>14</td>
</tr>
<tr>
<td>Manie mit psychotischen Symptomen (F30.2)</td>
<td>2</td>
</tr>
<tr>
<td>bipolare affektive Störung (F31.0-F31.9)</td>
<td>18</td>
</tr>
<tr>
<td>depressive Episode (F32.0-F32.9)</td>
<td>28</td>
</tr>
<tr>
<td>rezidivierende depressive Episode (F33.0-F33.9)</td>
<td>25</td>
</tr>
<tr>
<td>sonstige affektive Störungen (F38.8)</td>
<td>1</td>
</tr>
<tr>
<td>phobische Störungen (F40.0-F40.9)</td>
<td>5</td>
</tr>
<tr>
<td>sonstige Angststörungen (F41.0-F41.9)</td>
<td>6</td>
</tr>
<tr>
<td>Zwangsstörungen (F42.0-F42.9)</td>
<td>6</td>
</tr>
<tr>
<td>Reaktionen auf schwere Belastungen und Anpassungsstörungen (F43.0-F43.9)</td>
<td>9</td>
</tr>
<tr>
<td>somatoforme Störungen (F45.0-F45.9)</td>
<td>2</td>
</tr>
<tr>
<td>Persönlichkeitsstörungen (F60.0-F60.9)</td>
<td>14</td>
</tr>
<tr>
<td>sonstige emotionale Störungen im Kindesalter (F93.8)</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2.1.2. Gendosis-Gruppen

147 Patienten wurden mit Hilfe der oben dargestellten Methodik genotypisiert und entsprechend ihrer semiquantitativen Gendosis nach Anzahl und Aktivität der Cyp2D6-Allele in Gendosis-Gruppen eingeteilt. Dabei wurde das CYP2D6*35-Allel aufgrund seiner bislang noch unklaren Relevanz in der Auswertung nicht berücksichtigt. 3 Patienten wurden während der Zeitdauer der Patientenrekrutierung erneut stationär aufgenommen und darum ein zweites Mal in die Studie eingeschlossen. Diese 3 Patienten wiesen die Genotypen *1/*1, *1/*4 bzw. *1/*6 auf.

5 Patienten (3,33%) wurden aufgrund des Vorhandenseins von mindestens 2,5 aktiven Allelen der Gendosis-Gruppe 3 (semiquantitative Gendosis ≥2,5) zugerechnet. 78 Fälle
(52,00%) gehörten der Gendosis-Gruppe 2 (semiquantitative Gendosis 2 und 1,5) und 57 Fälle (38,00%) der Gendosis-Gruppe 1 (semiquantitative Gendosis 1 und 0,5) an. 10 Patienten (6,67%) besaßen keine CYP2D6-Aktivität und wurden somit der Gendosis-Gruppe 0 (semiquantitative Gendosis 0) zugeteilt. Die Allel- und Genotypfrequenzen können Tabelle 17 und 18 entnommen werden.

Tabelle 17: Allelfrequenzen in der Studienpopulation und zugeordnete semiquantitative Gendosis

<table>
<thead>
<tr>
<th>CYP2D6 Allele</th>
<th>n Patienten</th>
<th>Semiquantitative Gendosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>137 (45,67%)</td>
<td>1</td>
</tr>
<tr>
<td>*2</td>
<td>41 (13,67%)</td>
<td>1</td>
</tr>
<tr>
<td>*3</td>
<td>10 (3,33%)</td>
<td>0</td>
</tr>
<tr>
<td>*4</td>
<td>48 (16,00%)</td>
<td>0</td>
</tr>
<tr>
<td>*5</td>
<td>8 (2,67%)</td>
<td>0</td>
</tr>
<tr>
<td>*6</td>
<td>5 (1,67%)</td>
<td>0</td>
</tr>
<tr>
<td>*7</td>
<td>0 (0%)</td>
<td>0</td>
</tr>
<tr>
<td>*8</td>
<td>0 (0%)</td>
<td>0</td>
</tr>
<tr>
<td>*9</td>
<td>8 (2,67%)</td>
<td>0,5</td>
</tr>
<tr>
<td>*10</td>
<td>9 (3,00%)</td>
<td>0,5</td>
</tr>
<tr>
<td>*17</td>
<td>0 (0%)</td>
<td>0,5</td>
</tr>
<tr>
<td>*41</td>
<td>29 (9,67%)</td>
<td>0,5</td>
</tr>
<tr>
<td>*1XN</td>
<td>3 (1,00%)</td>
<td>2</td>
</tr>
<tr>
<td>*2XN</td>
<td>2 (0,67%)</td>
<td>2</td>
</tr>
<tr>
<td>*4XN</td>
<td>0 (0%)</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabelle 18: Genotypen der Studienpopulation und Zuordnung zu den Gendosisgruppen

<table>
<thead>
<tr>
<th>Gendosis-Gruppe</th>
<th>n Patienten</th>
<th>CYP2D6-Genotyp</th>
<th>n Patienten (%)</th>
<th>Semiquantitative Gendosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5 (3,33%)</td>
<td>*1XN/*1</td>
<td>1 (0,67%)</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1XN/*2</td>
<td>1 (0,67%)</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2XN/*1</td>
<td>1 (0,67%)</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2XN/*2</td>
<td>1 (0,67%)</td>
<td>≥3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1XN/*9</td>
<td>1 (0,67%)</td>
<td>≥2,5</td>
</tr>
<tr>
<td>2</td>
<td>78 (52,00%)</td>
<td>*1/*1</td>
<td>34 (22,67%)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*2</td>
<td>19 (12,67%)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2/*2</td>
<td>4 (2,67%)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*9</td>
<td>4 (2,67%)</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*10</td>
<td>5 (3,33%)</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*41</td>
<td>9 (6,00%)</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2/*9</td>
<td>1 (0,67%)</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2/*41</td>
<td>2 (1,33%)</td>
<td>1,5</td>
</tr>
<tr>
<td>1</td>
<td>57 (38,00%)</td>
<td>*1/*3</td>
<td>2 (1,33%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*4</td>
<td>20 (13,33%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*5</td>
<td>5 (3,33%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*1/*6</td>
<td>3 (2,00%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2/*3</td>
<td>2 (1,33%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2/*4</td>
<td>6 (4,00%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*2/*5</td>
<td>1 (0,67%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*41/*41</td>
<td>4 (2,67%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*41/*10</td>
<td>1 (0,67%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*9/*10</td>
<td>1 (0,67%)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*41/*4</td>
<td>8 (5,33%)</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*41/*6</td>
<td>1 (0,67%)</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*9/*6</td>
<td>1 (0,67%)</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*10/*3</td>
<td>2 (1,33%)</td>
<td>0,5</td>
</tr>
<tr>
<td>0</td>
<td>10 (6,67%)</td>
<td>*3/*3</td>
<td>1 (0,67%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*3/*4</td>
<td>1 (0,67%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*3/*5</td>
<td>1 (0,67%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*4/*4</td>
<td>6 (4,00%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*4/*5</td>
<td>1 (0,67%)</td>
<td>0</td>
</tr>
</tbody>
</table>
4.2.2. Psychiatrische Vorgeschichte

4.2.2.1. Psychiatrische Vorgeschichte und CYP2D6-Gendosis-Gruppe

Hinsichtlich der Anzahl vorhergegangener stationärer Aufenthalte, der durchschnittlichen Aufenthaltsdauer und der Gesamtdauer aller vorhergegangenen stationären Behandlungen konnten keine signifikanten Unterschiede zwischen den Gendosis-Gruppen etabliert werden. Die Anzahl vorausgegangener Episoden betrug zwischen 1,20 ± 1,14 bei GDG 0 und 1,79 ± 2,60 bei GDG 2 (p=0,942; Kruskal-Wallis Test), die durchschnittliche Episodendauer schwankte zwischen 1,21 ± 1,54 Monaten bei GDG 1 und 3,00 ± 4,24 Monaten bei GDG 3 (p=0,809; Kruskal-Wallis Test). Die Gesamtdauer aller vorangegangenen Episoden ergab Werte zwischen 2,62 ± 4,04 bei GDG 1 und 6,00 ± 8,49 bei GDG 3 (p=0,801; Kruskal-Wallis Test) (siehe Tabelle 19).

Tabelle 19: Vorgeschichte: Dauer in Monaten (Mittelwert ± Standardabweichung) und Signifikanzniveau p

<table>
<thead>
<tr>
<th>Gendosis-Gruppe</th>
<th>Anzahl Episoden</th>
<th>Durchschnittliche Episodendauer</th>
<th>Summe Episodendauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (n=10)</td>
<td>1,20 ± 1,14</td>
<td>1,37 ± 1,63</td>
<td>2,90 ± 3,64</td>
</tr>
<tr>
<td>1 (n=57)</td>
<td>1,47 ± 1,92</td>
<td>1,21 ± 1,54</td>
<td>2,62 ± 4,04</td>
</tr>
<tr>
<td>2 (n=78)</td>
<td>1,79 ± 2,60</td>
<td>1,55 ± 2,05</td>
<td>2,84 ± 3,48</td>
</tr>
<tr>
<td>3 (n=5)</td>
<td>1,60 ± 1,67</td>
<td>3,00 ± 4,24</td>
<td>6,00 ± 8,49</td>
</tr>
</tbody>
</table>

Signifikanzen im Kruskal-Wallis Test

<table>
<thead>
<tr>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,942</td>
</tr>
<tr>
<td>0,809</td>
</tr>
<tr>
<td>0,801</td>
</tr>
</tbody>
</table>
4.2.3. Aufenthaltsdauer

Die mittlere stationäre Aufenthaltsdauer aller Studienpatienten während der aktuellen Krankheitsepisode betrug 55,29 ± 33,89 Tage. Zwischen den Gendosis-Gruppen zeigten sich keine signifikanten Unterschiede hinsichtlich der mittleren Aufenthaltsdauer, die zwischen 53,59 ± 30,34 Tagen bei GDG 2 und 60,80 ± 34,81 Tagen bei GDG 0 lag (p=0,901; Kruskal-Wallis Test).

Dieses Bild änderte sich allerdings, wenn die Gruppen zusätzlich noch in zwei Subgruppen unterteilt wurden. Die eine Subgruppe enthielt die Patienten, die während ihrer stationären Behandlung ein Medikament erhalten hatten, das primär über das CYP2D6-Enzym eliminiert wird. Der anderen Subgruppe wurden diejenigen Patienten zugeordnet, die kein solches Präparat erhalten hatten. Daten bezüglich des Verlaufes der medikamentösen Therapie waren für insgesamt 143 Patienten verfügbar. Dieser Ansatz ließ erkennen, dass Patienten, die CYP2D6-abhängige Medikamente eingenommen hatten, im Durchschnitt länger hospitalisiert blieben (58,53 ± 36,18 Tage) als Patienten, die keine CYP2D6-abhängigen Medikamente erhalten hatten (46,53 ± 25,62 Tage). Der beobachtete Unterschied verfehlte allerdings ein statistisch signifikantes Niveau (p=0,085; Mann-Whitney U Test).

Innerhalb der Medikamentensubgruppen zeigten sich aber keine signifikanten Unterschiede zwischen den verschiedenen Gendosis-Gruppen hinsichtlich der Dauer des stationären Aufenthaltes (p=0,651 bei Patienten ohne CYP2D6-Substrate und p=0,791 bei Patienten mit CYP2D6-abhängigen Medikamenten; Kruskal-Wallis Test) (siehe Tabelle 20 und Abbildung 4).
Tabelle 20: Aufenthaltsdauer in Tagen (Mittelwert ± Standardabweichung)

<table>
<thead>
<tr>
<th>Gendosis-Gruppe</th>
<th>gesamt</th>
<th>ohne CYP2D6-abh. Medikamente</th>
<th>mit CYP2D6-abh. Medikamenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle</td>
<td>55,29 ± 33,89</td>
<td>46,53 ± 25,62</td>
<td>58,53 ± 36,18</td>
</tr>
<tr>
<td>0</td>
<td>60,80 ± 34,81 (n=10)</td>
<td>51,20 ± 28,01 (n=5)</td>
<td>70,40 ± 41,37 (n=5)</td>
</tr>
<tr>
<td>1</td>
<td>56,19 ± 38,55 (n=57)</td>
<td>47,56 ± 29,67 (n=9)</td>
<td>58,07 ± 40,63 (n=45)</td>
</tr>
<tr>
<td>2</td>
<td>53,59 ± 30,34 (n=78)</td>
<td>43,79 ± 24,53 (n=19)</td>
<td>57,80 ± 32,13 (n=55)</td>
</tr>
<tr>
<td>3</td>
<td>60,40 ± 36,82 (n=5)</td>
<td>(66,00) (n=1)</td>
<td>59,00 ± 42,36 (n=4)</td>
</tr>
</tbody>
</table>

Signifikanten im Kruskal-Wallis Test

- p=0,901
- p=0,651
- p=0,791

Abbildung 4: mittlere Aufenthaltsdauer innerhalb der Gendosis-Gruppen, eingeteilt nach Medikamenteneinnahme

- ■ Patienten mit CYP2D6-abhängigen Medikamenten
- ◆ Patienten ohne CYP2D6-abhängige Medikamente
4.2.4. Medikamentöse Therapie

Bei 7 Patienten (davon 4 Individuen aus GDG 2 und 3 aus GDG 1) konnte der Verlauf der medikamentösen Therapie nicht dokumentiert werden, so dass in die Auswertung bezüglich der medikamentösen Therapie nur Daten von 143 Patienten eingehen.

113 Patienten (74,83%) erhielten Neuroleptika, Antidepressiva wurden an 95 Patienten (66,43%) verabreicht und ebenfalls 95 Patienten (63,33%) erhielten Anxiolytika. Olanzapin (n=59, 41,26%), Risperidon (n=33, 23,08%) und Amisulprid (n=17, 11,89%) waren die am häufigsten verabreichten Neuroleptika, die bevorzugten Antidepressiva waren Mirtazapin (n=49, 34,27%), Citalopram (n=30, 20,98%) und Paroxetin (n=14, 9,79%). Als Mood-Stabilizer wurden neben Lithium (n=18, 12,59%) auch Carbamazepin (n=11, 7,69%), Valproinsäure (n=6, 4,20%) und Lamotrigin (n=4, 2,80%) verabreicht. Zur Anxiolyse wurde vorwiegend Lorazepam (n=75, 52,45%) und Lormetazepam (n=17, 11,89%) eingesetzt (siehe Abbildung 5).
Abbildung 5: verabreichte psychotrope Medikamente, eingeteilt nach Indikationsgruppen
4.2.4.1. CYP2D6-abhängige Medikamente und Gendosis-Gruppe

109 der 143 Patienten (76,22%), für die der Verlauf der medikamentösen Therapie dokumentiert werden konnte, erhielten während ihres stationären Aufenthaltes bis zur Entlassung Medikamente, die hauptsächlich über das CYP2D6-Isoenzym verstoffwechselt werden. Die am häufigsten verschriebenen CYP2D6-Substrate waren Mirtazapin (n=49, 34,27%), Risperidon (n=33, 22,08%) und Haloperidol (n=10, 6,99%). Abbildung 6 zeigt alle verabreichten CYP2D6-abhängigen Medikamente.

Abbildung 6: Übersicht über alle in der Studienpopulation verabreichte CYP2D6-abhängige Medikamente

Es ergab sich kein signifikanter Unterschied zwischen den verschiedenen CYP2D6-Gendosis-Guppen hinsichtlich der Häufigkeit der Verschreibung von CYP2D6-abhängigen Medikamenten: 5 von 10 Patienten (50,00%) der GDG 0, 45 von 54 Individuen (83,33%) der GDG 1, 55 von 74 Patienten (74,32%) der GDG 2 und 4 von 5 Probanden (80,00%) der GDG 3 hatten im Verlauf des stationären Aufenthaltes CYP2D6-dependente Medikamente eingenommen (p=0,139; Chi-Quadrat Test). Innerhalb der ersten vier Wochen der Behandlung hatten insgesamt 99 Patienten, nämlich 4 von 10 Individuen (40,00%) der GDG 0, 42 von 54 (77,78%) der GDG 1, 49 von 74 Patienten (66,22%) der GDG 2 und 4 von 5 (80,00%) der GDG 3, CYP2D6-abhängige Medikamente erhalten (p=0,092; Chi-Quadrat Test).

1 von 10 Patienten (10%) in GDG 0, 11 von 54 (20,37%) in GDG 1, 14 von 74 (18,92%) Individuen in GDG 2 und 3 von 5 (60%) in GDG 3 hatten im Verlauf der stationären Behandlung 2 oder mehr Medikamente erhalten, die primär über das CYP2D6-Enzym
abgebaut werden (p=0,209; Chi-Quadrat Test) (siehe Tabelle 21). Beim Vergleich der einzelnen Gruppen untereinander zeigte sich im Chi-Quadrat Test trotz sehr niedriger Patientenzahl ein signifikantes Ergebnis dahingehend, dass die Patienten der GDG 3 verglichen mit den Angehörigen der anderen Gendosis-Gruppen häufiger zwei oder mehr verschiedene CYP2D6-abhängige Medikamente während ihres Krankenhausaufenthaltes erhalten hatten (siehe Tabelle 22).

Tabelle 21: Anzahl der verschriebenen CYP2D6-abhängigen Medikamente in den Gendosis-Gruppen

<table>
<thead>
<tr>
<th>Gendosisgruppe</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=10</td>
<td>5</td>
<td>9</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>n=54</td>
<td>4</td>
<td>34</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>n=74</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>n=5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Wahrscheinlichkeit für >=2 verschiedene C2D6-abhängige Medikamente

<table>
<thead>
<tr>
<th>Gendosisgruppe</th>
<th>10%</th>
<th>20,37%</th>
<th>18,92%</th>
<th>60%</th>
</tr>
</thead>
</table>

Tabelle 22: Signifikanzen im Chi²-Test für den Vergleich „kein oder ein Cyp2D6-abhängiges Medikament“ - „zwei oder mehr Cyp2D6-abhängige Medikamente“ zwischen je zwei Gendosis-Gruppen:

<table>
<thead>
<tr>
<th>GDG</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0,440</td>
<td>0,489</td>
<td>0,039</td>
</tr>
<tr>
<td>1</td>
<td>0,440</td>
<td>-</td>
<td>0,838</td>
<td>0,046</td>
</tr>
<tr>
<td>2</td>
<td>0,489</td>
<td>0,838</td>
<td>-</td>
<td>0,031</td>
</tr>
<tr>
<td>3</td>
<td>0,039</td>
<td>0,046</td>
<td>0,031</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2.4.2. Medikamentenumstellungen und CYP2D6-Gendosis-Gruppe

Als Medikamentenumstellung wurde die Alternation eines Präparates innerhalb derselben Indikationsgruppe definiert, also ein Wechsel von einem Neuroleptikum zu einem anderen Neuroleptikum oder von einem Antidepressivum zu einem anderen. Dabei wurden nur die Patienten in die Auswertung einbezogen, die während des stationären Aufenthaltes CYP2D6-abhängige Medikamente erhalten hatten (n=109).

Bei der Analyse der Daten zeigte sich, dass die Wahrscheinlichkeit für zwei oder mehr Umstellungen der medikamentösen Therapie bei den 5 Patienten der GDG 0 erhöht war.
Betroffen waren nämlich 2 der 5 Patienten (40%) ohne CYP2D6-Aktivität verglichen mit nur 7 von 104 Probanden (6,73%) mit mindestens residualer CYP2D6-Enzymaktivität (p=0,041; Chi-Quadrat Test) (siehe Tabelle 23).

Tabelle 23: Medikamentenumstellungen innerhalb der Gendosis-Gruppen

<table>
<thead>
<tr>
<th>Gendosisgruppe</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=5</td>
<td>n=45</td>
<td>n=55</td>
<td>n=4</td>
<td></td>
</tr>
<tr>
<td>Anzahl der Medikamentenumstellungen</td>
<td>0</td>
<td>2</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Wahrscheinlichkeit für >= 2 Umstellungen der medikamentösen Therapie</td>
<td>40%</td>
<td>6,67%</td>
<td>7,27%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Außerdem wurde untersucht, ob eine eventuelle Medikamentenumstellung auch eine Änderung des metabolischen Pfades verursachte. Das bedeutet, es wurde geprüft, ob ein Wechsel von einem CYP2D6-abhängigen Medikament zu einer Substanz erfolgte, die über sonstige Enzymsysteme abgebaut wurde, ob eine Umstellung von einem nicht-CYP2D6-abhängigen Präparat zu einem CYP2D6-abhängigen Medikament stattfand oder ob durch die Medikamentenumstellung keine Änderung des Abbauweges resultierte. Auch Dosisänderungen der CYP2D6-abhängigen Medikamente wurden hinsichtlich ihrer Bedeutung innerhalb der Gendosis-Gruppen untersucht. Bei beiden Ansätzen fanden sich keinerlei Unterschiede zwischen den Gendosis-Gruppen. Die Signifikanz der Chi-Quadrat Tests für die erwähnten Analysen lagen alle weit oberhalb des Signifikanzniveaus α von 0,05 (siehe Tabelle 24).

Tabelle 24: Signifikanzniveaus zwischen den Gendosis-Gruppen im Chi-Quadrat Test für die Medikamentenumstellungen

<table>
<thead>
<tr>
<th>ohne Änderung des metab. Pfades</th>
<th>zu höherer Dosis CYP2D6-abh. Medikamente</th>
<th>zu niedrigerer Dosis CYP2D6-abh. Medikamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signifikanzniveau im Chi²-Test</td>
<td>p=0,556</td>
<td>p=0,926</td>
</tr>
</tbody>
</table>
4.2.4.3. Relative mittlere Dosis und CYP2D6-Gendosis-Gruppe

In einem weiteren Schritt wurde für jedes Psychopharmakon, das in erster Linie über das CYP2D6-Enzym eliminiert wird, die mittlere applizierte Dosis sowie die mittlere applizierte Dosis/kg KG berechnet und in Bezug darauf die relative mittlere Dosis bzw. die relative mittlere Dosis/kg KG pro Patient. Dieses Verfahren soll anhand eines einfachen Beispiels näher erläutert werden: insgesamt zwei Patienten hatten während ihres stationären Aufenthaltes Clomipramin erhalten, Patient x in einer Dosis von 2,04 mg/kg KG, Patient y in einer Dosis von 2,15 mg/kg KG. Daraus ergibt sich, dass die mittlere applizierte Dosis von Clomipramin (2,04 + 2,15)/2 = 2,095 mg/kg KG betrug. In Bezug auf diese mittlere Dosis erhielt Patient x eine relative mittlere Dosis/kg KG von (2,04 / 2,095) = 0,97, Patient y eine relative mittlere Dosis/kg KG von (2,15 / 2,095) = 1,03. In analoger Weise wurde für sämtliche CYP2D6-abhängigen Wirkstoffe eine relative mittlere Dosis/kg KG ermittelt. So konnten die Dosierungen aller Patienten unabhängig von dem tatsächlich erhaltenen Medikament miteinander verglichen werden.

Diese Berechnung konnte bei 103 der insgesamt 109 Patienten durchgeführt werden, die während ihres stationären Aufenthaltes CYP2D6-abhängige Psychopharmaka erhalten hatten.

Es fanden sich keine signifikanten Unterschiede hinsichtlich der relativen mittleren Dosis/kg KG zwischen den Gendosis-Gruppen (GDG 3: 0,84±0,04; GDG 2: 1,02±0,39; GDG 1: 1,05±0,34; GDG 0: 0,98±0,11; p=0,645; Kruskal-Wallis Test) (siehe Abbildung 7). Allerdings zeigte sich ein Trend zu einer niedrigeren relativen mittleren Dosis/kg KG bei Patienten der GDG 3, der gegenüber den Patienten der GDG 0 ein statistisch signifikantes Niveau erreichte (p=0,050; Whitney-Mann U Test).
Abbildung 7: Relative mittlere Dosis/kg KG und Gendosis-Gruppe

4.2.5. Unerwünschte Arzneimittelwirkungen
Das Auftreten unerwünschter Arzneimittelwirkungen, ihre Beziehungen zur CYP2D6-
Gendosis, zur Verschreibung CYP2D6-abhängiger Medikamente und zur relativen
mittleren Dosis/kg KG wurde vier Wochen nach Beginn des stationären Aufenthaltes
evaluiert.
Zu diesem Zeitpunkt hatten 99 Patienten bereits Medikamente erhalten, die primär über
das CYP2D6-Enzym metabolisiert werden.

4.2.5.1. Unerwünschte Arzneimittelwirkungen und Gendosis-Gruppe
Das Auftreten unerwünschter Arzneimittelwirkungen wurde in Abhängigkeit von der
Verschreibung CYP2D6-dependenter Medikamente zwischen den Gendosis-Gruppen
verglichen.
Bei Patienten, die ausschließlich CYP2D6-unabhängige Medikamente erhalten hatten,
konnten keine Unterschiede hinsichtlich des Auftretens von Nebenwirkungen zwischen
den Gendosis-Gruppen beobachtet werden. Der einzige Patient in GDG3 zeigte keine
Nebenwirkungen (0,00%), wohingegen 9 von 25 Patienten (36,00%) der GDG 2, 2 von 12
(16,67%) der GDG 1 und 1 von 6 (16,67%) der GDG 0 unter unerwünschten Arzneimittelwirkungen litten (p=0,502; Chi-Quadrat Test).

Hingegen fand sich bei Patienten mit CYP2D6-abhängigen Medikamenten eine Zunahme des Auftretens unerwünschter Arzneimittelwirkungen insbesondere bei Angehörigen der GDG 0. Während nur 1 von 4 Patienten (25,00%) der GDG 3, 10 von 49 Patienten (20,41%) der GDG 2 und 16 von 42 Probanden (38,10%) der GDG 1 unter Nebenwirkungen gelitten hatten, zeigten 4 von 4 Patienten (100,00%) der GDG 0 unerwünschte Arzneimittelwirkungen (siehe Tabelle 25 und Abbildung 8). Die beobachteten Unterschiede im Auftreten unerwünschter Arzneimittelwirkungen waren statistisch signifikant. Das Signifikanzniveau zwischen allen Gendosis-Gruppen lag bei p=0,006 im Chi-Quadrat Test, ein Vergleich zwischen den einzelnen Gendosis-Gruppen zeigte signifikante Unterschiede im Chi-Quadrat Test zwischen Angehörigen der GDG 0 und allen anderen Patienten. Der Unterschied zwischen Patienten der GDG 1 und der GDG 2 ergab zumindest eine Tendenz (p=0,063; Chi-Quadrat Test) (siehe Tabelle 26).

Ebenso fand sich ein statistisch signifikanter Unterschied hinsichtlich des Auftretens unerwünschter Arzneimittelwirkungen innerhalb der GDG 0 zwischen denjenigen Patienten, die CYP2D6-abhängige Medikamente erhalten hatten und denjenigen ohne solche Medikamente (p=0,016; Chi-Quadrat Test). Innerhalb der anderen GDG ergaben sich keine signifikanten Unterschiede im Chi-Quadrat Test (p=0,165 für GDG1, p=0,146 für GDG 2 und p=0,576 für GDG 3).

Tabelle 25: Anzahl der Patienten mit unerwünschten Arzneimittelwirkungen, eingeteilt nach Gendosis-Gruppe und applizierter Medikation

<table>
<thead>
<tr>
<th>Gendosis-Gruppe</th>
<th>Pat. ohne CYP2D6-abh. Medikamente (n=44)</th>
<th>Pat. mit CYP2D6-abh. Medikamenten (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pat. mit ADE/Gruppe</td>
<td>Pat. mit ADE/Gruppe</td>
</tr>
<tr>
<td>0</td>
<td>1/6 (16,67%)</td>
<td>4/4 (100,00%)</td>
</tr>
<tr>
<td>1</td>
<td>2/12 (16,67%)</td>
<td>16/42 (38,10%)</td>
</tr>
<tr>
<td>2</td>
<td>9/25 (36,00%)</td>
<td>10/49 (20,41%)</td>
</tr>
<tr>
<td>3</td>
<td>0/1 (0,00%)</td>
<td>1/4 (25,00%)</td>
</tr>
<tr>
<td>Signifikanzen im Chi²-Test</td>
<td>p=0,502</td>
<td>p=0,006</td>
</tr>
</tbody>
</table>
Tabelle 26: Signifikanzen im Chi-Quadrat Test für den Vergleich der Anzahl von Patienten mit unerwünschten Arzneimittelwirkungen pro Gendosis-Gruppe zwischen je zwei Gendosis-Gruppen (für alle Patienten mit CYP2D6-abhängigen Medikamenten, n=99)

<table>
<thead>
<tr>
<th>GDG</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0,017</td>
<td>0,001</td>
<td>0,028</td>
</tr>
<tr>
<td>1</td>
<td>0,017</td>
<td>-</td>
<td>0,063</td>
<td>0,604</td>
</tr>
<tr>
<td>2</td>
<td>0,001</td>
<td>0,063</td>
<td>-</td>
<td>0,828</td>
</tr>
<tr>
<td>3</td>
<td>0,028</td>
<td>0,604</td>
<td>0,828</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbildung 8: Anzahl der Patienten mit unerwünschten Arzneimittelwirkungen pro Gendosis-Gruppe, eingeteilt nach medikamentöser Therapie

4.2.5.2. Unerwünschte Arzneimittelwirkungen und relative mittlere Dosis

Des Weiteren wurde untersucht, ob ein Zusammenhang zwischen der Höhe der applizierten Dosis CYP2D6-abhängiger Medikamente und dem Auftreten von unerwünschten Arzneimittelwirkungen bestand.

Die Analyse wurde wegen der sonst zu geringen Fallzahlen auf die Patienten der Gendosis-Gruppen 1 und 2 beschränkt, wobei relevante Daten für insgesamt 86 Fälle zur Verfügung standen. Beide Gendosis-Gruppen wurden in zwei Untergruppen unterteilt. Die eine Subgruppe bestand aus Patienten, die eine relative mittlere Dosis von 1,00 oder mehr erhalten hatten, die andere aus Patienten mit einer applizierten Dosis von weniger als 1,00 relativ zur mittleren Dosis.
Hierbei zeigte sich kein signifikanter Unterschied in den beiden Subgruppen der GDG 2 hinsichtlich der Anzahl von Patienten mit unerwünschten Medikamentenwirkungen: bei 3 von 19 Individuen (15,79%) in der Subgruppe mit höherer relativer mittlerer Dosis und bei 6 von 25 Patienten (24,00%) in der Gruppe mit niedrigerer relativer mittlerer Dosis fanden sich unerwünschte Arzneimittelwirkungen (p=0,504; Chi-Quadrat Test). Im Gegensatz dazu waren in der GDG 1 deutlich häufiger Nebenwirkungen zu beobachten, wenn den Patienten eine höhere relative mittlere Dosis verabreicht wurde. Bei Patienten der GDG 1 mit einer relativen mittleren Dosis von 1,00 oder mehr zeigten sich unerwünschte Arzneimittelwirkungen bei 10 von 17 Patienten (58,82%), im Gegensatz dazu fanden sich Nebenwirkungen nur bei 6 von 25 Probanden (24,00%) der GDG 1, die eine relative mittlere Dosis von weniger als 1,00 erhalten hatten (p=0,023; Chi-Quadrat Test) (siehe Tabelle 27).

Auch der Unterschied zwischen Patienten der GDG 1 und GDG 2 mit einer relativen mittleren Dosis von 1,00 oder mehr war statistisch signifikant (p=0,001; Chi-Quadrat Test), während kein statistischer Unterschied zwischen den Patienten der beiden Gendosis-Gruppen mit einer relativen mittleren Dosis unter 1,00 etabliert werden konnte (p=0,100, Chi-Quadrat Test).

Tabelle 27: Zusammenhang zwischen relativer mittlerer Dosis und Anzahl von Patienten pro Gendosis-Gruppe mit unerwünschten Arzneimittelwirkungen, Signifikanzen im Chi-Quadrat Test

<table>
<thead>
<tr>
<th>Gendosis-Gruppe</th>
<th>Relative mittlere Dosis</th>
<th>Patienten mit ADE/Gruppe</th>
<th>Signifikanzen im Chi²-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=42)</td>
<td><1,00</td>
<td>6/25 (24,00%)</td>
<td>p=0,023</td>
</tr>
<tr>
<td></td>
<td>>=1,00</td>
<td>10/17 (58,82%)</td>
<td></td>
</tr>
<tr>
<td>2 (n=44)</td>
<td><1,00</td>
<td>6/25 (24,00%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>=1,00</td>
<td>3/19 (15,79%)</td>
<td></td>
</tr>
</tbody>
</table>

4.2.5.3. Unerwünschte Arzneimittelwirkungen und relative mittlere Dosis/kg KG

In Ergänzung zu dem unter Punkt 4.2.5.2. beschriebenen Verfahren wurde der Zusammenhang zwischen dem Auftreten unerwünschter Arzneimittelwirkungen und der Höhe der applizierten relativen mittleren Dosis in Bezug auf das Körpergewicht als relative mittlere Dosis/kg KG untersucht.

Auch hierzu wurden die 86 Fälle der Gendosis-Gruppen 1 und 2 in zwei Subgruppen unterteilt. Die eine Untergruppe bestand aus Patienten, die eine relative mittlere Dosis/kg KG von 1,00 oder mehr erhalten hatten, die andere Subgruppe aus Patienten mit einer relativen mittleren Dosis/kg KG von weniger als 1,00.
Hierbei ergab sich ein ganz ähnliches Bild wie bei der Analyse der relativen mittleren Dosis ohne Bezug auf das Körpergewicht.

Es zeigte sich kein signifikanter Unterschied in den beiden Subgruppen der GDG 2 hinsichtlich der Anzahl von Patienten mit unerwünschten Arzneimittelwirkungen: 6 von 22 Patienten (27,23%) mit einer relativen mittleren Dosis/kg KG von weniger als 1,00 und 3 von 22 Patienten (13,64%) mit einer höheren relativen mittleren Dosis/kg KG litten unter Nebenwirkungen der applizierten Medikamente (p=0,262; Chi-Quadrat Test). Auf der anderen Seite fanden sich in der GDG 1 deutlich häufiger unerwünschte Arzneimittelwirkungen, wenn eine höhere relative mittlere Dosis/kg KG verabreicht worden war. Hier zeigten sich Nebenwirkungen bei 10 von 18 Patienten (55,56%) mit einer relativen mittleren Dosis/kg KG von 1,00 oder mehr. Im Gegensatz dazu litten nur 6 von 24 Patienten (25,00%) mit einer niedrigeren relativen mittleren Dosis/kg KG unter unerwünschte Arzneimittelwirkungen (p=0,044; Chi-Quadrat Test) (siehe Tabelle 28 und Abbildung 9).

Der Unterschied zwischen Patienten der GDG 1 und 2 mit einer relativen mittleren Dosis/kg KG von weniger als 1,00 war statistisch nicht signifikant (p=0,861; Chi-Quadrat Test), während zwischen den Patienten der beiden Gendosis-Gruppen mit einer hohen relativen mittleren Dosis/kg KG ein signifikanter Unterschied etabliert werden konnte (p=0,005; Chi-Quadrat Test).

Tabelle 28: Zusammenhang zwischen relativer mittlerer Dosis/kg KG und Anzahl von Patienten pro Gendosis-Gruppe mit unerwünschten Arzneimittelwirkungen, Signifikanzen im Chi-Quadrat Test

<table>
<thead>
<tr>
<th>Gendosis-Gruppe</th>
<th>Relative mittlere Dosis/kg KG</th>
<th>Patienten mit ADE/Gruppe</th>
<th>Signifikanzen im Chi²-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=42)</td>
<td><1,00</td>
<td>6/24 (25,00%)</td>
<td>p=0,044</td>
</tr>
<tr>
<td></td>
<td>>=1,00</td>
<td>10/18 (55,56%)</td>
<td></td>
</tr>
<tr>
<td>2 (n=44)</td>
<td><1,00</td>
<td>6/22 (27,23%)</td>
<td>p=0,262</td>
</tr>
<tr>
<td></td>
<td>>=1,00</td>
<td>3/22 (13,64%)</td>
<td></td>
</tr>
</tbody>
</table>
4.2.6. Ansprechen auf die Therapie

In diese Auswertung konnten 112 Patienten einbezogen werden, von denen nach obiger Einteilung 28 (25,00%) als Responder klassifiziert wurden.
4.2.6.1. Response und Applikation CYP2D6-abhängiger Medikamente

Um die Beziehung zwischen den CYP2D6-Gendosis-Gruppen und dem Ansprechen auf die Therapie zu analysieren, wurden Responder und Non-Responder in Subgruppen eingeteilt nach der Gendosis-Gruppe und hinsichtlich der Verschreibung CYP2D6-abhängiger oder –unabhängiger Medikamente. Dabei beschränkte sich die Analyse aufgrund unzureichender Fallzahlen in den anderen Gendosis-Gruppen auf Patienten der Gendosis-Gruppen 1 und 2, wobei relevante Daten für 98 Fälle verfügbar waren.

Während sich bei Patienten, die keine CYP2D6-abhängigen Medikamente erhalten hatten, die Anzahl der Responder in den beiden Gendosis-Gruppen nicht signifikant voneinander unterschied (GDG 1: 3 von 8 Patienten (37,50%), GDG 2: 5 von 21 Patienten (23,81%); p=0,461; Chi-Quadrat Test), fand sich in der Subgruppe von Patienten mit CYP2D6-abhängigen Arzneimitteln ein statistisch signifikanter Unterschied zwischen den beiden Gendosis-Gruppen: in GDG 2 hatten 13 von 34 Patienten (38,24%) auf die Therapie angesprochen, demgegenüber zeigten in GDG 1 nur 5 von 35 Individuen (14,29%) eine klinische Besserung (p=0,024; Chi-Quadrat Test) (siehe Tabelle 29 und Abbildung 10).

Tabelle 29: Responder pro Gendosis-Gruppe, eingeteilt nach medikamentöser Therapie

<table>
<thead>
<tr>
<th>Gendosisgruppe</th>
<th>Pat. ohne CYP2D6-abh. Medikamente Pat mit Ansprechen/Gruppe</th>
<th>Pat. mit CYP2D6-abh. Medikamenten Pat mit Ansprechen/Gruppe</th>
<th>Signifikanz im Chi²-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/8 (37,50%)</td>
<td>5/35 (14,29%)</td>
<td>p=0,135</td>
</tr>
<tr>
<td>2</td>
<td>5/21 (23,81%)</td>
<td>13/34 (38,24%)</td>
<td>p=0,800</td>
</tr>
<tr>
<td>Signifikanz im Chi²-Test</td>
<td>p=0,461</td>
<td>p=0,024</td>
<td></td>
</tr>
</tbody>
</table>
4.2.6.2. Response und relative mittlere Dosis/kg KG

Des Weiteren wurde untersucht, ob eine Beziehung zwischen dem Ansprechen auf die Therapie und der Höhe der applizierten relativen mittleren Dosis/kg KG CYP2D6-abhängiger Medikamente bestand. Hierzu wurden die Patienten der Gendosis-Gruppen 1 und 2 in zwei Subgruppen eingeteilt. Die eine Untergruppe bestand aus Patienten, die eine relative mittlere Dosis/kg KG von 1,00 oder mehr erhalten hatten, die andere aus Patienten mit einer applizierten Dosis von weniger als 1,00 relativ zur mittleren Dosis/kg KG. In diese Auswertung konnten 35 Patienten der Gendosis-Gruppe 1 und 31 Patienten der Gendosis-Gruppe 2 einbezogen werden, für die alle relevanten Daten zur Verfügung standen.

Es zeigte sich, dass bei einer höheren relativen mittleren Dosis/kg KG in der GDG 1 signifikant weniger Probanden auf die Therapie angesprochen hatten als in der GDG 2 (GDG 1: 1 von 15 Patienten (6,76%), GDG 2: 7 von 16 Patienten (43,75%); p=0,037; Chi-Quadrat Test). Bei den Patienten mit einer relativen mittleren Dosis/kg KG von unter 1,00 zeigte sich kein solcher Unterschied zwischen den Gendosis-Gruppen (GDG 1: 4 von 20 Patienten (20,00%), GDG 2: 4 von 15 Patienten (26,67%); p=0,700; Chi-Quadrat Test) (siehe Tabelle 30 und Abbildung 11).
Tabelle 30: Zusammenhang zwischen relativer mittlerer Dosis/kg KG und Responder pro Gendosis-Gruppe, Signifikanzen im Chi-Quadrat Test

<table>
<thead>
<tr>
<th>Relative mittlere Dosis/kg KG</th>
<th>Gendosis-Gruppe</th>
<th>Responder/Gruppe</th>
<th>Signifikanzen im Chi²-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td><1,00</td>
<td>1</td>
<td>4/20 (20,00%)</td>
<td>p=0,700</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4/15 (26,67%)</td>
<td></td>
</tr>
<tr>
<td>>=1,00</td>
<td>1</td>
<td>1/15 (6,67%)</td>
<td>p=0,037</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7/16 (43,75%)</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 11: Relative mittlere Dosis/kg KG und Responder/Gruppe in den Gendosis-Gruppen 1 und 2
5. Diskussion

5.1. Genotypisierung

Die hier vorgestellte Methodik zur Analyse der CYP2D6*2-, *41- und *35-Allele erlaubt in Kombination mit bereits beschriebenen Analysemethoden (Stuven et al. 1996; Ji et al. 2002a; Stamer et al. 2002; Muller et al. 2003; Steimer et al. 2005a) eine umfassende Untersuchung der wichtigsten der bisher bekannten CYP2D6-Polymorphismen in einer kaukasischen Bevölkerung. Dabei ermöglicht die Real-Time PCR eine größtmögliche Verkürzung der Arbeitszeit verglichen mit konventionellen PCR-Methoden, da zum einen die Dauer der Temperaturprogramme deutlich verkürzt ist, zum anderen zusätzliche Arbeitsschritte zur Darstellung des PCR-Produkts unnötig werden. So kann eine Analyse des CYP2D6-Gens im Rahmen einer routinemäßigen Genotypisierung innerhalb eines Arbeitstages vorgenommen werden (Muller et al. 2003). Die Zuverlässigkeit der entwickelten Methoden wurde durch Referenzmethoden getestet, die weitere PCR-Reaktionen, RFLP-Analyse und Gelelektrophorese umfassten. Zusätzlich wurde eine bereits beschriebene Methodik adaptiert (Sachse et al. 1997), die bei Vorliegen einer Gen-Duplikationen die Identifikation des vervielfältigten Allels (CPY2D6*1, *2 oder *4) erlaubt.
Durch die Kombination der bereits beschriebenen und der neu etablierten Analysemetho
den war es möglich, die Teilnehmer der Studie auf die wichtigsten CYP2D6-Allele hin zu untersuchen und nach der individuellen semiquantitativen Gendosis in Gendosis-Gruppen einzuteilen, wobei die Empfehlungen der jüngsten Literatur berücksichtigt wurden. Die Notwendigkeit der Bildung von Gendosis-Gruppen ergab sich aus der zu geringen Anzahl der Patienten pro Gendosis, wodurch Vergleiche von Patienten einzelner Gendosen statistisch nicht verwertbar waren.

Die abweichenden Befunde in den oben genannten Studien lassen sich im ersten Fall durch den geringen Stichprobenumfang erklären. Im letzteren Fall beschränkte sich die Studie auf Patienten, die mit Haloperidol behandelt wurden. Die Autoren schlossen, dass die divergenten Prävalenzen dadurch zustande kamen, dass PM-Metabolisierer auch mit geringeren Dosierungen, wie sie im ambulanten Bereich verabreicht werden, schon ausreichend hohe Serumspiegel entwickeln und so besser auf die Therapie ansprechen, was eine stationäre Behandlung überflüssig machen könnte.
5.2. Klinische Studie

Das Ziel dieser klinischen Studie war es, den Einfluss des individuellen CYP2D6-Genstatus auf den Verlauf der medikamentösen Therapie, die klinische Wirksamkeit und die auftretenden Nebenwirkungen während einer stationären psychiatrischen Behandlung zu untersuchen. Es sollte geklärt werden, ob durch eine Genotypisierung diese Variablen hinreichend gut vorhergesagt und so von vorneherein eine geeignete Medikation gewählt werden könnte, um Therapieversagen oder das Auftreten unerwünschter Arzneimittelwirkungen zu verhindern.

5.2.1. Psychiatrischen Vorgeschichte

Bezüglich der vorangegangenen stationären Aufenthalte unterschieden sich die Patienten der verschiedenen CYP2D6-Gendosis-Gruppen unserer Studie nicht voneinander, wobei aufgrund der Heterogenität der Studienpopulation im Hinblick auf Alter und Diagnosen signifikante Unterschiede auch nicht zu erwarten waren.

5.2.2. Aufenthaltsdauer

5.2.3. Medikamentöse Therapie

Der überwiegende Anteil der Studienpatienten erhielt während des stationären Aufenthaltes mindestens ein Medikament, das vorwiegend über das CYP2D6-Enzym eliminiert wird. Die Hälfte aller Patienten in der GDG 0 nahmen CYP2D6-abhängige Medikamente ein. Außerdem wurden 31,33% aller verabreichten Antidepressiva und Neuroleptika primär über den CYP2D6-Stoffwechselweg abgebaut. Diese Zahlen entsprechen den Befunden in anderen Studien (Chou et al. 2000; Tamminga et al. 2003).

Interessanterweise zeigte sich, dass bei Patienten der GDG 3 die Anzahl der verschriebenen CYP2D6-abhängigen Medikamente signifikant höher war als bei Patienten der anderen Gendosis-Gruppen. Dies könnte in Kombination mit der geringeren Anzahl von Patienten mit unerwünschten Arzneimittelwirkungen in dieser Gruppe als Hinweis darauf gewertet werden, dass sich die Psychopharmakotherapie mit CYP2D6-abhängigen Substanzen bei Patienten der GDG 3 klinisch relativ komplikationslos gestaltet und deshalb diese Medikamente problemlos und damit bevorzugt appliziert werden. Auch Tamminga et al. fanden in ihrer Studie keine ungünstigen Auswirkungen des UM-Genotyp auf den Verlauf der medikamentösen Therapie (Tamminga et al. 2003). Möglicherweise hängt dies damit zusammen, dass für etliche CYP2D6-abhängige Psychopharmaka über das CYP2D6-Enzym pharmakologisch aktive Metaboliten gebildet werden, so dass hier auch ein ultra-schneller Metabolismus zu normaler pharmakologischer Aktivität der applizierten Substanz führt.

Patienten der GDG 0 mit CYP2D6-abhängigen Medikamenten zeigten ein erhöhtes Risiko für Medikamentenumstellung verglichen mit den anderen Gendosis-Gruppen. Dies könnte mit der höheren Rate an unerwünschten Arzneimittelwirkungen in der GDG 0 zusammenhängen, die möglicherweise eine Änderung der medikamentösen Therapie erforderlich machte. Medikamentenumstellungen führen zu einer Verlängerung der stationären Aufenthaltsdauer und somit auch zu höheren Behandlungskosten. Allerdings gab es keine Unterschiede zwischen den Gendosis-Gruppen, was die Auswirkungen von Substanzwechseln auf den beschriftenen metabolischen Pfad der verabreichten Substanzen betraf. Dies lässt sich dadurch erklären, dass die behandelnden Psychiater verblindet gegenüber dem Genotyp ihrer Patienten waren und daher Medikamentenumstellungen unter Berücksichtigung der metabolischen Kapazität auch nicht erwartet werden konnten.

Die Analyse der verabreichten relativen mittleren Dosen/kg KG aller CYP2D6-abhängigen Medikamente ergab keine signifikanten Unterschiede zwischen den Gendosis-Gruppen.
Überraschenderweise fand sich jedoch eine Tendenz zu einer geringeren relativen mittleren Dosis/kg KG bei Patienten der GDG 3 verglichen mit der relativen mittleren Dosis/kg KG bei Patienten der GDG 0, welche sich wiederum nicht statistisch signifikant von der der GDG 1 oder 2 unterschied. Eigentlich würde man nach den allgemeinen Dosisempfehlungen bei UM-Metabolisierern eine höhere Dosierung erwarten, bei PM-Metabolisierern nur ca. 50% der Standarddosis (Bertilsson et al. 1993; Kirchheiner et al. 2001). Der unerwartete Befund einer sich in etwa entsprechenden relativen mittleren Dosis/kg KG bei Patienten aller Gendosisgruppen lässt sich im Falle der GDG 0 wiederum mit der Verblindung der behandelnden Psychiater gegenüber dem Genstatus der Patienten und mit einem fehlenden Therapeutischen Drug Monitoring (TDM) für eine Vielzahl der verabreichten Substanzen erklären. Die Symptome, die durch überhöhte Serumkonzentrationen der eingenommenen Präparate hervorgerufen werden, können in manchen Fällen den Symptomen der zu behandelnden Grunderkrankung entsprechen. Der Arzt kann diese Symptome ohne Kenntnis der Serumspiegel oder des Genstatus leicht als ein Nichtansprechen auf die Therapie missinterpretieren und wird dann wie oben beschrieben eher eine Änderung der medikamentösen Therapie anstreben, als die Dosis auf ein niedrigeres Niveau zu titrieren. Im Falle der GDG 3 kann die im Vergleich tendenziell eher niedrigere relative mittlere Dosis/kg KG erneut als Hinweis darauf gewertet werden, dass, wie schon oben erwähnt, durch die Bildung pharmakologisch aktiver Metaboliten der Therapieverlauf für eine Vielzahl der applizierten Substanzen nur wenig beeinträchtigt wird.

5.2.4. Unerwünschte Arzneimittelwirkungen

Auch in der hier vorliegenden Untersuchung konnte ein Zusammenhang zwischen dem Auftreten unerwünschter Arzneimittelwirkungen CYP2D6-abhängiger Medikamente und
dem PM-Genotyp beobachtet werden: in der GDG 0 zeigte sich eine signifikant höhere Anzahl von Patienten mit beeinträchtigenden Nebenwirkungen als in den anderen Gendosis-Gruppen. Darüber hinaus fanden sich auch in der GDG 1 im Vergleich mit der GDG 2 mehr Patienten mit unerwünschten Arzneimittelwirkungen, wobei dieser Unterschied aber statistisch nicht signifikant war.

Äußerst bemerkenswert war die Tatsache, dass sich die Patienten der GDG 1 und 2 insbesondere dann hinsichtlich des Auftretens unerwünschter Wirkungen voneinander unterschieden, wenn eine höhere relative mittlere Dosis/kg KG der verschriebenen CYP2D6-abhängigen Präparate verabreicht wurde. Patienten der GDG 1 mit einer überdurchschnittlichen Dosis/kg KG litten signifikant häufiger unter Nebenwirkungen als Angehörige der GDG 2 mit einer entsprechend hohen relativen mittleren Dosis/kg KG, während kein solcher Unterschied zwischen den beiden Gendosis-Gruppen bei einer unterdurchschnittlichen Dosis/kg KG gefunden wurde.

5.2.5. Ansprechen auf die Therapie

In der vorliegenden Studie ergab sich, dass in der GDG 1 signifikant weniger Patienten auf die Therapie angesprochen hatten als in der GDG 2. Insbesondere zeigte sich auch eine signifikant geringere Anzahl von Respondern in der GDG 1 verglichen mit GDG 2, wenn eine hohe relative mittlere Dosis/kg KG appliziert worden war, während bei einer niedrigeren mittleren Dosis/kg KG ein solcher Unterschied zwischen den Gendosisgruppen nicht etabliert werden konnte. Es fand sich also ein Zusammenhang zwischen Therapieversagen und einer semiquantitativen Gendosis von 0,5 oder 1, entsprechend einem IM-Genotyp nach herkömmlicher Nomenklatur, mit dementsprechend zu erwartenden höheren Serumspiegeln CYP2D6-abhängiger Medikamente.

Dieses Ergebnis steht im Einklang mit den oben erwähnten Untersuchungen zu Risperidon und Haloperidol (de Oliveira et al. 1995; Lane et al. 2000). Risperidon und Haloperidol waren auch die am zweit- und dritthäufigst verordneten CYP2D6-abhängigen Medikamente in unserer Studienpopulation.

Allerdings muss bei der Beurteilung dieser Ergebnisse unbedingt die Tatsache Beachtung finden, dass in der hier präsentierten Studie die klinische Wirksamkeit mittels eines Patienten-Selbstbeurteilungsbogens erfasst wurde. Es könnte durchaus sein, dass Patienten der GDG 1 eine eventuelle klinische Zustandsbesserung subjektiv schlechter beurteilten, da diese Patienten, wie oben dargestellt, unter vermehrten, belastenden Nebenwirkungen der Therapie zu leiden hatten, insbesondere dann, wenn sie mit überdurchschnittlichen Dosen behandelt worden waren. Darüber hinaus muss berücksichtigt werden, dass in die Studie Patienten unabhängig von der applizierten...
Medikation eingeschlossen wurden, so dass eine erhebliche Heterogenität hinsichtlich pharmakologischer Eigenschaften der Studienmedikation resultierte. Außerdem darf auch die Tatsache nicht ignoriert werden, dass neben pharmakokinetischen Faktoren noch verschiedene andere Variablen, die in der vorliegenden Studie nicht erfasst wurden, einen Einfluss auf Erfolg oder Misserfolg der medikamentösen Therapie ausüben. Dazu zählen unter anderem Non-Compliance der Patienten (Bebbington 1995), pharmakodynamische Varianten (Arranz et al. 1995) und psychosoziale Größen (Lieberman et al. 1996; vanOs et al. 1996). Insgesamt müssen also die Ergebnisse, die die hier vorgestellte Studie hinsichtlich des therapeutischen Ansprechens erbracht hat, kritisch betrachtet werden. In jedem Falle stellen sie aber einen weiteren wichtigen Hinweis darauf dar, dass das Ansprechen auf die medikamentöse Therapie auch vom Genotyp beeinflusst werden kann, wobei eine semiquantitative Gendosis von 0,5 oder 1 mit einem schlechteren Ansprechen assoziiert ist.

5.2.6. Diskussion der Fehlermöglichkeiten

Eine Beschränkung der vorliegenden Studie ist die Tatsache, dass die Patienten nur aufgrund der Ergebnisse der Genotypisierung den verschiedenen Gendosis-Gruppen zugeordnet wurden; eine zusätzliche Phänotypbestimmung mittels einer Testsubstanz fand nicht statt. Ein sicherer Rückschluss vom Genotyp auf den resultierenden Phänotyp ist nicht in allen Fällen möglich, und es ist, wenn auch für die große Mehrzahl der Patienten unwahrscheinlich, nicht auszuschließen, dass weitere, bisher noch unbekannte Allelvarianten des CYP2D6-Gens existieren, die einen Einfluss auf die Aktivität des exprimierten Enzyms ausüben. Daher spiegelt die Einordnung der Patienten in Gendosis-Gruppen nicht notwendigerweise exakt das phänotypische Profil der Studienpopulation wider.

Ein weiterer limitierender Faktor besteht in der äußerst heterogenen Zusammensetzung der Studienpopulation sowohl hinsichtlich demographischer und Krankheitsmerkmale als auch in Bezug auf die angewandte medikamentöse Therapie. Insbesondere die nicht
unerheblichen Unterschieden in pharmakokinetischen und pharmakodynamischen Eigenschaften der applizierten Substanzen schränken die Aussagekraft der Studienergebnisse ein.

Auch die relativ geringe Fallzahl stellt einen begrenzenden Faktor der Studie dar. Zwar konnten einige statistisch signifikante Ergebnisse gefunden werden, trotzdem wäre eine höhere Fallzahl wünschenswert, um weitere Unterschiede statistisch signifikant erkennen zu können (de Leon et al. 1998). Darüber hinaus standen auch leider nicht für jeden Patienten alle relevanten Daten zur Verfügung, so dass nicht alle Patienten in den verschiedenen Auswertungen berücksichtigt werden konnten.

5.2.7. Gesamteurteilung der Studienergebnisse

Die in dieser Arbeit vorgestellten Ergebnisse weisen darauf hin, dass der CYP2D6-Genstatus eine wichtige Determinante für den Verlauf einer stationären psychiatrischen Behandlung darstellt.

Bei Patienten mit einer Gendosis von 0, d.h. bei Patienten ohne CYP2D6-Aktivität (Poor Metabolizer), gestaltete sich die Therapie insofern kompliziert, als häufiger Umstellungen der medikamentösen Therapie vorgenommen wurden und diese Patienten eindeutig häufiger unter unerwünschten Arzneimittelwirkungen litten als Patienten mit funktionellen CYP2D6-Genen. Darüber hinaus fanden sich deutliche Hinweise, dass auch bei Patienten mit eingeschränkt-funktionellen CYP2D6-Allelen, also mit einer Gendosis von 0,5 oder 1, der Therapieverlauf durch die individuelle Gendosis beeinflusst wird: diese Patienten litten verglichen mit Patienten der Gendosis 1,5 oder 2 signifikant häufiger unter Nebenwirkungen der Therapie, wenn höhere Dosen CYP2D6-abhängiger Medikamente verabreicht wurden. Außerdem zeigte sich in dieser Patientengruppe auch ein schlechteres Ansprechen auf die Therapie im Vergleich zu den Patienten mit einer Gendosis von 1,5 oder 2, insbesondere bei der Applikation einer hohen relativen mittleren Dosis/kg KG.

Bisher wurde bei fast allen Untersuchungen davon ausgegangen, dass nur die Extremfälle einer Population, d.h. PM- und UM-Genotypen (8-10%), von einer prätherapeutischen Genotypisierung profitieren könnten.

Die hier vorgelegte Studie demonstriert jedoch, dass auch bei Individuen mit einem EM- oder IM-Genotyp der Therapieverlauf durch Kenntnis des Genstatus optimiert werden könnte: bei Patienten mit einer Gendosis von 0,5 oder 1 sollten Dosissteigerungen bei Nichtansprechen auf die Therapie vermieden werden, da hier die Gefahr des Auftretens unerwünschter Arzneimittelwirkungen zunimmt und auch die Rate an Non-Respondern bei hohen relativen mittleren Dosierungen/kg KG erhöht ist. Statt dessen wäre der
Wechsel zu einem Alternativpräparat anzuraten, um unnötige Belastungen und zusätzliche Kosten durch Nebenwirkungen zu vermeiden. Bei Patienten mit einer Gendosis von 1,5 oder 2 hingegen könnten Dosissteigerungen bei Non-Response durchaus erfolgversprechend sein.

Die Ergebnisse dieser Studie sind insofern von besonderer Bedeutung, als in einem realen klinischen Setting in einer hinsichtlich klinischer Merkmale und pharmakologischer Profile sehr heterogenen Population statistisch signifikante Aussagen zum Einfluss des CYP2D6-Genstatus auf den Therapieverlauf getroffen werden konnten.

Unter der Voraussetzung, dass nicht nur die extremen Genotyp-Varianten, sondern Patienten aller Genotypen von der prätherapeutischen Kenntnis ihres individuellen Genstatus profitieren könnten, wird es künftig sehr viel leichter sein, die Kosten-Nutzen-Effizienz eines prätherapeutischen pharmakogenetischen Screenings aufzuzeigen und die routinemäßige Genotypisierung in die allgemeine klinische Praxis einzuführen.
6. Zusammenfassung

In der Behandlung psychiatrischer Erkrankungen nehmen Psychopharmaka seit Jahrzehnten einen hohen Stellenwert ein. Trotz langjähriger Erfahrungen mit verschiedenen Substanzen und stetiger Fortschritte in der Psychopharmakologie ist aber eine zuverlässige Voraussage des individuellen Therapieerfolges noch nicht möglich und der Therapieverlauf wird häufig durch mangelnde Wirksamkeit sowie das Auftreten unerwünschte Arzneimittelwirkungen kompliziert.

Das Enzym CYP2D6 ist am Abbau einer Vielzahl verschiedener Antidepressiva und Neuroleptika beteiligt. Das kodierende Gen auf Chromosom 22 ist überaus polymorph mit über 70 bisher bekannten Allelen. Dieser Polymorphismus des CYP2D6-Gens führt zu einer großen Bandbreite an enzymatischer Aktivität, vom völligen Fehlen bis zur stark erhöhten Stoffwechselkapazität. Durch Phänotypisierung mit geeigneten Testsubstanzen können Patienten in Poor Metabolizer (PM), Intermediate Metabolizer (IM), Extensive Metabolizer (EM) und Ultraextensive Metabolizer (UM) eingeteilt werden. Um die Ergebnisse einer Genotypisierung mit diesen phänotypischen Eigenschaften zu korrelieren, wurde kürzlich das Konzept der semiquantitativen Gendosis eingeführt. Nullallele erhalten hierbei die Gendosis „0“ (z.B. CYP2D6*3, *4 und *6), Allele, die zu einem Genprodukt mit eingeschränkter enzymatischer Aktivität führen, den Wert „0,5“ (z.B. CYP2D6*9, *10, *17 und *41), das Wildtyp-Allel (CYP2D6*1) und das CYP2D6*2-Allel werden mit dem Wert „1“ belegt und multiplizierte Allele (CYP2D6*1XN und *2XN) mit dem Wert „>=2“.

In der durchgeführten doppelblinden Studie mit 150 Patienten wurde der Einfluss der CYP2D6-Gendosis auf den Verlauf der medikamentösen Therapie, das Auftreten von unerwünschten Arzneimittelwirkungen und das Ansprechen auf die Therapie während einer stationären psychiatrischen Behandlung untersucht.

Dabei konnte aufgezeigt werden, dass zum Teil signifikante Beziehungen zwischen der CYP2D6-Gendosis und dem Therapieverlauf bestanden.

Alle Patienten, die CYP2D6-abhängige Medikamente erhalten hatten, waren deutlich länger hospitalisiert als Patienten ohne CYP2D6-dependente Substanzen. Bei Patienten mit einer semiquantitativen Gendosis von >=2,5 wurden häufiger 2 oder mehr CYP2D6-abhängige Medikamente verordnet als in den anderen Gendosis-Gruppen. Demgegenüber waren bei Patienten mit einer semiquantitativen Gendosis von 0 signifikant häufiger 2 oder mehr Umstellungen der medikamentösen Therapie zu beobachten. Die applizierte relative mittlere Dosis/kg KG unterschied sich nicht innerhalb der verschiedenen Gendosis-Gruppen.
In der Gruppe der Poor Metabolizer war die Anzahl von Patienten, die unter unerwünschten Arzneimittelwirkungen litten, signifikant gegenüber den anderen Gendosis-Gruppen erhöht. Besonders interessant war die Beobachtung, dass sich auch die Patienten der Gendosisgruppen 1 und 2 (entsprechend Intermediate und Extensive Metabolizer nach herkömmlicher Nomenklatur) dann signifikant hinsichtlich des Auftretens von Nebenwirkungen voneinander unterschieden, wenn eine überdurchschnittlich hohe Dosis der CYP2D6-abhängigen Substanzen appliziert worden war.

Bezüglich der klinischen Wirksamkeit der angewendeten Therapie konnte festgestellt werden, dass bei Probanden mit einer semiquantitativen Gendosis von 0,5 oder 1 die Anzahl von Respondern insgesamt niedriger war als bei Patienten mit einer semiquantitativen Gendosis von 1,5 oder 2. Außerdem zeigte sich auch eine signifikant geringere Anzahl von Respondern in der Gruppe der Intermediate Metabolizer verglichen mit Extensive Metabolizern, wenn eine hohe relative mittlere Dosis/kg KG appliziert worden war, während keine Unterschiede zwischen diesen beiden Gruppen bei einer niedrigen relativen mittleren Dosis/kg KG etabliert werden konnten.

Möglicherweise könnte durch das Resultat dieser Untersuchung das Kosten-Nutzen-Verhältnis eines routinemäßigen pharmakogenetischen Screenings vor Therapiebeginn entscheidend verbessert werden und die CYP2D6-Genotypisierung könnte sich so in
Zukunft als wichtiges Instrument erweisen, um Qualität und Effizienz der Psychopharmakotherapie zu verbessern und die medikamentöse Therapie individuell zu optimieren.
7. Literaturverzeichnis

Aitchison J., Munro J., Wright P., Smith S., Markoff A., Sachse C., Sham P., Murry R., Collier D., Kervin R.
Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation.

Allorge D., Harlow J., Boulet O., Hayhurst G. P., Chowdry J., Roth E., Crewe K., Lo-Guidice J. M., Lhermitte M., Broly F., Tucker G. T., Ellis S. W.
In-vitro analysis of the contribution of CYP2D6.35 to ultra-rapid metabolism.

Arranz M., Collier D., Sodhi M., Ball D., Roberts S., Price J., Sham P., Kerwin R.
Association between clozapine response and allelic variation in 5-HT2A receptor gene.

Arthur H., Dahl M., Siwers B., Sjöqvist F.
Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia.

Balant-Gorgia A., Balant L., Genet C., Dayer P., Aeschlimann J., Garrone G.
Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentration of clomipramine and its major metabolites.

Baumann P., Broly F., Kosel M., Eap C. B.
Ultrarapid metabolism of clomipramine in a therapy-resistant depressive patient, as confirmed by CYP2D6 genotyping.

Baumann P., Jonzier-Perey M., Koeb L., Kupfer A., Tinguely D., Schopf J.
Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin.

Bebbington P.
The content and context of compliance.

Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine: letter.

Bertilsson L., Dahl M. L., Dalen P., Al-Shurbaji A.
Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs.
Bertilsson L., Mellstrom B., Sjokvist F., Martenson B., Asberg M.
Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications.

Cytochrome P450 enzymes contributing to demethylation of maprotiline in man.

Brockmoller J., Kirchheiner J., Schmider J., Walter S., Sachse C., Muller-Oerlinghausen B., Roots I.
The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment.

Broly F., Meyer U. A.
Debrisoquine oxidation polymorphism: phenotypic consequences of a 3-base-pair deletion in exon 5 of the CYP2D6 gene.

Brosen K.
Are pharmacokinetic drug interactions with the SSRIs an issue?

Brosen K., Gram L.
First-pass metabolism of imipramine and despiramine: impact of the sparteine oxidation phenotype.

Brosen K., Gram L., Klysner R., Bech P.
Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics.

Brosen K., Gram L. F.
Clinical significance of the sparteine/debrisoquine oxidation polymorphism.

Brosen K., Klysneer R., Gram L., Otton S., Bech P., Bertilsson L.
Steady-state concentration of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism.

Buselmaier W., Tariverdian G.
Humangenetik.
Berlin, Heidelberg (1999), Springer-Verlag.

Carrillo J., Dahl M., Svensson J., Alm C., Rodriguez I., Bertilsson L.
Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity.
The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry.

Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness.

Collegium Internationale Psychiatriae Scolarum.
Internationale Skalen für Psychiatrie.
Göttingen (1996), Münch.

Dahl M., Tybring G., Elwin C., Alm C., Andreasson K., Gyllenpalm M., Bertilsson L.
Stereoselective disposition of mianserin is related to debrisoquine hydroxylation polymorphism.

Dahl M. L., Johansson I., Bertilsson L., Ingelman-Sundberg M., Sjoqvist F.
Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis.

Dahl M. L., Johansson I., Palmertz M. P., Ingelman-Sundberg M., Sjoqvist F.
Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population.

Dahl M. L., Sjoqvist F.
Pharmacogenetic methods as a complement to therapeutic monitoring of antidepressants and neuroleptics.

Dahl-Puustinen M., Liden A., Alm C., Bertilsson L.
Disposition of perphenazine is related to the polymorphic debrisoquine hydroxylation in man.

Dalen P., Dahl M. L., Ruiz M. L., Nordin J., Bertilsson L.
10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes.

Nomenclature for human CYP2D6 alleles.

Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a
genotyping algorithm based on allele frequency data.

Gonzales F.
Human cytochrome P450: problems and prospects.

Gonzalez F. J., Idle J. R.
Pharmacogenetic phenotyping and genotyping. Present status and future potential.

Gough A., Smith C., Howell S., Wolf C., Bryant S., Spurr N.
Localization of the CYP2D gene locus to human chromosome 22q13.1 by
polymerase chain reaction, in situ hybridization, and linkage analysis.

Griese E. U., Zanger U. M., Brudermanns U., Gaedigk A., Mikus G., Morike K., Stuven T.,
Eichelbaum M.
Assessment of the predictive power of genotypes for the in-vivo catalytic function
of CYP2D6 in a German population.

Hamelin B., Tourje J., Vallee F., Belanger P., Paquet F., Lebel M.
The disposition of fluoxetine but not sertraline is altered in poor metabolizers of
debrisoquin.

Hamelin B. A., Dorson P. G., Pabis D., Still D., Bouchard R. H., Pourcher E., Rail J.,
Tourje J., Crismon M. L.
CYP2D6 mutations and therapeutic outcome in schizophrenic patients.

Haritos V. S., Ghabrial H., Ahokas J. T., Ching M. S.
Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and
Z-doxepin.

Heim M. H., Meyer U. A.
Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6.

Hiroi T., Imaoka S., Funae Y.
Dopamine formation from tyramine by CYP2D6.

Huang M., Peer A. v., Woestenborghs R., Coster R. d., Haeykants J., Jansen A., Zylicz Z.,
Visscher H., Jonkman J.
Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin
response in healthy subjects.
Ingelman-Sundberg M., Daly A., Nebert D.
Homepage of the Human Cytochrome P450 Allele Nomenclature Committee.

Ingelman-Sundberg M., Evans W. E.
Unravelling the functional genomics of the human CYP2D6 gene locus.

Ingelman-Sundberg M., Oscarson M., McLellan R. A.

Ji L., Pan S., Marti-Jaun J., Hanseler E., Rentsch K., Hersberger M.
Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese.

Ji L., Pan S., Marti-Jaun J., Hänseler E., Rentsch K., Hersberger M.

Johansson I., Lundqvist E., Bertilsson L., Dahl M. L., Sjoqvist F., Ingelman-Sundberg M.
Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine.

Kalow W., Tang B.
Hypothesis: comparison of inter- and intra-individual variations can substitute for twin studies in drug research.

Kapitany T., Lenzinger E., Schindler S., Barnas C., Fuchs K., Sieghart W., Aschauer H., Kaspar S.
Genetic polymorphisms for drug metabolism (Cyp2D6) and tardive dyskinesia in schizophrenia.

Kerwin R., Osborne S.
Antipsychotic drugs.

Kimura S., M U., Skoda R., Meyer U., Gonzales F.
The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene.

CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages.
Kohnke M. D., Griese E. U., Stosser D., Gaertner I., Barth G.
Cytochrome P450 2D6 deficiency and its clinical relevance in a patient treated with risperidone.

Quantitative pharmacogenetics of nortriptyline: a novel approach.

Lane H., Hu O., Jann M., Deng H., Lin H., Chang W.
Dextromethorphan phenotyping and haloperidol disposition in schizophrenic patients.

Lane H. Y., Chiu W. C., Chou J. C., Wu S. T., Su M. H., Chang W. H.
Risperidone in acutely exacerbated schizophrenia: dosing strategies and plasma levels.

Lieberman J., Alvir J., Koreen A., Geisler S., Chakos M., Sheitman B., Woerner M.
Psychobiological correlates of treatment response in schizophrenia.
Neuropsychopharmacol (1996) 14 (3 Suppl): 13S-21S.

Linder M., Prough R., Valdes R.
Pharmacogenetics: a laboratory tool for optimizing therapeutic effect.

Lovlie R., Daly A. K., Matre G. E., Molven A., Steen V. M.
Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism?

Lovlie R., Daly A. K., Molven A., Idle J. R., Steen V. M.
Ultrapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene.

Polymorphic hydroxylation of Debrisoquine in man.

Masimirembwa C., Johansson I., Hasler J., Ingelman-Sundberg M.
Genetic plymorphism of cytochrome P450 CYP2D6 in Zimbabwean population.

Masimirembwa C., Persson I., Bertilsson L., Hasler J., Ingelman-Sundberg M.
A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity.

McElroy S., Sachse C., Brockmoller J., Richmond J., Lira M., Friedman D., Roots I., Silber B. M., Milos P. M.
CYP2D6 genotyping as an alternative to phenotyping for determination of metabolic status in a clinical trial setting.
Mellstrom B., Bertilsson L., Lou Y. C., Sawe J., Sjoqvist F.
Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation.

Meyer U. A., Zanger U. M.
Molecular mechanisms of genetic polymorphisms of drug metabolism.

Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine.

Mihara K., Otani K., Tybring G., Dahl M. L., Bertilsson L., Kaneko S.
The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients.

Muller B., Zopf K., Bachofer J., Steimer W.
Optimized Strategy for Rapid Cytochrome P450 2D6 Genotyping by Real-Time Long PCR.

CYP2D6 genotyping with oligonucleotide microarrays and nortriptyline concentrations in geriatric depression.

Musa M. N., Miescke K. J.
Pharmacogenetics of desipramine metabolism.

Nebert D. W.
Polymorphisms in drug-metabolizing enzymes: what is their clinical relevance and why do they exist?

Nelson D., Kamataki T., Waxman D., Guengerich F., Estabrook R., Feyereisen R.
The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature.

Otton S., Ball S., Cheung S., Inaba T., Rudolph R., Sellers E.
Venlafaxine oxidation in vitro is catalysed by CYP2D6.

Owen J. R., Nemeroff C. B.
New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine.
Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia.

Poolsup N., Li Wan Po A., Knight T. L.
Pharmacogenetics and psychopharmacotherapy.

Prior T. I., Chue P. S., Tibbo P., Baker G. B.
Drug metabolism and atypical antipsychotics.

Raimundo S., Fischer J., Eichelbaum M., Griese E. U., Schwab M., Zanger U. M.
Elucidation of the genetic basis of the common 'intermediate metabolizer' phenotype for drug oxidation by CYP2D6.

Raimundo S., Toscano C., Klein K., Fischer J., Griese E. U., Eichelbaum M., Schwab M., Zanger U. M.
A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects.

Rau T., Wohleben G., Wuttke H., Thuerauf N., Lunkenheimer J., Lanczik M., Eschenhagen T.
CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants - a pilot study.

Rau T., Wohleben G., Wuttke H., Thuerauf N., Lunkenheimer J., Lanczik M., Eschenhagen T.
CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants-a pilot study.

Sachse C., Brockmoller J., Bauer S., Roots I.
Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences.

Sallee F. R., DeVane C. L., Ferrell R. E.
Fluoxetine-related death in a child with cytochrome P-450 2D6 genetic deficiency.

Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a case-control study.

Scordo M., Caputi A., D’Arrigo C., Fava G., Spina E.
Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population.
Scordo M. G., Spina E.
Cytochrome P450 polymorphisms and response to antipsychotic therapy.

Shimoda K., Someya T., Yokono A., Morita S., Hirokane G., Takahashi S., Okawa M.
Impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients.

The relationship between paroxetine and the sparteine oxidation polymorphism.

Spina E., Ancione M., DiRosa A., Meduri M., Caputi A.
Polymorphic debrisoquine oxidation and acute neuroleptic-induced adverse effects.

Spina E., Gitto C., Avenoso A., Campo G. M., Caputi A. P., Perucca E.
Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study.

Stamer U. M., Bayerer B., Wolf S., Hoeft A., Stuber F.
Rapid and reliable method for cytochrome P450 2D6 genotyping.

Steimer W., Bachofer J., Leucht S., Muller B.
Rapid detection of the ultraextensive metabolizer associated CYP2D6*35 polymorphism.
Clinical Chemistry (2002a) Orlando.

Steimer W., Bachofer J., Leucht S., Muller B.
Rapid detection of the ultraextensive metabolizer associated CYP2D6*35 polymorphism.

Steimer W., Mueller B., Leucht S., Kissling W.
Prevalence of cytochrome P450 2D6 (CYP2D6) and serotonin transporter (5-HTT) polymorphisms in depressed inpatients compared to a control group.

Steimer W., Muller T., Popp J., Heres S., Kissling W., Leucht S.
Rapid detection of the intermediate metabolizer associated CYP2D6 polymorphisms*9 and*17 with real time PCR.

Steimer W., Potter J. M.
Pharmacogenetic screening and therapeutic drugs.
Steimer W., Zopf K., Von Amelunxen S., Pfeiffer H., Bachofer J., Popp J., Messner B., Kissling W., Leucht S.
Allele-Specific Change of Concentration and Functional Gene Dose for the Prediction of Steady-State Serum Concentrations of Amitriptyline and Nortriptyline in CYP2C19 and CYP2D6 Extensive and Intermediate Metabolizers.

Steimer W., Zopf K., von Amelunxen S., Pfeiffer H., Bachofer J., Popp J., Messner B., Kissling W., Leucht S.
Amitriptyline or Not, That Is the Question: Pharmacogenetic Testing of CYP2D6 and CYP2C19 Identifies Patients with Low or High Risk for Side Effects in Amitriptyline Therapy.

Steiner E., Bertilsson L., Sawe J., Bertling I., Sjoqvist F.
Polymorphic debrisoquine hydroxylation in 757 Swedish subjects.

Stormer E., Brockmoller J., Roots I., Schmider J.
Cytochrome P-450 enzymes and FMO3 contribute to the disposition of the antipsychotic drug perazine in vitro.

Stormer E., von Moltke L. L., Shader R. I., Greenblatt D. J.
Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4.

Stuven T., Griese E. U., Kroemer H. K., Eichelbaum M., Zanger U. M.
Rapid detection of CYP2D6 null alleles by long distance- and multiplex-polymerase chain reaction.

Swanson J. R., Jones G. R., Krasselt W., Denmark L. N., Ratti F.
Death of two subjects due to imipramine and desipramine metabolite accumulation during chronic therapy: a review of the literature and possible mechanisms.

Polymorphic drug metabolism (CYP2D6) and utilisation of psychotropic drugs in hospitalised psychiatric patients: a retrospective study.

Taylor D.
Clozapine - Five years on.

Tyndale R., Kalow W., Inaba T.
Oxidation of reduced haloperidol to haloperidol: involvement of human P450IID6 (sparteine/debrisoquine monooxygenase).
Ulrich S., Neuhof S., Braun V., Meyer F. P.
Therapeutic window of serum haloperidol concentration in acute schizophrenia and schizoaffective disorder.

Ulrich S., Northoff G., Wurthmann C., Partscht G., Pester U., Herscu H., Meyer F. P.
Serum levels of amitriptyline and therapeutic effect in non-delusional moderately to severely depressed in-patients: a therapeutic window relationship.

Ulrich S., Wurthmann C., Brosz M., Meyer F. P.
The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia.

Drug extrapyramidal side effects. Cyp2D6 genotypes and phenotypes.

vanOs J., Fahy T., Jones P., Harvey I., Sham P., Lewis S., Bebington P., Toone B., Williams M., Murray R.
Psychopathological syndromes in the functional psychoses: associations with course and outcome.

Wedlund P. J., de Leon J.
Pharmacogenomic testing: the cost factor.

Wuttke H., Rau T., Heide R., Bergmann K., Bohm M., Weil J., Werner D., Eschenhagen T.
Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects.

Yokota H., Tamura S., Furuya H., Kimura S., Watanabe M., Kanazawa I., Kondo I., Gonzalez F. J.
Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism.

Yoshii K., Kobayashi K., Tsumuji M., Tani M., Shimada N., Chiba K.
Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.

Zanger U. M., Fischer J., Raimundo S., Stuven T., Evert B. O., Schwab M., Eichelbaum M.
Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6.
8. Anhang

8.1. Paranoid-Depressivitäts-Skala (PD-S)
(Collegium Internationale Psychiatriae Scolarum 1996)
8.2. Begleitsymptomliste

Pharmakogenetische Untersuchung bei psychiatrischen Patienten

Leidet die Patientin/ der Patient während der Therapie unter einer/mehrerer der folgenden Nebenwirkungen, und war dies evtl. der Grund, eine Medikamentenumstellung vorgenommen?

<table>
<thead>
<tr>
<th>a. Verhalten</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teurescher Verwirrtheitszustand</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Erregung/ Agitation</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Depressive Stimmung</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Gestigerte motor. Aktivität</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Verminderte motor. Aktivität</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Schlaflosigkeit</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Schlafstörung, Somnolenz, Dürstigkeit</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. Neurologisch</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigor</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Tremor</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Dystonische Symptome</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Akathisie</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Spättäsiesien</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. Vegetativ</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mundtrockenheit</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Beschleunigte Nasenatmung</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Verschwommenes Sehen</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Obstipation</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Vermehrter Speichelfluß</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Schwitzen</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Ubelkeit/ Erbrechen</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Diarrhoe</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. Cardiovascular</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotonie</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Ohnmacht/ Schwindelgefühl</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Tachykardie</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Hypotonie</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Abnormes EKG</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e. Andere</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatologische Symptome</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Gewichtsverlust</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Gewichtszunahme</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Anorexie/ Appetitverlust</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f. Sonstige</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

□ ggf. durch welches Medikament? □ was dies Absetzgrund?

Wie beeinträchtigend sind die Begleitsymptome bei diesem Pat. verglichen mit denen anderer Pat.?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>gar nicht</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>sehr wenig</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>mäßig</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>deutlich</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>nicht beurteilbar</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
8.3. Patiententabelle

<table>
<thead>
<tr>
<th>Pat.-Nr.</th>
<th>Aufenthaltsdauer (in Tagen)</th>
<th>Genotyp</th>
<th>GDG</th>
<th>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</th>
<th>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</th>
<th>Anzahl CYP2D6-abh. Medikamente</th>
<th>ADE</th>
<th>Anzahl Switches</th>
<th>Relative mittlere Dosis/kg KG</th>
<th>Ansprechen nach 4 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>*2/*2</td>
<td>2</td>
<td>ja nein</td>
<td>1 nein</td>
<td>0</td>
<td>0,62</td>
<td>nein</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>*1/*4</td>
<td>1</td>
<td>ja ja</td>
<td>1 nein</td>
<td>0</td>
<td>1,59</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>*41/*41</td>
<td>1</td>
<td>ja ja</td>
<td>1 nein</td>
<td>0</td>
<td>1,17</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>*1/*1</td>
<td>2</td>
<td>nein nein</td>
<td>0 nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>7</td>
<td>54</td>
<td>*1/*1</td>
<td>2</td>
<td>ja ja</td>
<td>1 nein</td>
<td>0</td>
<td>1,03</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>*1/*1</td>
<td>2</td>
<td>ja ja</td>
<td>1 nein</td>
<td>0</td>
<td>1,03</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>105</td>
<td>*1/*10</td>
<td>2</td>
<td>nein nein</td>
<td>0 ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>*1/*5</td>
<td>1</td>
<td>ja nein</td>
<td>2 nein</td>
<td>1</td>
<td>1,28</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>159</td>
<td>*1/*4</td>
<td>1</td>
<td>ja ja</td>
<td>2 ja</td>
<td>0</td>
<td>0,86</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>*4/*5</td>
<td>0</td>
<td>ja ja</td>
<td>1 ja</td>
<td>0</td>
<td>1,11</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>13</td>
<td>62</td>
<td>*1/*1</td>
<td>2</td>
<td>ja ja</td>
<td>2 ja</td>
<td>1</td>
<td>1,13</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>*1/*4</td>
<td>1</td>
<td>nein nein</td>
<td>0 ja</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>*1/*9</td>
<td>2</td>
<td>ja ja</td>
<td>2 nein</td>
<td>1</td>
<td>1,32</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>59</td>
<td>*1/*4</td>
<td>1</td>
<td>ja ja</td>
<td>1 ja</td>
<td>0</td>
<td>1,67</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>*1/*41</td>
<td>2</td>
<td>ja ja</td>
<td>2 nein</td>
<td>0</td>
<td>0,65</td>
<td>nein</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>18</td>
<td>66</td>
<td>*2/*2XN</td>
<td>3</td>
<td>nein nein</td>
<td>0 nein</td>
<td>1</td>
<td>*</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>38</td>
<td>*1/*4</td>
<td>1</td>
<td>*</td>
<td>nein nein</td>
<td>1</td>
<td>*</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>82</td>
<td>*41/*4</td>
<td>1</td>
<td>ja nein</td>
<td>1 nein</td>
<td>0</td>
<td>1,29</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>50</td>
<td>*1/*3</td>
<td>1</td>
<td>ja ja</td>
<td>1 ja</td>
<td>1</td>
<td>1,81</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>114</td>
<td>*4/*4</td>
<td>0</td>
<td>ja ja</td>
<td>1 ja</td>
<td>2</td>
<td>0,91</td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>39</td>
<td>*1/*41</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>nein</td>
<td>*</td>
<td>*</td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>24</td>
<td>61</td>
<td>*1/*1</td>
<td>2</td>
<td>nein nein</td>
<td>0 nein</td>
<td>0</td>
<td>*</td>
<td>ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat.-Nr.</td>
<td>Aufenthaltsdauer (in Tagen)</td>
<td>Genotyp</td>
<td>GDG</td>
<td>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</td>
<td>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</td>
<td>Anzahl CYP2D6-abh. Medikamente</td>
<td>ADE</td>
<td>Anzahl Switches</td>
<td>Relative mittlere Dosis/kg KG</td>
<td>Ansprechen nach 4 Wochen</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>25</td>
<td>111</td>
<td>*1/*3</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>26</td>
<td>35</td>
<td>*3/*5</td>
<td>0</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>ja</td>
<td>1</td>
<td>0,85</td>
<td>ja</td>
</tr>
<tr>
<td>27</td>
<td>17</td>
<td>*1/*1</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>1</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>*41/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>1,21</td>
<td>*</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>*1/*5</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,94</td>
<td>ja</td>
</tr>
<tr>
<td>30</td>
<td>48</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,92</td>
<td>nein</td>
</tr>
<tr>
<td>31</td>
<td>104</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>0,53</td>
<td>nein</td>
</tr>
<tr>
<td>32</td>
<td>27</td>
<td>*1/*41</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>33</td>
<td>103</td>
<td>*1/*1XN</td>
<td>3</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>ja</td>
<td>1</td>
<td>0,78</td>
<td>*</td>
</tr>
<tr>
<td>34</td>
<td>38</td>
<td>*1/*1</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>35</td>
<td>51</td>
<td>*2/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,98</td>
<td>nein</td>
</tr>
<tr>
<td>37</td>
<td>47</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>1</td>
<td>0,69</td>
<td>ja</td>
</tr>
<tr>
<td>38</td>
<td>31</td>
<td>*41/*41</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>39</td>
<td>28</td>
<td>*1/*4</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>40</td>
<td>49</td>
<td>*1/*9</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,30</td>
<td>ja</td>
</tr>
<tr>
<td>41</td>
<td>31</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,84</td>
<td>nein</td>
</tr>
<tr>
<td>42</td>
<td>45</td>
<td>*1/*5</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,84</td>
<td>*</td>
</tr>
<tr>
<td>43</td>
<td>49</td>
<td>*1/*41</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>44</td>
<td>65</td>
<td>*1/*6</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>0,92</td>
<td>nein</td>
</tr>
<tr>
<td>45</td>
<td>85</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>nein</td>
<td>2</td>
<td>nein</td>
<td>1</td>
<td>1,68</td>
<td>ja</td>
</tr>
<tr>
<td>46</td>
<td>37</td>
<td>*41/*41</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>47</td>
<td>96</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>1,02</td>
<td>nein</td>
</tr>
<tr>
<td>49</td>
<td>32</td>
<td>*3/*3</td>
<td>0</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>1</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>50</td>
<td>82</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>0,48</td>
<td>nein</td>
</tr>
<tr>
<td>51</td>
<td>28</td>
<td>*2/*9</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>1</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>Pat.-Nr.</td>
<td>Aufenthaltsdauer (in Tagen)</td>
<td>Genotyp</td>
<td>GDG</td>
<td>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</td>
<td>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</td>
<td>Anzahl CYP2D6-abh. Medikamente</td>
<td>ADE</td>
<td>Anzahl Switches</td>
<td>Relative mittlere Dosis/kg KG</td>
<td>Ansprechen nach 4 Wochen</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>52</td>
<td>29</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,61</td>
<td>nein</td>
</tr>
<tr>
<td>53</td>
<td>139</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>0,31</td>
<td>nein</td>
</tr>
<tr>
<td>54</td>
<td>20</td>
<td>*41/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,54</td>
<td>*</td>
</tr>
<tr>
<td>55</td>
<td>51</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,17</td>
<td>nein</td>
</tr>
<tr>
<td>56</td>
<td>52</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,61</td>
<td>*</td>
</tr>
<tr>
<td>57</td>
<td>69</td>
<td>*41/*4</td>
<td>1</td>
<td>ja</td>
<td>nein</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,81</td>
<td>*</td>
</tr>
<tr>
<td>58</td>
<td>36</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>ja</td>
</tr>
<tr>
<td>59</td>
<td>52</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,12</td>
<td>nein</td>
</tr>
<tr>
<td>61</td>
<td>42</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>nein</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>62</td>
<td>22</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>63</td>
<td>54</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,78</td>
<td>nein</td>
</tr>
<tr>
<td>64</td>
<td>83</td>
<td>*1/*10</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>3</td>
<td>1,01</td>
<td>ja</td>
</tr>
<tr>
<td>65</td>
<td>20</td>
<td>*1/*10</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,70</td>
<td>*</td>
</tr>
<tr>
<td>66</td>
<td>62</td>
<td>*1/*41</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>nein</td>
<td>*</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>67</td>
<td>36</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,33</td>
<td>ja</td>
</tr>
<tr>
<td>68</td>
<td>74</td>
<td>*2/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>1,37</td>
<td>nein</td>
</tr>
<tr>
<td>69</td>
<td>96</td>
<td>*1/*5</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>70</td>
<td>36</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>0,77</td>
<td>*</td>
</tr>
<tr>
<td>72</td>
<td>23</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,07</td>
<td>*</td>
</tr>
<tr>
<td>73</td>
<td>22</td>
<td>*1/*2</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>ja</td>
</tr>
<tr>
<td>74</td>
<td>10</td>
<td>*1/*4</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>75</td>
<td>42</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>ja</td>
<td>2</td>
<td>0,47</td>
<td>ja</td>
</tr>
<tr>
<td>76</td>
<td>92</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>1,08</td>
<td>nein</td>
</tr>
<tr>
<td>77</td>
<td>147</td>
<td>*41/*10</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>0,89</td>
<td>nein</td>
</tr>
<tr>
<td>79</td>
<td>75</td>
<td>*6/*9</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>ja</td>
</tr>
<tr>
<td>Pat.-Nr.</td>
<td>Aufenthaltsdauer (in Tagen)</td>
<td>Genotyp</td>
<td>GDG</td>
<td>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</td>
<td>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</td>
<td>Anzahl CYP2D6-abh. Medikamente</td>
<td>ADE</td>
<td>Anzahl Switches</td>
<td>Relative mittlere Dosis/kg KG</td>
<td>Ansprechen nach 4 Wochen</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
<td>-----</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>80</td>
<td>28</td>
<td>*1/*6</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,31</td>
<td>ja</td>
</tr>
<tr>
<td>81</td>
<td>36</td>
<td>*1/*10</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>83</td>
<td>27</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,22</td>
<td>nein</td>
</tr>
<tr>
<td>84</td>
<td>38</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>0,79</td>
<td>ja</td>
</tr>
<tr>
<td>85</td>
<td>27</td>
<td>*3/*10</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,84</td>
<td>nein</td>
</tr>
<tr>
<td>86</td>
<td>67</td>
<td>*41/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>0,87</td>
<td>nein</td>
</tr>
<tr>
<td>87</td>
<td>187</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,81</td>
<td>ja</td>
</tr>
<tr>
<td>88</td>
<td>42</td>
<td>*1/*2</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>89</td>
<td>31</td>
<td>*1/*1</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>1</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>91</td>
<td>129</td>
<td>*2/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>1</td>
<td>1,05</td>
<td>nein</td>
</tr>
<tr>
<td>92</td>
<td>87</td>
<td>*2/*2</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>93</td>
<td>28</td>
<td>*1/*41</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,77</td>
<td>nein</td>
</tr>
<tr>
<td>94</td>
<td>73</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>2</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>95</td>
<td>43</td>
<td>*4/*4</td>
<td>0</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>97</td>
<td>95</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,41</td>
<td>nein</td>
</tr>
<tr>
<td>98</td>
<td>36</td>
<td>*2/*41</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>99</td>
<td>92</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>2</td>
<td>1,67</td>
<td>nein</td>
</tr>
<tr>
<td>100</td>
<td>18</td>
<td>*2/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,14</td>
<td>*</td>
</tr>
<tr>
<td>101</td>
<td>27</td>
<td>*1/*2</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>102</td>
<td>199</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>1,64</td>
<td>nein</td>
</tr>
<tr>
<td>103</td>
<td>70</td>
<td>*1/*9</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,26</td>
<td>nein</td>
</tr>
<tr>
<td>104</td>
<td>24</td>
<td>*41/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,78</td>
<td>*</td>
</tr>
<tr>
<td>105</td>
<td>79</td>
<td>*1/*6</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>1</td>
<td>0,84</td>
<td>nein</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
<td>*2/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>1,43</td>
<td>*</td>
</tr>
<tr>
<td>107</td>
<td>54</td>
<td>*1/*1</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>Pat.-Nr.</td>
<td>Aufenthaltsdauer (in Tagen)</td>
<td>Genotyp</td>
<td>GDG</td>
<td>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</td>
<td>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</td>
<td>Anzahl CYP2D6-abh. Medikamente</td>
<td>ADE</td>
<td>Anzahl Switches</td>
<td>Relative mittlere Dosis/kg KG</td>
<td>Ansprechen nach 4 Wochen</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>108</td>
<td>51</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,56</td>
<td>nein</td>
</tr>
<tr>
<td>109</td>
<td>46</td>
<td>*4/*4</td>
<td>0</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,96</td>
<td>nein</td>
</tr>
<tr>
<td>110</td>
<td>87</td>
<td>*1XN/*2</td>
<td>3</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>0,87</td>
<td>nein</td>
</tr>
<tr>
<td>111</td>
<td>51</td>
<td>*41/*4</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>112</td>
<td>83</td>
<td>*4/*4</td>
<td>0</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>113</td>
<td>46</td>
<td>*9/*10</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>114</td>
<td>39</td>
<td>*3/*10</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,43</td>
<td>nein</td>
</tr>
<tr>
<td>115</td>
<td>17</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,26</td>
<td>nein</td>
</tr>
<tr>
<td>116</td>
<td>39</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>0,90</td>
<td>ja</td>
</tr>
<tr>
<td>117</td>
<td>27</td>
<td>*1/*1</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>118</td>
<td>53</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>0,72</td>
<td>ja</td>
</tr>
<tr>
<td>119</td>
<td>32</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,34</td>
<td>ja</td>
</tr>
<tr>
<td>120</td>
<td>28</td>
<td>*41/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,73</td>
<td>nein</td>
</tr>
<tr>
<td>121</td>
<td>62</td>
<td>*1/*41</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>122</td>
<td>36</td>
<td>*1/*1</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>123</td>
<td>100</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>1,63</td>
<td>nein</td>
</tr>
<tr>
<td>124</td>
<td>27</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,75</td>
<td>*</td>
</tr>
<tr>
<td>125</td>
<td>32</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>*</td>
<td>ja</td>
</tr>
<tr>
<td>126</td>
<td>67</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>nein</td>
<td>3</td>
<td>ja</td>
<td>2</td>
<td>0,79</td>
<td>nein</td>
</tr>
<tr>
<td>127</td>
<td>32</td>
<td>*41/*6</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,88</td>
<td>nein</td>
</tr>
<tr>
<td>128</td>
<td>44</td>
<td>*1/*2</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>0,91</td>
<td>ja</td>
</tr>
<tr>
<td>129</td>
<td>27</td>
<td>*1/*9</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>nein</td>
</tr>
<tr>
<td>130</td>
<td>76</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>ja</td>
<td>0</td>
<td>1,19</td>
<td>nein</td>
</tr>
<tr>
<td>131</td>
<td>109</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>3</td>
<td>ja</td>
<td>2</td>
<td>1,32</td>
<td>nein</td>
</tr>
<tr>
<td>132</td>
<td>78</td>
<td>*4/*4</td>
<td>0</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Pat.-Nr.</td>
<td>Aufenthaltsdauer (in Tagen)</td>
<td>Genotyp</td>
<td>GDG</td>
<td>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</td>
<td>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</td>
<td>Anzahl CYP2D6-abh. Medikamente</td>
<td>ADE</td>
<td>Anzahl Switches</td>
<td>Relative mittlere Dosis/kg KG</td>
<td>Ansprechen nach 4 Wochen</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>136</td>
<td>117</td>
<td>*3/*4</td>
<td>0</td>
<td>ja</td>
<td>nein</td>
<td>1</td>
<td>nein</td>
<td>2</td>
<td>1,07</td>
<td>nein</td>
</tr>
<tr>
<td>137</td>
<td>77</td>
<td>*2/*41</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>0</td>
<td>1,71</td>
<td>nein</td>
</tr>
<tr>
<td>138</td>
<td>25</td>
<td>*2/*3</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,60</td>
<td>nein</td>
</tr>
<tr>
<td>139</td>
<td>36</td>
<td>*2/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>1</td>
<td>1,14</td>
<td>nein</td>
</tr>
<tr>
<td>140</td>
<td>39</td>
<td>*1/*5</td>
<td>1</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>ja</td>
</tr>
<tr>
<td>142</td>
<td>86</td>
<td>*41/*41</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>ja</td>
<td>1</td>
<td>1,50</td>
<td>nein</td>
</tr>
<tr>
<td>143</td>
<td>65</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>1,42</td>
<td>*</td>
</tr>
<tr>
<td>145</td>
<td>51</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>1</td>
<td>0,98</td>
<td>nein</td>
</tr>
<tr>
<td>146</td>
<td>19</td>
<td>*1/*1</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>ja</td>
<td>1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>147</td>
<td>41</td>
<td>*1/*1</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>ja</td>
<td>1</td>
<td>1,82</td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>53</td>
<td>*1/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,83</td>
<td>nein</td>
</tr>
<tr>
<td>149</td>
<td>100</td>
<td>*2/*5</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>2</td>
<td>0,73</td>
<td>nein</td>
</tr>
<tr>
<td>150</td>
<td>20</td>
<td>*4/*4</td>
<td>0</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>nein</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>151</td>
<td>95</td>
<td>*1/*10</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>1</td>
<td>0,98</td>
<td>*</td>
</tr>
<tr>
<td>152</td>
<td>22</td>
<td>*2/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,98</td>
<td>*</td>
</tr>
<tr>
<td>153</td>
<td>14</td>
<td>*2/*3</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,91</td>
<td>nein</td>
</tr>
<tr>
<td>154</td>
<td>94</td>
<td>*1/*41</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>ja</td>
<td>1</td>
<td>0,53</td>
<td>nein</td>
</tr>
<tr>
<td>156</td>
<td>43</td>
<td>*2/*4</td>
<td>1</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,83</td>
<td>ja</td>
</tr>
<tr>
<td>157</td>
<td>45</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>1,53</td>
<td>nein</td>
</tr>
<tr>
<td>158</td>
<td>33</td>
<td>*1/*1</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,39</td>
<td>ja</td>
</tr>
<tr>
<td>159</td>
<td>35</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,18</td>
<td>*</td>
</tr>
<tr>
<td>160</td>
<td>80</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>ja</td>
<td>0</td>
<td>0,44</td>
<td>*</td>
</tr>
<tr>
<td>161</td>
<td>17</td>
<td>*1XN/9</td>
<td>3</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,85</td>
<td>*</td>
</tr>
<tr>
<td>162</td>
<td>80</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>3</td>
<td>nein</td>
<td>1</td>
<td>0,87</td>
<td>nein</td>
</tr>
<tr>
<td>163</td>
<td>41</td>
<td>*1/*2</td>
<td>2</td>
<td>nein</td>
<td>nein</td>
<td>0</td>
<td>ja</td>
<td>0</td>
<td>*</td>
<td>ja</td>
</tr>
<tr>
<td>Pat.-Nr.</td>
<td>Aufenthaltsdauer (in Tagen)</td>
<td>Genotyp</td>
<td>GDG</td>
<td>CYP2D6-abh. Medikamente (gesamter Aufenthalt)</td>
<td>CYP2D6-abh. Medikamente (innerhalb der ersten 4 Wochen)</td>
<td>Anzahl CYP2D6-abh. Medikamente</td>
<td>ADE</td>
<td>Anzahl Switches</td>
<td>Relative mittlere Dosis/kg KG</td>
<td>Ansprechen nach 4 Wochen</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>164</td>
<td>8</td>
<td>*1/*2</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>1,41</td>
<td>*</td>
</tr>
<tr>
<td>166</td>
<td>29</td>
<td>*1/*2XN</td>
<td>3</td>
<td>ja</td>
<td>ja</td>
<td>2</td>
<td>nein</td>
<td>1</td>
<td>0,85</td>
<td>*</td>
</tr>
<tr>
<td>167</td>
<td>15</td>
<td>*1/*41</td>
<td>2</td>
<td>ja</td>
<td>ja</td>
<td>1</td>
<td>nein</td>
<td>0</td>
<td>0,62</td>
<td>*</td>
</tr>
</tbody>
</table>

* keine Daten verfügbar
9. Danksagung

Herrn Prof. Dr. D. Neumeier danke ich herzlich für die Möglichkeit der Promotion am Institut für Klinische Chemie und Pathobiochemie des Klinikums rechts der Isar der Technischen Universität München.

Mein besonderer Dank gilt meinem Doktorvater Herrn OA PD Dr. W. Steimer für die Überlassung des Themas der Doktorarbeit und die intensive Betreuung bei der Planung und Durchführung dieser Arbeit.

Herrn Dr. B. Müller und Frau Dr. B. Messner danke ich für die Betreuung bei der Entwicklung und Etablierung der dargestellten PCR-Methoden, Frau C. Wallner und Frau A. Schreiegg für die praktische Hilfestellung im Labor.

Des weiteren gilt mein Dank Herrn OA Dr. S. Leucht und Herrn Dr. S. Heres für die Betreuung bei der Durchführung der Studie an der Klinik für Psychiatrie des Klinikums rechts der Isar der Technischen Universität München.

Ein ganz herzlicher Dank gebührt meiner Familie, die mich in der gesamten Zeit meines Studiums auf die bestmögliche Weise unterstützte, stets ein offenes Ohr für meine Probleme, Sorgen aber auch Freuden hatte und so mein Studium und die Durchführung dieser Arbeit erst möglich machte.
10. Lebenslauf

Persönliche Daten

Name Julia Bachofer
Adresse Marktplatz 38
89312 Günzburg
Geburtsdatum 20.09.1977
Familienstand ledig
Konfession evangelisch

Schulbildung

1984 – 1988 Grundschule in Laupheim
1988 – 1997 Gymnasium in Laupheim
Abschluss: Allgemeine Hochschulreife

Berufsausbildung

April – September 1998 Beginn der Ausbildung zur Krankenschwester im Kreiskrankenhaus Laupheim

Hochschulausbildung

Oktober 1998 Beginn des Studiums der Humanmedizin an der Technischen Universität München
August 2000 Ärztliche Vorprüfung
August 2001 Erster Abschnitt der Ärztlichen Prüfung
März 2004 Zweiter Abschnitt der Ärztlichen Prüfung
April 2004 - März 2005 PJ am Krankenhaus München-Bogenhausen (Chirurgie und Innere Medizin) und am Kantonsspital Luzern, CH (Gynäkologie und Geburtshilfe)
Mai 2005 Dritter Abschnitt der Ärztlichen Prüfung

Berufliche Tätigkeit

Seit August 2005 Assistenzärztin in der Abteilung für Innere Medizin des KKH Günzburg in der Weiterbildung zur Fachärztin für Innere Medizin

Dissertation

Seit 2001 Arbeit an der Dissertation am Institut für Klinische Chemie und Pathobiochemie des Klinikums rechts der Isar der Technischen Universität München (Leitung: Prof. Dr. D. Neumeier)

Fremdsprachen Englisch, Französisch

Persönliche Interessen Literatur, Klassische Musik, Bildende Kunst, Bergwandern, Tanzen
11. Veröffentlichungen

Während der Forschungsarbeiten zu dieser Dissertation sind Teile der Ergebnisse im Rahmen folgender Publikationen vorveröffentlicht worden. Dies wurde der Fakultät für Medizin am Klinikum rechts der Isar nach §6 Absatz 1 Satz 2 der Promotionsordnung angezeigt.

Optimized Strategy for Rapid Cytochrome P450 2D6 Genotyping by Real-Time Long PCR.

Rapid detection of the ultraextensive metabolizer associated CYP2D6*35 polymorphism.

CYP2D6 genotypes correlate with clinical outcome: A prospective two-center clinical study in depressed inpatients treated with amitriptyline.

Impact of the intermediate metabolizer CYP2D6 genotype on amitriptyline and nortriptyline plasma levels.

Prospective CYP2D6 genotyping in psychiatric inpatients. A preliminary report.

Allele-Specific Change of Concentration and Functional Gene Dose for the Prediction of Steady-State Serum Concentrations of Amitriptyline and Nortriptyline in CYP2C19 and CYP2D6 Extensive and Intermediate Metabolizers.

Intermediate metabolizers and increased risk of adverse events in psychiatric in-patients. An update including all relevant alleles with reduced function and applying gene-dose for analysis.

12. Auszeichnungen

Drei der oben genannten Arbeiten/Kongressbeiträge wurden mit internationalen Preisen ausgezeichnet:

[1] Best Abstract Award der Molecular Pathology Division der American Association of Clinical Chemistry (AACC) 2002, Orlando:

Steimer W, Bachofer J, Leucht S, Müller B.
Rapid detection of the ultraextensive metabolizer associated CYP2D6*35 polymorphism.

Prospective CYP2D6 genotyping in psychiatric inpatients. A preliminary report.

[3] "Best Poster in TDM". Award der International Association of Therapeutic Drug-Monitoring and Clinical Toxicology (IATDMCT) für einen Beitrag zum "9th International Congress" in Louisville, Kentucky, USA vom 23. bis 28. April 2005:

Steimer W, Popp J, Bachofer J, Müller T, Heres S, Kissling W, Leucht S.
The dopamine D4 receptor 48 base pair repeat polymorphism influences antipsychotic induced body weight gain. A preliminary report.