Lehrstuhl für Numerische Mathematik und Wissenschaftliches Rechnen Prof. Dr. Folkmar Bornemann

Adaptive Positionierung von Modellrändern in heterogenen Gebietszerlegungsverfahren.

Susanne Ertel

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation.

Vorsitzender:		UnivProf. Dr. M. Brokate
Prüfer der Dissertation:		
	1.	UnivProf. Dr. F. Bornemann
	2.	UnivProf. Dr. R. Kornhuber.

2. Univ.-Prof. Dr. R. Kornhuber Freie Universität Berlin

Die Dissertation wurde am 9.10.2003 bei der Technischen Universität München eingereicht und durch die Fakultät für Mathematik am 26.1.2004 angenommen.

Zusammenfassung.

Bei einer konvektionsdominierten Diffusionsgleichung ist der Einfluss der Diffusion auf die Lösung nur in einer schmalen Grenzschicht bemerkbar. Heterogene Gebietszerlegungsverfahren nützen diese Eigenschaft, um das Konvektions-Diffusions-Modell außerhalb der Grenzschicht auf ein einfaches Transportmodell zu reduzieren. Elliptisches und hyperbolisches Modell werden anschließend durch Bedingungen auf dem gemeinsamen Teil ihrer Gebietsränder, dem sog. Interface, gekoppelt. Da die Lage des Interfaces und somit die Größe der Teilgebiete bisher in der Regel aufgrund von Erfahrungswerten bestimmt wurden, werden verschiedene Ansätze zu einer automatischen Positionierung des Interfaces in einer bzw. in zwei Raumdimensionen untersucht. Anschließend wird die Effizienz der entwickelten heterogenen Lösungsverfahren in Vergleich zur Lösung des ursprünglichen Modells gestellt.

Inhaltsverzeichnis

Ι	An	alysis.	11		
1	Das	Das eindimensionale Konvektions-Diffusions-Modell.			
	1.1	Das homogene Modell.	12		
	1.2	Existenz und Eindeutigkeit einer schwachen Lösung des homogenen Modells.	12		
	1.3	Der ambivalente Charakter des konvektionsdominierten Modells	12		
	1.4	Das heterogene Modell.	13		
	1.5	Der Modellfehler.	14		
	1.6	Existenz und Eindeutigkeit einer schwachen Lösung des heterogenen Modells.	16		
2 Das zweidimensionale Konvektions-Diffusions-Modell.					
	2.1	Das homogene Modell	20		
	2.2	Existenz und Eindeutigkeit einer schwachen Lösung des homogenen Modells.	20		
	2.3	Der ambivalente Charakter des konvektions dominierten Modells. \ldots .	22		
	2.4	Das heterogene Modell.	22		
	2.5	Existenz und Eindeutigkeit einer schwachen Lösung des heterogenen Modells.	24		
3	Tab	ellarischer Vergleich der heterogenen Modelle.	28		
II	N	umerik in einer Raumdimension.	31		
4	Üb€	erblick über die drei verschiedenen Ansätze.	32		
5	Ар	osteriori Schätzung des Diskretisierungsfehlers.	37		
6	Ans	atz 1: A posteriori Fehlerschätzung und Newton-Verfahren.	41		
	6.1	Regularisierung der schwachen Lösungen.	41		
	6.2	A posteriori Schätzung des Modellfehlers.	42		
	6.3	Qualitative Diskussion der Fehlerschranken für Modell A	43		
	6.4	Auffinden der Interface-Stelle	48		
	6.5	Vorüberlegungen zur aufwandminimierenden Position des Interfaces. \ldots .	52		
	6.6	Numerische Ergebnisse.	55		
7	Ans	atz 2: Approximation auf Grobgitter, Bisektion.	56		

	7.1	Genau	e Beschreibung des neuen Algorithmus	56
		7.1.1	Die nullte Approximation	56
		7.1.2	Die Approximation auf verfeinerten Gittern	58
		7.1.3	Abschließende Verfeinerung der Diskretisierung auf $\Omega_e.$	59
	7.2	Die Pé	clet-Bedingung	60
	7.3	Numer	rische Ergebnisse.	63
8	Ans	atz 3:	Aufwandsoptimale Interface-Positionierung.	64
	8.1	Qualit fehler.	ativer Zusammenhang von hyperbolischem und elliptischem Modell-	64
	8.2	Der Al	lgorithmus	66
	8.3	Schwie	erigkeiten bei Modell B	69
	8.4	Numer	rische Ergebnisse.	70
9	Verg	gleich	der drei Ansätze mit homogener Rechnung.	71
10	Aus	blick a	uf innere Grenzschichten.	73
II	[N	umeri	ik in zwei Raumdimensionen.	79
11	Nur	neriscł	ne Lösung des gekoppelten heterogenen Problems.	80
	11.1	Grobe	Struktur des Programmablaufs.	80
	11.2	Die eir	nzelnen Fehleranteile der numerischen Lösung.	81
	11.3	Numer	rische Lösung der reduzierten Gleichung.	84
	11.4	Numer	rische Lösung der elliptischen Gleichung.	85
		11.4.1	Bereitstellung des Normalenvektors in PLTMG	85
		11.4.2	Änderung der Abbruchbedingung in PLTMG	86
		11.4.3	Änderung der Verfeinerungsstrategie in PLTMG	86
		11.4.4	Stabilisierung der Finite-Element-Methode bei Konvektionsdominanz.	87
12	Auf	finden	des Interfaces.	89
	12.1	Merkn	nale Finiter Elemente im Bereich der Grenzschicht.	89
		12.1.1	Auswahl anhand des Gradienten einer homogenen Grobgitterlösung.	89
		12.1.2	Auswahl anhand der Differenz von homogener und hyperbolischer Lösung auf dem Grobgitter.	90
		12.1.3	Auswahl anhand der zweiten Ableitung einer homogenen Grobgit- terlösung.	92

	12.2	Positio	mierung des Interfaces.	93
	12.3	Güte o	ler Modellfehlerapproximation	96
	12.4	Details	der Implementierung.	100
		12.4.1	CCRIES.m (Collect Components, Remove Inner Layers, Expand Singles)	ł 100
		12.4.2	COI.m (Check Orientation of Interface)	102
		12.4.3	SI.m (Smooth Interface)	103
		12.4.4	Änderungen für $\Gamma_f^{out} \neq \emptyset$.	104
13	Auf	wands	vergleich zur adaptiven Rechnung.	107
	13.1	Testbe	ispiel 1: Modell und Versuchsbeschreibung	107
	13.2	Numer	ische Ergebnisse von Testbeispiel 1	. 111
	13.3	Testbe	ispiel 2: Modell und Versuchsbeschreibung	. 113
	13.4	Numer	ische Ergebnisse von Testbeispiel 2	. 118
	13.5	Ausbli	ck auf zeitabhängige Geichungen.	119
IV	A	nhang	5.	123
14	Sym	nbolver	zeichnis.	124
15	Tab	ellen d	ler numerischen Ergebnisse in einer Raumdimension.	128
	15.1	Tabell	en zur homogenen Rechnung	128
	15 0			
	15.2	Tabell	en zu Ansatz 1	130
	15.2 15.3	Tabelle Tabelle	en zu Ansatz 1	130 134
	15.2 15.3 15.4	Tabelle Tabelle Tabelle	en zu Ansatz 1	130 134 144
	15.2 15.3 15.4 15.5	Tabelle Tabelle Tabelle Tabelle	en zu Ansatz 1	130 134 144 155
16	 15.2 15.3 15.4 15.5 Tab 	Tabell Tabell Tabell Tabell ellen d	en zu Ansatz 1	130 134 144 155 157
16	 15.2 15.3 15.4 15.5 Tab 16.1 	Tabell Tabell Tabell Tabell ellen d Tabell	en zu Ansatz 1	130 134 144 155 157 157

Einleitung.

Ein mathematisches Modell, das zur Beschreibung naturwissenschaftlicher Phänomene dienen soll, versucht, die physikalischen oder chemischen Vorgänge so getreu wie möglich wiederzugeben. Wirkung und Zusammenspiel aller bekannten Einflussgrößen werden in Form von Gleichungen und Ungleichungen erfasst. Dabei entstehen komplexe mathematische Systeme, deren numerische Lösung mit hohem Aufwand verbunden ist. Oftmals beinhaltet das mathematische Modell jedoch Terme, deren Einfluss auf die Lösung nur in einem kleinen Teil des Rechengebietes, der sog. Grenzschicht, zu bemerken sind. In der Strömungsmechanik treten innere oder am Rand gelegene Grenzschichten im Fall eines konvektionsdominierten viskosen Flusses auf. In aerodynamischen Simulationen führt die Vernachlässigung des viskosen Effekts außerhalb von scharf begrenzten Grenzschichten zur Kopplung von Euler- und Navier-Stokes-Gleichung.

Die Beibehaltung eines Terms von lokalem Einfluss im gesamten Rechengebiet ist unsinnig, sobald der durch sein Streichen entstehende Fehler unter dem Diskretisierungsfehler liegt. Hier ist es von Vorteil, das Rechengebiet gemäß dem heterogenen Charakter des Modells zu unterteilen. Während im Bereich der Grenzschicht weiterhin das vollständige Modell gelöst wird, werden die Gleichungen im übrigen Rechengebiet um diesen Term reduziert. Zur Lösung des reduzierten Modells können nun kostengünstigere und seinem Charakter entsprechende Verfahren angewandt werden.

Die Kopplung der disjunkten Teilgebiete erfolgt durch Bedingungen entlang ihres gemeinsamen Randes, dem sog. Interface. Die Interface-Bedingungen stammen aus einem Grenzwertprozess, bei dem das heterogene Modell aus einer Folge von globalen Variationsproblemen gewonnen wird. In der Praxis der heterogenen Rechnung bestimmt bisher der Anwender aufgrund seiner Erfahrung die Lage des Interfaces und damit Größe und Form der Teilgebiete. Die vorliegende Arbeit stellt Techniken vor, mit deren Hilfe das Interface im Zuge der Lösung automatisch positioniert wird.

Die Arbeit ist wie folgt gegliedert: Gegenstand der numerischen Untersuchungen sind am Rand gelegene Grenzschichten der stationären konvektionsdominierten Konvektions-Diffusions-Gleichung. Die entsprechenden homogenen und heterogenen Modelle in einer bzw. in zwei Raumdimensionen werden in Teil I vorgestellt. Abschnitt 1.6 skizziert den Grenzprozess zum Auffinden der Interface-Bedingungen (nach einer Arbeit von F. Gastaldi und A. Quarteroni, [14]) in einer Raumdimension. In zwei Raumdimensionen wird der entsprechende Beweis aus [15] auf inhomogene Randbedingungen erweitert (Abschn. 2.5).

Teil II enthält die numerischen Untersuchungen in einer Raumdimension. Zunächst gibt Abschnitt 4 einen Überblick über drei unterschiedliche Ansätze zur automatischen Positionierung der Interface-Stelle. Ihnen gemein ist die Betrachtung des Modellfehlers, also der Differenz von homogener zu heterogener Lösung in der Energienorm, als Indikator einer geeigneten Interface-Stelle. Neben dem Modellfehler entsteht bei der numerischen Lösung ein Diskretisierungsfehler, für welchen in Abschn. 5 ein a posteriori Schätzer entwickelt wird.

In Ansatz 1 wird der Verlauf des Modellfehlers in Abhängigkeit der Interface-Stelle durch eine a posteriori Schätzung nach oben beschränkt (Abschn. 6.2). Die Modellfehlerschätzung an einer Interface-Stelle c benötigt die zu c gehörende heterogene Lösung, nicht jedoch eine Lösung des homogenen Modells und somit keine Diskretisierung des gesamten Gebietes. Mit Hilfe des Newton-Relaxations-Verfahrens wird der Schnittpunkt des Modellfehlerverlaufs mit einer horizontalen Geraden ermittelt und als Interface-Stelle markiert. Die Gerade entspricht einem vorgegebenen Anteil κ_{MF} des Modellfehlers am Gesamtfehler und beeinflusst die Effizienz des Verfahrens. Wird dieser Anteil klein gewählt, so fällt auch das Teilgebiet der reduzierten Gleichung und damit die Ersparnis gegenüber der homogenen Rechnung klein aus. Wird er zu groß gewählt, so muss im Bereich der Grenzschicht sehr fein diskretisiert werden, um den Diskretisierungsfehler unter die Resttoleranz zu zwingen. Bei konstanten Daten zeigt eine a priori Untersuchung in Abschn. 6.5, dass der optimale Anteil unabhängig vom Diffusionskoeffizienten ist, was sich auch in den anschließenden Testläufen bestätigt (Abschn. 6.6). Da der Graph der Modellfehlerschätzung aufgetragen über den Wert der Interface-Stelle nicht monoton ist und somit mehrere Fixpunkte der Newton-Iteration existieren können, ist ein weiterer entscheidender Faktor für die Rentabilität von Ansatz 1 eine geeignete Wahl des Startwertes in der Newton-Iteration.

In Ansatz 2 (Abschn. 7) wird der Verlauf des Modellfehlers nicht geschätzt, sondern an ausgewählten Interface-Stellen approximiert. Dazu löst man das homogene und das heterogene Modell (zu ausgewählten Interface-Positionen) auf einem groben Gitter. Bei einer Diskretisierung mit zentralen Differenzen gibt die Péclet-Bedingung eine untere Grenze für die Anzahl an Grobgitterpunkten vor (Abschn. 7.2). Da ein Upwind-Verfahren die Konvergenz der Approximation gegen den tatsächlichen Modellfehler jedoch stärker verzögert, wählen wir zentrale Differenzen im anschließenden Vergleich des Ansatzes mit der Lösung des homogenen Modells auf uniform verfeinerten Gittern (Abschn. 7.3). Der Schnittpunkt der Modellfehlerapproximation mit dem für den Modellfehler vorgesehenen Anteil an der Toleranz wird diesmal mit Hilfe des Bisektionsverfahrens ermittelt. Die Frage nach einer optimalen Wahl von κ_{MF} , also des Verhältnisses von Modellfehler zu Gesamttoleranz, ist weiterhin ungeklärt.

Ansatz 3 enthält eine erste Antwort. Die Beobachtung eines nahezu konstanten Verhältnisses der Modellfehleranteile auf elliptischem und hyperbolischem Teilgebiet (Abschn. 8.1) erlaubt die Bestimmung eines optimalen Anteils von Modellfehler an Gesamttoleranz und somit einer aufwandsminimierenden Interface-Stelle in Abschnitt 8.2. Für große Quellterme trifft die Annahme eines konstanten Verhältnisses allerdings nicht mehr zu (Abschn. 8.3), was sich auch auf die numerischen Testläufe in Abschnitt 8.4 auswirkt.

Im Aufwandsvergleich (Abschn. 9) der Verfahren auf uniform verfeinerten Gittern schneiden alle drei Ansätze besser ab als die homogene Rechnung. Testsieger ist Ansatz 1, wobei im Test die Kenntnis eines geeigneten Startpunktes für die Newton-Iteration vorausgesetzt wurde. Ist diese Kenntnis nicht gewährleistet, so konvergiert die Newton-Iteration nicht oder aber gegen eine Interface-Stelle, die mit einem sehr viel höheren Aufwand verbunden ist. In zwei Raumdimensionen wird deswegen der Ansatz einer Approximation des Modellfehlers weiterverfolgt. Die Optimierung in Ansatz 3 zeigt keinen großen Vorteil gegenüber der Approximation bei freier Wahl von κ_{MF} aus Ansatz 2.

Eine Erweiterung der heterogenen Lösungsidee auf innere Grenzschichten erweist sich in vielen Fällen als unproblematisch (Abschn. 10).

In Teil III, der numerischen Untersuchung in zwei Raumdimensionen, besteht das Interface

aus einem Polygonzug von Dreieckskanten, entlang derer sich die Richtung der Konvektion und somit des Informationsflusses ändern kann. Deswegen muss die heterogene Lösung iterativ durch Abgleich der Lösungen auf den gekoppelten Teilgebieten gewonnen werden (Abschn. 11.1). Bei Abbruch der Iteration entsteht ein zusätzlicher Fehler (Abschn. 11.2). Das reduzierte Modell wird mit einem Charakteristiken-Verfahren gelöst (Abschn. 11.3). Zur Lösung der elliptischen Gleichung wird eine veränderte Version des Softwarepaketes PLTMG von R. E. Bank verwendet (Abschn. 11.4).

Zum Aufspüren der Grenzschichten wurden verschiedene Indikatoren an Testbeispielen untersucht (Abschn. 12.1). Dabei wurde in Abschnitt 12.1.3 auch ein Bezug zur χ -Formulierung hergestellt, einer Alternative zur direkten Kopplung von Gleichungstypen unterschiedlichen Charakters. Als zuverlässiger Indikator erwies sich der hyperbolische Modellfehleranteil pro Dreieck, der unter Berücksichtigung der adaptiven Verfeinerung durch die Größe des Dreiecks geteilt wird. Für eine zuverlässige Approximation des (hyperbolischen) Modellfehlers sollte der maximale Durchmesser der Dreiecke einer adaptiv verfeinerten Triangulierung beschränkt werden (Abschn. 11.4.4).

Da die Frage nach einem geeigneten Anteil des Modellfehlers an der Gesamttoleranz in der eindimensionalen Untersuchung nicht abschließend geklärt werden konnte, wird als Alternative zur toleranzbezogenen Positionierung des Interfaces ein plötzlicher Anstieg im hyperbolischen Modellfehler pro Dreieck zur Festsetzung von hyperbolischem und elliptischem Teilgebiet herangezogen (Abschn. 12.2). Alle Dreiecke, die einen erhöhten Beitrag zum hyperbolischen Modellfehler liefern würden, werden als zum elliptischen Rechengebiet gehörig markiert.

Die markierten Dreiecke können in mehrere Zusammenhangskomponenten zerfallen, welche jeweils einen gesonderten Aufruf von PLTMG erfordern. Ihre Anzahl stellt der Algorithmus in Abschnitt 12.4.1 fest. Da die Markierung von Zusammenhangskomponenten ohne Verbindung zum Rand auf Ungenauigkeiten in der groben Lösung beruhen, werden diese entfernt. Sofern eine Iteration zwischen den Teilgebieten vermieden werden soll, werden die einzelnen Randstücke des resultierenden Interfaces auf ihre Orientierung zum Wind überprüft und das elliptische Rechengebiet u. U. erweitert (Abschn. 12.4.2). Eine abschließende Routine in Abschnitt 12.4.3 glättet das Interface. Die entwickelten Algorithmen sind unabhängig von dem Vorgehen in der vorangegangenen Markierung und lassen sich mit kleinen angegebenen Veränderungen auch auf interne Grenzschichten anwenden. Die Verwendung der letzten beiden Routinen ist unabhängig voneinander.

In zwei Raumdimensionen werden Aufwand und Rechenzeit für das heterogene Verfahren in Vergleich zu einer adaptiven homogenen Lösung gestellt (Testbeispiel 1 aus Abschnitt 13.2 und Testbeispiel 2 aus Abschnitt 13.4). Das heterogene Lösungsverfahren schneidet besser ab als ein adaptives Lösen des homogenen Modells, wenn die Gitterverfeinerung der homogenen Lösung nicht nur lokal im Bereich der Grenzschicht stattfindet. Eine kostenintensive Positionierung des Interfaces, wie beispielsweise im Zuge eines Bisektionsverfahrens in einer Raumdimension, lässt die Konkurrenz mit einem adaptiven Löser nicht mehr zu. Wendet man den Blick auf zeitabhängige Konvektions-Diffusions-Gleichungen mit weiterhin stationären Grenzschichten, so kann die Korrektur des Interfaceverlaufs hier auf mehrere Zeitschritte verteilt werden (Abschn. 13.5). Bei weiterhin stationärer Interface-Lage, wie sie im Falle von am Rand gelegenen Grenzschichten anzunehmen ist, wird hier nach anfänglicher Interface-Positionierung der Vorteil einer Gebietszerlegung in jedem Zeitschritt genutzt.

Teil IV enthält ein Verzeichnis der wichtigsten verwendeten Symbole und die Ergebnisse der numerischen Rechnung in tabellarischer Form.

Danksagung.

Ich möchte mich bei meinen Gutachtern, Herrn Prof. Folkmar Bornemann und Herrn Prof. Ralf Kornhuber für die Betreuung dieser Arbeit bedanken. Insbesondere gilt dieser Dank dem Aufgabensteller Herrn Prof. Folkmar Bornemann, der jedesmal Zeit gefunden hat, wenn ich ihn um eine Unterredung bat, und durch seine Hinweise wesentlich zum Entstehen dieser Arbeit beitrug.

Ich bedanke mich bei Herrn Prof. Randolph E. Bank für die stets prompte und geduldige Beantwortung meiner Fragen zur Implementierung von PLTMG. Herzlichen Dank an Caroline Lasser und Robert Schreittmiller für Zeit und Mühe, die sie der Diskussion meiner mathematischen Fragen gewidmet haben. Dank sagen möchte ich auch den (ehemaligen) Mitgliedern meines und anderer Lehrstühle der TU München, Dr. Jörn Behrens, Dr. Laurent Demaret, Detlef Fliegl, Thomas Heinze, PD Dr. Armin Iske, Martin Käser, Christian Ludwig, PD Dr. Wilhelm Merz und Dr. Johannes Zimmer, für ihre Hilfsbereitschaft bei kleineren und größeren Problemen. Vielen Dank an Peter Wörner, der mir einen Rechner zur Verfügung gestellt hat.

Schließlich danke ich den Menschen, die mich in dieser Zeit begleitet und unterstützt haben: Jutta u. Dieter Ertel, Christoph Eyrich, Thomas Indinger, Stefan Lindhuber, Wolfgang Müller, Matthias Nitsche, Stefan Thomé, Katja Wassel und Irmgard u. Heinrich Wintergerst. Teil I Analysis.

1 Das eindimensionale Konvektions-Diffusions-Modell.

Wir untersuchen das Zusammenspiel von Interface-Stelle und Modellfehler am Beispiel der konvektionsdominierten Diffusionsgleichung. Hierbei ist die Konvektion sehr viel größer als die Diffusion, deren Einfluss nur im Bereich schmaler Grenzschichten eine bestimmende Rolle spielt. Da wir uns zunächst auf am Rand gelegene Grenzschichten konzentrieren, wählen wir Dirichlet-Ränder und halten das Vorzeichen der Konvektion konstant.

1.1 Das homogene Modell.

Die Konvektions-Diffusions-Gleichung hat die Gestalt

$$-\varepsilon v'' + bv' + a_q v = f \text{ in } \Omega = (0,1), \qquad (1.1a)$$

$$v(0) = 0,$$
 (1.1b)

$$v(1) = k. \tag{1.1c}$$

Hierin sei die Diffusionskonstante $\varepsilon > 0$ und $k \in \mathbb{R}$ der Wert der Lösung v (beispielsweise einer Konzentration) am Ausflussrand. Die Konvektion $b \in H^1(\Omega)$, die Quelle $a_q \in L^2(\Omega)$ und die rechte Seite $f \in L^2(\Omega)$ seien skalare reellwertige Funktionen mit

$$-\frac{1}{2}b' + a_q \ge 0 \text{ in } \Omega.$$

$$(1.2)$$

Wir setzen ein positives Vorzeichen der Konvektion voraus, b(t) > 0 für alle $t \in \Omega$, der Informationsfluss verlaufe also von links nach rechts.

Für die numerische Untersuchung in einer Raumdimension sei $b(t) \equiv 1$ und wir unterscheiden Modell **A** ohne Quellterm ($a_q \equiv 0$) von Modell **B** ($a_q \neq 0$).

1.2 Existenz und Eindeutigkeit einer schwachen Lösung des homogenen Modells.

Ohne Einschränkung sei k = 0. Die Existenz und Eindeutigkeit einer schwachen Lösung des homogenen Modells folgt aus dem Satz von Lax-Milgram, denn die zugehörige Bilinearform

$$F: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R},$$

$$(v,w) \mapsto F(v,w) := \varepsilon \int_{\Omega} v'w' + \int_{\Omega} bv'w + \int_{\Omega} a_q vw$$

$$(1.3)$$

ist stetig. Unter der Voraussetzung (1.2) ist F auch koerziv auf $H_0^1(\Omega)$.

1.3 Der ambivalente Charakter des konvektionsdominierten Modells.

Die nachfolgenden Untersuchungen gelten für $0 < \varepsilon \ll 1$, d.h. in den Modellgleichungen ist die Konvektion die beherrschende Größe. Bei den zugehörigen Lösungen tritt in beiden Fällen, Modell **A** und **B**, eine sog. *Grenzschicht (Layer)* auf, d.h. ein in Abbildung

1 am rechten Rand gelegenes Teilgebiet, in welchem die Lösung vom Diffusionsterm beeinflusst wird, während sie außerhalb dieses Bereichs maßgeblich vom Konvektionsterm bestimmt wird. Durch Taylor-Entwicklung der Lösungen sieht man, dass die Breite dieser Grenzschicht von der Ordnung $\mathcal{O}(|\varepsilon \ln(\varepsilon)|)$ ist.

Abbildung 1: Die Lösungen von homogenem und reduziertem Modell liegen in einem großen Teil des Gebietes dicht beieinander.

Dieses Verhalten motiviert den Versuch, die ursprüngliche Differentialgleichung zweiter Ordnung außerhalb der Grenzschicht durch eine Differentialgleichung erster Ordnung, die sog. reduzierte Gleichung ohne Diffusionsterm zu ersetzen. Für das so geschaffene künstliche Interface c mit $0 \le c \le 1$ muss dann eine neue Randbedingung für die Differentialgleichung zweiter Ordnung formuliert werden. In [14] haben F. Gastaldi und A. Quarteroni gezeigt, dass bei der Wahl der Interface-Bedingung zwei Möglichkeiten bestehen: entweder wird die Stetigkeit des Flusses am Interface erhalten, oder aber die Stetigkeit der Lösung selbst.

1.4 Das heterogene Modell.

Entsprechend den Beobachtungen in 1.3 wird das Rechengebiet $\Omega = (0, 1)$ unterteilt in das konvektionsdominierte Teilgebiet $\Omega_h := (0, c)$ und das diffusionsdominierte Teilgebiet $\Omega_e := (c, 1)$. Nach Streichen des Diffusionsterms in Ω_h lautet das heterogene Modell

$$bu'_h + a_q u_h = f \quad \text{in } \Omega_h, \tag{1.4a}$$

$$u_e'' + bu_e' + a_q u_e = f \quad \text{in } \Omega_e, \tag{1.4b}$$

$$u_h(0) = 0,$$
 (1.4c)

$$u_e(1) = k. \tag{1.4d}$$

Am Interface t = c fehlt nun eine Randbedingung für die elliptische Differentialgleichung.

Als neue Interface-Bedingung kann die Stetigkeit des Flusses

$$-\varepsilon u'_e + bu_e = bu_h \text{ in } t = c, \tag{1.4e}$$

oder aber die Stetigkeit der Lösung selbst gewählt werden,

$$u_e(c) = u_h(c). \tag{1.4f}$$

Die Wahl zwischen den beiden Interface-Bedingungen folgt der Präferenzsetzung des Anwenders.

1.5 Der Modellfehler.

Beim Lösen des heterogenen Modells anstelle des ursprünglichen homogenen entsteht ein Modellfehler MF. Der Begriff Modellfehler meint üblicherweise die Abweichung des mathematischen Modells von der Realität, in dieser Arbeit wird er jedoch für die Energienorm der Differenz der Lösungen von heterogenem und homogenem Modell verwendet. Für $b \equiv 1$ betrachten wir zunächst die Differenz selbst,

$$e_{MF} := \begin{cases} v - u_h & \text{in } [0, c) \\ v - u_e & \text{in } [c, 1] \end{cases}$$

Bei Modell **A** und konstanter rechter Seite f nimmt die Fehlerfunktion e_{MF} im Fall der Interface-Bedingung (1.4f) ein eindeutiges Maximum an der Interface-Stelle t = c an,

$$\max_{t \in \Omega} |e_{MF}| = |e_{MF}(c)| = |f - k| \frac{e^{c/\varepsilon} - 1}{e^{1/\varepsilon} - 1}.$$

Insbesondere erkennt man, dass die Differenz für $f \equiv k$ verschwindet, anstelle der homogenen Differentialgleichung kann also im gesamten Gebiet das reduzierte Problem gelöst werden.

Abbildung 2: Homogene und heterogene Lösung von Modell **A** im Vergleich (links). Der Graph der Fehlerfunktion hat ein Maximum an der Interface-Stelle (rechts).

Im Modell **B** verschwindet die Differenz für den trivialen Fall $f \equiv k \equiv 0$.

Abbildung 3: Homogene und heterogene Lösung von Modell **B** im Vergleich (links). Der Graph der Fehlerfunktion hat ein Maximum an der Interface-Stelle.

Allerdings muss in diesem Fall das Maximum von e nicht an der Interface-Stelle angenommen werden, bei großen Werten von a_q überwiegt die Abweichung im hyperbolischen Gebiet.

Abbildung 4: Das Maximum an der Interface-Stelle ist in Modell ${\bf B}$ in der Regel nur ein lokales Maximum.

Die heterogene Lösung u ist im Falle der Interface-Bedingung (1.4f) am Interface c nicht stetig differenzierbar, im Falle der Stetigkeit des Flusses (1.4e) weist die heterogene Lösung u i.a. am Interface sogar einen Sprung auf.

Abbildung 5: Bei Flusserhalt am Interface ist die heterogene Lösung i. a. nicht stetig.

1.6 Existenz und Eindeutigkeit einer schwachen Lösung des heterogenen Modells.

O.E. sei k = 0. Man erhält das heterogene Modell, indem man zunächst das homogene Modell getrennt für beide Teilgebiete ansetzt. Die Diffusionskonstante ε auf Ω_h wird dabei umbenannt in $\tilde{\varepsilon}$. Aus dem Abgleich mit der schwachen Formulierung des ursprünglichen Modells und unter Berücksichtigung von $\varepsilon \equiv \tilde{\varepsilon}$ ergibt sich die Forderung (1.5e) nach der Stetigkeit der Lösung am künstlichen Rand c. Ebenso ergibt sich die Forderung nach der Stetigkeit des Flusses, welche entweder direkt (1.5f) oder nach Abdivision der Diffusionskonstanten $\varepsilon \equiv \tilde{\varepsilon}$ formuliert werden kann (1.5g). Die Lösung dieses aufgespaltenen Systems

$$u = \begin{cases} u_h \text{ in } [0, c) \\ u_e \text{ in } [c, 1] \end{cases}$$

erhält den Index $\tilde{\varepsilon}$ zur Kennzeichnung der Zugehörigkeit zur entsprechenden Diffusionskonstanten auf Ω_h . Für $\tilde{\varepsilon} \equiv \varepsilon$ stimmt $u_{\tilde{\varepsilon}}$ mit v, der Lösung des Ausgangssystems, überein.

$$-\tilde{\varepsilon}u_{h,\tilde{\varepsilon}}'' + bu_{h,\tilde{\varepsilon}}' + a_q u_{h,\tilde{\varepsilon}} = f \qquad \text{auf } \Omega_h, \tag{1.5a}$$

$$\varepsilon u_{e,\tilde{\varepsilon}}'' + b u_{e,\tilde{\varepsilon}}' + a_q u_{e,\tilde{\varepsilon}} = f \quad \text{auf } \Omega_e,$$
(1.5b)

$$u_{h,\tilde{\varepsilon}}(0) = 0, \qquad (1.5c)$$

$$u_{e,\tilde{\varepsilon}}(1) = 0, \tag{1.5d}$$

$$\tilde{\varepsilon}u_{h,\tilde{\varepsilon}}(c) = \tilde{\varepsilon}u_{e,\tilde{\varepsilon}}(c), \tag{1.5e}$$

$$\tilde{\varepsilon}u_{h,\tilde{\varepsilon}}(c) = \tilde{\varepsilon}u_{e,\tilde{\varepsilon}}(c), \tag{1.5f}$$

bzw.

$$u_{h,\tilde{\varepsilon}}'(c) = u_{e,\tilde{\varepsilon}}'(c).$$
(1.5g)

Das System (1.5a) - (1.5e) mit (1.5f) besitzt die geschlossene Variationsformulierung

$$\int_0^1 a_{\tilde{\varepsilon}} u_{\tilde{\varepsilon}}' w' + \int_0^1 b u_{\tilde{\varepsilon}}' w + \int_0^1 a_q u_{\tilde{\varepsilon}} w = \int_0^1 f w \quad \forall w \in H_0^1(\Omega),$$

mit

$$a_{\tilde{\varepsilon}} := \begin{cases} \tilde{\varepsilon} \text{ in } \Omega_h \\ \varepsilon \text{ in } \Omega_e \end{cases},$$

da sich die Randterme der partiellen Integration bei t = c aufheben. Sobald $\varepsilon \neq \tilde{\varepsilon}$ gilt dies nicht mehr für das System mit Interface-Bedingung (1.5g), es gibt in diesem Fall also keine globale schwache Formulierung.

Unter den Voraussetzungen (1.2), $b \in H^1(\Omega)$, $a_q \in L^2(\Omega)$ und $f \in L^2(\Omega)$ besitzt das System (1.5a) – (1.5e) mit (1.5f) bzw. (1.5g) für jedes $\tilde{\varepsilon} > 0$ eindeutige Lösungen $u_{h,\tilde{\varepsilon}} \in H^1(\Omega_h)$ und $u_{e,\tilde{\varepsilon}} \in H^1(\Omega_e)$. Das folgende Lemma aus [14] untersucht das Verhalten dieser Lösungen bei verschwindendem Diffusionskoeffizienten $\tilde{\varepsilon}$ auf Ω_h .

Satz 1.1 (F. Gastaldi, A. Qarteroni in [14]) Für $\tilde{\varepsilon} \to 0$ gilt

$$\begin{split} u_{h,\tilde{\varepsilon}} \rightharpoonup u_h \ in \ \left\{ \begin{array}{ll} L^2(\Omega_h) & \mbox{ bei Formulierung (1.5f),} \\ H^1(\Omega_e) & \mbox{ bei Formulierung (1.5g),} \\ u_{e,\tilde{\varepsilon}} \rightharpoonup u_e \ in \ H^1(\Omega_h). \end{array} \right. \end{split}$$

Die Grenzfunktionen u_h und u_e erfüllen die Gleichungen (1.4a) – (1.4d) und zusätzlich die Interface-Bedingung (1.4e) bei Formulierung (1.5f) oder aber (1.4f) bei Formulierung (1.5g). Dabei geht allerdings im Fall (1.5a) – (1.5e) mit (1.5g) die Stetigkeit des Flusses bei t = c verloren, im Fall (1.5a) – (1.5e) mit (1.5f) die Stetigkeit der Lösung u am Interface selbst.

Beweisskizze. In beiden Fällen, (1.4e) wie (1.4f), kann zunächst die Existenz einer Konstanten C > 0 gezeigt werden mit

$$\|u_{\tilde{\varepsilon}}\|_{L^2(\Omega)} \leq C, \tag{1.6a}$$

$$\|u_{e,\tilde{\varepsilon}}\|_{H^1(\Omega_e)} \leq C, \tag{1.6b}$$

$$\|\sqrt{\tilde{\varepsilon}}u_{h,\tilde{\varepsilon}}'\|_{L^2(\Omega_h)} \leq C.$$
(1.6c)

Nun erhält man im Fall (1.5f) aus der globalen Variationsformulierung die Lösung $u_{\tilde{\varepsilon}} \in H^1(\Omega)$. Da folglich die rechte Seite der zugehörigen Gleichung

$$-a_{\tilde{\varepsilon}}u_{\tilde{\varepsilon}}'' = f - bu_{\tilde{\varepsilon}}' - a_q u_{\tilde{\varepsilon}}$$

aus $L^2(\Omega)$ ist, ist $a_{\tilde{\varepsilon}}u'_{\tilde{\varepsilon}}$ selbst in $H^1(\Omega)$, ebenso $\Phi_{\tilde{\varepsilon}} := a_{\tilde{\varepsilon}}u'_{\tilde{\varepsilon}} - bu_{\tilde{\varepsilon}}$. Aus den oberen Schranken (1.6a) – (1.6c) folgt die Beschränktheit des Flusses im Approximationsproblem,

$$\|\Phi_{\tilde{\varepsilon}}\|_{H^1(\Omega)} \le C.$$

.. ..

Man erhält (evtl. nach Auslösen einer Teilfolge, welche hier keine neue Bezeichnung trägt) die Konvergenz von

$$u_{h,\tilde{\varepsilon}} \rightharpoonup u_h \quad \text{in } L^2(\Omega_h),$$

$$(1.7a)$$

$$u_{e,\tilde{\varepsilon}} \rightharpoonup u_e \quad \text{in } H^1(\Omega_e),$$

$$(1.7b)$$

$$\Phi_{\tilde{\varepsilon}} \rightharpoonup \Phi \quad \text{in } H^1(\Omega), \tag{1.7c}$$

und

$$\tilde{\varepsilon}u'_{h,\tilde{\varepsilon}} \to 0 \quad \text{in } L^2(\Omega_h).$$

$$(1.7d)$$

Wegen (1.7a) – (1.7c) kann man in der Variationsformulierung $\tilde{\varepsilon} \to 0$ gehen lassen, woraus die Gleichungen (1.4a) – (1.4b) auf den Teilgebieten folgen. Als Grenzfunktion für den Fluss ergibt sich

$$\Phi = \begin{cases} -bu_h & \text{auf } \Omega_h \\ \varepsilon u'_e - bu_e & \text{auf } \Omega_e \end{cases}$$

woraus die Interface-Bedingung folgt. Die Konvergenz von $u_{h,\tilde{\varepsilon}}$ gegen u_h gilt nur in $L^2(\Omega_h)$. Dennoch existiert der Wert $u_h(0)$ in Gleichung (1.4c) und stimmt mit $u_{h,\tilde{\varepsilon}}(0)$ überein, da die L^2 -Norm der Ableitung $u'_{h,\tilde{\varepsilon}}$ in einer rechten Umgebung von 0 beschränkt ist.

Im Fall (1.5f) können zusätzlich zu (1.6a) - (1.6c) die Schranken

$$|u_{h,\tilde{\varepsilon}}(c)| \leq C, \tag{1.8a}$$

$$|u'_{e,\tilde{\varepsilon}}(c)| \leq C, \tag{1.8b}$$

$$\|u_{h,\tilde{\varepsilon}}\|_{H^1(\Omega_h)} \leq C, \tag{1.8c}$$

nachgewiesen werden. Die beiden Teillösungen konvergieren also schwach in der H^1 -Norm auf den Teilgebieten, die Konvergenz am Rand gilt punktweise. Somit kann in (1.5a) – (1.5e) und (1.5g) der Grenzübergang vollzogen werden.

Bemerkung zur Lage des hyperbolischen Gebietes. Ist das Vorzeichen der Konvektion negativ, so tritt die Grenzschicht am linken Rand auf und das hyperbolische Rechengebiet muss nun rechts vom elliptischen liegen.

In [14] wurde zwar gezeigt, dass unter etwas stärkeren Voraussetzungen an die Daten eine Konvergenz in der H^1 -Norm bestehen bleibt, wenn die Rolle von hyperbolischem und elliptischem Gebiet vertauscht wird, also, im Bereich der Grenzschicht die hyperbolische Gleichung und außerhalb die elliptische Gleichung gelöst wird. Dazu muss im Approximationsproblem für die hyperbolische Lösung am Rand die Dirichlet- durch eine homogene Neumann-Bedingung ersetzt werden. Am Interface selbst kann neben der Stetigkeit der Lösung entweder die Stetigkeit des Flusses oder der ersten Ableitung gefordert werden.

In beiden Fällen ist die heterogene Grenzfunktion stetig am Interface, wodurch das hyperbolische Anfangswertproblem schon eindeutig bestimmt ist. Am linken Rand t = 0 darf also keine weitere Dirichlet-Bedingung vorgeschrieben werden, weshalb die heterogene Lösung hier i. a. erheblich von der homogenen Lösung abweicht. Dieser Ansatz schadet somit nicht nur der numerischen Effizienz, sondern auch dem optischen Ergebnis der Lösungsapproximation.

Abbildung 6: Bei Vertauschung von elliptischem und hyperbolischem Gebiet weicht die heterogene Lösung erheblich von der homogenen Lösung ab. Im linken Bild wurde im Approximationsproblem zusätzlich zur C^0 -Stetigkeit am Interface auch die C^1 -Stetigkeit gefordert, im rechten Bild die Stetigkeit des Flusses.

2 Das zweidimensionale Konvektions-Diffusions-Modell.

2.1 Das homogene Modell.

Sei Ω ein beschränktes Gebiet im \mathbb{R}^2 mit Lipschitz-Rand $\partial\Omega$ und äußerer Einheitsnormale n (s. Abbildung in Abschnitt 3). Die Teilmengen Γ_N und Γ_D von $\partial\Omega$ bilden eine Partition des Randes. Sei $\varepsilon > 0$ die Diffusionskonstante und $f \in L^2(\Omega), \varphi_D \in H^{\frac{1}{2}}(\Gamma_D)$ und $\varphi_N \in H^{-\frac{1}{2}}(\Gamma_N)$ seien gegebene Funktionen der rechten Seiten. Das Konvektions-Diffusions-Modell

$$-\varepsilon \Delta v + \operatorname{div}(bv) + a_q v = f \quad \text{in } \Omega, \tag{2.1a}$$

$$v = \varphi_D \quad \text{auf } \Gamma_D,$$
 (2.1b)

$$\varepsilon \frac{\partial v}{\partial n} = \varphi_N \quad \text{auf } \Gamma_N,$$
(2.1c)

besitzt eine eindeutige Lösung $v \in H^1(\Omega)$ unter den Voraussetzungen

$$a_q \in L^{\infty}(\Omega) \text{ und } b = (b_1, b_2)^T \in \left(W^1_{\infty}(\Omega)\right)^2,$$

$$(2.2)$$

$$\frac{1}{2}\operatorname{div}(b(x)) + a_q(x) \ge \mu_0 > 0 \text{ für fast alle } x \in \Omega \text{ und}$$
(2.3)

$$b(x) \cdot n(x) \ge 0$$
 für fast alle $x \in \Gamma_N$. (2.4)

2.2 Existenz und Eindeutigkeit einer schwachen Lösung des homogenen Modells.

Zunächst führen wir die dem obigen Problem entsprechende Bilinearform \mathcal{F} ein,

$$\mathcal{F} \colon H^{1}(\Omega) \times H^{1}(\Omega) \to \mathbb{R},$$

$$(v,w) \mapsto \mathcal{F}(v,w) := \int_{\Omega} \varepsilon \nabla v \nabla w + \int_{\Omega} \operatorname{div}(bv) w + \int_{\Omega} a_{q} v w.$$

$$(2.5)$$

Der Raum $H_D^1(\Omega) := \{ w \in H^1(\Omega), w |_{\Gamma_D} = \varphi_D \}$ ist ein abgeschlossener Teilraum von $H^1(\Omega)$ und somit selbst ein Hilbert-Raum.

Gesucht ist nun ein $v \in H_D^1(\Omega)$, so dass

$$\forall w \in H_D^1(\Omega): \quad \mathcal{F}(v, v - w) = \int_{\Omega} f(v - w) + \int_{\Gamma_N} \varphi_N(v - w).$$

Die Bilinearform \mathcal{F} ist stetig, denn für alle $v, w \in H^1(\Omega)$ gibt es ein C > 0, so dass

$$\begin{aligned} \mathcal{F}(v,w) &\leq \varepsilon \int_{\Omega} |\nabla v| |\nabla w| + \| \operatorname{div}(b) \|_{L^{\infty}(\Omega)} \int_{\Omega} |v| |w| + \sum_{i=1,2} \| b_i \|_{L^{\infty}(\Omega)} \int_{\Omega} |\nabla v| |w| \\ &+ \| a_q \|_{L^{\infty}(\Omega)} \int_{\Omega} |v| |w| \\ &\leq C \| v \|_{H^1(\Omega)} \| w \|_{H^1(\Omega)}, \end{aligned}$$

wobei

$$|\nabla v| := \left(\begin{array}{c} |\frac{\partial v}{\partial x_1}| \\ |\frac{\partial v}{\partial x_2}| \end{array} \right).$$

Aus der Stetigkeit des Spuroperators folgt die Stetigkeit der rechten Seite der Variationsformulierung, denn für alle $w \in H^1(\Omega)$ ist

$$\int_{\Omega} fw + \int_{\Gamma_N} \varphi_N w \leq \|f\|_{L^2(\Omega)} \|w\|_{L^2(\Omega)} + \|\varphi_N\|_{H^{-\frac{1}{2}}(\Gamma_N)} \|w\|_{H^{\frac{1}{2}}(\Gamma_N)} \\
\leq C \left(\|f\|_{L^2(\Omega)} + \|\varphi_N\|_{H^{-\frac{1}{2}}(\Gamma_N)}\right) \|w\|_{H^1(\Omega)}.$$

Außerdem ist \mathcal{F} koerziv auf der (algebraischen) Differenz $H_D^1 - H_D^1$, denn

$$\begin{split} \mathcal{F}(v-w,v-w) &= \varepsilon \int_{\Omega} \nabla(v-w) \cdot \nabla(v-w) + \int_{\Omega} b \cdot ((v-w)\nabla(v-w)) \\ &+ \int_{\Omega} \operatorname{div}(b)(v-w)^2 + \int_{\Omega} a_q(v-w)^2 \\ &= \varepsilon \int_{\Omega} \nabla(v-w) \cdot \nabla(v-w) + \int_{\Omega} (\frac{1}{2} \operatorname{div}(b) + a_q)(v-w)^2 \\ &+ \frac{1}{2} \int_{\Gamma_N} (v-w)^2 b \cdot n \\ &\geq \varepsilon |v-w|_{H^1(\Omega)}^2 + \mu_0 ||v-w||_{L^2(\Omega)}^2 \\ &\geq \min\{\varepsilon,\mu_0\} ||v-w||_{H^1(\Omega)}^2. \end{split}$$

Nach dem Satz von Lax-Milgram folgt die Existenz und Eindeutigkeit der Lösung $u \in H^1_D(\Omega)$.

Bemerkung zur Koerzivitätsbedingung. Das unterschiedliche Vorzeichen der Konvektion in der Koerzivitätsbedingung im ein- bzw. zweidimensionalen Fall resultiert aus der unterschiedlichen Formulierung der Konvektion im Modell. Im zweidimensionalen Modell steht der Konvektionsterm b selbst mit in der Ableitung, weshalb zum Erhalt einer schwachen Formulierung partiell integriert wird.

In einer Raumdimension kann im Koerzivitätsnachweis wegen der Dirichlet-Randdaten die H^1 -Norm durch die H^1 -Seminorm abgeschätzt werden. In zwei Raumdimensionen muss zum Nachweis der Koerzivität durch die Konstante μ_0 ein echter Abstand zur 0 geschaffen werden.

Im einer Dimension gilt die stetige Einbettung von $H^1(\Omega) \subset C^0(\overline{\Omega})$. Die Funktion $v \in H^1(\Omega)$ nimmt auf dem Kompaktum $\overline{\Omega}$ einen Maximalwert an, weshalb sich die auftretenden Produkte in F(v, v) durch Herausziehen der Supremumsnorm über Ω nach oben abschätzen lassen. Für die Integrierbarkeit dieser Produkte in zwei Raumdimensionen muss explizit vorausgesetzt werden, dass a_q und die auftretenden Ableitungen von b in $L^{\infty}(\Omega)$ sind.

2.3 Der ambivalente Charakter des konvektionsdominierten Modells.

Für $\varepsilon \ll ||b||_{L^{\infty}(\Omega)}$ dominiert der Einfluss der Konvektion auf die homogene Lösung. Der Diffusionsterm macht sich wiederum nur in einem Teilgebiet $\Omega_e \subset \Omega$, der Grenzschicht, bemerkbar. Im Beispiel wurde auf $\Omega = [1, 2] \times [1, 2]$ das homogene Modell

$$-0.01 \cdot \Delta v + \frac{\partial v}{\partial x_1} + v = 5 \quad \text{in } \Omega,$$

$$v = 20 \quad \text{für } x \in \partial \Omega \text{ und } x_1 = 1,$$

$$v = 40 \quad \text{für } x \in \partial \Omega, x_1 = 2 \text{ und } x_2 \ge 1.5,$$

$$v = 15 \quad \text{für } x \in \partial \Omega, x_1 = 2 \text{ und } x_2 < 1.5,$$

$$\varepsilon \frac{\partial v}{\partial n} = 0, \quad \text{für } x \in \partial \Omega \text{ und } x_2 = 1 \text{ oder } x_2 = 2,$$

gelöst. Man erkennt deutlich die am rechten Rand gelegene Grenzschicht, welche aufgrund der abschnittsweise definierten Funktion der Dirichlet-Bedingung jedoch unterschiedlich stark ausgeprägt ist. Das rechte Bild zeigt im Vergleich dazu die Lösung der reduzierten Gleichung

$$\begin{aligned} \frac{\partial u_e}{\partial x_1} + u_e &= 5 & \text{in } \Omega, \\ u_e &= 20 & \text{für } x \in \partial \Omega \text{ und } x_1 = 1, \\ \varepsilon \frac{\partial u_e}{\partial n} &= 0 & \text{für } x \in \partial \Omega \text{ und } x_2 = 1 \text{ oder } x_2 = 2, \end{aligned}$$

welche über weite Teile des Gebietes mit der homogenen Lösung übereinstimmt.

Abbildung 7: Die Lösungen von homogenem (links) und reduziertem (rechts) Modell stimmen in einem großen Teil des Gebietes überein.

2.4 Das heterogene Modell.

Sei $\Omega \subset \mathbb{R}^2$ ein beschränktes Gebiet mit äußerer Einheitsnormale *n*. Wir partitionieren Ω in die offenen Teilmengen Ω_h und Ω_e mit $\Omega_h \cap \Omega_e = \emptyset$ und $\overline{\Omega}_h \cup \overline{\Omega}_e = \overline{\Omega}$. Die zugehörigen Randstücke

 $\Gamma_i = \partial \Omega \cap \partial \Omega_i$, für i = h, e

seien Lipschitz-stetig und stückweise $C^{1,1}$, das Interface

$$\Gamma_f = \partial \Omega_h \setminus \Gamma_h = \partial \Omega_e \setminus \Gamma_e \in C^{1,1}$$

Für die Teilmenge $\Gamma_{h,D}$ von Γ_h gelte

$$\Gamma_{h,D} = \{ x \in \Gamma_h : (b \cdot n)(x) < 0 \}.$$
(2.6)

Seien $\Gamma_{e,D}$ und $\overline{\Gamma_{e,N}}$ Teilmengen von Γ_e , offen bzgl. der Relativtopologie auf Γ_e , mit $\Gamma_{e,D} \cap \Gamma_{e,N} = \emptyset$ und $\overline{\Gamma_{e,D}} \cup \overline{\Gamma_{e,N}} = \overline{\Gamma_e}$. Weiterhin sei für i = h, e

$$\begin{array}{ll} \varphi_{i,D} &= \varphi_D \big|_{\Gamma_{i,D}} & \text{und} \\ \varphi_{i,N} &= \varphi_N \big|_{\Gamma_{i,N}}. \end{array}$$

Im heterogenen Modell wird nun auf Ω_h die um den Diffusionsterm reduzierte Gleichung angesetzt, welche dadurch hyperbolischen Charakter erhält, während auf Ω_e die ursprüngliche Gleichung gelöst wird.

$$\operatorname{div}(bu_h) + a_q u_h = f \quad \text{in } \Omega_h, \tag{2.7a}$$

$$\varepsilon \Delta u_e + \operatorname{div}(bu_e) + a_q u_e = f \quad \text{in } \Omega_e,$$
(2.7b)

$$u_h = \varphi_{h,D} \quad \text{auf } \Gamma_{h,D},$$
 (2.7c)

$$u_e = \varphi_{e,D} \quad \text{auf } \Gamma_{e,D},$$
 (2.7d)

$$\varepsilon \frac{\partial u_e}{\partial n} = \varphi_{e,N} \quad \text{auf } \Gamma_{e,N}.$$
 (2.7e)

Zur Kopplung von hyperbolischem und elliptischem Problem fehlen noch Bedingungen am Interface. Dieses wird durch die Einheitsnormale n^* auf Γ_f in Richtung Ω_h unterteilt in

$$\Gamma_f^{in} := \{x \in \Gamma_f : (b \cdot n^*)(x) > 0\},
\Gamma_f^{out} := \{x \in \Gamma_f : (b \cdot n^*)(x) < 0\} \text{ und}
\Gamma_f^0 := \Gamma_f \setminus \left(\overline{\Gamma_f^{in}} \cup \overline{\Gamma_f^{out}}\right).$$

Die Interface-Bedingungen rühren wiederum aus einem Grenzprozess her, bei der die Diffusionskonstante auf Ω_h gegen 0 geht. Daraus erhält man

$$b \cdot n^* u_h = -\varepsilon \frac{\partial u_e}{\partial n^*} + b \cdot n^* u_e \quad \text{auf } \Gamma_f,$$

$$u_h = u_e \quad \text{auf } \Gamma_f^{out}.$$
(2.7f)
(2.7g)

Äquivalent kann man auch formulieren

$$b \cdot n^* u_h = -\varepsilon \frac{\partial u_e}{\partial n^*} + b \cdot n^* u_e \quad \text{auf } \Gamma_f^{in} \cup \Gamma_f^0, \tag{2.7h}$$

$$0 = -\varepsilon \frac{\partial u_e}{\partial n^*} \qquad \text{auf } \Gamma_f^{out}, \tag{2.7i}$$

$$u_h = u_e \qquad \text{auf } \Gamma_f^{out}.$$
 (2.7j)

2.5 Existenz und Eindeutigkeit einer schwachen Lösung des heterogenen Modells.

Folgende Voraussetzungen werden an die gegebenen Daten gestellt,

$$\varepsilon > 0$$
 sei konstant, (2.8)

$$a_q \in L^{\infty}(\Omega), f \in L^2(\Omega), \tag{2.9}$$

$$b \in \left(W_{\infty}^{1}(\Omega)\right)^{2} \text{ mit}$$

$$(2.10)$$

$$b \in \left(W_{\infty}^{1}(\Omega)\right)^{2} = 0 \quad \text{(2.11)}$$

$$b(x) \cdot n(x) \ge 0 \text{ für fast alle } x \in \Gamma_{e,N} \text{ und } x \in \Gamma_{h,N}$$
(2.11)

$$\frac{1}{2}\operatorname{div}(b(x)) + a_q(x) \ge \mu_0 > 0 \text{ für fast alle } x \in \Omega,$$
(2.12)

$$\varphi_D \in H^{-\frac{1}{2}}(\partial\Omega), \text{ wobei } \varphi_D|_{\Gamma_{e,D}} \in H^{\frac{1}{2}}(\Gamma_{e,D}) \text{ und } \varphi_D|_{\Gamma_{h,D}} \in L^2_b(\Gamma_{h,D}),$$

$$(2.13)$$

$$\varphi_N \in H^{-\frac{1}{2}}(\partial\Omega)$$
, wobei $\varphi_N \big|_{\Gamma_{i,N}} \in H^{\frac{1}{2}}_{00}(\Gamma_{i,N})$ für $i = h, e.$ (2.14)

Die aus [15] stammende Existenzaussage lautet übertragen auf inhomogene Neumann-Randdaten:

Satz 2.1 Unter den Voraussetzungen (2.8) – (2.14) besitzt das heterogene Modell eine eindeutige Lösung

$$u = \begin{cases} u_h \in L^2(\Omega_h) \\ u_e \in H^1(\Omega_e) \end{cases},$$

welche

- (a) die Gleichung (2.7a) auf Ω_h in distributionellem Sinn erfüllt,
- (b) die Gleichung (2.7b) auf Ω_e in distributionellem Sinn erfüllt,
- (c) die Randbedingung (2.7c) auf $\Gamma_{h,D}$ fast sicher erfüllt,
- (d) die Randbedingung (2.7d) erfüllt in $H^{\frac{1}{2}}(\Gamma_{e,D})$,
- (e) die Randbedingung (2.7e) erfüllt in $\left[H_{00}^{\frac{1}{2}}(\Gamma_{e,N})\right]'$,
- (f) die Interface-Bedingung (2.7h) erfüllt in $\left[H_{00}^{\frac{1}{2}}(\Gamma_f^{in}\cup\Gamma_f^0)\right]'$,
- (g) die Interface-Bedingung (2.7i) erfüllt in $\left[H_{00}^{\frac{1}{2}}(\Gamma_f^{out})\right]'$,
- (h) die Interface-Bedingung (2.7j) auf Γ_f^{out} fast sicher erfüllt.

Beweisskizze. Die Existenz einer Lösung des heterogenen Modells erhält man ähnlich zum eindimensionalen Fall durch Einführen der Diffusion

$$a_{\tilde{\varepsilon}} = \left\{ \begin{array}{ll} \tilde{\varepsilon} \mbox{ auf } \Omega_h \\ \varepsilon \mbox{ auf } \Omega_e \end{array} \right. ,$$

und dem anschließenden Grenzübergang $\tilde{\varepsilon} \to 0$ auf Ω_h , wobei im Approximationsproblem auf dem Interface sowohl der Fluss als die Lösung selbst stetig seien. Im Unterschied zum eindimensionalen Fall wird zusätzlich der Quellterm durch eine approximierende Folge $a_{q,\tilde{\varepsilon}} \in C^{\infty}(\Omega)$ mit $a_{q,\tilde{\varepsilon}} \stackrel{*}{\to} a_q$ in $L^{\infty}(\Omega)$ geglättet. Man erhält wiederum obere Schranken

 $\begin{aligned} \|u_{\tilde{\varepsilon}}\|_{L^{2}(\Omega)} &\leq C, \\ \|\sqrt{\tilde{\varepsilon}} \nabla u_{h,\tilde{\varepsilon}}\|_{L^{2}(\Omega_{h})} &\leq C, \\ \|\nabla u_{e,\tilde{\varepsilon}}\|_{L^{2}(\Omega_{e})} &\leq C, \end{aligned}$

für eine Konstante C > 0, woraus die schwache Konvergenz des Flusses

$$\Phi_{\tilde{\varepsilon}} \quad \rightharpoonup \quad \Phi := \begin{cases} bu_h \text{ auf } \Omega_h \\ -\varepsilon \nabla u_e + bu_e \text{ auf } \Omega_e \end{cases} \quad \text{in } L^2_{\text{div}}(\Omega)$$

und der Lösungen

 $\begin{array}{rcl} u_{h,\tilde{\varepsilon}} & \rightharpoonup & u_h \text{ in } L^2(\Omega_h), \\ u_{e,\tilde{\varepsilon}} & \rightharpoonup & u_e \text{ in } H^1(\Omega_e), \\ \tilde{\varepsilon} \nabla u_{h,\tilde{\varepsilon}} & \to & 0 \text{ in } L^2(\Omega_h), \end{array}$

folgt. Die Grenzfunktionen erfüllen die Gleichungen (2.7a) – (2.7f). Zum Nachweis von Gleichung (2.7g) muss zusätzlich die höhere Regularität der auftretenden Terme nachgewiesen werden $(a_{\tilde{\varepsilon}} \nabla u_{\tilde{\varepsilon}} \in H^1$ im Inneren von Ω). Weiterhin die schwache Konvergenz

$$bu_{h,\tilde{\varepsilon}} \rightharpoonup bu_h$$
 in $L^2_{\text{div}}(\Omega')$,

wobei Ω' eine offene Teilmenge von Ω_h ist mit $\overline{\Omega'} \cap (\overline{\Gamma_h} \cup \overline{\Gamma_f^{in}}) = \emptyset$. Damit erhält man zunächst

$$b \cdot n^* u_h = b \cdot n^* u_e$$
 in $\left[H_{00}^{\frac{1}{2}}(\Gamma_f^{out}) \right]'$,

woraus Bedingung (2.7g) folgt.

Anpassen des Beweises aus [15]. Der Beweis von Satz 2.1 für homogene Neumann-Randdaten stammt von F. Gastaldi, A. Quarteroni und G. Sacchi Landriani aus dem Jahr 1990. Tabelle 1 erklärt den Zusammenhang zwischen den verwendeten Variablen.

Im Unterschied zu [15] ist keine Funktionenfolge zur Glättung des Diffusionskoeffizienten notwendig, da der Diffusionskoeffizient auf Ω_e konstant, also von vornhere
in glatt ist. Wir setzen

$$a_{\tilde{\varepsilon}} \colon = \left\{ \begin{array}{l} \tilde{\varepsilon} \text{ auf } \Omega_h \\ \varepsilon \text{ auf } \Omega_e \end{array} \right.$$

Bezeichnung hier	Bezeichnung in [15]
ε	ν
a_q	b_0
$\Gamma_{h,D}$	Γ_1^{in}
$\Gamma_{h,N}$	$\Gamma_1^{out} \cup \Gamma_1^0$
$\Gamma_{e,N}$	Γ_2^{Ne}
$\Gamma_{e,D}$	Γ^D_2
Γ_{f}^{in}	Γ^{out}
Γ_f^0	Γ_0
Γ_f^{out}	Γ^{in}
φ_D	Φ
u_h	u
u_e	w
ĩ	ε

Tabelle 1: Liste sich entsprechender Bezeichnungen hier und in [15].

Aufgrund der inhomogenen Neumann-Randdaten müssen folgende geringe Änderungen am Beweis aus [15] vorgenommen werden:

(a) Gleichung (5.6) aus [15] wird erweitert,

$$\begin{split} \int_{\Omega} (a_{\tilde{\varepsilon}} \nabla u_{\tilde{\varepsilon}} &- b u_{\tilde{\varepsilon}}) \cdot \nabla (u_{\tilde{\varepsilon}} - v) + \int_{\Omega} a_{q,\tilde{\varepsilon}} u_{\tilde{\varepsilon}} (u_{\tilde{\varepsilon}} - v) + \int_{\Gamma_{h,N}} |b \cdot n| u_{\tilde{\varepsilon}} (u_{\tilde{\varepsilon}} - v) \\ &= \int_{\Omega} f(u_{\tilde{\varepsilon}} - v) - \int_{\Gamma_{h,D}} b \cdot n \varphi_{D,\tilde{\varepsilon}} (u_{\tilde{\varepsilon}} - v) + \int_{\Gamma_{e,N}} \varphi_{N} (u_{\tilde{\varepsilon}} - v). \end{split}$$

(b) In Lemma 5.1 aus [15] muss Gleichung (5.13) abgeändert werden in

$$-\varepsilon \frac{\partial u_{e,\tilde{\varepsilon}}}{\partial n} = \varphi_N \text{ in } \left[H_{00}^{\frac{1}{2}}(\Gamma_{e,N}) \right]'.$$

Dies hat keine Änderungen am Beweis von Lemma 5.1 zur Folge.

(c) Im Beweis von Theorem 5.3 aus [15] folgt die Stetigkeit der rechten Seite aus

$$\begin{split} & \left| \int_{\Omega} fw - \int_{\Gamma_{h,D}} b \cdot n\varphi_{D,\tilde{\varepsilon}} w - \int_{\Gamma_{e,N}} \varphi_N w \right| \\ & \leq \|f\|_{L^2(\Omega)} \|w\|_{L^2(\Omega)} + \|\varphi_{D,\tilde{\varepsilon}}\|_{L^2_b(\Gamma_{h,D})} \|w\|_{L^2_b(\Gamma_{h,D})} + \|\varphi_N\|_{H^{-\frac{1}{2}}(\Gamma_{e,N})} \|w\|_{H^{\frac{1}{2}}(\Gamma_{e,N})} \\ & \leq C \left(\|f\|_{L^2(\Omega)} + \|\varphi_{D,\tilde{\varepsilon}}\|_{L^2_b(\Gamma_{h,D})} + \|\varphi_N\|_{H^{-\frac{1}{2}}(\Gamma_{e,N})} \right) \|w\|_{H^1(\Omega)}, \end{split}$$

 denn

$$\|w\|_{H^{\frac{1}{2}}(\Gamma_{e,N})} \le \|w\|_{H^{\frac{1}{2}}(\partial\Omega)} \le C\|w\|_{H^{1}(\Omega)}.$$

(d) Im Beweis von Lemma 5.5 aus [15] zwischen (5.21) und (5.22) wird die linke Seite der Gleichung um + $\int_{\Gamma_{e,N} \cup \Gamma_{h,N}} \varphi_{e,N}(u_{\tilde{\varepsilon}} - v_{\tilde{\varepsilon}})$ ergänzt.

Bei Gleichung (5.22) erweitert man den Ausdruck auf der rechten Seite um die Terme

+
$$\frac{1}{4\delta} \|\varphi_{e,N}\|_{L^{2}(\Gamma_{e,N})}^{2} + 2\delta \|u_{e,\tilde{\varepsilon}}\|_{L^{2}(\Gamma_{e,N})}^{2} + 2\delta \|v_{\tilde{\varepsilon}}\|_{L^{2}(\Gamma_{e,N})}^{2} + \frac{1}{4\delta} \|\varphi_{h,N}\|_{L^{2}(\Gamma_{h,N})}^{2} + 2\delta \|u_{h,\tilde{\varepsilon}}\|_{L^{2}(\Gamma_{h,N})}^{2} + 2\delta \|v_{\tilde{\varepsilon}}\|_{L^{2}(\Gamma_{h,N})}^{2}$$

Die Abschätzungen des Lemmas 5.5 ergeben sich aus

$$\|v_{\tilde{\varepsilon}}\|_{L^{2}(\Gamma_{e,N})} \leq \|v_{\tilde{\varepsilon}}\|_{L^{2}(\partial\Omega)} \leq \|v_{\tilde{\varepsilon}}\|_{H^{\frac{1}{2}}(\partial\Omega)} \leq C \|v_{\tilde{\varepsilon}}\|_{H^{1}(\Omega)} \leq CM.$$

(zur zweiten Ungleichung siehe [17], S.240) und

$$\|u_{e,\tilde{\varepsilon}}\|_{L^{2}(\Gamma_{e,N})}^{2} \leq C \|u_{\tilde{\varepsilon}}\|_{H^{1}(\Omega)}^{2} = C \left(\|u_{\tilde{\varepsilon}}\|_{L^{2}(\Omega)}^{2} + \|\nabla u_{h,\tilde{\varepsilon}}\|_{L^{2}(\Omega_{h})}^{2} \|\nabla + u_{e,\tilde{\varepsilon}}\|_{L^{2}(\Omega_{e})}^{2} \right).$$

Diese Ausdrücke werden mit den Termen auf der linken Seite verarbeitet. Äquivalente Vorgehensweise für $\Gamma_{h,N}$ und $u_{h,\tilde{c}}$.

(e) Beweis von Proposition 5.9: Im Unterschied zum Modell aus [15] ist $\partial_h a_{\tilde{\varepsilon}} \equiv 0$ und hierfür ist keine Glättung notwendig.

1d: $\Omega = (0,1) \subset \mathbb{R}^1$	2d: $\Omega \subset \mathbb{R}^2$ beschränktes Gebiet mit Lipschitz-stetigem Rand $\partial \Omega \in C^{1,1}$
$\Omega_{\rm h}$ $\Gamma_{\rm f}$ $\Omega_{\rm e}$	$\Gamma_{h,N} \qquad \Gamma_{f}^{in} \qquad \qquad$
Stetige Lösung Stetiger Fluss	Stetiger Fluss, stetige Lösung auf Γ_f^{out}
$bu'_h + a_q u_h = f \text{in } \Omega_h$ $-\varepsilon u''_e + bu'_e + a_q u_e = f \text{in } \Omega_e$ $u_h(0) = 0$ $u_e(1) = k$	$div(bu_h) + a_q u_h = f in \ \Omega_h$ $-\varepsilon \Delta u_e + div(bu_e) + a_q u_e = f in \ \Omega_e$ $u_h = \varphi_{h,D} auf \ \Gamma_{h,D}$ $u_e = \varphi_{e,D} auf \ \Gamma_{e,D}$ $\varepsilon \frac{\partial u_e}{\partial n} = \varphi_{e,N} auf \ \Gamma_{e,N}$
$u_e(c) = u_h(c)$ $-\varepsilon u'_e + bu_e = bu_h$ bei $t = c$	$b \cdot n^* u_h = -\varepsilon \frac{\partial u_e}{\partial n^*} + b \cdot n^* u_e \text{auf } \Gamma_f$ $u_h = u_e \text{auf } \Gamma_f^{out}$
$b \in H^{1}(\Omega)$ $a_{q} \in L^{2}(\Omega)$ $f \in L^{2}(\Omega)$	$b \in [W_{\infty}^{1}(\Omega)]^{2}$ $a_{q} \in L^{\infty}(\Omega)$ $f \in L^{2}(\Omega)$ $\varphi_{D} \in H^{-\frac{1}{2}}(\partial\Omega) \text{ mit}$ $\varphi_{D} _{\Gamma_{e,D}} \in H^{\frac{1}{2}}(\Gamma_{e,D}) \text{ und } \varphi_{D} _{\Gamma_{h,D}} \in L_{b}^{2}(\Gamma_{h,D})$ $\varphi_{N} \in H^{-\frac{1}{2}}(\partial\Omega) \text{ mit } \varphi_{N} _{\Gamma_{N}} \in H_{00}^{\frac{1}{2}}(\Gamma_{N})$
$-rac{1}{2}b'+a_q\geq 0 ext{ in } \Omega$	$\frac{1}{2}\mathrm{div}(b) + a_q \ge \mu_0 > 0 \text{ in } \Omega$

Tabellarischer Vergleich der heterogenen Modelle ... 3

Approximation durch Diffusionskonstante $\tilde{\varepsilon} > 0$ auf Ω_h :		
$\begin{split} -\tilde{\varepsilon}u_{h,\tilde{\varepsilon}}'' + bu_{h,\tilde{\varepsilon}}' + a_q \\ -\varepsilon u_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}' + a_q \\ u_h, \\ u_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}' + bu_{e,\tilde{\varepsilon}}' + a_q \\ u_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}'}'' + bu_{e,\tilde{\varepsilon}'}'' + bu_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}}'' + bu_{e,\tilde{\varepsilon}'}'' + bu_{e,\tilde{\varepsilon}''''''''''''''''''''''''''''''''''''$	$u_{h,\tilde{\varepsilon}} = f \qquad \text{auf } \Omega_h$ $u_{e,\tilde{\varepsilon}} = f \qquad \text{auf } \Omega_e$ $\tilde{\varepsilon}(0) = 0$ $\tilde{\varepsilon}(1) = k$	$\begin{split} &-\tilde{\varepsilon}\Delta u_{h,\tilde{\varepsilon}} + \operatorname{div}(bu_{h,\tilde{\varepsilon}}) + a_{q,\tilde{\varepsilon}}u_{h,\tilde{\varepsilon}} = f \text{ in }\Omega_{h} \\ &\operatorname{div}(-\varepsilon\nabla u_{e,\tilde{\varepsilon}} + bu_{e,\tilde{\varepsilon}}) + a_{q,\tilde{\varepsilon}}u_{e,\tilde{\varepsilon}} = f \text{ in }\Omega_{e} \\ &-\tilde{\varepsilon}\frac{\partial u_{h,\tilde{\varepsilon}}}{\partial n} + b \cdot nu_{h,\tilde{\varepsilon}} = b \cdot n\varphi_{h,D,\tilde{\varepsilon}} \text{ in } \left[H_{00}^{\frac{1}{2}}(\Gamma_{h,D})\right]' \\ &\tilde{\varepsilon}\frac{\partial u_{h,\tilde{\varepsilon}}}{\partial n} = \varphi_{h,N} \text{ in } \left[H_{00}^{\frac{1}{2}}(\Gamma_{h,N})\right]' \\ &u_{e,\tilde{\varepsilon}} = \varphi_{e,D,\tilde{\varepsilon}} \text{ auf }\Gamma_{e,D} \\ &\varepsilon\frac{\partial u_{e,\tilde{\varepsilon}}}{\partial n} = \varphi_{e,N} \text{ in } \left[H_{00}^{\frac{1}{2}}(\Gamma_{e,N})\right]' \\ &\operatorname{mit} \\ &a_{q,\tilde{\varepsilon}} \in C^{\infty}(\Omega), a_{q,\tilde{\varepsilon}} \xrightarrow{*} a_{q} \text{ in } L^{\infty}(\Omega) \\ &\frac{1}{2}\operatorname{div}(b(x)) + a_{q,\tilde{\varepsilon}}(x) \geq \frac{1}{2}\mu_{0} \text{ für alle } x \in \Omega \\ &\varphi_{D,\tilde{\varepsilon}} \in C^{\infty}(\partial\Omega), \varphi_{D,\tilde{\varepsilon}} _{\Gamma_{e,D}} \to \varphi_{e,D} \text{ in } H^{\frac{1}{2}}(\Gamma_{e,D}) \\ &\qquad \varphi_{D,\tilde{\varepsilon}} _{\Gamma_{h,D}} \to \varphi_{h,D} \text{ in } L^{2}_{b}(\Gamma_{h,D}) \end{split}$
am Interf	ace $t = c$:	am Interface Γ_f :
$u_{e,\tilde{\varepsilon}} = u_{h,\tilde{\varepsilon}}$ $u'_{e,\tilde{\varepsilon}} = u'_{h,\tilde{\varepsilon}}$	$u_{e,\tilde{\varepsilon}} = u_{h,\tilde{\varepsilon}}$ $\tilde{\varepsilon}u'_{e,\tilde{\varepsilon}} = \varepsilon u'_{h,\tilde{\varepsilon}}$	$u_{h,\tilde{\varepsilon}} = u_{e,\tilde{\varepsilon}} \operatorname{auf} \Gamma_{f}$ $-\tilde{\varepsilon} \frac{\partial u_{h,\tilde{\varepsilon}}}{\partial n^{*}} + b \cdot n^{*} u_{h,\tilde{\varepsilon}} = -\varepsilon \frac{\partial u_{e,\tilde{\varepsilon}}}{\partial n^{*}} + b \cdot n^{*} u_{e,\tilde{\varepsilon}}$ $\operatorname{in} \left[H_{00}^{\frac{1}{2}}(\Gamma_{f}) \right]'$
Konvergenz für $\tilde{\varepsilon} \to 0$:		
$u_{h,\tilde{\varepsilon}} \rightharpoonup u_h \text{ in } H^1(\Omega_h)$ $u_{e,\tilde{\varepsilon}} \rightharpoonup u_e \text{ in } H^1(\Omega_e)$	$u_{h,\tilde{\varepsilon}} \rightharpoonup u_h \text{ in } L^2(\Omega_h)$ $u_{e,\tilde{\varepsilon}} \rightharpoonup u_e \text{ in } H^1(\Omega_e)$ $\Phi_{\tilde{\varepsilon}} \rightharpoonup \Phi \text{ in } H^1(\Omega)$	$u_{h,\tilde{\varepsilon}} u_h \text{ in } L^2(\Omega_h)$ $u_{e,\tilde{\varepsilon}} u_e \text{ in } H^1(\Omega_e)$ $\Phi_{\tilde{\varepsilon}} \Phi \text{ in } L^2_{\text{div}}(\Omega)$

... und ihrer Approximationsmodelle.

3 Tabellarischer Vergleich der heterogenen Modelle.

Teil II Numerik in einer Raumdimension.

4 Uberblick über die drei verschiedenen Ansätze.

Bei der numerischen Betrachtung beschränken wir uns auf den Fall $b(t) \equiv 1$ und folglich $a_q \geq 0$. Entsprechend ist für ein Teilgebiet A von Ω die Energienorm $\|\cdot\|_E$ definiert durch

$$||e||_{E(A)} := \left(\varepsilon \int_{A} (e')^2 + \int_{A} a_q e^2\right)^{\frac{1}{2}}$$
 für $e \in H^1(A)$

Für $e \in H_0^1(A)$ gilt $\int_A e'e = 0$, we shalb

$$||e||_{E(A)}^{2} = F|_{H_{0}^{1}(A) \times H_{0}^{1}(A)}(e, e).$$

Bei Betrachtung diskreter Lösungen auf dem Gitter \mathcal{T} , einer Partition von A in Intervalle T, verwenden wir die Norm

$$\|\cdot\|_{E_{\mathcal{T}}(A)} := \left(\sum_{T \in \mathcal{T}} \|\cdot\|_{E(T)}^{2}\right)^{\frac{1}{2}}$$

Ist $A = \Omega$, so schreiben wir auch kürzer $\|\cdot\|_{E(\Omega)} = \|\cdot\|_E$, bzw. $\|\cdot\|_{E_T(\Omega)} = \|\cdot\|_{E_T}$.

Vorgegeben ist eine vom Benutzer definierte Gesamttoleranz TOL_G , mit welcher die exakte Lösung v des homogenen Problems approximiert werden soll. Der Algorithmus gibt als Näherung für die homogene Lösung v eine diskrete Lösung \hat{u}_n des heterogenen Problems zurück, wobei n die Anzahl der zur Approximation der heterogenen Lösung verwendeten Gitterpunkte bezeichnet. Die zu prüfende Forderung ist also

$$\|v - \hat{u}_n\|_{E_{\mathcal{T}}} \le TOL_G. \tag{4.1}$$

Die Differenz zwischen v und \hat{u}_n beinhaltet den Modellfehler MF und den Diskretisierungsfehler DF, wobei sich der Modellfehler wiederum aus hyperbolischem und elliptischem Anteil zusammensetzt. Der hyperbolische Anteil MF_h entsteht durch Streichen des Diffusionsterms auf Ω_h , der elliptische Anteil MF_e durch den in den Gleichungen für u_e verfälschten linken Randwert $u_h(c)$ anstelle von v(c).

Wir ersetzen (4.1) durch

$$\begin{aligned} \|v - \hat{u}_n\|_{E_{\mathcal{T}}}^2 &= \|v - u_h\|_{E(\Omega_h)}^2 + \|v - \hat{u}_{e,n}\|_{E_{\mathcal{T}}(\Omega_e)}^2 \\ &\leq \|v - u_h\|_{E(\Omega_h)}^2 + \left(\|v - u_e\|_{E(\Omega_e)} + \|u_e - \hat{u}_{e,n}\|_{E_{\mathcal{T}}(\Omega_e)}\right)^2 \\ &= MF_h^2 + \left(MF_e^2 + DF_e^2\right) \leq TOL_G^2, \end{aligned}$$

$$(4.2)$$

oder aber strenger durch

$$\begin{aligned} \|v - \hat{u}_n\|_{E_{\mathcal{T}}} &\leq \|v - u\|_E + \|u - \hat{u}_n\|_{E_{\mathcal{T}}} \\ &= \sqrt{\|v - u_h\|_{E(\Omega_h)}^2 + \|v - u_e\|_{E(\Omega_e)}^2} + \|u - \hat{u}_n\|_{E_{\mathcal{T}}} \\ &= \sqrt{MF_h^2 + MF_e^2} + DF \leq TOL_G, \end{aligned}$$
(4.3)

wobei

$$u = \begin{cases} u_h \text{ auf } \Omega_h \\ u_e \text{ auf } \Omega_e \end{cases}$$

die exakte Lösung des heterogenen Problems ist. Da weder diese, noch die exakte Lösung v des homogenen Problems bekannt ist, werden die Terme in (4.3) bzw. (4.2) entweder durch a posteriori Fehlerschätzer nach oben beschränkt (so z.B. DF durch \widehat{DF}_n und MF durch \widehat{MF}_N in Ansatz 1 mit N < n Anzahl der Grobgitterpunkte), oder aber durch entsprechende Ausdrücke diskreter Lösungen approximiert (z.B. MF_i durch $\widehat{MF}_{i,N}$ für i = e, h in Ansatz 2). Voraussetzung für die Ersetzung des Modellfehlers durch eine Approximation auf einem groben Gitter ist, dass der Modellfehler auf dem Grobgitter zumindest in führender Ordnung wiedergegeben wird. Dies ist gleichbedeutend mit der Konvergenz von $\lim_{N\to\infty} \widehat{MF}_N = MF$, die für $N > N_{\text{Péclet}}$ gegeben ist (s. 7.2).

Wir nehmen an, dass der heterogene Lösungsanteil u_h auf Ω_h als analytischer Ausdruck gegeben ist, sodass hier kein Diskretisierungsfehler anfällt. Die vom Algorithmus überprüfte Forderung orientiert sich an (4.3) und lautet

$$\sqrt{\widehat{MF}_{h,N}^2 + \widehat{MF}_{e,N}^2} + \widehat{DF}_{e,n} \le TOL_G,\tag{4.4}$$

wobei die Subskripte N < n einen Hinweis auf die Anzahl der Diskretisierungspunkte und somit auf die Güte der Näherungen an die wirklichen Fehler geben sollen.

Ziel von Ansatz 1 und Ansatz 2 ist es, die zu einer vorgegebenen Toleranz TOL_{MF} gehörende Interface-Stelle \hat{c}_{MF} mit $\widehat{MF}_N(\hat{c}_{MF}) = TOL_{MF}$ zu bestimmen. Das Ziel von Ansatz 3 ist ehrgeiziger. Hier wird versucht, die kostengünstigste Interface-Position zu bestimmen, also diejenige Interface-Position c, bei der am wenigsten Gitterpunkte notwendig sind, damit der Diskretisierungsfehler die Resttoleranz $TOL_G - \widehat{MF}_N(c)$ unterschreitet.

Abbildung 8: Verlauf der Fehlerschätzer für Modellfehler und Diskretisierungsfehler auf $\Omega_e = (c, 1)$ in Abhängigkeit von der Interface-Position c. Zusätzlich ist für eine ausgewählte Interface-Stelle die Resttoleranz eingetragen. Um die einzelnen Fehleranteile gut erkennen zu können, wurde ε in Modell **A** sehr groß gewählt ($\varepsilon = 0.5$).

Zur Unterscheidung der einzelnen heterogenen Lösungen wird für diese im Folgenden das zusätzliche Subskript c zur Kennzeichnung der zugehörigen Interface-Stelle eingeführt: u_c ist die exakte Lösung des heterogenen Systems mit Interface-Stelle $0 \le c \le 1$.

In allen drei Ansätzen wird $\Omega = (0, 1)$ zunächst mit einem groben Diskretisierungsgitter überzogen. Die Verteilung der N + 1 Grobgitterpunkte $\{t_0, \ldots, t_N\}$ ist hierbei äquidistant, da wir keine Kenntnis über den qualitativen Lösungsverlauf voraussetzen. Die Wahl der zur Diskretisierung verwendeten Formfunktionen bestimmt die Ordnung des resultierenden Diskretisierungsfehlers.

Ansatz 1.

Mit Hilfe des Newton-Relaxations-Verfahrens wird \tilde{c}_{MF} als Näherung an den Schnittpunkt \hat{c}_{MF} von $\widehat{MF}_N(c)$ mit dem benutzerdefinierten Anteil TOL_{MF} an der Gesamttoleranz ermittelt. Dabei ist $\widehat{MF}_N(c)$ für $0 \le c \le 1$ eine a posteriori Schätzung des Modellfehlers, die an den Stützstellen der Newton-Iteration ausgewertet wird. Für jede Auswertung an einer Stützstelle c_k muss zuvor die diskrete heterogene Lösung $\hat{u}_{e,N;c_k}$ auf $\Omega_e = (c_k, 1)$ berechnet werden, weshalb die Kosten der (k + 1)-ten Newton-Iteration von der Ordnung $\mathcal{O}((1 - c_k)(N + 1))$ sind. Nach Abbruch der Newton-Iteration und Festsetzen des in der letzten Iteration ermittelten c-Wertes als engültige Interface-Position \tilde{c}_{MF} , wird das Grobgitter im elliptischen Rechengebiet solange weiter verfeinert, bis der dortige Diskretisierungsfehler die Resttoleranz unterschreitet, also $\widehat{DF}_{e,n;\tilde{c}_{MF}} \leq TOL_G - \widehat{MF}_N(\tilde{c}_{MF})$.

Vorteile:

- Im Unterschied zu Ansatz 2 und 3 ist eine Diskretisierung nur auf dem Teilgebiet Ω_e notwendig und nicht auf ganz Ω .
- Der tatsächliche Modellfehler MF liegt unter der Schätzung \widehat{MF} , die vom Benutzer definierte Toleranz TOL_{MF} wird also bei hinreichend kleiner Toleranz der Newton-Iteration nicht überschritten.

Nachteile:

- Die Überschätzung des tatsächlichen Modellfehlers MF(c) durch den Fehlerschätzer $\widehat{MF}_N(c)$ verschiebt die Position des Interfaces zu weit in das Teilgebiet mit hyperbolischem Charakter. Dadurch wird die Rentabilität der heterogenen Gebietszerlegung beeinträchtigt.
- Den Anteil von TOL_{MF} an TOL_G legt der Benutzer fest. Bei seiner Wahl von $0 < \kappa_{MF} < 1$ mit $TOL_{MF} = \kappa_{MF}TOL_G$ darf er weder zu vorsichtig sein, da das elliptische Rechengebiet sonst sehr groß wird, noch darf er zu forsch sein und durch eine zu geringe Resttoleranz den Löser zu einer starken Verfeinerung auf dem elliptischen Gebiet zwingen (vgl. auch das in Abbildung 8 dargestellte Zusammenspiel der Fehleranteile!). A priori Überlegungen können in einfachen Fällen einen Hinweis auf die optimale, also aufwandsminimierende Aufteilung der Gesamttoleranz liefern, i.a. ist das optimale Verhältnis von TOL_{MF} zu TOL_G allerdings nicht bekannt.

Ansatz 2.

Auf dem Grobgitter wird \hat{v}_N , die numerische Lösung des homogenen Systems, berechnet (Kosten $\mathcal{O}(N+1)$). Ohne Berechnung einer heterogenen Lösung $\hat{u}_{e,N;c}$ ist der Wert des Modellfehlers bereits an zwei Interface-Stellen bekannt:

MF(0) = 0, $MF(1) = \infty,$

wobei in Ansatz 2 der Wert MF(1) durch $\widehat{MF}_N(1) = \|\hat{v}_N - u_h\|_{E_T} < \infty$ ersetzt wird. Eine Näherung \tilde{c}_{MF} an die Schnittstelle \hat{c}_{MF} von $\widehat{MF}_N(c)$ mit TOL_{MF} wird durch Bisektion ermittelt, ausgehend vom Startintervall $[L_0, R_0] = [0, 1]$. Da zu jedem Intervallmittelpunkt c_i der Wert der Modellfehlerapproximation und deswegen die heterogene Lösung $\hat{u}_{e,N;c_i}$ zum Interface c_i berechnet werden muss, sind die Kosten in jeder Bisektionsschleife von der Ordnung $\mathcal{O}((1-c_i)(N+1))$. (Wahlweise kann TOL_{MF} feiner unterteilt und die beschriebene Bisektion sukzessive für jeden Anteil durchgeführt werden.) Anschließend wird das Gitter auf Ω_e so lange weiter verfeinert, bis Forderung (4.4) erfüllt ist.

Vorteile:

- Der approximative Verlauf von \widehat{MF}_N über c stimmt mit dem tatsächlichen Verlauf des Modellfehlers besser überein als die a posteriori Schätzung aus Ansatz 1. Somit wird auch der Schnittpunkt c_{MF} des Modellfehlers mit TOL_{MF} besser approximiert.

Nachteile:

- Da \widehat{MF}_N nur eine Approximation an MF ist, kann nicht sichergestellt werden, dass der tatsächliche Modellfehler den approximativen Wert nicht überschreitet. In diesem Fall wäre auch die Gesamttoleranz überschritten.
- Der Anteil von TOL_{MF} an TOL_G wird vom Benutzer definiert, s. Ansatz 1.

Ansatz 3.

Auf diesem Grobgitter berechnet man zunächst \hat{v}_N (Kosten $\mathcal{O}(N+1)$), sowie $\hat{u}_{N;c_0}$ für ein Startinterface c_0 (Kosten $\mathcal{O}((1-c_0)(N+1))$). Der Diskretisierungsfehler auf Ω_e ist proportional zu der den Formfunktionen entsprechenden Potenz der groben Gitterweite $T_N = \frac{1}{N}$. Dies gilt bei fester Interface-Position auch für die a posteriori Schätzung $\widehat{DF}_{e,N}$. Verfügt man also für die Interface-Stelle c_0 über eine Schätzung $\widehat{DF}_{e,N;c_0} \geq ||u_{e;c} - \hat{u}_{e,N;c}||_{E_{\mathcal{T}}(\Omega_e)}$, so kann dieses Ergebnis auf jede andere Schrittweite $T_n = \frac{1-c_0}{n}$ in $\Omega_e = (c_0, 1)$ übertragen werden. Da der a posteriori Schätzer \widehat{DF} die Lösung $u_{e;c}$ beinhaltet, gilt die direkte Proportionalität für $c \neq c_0$ nur noch annähernd. Sie erlaubt aber eine ungefähre Voraussage von $\widehat{DF}_{e,n;c}$ für beliebige Interface-Position c.

Bei Kenntnis von u_h hat man schon eine Approximation an den hyperbolischen Modell-

fehler für jedes Interface c, das mit einem Grobgitterpunkt t_i zusammenfällt,

$$\widehat{MF}_{h,N}^2(t_j) = \sum_{i=0}^{j-1} \|\hat{v}_N - u_h\|_{E((t_i, t_{i+1}))}^2 \text{ für } 0 \le j \le N$$

Sofern TOL_G nicht unsachgemäß groß gewählt wurde, kann hieraus c_{hyp} bestimmt werden als derjenige Grobgitterpunkt, bei dem der hyperbolische Modellfehler die Gesamttoleranz erstmals überschreitet,

$$c_{hyp} = \min\{c | c \in \{t_i\}_{1 \le i \le N} \text{ und } MF_h(c) \ge TOL_G\}.$$

Angenommen, MF_h und MF_e stehen in einem Zusammenhang, der a priori bekannt ist und auch für die Approximationen gilt, so kann man von $\widehat{MF}_{h,N}$ auf $\widehat{MF}_{e,N}$ rückschließen und kennt auch den Verlauf von \widehat{MF}_N . Übrig bleibt ein Optimierungsproblem:

Finde $c = c_{opt} \in (0, c_{hyp})$, welches unter Einhalten der Bedingung

$$\sqrt{\left(\widehat{MF}_{h,N}(c_{opt})\right)^2 + \left(\widehat{MF}_{e,N}(c_{opt})\right)^2} + \widehat{DF}_{e,n;c_{opt}} \le TOL_G$$

den Diskretisierungsaufwahd n für Ω_e minimiert.

Vorteile:

- Im Unterschied zu Ansatz 1 und 2 wird diesmal aus einer Startposition c_0 direkt die kostengünstigste Position des Interfaces ermittelt. Ein Iterationsprozess zum Auffinden dieser Interface-Stelle entfällt.

Nachteile:

- Voraussetzung für Ansatz 3 ist die Kenntnis des qualitativen Verlaufs des Verhältnisses MF_h zu MF_e über c. Dies gelang für Modell **A**, für Modell **B** konnten keine allgemeingültigen Aussagen getroffen werden.
- Der Modellfehler wird approximiert und nicht nach oben abgeschätzt. Dadurch und durch eine falsche Annahme über den Zusammenhang von MF_h und MF_e (sofern dieser Wert an der ermittelten optimalen Stelle nicht noch einmal extra approximiert wird), kann es zu einer Unterschätzung des tatsächlichen Modellfehlers kommen, s. Ansatz 2.
5 A posteriori Schätzung des Diskretisierungsfehlers.

Sei $u_e \in H^1(\Omega_e)$ die elliptische Teillösung des heterogenen Modells für festes Interface c,

$$\begin{aligned} -\varepsilon u_e'' + u_e' + a_q u_e &= f \text{ in } \Omega_e = (c, 1), \\ u_e(c) &= u_h(c), \\ u_e(1) &= k, \end{aligned}$$

wobei $a_q = 0$ (Modell **A**) oder $a_q > 0$ (Modell **B**) beliebig. Sie kann zunächst aufgespalten werden in $u_e = U_e + g$ mit dem linearen Bestandteil $g \in H^1(\Omega_e)$,

$$g(t) = u_h(c)\frac{t-1}{c-1} + k\frac{c-t}{c-1},$$

welcher die inhomogenen Randbedingungen erfüllt, und $U_e \in H_0^1(\Omega_e)$, das die Variationsformulierung

$$\varepsilon \int_{c}^{1} U'_{e} w' + \int_{c}^{1} U'_{e} w + \int_{c}^{1} a_{q} U_{e} w = \int_{c}^{1} \tilde{f} w$$

$$(5.1)$$

für alle $w \in H_0^1(\Omega_e)$ löst, wobei $\tilde{f} \in L^2(\Omega_e)$ definiert ist durch

$$\tilde{f} = f - \frac{\partial g}{\partial t} - a_q g.$$

Auf Ω_e liege ein Gitter $\mathcal{T} = \{t_i\}_{0 \le i \le n}$ vor mit $c = t_0 < t_1 < \ldots < t_n = 1$, den Schrittweiten $T_i := t_i - t_{i-1}$ und der maximalen Schrittweite $T_{max} := \max_{1 \le i \le n} \{T_i\}$. Sei S^1 der von den linearen Formfunktionen φ_i aufgespannte Vektorraum mit $i = 1, \ldots, n-1$ und

$$\varphi_i(t) \colon = \begin{cases} \frac{1}{T_i}(t - t_{i-1}) & \text{für } t \in [t_{i-1}, t_i] \\ \frac{1}{T_{i+1}}(t_{i+1} - t) & \text{für } t \in [t_i, t_{i+1}] \\ 0 & \text{sonst} \end{cases}$$

Anstelle von U_e wird $\hat{U}_e \in S^1$ berechnet, wobe
i \hat{U}_e die Lösung des endlichdimensionalen Problems

$$\varepsilon \int_c^1 \hat{U}'_e w' + \int_c^1 \hat{U}'_e w + \int_c^1 a_q \hat{U}_e w = \int_c^1 \tilde{f} w$$

für alle $w \in S^1$ sei. Dabei entsteht der Diskretisierungsfehler

$$||u_e - \hat{u}_e||^2_{E_T(\Omega_e)} = ||U_e - \hat{U}_e||^2_{E_T(\Omega_e)} = F_e(U_e - \hat{U}_e, U_e - \hat{U}_e)$$

mit $F_e := F|_{H^1_0(\Omega_e) \times H^1_0(\Omega_e)}$. Unter Berücksichtigung der Galerkin-Orthogonalität folgt

$$\|u_e - \hat{u}_e\|_{E_{\mathcal{T}}(\Omega_e)} \le \sup_{\substack{w \in H_0^1(\Omega_e) \\ \|w\|_{E(\Omega_e)} \equiv 1}} F_e(U_e - \hat{U}_e, w) = \sup_{\substack{w \in H_0^1(\Omega_e) \\ \|w\|_{E(\Omega_e)} \equiv 1}} F_e(U_e - \hat{U}_e, w - Iw),$$

wobe
i $Iw \in S^1$ das Bild von w unter dem Interpolations
operator

$$\begin{split} I: H_0^1(\Omega_e) &\to S^1, \\ w &\mapsto Iw = \sum_{i=1}^{n-1} w(t_i) \varphi_i, \end{split}$$

sei. Nun gilt

$$\begin{split} F_{e}(U_{e} - \hat{U}_{e}, w - Iw) &= \int_{c}^{1} \varepsilon U_{e}'(w - Iw)' + \int_{c}^{1} U_{e}'(w - Iw) + \int_{c}^{1} a_{q}U_{e}(w - Iw) \\ &- \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (\varepsilon \hat{U}_{e}'(w - Iw)' + \hat{U}_{e}'(w - Iw) + a_{q}\hat{U}_{e}(w - Iw)) \\ &= \int_{c}^{1} \tilde{f}(w - Iw) - \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (-\varepsilon \hat{U}_{e}'' + \hat{U}_{e}' + a_{q}\hat{U}_{e})(w - Iw) \\ &- \sum_{i=1}^{n} [\varepsilon \hat{U}_{e}'(w - Iw)]_{t_{i-1}}^{t_{i}} \\ &= \int_{c}^{1} \tilde{f}(w - Iw) - \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (\hat{U}_{e}' + a_{q}\hat{U}_{e})(w - Iw) \\ &\leq \sum_{i=1}^{n} \|\tilde{f} - \hat{U}_{e}' - a_{q}\hat{U}_{e}\|_{L^{2}((t_{i-1}, t_{i}))}^{2} \|w - Iw\|_{L^{2}((t_{i-1}, t_{i}))} \Big)^{\frac{1}{2}} \\ &= \left(\sum_{i=1}^{n} \|f - \hat{U}_{e}' - a_{q}\hat{u}_{e}\|_{L^{2}((t_{i-1}, t_{i}))}^{2}\right)^{\frac{1}{2}} \|w - Iw\|_{L^{2}((t_{i-1}, t_{i}))}. \end{split}$$

Bei der Abschätzung von $\|w - Iw\|_{L^2((t_{i-1},t_i))}$ setzen wir zur Vereinfachung $\omega := w - Iw$. Es gilt $\omega \in H_0^1((t_{i-1},t_i))$. Da $H_0^1((t_{i-1},t_i))$ der Abschluss von $C_0^{\infty}((t_{i-1},t_i))$ in der H^1 -Norm ist, existiert eine Folge $\{\omega_n\}_n \subset C_0^{\infty}([t_{i-1},t_i])$ mit $\omega_n(t_{i-1}) = \omega_n(t_i) = 0$ für alle n und $\|\omega - \omega_n\|_{H^1} \to 0$. Für $t \in (t_{i-1},t_i)$ folgt

$$\begin{aligned} |\omega_n(t)| &= \left| \int_{t_{i-1}}^t \omega'_n(s) \mathrm{d}s \right| \\ &\leq |t - t_{i-1}|^{1/2} \left(\int_{t_{i-1}}^t (\omega'_n(s))^2 \mathrm{d}s \right)^{1/2} \\ &\leq |t - t_{i-1}|^{1/2} \left(\int_{t_{i-1}}^{t_i} (\omega'_n(s))^2 \mathrm{d}s \right)^{1/2}, \end{aligned}$$

und daraus

$$\int_{t_{i-1}}^{t_i} (\omega_n(t))^2 \mathrm{d}t \le \int_{t_{i-1}}^{t_i} |t - t_{i-1}| \left(\int_{t_{i-1}}^{t_i} (\omega_n'(s))^2 \mathrm{d}s \right) \mathrm{d}t = \frac{1}{2} (t_i - t_{i-1})^2 \|\omega_n'\|_{L^2((t_{i-1}, t_i))}^2 + \frac{1}{2} \|\omega_n'\|_{L^2(t_{i-1}, t_i)}^2 + \frac{1}$$

Beim Grenzübergang $n \to \infty$ erhält man

$$\|\omega\|_{L^2((t_{i-1},t_i))} \le \frac{1}{\sqrt{2}} T_i \|\omega'\|_{L^2((t_{i-1},t_i))},$$

und damit

$$\begin{split} \|w - Iw\|_{L^{2}((t_{i-1},t_{i}))} &\leq \frac{1}{\sqrt{2}}T_{i}\|(w - Iw)'\|_{L^{2}((t_{i-1},t_{i}))} \\ &\leq \frac{1}{\sqrt{2}}T_{i}\|w'\|_{L^{2}((t_{i-1},t_{i}))} \\ &\leq \frac{1}{\sqrt{2\varepsilon}}T_{i}\|w\|_{E((t_{i-1},t_{i}))}. \end{split}$$

Die mittlere Ungleichung ergab sich aus der Überlegung

$$\begin{split} \int_{t_{i-1}}^{t_i} (w' - Iw')^2 &= \int_{t_{i-1}}^{t_i} (w' - \frac{w(t_i) - w(t_{i-1})}{T_i})^2 \\ &= \int_{t_{i-1}}^{t_i} (w')^2 - \frac{(w(t_i) - w(t_{i-1}))^2}{T_i} \\ &\leq \int_{t_{i-1}}^{t_i} (w')^2. \end{split}$$

Für Ω_e folgt nun

$$\begin{split} \|w - Iw\|_{L^{2}((c,1))} &= \left(\sum_{i=1}^{n} \|w - Iw\|_{L^{2}((t_{i-1},t_{i}))}^{2}\right)^{1/2} \\ &\leq \left(\frac{1}{2\varepsilon} \sum_{i=1}^{n} T_{i}^{2} \|w\|_{E((t_{i-1},t_{i}))}^{2}\right)^{1/2} \\ &\leq \frac{T_{max}}{\sqrt{2\varepsilon}} \|w\|_{E(\Omega_{e})} = \frac{T_{max}}{\sqrt{2\varepsilon}}. \end{split}$$

Das Zusammenfassen der Ergebnisse liefert die a posteriori Schätzung

$$\|u_e - \hat{u}_e\|_{E_{\mathcal{T}}} \le \frac{T_{max}}{\sqrt{2\varepsilon}} \left(\sum_{i=1}^n \|f - \hat{u}'_e - a_q \hat{u}_e\|_{L^2((t_{i-1}, t_i))}^2 \right)^{\frac{1}{2}}.$$

Qualitative Untersuchung des Fehlerschätzers für Modell A.

Im numerischen Experiment sieht man, dass der Diskretisierungsfehler durch die a posteriori Schätzung überschätzt wird. Die Überschätzung des Fehlers ist unabhängig von der rechten Seite f der Differentialgleichung, aber abhängig von dem Verhältnis T_{max}/ε . Dem Ergebnis der Untersuchung entsprechend wird der Fehlerschätzer mit dem Faktor $skal_{DF} := \frac{1}{2.44}$ skaliert.

Abbildung 9: Der Fehlerschätzer überschätzt den tatsächlichen Diskretisierungsfehler.

Beachte: Die Überschätzung spielt im Vergleich von homogener zu heterogener Rechnung keine Rolle, da jeweils der gleiche Schätzer verwendet wird.

6 Ansatz 1: A posteriori Fehlerschätzung und Newton-Verfahren.

Für die Entwicklung eines geeigneten Schätzers des Modellfehlers untersuchen wir zunächst die Regularität der Lösungen.

6.1 Regularisierung der schwachen Lösungen.

Wir definieren $\varphi \in C^{\infty}(\overline{\Omega})$ durch $\varphi(t) := kt$. Dann erfüllt die homogene Lösung $v \in H^1(\Omega)$ mit

$$-\varepsilon v'' + v' + a_q v = f \text{ auf } \Omega = (0, 1)$$

die Randbedingung

 $v = \varphi$ auf $\partial \Omega$.

Da ε konstant ist, folgt aus

 $-\varepsilon v'' = f - v' - a_q v \in L^2(\Omega)$

sofort $v \in H^2(\Omega)$. Gemäß den Einbettungssätzen von Sobolev (s. beispielsweise [2]) kann v eindeutig mit einer Funktion aus $C^1(\overline{\Omega})$ identifiziert werden. Die Stetigkeit des Einbettungsoperators $H^2(\Omega) \to C^1(\overline{\Omega})$ und die aus der Regularitätstheorie bekannten Resultate (s. beispielsweise [16])

 $\|v\|_{H^{1}(\Omega)} \leq C \left(\|f\|_{L^{2}(\Omega)} + \|\varphi\|_{H^{1}(\Omega)} \right),$ $\|v\|_{H^{2}(\Omega)} \leq C \left(\|v\|_{L^{2}(\Omega)} + \|f\|_{L^{2}(\Omega)} + \|\varphi\|_{H^{2}(\Omega)} \right),$

ergeben die Abschätzung

 $\|v\|_{C^{1}(\bar{\Omega})} \leq C \left(\|f\|_{L^{2}(\Omega)} + \|\varphi\|_{H^{2}(\Omega)}\right).$

Es sei u die Lösung des heterogenen Modells und $H_l^1(\Omega_h) := \{ w \in H^1(\Omega_h) : w(0) = 0 \}$. Aus $u'_h = f - a_q u_h \in L^2(\Omega_h)$ und $u_h(0) = 0$ folgt $u_h \in H_l^1(\Omega_h)$.

Definiere $H_r^1(\Omega_e) := \{ w \in H^1(\Omega_e) : w(c) = u_h(c), w(1) = 0 \}$ als Lösungsraum des elliptischen Anteils der heterogenen Lösung u_e . Für $\varphi \in C^{\infty}(\Omega_e)$ mit

$$\varphi(t) := \frac{(t-1)}{(c-1)} u_h(c) - \frac{(t-c)}{(c-1)} k$$

erhält man analog zur Vorgehensweise beim homogenen Modell $u_e \in H^2(\Omega_e) \subset C^1(\overline{\Omega}_e)$.

Fordern wir im heterogenen Modell Stetigkeit der Lösung am Interface c, so ist $u \in C^0(\bar{\Omega})$. Insgesamt gilt also für die heterogene Lösung u bei Stetigkeit am Interface $u \in H^1(\Omega) \cap C^1(\bar{\Omega}_e)$. Bei Flusserhalt am Interface hat die Lösung u in der Regel einen Sprung am Interface und wir erhalten $u \in H^1_I(\Omega_h) \cap C^1(\bar{\Omega}_e)$.

6.2 A posteriori Schätzung des Modellfehlers.

Wir beschränken die Fehlerschätzung auf den Fall (1.4f) der Stetigkeit am Interface. Für die Fehlerfunktion

$$e_{MF} = \begin{cases} e_{MF,h} = v - u_h \text{ auf } [0,c) \\ e_{MF,e} = v - u_e \text{ auf } [c,1] \end{cases}$$

gilt nach Abschnitt 6.1 somit $e_{MF} \in H_0^1(\Omega)$.

Der Modellfehler setzt sich zusammen aus hyperbolischem und elliptischem Anteil, also aus der Energienorm der Fehlerfunktion $e_{MF,h}$ auf Ω_h und $e_{MF,e}$ auf Ω_e ,

$$\|e_{MF}\|_{E}^{2} = \varepsilon \int_{0}^{c} (e'_{MF,h})^{2} + \int_{0}^{c} a_{q} e^{2}_{MF,h} + \varepsilon \int_{c}^{1} (e'_{MF,e})^{2} + \int_{c}^{1} a_{q} e^{2}_{MF,e}.$$

Wegen

$$\int_{0}^{c} e'_{MF,h} e_{MF,h} + \int_{c}^{1} e'_{MF,e} e_{MF,e} = \left[\frac{1}{2}e^{2}_{MF,h}\right]_{0}^{c} + \left[\frac{1}{2}e^{2}_{MF,e}\right]_{c}^{1} - \int_{0}^{c} e'_{MF,h} e_{MF,h} - \int_{c}^{1} e'_{MF,e} e_{MF,e} = 0$$

kann dieser Ausdruck zum Quadrat des Modellfehlers addiert werden,

$$\|e_{MF}\|_{E}^{2} = \|e_{MF}\|_{E}^{2} + \int_{0}^{c} e'_{MF,h} e_{MF,h} + \int_{c}^{1} e'_{MF,e} e_{MF,e}$$

und es folgt

$$||e_{MF}||_{E}^{2} = F(e_{MF}, e_{MF})$$

Sofern $||e_{MF}||_E \neq 0$, ist

$$\|e_{MF}\|_{E} = \frac{F(e_{MF}, e_{MF})}{\|e_{MF}\|_{E}} = F(e_{MF}, \frac{e_{MF}}{\|e_{MF}\|_{E}}) \le \sup_{\substack{w \in H_{0}^{1}(\Omega)(\Omega) \\ \|w\|_{E} = 1}} F(e_{MF}, w).$$
(6.1)

Die einzelnen Variationsformulierungen für die homogene Lösung v und die heterogenen Teillösungen u_h und u_e ergeben zusammengefasst

$$\begin{split} F(e_{MF},w) &= \varepsilon \int_{0}^{c} e'_{MF,h} w'_{h} + \varepsilon \int_{c}^{1} e'_{MF,e} w'_{e} + \int_{0}^{1} e'_{MF} w + \int_{0}^{1} a_{q} e_{MF} w \\ &= \varepsilon \int_{0}^{1} v' w' + \int_{0}^{1} v' w + \int_{0}^{1} a_{q} v w - \varepsilon \int_{0}^{c} u'_{h} w'_{h} - \varepsilon \int_{c}^{1} u'_{e} w'_{e} - \int_{0}^{c} u'_{h} w_{h} \\ &- \int_{c}^{1} u'_{e} w_{e} - \int_{0}^{c} a_{q} u_{h} w_{h} - \int_{c}^{1} a_{q} u_{e} w_{e} + \varepsilon u'_{e}(c) w_{e}(c) - \varepsilon u'_{e}(c) w_{e}(c) \\ &= \int_{0}^{1} f w - \int_{0}^{1} f w - \varepsilon \int_{0}^{c} u'_{h} w'_{h} + \varepsilon u'_{e}(c) w_{e}(c) \\ &= \varepsilon (-\int_{0}^{c} (f - a_{q} u_{h}) w'_{h} + u'_{e}(c) w_{e}(c)). \end{split}$$

Hierbei steht $u'_e(c)$ für den rechtsseitigen Grenzwert der auf Ω_e stetigen Ableitung, $u'_e(c) := \lim_{t \downarrow c} u'_e(t).$

Aus

$$|\varepsilon \int_0^c (f - a_q u_h) w'_h| \le \sqrt{\varepsilon} ||f - a_q u_h||_{L^2(\Omega_h)} \sqrt{\varepsilon} ||w'_h||_{L^2(\Omega_h)} \le \sqrt{\varepsilon} ||f - a_q u_h||_{L^2(\Omega_h)} ||w_h||_{E(\Omega_h)},$$

$$|\varepsilon u'_e(c)w_e(c)| = |\varepsilon u'_e(c)\int_c^1 w'_e| \le \sqrt{\varepsilon}|u'_e(c)|\sqrt{1-c}||w_e||_{E(\Omega_e)},$$

wie auch

$$|\varepsilon u'_e(c)w_e(c)| = |\varepsilon u'_e(c)w_h(c)| = |\varepsilon u'_e(c)\int_0^c w'_h| \le \sqrt{\varepsilon}|u'_e(c)|\sqrt{c}||w_h||_{E(\Omega_h)},$$

folgt

$$F(e_{MF}, w) \le \sqrt{\varepsilon} (\|f - a_q u_h\|_{L^2(\Omega_h)} + \min\{\sqrt{c}, \sqrt{1 - c}\} |u'_e(c)|) \|w\|_E.$$

Andererseits kann man auch die Differenz beibehalten,

$$F(e_{MF}, w) \le \sqrt{\varepsilon} \|u'_e(c) - f + a_q u_h\|_{L^2(\Omega_h)} \|w_h\|_{E(\Omega_h)}.$$

Insgesamt folgt also mit (6.1)

$$\|e_{MF}\|_{E} \leq \widehat{MF}(c) := \sqrt{\varepsilon} \min \begin{cases} (\|f - a_{q}u_{h}\|_{L^{2}(\Omega_{h})} + \min\{\sqrt{c}, \sqrt{1 - c}\}|u'_{e}(c)|), \\ \|u'_{e}(c) - f + a_{q}u_{h}\|_{L^{2}(\Omega_{h})}. \end{cases}$$
(6.2)

6.3 Qualitative Diskussion der Fehlerschranken für Modell A mit konstanter rechter Seite.

Zur Abkürzung setzen wir $-\frac{1}{\varepsilon} < z := \frac{c-1}{\varepsilon} < 0.$ Bei konstanter rechter Seitefund k=0 beträgt der Modellfehler

$$\|e_{MF}\|_{E} = |f| \sqrt{\frac{e^{z} \left(e^{-\frac{1}{\varepsilon}} - e^{z}\right)}{(1 - e^{z}) \left(e^{-\frac{1}{\varepsilon}} - 1\right)}}$$

Das Verhältnis zu der oberen Schranke

$$\sqrt{\varepsilon} \left(\|f\|_{L^{2}(\Omega_{h})} + \min\{\sqrt{c}, \sqrt{1-c}\} |u_{e}'(c)| \right) = |f|\sqrt{\varepsilon} \left(\sqrt{\varepsilon z + 1} + \min\{\sqrt{\varepsilon z + 1}, \sqrt{-\varepsilon z}\} |1 + \frac{e^{z}}{\varepsilon(e^{z} - 1)}| \right)$$
(6.3)

bzw.

$$\sqrt{\varepsilon} \|u_e'(c) - f\|_{L^2(\Omega_h)} = |f| \frac{e^z}{1 - e^z} \sqrt{z + \frac{1}{\varepsilon}}$$

$$(6.4)$$

demonstriert die nachfolgende Grafik.

Abbildung 10: Beide Versionen des Fehlerschätzers zeigen eine deutliche Überschätzung des tatsächlichen Modellfehlers für f = 1 (links). Im rechten Bild ist der entsprechende Verlauf für f = t + 1 dargestellt.

Über einen großen Teil von Ω ist (6.4) die schärfere Abschätzung. Erst im Bereich der Grenzschicht ist (6.3) effizienter.

Geht die Lage des Interfaces c gegen 0, so wird das heterogene Modell wieder zum ursprünglichen homogenen: $\Omega_h = \emptyset$, $\Omega_e = \Omega$ und $u \to v$. Damit gilt für die Fehlerfunktion

$$e_{MF}(t) = e_{MF,e}(t) \equiv 0,$$

und folglich verschwindet auch der Modellfehler für $c \to 0$ (Beachte: $e'_{MF,h}(t)$ bleibt für $c \to 0$ beschränkt, somit gilt $||e_{MF,h}||_E \to 0$).

Dies trifft für $c \to 0$ auch für die oberen Schranken (6.3) und (6.4) zu, wobei (6.3) dieses Grenzverhalten jedoch erst im letzten Moment zeigt und dann sehr steil auf 0 abfällt. Betrachtet man das Verhältnis der oberen Schranken zum tatsächlichen Fehler, so sieht man, dass in diesem Bereich (6.4) die effizientere Fehlerschranke ist. Im Spezialfall der konstanten rechten Seite sieht man direkt

$$\lim_{c \downarrow 0} \frac{(6.4)}{\|e_{MF}\|_E} = \lim_{z \downarrow \frac{-1}{\varepsilon}} \sqrt{\frac{e^z \left(z + \frac{1}{\varepsilon}\right) \left(e^{-\frac{1}{\varepsilon}} - 1\right)}{(1 - e^z) \left(e^{-\frac{1}{\varepsilon}} - e^z\right)}} = 1$$

Abbildung 11: Das Verhalten der Fehlerschätzer für $c \to 0$. Das rechte Bild zeigt das Verhältnis von (6.4) zu $||e_{MF}||_E$ für $c \to 0$.

Der Grenzfall für $c \to 1$ ist das hyperbolische Transportmodell. Hierbei geht der Modellfehler $||e_{MF}||_E$ gegen unendlich, was auch auf beide Schätzer zutrifft. Im Spezialfall der konstanten rechten Seite verhält sich die Differenz zwischen den beiden Schätzern, (6.4) – (6.3), für $c \to 1$ asymptotisch wie $\varepsilon - \frac{e^{(c-1)/\varepsilon}}{e^{(c-1)/\varepsilon}-1}$, geht also ebenfalls gegen unendlich. Somit ist (6.3) bei höheren Toleranzen vorzuziehen. Es läßt sich direkt nachrechnen:

$$\lim_{c\uparrow 1} \frac{(6.3)}{\|e_{MF}\|_E} = \frac{\sqrt{\varepsilon} \left(\sqrt{\varepsilon z + 1} + \sqrt{-\varepsilon z} \left(1 + \frac{e^z}{\varepsilon(e^z - 1)}\right)\right) \sqrt{1 - e^z} \sqrt{1 - e^{-\frac{1}{\varepsilon}}}}{\sqrt{e^z \left(e^{-\frac{1}{\varepsilon}} - e^z\right)}} = 1.$$

Abbildung 12: Das Verhalten der Fehlerschätzer für $c \to 1$. Das rechte Bild zeigt das Verhältnis von (6.3) zu $||e_{MF}||_E$ für $c \to 1$.

Bei Auswahl des jeweils besseren Schätzers ergibt sich folgendes Verhältnis zum tatsächlichen Modellfehler:

Abbildung 13: Das Verhältnis von Schätzer zu Fehler bei Auswahl des jeweils kleineren Schätzers (links). Der maximale Wert der Überschätzung steigt mit sinkendem Wert von ε (rechts).

Man erkennt ein Maximum der Fehlerüberschätzung beim Wechsel von (6.4) zu (6.3), dessen Größe leider von ε abhängt, der Fehlerschätzer ist also nicht robust. Die Überschätzung ist allerdings unabängig von der rechten Seite f.

Denselben qualitativen Verlauf der Fehlerüberschätzung erhält man bei Modell ${\bf B}$ für konstante rechte Seite.

Abbildung 14: Modellfehler und Fehlerschätzer in Modell **B** für f(t) = 1 (links) und das Verhältnis von Schätzer zu Fehler bei Auswahl des jeweils kleineren Schätzers (rechts).

Abbildung 15: Auch in Modell **B** steigt der maximale Wert der Überschätzung mit sinkendem Wert von ε .

6.4 Auffinden der Interface-Stelle.

Gesucht ist ein Punkt

$$\hat{c}_{MF} \in \Omega \text{ mit } \widehat{MF}(\hat{c}_{MF}) = TOL_{MF}.$$
(6.5)

Der Gleichung (6.5) genügen die Nullstellen der Funktion

$$\begin{array}{rcl} \mathcal{N}:(0,1) & \to & \mathbb{R} \\ c & \mapsto & \mathcal{N}(c) = (\widehat{MF}(c))^2 - TOL_{MF}^2 \end{array}$$

Dabei wird der Ausdruck $u'_e(c)$ in der a posteriori Abschätzung (6.2) durch $\hat{u}'_{e,N;c}(c)$, eine Näherung an die Ableitung der diskreten Lösung, ersetzt, wobei der Index N die Anzahl der Punkte auf dem zugehörigen Grobgitter wiedergibt und der Index c die Lage des Interfaces. Folglich ist jede Auswertung von \mathcal{N} teuer, da jeweils die diskrete heterogene Lösung $\hat{u}_{e,N;c}(t)$ berechnet werden muss. Dies ist mit einem Aufwand von der Ordnung $\mathcal{O}((1-c)(N+1))$ verbunden, da nur ein Teil der insgesamt N+1 auf Ω äquidistanten Gitterpunkte in Ω_e liegt. Das Ziel ist also, die Nullstelle \hat{c}_{MF} möglichst genau mit möglichst wenigen Auswertungen von \mathcal{N} zu bestimmen, weshalb sich das Bisektionsverfahren als ungeeignet erwies. Die Wahl fiel auf das

Newton-Relaxations-Verfahren.

Der Graph von MF(c) zeigt einen Knick beim Wechsel von (6.4) zu (6.3), also eine Unstetigkeit der ersten Ableitung, die dem Newton-Verfahren Schwierigkeiten bereitet. In 6.3 haben wir für konstante rechte Seite f gesehen, dass (6.3) nur in Nähe der Grenzschicht die schärfere Schätzung liefert. Da jedoch innerhalb der Grenzschicht die Schnittpunkte der Schätzer mit einer zur Abszisse parallelen Geraden dicht beieinander liegen, liegt es nahe, sich bei der Nullstellensuche auf den Zweig des Fehlerschätzers zu beschränken, der zu Ausdruck (6.4) führte. Dies gilt sinngemäß auch für beliebige rechte Seiten, wie die folgenden Bilder zeigen.

Abbildung 16: Die Knickstelle im Graph des Fehlerschätzers liegt im Bereich der Grenzschicht. (Bezeichnungen (6.4) und (6.3) sind sinngemäß zu verstehen).

Somit ist

$$c \to \mathcal{N}(c) := \varepsilon \int_0^c (f(t) - (a_q u_h)(t) - u'_{e,N;c}(c))^2 \mathrm{d}t - TOL_{MF}^2$$

und das Newton-Relaxations-Verfahren lautet:

Setze k = 0 und wähle einen Startwert

Löse	$\frac{\partial \mathcal{N}}{\partial c}(c_k)\Delta c_k = -\mathcal{N}(c_k),$
und setze	$c_{k+1} = c_k - \lambda_k \Delta c_k.$
Falls $ c_{k+1} - c_k < TOL_{Newton}$,	setze $\tilde{c}_{MF} = c_{k+1}$.
Sonst	setze $k = k + 1$ und
	wiederhole ab zweiter Zeile

Hierbei ist $\lambda_k \in \{1, \frac{1}{2}, \frac{1}{4}, \dots, \lambda_{min}\}$ ein Dämpfungsfaktor, welcher so gewählt wird, dass der natürliche Monotonietest für $1 - \lambda_k/2$ erfüllt ist (s. [13], S. 98).

 $c_0 \in (0, 1).$

Trotz der Einschränkung auf (6.4) ist eine globale Konvergenz des Verfahrens auf Ω nicht gewährleistet. Im Gegensatz zum streng monoton steigenden exakten Modellfehler MF(c), zeigen die Bilder, dass $\widehat{MF}(c)$ für allgemeine rechte Seite außerhalb der Grenzschicht ein lokales Maximum, gefolgt von einem lokalen Minimum, besitzt. Für den Erfolg des Newton-Verfahrens muss der Startwert c_0 also bereits in Abhängigkeit von der Lage der Nullstelle \hat{c}_{MF} gewählt werden. Mit zunehmender Größe der Toleranz gibt es

- genau einen Schnittpunkt \hat{c}_{MF} von $\widehat{MF}(c)$ mit TOL_{MF} und zwar links der lokalen Extrema. Dieser kann vom Newton-Verfahren ausgehend vom Startwert $c_0 = 0$ ermittelt werden. In der Praxis hat sich $c_0 = \frac{0.05}{\sqrt{\varepsilon}+0.05}$ als kostensparender Startpunkt für diesen Fall bewährt.
- drei Schnittpunkte, wobei $\hat{c}_{MF,1} < \text{lok.}$ Maximum $< \hat{c}_{MF,2} < \text{lok.}$ Minimum $< \hat{c}_{MF,3}$ gilt. Das Interesse gilt hierbei natürlich $\hat{c}_{MF,3}$, der Startwert c_0 ist also rechts des lokalen Maximums zu wählen, beispielsweise $c_0 = 1 + \varepsilon \ln(\varepsilon)$.
- genau einen Schnittpunkt \hat{c}_{MF} rechts der lokalen Extrema. Ein geeigneter Startwert ist wiederum $c_0 = 1 + \varepsilon \ln(\varepsilon)$.

Ist die ungefähre Lage des Schnittpunktes nicht bekannt, so sollte zuerst ein Startwert in Nähe der Grenzschicht ausprobiert werden und nur bei Divergenz oder Stagnation des Newton-Verfahrens nach links ausgewichen werden.

Voraussetzung für den Erfolg des Newton-Verfahrens ist $\mathcal{N}(c) \in C^1(U)$ für eine Umgebung U von \hat{c}_{MF} . Dies trifft zumindest beim Ersetzen der in \mathcal{N} auftretenden Funktionen durch entsprechende Diskretisierungen zu, vorausgesetzt, dass die Anzahl der Diskretisierungsintervalle konstant gehalten wird. Unter Voraussetzung der notwendigen Regularität berechnen wir

$$\frac{\partial \mathcal{N}(c)}{\partial c} = \varepsilon \Big((f(c) - (a_q u_h)(c) - u'_{e;c}(c))^2 \\ + 2 \frac{\partial}{\partial c} \left(u'_{e;c}(c) \right) \left(u'_{e;c}(c)c - \int_0^c f(t) - (a_q u_h)(t) dt \Big) \Big).$$

Die einzelnen Teile der Iterationsvorschrift wurden im Programm folgendermaßen umgesetzt:

- Das Integral über f. Ist die Stammfunktion von f nicht bekannt, so wird das Integral $\int_0^c f(t) dt$ mit Hilfe der numerischen Quadratur approximiert.
- Die Ableitung $u'_{e;c}(c)$. Man beobachtet, dass $\frac{\partial \mathcal{N}(c)}{\partial c}$ empfindlich von dem Wert $u'_{e;c}(c)$ abhängt. Die Approximation des rechtsseitigen Grenzwertes $u'_{e;c}(c)$ durch den rechtsseitigen Differenzenquotienten der diskreten Lösung $\hat{u}_{e,N;c}$

$$u'_{e;c}(c) \approx \frac{\hat{u}_{e,N;c}(c+\frac{1}{N}) - \hat{u}_{e,N;c}(c)}{\frac{1}{N}}$$

erwies sich im numerischen Experiment als ungeeignet und wurde ersetzt durch den auf die Stelle c extrapolierten Wert aller auf den einzelnen Gitterabschnitten auftretenden Differenzenquotienten. Die jeweilige Auswirkung auf die Fehlerschätzer ist abhängig von der Anzahl der Diskretisierungspunkte.

Abbildung 17: Relative Abweichung des diskreten vom analytischen Fehlerschätzer für Modell **A** mit rechter Seite $f(t) = e^t$ (links) und $f(t) = t^2$ (rechts). Dabei bezeichne Schaetzer_{min} die a posteriori Schäztung (6.2) und Schaetzer(6.4) der Auswertung ihres im Fall f = 1 der Formel (6.4) entsprechenden Zweiges.

- Die Ableitung von $u'_{e;c}(c)$ nach dem Parameter c. Hierbei muss berücksichtigt werden, dass in $u_e(t)$ die Variable c schon durch Festlegung der Interface-Stelle als Parameter vorhanden ist, $u_e(t) = u_{e;c}(t)$. Daraus folgt

$$\frac{\partial}{\partial c} \left(u_{e;c}'(c) \right) = u_{e;c}''(c) + \left(\frac{\partial}{\partial c} u_{e;c}'(t) \right)_{t=c},$$

wobei ' wie gewohnt die Ableitung nach der Laufvariablen t bezeichnet. Für eine klassische Lösung von (1.4b) kann die zweite Ableitung $u_{e:c}''(c)$ ersetzt werden durch

$$u_{e;c}''(c) = \frac{u_{e;c}'(c) + (a_q u_e)(c) - f(c)}{\varepsilon}.$$

Sobald die diskrete heterogene Lösung $\hat{u}_{e,N;c}$ zu verschiedenen Interface-Positionen *c* berechnet wurde, also ab der zweiten Newton-Iteration, ersetzt man die Ableitung von $u'_{e;c}(c)$ nach dem Parameter *c* durch

$$\left(\frac{\partial}{\partial c}u_{e;c}'(t)\right)_{t=c}\approx \frac{u_{e,N;c_{alt}}'(c)-u_{e,N;c}'(c)}{c_{alt}-c}$$

Der Wert $u'_{e;c_{alt}}(c)$ muß dabei ebenfalls durch Interpolation ermittelt werden. Dieser Beitrag zu $u'_{e;c}(c)$ wird nur berücksichtigt, falls die Änderung in c nicht zu groß war.

Der Genauigkeitsanspruch TOL_{Newton} an das Newton-Verfahren sollte sich an der Größe der Grenzschicht und somit an der Größe von ε orientieren. Hier wurde als absolute Toleranz $TOL_{Newton} = \frac{\varepsilon}{10}$ gesetzt, was für die Zahl der Grobgitterpunkte N + 1 die Forderung $N \geq N_{min} = \frac{2}{TOL_{Newton}}$ impliziert. Erfahrungsgemäß reichen bei geeignetem Startwert drei Iterationen zum Erlangen der geforderten Genauigkeit aus. Eine Ausnahme bildet der Fall der konstanten rechten Seite, in welchem mitunter mehr Iterationen nötig sind. Das liegt an dem Verlauf der Funktion $\mathcal{N}(c)$, deren Graph in diesem Fall zunächst nahezu konstant ist, bevor er sehr steil nach oben abknickt. Hier sollte die Funktion \mathcal{N} zuerst einer Transformation unterworfen bzw. c umskaliert werden.

Abbildung 18: Der Verlauf der Newton-Iteration in ausgewählten Beispielen mit Startwert c_0 links bzw. rechts vom Knick. Weitere Bildbeispiele finden sich im Anhang.

6.5 Vorüberlegungen zur aufwandminimierenden Position des Interfaces.

Wir untersuchen Modell **A** mit konstanter rechter Seite f. Sei T die Gitterweite des Diskretisierungsgitters auf Ω_e und $z := \frac{c-1}{\varepsilon}$. Zur Berechnung des Diskretisierungsfehlers wird diesmal ein a priori Schätzer verwendet,

$$\|u_e - \hat{u}_e\|_{E_T(\Omega_e)} = DF(z) \le \widehat{DF}(z) := \frac{T|f|}{2\varepsilon} (1 - \frac{z}{\sqrt{2}}) \sqrt{\frac{1 + e^z}{1 - e^z}}.$$
(6.6)

Die Überschätzung des Fehlers $\widehat{\frac{DF}(z)}{DF(z)}$ steigt linear mit -z, also bei wachsender Größe des Diskretisierungsgebietes oder kleiner werdendem ε . Nach einer Skalierung mit einem linear von z abhängenden Faktor $\rho(z)^{-1}$ gibt \widehat{DF} den wirklichen Diskretisierungsfehler im Fall der konstanten rechten Seite f sehr genau wieder.

Abbildung 19: Verhältnis von a priori Schätzer zum Diskretisierungsfehler vor (links) und nach (rechts) der Skalierung.

Zur Einhaltung der Forderung

$$\widehat{MF}(z) + \widehat{DF}(z) \le TOL_G \tag{6.7}$$

sind zwei Größen wählbar: die Variable z (genauer die Interface-Stelle c) und T, die Feinheit der Diskretisierung. Mit

$$\widehat{MF}(z) = |f| \sqrt{z + \frac{1}{\varepsilon}} \frac{e^z}{1 - e^z},$$

ergibt die Kombination von (6.6) und (6.7) aufgelöst nach T

$$T = T(z) \le 2\varepsilon \left(\frac{TOL_G}{|f|} - \sqrt{z + \frac{1}{\varepsilon}}\frac{e^z}{1 - e^z}\right)\frac{\sqrt{2}}{\sqrt{2} - z}\sqrt{\frac{1 - e^z}{1 + e^z}}\rho(z).$$

Die Anzahl der notwendigen Diskretisierungspunkte in Ω_e ,

$$A(z) = \frac{|\Omega_e|}{T(z)} = \frac{-\varepsilon z}{T(z)},$$

soll durch die heterogene Lösungsberechnung möglichst klein ausfallen.

Die Minimierungsaufgabe $A(z) \rightarrow \min$ ist für T(z) > 0 gleichbedeutend mit der Nullstellensuche von $\mathcal{N}_0(z) := 1 - z \frac{T'(z)}{T(z)}$. Der Vorzeichenwechsel in

$$\frac{\partial A}{\partial z}(z) = \frac{-\varepsilon T + \varepsilon z T'}{T^2}$$

von – zu + garantiert die Existenz eines Minimums.

Abbildung 20: Der Vorzeichenwechsel in der Ableitung des Aufwands nach z innerhalb von Ω garantiert die Existenz einer optimalen Interface-Position.

Die Nullstelle von

$$\mathcal{N}_0(z) = 1 - z \left(\frac{(\upsilon)'}{(\upsilon)} + \frac{1}{\sqrt{2} - z} - \frac{e^z}{1 - e^{2z}} + \frac{\rho(z)'}{\rho(z)} \right)$$

 mit

$$v := \frac{TOL_G}{|f|} - \sqrt{z + \frac{1}{\varepsilon}} \frac{e^z}{1 - e^z}$$

wird durch Bisektion genähert. Die Bisektion verläuft hierbei über das Intervall $[-1/\varepsilon, r_g]$, wobei r_g das größte z ist, für das $\widehat{MF}(z) \leq TOL_G$ gilt und somit (v), also auch T(z)größer 0 ist. Das Ergebnis in Abhängigkeit von ε demonstrieren folgende Bilder.

Abbildung 21: Die Nullstelle von \mathcal{N} (links) und die optimale Interface-Position (rechts) in Abhängigkeit von ε .

Abbildung 22: Die notwendige Anzahl an Diskretisierungspunkten bei optimaler Interface-Lage (links) und der zugehörige Anteil des Modellfehlers an der Gesamttoleranz (rechts) in Abhängigkeit von ε .

Fazit:

- Die Nullstelle von \mathcal{N}_0 ändert ihre Lage nur wenig mit ε . Das bedeutet nahezu lineare Abhängigkeit der optimalen Interface-Position und der zugehörigen Schrittweite von ε . Damit ist auch der Anteil κ_{MF} von \widehat{MF} an der Gesamttoleranz TOL_G fast konstant.
- Die optimale Interface-Lage ist abhängig vom Wert der rechten Seite f, das Verhältnis \widehat{MF}/TOL_G jedoch nicht.

Für allgemeine rechte Seite f oder bei Ersetzen des a priori durch den a posteriori Schätzer des Diskretisierungsfehlers werden die Gleichungen zu komplex, um auf ein optimales κ_{MF} schließen zu können. In den Versuchen wurden jeweils verschiedene κ_{MF} ausprobiert.

6.6 Numerische Ergebnisse.

Die Ergebnisse für Testbeispiele mit verschiedenen ε -Werten und rechten Seiten von Modell **A** und **B** finden sich im Anhang (Tabellen 9 – 12 und Abbildungen 84 – 87). Hierin wurde $n_{hom} = n_{hom}(TOL_{rel})$ – die notwendige Anzahl an Diskretisierungspunkten in Abhängigkeit der geforderten Genauigkeit bei homogener Rechnung und uniformer Verfeinerung – in Vergleich gestellt zu *count*, der Summe aus *count*₁ und *n*, der Anzahl der Gitterpunkte auf Ω_e zum Erreichen der Resttoleranz, ebenfalls bei uniformer Verfeinerung. In *count*₁ wurden alle Anteile an Grobgitterpunkten addiert, die bei jeder heterogenen Lösungsberechnung in der Newton-Iteration verwendet wurden.

Es ist wichtig, dem heterogenen Verfahren beide Größen, N und T_{max} , vorzugeben. Die Anzahl an Grobgitterpunkten N bestimmt die Genauigkeit der Approximation von $\hat{u}'_{2,N;c}(c)$; die maximale Schrittweite T_{max} garantiert, dass im Newton-Verfahren noch sinnvolle Wahlmöglichkeiten bestehen. (Hier wurde $TOL_{Newton} = \frac{\varepsilon}{10}$ und $T_{max} = 0.5 * TOL_{Newton}$ gesetzt.) Die stärkere der beiden Forderungen bestimmt den Aufwand der Grobgitterdiskretisierung.

Der Modellfehlerschätzer hat in Abhängigkeit von κ_{MF} und TOL_G ein bis drei Schnittpunkte mit TOL_{MF} , von denen jeweils einer in Abhängigkeit von der Lage des Startpunktes c_0 aufgefunden wird. Die Anzahl der Newton-Iterationen ist abhängig vom Startwert.

Bei rechter Seite f(t) = 1 (s. Tabelle 9) wird das minimale n, also die minimale Anzahl von Gitterpunkten bei der Nachverfeinerung auf Ω_e , für ein- und denselben Wert von κ_{MF} angenommen. Die Unabhängigkeit von ϵ für diesen Fall entspricht den Ergebnissen der a priori Überlegungen in 6.5. Allerdings bleibt dieser Wert ohne Auswirkungen, da das Gebiet Ω_e im Zuge der Interface-Suche schon feiner diskretisiert wurde, als zur Erreichung der Gesamttoleranz notwendig gewesen wäre.

Fazit:

- Das heterogene Verfahren lohnt sich erst für kleine Werte der Diffusion, $\varepsilon < 0.01$, da ansonsten der Aufwand zur Interface-Positionierung überwiegt. Die geforderte Toleranz wird sehr gut eingehalten.
- Gibt es mehrere Schnittpunkte des Modellfehlerschätzers \widehat{MF} mit TOL_{MF} , so ist es wichtig, dass das Newton-Verfahren durch Wahl eines geeigneten Startwertes den Schnittpunkt in Nähe der Grenzschicht findet. Ansonsten ist das heterogene Verfahren unrentabel.
- Wird das Interface in Nähe zur Grenzschicht positioniert, so ist die Effizienz des Verfahrens weiterhin abhängig von κ_{MF} , sie übertrifft jedoch für jede Wahl von κ_{MF} die uniforme homogene Rechnung.

7 Ansatz 2: Approximation auf Grobgitter, Bisektion.

Das Verfahren zur Approximation der geeigneten Interface-Stelle c in Ansatz 1 litt an der Überschätzung des Modellfehlers MF(c) und der Abhängigkeit von der Wahl des Startwertes im Newton-Verfahren. Bei einer falschen Startwertwahl musste das Newton-Verfahren nicht konvergieren, oder aber die Interfacestelle wurde zu weit links gesetzt, wodurch die Rentabilität der heterogenen Rechnung nicht zum Tragen kam.

Im neuen Ansatz wird der Modellfehler in Abhängigkeit von der Interface-Position c nicht nach oben abgeschätzt, sondern durch Diskretisierung der Funktionen v und u zu ausgewählten Interface-Positionen angenähert. Die Diskretisierung erfolgt hierbei aus Kostengründen nur auf einem groben Gitter.

7.1 Genaue Beschreibung des neuen Algorithmus.

Bei der a posteriori Fehlerschätzung (6.2) liegt der tatsächliche Modellfehler garantiert unter dem geschätzten Wert. Dies muss nicht bei Approximation des Modellfehlers gelten. Um eine gewisse Sicherheit bei der Einhaltung der Toleranz zu gewährleisten (s. 7.1.2), wird der Modellfehler aufgespalten in

$$\|v - u_c\|_E \le \|v - u_{c_{Null}}\|_E + \|u_{c_{Null}} - u_c\|_E \le TOL_{Null} + (TOL_{MF} - TOL_{Null}),$$

wobei $TOL_{Null} = \kappa_{Null}TOL_{MF}$ mit $0 < \kappa_{Null} \leq 1$ der Anteil an der Toleranz für eine nullte Approximation c_{Null} an die Interface-Stelle ist, mit $\widehat{MF}(c_{Null}) = TOL_{Null}$. Die endgültige Approximation \tilde{c}_{MF} an die Interface-Stelle \hat{c}_{MF} ergibt sich dann als $c_{Null} + \Delta c$. Der Fall $\kappa_{Null} = 1$ ist zulässig, hier wird der Schnittpunkt \hat{c}_{MF} von MF mit TOL_{MF} gleich in der nullten Approximation genähert: $\tilde{c}_{MF} = c_{Null}$.

7.1.1 Die nullte Approximation.

Auf [0,1] wird ein äquidistantes Grobgitter $\{t_i\}_{0 \le i \le N}$ mit N+1 Punkten generiert für die nullte Approximation. Auf diesem Grobgitter wird mit Hilfe eines Differenzen- oder Finite-Elemente-Verfahrens \hat{v}_N berechnet und damit $\widehat{MF}_N(1) = \|\hat{v}_N - u_h\|_{E_{\tau}}$.

Zur Bestimmung des Schnittpunktes von MF_N mit TOL_{Null} erfolgt nun eine Bisektion des Ausgangsintervalls $[L_0, R_0] := [0, 1]$, solange, bis die Intervallbreite des Bisektionsintervalls die Gitterweite des Grobgitters unterschreitet. Die Anzahl der Grobgitterpunkte begrenzt die Anzahl der Bisektionsschritte in der nullten Approximation auf $Anz_{Bi} := \lfloor \frac{\ln(N+1)}{\ln(2)} \rfloor$.

Für $1 \leq i \leq Anz_{Bi}$ wird im *i*-ten Bisektionsschritt

- (1) c_i bestimmt als Mittelpunkt von $[L_i, R_i]$,
- (2) das Gebiet $\Omega = [0, 1]$ unterteilt in $\Omega_h = [0, c_i)$ und $\Omega_e = [c_i, 1]$,
- (3) eine Aufteilung des Grobgitters entsprechend den beiden Teilgebieten unternommen,
- (4) die heterogene Teillösung $\hat{u}_{e,N;c_i}$ ermittelt durch Diskretisierung auf der rechten Grobgitterhälfte und anschließend mit u_h zusammengesetzt,

- (5) $MF_N(c_i)$ berechnet als Energienorm der Differenz von \hat{v}_N und $\hat{u}_{N;c_i}$,
- (6) die Bisektion abgebrochen mit $c_{Null} = c_i$, falls $\widehat{MF}_N(c_i) = TOL_{Null}$. Ansonsten wird das neue Bisektionsintervall $[L_{i+1}, R_{i+1}]$ bestimmt durch

$$L_{i+1} = c_i, \quad R_{i+1} = R_i, \quad \text{falls } \tilde{M}\tilde{F}_N(c_i) < TOL_{Null},$$

$$L_{i+1} = L_i, \quad R_{i+1} = c_i, \quad \text{sonst.}$$

Steht c_{Null} nach Beendigung der Bisektionsschleife noch nicht fest, so ist c_{Null} die Abszisse des Schnittpunktes von TOL_{MF} mit der Geraden zwischen $(L_{Anz_{Bi}}, \widehat{MF}_N(L_{Anz_{Bi}}))$ und $(R_{Anz_{Bi}}, \widehat{MF}_N(R_{Anz_{Bi}}))$. Anstelle dieser linearen Interpolation wurde auch die Interpolation mit quadratischen Splines und exponentiellen Splines (s. [24]) verwendet, welche aber bei höherem Aufwand keine besseren Ergebnisse lieferten.

zu (1): Ein anderer Ansatz, als neue Intervallgrenze c_i nicht den Mittelpunkt des Intervalls zu wählen, sondern den Schnittpunkt der Geraden durch $\left(L_i, \widehat{MF}_N(L_i)\right)$ und $\left(R_i, \widehat{MF}_N(R_i)\right)$ mit TOL_{MF} , erwies sich aufgrund des steilen Abfalls des Modellfehlers am Rand als ungünstig.

Das Ausgangsintervall kann eingeschränkt werden auf $[0, R_0]$ mit

 $R_0 := \min\{t \in \{t_i, 1 \le i \le N\} \text{ und } \|\hat{v}_N - u_h\|_{E(0,t)} \ge TOL_{MF}\}.$

Diese Version ist nicht unbedingt kostengünstiger, da der Mittelpunkt dieses Intervalls weiter links liegt und somit bei der ersten heterogenen Rechnung mehr Punkte in Ω_e liegen.

- zu (3): Ist c_i mit einem Grobgitterpunkt identisch, so ist dieser der Randpunkt des Diskretisierungsgebietes Ω_e . Hier werden die Interface-Bedingungen als Randbedingungen für die Diskretisierung angesetzt. Ist c_i kein Grobgitterpunkt, so wird c_{Null} zusätzlich als neuer Randpunkt zur Diskretisierung der Grobgitterhälfte Ω_e hinzugenommen.
- **zu** (4): Enthält das Grobgitter auf Ω_e zu wenig Punkte für eine sinnvolle Diskretisierung $((1-c_i)(N+1) < (N_{min}+1))$, so wird eine neue Unterteilung des Intervalls $[c_i, 1]$ mit $N_{min} + 1$ Punkten vorgenommen. Auf diesem neuen Gitter wird $\hat{u}_{e,N_{min};c_i}$ berechnet. Daraus wird anschließend $\hat{u}_{e,N;c_i}$ durch Interpolation an den ursprünglichen Grobgitterpunkten ermittelt.

Fehlerquellen. Fehler in der Wahl von c_{Null} ergeben sich bei der Interpolation durch eine Gerade im letzten Bisektionsintervall, bzw. schon durch eine vorherige falsche Auswahl eines Bisektionsintervalls durch Diskretisierungsfehler in \widehat{MF}_N , da sowohl v als auch $u_{e;c}$ nur auf einem groben Gitter approximiert wurden.

7.1.2 Die Approximation auf verfeinerten Gittern.

Da die Berechnung der homogenen Lösung die Diskretisierung des gesamten Intervalls bedeutet und folglich teuer ist, darf v nur auf dem ersten Grobgitter berechnet werden. Verfeinerung bedeutet also nicht, dass die Approximation von v und somit die Wahl von c_{Null} verbessert wird. Vielmehr wird nur die Differenz in der Energienorm zwischen $\hat{u}_{c_{Null}}$ und einer weiteren heterogenen Lösung \hat{u}_{c_i} mit $c_i > c_{Null}$ auf einem verfeinerten Gitter ermittelt. Das ist nicht allzu kostenaufwändig, da der konvektionsdominante Charakter der Gleichung c_{Null} in der Regel an den Gebietsrand gelegt hat, die Teilgebiete der weiteren Diskretisierungen also sehr klein sind.

Ein Fehler, der bei der Wahl von c_{Null} aufgetreten ist, wird dadurch jedoch nicht verbessert. Zwei Argumente sprechen dennoch für eine Aufteilung von TOL_{MF} :

- Zunächst scheint die Aufteilung der Interface-Suche in zwei oder mehr Schritte die Fehlersituation zu verschlechtern, denn statt eines Fehlers in nur einer Approximation werden zusätzlich in jedem weiteren Approximationsschritt Fehler gemacht und diese zu einem Gesamtfehler bei der Suche von \hat{c}_{MF} aufaddiert. Allerdings erfolgt bei einer Iteration des Verfahrens die Annäherung an TOL_{MF} und somit an die Grenzschichten auf zunehmend feineren Gittern und somit sicherer.
- Andererseits lässt der Vergleich von $\widehat{MF}_N(c_{Null})$ mit $MF_{NN}(\widetilde{c}_{MF})$ Rückschlüsse zu, ob man bei der Wahl von c_{Null} vielleicht etwas zu forsch war oder aber sich noch auf der sicheren Seite bewegt, was zum unten beschriebenen Fehlerindikator führt.

Die Anzahl der verfeinerten Approximationssschritte Anz_{Verf} wird vom Benutzer bestimmt. Die verbleibende Toleranzspanne $TOL_{MF} - TOL_{Null} = (1 - \kappa_{Null})TOL_{MF}$ wird entsprechend in Anz_{Verf} Teile ΔTOL unterteilt. Die zur *i*-ten Iteration gehörige Toleranz ergibt sich dann zu $TOL_{Null} + i \cdot \Delta TOL$. Im Versuch hat sich eine Nachiteration als ausreichend erwiesen, also $TOL_1 = TOL_{MF}$ und für diesen Fall wird nun auch die Verfeinerung beschrieben.

- Zunächst wird auf [0, 1] ein Gitter erzeugt, dessen Anzahl an Gitterpunkten NNim Vergleich zum entsprechenden Abschnitt des ersten Grobgitters um 10% höher ist und eine gegebene Mindestanzahl an Grobgitterpunkten im Verfeinerungsgebiet nicht unterschreitet: $NN = \lceil \max\{1.1 \cdot N, \frac{N_{min}}{1-c_{Null}}\} \rceil$.
- Auf diesem verfeinerten Gitter wird nun $\hat{u}_{NN;c_{Null}}$, die Lösung des heterogenen Systems berechnet.
- Zur Initialisierung der Bisektion in der Verfeinerung setze

$$L_0 = c_{Null},$$

$$R_0 = 1,$$

$$\Delta \widehat{MF}_{NN}(L_0) = 0,$$

$$\Delta \widehat{MF}_{NN}(R_0) = \|\widehat{u}_{NN;c_{Null}} - \widehat{u}_{NN;1}\|_{E_T}.$$

- Die Anzahl der Bisektionsschritte in der Verfeinerung ist wie zuvor begrenzt durch die Gitterweite $\frac{1}{NN}$, andererseits aber auch durch eine fest vorgegebene Grenze $Anz_{Bi,max}$.
- Solange das Bisektionsintervall noch einen Gitterpunkt enthält und die maximale Anzahl an Bisektionsschritten noch nicht erreicht ist,
 - (1) bestimme c_i als Mittelpunkt von $[L_i, R_i]$,
 - (2) unterteile $\Omega = [0, 1]$ in $\Omega_h = [0, c_i)$ und $\Omega_e = [c_i, 1]$,
 - (3) teile das verfeinerte Gitter entsprechend den beiden Teilgebieten Ω_h und Ω_e auf
 - (4) berechne die heterogene Teillösung $\hat{u}_{e,NN;c_i}$ durch Diskretisierung auf Ω_e und setze sie anschließend mit u_h zusammen,
 - (5) berechne $\Delta \widehat{MF}_{NN}(c_i) = \|\hat{u}_{NN;c_{Null}} \hat{u}_{NN;c_i}\|_{E_T}$,
 - (6) und bestimme das neue Bisektionsintervall je nach Größe von $\Delta \widehat{MF}_{NN}(c_i)$.
- Nach Verlassen der Bisektionsschleife wird \tilde{c}_{MF} durch lineare Interpolation im letzten Bisektionsintervall ermittelt.
- Fehlerindikator. An dieser Stelle wird die zuvor erfolgte Bestimmung von c_{Null} überprüft. Der Quotient $\frac{\Delta \widehat{MF}_{NN}}{c_{MF}-c_{Null}}$ ist der Tangens der Steigung der Geraden durch die Punkte $(c_{Null}, \widehat{MF}_{NN}(c_{Null}))$ und $(c_{MF}, \widehat{MF}_{NN}(c_{MF}))$. Da die Punkte c_{Null} und c_{MF} im Normalfall eng beieinander liegen, ist er auch ein Maßstab für die Steigung von \widehat{MF}_{NN} . Ist diese sehr groß , also $\left|\frac{\Delta \widehat{MF}_{NN}}{c_{MF}-c_{Null}}\right| > \alpha_{max}$, so befindet sich der Schnittpunkt mit TOL_{Null} schon in unmittelbarer Nähe zur oder direkt in der Grenzschicht. Hier hat aber ein kleiner Fehler in der Positionierung von c_{Null} eine große Abweichung in MF vom gewünschten Toleranzwert TOL_{Null} zur Folge. In diesem Fall wird das auf dem Grobgitter ermittelte c_{Null} um einen Betrag Δc_{Null} verringert. Anschließend wird die Verfeinerung wiederholt mit der Eingangsgröße $L_i = c_{Null} - \Delta c_{Null}$.

7.1.3 Abschließende Verfeinerung der Diskretisierung auf Ω_e .

Bei jeder bisher erfolgten Diskretisierung zur Berechnung von \hat{v} oder einem der \hat{u}_c , auf dem Grobgitter oder einer Verfeinerung dieses, wurde die Anzahl der dabei verwendeten Diskretisierungspunkte in der Zählvariablen $count_1$ aufsummiert. Abschließend ermittelt man die minimale Anzahl n an Diskretisierungspunkten, die $\widehat{DF}_{e,n;c_{MF}} \leq TOL_G - \widehat{MF}_{NN}(\tilde{c}_{MF})$ garantiert. Für einen Vergleich der Effizienz gegenüber der rein homogenen Rechnung wird n zu count gezählt.

Abbildung 26 zeigt ein Beispiel der nullten Approximation und der Approximation auf verfeinertem Gitter.

7.2 Die Rolle der Péclet-Zahl bei der Wahl der Anzahl an Grobgitterpunkten zur Approximation des Modellfehlers.

Bei der Diskretisierung von Konvektions-Diffusions-Gleichungen ist die Péclet-Zahl die bestimmende Größe für die Wahl der Gitterweite. Folgendes Beispiel dient in zahlreichen Publikationen (s. z. B. [22]) zur Erläuterung ihrer Bedeutung,

$$-\varepsilon v'' + v' = 0 \quad \text{auf} \ (0,1), \tag{7.1a}$$

$$v(0) = 0,$$
 (7.1b)

$$v(1) = 1.$$
 (7.1c)

Das Intervall (0,1) wird zunächst mit einem äquidistanten Gitter $\{t_k\}_{k=0,\dots,n}$ mit $t_k = \frac{k}{n}$ überzogen. Bei Berechnung einer Lösung von (7.1a) - (7.1c) mit Hilfe zentraler finiter Differenzen erhält man an den Gitterstellen die Näherungswerte

$$\hat{v}(t_k) = \frac{1-q^k}{1-q^n}$$
 mit $q = q_{central}(n) := \frac{2\varepsilon n + 1}{2\varepsilon n - 1}$

Für $n < \frac{1}{2\varepsilon}$ ist q < -1, die Funktionswerte an den Gitterstellen also abwechselnd positiv und negativ. Um die Oszillation der Lösung zu vermeiden muss die Anzahl der Stützstellen größer gewählt werden, so dass für die Gitterweite $T = \frac{1}{n}$ gilt: $T < 2\varepsilon$. Dies ist gleichbedeutend mit der Péclet-Bedingung $n > N_{Péclet} = \frac{1}{2\varepsilon}$.

Eine Alternative zu der geringen Gitterweite bietet das Upwind-Verfahren. Bei der Approximation der ersten Ableitung beschränkt man sich hierbei auf Information aus dem Teilintervall, das gegen Windrichtung gelegen ist. Im Beispiel ist der Wind $b \equiv 1$, man achtet also nur auf Information aus Diskretisierungspunkten, die links vom aktuellen Diskretisierungspunkt liegen. Als Konsequenz erhält man einen veränderten Ausdruck für

$$q = q_{upwind}(n) := \frac{n\varepsilon + 1}{n\varepsilon}.$$

Die Ordnung der Approximation ist allerdings im Gegensatz zum zentralen Differenzenverfahren nicht mehr quadratisch, sondern nur noch linear.

Im Ansatz 2 zur Auffindung der Interface-Position ist man auf eine hinreichend gute Approximation des Modellfehlers angewiesen. Auf ganz Ω wurde ein Grobgitter eingeführt zur Diskretisierung der homogenen Lösung. Die Untersuchung des obigen Modellproblems (7.1a) – (7.1c) zeigt, dass auch hierbei die Péclet-Zahl von Bedeutung ist. Das zugehörige heterogene Modell lautet

$$\begin{array}{rl} u_h' &= 0 & \mbox{ auf } (0,c), \\ u_h(0) &= 0, \\ -\varepsilon u_e'' + u_e' &= 0 & \mbox{ auf } (c,1), \\ u_e(c) &= u_h(c), \\ u_e(1) &= 1. \end{array}$$

Wie zuvor wird das Intervall (0,1) bei der Diskretisierung in ein äquidistantes Gitter $\{t_k\}_{k=0,\dots,n}$ mit $t_k = \frac{k}{n}$ unterteilt. Fällt die Interface-Stelle c mit einer Stützstelle zusammen, so sei \tilde{c} der zugehörige Index: $\frac{\tilde{c}}{n} = c$.

Zum heterogenen System gehört die diskretisierte Lösung

$$\hat{u}_h(t_k) = 0 \quad \text{für } k = 0, \dots, \tilde{c} - 1, \hat{u}_e(t_k) = \frac{q^k - q^{\tilde{c}}}{q^n - q^{\tilde{c}}} \quad \text{für } k = \tilde{c}, \dots, n.$$

Für das Quadrat der Energienorm der diskreten Lösungsdifferenz folgt

$$\widehat{MF}_{n}^{2} = \|\hat{v} - \hat{u}\|_{E_{\mathcal{T}}}^{2} = \frac{2\varepsilon n(q-1)(q^{c}-1)}{(q+1)(q^{n-\tilde{c}}-1)}$$

Dabei ist q wiederum je nach verwendetem Diskretisierungsverfahren definiert und nimmt auch diesmal Einfluss auf die Güte der Approximation:

– Im Falle zentraler Differenzen mit $q = q_{central}(n)$ ist $\frac{2\varepsilon n(q-1)}{(q+1)} \equiv 1$, der obige Ausdruck reduziert sich also zu

$$\widehat{MF}_{n}^{2} = \frac{(q^{c}-1)}{(q^{n}-1)(q^{n-\tilde{c}}-1)}$$

Allerdings ist $q_{central}(n)$ für $n = \frac{1}{2\varepsilon}$ nicht definiert und erst nach Überschreiten der zur Péclet-Zahl gehörenden Anzahl an Stützstellen konvergiert \widehat{MF}_n^2 von unten gegen das Quadrat des exakten Modellfehlers MF^2 . Die Anzahl N der Grobgitterpunkte darf also die durch die Péclet-Zahl vorgeschriebene Anzahl an Stützstellen nicht unterschreiten.

Abbildung 23: Die Approximation mit zentralen Differenzen konvergiert gegen den exakten Modellfehler, sobald die Anzahl der Gitterpunkte die Péclet-Zahl überschreitet.

– Beim Upwind Verfahren konvergiert \widehat{MF}_n^2 ungeachtet der Péclet-Zahl gegen MF^2 , die Geschwindigkeit der Konvergenz ist allerdings ungleich langsamer als beim zentralen Differenzenverfahren.

Abbildung 24: Die Approximation des Upwind-Verfahrens konvergiert nur langsam gegen den exakten Modellfehler.

Vergleicht man die beiden Verfahren hinsichtlich der Anzahl an Gitterpunkten, die notwendig sind um den Modellfehler mit einer Toleranz von 20% zu approximieren, so erweist sich das Upwind-Verfahren als das teurere.

Abbildung 25: Vergleich der Anzahl notwendiger Diskretisierungspunkte bei Zentralen Differenzen und Upwind-Verfahren für die Approximation des Modellfehlers mit einer Genauigkeit von 20%.

Mit Hilfe der Greenschen Funktion können dieselben Überlegungen auch für inhomogene rechte Seiten angestellt werden (s. [20]).

Für die Modellfehlerapproximation wurde den Ergebnissen zufolge ein zentrales Differenzenverfahren gewählt mit $N = \left\lceil \frac{1}{N_{ko}\varepsilon} \right\rceil$ und $0 < N_{ko} < 2$. Je kleiner die Konstante N_{ko} gewählt wird, desto besser sind die Approximationen $\widehat{MF}_N(c)$ und $\hat{u}'_e(c)$ in Ansatz 2, desto besser sind die Approximationen $\widehat{MF}_{1,N}(c_0)$ und $\hat{\kappa}_N(c_0)$ in Ansatz 3, desto größer ist die Auswahl im Optimierungsprozess in Ansatz 3, aber desto höher ist der Aufwand zur Auffindung der Interface-Position.

7.3 Numerische Ergebnisse.

Die Ergebnisse für Testbeispiele mit verschiedenen ε -Werten und rechten Seiten von Modell **A** und **B** finden sich im Anhang (Tabellen 13 – 30). Die Variable $count_1$ enthält die Anzahl aller Diskretisierungspunkte, die zur Berechnung von \hat{v}_N und $\hat{u}_{N;c}$ für alle Stützwerte c der Grobgitterapproximation verwendet wurden. Für einen Vergleich der Effizienz gegenüber der uniformen homogenen Rechnung dient der Wert von count. Darin wurde zu $count_1$ noch n, die Anzahl der Punkte der abschließenden Verfeinerung auf Ω_e gezählt. Zur Überprüfung der Güte des beschriebenen Verfahrens wird der Abstand von \tilde{c}_{MF} zum exakten Schnittpunkt c_{MF} mit $MF(c_{MF}) = TOL_{MF}$ ermittelt.

Fazit:

- Das beschriebene Verfahren zum Auffinden der Interface-Stelle beinhaltet keine Garantie für die Richtigkeit der Wahl. Insbesondere besteht die Gefahr, dass die Interface-Stelle irrtümlich zu weit rechts positioniert wird, was aufgrund des exponentiellen Verlaufs des Modellfehlers eine Überschreitung der geforderten Toleranz um ein Vielfaches zur Folge haben kann. Die Überprüfung der Genauigkeit der Ergebnisse der heterogenen Rechnung zeigt jedoch, dass die Toleranz sehr gut eingehalten wird.
- Beim Vergleich der heterogenen mit der homogenen Rechnung wird deutlich, dass die heterogene Rechnung erst im konvektionsdominanten Fall, also für kleine ε -Werte, effizienter ist.

Abbildung 26: Die nullte Approximation auf dem Grobgitter (links, mit $\kappa_{MF} = \kappa_{Null} = 0.6$) und die Approximation auf einer ersten Verfeinerung (rechts) im Beispiel Modell **A** mit $\varepsilon = 0.01$ und rechter Seite $f = e^t$.

8 Ansatz 3: Aufwandsoptimale Interface-Positionierung.

Die Idee zu einer Optimierung der Interface-Lage beruht auf einer Beobachtung des nahezu konstanten Verhältnisses von hyperbolischem zu elliptischem Modellfehler bei Modell **A** im Fall der konstanten rechten Seite. Setzt man das Verhältnis als allgemein gültig voraus, so ist das fehlende Puzzle-Stück zum Auffinden einer Interface-Stelle mit minimalem Diskretisierungsaufwand gefunden.

8.1 Qualitativer Zusammenhang von hyperbolischem und elliptischem Modellfehleranteil in Modell A.

Die hyperbolische Lösung beeinflusst den elliptischen Lösungsteil durch ihren Wert am Interface. Die Abhängigkeit einer klassischen elliptischen Lösung von diesem Wert ist stetig, ebenso die Abhängigkeit von der Position des linken Randes. Wir können also im klassischen Fall einen stetigen Zusammenhang von hyperbolischem und elliptischem Modellfehleranteil erwarten. Den Hinweis auf einen sehr einfachen Zusammenhang zwischen MF_h und MF_e und damit auf den Verlauf von $\kappa^2(c)$: $= MF_h^2(c)/MF_e^2(c)$ lieferte eine Untersuchung von κ^2 für Modell **A** mit konstanter rechter Seite f. In diesem Fall ist

$$\kappa^2 = \frac{1 - e^{\frac{-1}{\varepsilon}} + e^{\frac{-c}{\varepsilon}} - e^{\frac{c-1}{\varepsilon}}}{1 - e^{\frac{-1}{\varepsilon}} - e^{\frac{-c}{\varepsilon}} + e^{\frac{c-1}{\varepsilon}}}$$

unabhängig von der Konstanten f und dem Randwert k. Der Graph von κ^2 ist streng monoton fallend mit $\lim_{c\downarrow 0} \kappa^2(c) = \infty$ und $\lim_{c\uparrow 1} \kappa^2(c) = 0$. Für kleine Werte von ε nähert sich der Graph von κ^2 im Gebietsinneren der konstanten Funktion 1,

$$\lim_{\varepsilon \to 0} \kappa^2(c) = 1 \text{ für } 0 < c < 1.$$

Abbildung 27: Der Verlauf von κ^2 in Abhängigkeit von der Interface-Position 0 < c < 1für $\varepsilon = 0.1$. Das rechte Bild zeigt den Ausschnitt 0.1 < c < 1.

Abbildung 28: Der Verlauf von κ^2 in Abhängigkeit von der Interface-Position 0 < c < 1für $\varepsilon = 0.0001$. Das rechte Bild zeigt den Ausschnitt 0.1 < c < 1.

Diese Eigenschaften weist auch die diskrete Version von κ^2 auf. Hierbei muss allerdings bei zentralen Differenzen die notwendige Anzahl an Diskretisierungspunkten eingehalten werden, um Oszillationen zu vermeiden (vgl. 7.2).

Abbildung 29: Approximation von κ^2 mit zentralen Differenzen unter Einhaltung der Péclet-Bedingung. Das rechte Bild zeigt den Ausschnitt 0.1 < c < 1.

Abbildung 30: Approximation von κ^2 mit zentralen Differenzen bei Verletzung der Péclet-Bedingung. Das rechte Bild zeigt Oszillationen im Ausschnitt 0.1 < c < 1.

Beim Upwind-Verfahren werden die scharfen Abfälle der Funktion an den Gebietsrändern abgerundet.

Abbildung 31: Approximation von κ^2 durch Upwind-Verfahren. Das rechte Bild zeigt das Verschmieren der Übergänge im Ausschnitt 0.1 < c < 1.

8.2 Der Algorithmus.

Aufgrund des nahezu konstanten Charakters von κ^2 wurde versuchsweise auch für allgemeine rechte Seite ein konstantes Verhältnis von MF_h zu MF_e angesetzt. Die in Abschnitt 4 entwickelte Idee zur Optimierung wurde in folgendem Verfahren implementiert:

- (a) Erzeugung eines äquidistanten Grobgitters auf Ω mit N+1 Punkten t_i (i = 0, ..., N).
- (b) Berechnung der diskreten homogenen Lösung \hat{v}_N (Aufwand $\mathcal{O}(N+1)$) und der hyperbolischen Lösung u_h auf dem Grobgitter.

(c) Berechnung von

 $\widehat{MF}_{h,N}(t_i) = \|\widehat{v}_N - u_h\|_{E_{\mathcal{T}}((0,t_i))}$

für alle Gitterpunkte t_i (i = 0, ..., N). Falls $\widehat{MF}_{h,N}(t_N) < TOL_G$, so ist entweder die Toleranz unsachgemäß groß gewählt, oder aber die Grobgitterapproximation des Modellfehlers zu schlecht, also N zu klein gewählt.

(d) Suche von

 $c_{hyp} := \min\{c | c \in \{t_i, 0 \le i \le N\} \text{ und } \widehat{MF}_{h,N}(c) \ge TOL_G\}.$

- (e) Wahl von c_0 mit $0 < c_0 < c_{hyp}$ als erstes Interface. Anhaltspunkt für die Wahl von c_0 ist ein hoher Steigungsgradient des Graphen von \hat{v}_N . Beispielsweise berechnet man den Mittelwert der Steigungen $\overline{\hat{v}'_N} = \frac{1}{N} \sum_{i=1}^N \hat{v}'_N \big|_{(t_{i-1},t_i)}$ und bestimmt den von der Grenzschicht am weitest entfernt liegenden Grobgitterpunkt, an dem ein benutzerdefinierter Anteil (*part*) dieses Wertes überschritten wird.
- (f) Berechnung von $\widehat{u}_{e,N;c_0}$ (Aufwand $\mathcal{O}((1-c_0)(N+1)))$, dem zugehörigen Diskretisierungsfehler $\widehat{DF}_{N;c_0}$ und dem Modellierungsfehler $\widehat{MF}_N(c_0)$.
- (g) Berechnung der Konstanten k_{DF} (Konstante der näherungsweisen Proportionalität des Diskretisierungsfehlerschätzers zur Gitterweite) aus

$$\widehat{DF}_{N;c_0} = k_{DF} \frac{1}{N}.$$

(h) Berechnung von

$$\widehat{\kappa}_{N;c_0} = \sqrt{\frac{\widehat{MF}_{h,N}(c_0)^2}{\widehat{MF}_N(c_0)^2 - \widehat{MF}_{h,N}(c_0)^2}}$$

Zwischen den beiden Modellfehleranteilen wird nun das Verhältnis $\widehat{MF}_h(c) = \widehat{\kappa}_{N;c_0} \widehat{MF}_e(c)$ konstant gesetzt.

- (i) Such von c_{hypell} : = max{ $t_i | 0 \le i \le N$ und $\widehat{MF}_N(c_{hypell}) \le TOL_G$ }.
- (j) Suche der optimalen Interface-Stelle $c_{opt} \in [0, c_{hypell}]$. Diese Interface-Stelle soll minimale Gitterpunktanzahl n_{opt} der feinen Diskretisierung auf dem zugehörigen elliptischen Gebiet sichern, also

$$c_{opt}$$
: = arg $\min_{c \in [c_0, c_{hypell}]} n(c)$,

wobei

$$n(c) = \left(k_{DF} \frac{1-c}{TOL_{Rest}(c)}\right),$$

und $TOL_{Rest}(c)$: $= TOL_G - \sqrt{\widehat{MF}_{h,N}^2(c)\left(1 + \frac{1}{\widehat{\kappa}_{N;c_0}^2}\right)}.$

- (k) Berechnung von $\hat{u}_{e,n_{opt};c_{opt}}$ zur Kontrolle des mit $\hat{\kappa}_{N;c_0}$ und $\widehat{MF}_{h,N}(c_0)$ vorausgesagten Wertes von $\widehat{MF}_{n_{opt}}(c_{opt})$. (Der anfallende Aufwand von $\mathcal{O}(n_{opt})$ wird nicht miteingerechnet, da dieser Punkt nur Kontrollzwecken dient.)
- (l) Gegebenenfalls Weiterverfeinerung des Gitters auf $\Omega_e = (c_{opt}, 1)$, bis für $n \ge n_{opt}$

$$MF_{n_{opt}}(c_{opt}) + DF_{c_{opt},n} \le TOL_G.$$

Abbildung 32: Eine dumme Konstellation: Der Algorithmus ermittelt die Startposition c_0 aus der Steigung der homogenen Grobgitterlösung (oben links). Aus dem Verlauf von $\hat{\kappa}$ (oben rechts) schließt der Algorithmus auf die Lage von c_{hypell} , dem maximalen Gitterpunkt, an welchem der Modellfehler die Toleranz noch nicht überschreitet. Dieser liegt im Bild (unten) korrekt kurz vor dem Schnittpunkt der Toleranz mit MF. Die Suche nach dem optimalen Interface c_{opt} erfolgt anschließend über das Intervall $[0, c_{hypell}]$ und der Aufwand liegt mit count = 2108 nur unwesentlich unter dem Aufwand einer homogenen Rechnung mit $n_{hom} = 2845$. Der Algorithmus ist blind gegenüber dem Abknicken des Modellfehlers und den erneuten Schnittpunkten mit der Toleranz. Im Intervall zwischen diesen Schnittpunkten wäre ein c_{opt} mit geringerem n_{opt} möglich.

8.3 Schwierigkeiten bei Modell B.

Während sich die Ansätze 1 und 2 ohne Probleme auf Modell **B** übertragen ließen, gilt dies nicht für Ansatz 3, denn der in Abschn. 8.1 gefundene qualitative Zusammenhang von MF_h und MF_e gilt für große Quellen a_q nicht. Eine positive Ausnahme bildet noch der Fall f = 0.

Abbildung 33: Der bekannte κ^2 -Verlauf in Modell **B** für rechte Seite f = 0 und beliebigem Wert von a_q .

Für andere Funktionen fist der Verlauf von κ^2 mit wachsender Quelle a_q zunehmend von exponentiellem Charakter.

Abbildung 34: Exponentieller κ^2 -Verlauf in Modell **B** für die rechte Seite f = 1 und $a_q = 5$.

Abbildung 35: Für höhere Werte von a_q (hier $a_q = 50$) ist der exponentielle Charakter von κ^2 noch ausgeprägter. Das rechte Bild verdeutlicht den exponentiellen Verlauf in einem Ausschnitt.

8.4 Numerische Ergebnisse.

Die Ergebnisse für Testbeispiele mit verschiedenen ε -Werten und rechten Seiten von Modell **A** und **B** finden sich im Anhang (Tabellen 31 – 45 und Abbildungen 89 – 90). Die Variable *count*₁ enthält die Summe der Diskretisierungspunkte aller Berechnungen bis zur Festlegung von c_{opt} . In *count* sind zusätzlich die Anzahl n der Punkte der abschließenden Diskretisierung auf $(c_{opt}, 1)$ enthalten.

Fazit:

- Der Verlauf von κ^2 nähert sich für kleine Werte von ε einer Geraden, deswegen kann man dann an Grobgitterpunkten sparen, also einen größeren Koeffizienten Nko wählen (vgl. Tabelle 41 und 42). Auch für allgemeine rechte Seite f scheint sich also zumindest ein linearer Zusammenhang zwischen MF_h und MF_e zu bestätigen. Hier könnte noch einmal nachgebessert werden, indem man den Verlauf von κ als linear ansetzt und aus zwei Startwerten, c_0 und c_1 , bestimmt.
- Im Unterschied zu Modell **A** ist bei Modell **B** der Verlauf von κ^2 tendenziell steigend, deswegen wird hier die vorgegebene Toleranz nicht mehr eingehalten.
- Im Fall der konstanten rechten Seite ist Ansatz 3 wesentlich effizienter als Ansatz 2. Ansonsten ist der Effizienzgewinn gegenüber Ansatz 2 nur marginal.

9 Vergleich der drei Ansätze mit homogener Rechnung.

Die drei vorgestellten Ansätze wurden vergleichsweise gerechnet für Modell **A** mit rechten Seiten $f(t) = 1, f(t) = e^t$ und $f(t) = t^2$, wie auch für Modell **B** mit rechter Seite f(t) = 1und Quellterm $a_q(t) = 3$. Die Ergebnisse der Rechnung bei einer relativen Toleranz von 0.02 sind durchgezogen, bei einer relativen Toleranz von $TOL_{rel} = 0.05$ gestrichelt eingezeichnet. Ist das Ergebnis in der Grafik mit einem magentafarbenen Stern gekennzeichnet, so wurde die vorgeschriebene relative Toleranz überschritten, verursacht beispielsweise durch eine falsche Annahme über $\hat{\kappa}$.

Abbildung 36: Semilogarithmische Darstellung der notwendigen Gitterpunkte für $TOL_{rel} = 0.02$ bzw. $TOL_{rel} = 0.05$ im Modell **A** mit rechter Seite f(t) = 1 (links) und $f(t) = e^t$ (rechts).

Abbildung 37: Semilogarithmische Darstellung der notwendigen Gitterpunkte für $TOL_{rel} = 0.02$ bzw. $TOL_{rel} = 0.05$ im Modell **A** mit rechter Seite $f(t) = t^2$ (links) und im Modell **B** mit rechter Seite f(t) = 1 und $a_q(t) = 3$ (rechts).

Ansatz 2 zeigt für kleine Diffusionswerte eine Reduktion der Variablen *count* um den Faktor 8 für $TOL_{rel} = 0.05$ bzw. um den Faktor 19 für $TOL_{rel} = 0.02$. Der Vergleich mit

Ansatz 1 ist unfair. Um einen einheitlichen Verlauf des Aufwands zu erreichen, wurden Tests mit verschiedenen Werten von κ_{MF} durchgeführt und jeweils das beste Ergebnis für die Grafik ausgewählt. Der Startwert der Newton-Iteration wurde so gewählt, dass bei mehreren Schnittpunkten immer der der Grenzschicht nahest gelegene gefunden wird. Ohne diese Maßnahmen kann, sofern die Newton-Iteration überhaupt konvergiert, der Aufwand bis zu hundertfach höher liegen und sogar den Aufwand der homogenen Lösung übertreffen. Da die Modellfehlerschätzung ebenso wie die anschließende Nullstellensuche eine höhere Regularität der Lösungen erforderte und das Verfahren insgesamt sehr empfindlich von den Eingaben des Benutzers abhängt, ist die Modellfehlerapproximation von Ansatz 2 und 3 die bessere Wahl.

Da die Optimierung in Ansatz 3 den Aufwand gegenüber Ansatz 2 nicht erheblich senkt und zudem die a priori Kenntnis über einen qualitativen Verlauf von κ_{MF} nicht immer gegeben ist, fiel die Wahl bei der Umsetzung des Verfahrens in zwei Raumdimensionen auf eine modifizierte Version von Ansatz 2.
10 Ausblick auf innere Grenzschichten.

Eine allgemeinere Form von Modell \mathbf{B} ist

$$\begin{aligned} -\varepsilon v'' + bv' + a_q v &= f \text{ in } \Omega = (0, 1), \\ v(0) &= 0, \\ v(1) &= k, \end{aligned}$$

wobei keine Voraussetzungen mehr an das Vorzeichen der Konvektion $b: \Omega \to \mathbb{R}$ gestellt werden. Insbesondere können Wendepunkte, sog. Turning Points auftreten, also Elemente $t_{TP} \in \Omega$ mit $b(t_{TP}) = 0$.

Im Fall $b'(t_{TP}) < 0$ spricht man von Converging Flow oder Compression Turning Point. In der Praxis der Strömungsmechanik eines nicht viskosen Flusses entspricht dieser einem Schock, wir können also mit dem Auftreten einer inneren Grenzschicht rechnen. In ausreichendem Abstand von dieser stimmt die hyperbolische Lösung u_h in vielen Fällen (s. u.) sehr gut mit der homogenen Lösung v überein. Da die horizontale Ausrichtung der Grenzschicht allerdings nicht symmetrisch zu einer vertikalen Achse durch t_{TP} sein muss, muss das Auffinden der Interface-Positionen auf beiden Teilgebieten links und rechts der Grenzschicht einzeln vorgenommen werden.

Im Unterschied dazu liegt im Fall b'(t) > 0 ein Diverging Flow oder Expansion Turning Point vor. Dieser tritt im obigen Beispiel ein, wenn das Vorzeichen der Konvektion umgedreht wird. Man beobachtet in Konsequenz das Auftreten von Grenzschichten am linken und rechten Rand. Eine weitere innere Grenzschicht von allerdings parabolischem Charakter liegt hierbei um den Turning Point selbst.

In [21] wurden die auftretenden Phänomene anhand folgender Gleichung für v(t)

$$-\varepsilon v'' - 2\alpha t v' + \alpha \beta v = 0 \text{ in } (-1, 1),$$
$$v(-1) = -1,$$
$$v(1) = 2,$$

demonstriert. Abhängig von den Parametern α und β ergeben sich folgende heterogene Lösungsstrategien:

– Fall 1 mit $\alpha > 0, \beta \neq -2, -4, -6, \ldots$: Compression-Turning-Point bei t = 0. Nach Wahl zweier Interface-Stellen $c_1 < 0 < c_2$ löst man parallel die beiden reduzierten Probleme

$$\begin{aligned} -2\alpha t u'_{h,l} + \alpha \beta u_{h,l} &= 0 \text{ in } (-1,c_1), \\ u_{h,l}(-1) &= -1, \end{aligned}$$

bzw.

$$-2\alpha t u'_{h,r} + \alpha \beta u_{h,r} = 0 \text{ in } (c_2, 1),$$
$$u_{h,r}(1) = 2,$$

und nur auf dem Mittelstück (c_1, c_2) die elliptische Gleichung

 $-\varepsilon u_e'' - 2\alpha t u_e' + \alpha \beta u_e = 0, \text{ in } (c_1, c_2),$ $v(c_1) = u_h(c_1),$ $v(c_2) = u_h(c_2).$

Abbildung 38: Das Bild auf der linken Seite zeigt die beiden Äste der reduzierten Lösung im Vergleich zur homogenen für $\alpha = 1$ und $\beta = 0$. Das Bild auf der rechten Seite zeigt die homogene Lösung im Vergleich zur zusammengesetzten heterogenen.

Abbildung 39: Entsprechende Bilder für $\alpha = 1$ und $\beta = 2$.

Abbildung 40: Entsprechende Bilder für $\alpha = 1$ und $\beta = -1$.

– Fall 2 mit $\alpha < 0, \beta \neq 0, 2, 4, \ldots$: Expansion-Turning-Point bei t = 0. Die Lösung auf dem Mittelteil konvergiert für $\varepsilon \to 0$ gegen 0. Man erhält die heterogene Lösung also aus

 $u_h(t) = 0$, für $c_1 \le t \le c_2$,

und löst anschließend parallel die beiden elliptischen Probleme

$$\begin{aligned} -\varepsilon u_{e,l}'' - 2\alpha t u_{e,l}' + \alpha \beta u_{e,l} &= 0 \text{ in } (-1, c_1), \\ u_{e,l}(-1) &= -1, \\ u_{e,l}(c_1) &= 0, \end{aligned}$$

und

$$\begin{aligned} -\varepsilon u_{e,r}'' - 2\alpha t u_{e,r}' + \alpha \beta u_{e,r} &= 0 \text{ in } (c_2, 2), \\ u_{e,r}(c_2) &= 0, \\ u_{c_2} &= 2. \end{aligned}$$

Abbildung 41: Das Bild auf der linken Seite zeigt die homogene Lösung für $\alpha = -1$ und $\beta = 1$. Das Bild auf der rechten Seite zeigt homogene und heterogene Lösung im Vergleich.

− Fall 3 mit $\alpha < 0, \beta = 0, 2, 4, \ldots$: Expansion-Turning-Point bei t = 0. Der Informationsfluss läuft hier vom Turning-Point aus zu den Rändern. Die Lösung auf dem Mittelteil konvergiert für $\varepsilon \to 0$ gegen das Mittel der beiden reduzierten Probleme

$$\begin{aligned} -2\alpha t u_{h,l}' + \alpha \beta u_{h,l} &= 0 \text{ für } t > -1, \\ u_{h,l}(-1) &= -1, \end{aligned}$$

bzw.

$$-2\alpha t u'_{h,r} + \alpha \beta u_{h,r} = 0 \text{ für } t < 1,$$
$$u_{h,r}(1) = 2.$$

Man erhält die heterogene Lösung also aus

$$u_h(t) = 0.5(u_{h,l}(t) + u_{h,r}(t)), \text{ für } c_1 \le t \le c_2,$$

und löst anschließend parallel die beiden elliptischen Probleme

$$\begin{aligned} -\varepsilon u_{e,l}'' - 2\alpha t u_{e,l}' + \alpha \beta u_{e,l} &= 0 \text{ in } (-1, c_1), \\ u_{e,l}(-1) &= -1, \\ u_{e,l}(c_1) &= u_h(c_2), \end{aligned}$$

und

$$-\varepsilon u_{e,r}'' - 2\alpha t u_{e,r}' + \alpha \beta u_{e,r} = 0 \text{ in } (c_2, 2),$$
$$u_{e,r}(c_2) = u_h(c_2),$$
$$u_{c_2} = 2.$$

Abbildung 42: Das Bild auf der linken Seite zeigt die Summe der hyperbolischen Lösungsäste im Vergleich zur homogenen Lösung für $\alpha = -1$ und $\beta = 0$. Das Bild auf der rechten Seite zeigt homogene und heterogene Lösung im Vergleich.

– Fall 4 mit $\alpha > 0, \beta = -2, -4, -6, \ldots$: Compression-Turning-Point bei t = 0. In diesem Fall steigt die homogene Lösung auf dem Gebietsinneren für $\varepsilon \to 0$ exponentiell an. Selbst wenn der hyperbolische Teil der heterogenen Lösung auf ein ineffizient kleines Teilgebiet beschränkt wird, stellt die heterogene Lösung keine Approximation mehr an die homogene Lösung dar.

Abbildung 43: Die Bilder zeigen homogene und heterogene Lösung für $\alpha = 1$ und $\beta = -2$ für unterschiedliche Interface-Positionen.

Sofern der Wind b(t) in der Umgebung des Turning-Points linearisierbar ist, lassen sich die obigen Ergebnisse sinngemäß auf ein allgemeines Turning-Point-Problem übertragen.

10 Ausblick auf innere Grenzschichten.

Teil III Numerik in zwei Raumdimensionen.

11 Numerische Lösung des gekoppelten heterogenen Problems.

Für die numerische Untersuchung stellen wir stärkere Voraussertzungen an die Daten in den Modellen (2.1a) – (2.1c) und (2.7a) – (2.7g): $\Gamma_{h,D}$ und Γ_f^{out} seien reguläre C^1 -Ränder und es gelte $b \in (C^1(\Omega_H))^2$, $a_q \in C^1(\Omega_h)$ sowie $f \in C^1(\Omega_h)$ für $\Omega_h \subset \Omega$ und $\varphi_{h,D} \in C^1(\Gamma_{h,D})$.

11.1 Grobe Struktur des Programmablaufs.

Folgender Programmablauf wurde ebenso wie die in den Abschnitten 11.3 und 12.4 vorgestellten Routinen zu Testzwecken in MATLAB implementiert:

- (a) Der Idee von Ansatz 2 aus der eindimensionalen Untersuchung folgend wird Ω zunächst mit einem groben Gitter überzogen. Dies geschieht im Zuge der Lösung des homogenen Gleichungssystems (2.1a) auf Ω bis zu einer groben Toleranz $TOL_{rel,grob}$ (zur Wahl von $TOL_{rel,grob}$ und damit von der Feinheit des Grobgitters, s. Abschnitt 12.3). Um Kosten zu sparen und einen ersten Hinweis auf die Lage der Grenzschicht zu bekommen, soll der Löser dabei adaptiv verfeinern.
- (b) An den Gitterpunkten des Grobgitters wird der Wert der hyperbolischen Lösung u_h ermittelt, entweder durch Auswerten eines analytischen Lösungsausdrucks oder durch Anwendung des Verfahrens aus Abschnitt 11.3.
- (c) Anhand der Differenz der Grobgitterlösungen \hat{v}_N und $\hat{u}_{h,N}$ wird ein erster Interfaceverlauf ermittelt. (Einzelheiten s. Abschnitt 12.2).
- (d) Für $\Gamma_f^{out} = \emptyset$ findet kein Fluss von Ω_e nach Ω_h statt. Die hyperbolische Lösung u_h kann unabhängig von der elliptischen Lösung u_e berechnet werden und bildet die Eingabe für deren anschließende Berechnung. Falls $\Gamma_f^{out} \neq \emptyset$, sind die beiden Teilgebiete über die Gleichungen (2.7f) (2.7g) miteinander gekoppelt. Bei Vorgabe einer Startfunktion γ^0 auf dem Interface Γ_f^{out} erlaubt folgende sequentielle Iteration ein weiterhin unabhängiges Lösen auf den Teilgebieten:

Für $k\geq 0$ löse zunächst

$$\operatorname{div}(bu_h^{k+1}) + a_q u_h^{k+1} = f \quad \text{in } \Omega_h, \tag{11.1a}$$

$$u_h^{k+1} = \gamma^k \quad \text{auf } \Gamma_f^{out}, \tag{11.1b}$$

$$u_h^{k+1} = \varphi_{h,D} \quad \text{auf } \Gamma_{h,D}. \tag{11.1c}$$

Anschließend löse

$$-\varepsilon \Delta u_e^{k+1} + \operatorname{div}(bu_e^{k+1}) + a_q u_e^{k+1} = f \quad \text{in } \Omega_e, \tag{11.1d}$$

$$-\varepsilon \frac{\partial u_e^{k+1}}{\partial n^*} + b \cdot n^* u_e^{k+1} = b \cdot n^* u_h^{k+1} \quad \text{auf } \Gamma_f^{in} \cup \Gamma_f^0, \tag{11.1e}$$

$$\frac{\partial u_e^{\kappa+1}}{\partial n^*} = 0 \qquad \text{auf } \Gamma_f^{out}, \tag{11.1f}$$

$$u_e^{k+1} = \varphi_{e,D} \quad \text{auf } \Gamma_{e,D}, \tag{11.1g}$$

$$\varepsilon \frac{\partial u_e^{\kappa+1}}{\partial n} = \varphi_{e,N} \quad \text{auf } \Gamma_{e,N},$$
 (11.1h)

und setze

$$\gamma^{k+1} = \Theta u_e^{k+1} \big|_{\Gamma_f^{out}} + (1 - \Theta) \gamma^k \text{ mit } \Theta > 0.$$

Wir wählen die Startfunktion $\gamma_0 \in L^2_b(\Gamma^{out}_f)$ und betrachten die Abbildung

$$T: \begin{cases} L_b^2(\Gamma_f^{out}) & \to & L_b^2(\Gamma_f^{out}) \\ \gamma & \mapsto & T\gamma := \Theta u_e \big|_{\Gamma_f^{out}} + (1 - \Theta)\gamma \end{cases}$$

ε

Für Θ nahe der 1 wurde in [15] gezeigt, dass T eine Kontraktion ist und dass sowohl das iterative Schema wie auch seine diskrete Version gegen die Lösung des heterogenen Problems konvergiert, wobei die Konvergenzrate K von den Größen ε , μ_0 und b abhängt. Bei der numerischen Lösung wird die Anzahl der Iterationsschritte entweder durch Vorgabe einer zu erreichenden Genauigkeit TOL_{DF} (s. Abschnitt 13) oder durch die Gesamttoleranz TOL_G (s. Abschnitt 11.2) beschränkt.

(e) Der Iterationsprozess kann nach einigen Schritten unterbrochen werden, um das elliptische Rechengebiet Ω_e aufgrund der neu gewonnenen Information über u_{e,Γ_f} nochmals zu verkleinern.

11.2 Die einzelnen Fehleranteile der numerischen Lösung.

Sämtliche Fehler werden in der Energienorm $\|\cdot\|_E$ gemessen. Für A, Teilgebiet von Ω und $e \in H^1(A)$ ist diese definiert durch

$$\|e\|_{E(A)} := \left(\varepsilon \int_{A} \nabla e \cdot \nabla e + \int_{A} (\frac{1}{2} \operatorname{div}(b) + a_q) e^2\right)^{\frac{1}{2}}$$

Für $e \in H_0^1(A)$ gilt

$$||e||_{E(A)}^{2} = \mathcal{F}|_{H_{0}^{1}(A) \times H_{0}^{1}(A)}(e, e).$$

Für eine Triangulierung \mathcal{T} auf A sei

$$\|\cdot\|_{E_{\mathcal{T}}(A)} := \left(\sum_{T\in\mathcal{T}} \|\cdot\|_{E(T)}^{2}\right)^{\frac{1}{2}}.$$

Ist $A = \Omega$, so schreiben wir auch kürzer $\|\cdot\|_{E(\Omega)} = \|\cdot\|_{E}$, bzw. $\|\cdot\|_{E_{\mathcal{T}}(\Omega)} = \|\cdot\|_{E_{\mathcal{T}}}$.

Bemerkung. Die oben gestellten stärkeren Voraussetzungen an die Daten garantieren die Existenz einer Lösung $u_h \in H^1(\Omega_h)$. Ohne diese Vereinbarungen kann aus

 $\operatorname{div}(bu_h) = f - a_q u_h \in L^2(\Omega_h)$

nicht auf $u_h \in H^1(\Omega_h)$ geschlossen werden. (Dasselbe Problem stellt sich im eindimensionalen Fall für $b \neq 1$.) In diesem Fall darf die Energienorm nicht die H^1 -Seminorm über Ω_h enthalten. Das Streichen dieses Terms aus der Norm entspricht dem Grenzprozess für $\tilde{\varepsilon} \to 0$, aus welchem das heterogene Modell gewonnen wurde.

Die numerische Lösung \hat{u}^k des heterogenen Problems unterscheidet sich von der analytischen Lösung v des homogenen Problems durch

den Modellfehler (MF): $\sqrt{\|v - u_h\|_{E(\Omega_h)}^2 + \|v - u_e\|_{E(\Omega_e)}^2},$ den Diskretisierungsfehler (DF): $\|u - \hat{u}\|_{E_T},$ den Iterationsabbruchsfehler (IF): $\|\hat{u} - \hat{u}^k\|_{E_T}.$

Der vom Benutzer erhobene Genauigkeitsanspruch

$$\|v - \hat{u}^k\|_{E_{\mathcal{T}}} \le TOL_G$$

wird zunächst durch die schärfere Forderung

$$\left(\|v - u\|_{E(\Omega_h)} + \|\hat{u} - \hat{u}^k\|_{E_{\mathcal{T}}(\Omega_h)} \right)^2 + \left(\|v - u\|_{E(\Omega_e)} + \|u - \hat{u}\|_{E_{\mathcal{T}}(\Omega_e)} + \|\hat{u} - \hat{u}^k\|_{E_{\mathcal{T}}(\Omega_e)} \right)^2 \le (TOL_G)^2$$

oder die noch strengere Fassung

$$MF + DF + IF \le TOL_G \tag{11.2}$$

ersetzt.

Bei der Überprüfung dieser Forderungen werden die einzelnen Fehleranteile durch einfache Approximationen genähert.

- Der Modellfehler MF berechnet sich durch Approximation der Differenz auf dem Grobgitter (Index $N_0 = N$), $\widehat{MF}^2 = \|\hat{v}_{N_0} \hat{u}_{h,N_0}\|_{E_{\mathcal{T}}(\Omega_h)}^2 + \|\hat{v}_{N_0} \hat{u}_{e,N_0}\|_{E_{\mathcal{T}}(\Omega_e)}^2$, wobei \hat{u}_{N_0} durch Interpolation der Lösung $\hat{u}_{N_k}^k$ vom aktuellen auf das grobe Gitter entsteht.
- Die Lipschitz-Konstante K der Kontraktion T ist zugleich die Konvergenzrate der Iteration. Wir bestimmen K aus

$$\|\hat{u}^2 - \hat{u}^1\|_{E_{\mathcal{T}}} \le K \|\hat{u}^1 - \hat{u}^0\|_{E_{\mathcal{T}}}.$$

Damit kann der Iterationsabbruchsfehler IF (oder sein hyperbolischer oder elliptischer Anteil) abgeschätzt werden durch

$$\|\hat{u} - \hat{u}^k\|_{E_T(\Omega)} \le \frac{K^k}{1-K} \|\hat{u}^1 - \hat{u}^0\|_{E_T}$$

- Wiederum gelte $DF = DF_e$, d. h. ein evtl. Diskretisierungsfehler auf dem hyperbolischen Gebiet wird nicht berücksichtigt, um die Untersuchung unabhängig von dem dort gewählten Lösungsverfahren zu machen. Für den Diskretisierungsfehler der elliptischen Teillösung wird die vom Finite-Element-Löser gelieferte Approximation \widehat{DF} verwendet (s. [8] und [4]).

Bei der Gitterverwaltung sind in jedem Iterationsschritt drei Gitter zu merken: das Grobgitter, das Gitter der aktuellen Iteration und das der vorangegangenen. Da die heterogene Lösung auf dem Interface i.a. nicht stetig ist, muss die Berechnung von \widehat{MF} und \widehat{IF} aufgeteilt werden in hyperbolischen und elliptischen Anteil unter Berücksichtigung der Werte des jeweiligen heterogenen Lösungsanteils (\hat{u}_h oder \hat{u}_e) auf dem Interface.

Approximation des Modellfehlers bei Korrektur der Interface-Position.

Analog zur eindimensionalen Vorgehensweise kann die Interface-Position zunächst vorsichtig gewählt werden; d. h. sie wird zunächst unter Ausnutzen nur eines Anteils der Toleranz ermittelt und anschließend unter Einbezug der Information aus einer ersten heterogenen Lösung näher zur Grenzschicht verschoben. Diese Nachbesserung kann beliebig oft vorgenommen werden, allerdings ist zu beachten, dass für jedes neue Interface das resultierende elliptische Gebiet zeit- und kostenaufwändig für die Übergabe an PLTMG vorbereitet werden muss. Entsprechend der Interface-Positionen $\Gamma_{f,i}$ für $i = 1, \ldots, M$ und der Anzahl der Gitterpunkte N_i auf der zugehörigen Triangulierung $\mathcal{T} = \mathcal{T}_{N_i}$ des elliptischen Gebietes $\Omega_e(\Gamma_i)$ spaltet sich die Modellfehlerapproximation in

$$MF = \|\hat{v}_{N_0} - \hat{u}_{N_0,\Gamma_{f,1}}\|_{E_{\mathcal{T}}(\Omega)} + \|\hat{u}_{N_1,\Gamma_{f,1}} - \hat{u}_{N_1,\Gamma_{f,2}}\|_{E_{\mathcal{T}}(\Omega_e(\Gamma_{f,1}))} + \dots + \|\hat{u}_{N_{M-1},\Gamma_{f,M-1}} - \hat{u}_{N_{M-1},\Gamma_{f,M}}\|_{E_{\mathcal{T}}(\Omega_e(\Gamma_{M-1}))},$$

wobei $\hat{u}_{\Gamma_{f,i},N_{i-1}}$ aus Interpolation der heterogenen Lösung $\hat{u}_{\Gamma_{f,i},N_i}$ auf das (i-1)-te Gitter entsteht. Der wesentliche Schwachpunkt dieser Approximation ist, dass Anteile des Modellfehlers mehrfach eingerechnet werden. Eine Approximation des Modellfehlers durch

$$\|\hat{v}_{N_0} - \hat{u}_{N_M,\Gamma_{f,M}}\|_{E_{\mathcal{T}}}^2 = \|\hat{v}_{N_0} - \hat{u}_{h,N_M,\Gamma_{f,M}}\|_{E_{\mathcal{T}}(\Omega_h(\Gamma_{f,N}))}^2 + \|\hat{v}_{N_0} - \hat{u}_{e,N_M,\Gamma_{f,M}}\|_{E_{\mathcal{T}}(\Omega_e(\Gamma_{f,N}))}^2$$

vermeidet eine mehrfache Einrechnung, ist jedoch problematisch, da sich der Interface-Verlauf nicht mehr an den Dreieckskanten des Grobgitters orientieren muss. Das Gitter wurde in den Iterationen der Interface-Positionierung verfeinert und geglättet, so dass zunächst der Verlauf von $\Gamma_{f,M}$ im Grobgitter und die Anteile der Grobgitterdreiecke an $\Omega_h(\Gamma_{f,M})$ bzw. $\Omega_e(\Gamma_{f,M})$ ermittelt werden müssten.

11.3 Numerische Lösung der reduzierten Gleichung.

Die reduzierte Gleichung auf Ω_h ,

$$\operatorname{div}(bu_h) + a_q u_h = b \nabla u_h + (\operatorname{div}(b) + a_q) u_h = f,$$

ist eine lineare partielle Differentialgleichung erster Ordnung von hyperbolischem Charakter. Die lösende Integralfläche $u_h(x)$ für $x = (x_1, x_2) \in \Omega_h$ ist die Vereinigung charakteristischer Kurven, die der Parameterisierung

$$\begin{pmatrix} \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial t} \\ \frac{\partial u_h}{\partial t} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ f - (\operatorname{div}(b) + a_q)u_h \end{pmatrix} (x(t))$$

genügen. Da $b \cdot n \neq 0$ auf $\Gamma_{h,D} \cup \Gamma_f^{out}$, ist das Anfangswertproblem

$$b\nabla u_h + (\operatorname{div}(b) + a_q)u_h = f \quad \text{in } \Omega_h,$$
$$u_h = \varphi_{h,D} \quad \operatorname{auf} \Gamma_{h,D},$$
$$u_h = \gamma \quad \operatorname{auf} \Gamma_f^{out},$$

nichtcharakteristisch und somit eindeutig lösbar.

Für die numerische Berechnung des Funktionswertes $u_h(x^*)$ für $x^* \in \Omega_h$ verfolgt man die Projektion der durch x^* verlaufenden Charakteristik auf Ω_h (characteristic ground curve)

$$\begin{pmatrix} \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial t} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (0) = x^*$$

entlang der negativen t-Richtung, bis diese nach dem Intervall $\Delta t^* = |-t^*|$ entweder den Rand $\Gamma_{h,D}$ oder den Interface-Teil Γ_f^{out} im Punkt $x_0^* \in \Gamma_{h,D} \cup \Gamma_f^{out}$ schneidet. Mit

$$u_h(x_0^*) = \begin{cases} \varphi_{h,D}(x_0^*) & \text{für} \quad x_0^* \in \Gamma_{h,D} \\ \gamma(x_0^*) & \text{für} \quad x_0^* \in \Gamma_f^{out} \end{cases}$$

erhält man den Wert $\hat{u}_h(x^*)$ dann durch Lösen des Anfangswertproblems

$$\begin{pmatrix} \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial t} \\ \frac{\partial u_h}{\partial t} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ f - (\operatorname{div}(b) + a_q)u_h \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ x_2 \\ u_h \end{pmatrix} (0) = \begin{pmatrix} x_{0,1}^* \\ x_{0,2}^* \\ u_h(x_0^*) \end{pmatrix}$$

über das Zeitintervall $[0, \Delta t^*]$. Geeignete Verfahren finden sich beispielsweise in [9].

11.4 Numerische Lösung der elliptischen Gleichung.

Zur Lösung des elliptischen Gleichungssystems verwenden wir den linearen Finite-Element-Löser PLTMG, der als Fortan-Mexfile in MATLAB eingebunden wird.

11.4.1 Bereitstellung des Normalenvektors in PLTMG.

Sei $\Omega \subset \mathbb{R}^2$ beschränkt und *n* die äußere Einheitsnormale auf $\Gamma = \partial \Omega$. In [5] nennt Randolph E. Bank PLTMG als Löser folgender Problemklasse,

$$\begin{aligned} -\nabla a(x_1, x_2, u, \nabla u, \lambda) + f(x_1, x_2, u, \nabla u, \lambda) &= 0, & \text{in } \Omega, \\ u &= g_2(x_1, x_2, \lambda), & \text{auf } \Gamma_D, \\ a \cdot n &= g_1(x_1, x_2, u, \lambda), & \text{auf } \Gamma_N, \end{aligned}$$

wobei in unserem Fall eine Abhängigkeit von λ , dem skalaren Fortsetzungsparameter, nicht gegeben ist. Für die Übertragung auf das Gleichungssystem (11.1d) – (11.1h) mit n als äußerer Einheitsnormalen auf Ω_e ergeben sich zwei Möglichkeiten.

– Entweder setzt man $a := \varepsilon \nabla u_e$. Dann folgt für die Definition von $g_1 = g_1(x_1, x_2, u_e)$

$$g_1(x_1, x_2, u_e) = a \cdot n = \varepsilon \nabla u_e \cdot n = \begin{cases} b \cdot n(u_e - u_h) \text{ auf } \Gamma_f^{in} \cup \Gamma_f^0 \\ 0 \text{ auf } \Gamma_f^{out} \\ \varphi_{e,N} \text{ auf } \Gamma_{e,N} \end{cases}$$

- Oder man definiert $a := \varepsilon \nabla u_e - b u_e$. Daraus folgt

$$g_1(x_1, x_2, u_e) = \varepsilon \nabla u_e \cdot n - u_e b \cdot n = \begin{cases} -u_h b \cdot n \text{ auf } \Gamma_f^{in} \cup \Gamma_f^0 \\ -u_e b \cdot n \text{ auf } \Gamma_f^{out} \\ \varphi_{e,N} - u_e b \cdot n \text{ auf } \Gamma_{e,N} \end{cases}$$

In beiden Alternativen beinhaltet die rechte Seite der Gleichung die äußere Einheitsnormale n, welche folglich den Integrationsroutinen von PLTMG zur punktweisen Auswertung zur Verfügung gestellt werden muss. Dazu wird zunächst die Subroutine gxy.f aus PLTMG erweitert, welche die Randfunktion an einem bestimmten Punkt $x = (x_1, x_2)$ auswertet. Als zusätzliche Eingabeparameter erhält gxy.f die äußere Normale auf den Rand im Punkt x und den Wert der hyperbolischen Lösung u_h in diesem Punkt.

Der Aufruf von gxy.f erfolgt aus insgesamt drei Subroutinen von PLTMG:

- uinit.f
- eledbc.f
- elenbc.f

uinit.f und eledbc.f erledigen die Vorbelegung bzw. Auswertung der Dirichlet-Bedingung g_2 . Die neuen Eingabevariablen spielen hierbei also keine Rolle und können mit beliebigen Werten belegt werden. In elenbc.f wird der Beitrag der Neumann-Ränder zur Steifigkeitsmatrix berechnet. Die Berechnung des Normalenvektors in einem Punkt des Randes erfolgt unterschiedlich je nach Art des zugehörigen Randstücks.

- Ist der Rand das gerade Streckenstück [x, y] zwischen den Punkten $x = (x_1, x_2)$ und $y = (y_1, y_2) \in \mathbb{R}^2$ mit Länge $||x - y||_2$, so ist die Normale konstant auf dem Randstück,

$$n|_{[x,y]} = \frac{1}{\|x-y\|_2} \begin{pmatrix} y_2 - x_2 \\ x_1 - y_1 \end{pmatrix}.$$

- Ist der Rand ein Kreisbogen mit Anfangspunkt x, Endpunkt y und zugehörigem Kreismittelpunkt $m \in \mathbb{R}^2$, so verschiebt man den Ursprung des Koordinatensystems in den Kreismittelpunkt und misst den Winkel Θ , den ein Punkt P des Kreisbogens mit der horizontalen Achse einschließt. Die Normale in P ergibt sich zunächst zu $\begin{pmatrix} \cos(\Theta) \\ \sin(\Theta) \end{pmatrix}$; das Vorzeichen der Normale muss anschließend noch angepasst werden, je nachdem in welchem Quadranten des verschobenen Koordinatensystems P liegt.

Andere Randstücke sind in PLTMG nicht vorgesehen.

11.4.2 Änderung der Abbruchbedingung in PLTMG.

Die Anzahl der Lösungsiterationen auf adaptiv verfeinerten Gittern wird in PLTMG durch den Parameter **nvtrgt** begrenzt, der die vom Benutzer vorgegebene maximale Anzahl an Gitterpunkten enthält. Für diese Arbeit zweckmäßig ist jedoch ein kontrollierter Abbruch hinsichtlich der erreichten Genauigkeit anstelle der Kosten. Daher wird die Abbruchbedingung folgendermaßen abgewandelt: solange der Diskretisierungsfehler, gemessen in der Energienorm, unter einer vom Benutzer vorgegebenen Toleranz liegt, wird das Gitter durch Hinzufügen von 10% der schon vorhandenen Punkte verfeinert, anschließend wird erneut gelöst.

11.4.3 Änderung der Verfeinerungsstrategie in PLTMG.

Alle Anderungen dieses Abschnitts beziehen sich auf die Subroutine refine.f und damit auch auf die aufrufende Routine trigen.f.

Die Auswahl der zu verfeinernden Dreiecke geschieht in PLTMG in Hinblick auf eine Abschätzung von DF_T , dem aktuellen lokalen Diskretisierungsfehler auf dem Dreieck T. Um die Verfeinerung noch lokaler zu gestalten, machen wir einer Idee aus [3] folgend nicht den aktuellen, sondern den nach einer Verfeinerung des Dreiecks zu erwartenden lokalen Diskretisierungsfehler zum Auswahlkriterium. Zu dessen Voraussage setzt man ein zu einer Potenz der Gitterkenngröße h_T proportionales Verhalten von DF_T für $h_T \to 0$ voraus. Hieraus folgt die Beziehung

$$\frac{\left(\widehat{DF}_{T_{new}}^{new}\right)}{\widehat{DF}_{T}^{current}} = \frac{\widehat{DF}_{T}^{current}}{\widehat{DF}_{T}^{old}},$$

wobe
i DF_T^{old} den lokalen Diskretisierungsfehler vor der letzten Verfeinerung des Dreiecks
 T bezeichnet und T_{new} für jedes aus der Verfeinerung von
 T hervorgegangene Dreieck steht. Für eine Verfeinerung markiert werden dann alle Dreiecke mit

$$\widehat{DF}_{T}^{current} > \rho_{Babuska} \max_{T \in \mathcal{T}} \widehat{DF}_{T}^{new} \text{ mit } 0 < \rho_{Babuska} < 1 \text{ frei wählbar.}$$

Die anschließende Verfeinerung erfolgt Dreieck für Dreieck, wobei darauf geachtet wird, dass ein markiertes Dreieck, das infolge einer Verfeinerung eines anderen markierten Dreiecks schon verfeinert wurde (grüne Verfeinerung), nicht mehr weiter verfeinert wird.

11.4.4 Stabilisierung der Finite-Element-Methode bei Konvektionsdominanz.

In Abschnitt 7.2 der numerischen Untersuchung in einer Raumdimension haben wir gesehen, dass die Art der Diskretisierung Auswirkung auf die Approximation des Modellfehlers hat, weswegen wir einen kurzen Blick auf das in PLTMG implementierte Vorgehen werfen. Im Folgenden sei \mathcal{T} eine Partition von Ω in Dreiecke T mit Durchmesser $h_T = \text{diam}(T)$ und Flächeninhalt |T|.

Für eine Anzahl an Gitterpunkten $N < N_{\text{Péclet}} = \frac{h_T}{2\varepsilon} ||b||_{L^{\infty}(\Omega)}$ zeigt die Galerkin-Finite-Element-Approximation an die Lösung einer konvektionsdominierten Diffusionsgleichung auch in zwei Dimensionen Oszillationen. Abhilfe schafft wiederum das Einführen einer künstlichen Diffusion von der Ordnung h_T , was auf $T \in \mathcal{T}$ dem Lösen der Gleichung

$$-\nabla \cdot \left(\varepsilon (I + h_T \mathbf{R}) \nabla u - bu\right) + a_q u = f,$$

mit einer 2×2 -Matrix $\mathbf{R} = \mathbf{R}(\varepsilon, b)$ entspricht. Die künstliche Diffusion senkt die gesamte Approximationsordnung auf $\mathcal{O}(h_T)$. Allerdings genügt es, die künstliche Diffusion allein in Richtung des Windes zuzufügen. Dieses Verfahren, die sog. *Streamline Upwind* Methode, vermeidet den unschönen Effekt einer künstlichen Diffusion senkrecht zur Windrichtung (*Crosswind Diffusion*). Beide Methoden führen auf eine symmetrische, positiv definite Rang-1 Matrix R der künstlichen Diffusion.

Eine weitere, sehr stabile Technik des Upwindings ist die auf finiten Volumen basierende Box Method. Auf jeder zu einem Gitterpunkt v_i konstruierten Voronoi-Zelle V_i liefert die Integralformel von Gauß

$$\int_{V_i} \nabla \cdot (\varepsilon \nabla u_e - bu_e) = \int_{\partial V_i} (\varepsilon \nabla u_e - bu_e) \cdot n_{V_i}$$

wobei n_{V_i} die äußere Einheitsnormale auf den Rand der Voronoi-Zelle V_i ist.

Dieser Ausdruck wird approximiert durch

$$\sum_{v_j \in E(v_i)} \left(\varepsilon \left(\frac{\hat{u}_e(v_i) - \hat{u}_e(v_j)}{l_{ij}} \right) s_{ij} - (b \cdot n_{V_i}) \hat{u}_e(v_m) s_{ij} \right)$$
(11.3)

mit

$$m = \begin{cases} i, & \text{falls } b \cdot n_{V_i} < 0, \\ j, & \text{sonst.} \end{cases}$$

Hierin bezeichnet $E(v_i)$ die Menge aller Gitterpunkte v_j , die über eine Dreiecksseite mit v_i verbunden sind, l_{ij} die Länge der Kante zwischen v_i und v_j und s_{ij} die Länge der Voronoi-Zellen-Seite, welche senkrecht auf der Kante $[v_i, v_j]$ steht. Diese Form des Upwindings entspricht dem Hinzufügen einer künstlichen Diffusion von der Größe $\frac{1}{2}l_{ij}|b \cdot n_{ij}|$ zu jeder Ecke eines Dreiecks.

Da jedes Dreieck T aus Teilstücken der drei zu seinen Eckpunkten gehörenden Voronoi-Boxen zusammengesetzt ist, lässt sich (11.3) rückrechnen in eine dem Dreieck entsprechende Steifigkeitsmatrix, s. [6]. Auf diese Weise sieht man, dass die aus der Box Method resultierende künstliche Diffusion auf dem Dreieck T aus vier Summanden zusammengesetzt ist. Drei Summanden kommen vom Upwind entlang jeweils einer einzelnen der drei Kanten. Sie sind symmetrisch und positiv semidefinit. Der vierte, i.a. nichtsymmetrische Term kommt aus der zum Galerkin-Verfahren unterschiedlichen Approximation der Konvektion; anstelle einer Approximation auf dem gesamten Dreieck wie im Galerkin-Verfahren erfolgt die Approximation der Konvektion bei den Box Methoden nur entlang der Kanten.

Die in PLTMG implementierte Stabilisierung, die Scharfetter-Gummel Methode (s. [7]), ist ein Spezialfall der Box Methoden. Bei diesem exponentiellen Upwind-Verfahren verwendet man die Voraussetzung $b = \nabla \psi$ zur Umformung von

$$-\left(\varepsilon\nabla u_e - bu_e\right)\cdot n = -e^{\psi}\nabla\left(e^{-\psi}\varepsilon u_e\right)\cdot n.$$

Nun wird direkt dieser Ausdruck entlang des Randes der Voronoi-Zelle approximiert. Die resultierende künstliche Diffusion ist formal von der Ordnung $\mathcal{O}(h_T^2|b|^2)$ für $h_T b \to 0$, während sie bei der klassischen Box Methode von Ordnung $\mathcal{O}(h_T|b|)$ ist. Die Scharfetter-Gummel Methode wird die Konvergenz der Approximation an den wirklichen Modellfehler also nicht so stark verzögern wie ein einfaches Upwind-Verfahren.

12Auffinden des Interfaces.

12.1Merkmale Finiter Elemente im Bereich der Grenzschicht.

Die hier angestellten Überlegungen dienen dazu, im Grobgitter eine Startpositionierung für das Interface des ersten heterogenen Modells festzulegen. Dieses sollte in der Form dem Grenzschichtrand bereits angepasst sein, aber in einem hinreichenden Sicherheitsabstand von der Grenzschicht liegen.

Auswahl anhand des Gradienten einer homogenen Grobgitterlösung. 12.1.1

Im Bereich der Grenzschicht ermöglicht die Diffusion der homogenen Lösung die am Ausflussrand vorgeschriebenen Werte anzunehmen. Dieses erzwungene Abweichen vom konvektiven Fluss der Lösung hat einen großen Wert des Gradienten zur Folge. Schon im eindimensionalen Modell diente der Anstieg der ersten Ableitung zur Ermittlung eines geeigneten Startpunktes (s. Abschnitt 8.2). Entsprechend einer Idee aus [18] und [19] berechnen wir die Steigung entlang einer einzelnen Dreiecksseite $\epsilon = [x_i, x_j],$

$$\left.\nabla\hat{v}_N\right|_{\epsilon} = \frac{\left|\hat{v}(x_j) - \hat{v}(x_i)\right|}{\|x_j - x_i\|_2},$$

und ermitteln das Maximum M_{grad} der auftretenden Steigungen über alle Dreiecksseiten. Im Versuch markieren wir diejenigen Dreiecke, die eine Kante mit Steigung größer als $\rho_{grad} \cdot M_{grad}$ besitzen, wobei $0 < \rho_{grad} < 1$ frei wählbar ist (Abbildung 45, links). In einem weiteren Test werden alle Dreiecke markiert, die einen Gradienten größer als $\rho_{qrad} \cdot \max_{T \in \mathcal{T}} \|\nabla \hat{v}\|_T \|_2$ besitzen (Abbildung 45, rechts). Dieser Ansatz passt zur Verfeinerungsstrategie von PLTMG, da dort der lokale Diskretisierungsfehler in H^1 -Seminorm als Kriterium der Verfeinerung herangezogen wird.

Wir beobachten das Verhalten dieser Markierungen an folgendem Testbeispiel, das eine Grenzschicht am oberen Rand aufweist,

$$-\varepsilon\Delta v + \operatorname{div}\left(\left(\begin{array}{c}x_1 - x_2\\x_1^2 x_2\end{array}\right)v\right) = 5 \quad \operatorname{auf} \quad [1, 2] \times [1, 2], \tag{12.1a}$$

$$\frac{\partial v}{\partial n} = 0 \quad \text{für} \quad x \in \partial \Omega \text{ und } x_1 = 1, \tag{12.1b}$$

$$\frac{\partial v}{\partial n} = 0 \quad \text{für} \quad x \in \partial \Omega \text{ und } x_1 = 2, \tag{12.1c}$$

$$= 0 \quad \text{für} \quad x \in \partial \Omega \text{ und } x_1 = 2, \tag{12.1c}$$

$$v = 20$$
 für $x \in \partial \Omega$ und $x_2 = 1$, (12.1d)

$$v = 7.5$$
 für $x \in \partial \Omega$ und $x_2 = 2.$ (12.1e)

Das Testbeispiel ist konstruiert um die Markierung auszutricksen: einerseits liegt der Dirichlet-Wert der homogenen Lösung an der oberen Kante sehr nahe an dem Wert, den die Lösung auch ohne Einfluss der Diffusion annehmen würde. Andererseits fällt die Lösung im konvektionsdominierten Gebiet oberhalb des unteren Randes sehr stark ab.

Abbildung 44: Richtung der Konvektion im Testbeispiel und homogene Lösung mit Grenzschicht am oberen Rand.

Während die Markierung bzgl. der Steigung entlang einer Dreieckskante empfindlich auf die Steigung im konvektionsdominierten Gebiet reagiert (Abbildung 45, links), entdeckt die Markierung bzgl. des Gradienten zuverlässig die Lage der Grenzschicht (Abbildung 45, rechts).

Abbildung 45: Markierung der Dreiecke bzgl. der Steigung entlang von Dreiecksseiten bzw. bzgl. des Gradienten.

12.1.2 Auswahl anhand der Differenz von homogener und hyperbolischer Lösung auf dem Grobgitter.

Eine Alternative bietet die Berechnung der Differenz zwischen homogener Lösung und der Lösung von

$$\operatorname{div}(bu_h) + a_q u_h = f \quad \text{in } \Omega,$$

$$u_h = \varphi_D \quad \operatorname{auf} \Gamma_D^{in} = \{ x \in \partial \Omega | (b \cdot n)(x) < 0 \},$$
(12.2)

auf dem Grobgitter. Allerdings hat die Untersuchung von Modell \mathbf{B} im eindimensionalen Fall gezeigt, dass die maximale Abweichung von homogener und hyperbolischer Lösung

nicht immer im Bereich der Grenzschicht auftreten muss. Weiterhin ist die Markierung der Dreiecke, auf denen die Differenz der Lösungen größer ist als $\rho_{diff} \cdot \max_{T \in \mathcal{T}} \|\hat{v} - \hat{u}_h\|_{E(T)}$, sehr stark abhängig von der Wahl des Parameters $0 < \rho_{diff} < 1$ (Abbildung 46).

Abbildung 46: Markierung der Dreiecke bzgl. der absoluten Differenz zwischen homogener und reduzierter Lösung mit $\rho_{diff} = 0.5$ (links) bzw. $\rho_{diff} = 0.1$ (rechts).

Das in dieser Arbeit schließlich gewählte Vorgehen vereint die beiden obigen Ideen, indem pro Dreieck T die Differenz zwischen homogener Lösung und der Lösung von (12.2) in der Energienorm betrachtet wird. Markiert werden im Versuch alle Dreiecke T_i mit

$$\|\hat{v}_N - \hat{u}_{h,N}\|_{E(T_i)} > \rho_{energy} \cdot \max_{T \in \mathcal{T}} \|\hat{v}_N - \hat{u}_{h,N}\|_T.$$

Beispiel: Anstelle von (12.1b) und (12.1e) setzen wir

$$v = 20$$
 für $x \in \partial \Omega$ und $x_1 = 1$, (12.3a)

$$v = 20 - 12.5(x_1 - 1)$$
 für $x \in \partial \Omega$ und $x_2 = 2$, (12.3b)

wodurch wir Grenzschichten am linken und oberen Rand des Gebietes erhalten. Diese sind jedoch in der rechten bzw. unteren Hälfte nur schwach ausgeprägt, da hier der Dirichlet-Wert annähernd mit dem Wert der hyperbolischen Lösung übereinstimmt. Für die Auswahl erweist es sich als sinnvoll, die Energienorm pro Dreieck noch durch dessen Fläche zu teilen.

Abbildung 47: Markierung der Dreiecke bzgl. der absoluten Differenz in Energienorm (links) bzw. der Energienorm pro Fläche (rechts).

12.1.3 Auswahl anhand der zweiten Ableitung einer homogenen Grobgitterlösung.

Einen zu [15] unterschiedlichen Ansatz der heterogenen Gebietszerlegung stellt die χ -Formulierung dar (s. [10] und [12]). Das homogene Problem

$$-\varepsilon \Delta v + \operatorname{div}(bv) + a_q v = f \quad \text{in } \Omega, \tag{12.4a}$$
$$v = \varphi_D \quad \text{auf } \Gamma = \partial \Omega, \tag{12.4b}$$

wird ersetzt durch die χ -Formulierung

$$-\varepsilon \chi(\Delta u) + \operatorname{div}(bu) + a_q u = f \quad \text{in } \Omega,$$

$$u = \varphi_D \quad \text{auf } \Gamma,$$
(12.5a)
(12.5b)

deren heterogener Charakter Konsequenz der Funktion $\chi : \mathbb{R} \to \mathbb{R}$,

$$\chi(s) := \begin{cases} 0 & \text{für } 0 \le s \le \delta - \sigma, \\ \frac{\delta}{\sigma}(s - \delta) + \delta & \text{für } \delta - \sigma < s < \delta, \\ s & \text{für } s \ge \delta, \end{cases}$$

$$\chi(s) := -\chi(-s) \text{ für } s < 0,$$

mit $0 < \sigma < \delta$ ist.

Abbildung 48: Graph der χ -Funktion in [-4, 4] mit $\delta = 2$ und $\sigma = 0.5$.

Das Lösen der χ -Formulierung auf dem ganzen Gebiet Ω ist allerdings noch teurer als die Lösung der homogenen Gleichung. Effizient wird der Ansatz durch Abkoppeln des Problems auf der Nullmenge von χ . Seien hierzu $Z := \{x \in \Omega : \chi(\Delta u)(x) = 0\}, \ \Omega_H \subset \overset{\circ}{Z}$ eine offene Teilmenge im nichtleeren Inneren von Z und $\Omega_E = \Omega \setminus \overline{\Omega}_H$. Entsprechend wird der Rand unterteilt in $\Gamma_{i,D} = \partial \Omega_i \cap \Gamma_D$ für i = E, H und es sei $\Gamma_{H,D}^{in} := \{x \in \Gamma_{H,D} | (b \cdot n)(x) < 0\}$. Zusätzlich erhält man das Interface $\Gamma_F = \partial \Omega_E \cap \partial \Omega_H$. Unter vergleichsweise stärkeren Voraussetzungen an die Daten ($b \in (C^{1,1}(\overline{\Omega}))^2$ und div $(b) + a_q \in C^0(\overline{\Omega})$) zeigen C. Canuto und A. Russo in [11] die Äquivalenz der χ -Formulierung mit den Problemen

$$\operatorname{div}(bu_H) + a_q u_H = f \quad \text{in } \Omega_H, \tag{12.6a}$$

$$u_H = \varphi_{H,D} \quad \text{auf } \Gamma^{in}_{H,D}, \tag{12.6b}$$

$$u_H = u_E \quad \text{auf } \Gamma_F^{in}, \tag{12.6c}$$

und

$$-\varepsilon\chi(\Delta u_E) + \operatorname{div}(bu_E) + a_q u_E = f \quad \text{in } \Omega_E,$$
(12.6d)

$$u_E = \varphi_{E,D} \quad \text{auf } \Gamma_{E,D}, \tag{12.6e}$$

$$u_E = u_H \quad \text{auf } \Gamma_F \setminus \Gamma_F^m, \tag{12.6f}$$

$$\operatorname{div}(bu_E) + a_q u_E = f \quad \operatorname{auf} \Gamma_F^{in}, \qquad (12.6g)$$

welche bei gegebener Initialisierung γ^0 auf $\Gamma_F^{in} := \{x \in \Gamma_F | (b \cdot n)(x) < 0\}$ ebenfalls in einem Iterationsprozess gelöst werden. Die χ -Funktion auf Ω_e verhindert, dass wie in der direkten heterogenen Gebietszerlegung Gleichungen verschiedenen Typs gekoppelt werden müssen. Die χ -Formulierung muss nicht unbedingt die zweite Ableitung berücksichtigen, s. [1] für weitere Abschneidefunktionen.

Die Menge Z wird in [11] als a priori bekannt vorausgesetzt und ein automatisches Auffinden auch in späteren Arbeiten der Autoren nicht weiter verfolgt. Auch hier könnte die Lösung des homogenen Modells \hat{v}_N auf dem Grobgitter einen Anhaltspunkt liefern. Mit deren Hilfe wird eine Approximation an die Menge Z bestimmt als $\hat{Z} := \bigcup_{T \in \mathcal{T}} \chi(\Delta \hat{v}_N|_T)(x) = 0$, wobei hier natürlich mit Finiten Elementen höherer Ordnung gearbeitet werden muss.

12.2 Positionierung des Interfaces.

Die Dreiecke werden aufsteigend nach $\|\hat{v}_N - u_{h,N}\|_{E(T)}/|T|$ geordnet, wobei $u_{h,N}$ die Lösung von (12.2) auf dem Grobgitter sei. Ist $\Gamma_f^{out} = \emptyset$ (wie im folgenden Testbeispiel), so entspricht dieser Ausdruck dem hyperbolischen Modellfehler pro Dreieck geteilt durch die Dreiecksfläche. Für $\Gamma_f^{out} \neq \emptyset$ wird sich der Wert der hyperbolischen Lösung im Zuge der Iteration (11.1d)-(11.1h) noch ändern, somit auch der Wert des hyperbolischen Modellfehlers. Die Skalierung mit der Dreiecksfläche berücksichtigt die adaptive Verfeinerung auf dem Grobgitter und begünstigt die Größe des Flächenanteils von Ω_h .

Ist vom Benutzer eine anzustrebende Gesamttoleranz TOL_G vorgegeben, so werden – beginnend beim ersten Dreieck – Dreiecke in das hyperbolische Gebiet (blau) genommen, solange

$$\sum_{T \in \Omega_H} \|\hat{v}_N - u_{h,N}\|_{E(T)} < \kappa_{MF_h} TOL_G \text{ mit } 0 < \kappa_{MF_h} \le 1.$$

Die übrigen Dreiecke werden für das elliptische Rechengebiet magentafarben markiert.

Das Testbeispiel

$$-\varepsilon \Delta v + \frac{\partial v}{\partial x_1} = 5 \quad \text{auf } \Omega,$$

$$\frac{\partial v}{\partial n} = 0 \quad \text{für } x_2 = 1 \text{ oder } x_2 = 2,$$

$$v = 20 \quad \text{für } x \in \partial \Omega \text{ und } x_1 = 1,$$

$$v = 40 \quad \text{für } x \in \partial \Omega, x_1 = 2 \text{ und } x_2 \ge 1.5,$$

$$v = 25 \quad \text{für } x \in \partial \Omega, x_1 = 2 \text{ und } x_2 < 1.5,$$

zeigt eine Grenzschicht in der oberen Hälfte des rechten Randes (s. Abbildung 49).

Abbildung 49: Homogene Lösung des Testbeispiels auf dem Grobgitter.

Abbildung 50 zeigt für verschiedene κ_{MF_h} -Werte die Markierung auf dem Grobgitter bzw. auf dem elliptischen Gebiet einer ersten heterogenen Lösung, bei der zudem verfeinert wurde. Man erkennt, dass zumindest auf Ω die Auswahl recht unempfindlich gegenüber dem Wert von κ_{MF_h} ist.

Abbildung 50: Toleranzbezogene Markierung der Dreiecke auf dem Grobgitter und auf der ersten Verfeinerung für verschiedene κ_{MFh} -Werte.

Abbildung 51: Resultierendes elliptisches Rechengebiet für $\kappa_{MF_h} = 0.03$.

Diese Robustheit der Markierung gegenüber κ_{MF_h} beruht auf einem stufenförmigen Anstieg des hyperbolischen Modellfehlers pro Dreieck, aufgetragen über die oben beschriebene Anordnung der Dreiecke (Abbildung 52, links). Dieser Anstieg ist auf weiteren Verfeinerungen schwächer ausgeprägt, aber immer noch erkennbar (Abbildung 53, links). In der Untersuchung des eindimensionalen Modells haben wir gesehen, dass der optimale Wert von κ_{MF} , also der optimale Anteil des Modellfehlers am Gesamtfehler, und somit auch der Wert von κ_{MF_h} schwierig zu bestimmen ist. Deswegen ist eine Markierung der Dreiecke durch Berücksichtigung des sprunghaften Anstiegs die natürliche Alternative zur toleranzbezogenen Markierung.

Zur sprungbezogenen Markierung wird der Graph der Energienorm durch Mittelung von jeweils 5% oder 10% aller Werte geglättet. Anschließend werden alle Dreiecke rechts des Anstiegs im geglätteten Graphen als elliptisches Rechengebiet markiert.

Abbildung 52: Sprungbezogene Markierung der Dreiecke auf dem Grobgitter für verschiedene Glättungen.

Abbildung 53: Sprungbezogene Markierung der Dreiecke auf der ersten Verfeinerung von Ω_e für verschiedene Glättungen.

12.3 Güte der Modellfehlerapproximation.

Die Qualität der Approximation des Modellfehlers durch seine Näherung auf dem Grobgitter wird an einem einfachen Beispiel überprüft, für welches der Modellfehler auch exakt berechnet werden kann,

$$-\varepsilon \Delta v + \frac{\partial v}{\partial x_1} = 5 \quad \text{in } \Omega = (1, 2) \times (1, 2),$$

$$\frac{\partial v}{\partial n} = 0 \quad \text{für } x \in \partial \Omega \text{ und } x_2 = 1 \text{ oder } x_2 = 2,$$

$$v = 20 \quad \text{für } x \in \partial \Omega \text{ und } x_1 = 1,$$

$$v = 40 \quad \text{für } x \in \partial \Omega \text{ und } x_1 = 2.$$

Im Versuch wird der annähernd vertikale Verlauf des Interfaces sukzessive nach rechts in Richtung zur Grenzschicht hin verschoben. Für die einzelnen Interface-Lagen wird jeweils der exakte und der approximierte Modellfehler ermittelt. Die Untersuchung zeigt, dass der approximierte Modellfehler bei Lage des Interfaces außerhalb des Grenzschichtbereichs deutlich über dem tatsächlichen Wert des Modellfehlers liegt. Dies gilt insbesondere für den hyperbolischen Anteil des Modellfehlers, welcher im späteren Algorithmus das Kriterium zur Wahl des Interface-Verlaufs bildet. Verläuft das Interface in Abstand zur Grenzschicht, so darf die Modellfehlerapproximation mit einem Faktor $skal_{MF} = 0.2$ skaliert werden.

Abbildung 54: Sukzessives Verschieben des Interfaces nach rechts im Testbeispiel für $\varepsilon = 0.01$ und Ermittlung von hyperbolischem Modellfehler und seiner Approximation (oben rechts) bzw. von Modellfehler und Approximation (unten links). Das Bild unten rechts zeigt das Verhältnis von Approximation zu Modellfehler (durchgezogene Linie) und von skalierter Approximation zu Modellfehler (gestrichelte Linie) in semilogarithmischer Darstellung.

Die Qualität der Approximation des hyperbolischen Modellfehleranteils kann verbessert werden durch Vorgabe eines kleineren maximalen Dreiecksdurchmesser der Triangulierung \mathcal{T} . Während in Abbildung 54 noch max_{$T \in \mathcal{T}$} { h_T } = 0.5 verwendet wurde, zeigt Abbildung 55 die Ergebnisse für max_{$T \in \mathcal{T}$} { h_T } = 0.1.

Abbildung 55: Sukzessives Verschieben des Interfaces nach rechts im Testbeispiel für $\varepsilon = 0.01$, wobei der maximale Durchmesser eines Dreiecks auf $\max_{T \in \mathcal{T}} \{h_T\} = 0.1$ beschränkt wurde. Das Bild unten rechts zeigt das Verhältnis von Approximation zu Modellfehler (durchgezogene Linie) und von skalierter Approximation zu Modellfehler (gestrichelte Linie) in semilogarithmischer Darstellung.

Je kleiner der Wert der Diffusionskonstante ist, um so ausgeprägter ist die Überschätzung des Modellfehlers durch die Approximation.

Abbildung 56: Sukzessives Verschieben des Interfaces nach rechts im Testbeispiel für $\varepsilon = 0.001$ und Ermittlung von hyperbolischem Modellfehler und seiner Approximation (oben rechts) bzw. von Modellfehler und Approximation (unten links). Das Bild unten rechts zeigt das Verhältnis von Approximation zu Modellfehler (durchgezogene Linie) und von skalierter Approximation zu Modellfehler (gestrichelte Linie) in semilogarithmischer Darstellung.

Fazit:

- Die Wahl von $TOL_{rel,grob}$, also von der Güte der Grobgitterapproximation sollte in Abhängigkeit von der Diffusionskonstanten getroffen werden: je kleiner ε , desto schmaler die Grenzschicht, deren Lage aber schon im Grobgitter erkennbar werden muss. Ebenso muss die Steigung der homogenen Lösung im Grenzschichtbereich schon sichtbar sein für die Markierung per Energienorm. Um Kosten zu sparen, sollte bereits das Grobgitter in adaptiver Verfeinerung gewonnen werden. Um auch außerhalb der Grenzschicht zuverlässige Aussagen über den Modellfehlerverlauf zu bekommen, sollte der maximale Durchmesser der Dreiecke dabei jedoch beschränkt werden.
- Die Überschätzung des hyperbolischen Modellfehleranteils bei der Wahl von Ω_h und Ω_e positioniert das Interface in sicherem Abstand von der Grenzschicht. Das Plus an Sicherheit hat allerdings negative Auswirkung für die Effizienz des Verfahrens. Eine

Skalierung des approximierten Modellfehlerwertes ergibt eine realistischere Abschätzung.

12.4 Details der Implementierung.

Die Bearbeitung der Liste aller zur elliptischen Rechnung markierten Dreiecke erfolgt in drei Subroutinen. In einem ersten Schritt wird festgestellt, welche der Dreiecke zusammenhängende Gebiete bilden, da für jede Zusammenhangskomponente ein getrennter Aufruf von PLTMG erfolgen muss. Von jeder Zusammenhangskomponente werden die zugehörigen Rand- und Interface-Kanten bestimmt (CCRIES.m). Da PLTMG keine einzelnen Dreiecke als Eingabe einer zulässigen Triangulierung anerkennt, werden solche entarteten Zusammenhangskomponenten durch Markierung der jeweiligen Nachbardreiecke erweitert. Nachdem das Augenmerk dieser Arbeit auf am Rand gelegene Grenzschichten liegt, werden Zusammenhangskomponenten, die kein Randdreieck beinhalten, aus der Liste der markierten Dreiecke entfernt. Eine Markierung solcher innerer Grenzschichten kann auf Ungenauigkeiten in der Berechnung der hyperbolischen oder homogenen Lösung auf dem Grobgitter beruhen. (Soll das Verfahren auf innere Grenzschichten angewandt werden, so müssen die entsprechenden Programmzeilen in CCRIES.m gestrichen werden.) Falls $\Gamma_{f}^{out} = \emptyset$ gelten soll, werden in einem zweiten Schritt die Kanten des erhaltenen Interfaces auf ihre Orientierung zum Wind untersucht. Verletzt eine Kante die Bedingung $b \cdot n \ge 0$ an einem der Stützwerte der Quadratur, so wird das angrenzende Dreieck markiert (COI.m). In einer dritten Prozedur wird das Interface geglättet, indem unmarkierte Dreiecke, die eine einspringende Kante in das markierte Gebiet bilden, markiert werden (SI.m). Die Schnittmenge verschiedener Zusammenhangskomponenten kann nur aus einzelnen Gitterpunkten bestehen. Der Wert der heterogenen Lösung an solchen Schnittpunkten ergibt sich nach Lösung des heterogenen Problems auf allen Zusammenhangskomponenten durch Mittelung.

12.4.1 CCRIES.m (Collect Components, Remove Inner Layers, Expand Singles)

Eingabe: eine ungeordnete Liste \mathcal{L} markierter Dreiecke.

Funktion:

- Es wird überprüft, welche Dreiecke aus \mathcal{L} zusammenhängen.
- Markierte Zusammenhangskomponenten, die keine Verbindung zum Rand haben (innere Zirkel), werden aus \mathcal{L} entfernt.
- Bei Zusammenhangskomponenten, die aus einem einzelnen Dreieck bestehen, werden bis zu zwei Nachbardreiecke zu \mathcal{L} hinzugefügt.

Ausgabe: Zusammenhangskomponenten mit entsprechenden Dreiecken, Randkanten, und Interface-Kanten.

Algorithmus: Rekursiver Aufruf über alle Kanten der markierten Dreiecke. Die maximale Rekursionstiefe ist die Anzahl an Dreiecken, die markiert und durch eine gemeinsame Kante miteinander verbunden sind.

Abbildung 57: Beispiel eines Rekursionsverlaufs innerhalb einer Zusammenhangskomponente. Vom Startpunkt ausgehend werden jeweils alle Seiten des aktuellen Dreiecks besucht. Ist eine Seite weder Rand- noch Interface-Kante, so wird das angrenzende Dreieck zum aktuellen. Die Rückkehr erfolgt erst, nachdem in diesem alle Kanten besucht wurden.

Pseudocode:

SOLANGE \mathcal{L} unbesuchte Dreiecke enthält,

erhöhe die Anzahl der Zusammenhangskomponenten um 1;

wähle aus \mathcal{L} ein unbesuchtes Dreieck als Startdreieck T_0 ;

FÜR i = 1, 2, 3:

untersuche Kante E_i von T_0 ;

FALLS E_i Teil des Gebietsrandes ist,

so ist die aktuelle Zusammenhangskomponente kein innerer Zirkel;

SONST,

bestimme Nachbardreieck T_i von T_0 an E_i ; FALLS $T_i \notin \mathcal{L}$: merke Kante E_i als Interface-Kante;

SONST, FALLS $T_i \in \mathcal{L}$ noch nicht besucht:

so gehört T_i zur aktuellen Zusammenhangskomponente, und diese ist kein einzelnes Dreieck;

untersuche alle Kanten ungleich E_i von T_i .

Entferne die Dreiecke, die Teil eines inneren Zirkels sind, aus \mathcal{L} .

Sammle alle Zusammenhangskomponenten, die aus nur einem Dreieck bestehen, in der Liste \mathcal{S} .

% Behandlung der Einzeldreiecke:

SOLANGE \mathcal{S} einzelne Dreiecke enthält,

entferne Dreieck T aus \mathcal{S} ;

FÜR i = 1, ..., Anzahl der Nichtrandkanten von T und E_i Kante von T:

markiere das an E_i grenzende Nachbardreieck T_i ;

streiche Kante E_i aus dem Interface;

untersuche die zwei Kanten ungleich E_i von T_i :

FALLS diese Randkanten sind, so füge sie zum Rand hinzu;

SONST, FALLS das angrenzende Dreieck nicht in \mathcal{L} ,

füge sie zum Interface;

SONST,

wachsen Zusammenhangskomponenten zusammen; War die benachbarte Zusammenhangskomponente ein einzelnes Dreieck, so streiche sie aus S; Abbruch der Schleife über *i*.

Bei wiederholtem Auslösen auf verfeinerten Gittern ist darauf zu achten, dass alte Interface-Kanten bei Rechnung auf Ω_e Randkanten darstellen, bei erneuter Markierung des angrenzenden Dreiecks im Algorithmus aber nicht wie Rand-, sondern wiederum wie neue Interface-Kanten behandelt werden müssen.

12.4.2 COI.m (Check Orientation of Interface)

Eingabe: Liste \mathcal{I} aller Interface-Kanten.

Funktion:

- Es wird überprüft, ob die Interface-Kanten gegen den Wind orientiert sind.
- Zur Berechnung der Randintegrale verwendet PLTMG (drei) auf der Kante gelegene Stützwerte. Verletzt ein Stützwert der Kante die Bedingung $b \cdot n \ge 0$, so wird das angrenzende Dreieck markiert.

Ausgabe: Zusammenhangskomponenten mit entsprechenden Dreiecken, Randkanten, und Interface-Kanten.

Algorithmus: Sequentielle Überprüfung der Interface-Kanten.

Pseudocode:

SOLANGE \mathcal{I} ungeprüfte Kanten enthält,

wähle aus \mathcal{I} eine ungeprüfte Kante E_i und prüfe die Orientierung der Kante zum Wind an allen Stützwerten der Integration;

FALLS die Bedingung $b \cdot n \ge 0$ an mindestens einem Stützwert verletzt ist,

markiere das an E_i angrenzende unmarkierte Dreieck T_i ;

FÜR j = 1, 2, 3 und E_j Kante von T_j :

FALLS $E_j \in \mathcal{I}$,

so streiche die Interface-Kante E_j aus \mathcal{I} ;

FALLS das an E_j grenzende (markierte) Dreieck $T_k \neq T_j$ zu einer anderen Zusammenhangskomponente gehört als T_j ,

so wachsen Zusammenhangskomponenten zusammen;

SONST, FALLS E_j keine Randkante ist, ergänze E_j in \mathcal{I} .

12.4.3 SI.m (Smooth Interface)

Eingabe: Liste \mathcal{U} aller unmarkierten Dreiecke mit zwei Interface-Kanten.

Funktion: Hinzunahme der unmarkierten Dreiecke mit zwei Interfacekanten zu \mathcal{L} und entsprechender Zusammenhangskomponente, sofern die Nicht-Interface-Kante des unmarkierten Dreiecks gegen den Wind orientiert ist (bei konstantem *b* automatisch erfüllt).

Ausgabe: Zusammenhangskomponenten mit entsprechenden Dreiecken, Randkanten, und Interface-Kanten.

Algorithmus: Sequentielle Bearbeitung aller unmarkierten Dreiecke mit (mindestens) zwei Interface-Kanten.

Pseudocode:

SOLANGE \mathcal{U} Dreiecke enthält,

entferne Dreieck T aus \mathcal{U} ;

FALLS die Bedingung $b\cdot n \geq 0$ an keinem Stützwert der Nicht-Interface-Kante von Tverletzt ist,

ergänze T in \mathcal{L} ;

streiche die beiden ursprünglichen Interface-Kanten aus $\mathcal I$ und merke Zusammenhangskomponente des angrenzenden Dreiecks;

sind die zwei gemerkten Zusammenhangskomponenten verschieden, so wachsen Zusammenhangskomponenten zusammen;

untersuche die ursprüngliche Nicht-Interface-Kante E von T:

Abbildung 58: Ergebnis der Anwendung von CCRIES.m, COI.m und SI.m auf ein konstruiertes Eingabebeispiel. Nach Bearbeitung der konstruierten Eingabe (oben links) in CCRIES.m ist der markierte Bereich im Gebietsinneren verschwunden (oben rechts). COI.m passt das Interface der horizontalen Windrichtung an (unten links) und SI.m entfernt den Einschnitt im elliptischen Rechengebiet (unten rechts).

12.4.4 Änderungen für $\Gamma_f^{out} \neq \emptyset$.

Die Forderung $\Gamma_f^{out} \neq \emptyset$ entkoppelt die Gebiete Ω_h und Ω_e und es bedarf somit keiner Iteration (11.1a) – (11.1h) zwischen den Gebieten. Trotzdem ist es nicht immer sinnvoll an dieser Forderung festzuhalten, denn dadurch wird das elliptische Gebiet oft ineffizient aufgeblasen.

Abbildung 59: Die Bedingung $\Gamma_f^{out} = \emptyset$ kann das elliptische Rechengebiet ineffizient erweitern wie hier im Beispiel einer horizontalen Strömung über zwei Stufen.

Wenn im heterogenen Modell also $b \cdot n^* < 0$ auf dem Interface zugelassen ist, kommt Algorithmus **COI.m** nicht zur Anwendung. Dadurch werden allerdings auch Löcher in markierten Zusammenhangskomponenten, bei denen i. a. zumindest eine Kante die Bedingung $b \cdot n^* \ge 0$ verletzt, nicht mehr aufgefüllt. Vor Anwendung des Algorithmus **CCRIES.m** auf die markierten Dreiecke muss dieser nun auf die unmarkierten Dreiecke angewandt werden. Die Löcher im markierten Gebiet sind dabei dann innere Zirkel und können nach ihrem Auffinden in **CCRIES.m** markiert werden.

Abbildung 60: Löcher in Ω_e werden durch Anwendung von CCRIES.
m auf die unmarkierten Dreiecke entdeckt.

Ein ähnliches Problem ergibt sich bei der Glättung des Interfaces. Zunächst muss in Algorithmus **SI.m** ebenfalls auf die Überprüfung $b \cdot n \ge 0$ für die neue Interface-Kante verzichtet werden. Nach einmaliger Anwendung von **SI.m** kann es immer noch einspringende Ecken geben, da ihre ursprüngliche Gestalt nun nicht mehr nur aus einem Dreieck bestehen muss (s. Abbildung 60). Wir wiederholen also die Anwendung von **SI.m** solange, bis kein neues Dreieck mehr markiert wird.

Abbildung 61: Bei der Ausgangssiuation von Abbildung 60 (rechts) führt erst die zweimalige Anwendung von SI.m zum gewünschten Ergebnis.

13 Aufwandsvergleich zur adaptiven Rechnung.

In den numerischen Versuchen wurde der Abbruch der Iteration durch die Bedingung

$$\widehat{IF}^2 + 2 \cdot \widehat{DF} \cdot \widehat{IF}_e + \widehat{DF}^2 \le TOL_{DF}$$

mit $0 < TOL_{DF} \leq TOL_G$ gesteuert, was die Forderungen (11.2) und (11.2) aufweicht, sodass der Gesamtfehler die Toleranz TOL_G überschreiten kann. Der Vergleich mit einem adaptiven Lösen des homogenen Problems wird dann hinsichtlich der erreichten Genauigkeit gezogen.

13.1 Testbeispiel 1: Modell und Versuchsbeschreibung.

Testbeispiel 1:

$$-\varepsilon \Delta v + \frac{\partial v}{\partial x_1} + v = 5 \quad \text{in } \Omega = (1,2) \times (1,2),$$

$$\frac{\partial v}{\partial n} = 0 \quad \text{für } x = (x_1,1) \in \partial \Omega \text{ oder } x = (x_1,2) \in \partial \Omega,$$

$$v = 20 \quad \text{für } x = (1,x_2) \in \partial \Omega,$$

$$v = 15 \quad \text{für } x = (2,x_2) \in \partial \Omega \text{ mit } x_2 < 1.5,$$

$$v = 40 \quad \text{für } x = (2,x_2) \in \partial \Omega \text{ mit } x_2 > 1.5.$$

Abbildung 62: Homogene Lösung von Testbeispiel 1 für $TOL_{rel} = 0.15$.

Die homogene Lösung hat eine Grenzschicht entlang des rechten Randes. Diese ist in der oberen Hälfte stärker ausgeprägt, da der Dirichlet-Wert im unteren Teil näher am Wert der hyperbolischen Lösung liegt $(u_h(2, x_2) = 5 + 15e^{-2} \approx 10.5182)$. Der adaptive Löser verfeinert erst für sehr kleine Toleranzen auch an der unteren Hälfte des rechten Randes.

Abbildung 63: Auf der horizontalen Achse sind die Dreiecke des Grobgitters (links) bzw. einer ersten Verfeinerung auf Ω_e (rechts) angeordnet, aufsteigend gemäß ihrem Beitrag zum hyperbolischen Modellfehler skaliert durch ihre Fläche. Der Graph zeigt den jeweils zum einzelnen Dreieck gehörenden hyperbolischen Modellfehler. Auf der horizontalen Achse sind die Markierungen der toleranzbezogenen (mit $\kappa_{MF_h} = 0.5$) und der sprungbezogenen Auswahl eingezeichnet. Alle Dreiecke mit größerer Dreiecksnummer werden für die elliptische Rechnung markiert.

Abbildung 64: Gemäß obiger Auswahl sind auf dem Grobgitter die markierten Dreiecke rosa (toleranzbezogen) bzw. magentafarben (sprungbezogen) eingefärbt. Das rechte Bild zeigt einen vergrößerten Ausschnitt.

Aufgrund der starken Verfeinerung ist die Markierung der Dreiecke in der gedruckten Version dieser Arbeit teilweise schlecht zu erkennen. Beliebige Ausschnitte der betreffenden Bilder können jedoch in der Online-Veröffentlichung entsprechend vergrößert werden. Sie ist zu finden unter

http://tumb1.biblio.tu-muenchen.de/publ/diss/

Abbildung 65: Farbige Kennzeichnung der Dreiecke auf dem verfeinerten elliptischen Rechengebiet im Zuge einer Korrektur des Interfaces (Auswahl von Ω_e zuvor toleranzbezogen). Das rechte Bild zeigt einen vergrößerten Ausschnitt.

Abbildung 66: Eingabe Ω_e an PLTMG auf dem Grob
gitter und auf einer ersten Verfeinerung bei toleranzbezogener Auswahl.

Abbildung 67: Eingabe Ω_e an PLTMG auf dem Grobgitter (vergrößerter Ausschnitt rechts) und auf einer ersten Verfeinerung bei sprungbezogener Auswahl.

Abbildung 68: Während die Verfeinerung die Grenzschicht an der unteren Hälfte des rechten Randes nicht entdeckt hat, reagiert die toleranzbezogene Auswahl für einen kleineren κ_{MF_h} -Wert (hier $\kappa_{MF_h} = 0.4$).

13.2 Numerische Ergebnisse von Testbeispiel 1.

Im Unterschied zum eindimensionalen Fall vergleichen wir nicht nur die notwendige Anzahl n an Gitterpunkten auf der endgültigen Verfeinerung (von Ω im homogenen, von Ω_e im heterogenen Fall) nach der Positionierung des Interfaces, sondern die Summe aller Gitterpunkte, die im Zuge einer zehnprozentigen Erhöhung der Punktanzahl pro Verfeinerungsschritt der homogenen Rechnung entsteht mit der Summe aller Gitterpunkte einer heterogenen Rechnung. Der so definierte Aufwand beinhaltet bei der heterogenen Rechnung sowohl die Punkte aller Verfeinerungen zur Erstellung des Grobgitters, als auch die Punkte der anschließenden Verfeinerungen auf Ω_e , wobei das Gitter auf Ω_e nach dem Abspalten von Ω nur um 10% der darin enthaltenen Punkte erhöht wird.

Die Ergebnisse der Rechnungen für $\varepsilon = 0.001$ und unterschiedliche Werte von $Tol_{rel,grob}$, TOL_G und κ_{MF_h} (toleranzbezogene Auswahl) finden sich in den Tabellen 50 – 52. Bei der sprungbezogenen Auswahl wurden jeweils 10% bzw. 5% der Dreiecke zur Glättung zusammengefasst und der weiter links gelegene der resultierenden Markierungen genommen.

Unabhängig von der Einstellung der Parameter konnte der Aufwand bei homogener Rechnung in keinem Versuch unterboten werden. Auch eine Skalierung des Modellfehlers wie in Abschnitt 12.3 vorgeschlagen, macht die heterogene Lösung nicht zur ersten Wahl.

Abbildung 69: Der Aufwand der homogenen Rechnung liegt deutlich unter dem Aufwand der heterogenen Rechnung, unabhängig vom gewählten Verfahren (links). Ein erneutes Auslösen bei toleranzbezogener Auswahl hat ebenso wie die sprungbezogene Auswahl einen hohen Modellfehler zur Folge, welcher den Vergleich zur homogenen Rechnung weiter verschlechtert. Auch eine Skalierung des Modellfehlers verändert die Situation nicht wesentlich (rechts).

Die Gründe für das schlechte Abschneiden des heterogenen Algorithmus liegen in

– der sehr guten Approximierbarkeit der homogenen Lösung durch lineare Finite Elemente im Gebietsinneren (vgl. Abbildung 70), wodurch außerhalb der Grenzschicht keine starke Verfeinerung erforderlich wird. Das Endgitter der homogenen Rechnung stimmt auf einem Großteil von Ω noch mit dem Grobgitter überein, das ja auch in die Aufwandsberechnung des heterogenen Verfahrens mit eingeht.

Abbildung 70: Horizontale Querschnitte durch die Lösung des homogenen Modells für $x_2 = 1.75$ (links) und $x_2 = 1.25$ (rechts) und $\varepsilon = 0.001$.

- der adaptiven Verfeinerung von PLTMG. Diese basiert auf der Longest-Edge-Bisektion, ein Verfahren, welches typischerweise auch bei der Nachverfeinerung zum Wiedererhalt einer konformen Triangulierung sehr lokal bleibt.
- dem exponentiellem Zusammenhang von Aufwand (bzw. Anzahl an Gitterpunkten n_{hom}) und Toleranz.

Abbildung 71: Schon ein kleines Anwachsen des Fehlers, verursacht durch den zusätzlichen Modellfehler im heterogenen Modell, lässt den zum Vergleich herangezogenen Wert von n_{hom} (links; ebenso den Wert des Aufwands, rechts) des homogenen Modells stark sinken.

13.3 Testbeispiel 2: Modell und Versuchsbeschreibung.

Das Rechengebiet Ω hat in diesem Beispiel zwei stufenförmige Einkerbungen, an denen sich Grenzschichten ausbilden. Testbeispiel **2** lautet

$$\begin{aligned} -\varepsilon \Delta v + \frac{\partial v}{\partial x_1} + v &= 5 \quad \text{ in } \Omega = ((1,7) \times (1,7)) \setminus (([2,2.5] \times [1,1.2]) \cup ([4.5,5] \times [1,1.2])) \\ v &= 20 \quad \text{ für } x = (1,x_2) \in \partial \Omega, \\ v &= 0 \quad \text{ für } x = (2.5,x_2) \in \partial \Omega, \\ v &= 0 \quad \text{ für } x = (5,x_2) \in \partial \Omega, \\ \frac{\partial v}{\partial n} &= 0 \quad \text{ für } x \in \partial \Omega \text{ sonst.} \end{aligned}$$

Abbildung 72: Die homogene Lösung hat Grenzschichten auf den Windschattenseiten hinter den Stufen. Im Unterschied zu Testbeispiel 1 ist die Lösung am linken Rand gekrümmt, weshalb der lineare Finite-Element-Löser auch hier, also außerhalb der Grenzschichten stark verfeinert.

Im Normalfall wird der Algorithmus zwei durch das hyperbolische Rechengebiet getrennte elliptische Gebiete auf der Rückseite jeder Stufe markieren, deren Interfaces aus mehreren Ein- wie Ausflussrandstücken bestehen. Die Iteration (11.1a) – (11.1h) zwischen den drei gekoppelten Teilgebieten von Ω kann mit etwas Vorwissen und unter Berücksichtigung von $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ vermieden werden: nach Anwendung von **CCRIES.m** auf die markierten Dreiecke bestimmen wir von jeder Zusammenhangskomponente die konvexe Hülle ihrer Gitterpunkte. Die Ränder der jeweiligen Schnittmenge der konvexen Hüllen mit Ω bilden die Eingaben für die elliptische Rechnung. Die so erhaltenen elliptischen Gebiete müssen zwar neu trianguliert werden, ihr Interface besteht aber nur aus jeweils einem Ein- und Ausflussteil. Damit ergibt sich für den Programmablauf folgende verkürzte Iteration ohne Abbruchfehler:

- Löse die reduzierte Gleichung auf Ω_h .
- − Löse die elliptische Gleichung auf $\Omega_{e,1}$, dem linksgelegenen Teilgebiet von Ω_e , mit $\widehat{DF}_{\Omega_{e,1}} \leq 0.5 \cdot TOL_G$.
- Löse die reduzierte Gleichung auf dem Teil von Ω_h , der rechts des Ausflussinterfaces Γ_f^{out} von $\Omega_{e,1}$ liegt.
- − Löse die elliptische Gleichung auf dem rechten Teilgebiet $\Omega_{e,2}$ von Ω_e , mit $\widehat{DF}_{\Omega_{e,2}} \leq 0.5 \cdot TOL_G$.
- Löse die reduzierte Gleichung auf dem Teil von Ω_h , der rechts des Ausflussinterfaces Γ_f^{out} von $\Omega_{e,2}$ liegt.

Abbildung 73: Markierung zweier elliptischer Gebiete bei sprungbezogener Auswahl.

Abbildung 74: Schnittmenge der konvexen Hülle des linken elliptischen Teilgebiets mit Ω und die heterogene Teillösung u_e auf diesem Gebiet.

Abbildung 75: Die Lösung auf den blau gekennzeichneten Gitterpunkten wird nach der Lösung auf $\Omega_{e,1}$ aktualisiert, die Lösung der grün gekennzeichneten Punkte nach der Lösung auf $\Omega_{e,2}$.

Abbildung 76: Schnittmenge der konvexen Hülle des rechten elliptischen Teilgebietes mit Ω und die heterogene Teillösung u_e auf diesem Gebiet.

Abbildung 77: Die heterogene Lösung (rückinterpoliert auf das Grobgitter) und die Differenz von homogener Grobgitterlösung und heterogener Lösung.

Natürlich kann auch die Iteration (11.1a) - (11.1h) zur Lösung des gekoppelten Problems verwendet werden. Beide Möglichkeiten sind im anschließenden Vergleich (Abschnitt 13.4) berücksichtigt.

Abbildung 78: Die heterogene Lösung (rückinterpoliert auf das Grobgitter) und die Differenz von homogener Grobgitterlösung und heterogener Lösung bei echter Iteration.

Beide Lösungsverfahren können mit einer Interface-Korrektur verbunden werden. Es kann vorkommen, dass sich hierbei das elliptische Teilgebiet Ω_e erst nach einem erneuten Auslösen in zwei einzelne Gebiete trennt.

Abbildung 79: Bei Markierung für $\varepsilon = 0.001$ und $TOL_{rel,grob} = 0.018$ erhält man ein zusammenhängendes elliptisches Rechengebiet.

13.4 Numerische Ergebnisse von Testbeispiel 2.

Im Unterschied zu Testbeispiel 1 wurde diesmal nicht nur der Aufwand der Verfahren erfasst, sondern auch die Dauer der Rechenzeiten. In diese gehen im heterogenen Algorithmus auch die Zeiten für das Auffinden der Interface-Position ein (insbesondere die Dauer der Algorithmen CCRIES.m und SI.m), sowie die Berechnung der hyperbolischen Lösung.

Die Ergebnisse der numerischen Rechnung finden sich in den Tabellen 53 - 55. Der Vergleich mit der homogenen Lösung wurde zuerst bei der unskalierten Modellfehlerapproximation und anschließend bei einer Skalierung der Approximation mit dem Faktor 0.2 gezogen.

Abbildung 80: Der Vergleich des Aufwands (links) und der Dauer (rechts) der Berechnung von homogener (schwarz) und heterogener Rechnung (hellblau, mit Iteration blau) für $\varepsilon = 0.01$ zeigt eine Reduktion des Aufwands um den Faktor 3 und eine Reduktion der Rechenzeit um den Faktor 2. Die heterogene Rechnung in fünf Schritten erfordert eine neue Initialisierung der Triangulierung auf den beiden elliptischen Teilgebieten und ist daher nicht günstiger als der Iterationsprozess.

Abbildung 81: Der Vergleich des Aufwands (links) und der Dauer (rechts) der Berechnung von homogener (schwarz) und heterogener Rechnung (hellblau, mit Iteration blau) für $\varepsilon = 0.01$ bei Skalierung der Modellfehlerschätzung zeigt eine Reduktion des Aufwands um den Faktor 18 und eine Reduktion der Rechenzeit um den Faktor 14.

Abbildung 82: Der Vergleich des Aufwands (links) und der Dauer (rechts) der Berechnung von homogener (schwarz) und heterogener Rechnung mit Iteration (blau) für $\varepsilon = 0.001$ zeigt für kleine Toleranzen eine Reduktion des Aufwands um den Faktor 4 und eine Reduktion der Rechenzeit um den Faktor 3.

Abbildung 83: Der Vergleich des Aufwands (links) und der Dauer (rechts) der Berechnung von homogener (schwarz) und heterogener Rechnung mit Iteration (blau) für $\varepsilon = 0.001$ bei Skalierung der Modellfehlerschätzung zeigt eine Reduktion des Aufwands um den Faktor 15 und eine Reduktion der Rechenzeit um den Faktor 11.

13.5 Ausblick auf zeitabhängige Geichungen.

Ein adaptiver Löser reagiert auf Probleme mit heterogenem Charakter in der Regel mit lokal eng begrenzter Verfeinerung im Bereich der Grenzschicht. Diese positive Eigenschaft lässt dem heterogenen Verfahren nur wenig Spielraum, um trotz der Kosten der Interface-Positionierung noch mit der adaptiven homogenen Rechnung zu konkurrieren. Eine Korrektur der anfänglichen Interface-Lage wie im eindimensionalen Fall bei uniformer Verfeinerung ist in der Regel zu teuer. Dieser Sachverhalt kann sich beim Betrachten zeitabhängiger Gleichungen ändern, sofern die Lage und Größe der Grenzschicht selbst unabhängig von der Zeit ist. Das zeitabhängige Konvektions-Diffusions-Modell,

$$\begin{aligned} \frac{\partial v}{\partial t} + \operatorname{div}(bv) &= \varepsilon \Delta v & \text{ in } \Omega \times (0, T), \\ v &= \varphi_D & \text{ auf } \partial \Omega \times (0, T), \\ v(x, 0) &= v_0(x) & \text{ in } \Omega \end{aligned}$$

mit $\varepsilon > 0, b = b(x) \in (W^1_{\infty}(\Omega))^2$ und $\varphi_D = \varphi_D(x) \in H^{\frac{1}{2}}(\partial\Omega)$ ist von parabolischem, für kleine ε jedoch zunehmend hyperbolischem Charakter. Das entsprechende heterogene Modell (s. [23]) lautet

$$\begin{aligned} \frac{\partial u_h}{\partial t} + \operatorname{div}(bu_h) &= 0 & \text{in } \Omega_h \times (0, T), \\ \frac{\partial u_e}{\partial t} + \operatorname{div}(bu_e) &= \varepsilon \Delta u_e & \text{in } \Omega_e \times (0, T), \\ u_h &= \varphi_D & \text{auf } \Gamma_{h,D} \times (0, T), \\ u_e &= \varphi_D & \text{auf } \Gamma_e \times (0, T), \end{aligned}$$

mit der Anfangsbedingung

 $= v_0(x)$ für $x \in \Omega$ u(x,0)

und den Interface-Bedingungen

$$b \cdot n^* u_h = -\varepsilon \frac{\partial u_e}{\partial n^*} + b \cdot n^* u_e \quad \text{auf } \Gamma_f \times (0, T),$$
$$u_h = u_e \quad \text{auf } \Gamma_f^{out} \times (0, T).$$

Die Zeitableitung kann durch ein explizites oder implizites Verfahren diskretisiert werden. Im letzten Fall sind das parabolische und das hyperbolische Teilproblem miteinander gekoppelt und die heterogene Lösung muss in jedem Zeitschritt durch eine Iteration (entsprechend (11.1d) – (11.1h)) gewonnen werden. Mit den Abkürzungen u = u(x, t), $u_{\Delta t} = u(x, t + \Delta t)$, der Anfangsbedingung $u(x, 0) = v_0(x)$ auf Ω und $u_{\Delta t}^0 = u$ lautet die Iteration im einfachen Fall des impliziten Euler-Verfahrens:

Für $k \ge 0$ löse

$$u_{h,\Delta t}^{k+1} = -\Delta t \cdot \operatorname{div}(b u_{h,\Delta t}^{k+1}) + u_h \qquad \text{auf } \Omega_h, \qquad (13.1)$$

$$u_{h,\Delta t}^{k+1} = u_{e,\Delta t}^k \qquad \text{auf } \Gamma_f^{out}, \tag{13.2}$$

$$=\varphi_D \qquad \text{auf } \Gamma_{h,D}, \qquad (13.3)$$

und anschließend

1. . . 1

 $u_{h,\Delta t}^{k+1}$

 ∂n^*

$$u_{e,\Delta t}^{k+1} = -\Delta t \left(-\varepsilon \Delta u_{e,\Delta t}^{k+1} + \operatorname{div}(b u_{e,\Delta t}^{k+1}) \right) + u_e \quad \text{auf } \Omega_e,$$
(13.4)
$$\varepsilon \frac{\partial u_{e,\Delta t}^{k+1}}{\partial n^*} = 0 \quad \text{auf } \Gamma_f^{out},$$
(13.5)

$$= 0 \qquad \qquad \text{auf } \Gamma_f^{out}, \qquad (13.5)$$

$$\varepsilon \frac{\partial u_{e,\Delta t}^{k+1}}{\partial n^*} - b \cdot n^* u_{e,\Delta t}^{k+1} = -b \cdot n^* u_{h,\Delta t}^{k+1} \qquad \text{auf } \Gamma_f^{in} \cup \Gamma_f^0, \qquad (13.6)$$
$$u_{e,\Delta t}^{k+1} = \varphi_D \qquad \text{auf } \Gamma_e. \qquad (13.7)$$

$$=\varphi_D \qquad \qquad \text{auf } \Gamma_e. \tag{13.7}$$

Die Kopplung wird in einem expliziten Verfahren vermieden. Man erhält es, indem man $u_{i,\Delta t}$ auf den rechten Seiten der Gleichungen (13.1) und (13.4) durch u_i ersetzt für i = e, h. Die Iteration über k entfällt, wenn diese Ersetzung auch noch in Gleichung (13.2) vorgenommen wird.

Auch der Modellfehler ist nun zeitabhängig $MF = MF(t, \Gamma_f)$. Zum Zeitpunkt t = 0ist $v(x, 0) = u(x, 0) = v_0(x)$ gegeben und der Modellfehler beträgt 0 unabhängig von der Interface-Wahl. Ein anfänglicher Interface-Verlauf für den Zeitpunkt $t_1 = \Delta t$ kann gewonnen werden durch Berechnen von \hat{v}_{N,t_1} auf dem Grobgitter in einem expliziten Schritt

$$\begin{aligned} v_{t_1} &= \Delta t(\varepsilon \Delta v_0 - \operatorname{div}(bv_0)) + v_0 & \text{auf } \Omega, \\ v_{t_1} &= \varphi_D & \text{auf } \partial\Omega, \end{aligned}$$

und der reduzierten Gleichung

$$\begin{aligned} u_{h,t_1} &= -\Delta t \cdot \operatorname{div}(bv_0) + v_0 & \text{ auf } \Omega, \\ u_{h,t_1} &= \varphi_D & \text{ auf } \Gamma^{in} = \{ x \in \partial \Omega | (b \cdot n)(x) < 0 \} \end{aligned}$$

Bei der Wahl des zugehörigen Zeitschritts Δt ist zu beachten, dass dieser durch die Stabilitätsbedingung an die Grobgitterweite gekoppelt ist (s. [25]). Mit Hilfe der beiden Grobgitterlösungen und den Methoden in Abschnitt 12.1 wird ein erstes Interface $\Gamma_f = \Gamma_f(t_1)$ zur (expliziten oder impliziten) Berechnung von u_{t_1} festgelegt.

Setzen wir eine stationäre Lage der Grenzschicht voraus, so kann das Interface aufgrund der neugewonnenen Information über $MF(t_1, \Gamma_f(t_1))$ noch einmal für den Zeitschritt $t_1 + \Delta t$ korrigiert und dann endgültig festgesetzt werden. Die Ersparnis gegenüber der homogenen Rechnung kommt nun in jedem weiteren Zeitschritt zum Tragen ohne neue Kosten einer Interface-Suche.

Teil IV Anhang.

14 Symbolverzeichnis.

Das Symbolverzeichnis enthält alle Bezeichnungen, die nicht nur lokal in einem Abschnitt verwendet wurden. In den Erklärungen sei A ein offenes beschränktes Gebiet im \mathbb{R}^n mit n = 1 oder n = 2. Für n = 2 sei ∂A der Lipschitz-stetige Rand von A mit äußerer Einheitsnormale n_A und Σ sei eine offene Teilmenge von ∂A . Sind die Erklärungen am Ende mit einem * versehen, so müssen bei der zugehörigen Variablen nicht immer alle Indices vorhanden sein.

Part I:

a_q	Quellterm
b	Konvektion, Wind
c	Interface des eindimensionalen Modells
$C^{1,1}$	$\partial \Omega \in C^{1,1}$, Randfunktion ist $C^{1,1}$ -Diffeomorphismus
e_{MF}	Differenz von heterogener zu homogener Lösung
ε	Diffusionskonstante
f	rechte Seite der Differentialgleichung
F	$F: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$, Bilinearform des eindimensionalen Modells mit
	$\ v\ _E^2 = F(v,v)$ für alle $v \in H_0^1(\Omega)$
${\cal F}$	$\mathcal{F}: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$, Bilinearform des zweidimensionalen Modells mit
	$\ v\ _E^2 = \mathcal{F}(v,v)$ für alle $v \in H_0^1(\Omega)$
H^k	Hilbert-Raum $H^k(A) = W_2^k(A)$, speziell
	$ v _{H^1(\Omega)} = \left(\int_{\Omega} \nabla v \cdot \nabla v\right)^{\frac{1}{2}}$, Seminorm auf $H^1(\Omega)$
H_0^k	Hilbert-Raum $H_0^k(A) = W_2^k(A)$
$H^{\frac{1}{2}}$	$H^{\frac{1}{2}}(\partial A) \subset L^{2}(\partial A)$, Bildraum des Spuroperators angewandt auf $H^{1}(A)$
$H_{00}^{\frac{1}{2}}$	$H_{00}^{\frac{1}{2}}(\Sigma) = \{ v \in L^2(\Sigma) : \tilde{v} \in H^{\frac{1}{2}}(\partial A), \text{ wobei } \tilde{v} = \begin{cases} v \text{ auf } \Sigma \\ 0 \text{ auf } \partial A \setminus \Sigma \end{cases} \text{ und}$
	$\ v\ _{H^{\frac{1}{2}}_{00}(\Sigma)} = \ \tilde{v}\ _{H^{\frac{1}{2}}(\partial A).}$
$H^{-\frac{1}{2}}$	$H^{-\frac{1}{2}}(\partial A)$, Dualraum von $H^{\frac{1}{2}}(\partial A)$
k	Randwert im eindimensionalen Modell
L^p	Lebesgue-Raum $L^p(A)$ aller messbaren Funktionen $v: A \to \mathbb{R}$ mit
	$\ v\ _{L^{p}(A)} = \left(\int_{A} v ^{p}\right)^{\frac{1}{p}} < \infty \text{ für } 1 \le p < \infty$
L^{∞}	Lebesgue-Raum $L^{\infty}(A)$ aller messbaren Funktionen $v: A \to \mathbb{R}$,
	die fast überall beschränkt sind,
	$\ v\ _{L^{\infty}(A)} = \operatorname{esssup}_{x \in A} v(x) $
L_b^2	$L_b^2(\Sigma) = \{ v : \Sigma \to \mathbb{R} : \sqrt{ b \cdot n_A } v \in L^2(\Sigma) \}$ Banach-Raum bzgl.
	$\ v\ _{L^2_k(\Sigma)} = \left(\int_{\Sigma} b \cdot n_A v^2\right)^{\frac{1}{2}}.$
$L_{\rm div}^2$	$L^2_{\text{div}}(A) = \{ w \in (L^2(A))^2 \text{div}(w) \in L^2(A) \} \text{ Hilbert-Raum bzgl.}$
	$\ v\ _{L^{2}_{\operatorname{div}}(A)} = \left(\ v\ ^{2}_{L^{2}(A)} + \ \operatorname{div}(v)\ ^{2}_{L^{2}(A)}\right)^{\frac{1}{2}}$
n	äußere Einheitsnormale auf $\partial \Omega$
n^*	Einheitsnormale auf Γ_f in Richtung von Ω_h weisend
u_e	elliptischer Lösungsteil des heterogenen Modells
u_h	hyperbolischer Lösungsteil des heterogenen Modells
v	Lösung des homogenen Modells

W_p^k	Sobolev-Raum $W_p^k(A)$ aller Funktionen $v \in L^p(A)$ für $1 \le p \le \infty$ mit verallgemeinerten Ableitungen $\partial^{\alpha} v \in L^p(A)$ bis zur Ordnung $ \alpha \le k$
	Verangemeiner ten Abiertungen of $0 \in D$ (A) bis zur ördnung $ \alpha \leq n$,
	$\ v\ _{W_p^k(A)} = \left(\sum_{ \alpha \le k} \int_A \partial^{\alpha} v ^p\right)^T$ für $p < \infty$ und
0	$\ v\ _{W^k_{\infty}(A)} = \sum_{ \alpha \le k} \operatorname{esssup}_{x \in A} \partial^{\alpha} v(x) $
W_p^k	$W_p^k(A)$ ist Abschluss von $C_0^{\infty}(A)$ in $W_p^k(A)$
Γ_D	Dirichlet-Rand
Γ_f	Interface des zweidimensionalen Modells
Γ_f^{in}	$\Gamma_f^{in} = \{ x \in \Gamma_f \colon (b \cdot n^*)(x) > 0 \}$
Γ_{f}^{out}	$\Gamma_f^{out} = \{ x \in \Gamma_f \colon (b \cdot n^*)(x) < 0 \}$
Γ_{f}^{0}	$\Gamma_f \setminus \left(\overline{\Gamma_F^{in}} \cup \overline{\Gamma_f^{out}} ight)$
$\Gamma_{e,D}$	Dirichlet-Rand des elliptischen Gebiets Ω_e
$\Gamma_{e,N}$	Neumann-Rand des elliptischen Gebiets Ω_e
$\Gamma_{h,D}$	Dirichlet-Rand des hyperbolischen Gebiets Ω_h
Γ_N	Neumann-Rand
μ_0	untere Schranke der Koerzivitätsbedingung
φ_D	rechte Seite der Dirichlet-Bedingung
φ_N	rechte Seite der Neumann-Bedingung
$\varphi_{e,N}$	rechte Seite der Neumann-Bedingung auf $\Gamma_{e,N}$
$\varphi_{h,D}$	rechte Seite der Dirichlet-Bedingung auf $\Gamma_{h,D}$
$\varphi_N e, N$	rechte Seite der Dirichlet-Bedingung auf $\Gamma_{e,D}$
Φ	Fluss
Ω	beschränktes zusammenhängendes Gebiet
$\partial \Omega$	Rand von Ω
Ω_e	elliptisches Teilgebiet
Ω_h	hyperbolisches Teilgebiet

Part II:

Anz_{Bi}	Anzahl der Bisektionsschritte (Ansatz 2)
$Anz_{Bi,max}$	max. Anzahl der Bisektionsschritte in Verfeinerung (Ansatz 2)
Anz_{Verf}	Anzahl verfeinerter Approximationsschritte
c_0	Startwert der Newton-Iteration (Ansatz1) oder
	anfängliche Interface-Position (Ansatz 3)
c_{hyp}	obere Schranke für c_0
$c_{hyp,ell}$	obere Schranke für c_{opt}
c_{MF}	Interface-Stelle mit $MF(c_{MF}) = TOL_{MF}$
\hat{c}_{MF}	Interface-Stelle mit $\widehat{MF}(\hat{c}_{MF}) = TOL_{MF}$
\tilde{c}_{MF}	numerische Näherung an $\hat{c}_M F$
c_{Null}	erste Interface-Position (Ansatz 2)
c_{opt}	Näherung an aufwandsoptimale Interface-Stelle (Ansatz 3)
count	$count_1 + n$
$count_1$	Anzahl Diskretisierungspunkte zur Auffindung von c_{MF}
$DF = DF_e$	Diskretisierungsfehler auf Ω_e

$DF_{e,n;c}$	Schätzung des Diskretisierungsfehlers auf $\Omega_e = (0, c)$ mit
т	<i>n</i> Diskretisierungspunkten *
L_i	Däranfungsfahten im Newton Verfahren (Ansatz 1)
	Modellfohler
\widehat{MF}	
$MF_{e,N;c}$	Approximation des Modellfehlers auf $\Omega_e = (c, 1)$ fur N Diskretisierungspunkte *
$MF_{h,N;c}$	Approximation des Modellfehlers auf $\Omega_h = (0, c)$ für N Diskretisierungspunkte *
n_{hom}	$n_{hom} + 1$ ist Anzahl an Gitterpunkten bei homogener Rechnung
n_{opt}	$n_{opt} + 1$ ist vorhergesagte Anzahl an Gitterpunkten auf $(c_{opt}, 1)$
N	Anzahl der Punkte des Grobgitters auf Ω ist $N + 1$
$\#_{NI}$	Anzahl der Newton-Iterationen (Ansatz 1)
Nko	Gitterkonstante mit $N = \left \frac{1}{N_{ko}\varepsilon} \right $
N_{min}	Mindestanzahl an Gitterpunkten auf Ω_e (Ansatz 2)
NN	Anzahl der Punkte einer ersten Verfeinerung des Grobgitters ist $NN + 1$ (Ansatz 2)
$N_{\rm P\acute{e}clet}$	Mindestanzahl an Gitterpunkten aus Péclet-Bedingung
part	Parameter zur Auffindung des Startwerts c_0 als kleinstem Gitterpunkt,
-	bei dem \hat{v}_N die Marke part $\cdot \overline{v'_N}$ überschreitet (Ansatz 3)
R_i	rechte Grenze des Bisektionsintervalls im i -ten Bisektionsschritt (Ansatz 2)
ρ	Skalierung des a priori Schätzers für DF
$skal_{DF}$	Skalierung des a posteriori Schätzers für DF
T_i	Gitterweite des i -ten Diskretisierungsintervalls
T_N	Gitterweite bei $N + 1$ Diskretisierungspunkten
T_{max}	max. Gitterweite auf dem Grobgitter
TOL_G	benutzerdefinierte Gesamttoleranz
TOL_{ist}	erzielte relative Genauigkeit $TOL_{ist} = \frac{1}{\ v\ _E} \left(MF(\tilde{c}_{MF}) + \widehat{DF}_{2,n;c_{MF}} \right)$
TOL_{MF}	Toleranz für Modellfehler
TOL_{Newton}	Toleranz des Newton-Verfahrens
TOL_{Null}	Toleranz für erste Interface-Position (Ansatz 2)
TOL_{rel}	relative Toleranz $TOL_{rel} = TOL_G / \ v\ _E$
TOL_{Rest}	Resttoleranz in (Ansatz 3)
$\hat{u}_{e,n;c}$	diskrete elliptische Lösung des heterogenen Modells mit Interface \boldsymbol{c}
	und n Diskretisierungspunkten $*$
$\hat{u}_{h,n;c}$	diskrete hyperbolische Lösung des heterogenen Modells mit Interface \boldsymbol{c}
	und n Diskretisierungspunkten $*$
\hat{v}_n	diskrete Lösung des homogenen Modells mit \boldsymbol{n} Diskretisierungspunkten
α_{max}	max. Steigungsquotient im Fehlerindikator (Ansatz 2)
κ_{Null}	Anteil an TOL_{MF} für erste Interface-Approximation (Ansatz 2)
κ_{MF}	Anteil von TOL_{MF} an Gesamttoleranz
κ	Verhältnis von MF_h zu MF_e (Ansatz 3)
$\widehat{\kappa}_{N;c_0}$	Verhältniss von $\widehat{MF}_{h,N}(c_0)$ zu $\widehat{MF}_{e,N}(c_0)$ (Ansatz 3)

Part III:

Aufwand	Summe der Diskretisierungspunkte bei heterogener Rechnung
$Aufwand_{hom}$	Summe der Diskretisierungspunkte bei homogener Rechnung
$Aufwand_N$	Summe der Diskretisierungspunkte bei der Grobgittergenerierung
$Fehler_{rel}$	Schätzung des relativen Gesamtfehlers der heterogenen Rechnung
$Fehler_{rel,hom}$	Schätzung des relativen Diskretisierungsfehlers der homogenen Rechnung
Fehler _{rel,skal}	Schätzung des relativen Gesamtfehlers der heterogenen Rechnung bei
,	Skalierung der Modellfehlerschätzung
h_T	Durchmesser des Dreiecks
IF	Iterationsabbruchsfehler
#Iterationen	Anzahl notwendiger Lösungsiterationen zum Erreichen von TOL_{DF}
n	Anzahl der Gitterpunkte auf letzter Verfeinerung von Ω_e
n_{hom}	Anzahl der Gitterpunkte bei homogener Rechnung
N	Anzahl der Punkte auf dem Grobgitter
N_0	Anzahl der Diskretisierungspunkte bei der ersten Interface-Suche, $N_0 = N$
$skal_{MF}$	Skalierungsfaktor der Modellfehlerschätzung
T	Dreieck der Triangulierung auf Ω
\mathcal{T}	Triangulierung von Ω
TOL_{DF}	Toleranz für Diskretisierungs- und Iterationsabbruchsfehler
$TOL_{rel,grob}$	relative Toleranz für Grobgitterlösungen
$\hat{u}^k_{e,n;\Gamma_f}$	diskrete elliptische Lösung des heterogenen Modells mit Interface Γ_f und
5	n Diskretisierungspunkten im $k\text{-ten}$ Iterationsschritt \ast
$\hat{u}_{h;\Gamma_f}^k$	diskrete hyperbolische Lösung des heterogenen Modells mit Interface Γ_f
j	im k -ten Iterationsschritt $*$
UserTime	systemunabhängige Rechenzeit in Sekunden
$UserTime_{hom}$	User Time der homogenen Rechnung
$UserTime_{MATLAB}$	User Time der MATLAB-Routinen
$UserTime_{PLTMG}$	User Time der Routine PLTMG
γ^0	Startfunktion auf Γ_f^{out} der Lösungsiteration
$\kappa_{MF_{h}}$	Anteil des hyperbolischen Modellfehlers an TOL_G auf Grobgitter
Θ	Akzelerationsparameter der Iteration
$\#\Omega_e$	Anzahl elliptischer Rechengebiete

15 Tabellen der numerischen Ergebnisse in einer Raumdimension.

15.1 Tabellen zur homogenen Rechnung.

Tabelle 5: Notwendige Anzahl an Diskretisierungspunkten n_{hom} bei homogener Rechnung für Modell **A** mit f(t) = 1.

TOL_{rel}	$\varepsilon = 0.1$	$\varepsilon = 0.01$	$\varepsilon = 0.001$	$\varepsilon = 0.0001$	$\varepsilon = 0.00001$
0.01	325	2928	29009	289827	
0.02	163	1464	14505	144914	
0.03	109	976	9669	96609	
0.04	81	732	7253	72457	
0.05	65	586	5802	57966	579602
0.06	54	488	4835	48305	483002
0.07	47	419	4145	41404	414002
0.08	41	366	3627	36229	362251
0.09	36	326	3224	32203	322001
0.10	33	293	2901	28983	289801
0.11	29	267	2638	26348	263456
0.12	27	244	2418	24153	241501
0.13	25	226	2232	22295	222924
0.14	24	209	2073	20702	207001
0.15	22	196	1934	19322	193201

Tabelle 6: Notwendige Anzahl an Diskretisierungspunkten n_{hom} bei homogener Rechnung für Modell **A** mit $f(t) = e^t$.

TOL_{rel}	$\varepsilon = 0.1$	$\varepsilon = 0.01$	$\varepsilon = 0.001$	$\varepsilon = 0.0001$	$\varepsilon = 0.00001$
0.01	352	2959	29041	289859	
0.02	176	1479	14521	144929	
0.03	118	987	9681	96619	
0.04	88	739	7261	72465	
0.05	71	592	5809	57972	579608
0.06	59	494	4841	48309	483007
0.07	51	423	4149	41409	414006
0.08	44	369	3631	36233	362209
0.09	39	329	3227	32207	322005
0.10	36	296	2905	28986	289804
0.11	32	269	2641	26351	263409
0.12	29	247	2421	24155	241504
0.13	28	228	2234	22297	222909
0.14	26	212	2075	20705	207003
0.15	24	198	1937	19324	193203

TOL_{rel}	$\varepsilon = 0.1$	$\varepsilon = 0.01$	$\varepsilon = 0.001$	$\varepsilon = 0.0001$	$\varepsilon=0.00001$
0.01	233	2845	28928	289746	
0.02	117	1423	14464	144873	
0.03	78	949	9643	96582	
0.04	59	712	7232	72437	
0.05	47	569	5786	57949	579586
0.06	39	475	4822	48291	482988
0.07	34	407	4133	41393	413989
0.08	29	356	3616	36219	362241
0.09	26	317	3215	32194	321992
0.10	24	285	2893	28975	289793
0.11	22	259	2629	26341	263448
0.12	19	238	2411	24146	241494
0.13	18	219	2226	22289	222918
0.14	17	204	2067	20697	206995
0.15	16	189	1929	19317	193196

Tabelle 7: Notwendige Anzahl an Diskretisierungspunkten n_{hom} bei homogener Rechnung für Modell **A** mit $f(t) = t^2$.

Tabelle 8: Notwendige Anzahl an Diskretisierungspunkten n_{hom} bei homogener Rechnung für Modell **B** mit $a_q(t) = 3, f(t) = 1, k = 2$.

TOL_{rel}	$\varepsilon = 0.1$	$\varepsilon = 0.01$	$\varepsilon=0.001$	$\varepsilon = 0.0001$
0.01	303	2759	27344	273207
0.02	152	1379	13673	136604
0.03	102	921	9116	91069
0.04	77	691	6837	68303
0.05	62	553	5469	54643
0.06	52	461	4559	45536
0.07	44	395	3908	39031
0.08	39	346	3419	34152
0.09	35	308	3039	30358
0.10	32	277	2736	27322
0.11	29	252	2487	24838
0.12	27	231	2279	22769
0.13	25	214	2105	21017
0.14	23	198	1954	19516
0.15	22	185	1824	18215

15.2 Tabellen zu Ansatz 1.

Ansatz 1 für Modell A mit konstanter rechter Seite f(t) = 1.

Abbildung 84: Der Modellfehlerschätzer hat jeweils genau einen Schnittpunkt mit der Toleranz TOL_{MF} .

ε		0.01					0.003				
TOL_{rel}			0.02			0.05					
N			40					150			
c_0		1	$+ \varepsilon \ln(\varepsilon)$				1 +	$\varepsilon \ln(\varepsilon)/2$			
$\kappa_{MF} =$	TOL_{ist}	$\#_{NI}$	$count_1$	n	count	TOL_{ist}	$\#_{NI}$	$count_1$	n	count	
0.9	0.0088	6	821	227	821	0.0216	9	992	86	992	
0.8	0.0119	6	827	168	827	0.0295	9	999	64	999	
0.7	0.0143	7	971	142	971	0.0349	9	1004	55	1004	
0.6	0.0159	7	979	130	979	0.0393	10	1146	50	1146	
0.5	0.0172	7	988	123	988	0.0429	10	1156	47	1156	
0.4	0.0182	8	1146	120	1146	0.0453	11	1308	46	1308	
0.3	0.0190	8	1162	119	1162	0.0470	11	1324	46	1324	
0.2	0.0195	9	1341	122	1341	0.0485	12	1498	47	1498	
0.1	0.0199	10	1545	130	1545	0.0496	13	1696	50	1696	

Tabelle 9: Ansatz 1	für Modell \mathbf{A} mit	rechter Seite	f((t)) =	1.
---------------------	-----------------------------	---------------	----	-----	-----	----

Ansatz 1 für Modell A mit rechter Seite $f(t) = e^t$.

Der Fehlerschätzer hat in Abhängigkeit von κ_{MF} ein bis drei Schnittpunkte mit TOL_{MF} , von denen jeweils einer in Abhängigkeit von der Lage des Startpunktes c_0 aufgefunden wird. Die Anzahl der Newton-Iterationen ist abhängig vom Startpunkt.

Abbildung 85: Im Bild sind TOL_{rel} und κ_{MF} gerade so gewählt, dass jeweils nur ein Schnittpunkt links entsteht.

ε		0.001					0.001				
TOL_{rel}		0.05						0.02			
N		150						150			
c_0		1 +	$\varepsilon \ln(\varepsilon)/2$				1 -	$+ \varepsilon \ln(\varepsilon)/2$	2		
					Schnittp	unkt recht	s				
$\kappa_{MF} =$	TOL_{ist}	$\#_{NI}$	$count_1$	n	count	TOL_{ist}	$\#_{NI}$	$count_1$	n	count	
0.9	0.0216	3	520	87	520	0.0086	2	422	238	422	
0.8	0.0298	3	529	64	529	0.00117	2	424	177	424	
0.7	0.0351	3	536	55	536	0.00142	3	571	148	571	
0.6	0.0391	2	408	50	408						
0.5	0.0432	1	276	47	276						
0.4	0.0450	1	279	45	279						
0.3	0.0473	2	425	44	425						
c_0							0.005/	$\sqrt{\sqrt{\varepsilon}+0}$.	005)		
$\kappa_{MF} =$							Schni	ttpunkt l	inks		
0.9						0.0087	5	26688	6782	26688	
0.8						0.0120	4	26382	6018	26382	
0.7						0.0143	4	31093	6049	31093	
0.6						0.0160	3	28744	6369	28744	
0.5						0.0173	3	32333	6874	32333	
0.4						0.0183	4	45514	7549	45514	
0.3						0.0191	5	61818	8421	61818	

Tabelle	10:	Ansatz	1	für	Mode	ell \mathbf{A}	mit	rechter	Seite	f([t]) = 0	e^t
---------	-----	--------	---	-----	------	------------------	----------------------	---------	-------	----	-----	-------	-------

Ansatz 1 für Modell A mit rechter Seite $f(t) = t^2$.

Abbildung 86: Die blauen Geraden dokumentieren den Ablauf des Newton-Verfahrens zum Auffinden des rechten (Bild links) bzw. mittleren (Bild rechts) Schnittpunkts.

ε	0.0001							
TOL_{rel}		0.02						
N			200					
c_0			$1 + \varepsilon \ln(\varepsilon)$)				
		mittle	rer Schnit	tpunkt				
$\kappa_{MF} =$	TOL_{ist}	$\#_{NI}$	$count_1$	n	count			
0.9	0.0087	1	368	304	368			
c_0		1	$+\varepsilon\ln(\varepsilon)$	/2				
$\kappa_{MF} =$		Schn	ittpunkt	rechts				
0.9	0.0083	10	1486	284	1486			
0.8	0.0114	10	1490	208	1490			
0.7	0.0142	11	1660	170	1660			
c_0		0.00	$5/(\sqrt{\varepsilon}+0)$	0.005)				
$\kappa_{MF} =$		Schi	nittpunkt	links				
0.9	0.0087	3	150080	64867	150080			
0.8	0.0120	5	263651	56068	263651			
0.7	0.0143	4	246089	55208	246089			
0.7	0.0160	6	402235	57165	402235			

Tabelle 11: Ansatz 1 für Modell **A** mit rechter Seite $f(t) = t^2$.

Ansatz 1 für Modell B mit $a_q(t) = 3, f(t) = 1$ und k = 2.

Der Fehlerschätzer hat für $\varepsilon = 0.01$ drei Schnittpunkte mit TOL_G . Mehr als ein Schnittpunkt mit TOL_{MF} entsteht allerdings nur für κ_{MF} nahe der 1. Für $\varepsilon = 0.001$ liegt der Schnittpunkt für fast alle κ_{MF} – Werte am rechten Rand.

Abbildung 87: Verlauf von exaktem Modellfehler und Fehlerschätzer für $\varepsilon = 0.01$ (links) und $\varepsilon = 0.001$ (rechts).

ε			0.01			0.001				
TOL_{rel}	0.02				0.02					
N	40				200					
c_0	$0.005/(\sqrt{\varepsilon}+0.005)$			$1 + \varepsilon \ln(\varepsilon)/2$						
	Schnittpunkt links				Schnittpunkt rechts					
$\kappa_{MF} =$	TOL_{ist}	$\#_{NI}$	$count_1$	n	count	TOL_{ist}	$\#_{NI}$	$count_1$	n	count
0.9	0.0093	3	3609		5416	0.0086	3	433		673
0.8	0.0124	3	3844		5288	0.0118	3	435		612
0.7	0.0141	2	4055		4055	0.0137	4	744		749
0.6	0.0140	2	4243		4243	0.0138	4	749		749
0.4	0.0140	3	3844		3844	0.0137	5	927		927
c_0	$1 + \varepsilon \ln(\varepsilon)$									
$\kappa_{MF} =$	Schnittpunkt rechts									
0.95	0.0067	6	656		962					

Tabelle 12: Ansatz 1 für Modell B mit $a_q(t) = 3, f(t) = 1$ und $k = 2$

15.3 Tabellen zu Ansatz 2.

Ansatz 2 für Modell A mit konstanter rechter Seite f(t) = 1.

Tabelle 13: Ansatz 2 für Modell **A** und $f(t) = 1, \varepsilon = 0.1, \kappa_{MF} = 0.6, \kappa_{Null} = 1, Anz_{Verf} = 0, N = 10, N_{min} = 20, \alpha_{max} = 1.8.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.0100	-0.1372	-0.8446	0.0151	25	430
0.0200	-0.0691	-0.4277	0.0251	25	211
0.0300	-0.0697	-0.4743	0.0385	25	138
0.0400	-0.0801	-0.6004	0.0543	25	103
0.0500	-0.0576	-0.4212	0.0624	25	86
0.0600	-0.0435	-0.3148	0.0713	25	74
0.0700	-0.0347	-0.2513	0.0805	25	66
0.0800	-0.0296	-0.2159	0.0902	25	60
0.0900	-0.0271	-0.2004	0.0998	25	56
0.1000	-0.0266	-0.2003	0.1110	25	52
0.1100	-0.0277	-0.2126	0.1227	25	49
0.1200	-0.0299	-0.2356	0.1363	25	46
0.1300	-0.0331	-0.2682	0.1497	25	44
0.1400	-0.0372	-0.3100	0.1650	25	42
0.1500	-0.0419	-0.3606	0.1791	25	41

Tabelle 14: Ansatz 2 für Modell **A** und $f(t) = 1, \varepsilon = 0.01, \kappa_{MF} = 0.6, \kappa_{Null} = 1, Anz_{Verf} = 0, N = 60, N_{min} = 20, \alpha_{max} = 1.6.$

TOL_{rel}	$rac{c_{MF} - ilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.0100	0.0065	0.4613	0.0072	125	572
0.0200	0.0120	0.6829	0.0118	125	343
0.0300	0.0145	0.7512	0.0164	125	267
0.0400	0.0157	0.7803	0.0213	125	228
0.0500	0.0163	0.7931	0.0265	125	204
0.0600	0.0165	0.7970	0.0312	125	190
0.0700	0.0163	0.7951	0.0365	125	179
0.0800	0.0160	0.7889	0.0419	125	171
0.0900	0.0155	0.7790	0.0482	125	164
0.1000	0.0148	0.7658	0.0531	125	160
0.1100	0.0141	0.7492	0.0592	125	156
0.1200	0.0133	0.7291	0.0668	125	152
0.1300	0.0124	0.7054	0.0743	125	149
0.1400	0.0114	0.6775	0.0810	125	147
0.1500	0.0105	0.6452	0.0920	125	144

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + DF(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.0100	-0.0001	-0.0570	0.0104	2013	2402
0.0200	-0.0001	-0.0704	0.0208	2013	2186
0.0300	-0.0004	-0.4489	0.0394	2013	2102
0.0400	-0.0003	-0.2906	0.0468	2010	2082
0.0500	-0.0001	-0.1251	0.0536	2010	2066
0.0600	-0.0000	-0.0217	0.0605	2010	2056
0.0700	0.0000	0.0456	0.0675	2010	2049
0.0800	0.0001	0.0897	0.0753	2010	2043
0.0900	0.0001	0.1180	0.0829	2010	2039
0.1000	0.0001	0.1345	0.0919	2010	2035
0.1100	0.0002	0.1421	0.0991	2010	2033
0.1200	0.0002	0.1424	0.1120	2010	2029
0.1300	0.0001	0.1365	0.1192	2010	2028
0.1400	0.0001	0.1253	0.1270	2010	2027
0.1500	0.0001	0.1091	0.1394	2010	2025

Tabelle 15: Ansatz 2 für Modell **A** und $f(t) = 1, \varepsilon = 0.001, \kappa_{MF} = 0.6, \kappa_{Null} = 1, Anz_{Verf} = 0, N = 1000, N_{min} = 20, \alpha_{max} = 1.6.$

Tabelle 16: Ansatz 2 für Modell **A** und $f(t) = 1, \varepsilon = 0.0001, \kappa_{MF} = 0.6, \kappa_{Null} = 1, Anz_{Verf} = 0, N = 9000, N_{min} = 20, \alpha_{max} = 1.6.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}} * 10000$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	-0.6072	-0.8379	0.0150	18020	18375
0.02	-0.3471	-0.4173	0.0250	18020	18183
0.03	-0.3749	-0.4589	0.0395	18020	18109
0.04	-0.4469	-0.5707	0.0536	18020	18088
0.05	-0.3314	-0.3986	0.0618	18020	18073
0.06	-0.2568	-0.2976	0.0706	18020	18063
0.07	-0.2104	-0.2384	0.0797	18020	18056
0.08	-0.1846	-0.2069	0.0892	18020	18051
0.09	-0.1746	-0.1951	0.0994	18020	18047
0.10	-0.1770	-0.1986	0.1117	18020	18043
0.11	-0.1894	-0.2145	0.1224	18020	18041
0.12	-0.2102	-0.2414	0.1372	18020	18038
0.13	-0.2379	-0.2782	0.1487	18020	18037
0.14	-0.2716	-0.3246	0.1650	18020	18035
0.15	-0.3103	-0.3803	0.1800	18020	18034

Ansatz 2 für Modell A und rechter Seite $f(t) = e^t$.

Tabelle 17: Ansatz 2 für Modell **A** und $f(t) = e^t, \varepsilon = 0.1, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 3, N_{min} = 20, \alpha_{max} = 1.6.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.3095	0.1891	0.0089	72	933
0.02	0.5427	0.3959	0.0152	72	493
0.03	0.6055	0.4824	0.0213	72	347
0.04	0.6317	0.5311	0.0272	72	274
0.05	0.6459	0.5625	0.0330	72	230
0.06	0.6516	0.5800	0.0391	72	200
0.07	0.6479	0.5804	0.0456	72	178
0.08	0.7474	0.5808	0.0523	72	161
0.09	0.7141	0.5811	0.0585	72	149
0.10	0.6805	0.5813	0.0649	68	135
0.11	0.6468	0.5813	0.0711	68	127
0.12	0.6132	0.5814	0.0775	68	120
0.13	0.5798	0.5818	0.0841	68	114
0.14	0.5453	0.5816	0.0904	68	109
0.15	0.5048	0.5779	0.0904	68	104

Tabelle 18: Ansatz 2 für Modell **A** und $f(t) = e^t, \varepsilon = 0.01, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 30, N_{min} = 20, \alpha_{max} = 1.6.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.0437	0.0590	0.0097	168	2657
0.02	0.0121	0.4402	0.0147	108	315
0.03	0.0109	0.6255	0.0187	110	237
0.04	0.0120	0.7465	0.0238	110	199
0.05	0.0127	0.7465	0.0275	110	183
0.06	0.0130	0.7682	0.0323	110	183
0.07	0.0132	0.7789	0.0375	110	159
0.08	0.0133	0.7829	0.0419	110	153
0.09	0.0133	0.7827	0.0475	110	147
0.10	0.0132	0.7798	0.0525	110	143
0.11	0.0130	0.7752	0.0586	110	139
0.12	0.0129	0.7694	0.0644	110	136
0.13	0.0127	0.7628	0.0693	110	134
0.14	0.0125	0.7557	0.0748	110	132
0.15	0.0123	0.7483	0.0844	110	129

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + DF(\tilde{c}_{MF})}{\ v\ _{F}}$	$count_1$	count
0.01	0.0009	0.6299	0.0062	658	1111
0.02	0.0010	0.6544	0.0121	658	866
0.03	0.0010	0.6427	0.0184	658	787
0.04	0.0010	0.6351	0.0252	658	747
0.05	0.0010	0.6319	0.0308	658	729
0.06	0.0010	0.6298	0.0371	658	715
0.07	0.0010	0.6257	0.0436	658	705
0.08	0.0009	0.6175	0.0509	658	697
0.09	0.0009	0.6033	0.0565	658	693
0.10	0.0009	0.5950	0.0655	657	686
0.11	0.0009	0.6028	0.0697	657	684
0.12	0.0009	0.6083	0.0744	657	682
0.13	0.0009	0.6121	0.0819	657	676
0.14	0.0009	0.6146	0.0912	657	676
0.15	0.0009	0.6160	0.0925	657	676

Tabelle 19: Ansatz 2 für Modell **A** und $f(t) = e^t, \varepsilon = 0.001, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 300, N_{min} = 20, \alpha_{max} = 1.6.$

Tabelle 20: Ansatz 2 für Modell **A** und $f(t) = e^t, \varepsilon = 0.0001, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 3000, N_{min} = 20, \alpha_{max} = 1.6.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _{E}}$	$count_1$	count
0.01	0.0001	0.5106	0.0069	6061	6508
0.02	0.0001	0.5443	0.0135	6061	6263
0.03	0.0001	0.5517	0.0200	6061	6187
0.04	0.0004	0.9770	0.0165	6287	6428
0.05	0.0004	0.9770	0.0207	6304	6413
0.06	0.0004	0.9796	0.0251	6315	6404
0.07	0.0004	0.9809	0.0287	6317	6394
0.08	0.0004	0.9809	0.0325	6318	6385
0.09	0.0004	0.9834	0.0367	6318	6377
0.10	0.0004	0.9897	0.0402	6322	6378
0.11	0.0004	0.9898	0.0454	6323	6372
0.12	0.0005	0.9904	0.0482	6323	6369
0.13	0.0005	0.9903	0.0522	6325	6367
0.14	0.0005	0.9902	0.0556	6326	6365
0.15	0.0005	0.9901	0.0597	6329	6365

Tabelle 21:	Ansatz	2 für	Modell	\mathbf{A}	und	f(t)	=	e^t, ε	=	$0.00001, \kappa_{MF}$	=	$0.6, \kappa_{Null}$	=
$0.6, Anz_{Ver}$	f = 1, N	= 300	$00, N_{min}$	=	$20, \alpha$	max =	= 1.	55.					

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + DF(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	-0.000009	0.5674	0.0066	60067	60525
0.02	0.0006	0.9992	0.0080	61805	64118
0.03	0.0006	0.9994	0.0120	61816	63358
0.04	0.0006	0.9996	0.0160	61827	62984
0.05	0.0005	0.9997	0.0206	61837	62726
0.06	0.0005	0.9997	0.0240	61846	62611
0.07	0.0005	0.9998	0.0280	61858	62514
0.08	0.0005	0.9998	0.0320	61867	62436
0.09	0.0005	0.9998	0.0360	61879	62385
0.10	0.0005	0.9998	0.0400	61890	62345
0.11	0.0005	0.9998	0.0440	61902	62315
0.12	0.0005	0.9999	0.0479	61912	62288
0.13	0.0005	0.9999	0.0519	61924	62271
0.14	0.0005	0.9999	0.0559	61935	62257
0.15	0.0005	0.9999	0.0622	61947	62236

Ansatz 2 für Modell A und rechter Seite $f(t) = t^2$.

Tabelle 22: Ansatz 2 für Modell **A** und $f(t) = t^2, \varepsilon = 0.1, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 3, N_{min} = 20, \alpha_{max} = 1.4.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + DF(\tilde{c}_{MF})}{\ v\ _{F}}$	$count_1$	count
0.01	0.9365	0.8787	0.0047	72	1322
0.02	0.9384	0.8887	0.0093	72	692
0.03	0.9354	0.9011	0.0135	72	492
0.04	0.9318	0.9098	0.0180	72	382
0.05	0.9282	0.9160	0.0220	72	322
0.06	0.9248	0.9206	0.0260	72	282
0.07	0.9216	0.9242	0.0301	72	252
0.08	0.9186	0.9270	0.0336	72	232
0.09	0.9158	0.9293	0.0381	72	212
0.10	0.9132	0.9311	0.0439	72	192
0.11	0.9108	0.9326	0.0477	72	182
0.12	0.9086	0.9339	0.0574	72	162
0.13	0.9067	0.9350	0.0575	72	162
0.14	0.9050	0.9359	0.0575	72	162
0.15	0.9038	0.9367	0.0641	72	152

Die nullte Approximation ist schlecht, da die Anzahl der Grobgitterpunkte zu gering ist. In der Verfeinerung wird N = 3 durch $N_{min} = 20$ ersetzt. Für kleine Toleranzen lohnt sich die heterogene Aufteilung nicht, da \hat{c}_{MF} am linken Rand liegt, das heterogene Gebiet also beinahe mit dem Ausgangsgebiet übereinstimmt.

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + DF(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.2389	0.4079	0.0075	181	5861
0.02	0.2399	0.4131	0.0150	172	2362
0.03	0.2332	0.4047	0.0226	146	1266
0.04	0.2298	0.3993	0.0302	143	773
0.05	0.2057	0.4080	0.0375	132	502
0.06	0.1299	0.4090	0.0444	132	342
0.07	0.0974	0.4547	0.0500	129	269
0.08	0.0969	0.5217	0.0543	129	249
0.09	0.0964	0.5738	0.0569	129	239
0.10	0.0964	0.6154	0.0641	129	219
0.11	0.0953	0.6495	0.0637	129	219
0.12	0.0947	0.6779	0.0684	129	209
0.13	0.0940	0.7020	0.0744	129	199
0.14	0.0933	0.7226	0.0740	129	199
0.15	0.0926	0.7405	0.0819	129	189

Tabelle 23: Ansatz 2 für Modell **A** und $f(t) = t^2, \varepsilon = 0.01, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 30, N_{min} = 20, \alpha_{max} = 1.4.$

Tabelle 24: Ansatz 2 für Modell **A** und $f(t) = t^2, \varepsilon = 0.001, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 300, N_{min} = 20, \alpha_{max} = 1.4.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.0103	0.5156	0.0069	677	1767
0.02	0.0068	0.7572	0.0107	677	1087
0.03	0.0063	0.8392	0.0147	677	927
0.04	0.0053	0.8832	0.0180	677	847
0.05	0.0041	0.9196	0.0224	673	783
0.06	0.0031	0.9647	0.0245	673	753
0.07	0.0031	0.9894	0.0282	673	733
0.08	0.0022	0.9491	0.0330	673	723
0.09	0.0020	0.9162	0.0405	673	713
0.10	0.0019	0.8940	0.0408	672	712
0.11	0.0018	0.8745	0.0414	672	712
0.12	0.0017	0.8546	0.0530	672	702
0.13	0.0016	0.8341	0.0539	672	702
0.14	0.0015	0.8134	0.0552	657	687
0.15	0.0015	0.8103	0.0754	657	677

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.0002	0.9329	0.0044	6061	6591
0.02	0.0001	0.7719	0.0104	6061	6281
0.03	0.0001	0.7253	0.0167	6061	6191
0.04	0.0001	0.7347	0.0226	6061	6151
0.05	0.0001	0.7476	0.0253	6061	6141
0.06	0.0004	0.9931	0.0245	6315	6405
0.07	0.0004	0.9930	0.0272	6317	6397
0.08	0.0004	0.9929	0.0308	6318	6388
0.09	0.0004	0.9934	0.0358	6318	6378
0.10	0.0004	0.9972	0.0373	6322	6382
0.11	0.0004	0.9969	0.0369	6323	6383
0.12	0.0004	0.9970	0.0441	6323	6373
0.13	0.0004	0.9966	0.0437	6325	6375
0.14	0.0004	0.9963	0.0540	6326	6366
0.15	0.0004	0.9960	0.0535	6329	6369

Tabelle 25: Ansatz 2 für Modell **A** und $f(t) = t^2, \varepsilon = 0.0001, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 3000, N_{min} = 20, \alpha_{max} = 1.4.$

Tabelle 26: Ansatz 2 für Modell **A** und $f(t) = t^2, \varepsilon = 0.00001, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 30000, N_{min} = 20, \alpha_{max} = 1.4.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.0003	0.9950	0.0040	61616	66266
0.02	0.0003	0.9975	0.0080	61805	64125
0.03	0.0003	0.9983	0.0120	61816	63366
0.04	0.0003	0.9988	0.0160	61827	62987
0.05	0.0003	0.9990	0.0207	61837	62727
0.06	0.0003	0.9992	0.0239	61846	62616
0.07	0.0003	0.9993	0.0279	61858	62518
0.08	0.0003	0.9994	0.0320	61867	62437
0.09	0.0003	0.9994	0.0358	61879	62389
0.10	0.0003	0.9995	0.0396	61890	62350
0.11	0.0003	0.9995	0.0434	61902	62322
0.12	0.0003	0.9996	0.0475	61912	62292
0.13	0.0003	0.9996	0.0515	61924	62274
0.14	0.0003	0.9996	0.0546	61935	62265
0.15	0.0003	0.9997	0.0581	61947	62257

Ansatz 2 für Modell B mit $a_q(t) = 3, f(t) = 1$ und k = 2.

Tabelle 27: Ansatz 2 für Modell **B** und $a_q(t) = 3, f(t) = 1, \varepsilon = 0.01, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 60, N_{min} = 20, \alpha_{max} = 1.7.$

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + D\tilde{F}(\tilde{c}_{MF})}{\ v\ _{E}}$	$count_1$	count
0.01	-0.0062	-0.7296	0.0143	119	449
0.02	0.0077	0.5025	0.0137	110	300
0.03	0.0101	0.6221	0.0187	110	230
0.04	0.0114	0.6760	0.0232	110	200
0.05	0.0121	0.7036	0.0282	110	180
0.06	0.0125	0.7181	0.0322	110	170
0.07	0.0127	0.7251	0.0374	110	160
0.08	0.0127	0.7274	0.0447	110	150
0.09	0.0127	0.7267	0.0456	110	150
0.10	0.0125	0.7239	0.0466	110	150
0.11	0.0123	0.7196	0.0580	110	140
0.12	0.0121	0.7143	0.0591	110	140
0.13	0.0119	0.7082	0.0605	110	140
0.14	0.0117	0.7015	0.0620	110	140
0.15	0.0114	0.6945	0.0826	110	130

Tabelle 28: Ansatz 2 für Modell **B** und $a_q(t) = 3, f(t) = 1, \varepsilon = 0.001, \kappa_{MF} = 0.6, \kappa_{Null} = 6, Anz_{Verf} = 1, N = 300, N_{min} = 20, \alpha_{max} = 1.7.$

TOL_{rel}	$rac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	0.0009	0.5848	0.0065	658	1088
0.02	0.0009	0.6107	0.0128	658	848
0.03	0.0009	0.6122	0.0181	658	788
0.04	0.0009	0.6123	0.0246	658	748
0.05	0.0009	0.6140	0.0305	658	728
0.06	0.0009	0.6147	0.0352	658	718
0.07	0.0009	0.6118	0.0411	658	708
0.08	0.0009	0.6032	0.0492	658	698
0.09	0.0009	0.5871	0.0514	658	698
0.10	0.0009	0.5937	0.0627	657	687
0.11	0.0009	0.6008	0.0640	657	687
0.12	0.0009	0.6057	0.0654	657	687
0.13	0.0009	0.6090	0.0669	657	687
0.14	0.0009	0.6109	0.0873	657	677
0.15	0.0009	0.6119	0.0886	657	677

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + DF(\tilde{c}_{MF})}{\ v\ _{F}}$	$count_1$	count
0.01	-0.0011	0.4883	0.0070	6061	6481
0.02	-0.0011	0.5445	0.0134	6061	6251
0.03	-0.0012	0.5456	0.0199	6061	6181
0.04	-0.0012	0.5629	0.0255	6061	6151
0.05	-0.0012	0.6054	0.0307	6061	6131
0.06	-0.0012	0.6086	0.0354	6059	6119
0.07	-0.0012	0.5991	0.0415	6059	6109
0.08	-0.0012	0.5849	0.0498	6059	6099
0.09	-0.0013	0.5673	0.0522	6059	6099
0.10	-0.0013	0.5776	0.0635	6059	6089
0.11	-0.0013	0.5939	0.0644	6059	6089
0.12	-0.0013	0.6069	0.0654	6059	6089
0.13	-0.0013	0.6174	0.0665	6059	6089
0.14	-0.0013	0.6260	0.0867	6059	6079
0.15	-0.0013	0.6330	0.0877	6059	6079

Tabelle 29: Ansatz 2 für Modell **B** und $a_q(t) = 3, f(t) = 1, \varepsilon = 0.0001, \kappa_{MF} = 0.6, \kappa_{Null} = 0.6, Anz_{Verf} = 1, N = 3000, N_{min} = 20, \alpha_{max} = 1.7.$

Tabelle 30: Ansatz 2 für Modell **B** und $a_q(t) = 3$, f(t) = 1, $\varepsilon = 0.00001$, $\kappa_{MF} = 0.6$, $\kappa_{Null} = 0.6$, $Anz_{Verf} = 1$, N = 30000, $N_{min} = 20$, $\alpha_{max} = 1.7$.

TOL_{rel}	$\frac{c_{MF} - \tilde{c}_{MF}}{c_{MF}}$	$\frac{MF(\tilde{c}_{MF})}{TOL_{MF}}$	$\frac{MF(\tilde{c}_{MF}) + \widehat{DF}(\tilde{c}_{MF})}{\ v\ _E}$	$count_1$	count
0.01	-0.0016	0.5817	0.0064	60067	60507
0.02	-0.0016	0.5891	0.0131	60064	60254
0.03	-0.0016	0.5335	0.0201	60064	60184
0.04	-0.0016	0.6042	0.0248	60064	60154
0.05	-0.0016	0.6436	0.0300	60064	60134
0.06	-0.0016	0.6674	0.0340	60064	60124
0.07	-0.0016	0.6822	0.0393	60064	60114
0.08	-0.0016	0.6915	0.0467	60064	60104
0.09	-0.0016	0.6970	0.0476	60064	60104
0.10	-0.0016	0.7000	0.0486	60064	60104
0.11	-0.0016	0.7012	0.0601	60064	60094
0.12	-0.0016	0.7010	0.0611	60064	60094
0.13	-0.0016	0.6998	0.0622	60064	60094
0.14	-0.0016	0.6979	0.0635	60064	60094
0.15	-0.0016	0.6954	0.0845	60064	60084

15.4 Tabellen zu Ansatz 3.

Ansatz 3 für Modell A mit konstanter rechter Seite f(t) = 1.

Tabelle 31: Ansatz 3 für Modell A und $f(t) = 1, \varepsilon = 0.01, Nko = 1.0, c_0 = 0.9394.$

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.0100	0.9495	1.0000	0.0070	0.0070	0.0100	482
0.0200	0.9495	1.0000	0.0140	0.0140	0.0200	190
0.0300	0.9596	1.0000	0.0209	0.0209	0.0299	181
0.0400	0.9596	1.0000	0.0280	0.0280	0.0399	144
0.0500	0.9596	1.0000	0.0349	0.0349	0.0499	133
0.0600	0.9596	1.0000	0.0407	0.0407	0.0581	128
0.0700	0.9596	1.0000	0.0478	0.0478	0.0682	124
0.0800	0.9697	1.0000	0.0560	0.0560	0.0799	129
0.0900	0.9697	1.0000	0.0626	0.0626	0.0894	121
0.1000	0.9697	1.0000	0.0679	0.0679	0.0971	118
0.1100	0.9697	1.0000	0.0735	0.0735	0.1049	116
0.1200	0.9697	1.0000	0.0818	0.0818	0.1168	114
0.1300	0.9697	1.0000	0.0876	0.0876	0.1252	113
0.1400	0.9697	1.0000	0.0952	0.0952	0.1360	112
0.1500	0.9697	1.0000	0.0952	0.0952	0.1360	112
TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
-------------	-----------	-----------------------------	---------------------------	-------------------------	---	-------
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.0100	0.9940	1.0000	0.0070	0.0070	0.0100	1194
0.0200	0.9950	1.0000	0.0140	0.0140	0.0198	1090
0.0300	0.9960	1.0000	0.0212	0.0212	0.0300	1085
0.0400	0.9960	1.0000	0.0282	0.0282	0.0400	1044
0.0500	0.9960	1.0000	0.0351	0.0351	0.0496	1033
0.0600	0.9960	1.0000	0.0422	0.0422	0.0597	1027
0.0700	0.9960	1.0000	0.0477	0.0477	0.0675	1024
0.0800	0.9970	1.0000	0.0563	0.0563	0.0797	1031
0.0900	0.9970	1.0000	0.0635	0.0635	0.0900	1021
0.1000	0.9970	1.0000	0.0687	0.0687	0.0973	1018
0.1100	0.9970	1.0000	0.0741	0.0741	0.1049	1016
0.1200	0.9970	1.0000	0.0822	0.0822	0.1164	1014
0.1300	0.9970	1.0000	0.0880	0.0880	0.1245	1013
0.1400	0.9970	1.0000	0.0954	0.0954	0.1350	1012
0.1500	0.9970	1.0000	0.1052	0.1052	0.1490	1011

Tabelle 32: Ansatz 3 für Modell **A** und $f(t) = 1, \varepsilon = 0.001, Nko = 1.0, c_0 = 0.9910.$

Tabelle 33: Ansatz 3 für Modell A und $f(t) = 1, \varepsilon = 0.0001, Nko = 1.0, c_0 = 0.9988.$

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.0100	0.9994	1.0000	0.0070	0.0070	0.0100	10194
0.0200	0.9995	1.0000	0.0140	0.0140	0.0198	10090
0.0300	0.9996	1.0000	0.0212	0.0212	0.0299	10086
0.0400	0.9996	1.0000	0.0283	0.0283	0.0400	10044
0.0500	0.9996	1.0000	0.0351	0.0351	0.0496	10033
0.0600	0.9996	1.0000	0.0422	0.0422	0.0597	10027
0.0700	0.9996	1.0000	0.0477	0.0477	0.0674	10024
0.0800	0.9997	1.0000	0.0564	0.0564	0.0798	10031
0.0900	0.9997	1.0000	0.0624	0.0624	0.0883	10022
0.1000	0.9997	1.0000	0.0688	0.0688	0.0973	10018
0.1100	0.9997	1.0000	0.0742	0.0742	0.1049	10016
0.1200	0.9997	1.0000	0.0823	0.0823	0.1164	10014
0.1300	0.9997	1.0000	0.0880	0.0880	0.1245	10013
0.1400	0.9997	1.0000	0.0954	0.0954	0.1349	10012
0.1500	0.9997	1.0000	0.1052	0.1052	0.1489	10011

Ansatz 3 für Modell A mit rechter Seite $f(t) = e^t$.

Abbildung 88: Auffinden von c_0 an homogener Grobgitterlösung (oben links), $\hat{\kappa}$ -Verlauf (oben rechts) und optimale Internet-Stelle c_{opt} (unten).

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + DF(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.9483	0.2107	0.0120	0.0095	0.0079	431
0.02	0.9483	0.2107	0.0239	0.0228	0.0190	150
0.03	0.9483	0.2107	0.0357	0.0349	0.0290	118
0.04	0.9483	0.2107	0.0471	0.0465	0.0387	104
0.05	0.9655	0.1387	0.0576	0.0745	0.0620	86
0.06	0.9655	0.1387	0.0701	0.0845	0.0703	82
0.07	0.9655	0.1387	0.0839	0.0963	0.0801	79
0.08	0.9655	0.1387	0.0899	0.1015	0.0845	78
0.09	0.9655	0.1387	0.1047	0.1149	0.0956	76
0.10	0.9655	0.1387	0.1141	0.1235	0.1028	75
0.11	0.9655	0.1387	0.1255	0.1341	0.1115	74
0.12	0.9655	0.1387	0.1393	0.1471	0.1224	73
0.13	0.9655	0.1387	0.1593	0.1471	0.1224	73
0.14	0.9655	0.1387	0.1566	0.1635	0.1361	72
0.15	0.9655	0.1387	0.1787	0.1849	0.1538	71

Tabelle 34: Ansatz 3 für Modell **A** und $f(t) = e^t, \varepsilon = 0.01, Nko = 1.7, part = 0.8.$

Tabelle 35: Ansatz 3 für Modell **A** und $f(t) = e^t$, $\varepsilon = 0.001$, Nko = 1.7, part = 0.8.

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.9949	0.0665	0.0121	0.0155	0.0127	746
0.02	0.9966	0.1399	0.0241	0.0614	0.0506	753
0.03	0.9966	0.1399	0.0359	0.0669	0.0551	632
0.04	0.9966	0.1399	0.0470	0.0735	0.0605	623
0.05	0.9966	0.1399	0.0599	0.0823	0.0678	617
0.06	0.9966	0.1399	0.0696	0.0896	0.0738	614
0.07	0.9966	0.1399	0.0832	0.1005	0.0828	611
0.08	0.9966	0.1399	0.0958	0.1112	0.0916	609
0.09	0.9966	0.1399	0.1036	0.1280	0.0927	608
0.10	0.9966	0.1399	0.1129	0.1263	0.1040	607
0.11	0.9966	0.1399	0.1241	0.1363	0.1123	606
0.12	0.9966	0.1399	0.1377	0.1489	0.1227	605
0.13	0.9966	0.1399	0.1548	0.1648	0.1358	604
0.14	0.9966	0.1399	0.1548	0.1648	0.1358	604
0.15	0.9966	0.1399	0.1767	0.1855	0.1528 s	603

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + DF(c_{opt})}{\ v\ _{E}}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$	11 11 2	
0.01	0.9993	0.0287	0.0121	0.0122	0.0101	6090
0.02	0.9993	0.0287	0.0242	0.0243	0.0200	5991
0.03	0.9993	0.0287	0.0363	0.0364	0.0299	5958
0.04	0.9993	0.0287	0.0479	0.0480	0.0395	5942
0.05	0.9993	0.0287	0.0599	0.0600	0.0494	5932
0.06	0.9995	0.0622	0.0723	0.0730	0.0601	5917
0.07	0.9995	0.0622	0.0821	0.0828	0.0681	5914
0.08	0.9995	0.0622	0.0951	0.0956	0.0787	5911
0.09	0.9995	0.0622	0.1063	0.1068	0.0879	5909
0.10	0.9995	0.0622	0.1204	0.1209	0.0995	5907
0.11	0.9995	0.0622	0.1290	0.1294	0.1065	5906
0.12	0.9995	0.0622	0.1389	0.1393	0.1147	5905
0.13	0.9995	0.0622	0.1505	0.1508	0.1242	5904
0.14	0.9995	0.0622	0.1642	0.1645	0.1354	5903
0.15	0.9995	0.0622	0.1805	0.1808	0.1489	5902

Tabelle 36: Ansatz 3 für Modell **A** und $f(t) = e^t$, $\varepsilon = 0.0001$, Nko = 1.7, part = 0.8.

Tabelle 37: Ansatz 3 für Modell **A** und $f(t) = e^t$, $\varepsilon = 0.00001$, Nko = 1.7, part = 0.8.

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.999915	0.0125	0.0121	0.0121	0.0100	59082
0.02	0.999932	0.0276	0.0242	0.0243	0.0200	58934
0.03	0.999932	0.0276	0.0363	0.0364	0.0299	58901
0.04	0.999932	0.0276	0.0479	0.0480	0.0395	58885
0.05	0.999932	0.0276	0.0599	0.0600	0.0493	58875
0.06	0.999932	0.0276	0.0726	0.0727	0.0598	58868
0.07	0.999932	0.0276	0.0827	0.0827	0.0680	58864
0.08	0.999932	0.0276	0.0959	0.0959	0.0789	58860
0.09	0.999932	0.0276	0.1089	0.1090	0.0897	58857
0.10	0.999932	0.0276	0.1198	0.1199	0.0986	58855
0.11	0.999932	0.0276	0.1332	0.1332	0.1096	58853
0.12	0.999932	0.0276	0.1410	0.1410	0.1160	58852
0.13	0.999932	0.0276	0.1498	0.1498	0.1233	58851
0.14	0.999932	0.0276	0.1598	0.1598	0.1315	58850
0.15	0.999932	0.0276	0.1712	0.1712	0.1409	58849

Ansatz 3 für Modell A mit konstanter rechter Seite $f(t) = t^2$.

Abbildung 89: Auffinden von c_0 an homogener Grob
gitterlösung (oben links), $\hat{\kappa}$ -Verlauf (oben rechts) und optimale Interface-Stell
e c_{opt} (unten).

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + DF(c_{opt})}{\ v\ _{E}}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$	11 11 2	
0.01	0.3000	0.2935	0.0025	0.0025	0.0100	2142
0.02	0.6667	0.1985	0.0049	0.0049	0.0200	698
0.03	0.9500	0.2147	0.0074	0.0062	0.0252	163
0.04	0.9500	0.2147	0.0099	0.0090	0.0365	115
0.05	0.9500	0.2147	0.0123	0.0116	0.0469	102
0.06	0.9500	0.2147	0.0147	0.0142	0.0573	95
0.07	0.9667	2.0628	0.0166	0.0159	0.0643	84
0.08	0.9667	2.0628	0.0189	0.0183	0.0740	82
0.09	0.9667	2.0628	0.0221	0.0216	0.0872	80
0.10	0.9667	2.0628	0.0241	0.0237	0.0958	79
0.11	0.9667	2.0628	0.0267	0.0263	0.1064	78
0.12	0.9667	2.0628	0.0267	0.0263	0.1064	78
0.13	0.9667	2.0628	0.0299	0.0295	0.1195	77
0.14	0.9667	2.0628	0.0340	0.0337	0.1364	76
0.15	0.9667	2.0628	0.0340	0.0337	0.1364	76

Tabelle 38: Ansatz 3 für Modell **A** und $f(t) = t^2$, $\varepsilon = 0.01$, Nko = 1.65, part = 0.9.

Tabelle 39: Ansatz 3 für Modell **A** und $f(t) = t^2$, $\varepsilon = 0.001$, Nko = 1.65, part = 0.9.

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.0100	0.0024	0.1057	0.0024	0.0023	0.0097	869
0.0200	0.0047	0.1057	0.0047	0.0047	0.0197	766
0.0300	0.0071	0.2178	0.0070	0.0070	0.0296	718
0.0400	0.0095	0.2178	0.0092	0.0093	0.0391	706
0.0500	0.0118	0.2178	0.0118	0.0118	0.0498	698
0.0600	0.0142	0.2178	0.0142	0.0142	0.0600	693
0.0700	0.0166	0.2178	0.0162	0.0162	0.0686	690
0.0800	0.0189	0.2178	0.0189	0.0189	0.0800	687
0.0900	0.0213	0.2178	0.0213	0.0213	0.0899	685
0.1000	0.0237	0.2178	0.0227	0.0227	0.0959	684
0.1100	0.0261	0.2178	0.0243	0.0243	0.1028	683
0.1200	0.0284	0.2178	0.0284	0.0284	0.1198	681
0.1300	0.0308	0.2178	0.0284	0.0284	0.1198	681
0.1400	0.0332	0.2178	0.0309	0.0310	0.1307	680
0.1500	0.0355	0.2178	0.0340	0.0340	0.1437	679

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.9993	0.0798	0.0024	0.0024	0.0100	6861
0.02	0.9993	0.0798	0.0047	0.0047	0.0200	6765
0.03	0.9993	0.0798	0.0071	0.0071	0.0299	6733
0.04	0.9993	0.0798	0.0094	0.0094	0.0399	6717
0.05	0.9993	0.0798	0.0116	0.0116	0.0491	6708
0.06	0.9993	0.0798	0.0141	0.0141	0.0598	6701
0.07	0.9993	0.0798	0.0161	0.0161	0.0684	6697
0.08	0.9995	0.1300	0.0179	0.0180	0.0763	6688
0.09	0.9995	0.1300	0.0200	0.0201	0.0852	6686
0.10	0.9995	0.1300	0.0227	0.0228	0.0965	6684
0.11	0.9995	0.1300	0.0243	0.0244	0.1033	6683
0.12	0.9995	0.1300	0.0262	0.0262	0.1112	6682
0.13	0.9995	0.1300	0.0284	0.0284	0.1205	6681
0.14	0.9995	0.1300	0.0309	0.0310	0.1314	6680
0.15	0.9995	0.1300	0.0340	0.0341	0.1445	6679

Tabelle 40: Ansatz 3 für Modell **A** und $f(t) = t^2$, $\varepsilon = 0.0001$, Nko = 1.65, part = 0.9.

Tabelle 41: Ansatz 3 für Modell **A** und $f(t) = t^2$, $\varepsilon = 0.00001$, Nko = 1.65, part = 0.9.

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.999917	0.0351	0.0023	0.0023	0.0100	66909
0.02	0.999917	0.0351	0.0047	0.0047	0.0199	66789
0.03	0.999934	0.0636	0.0071	0.0071	0.0300	66733
0.04	0.999934	0.0636	0.0094	0.0094	0.0399	66717
0.05	0.999934	0.0636	0.0116	0.0116	0.0491	66708
0.06	0.999934	0.0636	0.0141	0.0141	0.0599	66701
0.07	0.999934	0.0636	0.0161	0.0161	0.0684	66697
0.08	0.999934	0.0636	0.0188	0.0188	0.0798	66693
0.09	0.999934	0.0636	0.0205	0.0205	0.0871	66691
0.10	0.999934	0.0636	0.0226	0.0226	0.0958	66689
0.11	0.999934	0.0636	0.0251	0.0251	0.1064	66687
0.12	0.999934	0.0636	0.0282	0.0282	0.1197	66685
0.13	0.999934	0.0636	0.0301	0.0301	0.1277	66684
0.14	0.999934	0.0636	0.0322	0.0322	0.1368	66683
0.15	0.999934	0.0636	0.0347	0.0347	0.1473	66682

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.999943	0.0054	0.0025	0.0105	0.0445	58063
0.02	0.999943	0.0054	0.0048	0.0202	0.0856	57980
0.03	0.999943	0.0054	0.0070	0.0298	0.1263	57953
0.04	0.999943	0.0054	0.0093	0.0396	0.1678	57939
0.05	0.999943	0.0054	0.0115	0.0489	0.2072	57931
0.06	0.999943	0.0054	0.0140	0.0593	0.2513	57925
0.07	0.999943	0.0054	0.0163	0.0691	0.2928	57921
0.08	0.999943	0.0054	0.0186	0.0790	0.3347	57918
0.09	0.999943	0.0054	0.0206	0.0873	0.3699	57916
0.10	0.999943	0.0054	0.0230	0.0975	0.4131	57914
0.11	0.999943	0.0054	0.0244	0.1036	0.4390	57913
0.12	0.999943	0.0054	0.0279	0.1184	0.5017	57911
0.13	0.999943	0.0054	0.0300	0.1275	0.5403	57910
0.14	0.999943	0.0054	0.0326	0.1381	0.5852	57909
0.15	0.999943	0.0054	0.0326	0.1381	0.5852	57909

Tabelle 42: Ansatz 3 für Modell **A** und $f(t) = t^2$, $\varepsilon = 0.00001$, Nko = 1.9, part = 0.9.

Ansatz 3 für Modell B mit $a_q(t) = 3$ und f(t) = 1.

Abbildung 90: Der Verlauf von $\widehat{\kappa}$ (links) und die optimale Interface-Stelle (rechts).

|--|

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.01	0.9518	0.3735	0.0131	0.0162	0.0124	245
0.02	0.9518	0.3735	0.0258	0.0275	0.0210	160
0.03	0.9518	0.3735	0.0385	0.0397	0.0304	136
0.04	0.9518	0.3735	0.0518	0.0526	0.0403	124
0.05	0.9639	0.2077	0.0646	0.0728	0.0557	112
0.06	0.9639	0.2077	0.0773	0.0843	0.0645	108
0.07	0.9639	0.2077	0.0915	0.0975	0.0746	105
0.08	0.9639	0.2077	0.0976	0.1033	0.0790	104
0.09	0.9639	0.2077	0.1131	0.1180	0.0902	102
0.10	0.9639	0.2077	0.1229	0.1274	0.0975	101
0.11	0.9639	0.2077	0.1348	0.1389	0.1063	100
0.12	0.9639	0.2077	0.1493	0.1531	0.1171	99
0.13	0.9639	0.2077	0.1675	0.1709	0.1307	98
0.14	0.9639	0.2077	0.1675	0.1709	0.1307	98
0.15	0.9759	0.2798	0.1844	0.2140	0.1637	96

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{DF}(c_{opt})$	$\widehat{DF}(c_{opt})$		
0.0100	0.9940	0.1045	0.0127	0.0132	0.0104	1008
0.0200	0.9952	0.1286	0.0251	0.0278	0.0220	911
0.0300	0.9952	0.1286	0.0378	0.0397	0.0313	887
0.0400	0.9952	0.1286	0.0497	0.0512	0.0404	876
0.0500	0.9964	0.1896	0.0615	0.0722	0.0570	865
0.0600	0.9964	0.1896	0.0758	0.0847	0.0669	860
0.0700	0.9964	0.1896	0.0842	0.0923	0.0728	858
0.0800	0.9964	0.1896	0.0951	0.1024	0.0808	856
0.0900	0.9964	0.1896	0.1099	0.1162	0.0917	854
0.1000	0.9964	0.1896	0.1193	0.1251	0.0988	853
0.1100	0.9964	0.1896	0.1306	0.1360	0.1073	852
0.1200	0.9964	0.1896	0.1446	0.1495	0.1179	851
0.1300	0.9964	0.1896	0.1620	0.1664	0.1313	850
0.1400	0.9964	0.1896	0.1620	0.1664	0.1313	850
0.1500	0.9964	0.1896	0.1845	0.1884	0.1486	849

Tabelle 44: Ansatz 3 für Modell **B** und $a_q(t) = 3, f(t) = 1, \varepsilon = 0.001, Nko = 1.7, part = 0.8.$

Tabelle 45: Ansatz 3 für Modell **B** und $a_q(t) = 3, f(t) = 1, \varepsilon = 0.0001, Nko = 1.0, part = 0.9.$

TOL_{rel}	c_{opt}	$\widehat{\kappa}(c_{opt})$	$\widehat{MF}(c_{opt}) +$	$MF(c_{opt}) +$	$\frac{MF(c_{opt}) + \widehat{DF}(c_{opt})}{\ v\ _E}$	count
			$\widehat{D}\widehat{F}(c_{opt})$	$\widehat{D}\widehat{F}(c_{opt})$		
0.0100	0.9940	0.1045	0.0127	0.0132	0.0104	10179
0.0200	0.9952	0.1286	0.0251	0.0278	0.0220	10083
0.0300	0.9952	0.1286	0.0378	0.0397	0.0313	10058
0.0400	0.9952	0.1286	0.0497	0.0512	0.0404	10046
0.0500	0.9964	0.1896	0.0615	0.0722	0.0570	10039
0.0600	0.9964	0.1896	0.0758	0.0847	0.0669	10031
0.0700	0.9964	0.1896	0.0842	0.0923	0.0728	10028
0.0800	0.9964	0.1896	0.0951	0.1024	0.0808	10026
0.0900	0.9964	0.1896	0.1099	0.1162	0.0917	10024
0.1000	0.9964	0.1896	0.1193	0.1251	0.0988	10023
0.1100	0.9964	0.1896	0.1306	0.1360	0.1073	10022
0.1200	0.9964	0.1896	0.1446	0.1495	0.1179	10021
0.1300	0.9964	0.1896	0.1620	0.1664	0.1313	10019
0.1400	0.9964	0.1896	0.1620	0.1664	0.1313	10018
0.1500	0.9964	0.1896	0.1845	0.1884	0.1486	10018

15.5 Tabellen zum Vergleich der drei Ansätze.

Ansatz	TOL_{rel}		$\varepsilon = 10^{-1}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$
homogen	0.02	n_{hom}	163	1464	14505	144914	
	0.05	n_{hom}	65	586	5802	57966	579602
1	0.02	count	667	1161	752	543	2008
		TOL_{ist}	0.0074	0.0019	0.0005	0.0002	0.0087
	0.05	count	438	865	277	741	1569
		TOL_{ist}	0.0170	0.0046	0.0014	0.0005	0.0217
2	0.02	count	211	343	2186	18183	
		TOL_{ist}	0.0385	0.0118	0.0208	0.0250	
	0.05	count	86	204	2066	18073	
		TOL_{ist}	0.0713	0.0265	0.0536	0.0536	
3	0.02	count	217	190	1090	10090	
		TOL_{ist}	0.02	0.0200	0.0198	0.0198	
	0.05	count	47	133	1033	10033	
		TOL_{ist}	0.0492	0.0499	0.0496	0.0496	

Tabelle 46: Vergleich für Modell **A** mit f(t) = 1.

Tabelle 47: Vergleich für Modell **A** mit $f(t) = e^t$.

Ansatz	TOL_{rel}		$\varepsilon = 10^{-1}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$
homogen	0.02	n_{hom}	176	1479	14521	144929	
	0.05	n_{hom}	71	592	5809	57972	579608
1	0.02	count	529	1258	422	691	2229
		TOL_{ist}	0.0113	0.0160	0.0086	0.0003	0.0003
	0.05	count	619	60	520	1509	1796
		TOL_{ist}	0.0174	0.0102	0.0216	0.0005	0.0003
2	0.02	count	493	315	866	6263	64118
		TOL_{ist}	0.0152	0.0147	0.0121	0.0135	0.0080
	0.05	count	230	183	729	6413	62726
		TOL_{ist}	0.0330	0.0275	0.0308	0.0207	0.0206
3	0.02	count		150	753	5991	58934
		TOL_{ist}		0.0190	0.0506	0.0200	0.0200
	0.05	count		86	617	5932	58875
		TOL_{ist}		0.0620	0.0678	0.0494	0.0493

Ansatz	TOL_{rel}		$\varepsilon = 10^{-1}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$
homogen	0.02	n_{hom}	117	1423	14464	144873	
	0.05	n_{hom}	47	569	5786	57949	579586
1	0.02	count	727	411	269	1490	1779
		TOL_{ist}	0.0154	0.0062	0.0087	0.0001	0.0001
	0.05	count	345	68	395	1147	1555
		TOL_{ist}	0.0030	0.0227	0.0012	0.0002	0.0001
2	0.02	count	692	2362	1087	6281	64125
		TOL_{ist}	0.0093	0.0150	0.0147	0.0104	0.0080
	0.05	count	322	502	783	6141	62727
		TOL_{ist}	0.0220	0.0375	0.0224	0.0253	0.0207
3	0.02	count		698	766	6765	66789
		TOL_{ist}		0.0200	0.0197	0.0200	0.0199
	0.05	count		102	698	6768	66708
		TOL_{ist}		0.0469	0.0498	0.0491	0.0491

Tabelle 48: Vergleich für Modell **A** mit $f(t) = t^2$.

Tabelle 49: Vergleich für Modell **B** mit $f(t) = 1, a_q(t) = 3, k = 2.$

Ansatz	TOL_{rel}		$\varepsilon = 10^{-1}$	$\varepsilon = 10^{-2}$	$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-5}$
homogen	0.02	n_{hom}	152	1379	13673	136604	1365917
	0.05	n_{hom}	62	553	5469	54643	546368
1	0.02	count	550	4055	612	369	979
		TOL_{ist}	0.0179	0.0141	0.0118	0.0137	0.0137
	0.05	count	290	400	406	726	1565
		TOL_{ist}	0.0236	0.0152	0.0139	0.0137	0.0137
2	0.02	count	501	300	848	6251	60254
		TOL_{ist}	0.0193	0.0137	0.0128	0.0134	0.0131
	0.05	count	188	180	728	6131	60134
		TOL_{ist}	0.0364	0.0282	0.0305	0.0307	0.0300
3	0.02	count		160	911	10083	
		TOL_{ist}		0.0210	0.0220	0.0220	
	0.05	count		112	865	10039	
		TOL_{ist}		0.0557	0.0570	0.0570	

16 Tabellen der numerischen Ergebnisse in zwei Raumdimensionen.

16.1 Tabellen zu Testbeispiel 1.

Tabelle 50: Testbeispiel 1 bei sprungbezogener Auswahl für $\varepsilon=0.001$ und Skalierungsfaktor $skal_{MF}=0.02.$

TOL_{rel}	0.1	0.07	0.07	0.05	0.05	0.05	0.02
$TOL_{rel,grob}$	0.2	0.21	0.175	0.175	0.2	0.15	0.3
$Aufwand_N$	22780	20842	29642	29642	22780	43252	11946
Aufwand	63788	134380	81970	169692	250593	180270	1603200
n	4258	10094	5328	12486	19324	12672	
$\widehat{DF}_n / \ v\ _E$	0.0967	0.0664	0.0687	0.0473	0.0492	0.0490	
$\widehat{MF}_N / \ v\ _E$	0.2076	0.1889	0.3259	0.3248	0.2076	0.3087	0.0835
$\frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E}$	0.0415	0.0378	0.0652	0.0650	0.0415	0.0617	0.0167
$Fehler_{rel}$	0.2312	0.2020	0.3342	0.3290	0.2146	0.3133	0.0871
$Fehler_{rel,skal}$	0.1099	0.0809	0.0986	0.0836	0.0682	0.0816	0.0299
homogene Geg	enrechnu	$\log $ für $F \epsilon$	$ehler_{rel}$:				
$Fehler_{rel,hom}$	0.2296	0.1961	0.3245	0.3245	0.2061	0.3010	0.0833
$Aufwand_{hom}$	17408	22780	8856	8856	20842	10828	181749
n_{hom}	1528	3305	876	876	1783	1026	14633
homogene Geg	enrechnu	ıng für $F\epsilon$	$ehler_{rel,sko}$	$_{al}$:			
$Fehler_{rel,hom}$	0.1089	0.0776	0.0776	0.0833	0.0681	0.0776	
$Aufwand_{hom}$	99865	214847	214847	181749	326938	214847	3001900
n_{hom}	8447	31809	31809	14633	26007	17250	

TOL_{rel}	0.15	0.1	0.1	0.1	0.1	0.07	0.07	0.07
$TOL_{rel,grob}$	0.3	0.2	0.3	0.2	0.3	0.28	0.28	0.21
κ_{MF_h}	0.5	0.9	0.8	0.8	0.5	0.5	0.8	0.8
$Aufwand_N$	11946	22780	11946	22780	11946	13158	13158	20842
Aufwand	539596	83141	81536	84385	102765	264064	196270	201664
n	2978	6076	6432	6209	8693	22457	15873	15974
$\widehat{DF}_n / \ v\ _E$	0.1465	0.0977	0.0977	0.0982	0.0976	0.0685	0.0681	0.0679
$\widehat{MF}_N / \ v\ _E$	0.0792	0.0920	0.0831	0.0832	0.0547	0.0480	0.0630	0.0614
$\frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E}$	0.0158	0.0184	0.0166	0.0166	0.0109	0.0096	0.0126	0.0123
$Fehler_{rel}$	0.1817	0.1386	0.1366	0.1373	0.1313	0.1089	0.1081	0.1054
$Fehler_{rel,skal}$	0.1526	0.1046	0.1042	0.1047	0.1033	0.0760	0.0749	0.0740
homogene Geg	enrechnu	ng für Fe	$hler_{rel}$:					
$Fehler_{rel,hom}$	0.1778	0.1343	0.1343	0.1343	0.1303	0.1089	0.1039	0.1039
$Aufwand_{hom}$	27149	52534	52534	52534	5777	99865	109006	109006
n_{hom}	2261	4850	4850	4850	5265	8447	9141	9141
homogene Geg	enrechnu	ng für <i>Fe</i>	$hler_{rel,ska}$	<i>l</i> :				
$Fehler_{rel,hom}$	0.1475	0.1039	0.1039	0.1039	0.1016	0.0729	0.0729	0.0729
$Aufwand_{hom}$	43252	109006	109006	109006	118895	254273	254273	254273
n_{hom}	4003	9141	9141	9141	9889	20590	20590	20590
TOL_{rel}	0.07	0.07	0.05	0.05	0.05	0.05	0.02	0.02
$\frac{TOL_{rel}}{TOL_{rel,grob}}$	$0.07 \\ 0.21$	$0.07 \\ 0.28$	$0.05 \\ 0.25$	$0.05 \\ 0.25$	$\begin{array}{c} 0.05\\ 0.3\end{array}$	$0.05 \\ 0.3$	0.02 0.3	$0.02 \\ 0.3$
TOL_{rel} $TOL_{rel,grob}$ κ_{MF_h}	$0.07 \\ 0.21 \\ 0.9$	$0.07 \\ 0.28 \\ 0.9$	$0.05 \\ 0.25 \\ 0.8$	$0.05 \\ 0.25 \\ 0.9$	$0.05 \\ 0.3 \\ 0.9$	$0.05 \\ 0.3 \\ 0.8$	$0.02 \\ 0.3 \\ 0.9$	$0.02 \\ 0.3 \\ 0.95$
TOL_{rel} $TOL_{rel,grob}$ κ_{MF_h} $Aufwand_N$	$ \begin{array}{r} 0.07 \\ 0.21 \\ 0.9 \\ 20842 \end{array} $	$0.07 \\ 0.28 \\ 0.9 \\ 13158$	$0.05 \\ 0.25 \\ 0.8 \\ 15880$	$0.05 \\ 0.25 \\ 0.9 \\ 15880$	$0.05 \\ 0.3 \\ 0.9 \\ 11946$	$0.05 \\ 0.3 \\ 0.8 \\ 11946$	0.02 0.3 0.9 11946	$0.02 \\ 0.3 \\ 0.95 \\ 11946$
TOL_{rel} $TOL_{rel,grob}$ κ_{MF_h} $Aufwand_N$ $Aufwand$	0.07 0.21 0.9 20842 193539	0.07 0.28 0.9 13158 188192	$\begin{array}{c} 0.05 \\ 0.25 \\ 0.8 \\ 15880 \\ 539590 \end{array}$	$\begin{array}{c} 0.05 \\ 0.25 \\ 0.9 \\ 15880 \\ 568740 \end{array}$	$\begin{array}{c} 0.05 \\ 0.3 \\ 0.9 \\ 11946 \\ 568370 \end{array}$	$0.05 \\ 0.3 \\ 0.8 \\ 11946 \\ 527800$	0.02 0.3 0.9 11946 3183600	0.02 0.3 0.95 11946 4002400
$ \begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline \kappa_{MF_h} \\ Aufwand_N \\ Aufwand \\ n \end{array} $	$\begin{array}{c} 0.07\\ 0.21\\ 0.9\\ 20842\\ 193539\\ 15186\end{array}$	$\begin{array}{c} 0.07 \\ 0.28 \\ 0.9 \\ 13158 \\ 188192 \\ 15113 \end{array}$	0.05 0.25 0.8 15880 539590	$\begin{array}{c} 0.05 \\ 0.25 \\ 0.9 \\ 15880 \\ 568740 \end{array}$	$\begin{array}{c} 0.05 \\ 0.3 \\ 0.9 \\ 11946 \\ 568370 \end{array}$	$\begin{array}{c} 0.05 \\ 0.3 \\ 0.8 \\ 11946 \\ 527800 \end{array}$	0.02 0.3 0.9 11946 3183600	$\begin{array}{c} 0.02 \\ 0.3 \\ 0.95 \\ 11946 \\ 4002400 \end{array}$
$ \begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline \\ K_{MF_h} \\ Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n / \ v\ _E \end{array} $	$\begin{array}{c} 0.07\\ 0.21\\ 0.9\\ 20842\\ 193539\\ 15186\\ 0.0679\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ \end{array}$	$\begin{array}{c} 0.05 \\ 0.25 \\ 0.8 \\ 15880 \\ 539590 \end{array}$	$\begin{array}{c} 0.05 \\ 0.25 \\ 0.9 \\ 15880 \\ 568740 \end{array}$	$\begin{array}{c} 0.05 \\ 0.3 \\ 0.9 \\ 11946 \\ 568370 \end{array}$	$\begin{array}{c} 0.05 \\ 0.3 \\ 0.8 \\ 11946 \\ 527800 \end{array}$	$\begin{array}{c} 0.02 \\ 0.3 \\ 0.9 \\ 11946 \\ 3183600 \end{array}$	$\begin{array}{c} 0.02 \\ 0.3 \\ 0.95 \\ 11946 \\ 4002400 \end{array}$
$ \begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline KMF_h \\ Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n / \ v\ _E \\ \widehat{MF}_N / \ v\ _E \end{array} $	$\begin{array}{c} 0.07\\ 0.21\\ 0.9\\ 20842\\ 193539\\ 15186\\ 0.0679\\ 0.0682\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\end{array}$	0.05 0.25 0.8 15880 539590 0.0489	$\begin{array}{c} 0.05\\ 0.25\\ 0.9\\ 15880\\ 568740\\ 0.0473\end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ 0.0472\end{array}$	0.02 0.3 0.9 11946 3183600 0.0507	$\begin{array}{c} 0.02 \\ 0.3 \\ 0.95 \\ 11946 \\ 4002400 \\ 0.0507 \end{array}$
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline K_{MF_h} \\ \hline Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n / \ v\ _E \\ \widehat{MF}_N / \ v\ _E \\ \underline{\widehat{MF}_N} / \ v\ _E \\ \underline{skal_{MF} \cdot \widehat{MF}_N} \\ \ v\ _E \end{array}$	$\begin{array}{c} 0.07\\ 0.21\\ 0.9\\ 20842\\ 193539\\ 15186\\ 0.0679\\ 0.0682\\ 0.0136\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.9\\ 15880\\ 568740\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\\ 0.0091 \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ \end{array}$ $\begin{array}{c} 0.0472\\ 0.0094 \end{array}$	$\begin{array}{c} 0.02\\ 0.3\\ 0.9\\ 11946\\ 3183600\\ 0.0507\\ 0.0101 \end{array}$	$\begin{array}{c} 0.02\\ 0.3\\ 0.95\\ 11946\\ 4002400\\ \end{array}$
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline KMF_h \\ \hline Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n / \ v\ _E \\ \hline \widehat{MF}_N / \ v\ _E \\ \hline \underline{\widehat{MF}_N / \ v\ _E} \\ \frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E} \\ \hline Fehler_{rel} \end{array}$	$\begin{array}{c} 0.07\\ 0.21\\ 0.9\\ 20842\\ 193539\\ 15186\\ 0.0679\\ 0.0682\\ 0.0136\\ 0.1067\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094 \end{array}$	0.05 0.25 0.8 15880 539590 0.0489 0.0098 0.0098	$\begin{array}{c} 0.05\\ 0.25\\ 0.9\\ 15880\\ 568740\\ \end{array}$ $\begin{array}{c} 0.0473\\ 0.0095\\ 0.0879\end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\\ 0.0091\\ 0.0858 \end{array}$	0.05 0.3 0.8 11946 527800 0.0472 0.0094 0.0864	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline KMF_h \\ \hline Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n/\ v\ _E \\ \widehat{MF}_N/\ v\ _E \\ \hline \widehat{MF}_N/\ v\ _E \\ \hline skal_{MF}\cdot\widehat{MF}_N \\ \ v\ _E \\ \hline Fehler_{rel} \\ Fehler_{rel,skal} \\ \end{array}$	$\begin{array}{c} 0.07\\ 0.21\\ 0.9\\ 20842\\ 193539\\ 15186\\ 0.0679\\ 0.0682\\ 0.0136\\ 0.1067\\ 0.0742\\ \end{array}$	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}\\ 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.9\\ 15880\\ 568740\\ \end{array}$ $\begin{array}{c} 0.0473\\ 0.0095\\ 0.0879\\ 0.0564 \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\\ 0.0091\\ 0.0858\\ 0.0559\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ \end{array}\\ 0.0472\\ 0.0094\\ 0.0864\\ 0.0560\\ \end{array}$	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline & \\ KMF_h \\ Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n / \ v\ _E \\ \widehat{MF}_N / \ v\ _E \\ \hline & \\ \widehat{MF}_N / \ v\ _E \\ \hline & \\ Fehler_{rel} \\ Fehler_{rel,skal} \\ \hline & \\ homogene Gegg \end{array}$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnu	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \text{ng für } Fe\end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}$ $\begin{array}{c} 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \end{array}$ $hler_{rel}:$	$\begin{array}{c} 0.05\\ 0.25\\ 0.9\\ 15880\\ 568740\\ \end{array}\\ \begin{array}{c} 0.0473\\ 0.0095\\ 0.0879\\ 0.0564 \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\\ 0.0091\\ 0.0858\\ 0.0559\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ \end{array}\\ 0.0472\\ 0.0094\\ 0.0864\\ 0.0560\\ \end{array}$	$\begin{array}{c} 0.02\\ 0.3\\ 0.9\\ 11946\\ 3183600\\ \end{array}\\ \begin{array}{c} 0.0507\\ 0.0101\\ 0.0688\\ 0.0298\\ \end{array}$	$\begin{array}{c} 0.02\\ 0.3\\ 0.95\\ 11946\\ 4002400\\ \end{array}$ $\begin{array}{c} 0.0507\\ 0.0101\\ 0.0688\\ 0.0298\\ \end{array}$
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline K_{MF_h} \\ \hline Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n/\ v\ _E \\ \hline \widehat{MF}_N/\ v\ _E \\ \hline skal_{MF} \cdot \widehat{MF}_N \\ \ v\ _E \\ \hline Fehler_{rel} \\ \hline Fehler_{rel,skal} \\ \hline homogene \ Geg \\ \hline Fehler_{rel,hom} \end{array}$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnum 0.1039	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \text{ng für }Fe\\ 0.1089\end{array}$	$\begin{array}{r} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \hline 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \hline hler_{rel}:\\ \hline 0.0878\\ \end{array}$	0.05 0.25 0.9 15880 568740 0.0473 0.0095 0.0879 0.0564 0.0878	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\\ 0.0091\\ 0.0858\\ 0.0559\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ \end{array}\\ 0.0472\\ 0.0094\\ 0.0864\\ 0.0560\\ \end{array}$	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298 0.0682	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline KMF_h \\ Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n/\ v\ _E \\ \widehat{MF}_N/\ v\ _E \\ \frac{skal_{MF}\cdot\widehat{MF}_N}{\ v\ _E} \\ Fehler_{rel} \\ Fehler_{rel,skal} \\ \hline homogene Gegg \\ \hline Fehler_{rel,hom} \\ Aufwand_{hom} \end{array}$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnut 0.1039 109006	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \text{ng für } Fe\\ 0.1089\\ 99865 \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}\\ \begin{array}{c} 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \hline hler_{rel}:\\ 0.0878\\ 167116\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.9\\ 15880\\ 568740\\ \end{array}\\ 0.0473\\ 0.0095\\ 0.0879\\ 0.0564\\ \end{array}$	0.05 0.3 0.9 11946 568370 0.0455 0.0091 0.0858 0.0559 0.0833 181749	0.05 0.3 0.8 11946 527800 0.0472 0.0094 0.0864 0.0560 0.0833 181749	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298 0.0682 300931	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298 0.0682 300931
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline KMF_h \\ Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n/\ v\ _E \\ \widehat{MF}_N/\ v\ _E \\ \hline \widehat{MF}_N/\ v\ _E \\ Fehler_{rel} \\ Fehler_{rel} \\ Fehler_{rel,skal} \\ \hline homogene \ Gegg \\ \hline Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \end{array}$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnum 0.1039 109006 9141	$\begin{array}{r} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \text{ng für } Fe\\ 0.1089\\ 99865\\ 8447\\ \end{array}$	$\begin{array}{r} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}$ $\begin{array}{r} 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \hline hler_{rel}:\\ 0.0878\\ 167116\\ 13487\\ \end{array}$	0.05 0.25 0.9 15880 568740 0.0473 0.0095 0.0879 0.0564 0.0878 167116 13487	0.05 0.3 0.9 11946 568370 0.0455 0.0091 0.0858 0.0559 0.0833 181749 14633	0.05 0.3 0.8 11946 527800 0.0472 0.0094 0.0864 0.0560 0.0833 181749 14633	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline K_{MF_h} \\ \hline Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n/\ v\ _E \\ \hline \widehat{MF}_N/\ v\ _E \\ \hline skal_{MF}\cdot\widehat{MF}_N \\ \ v\ _E \\ \hline Fehler_{rel} \\ Fehler_{rel,skal} \\ \hline homogene \ Geg \\ \hline Fehler_{rel,hom} \\ Aufwand_{hom} \\ \hline n_{hom} \\ \hline homogene \ Geg \\ \hline \end{array}$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnur 0.1039 109006 9141 enrechnur	$\begin{array}{c} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \text{ng für } Fe\\ 0.1089\\ 99865\\ 8447\\ \text{ng für } Fe\end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}\\ \begin{array}{c} 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \hline hler_{rel}:\\ 0.0878\\ 167116\\ 13487\\ \hline hler_{rel,ska}\\ \end{array}$	0.05 0.25 0.9 15880 568740 0.0473 0.0095 0.0879 0.0564 0.0878 167116 13487 <i>l</i> :	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ \end{array}\\ 0.0455\\ 0.0091\\ 0.0858\\ 0.0559\\ \end{array}\\ \begin{array}{c} 0.0833\\ 181749\\ 14633\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ \end{array}\\\\0.0472\\ 0.0094\\ 0.0864\\ 0.0560\\ \end{array}\\\\0.0833\\ 181749\\ 14633\\ \end{array}$	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline & \\ & \\ \hline & \\ Aufwand_N \\ Aufwand_N \\ Aufwand \\ n \\ \hline & \\ \widehat{DF}_n/\ v\ _E \\ \hline & \\ \hline & \\ \widehat{MF}_N/\ v\ _E \\ \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline & \hline \hline \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline \\ \hline & \\ \hline \hline \\ \hline & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnun 0.1039 109006 9141 enrechnun 0.0729	0.07 0.28 0.9 13158 188192 15113 0.0680 0.0696 0.0139 0.1094 0.0750 ng für <i>Fe</i> 0.1089 99865 8447 ng für <i>Fe</i> 0.0729	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \hline \\ 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \hline \\ hler_{rel}:\\ 0.0878\\ 167116\\ 13487\\ \hline \\ hler_{rel,ska}\\ \hline \end{array}$	0.05 0.25 0.9 15880 568740 0.0473 0.0095 0.0879 0.0564 0.0878 167116 13487 <i>i</i> :	$\begin{array}{c} 0.05\\ 0.3\\ 0.9\\ 11946\\ 568370\\ 0.0455\\ 0.0091\\ 0.0858\\ 0.0559\\ \hline 0.0833\\ 181749\\ 14633\\ \hline \end{array}$	$\begin{array}{c} 0.05\\ 0.3\\ 0.8\\ 11946\\ 527800\\ \end{array}\\ \begin{array}{c} 0.0472\\ 0.0094\\ 0.0864\\ 0.0560\\ \end{array}\\ \begin{array}{c} 0.0833\\ 181749\\ 14633\\ \end{array}$	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317
$\begin{array}{c} TOL_{rel} \\ TOL_{rel,grob} \\ \hline KMF_h \\ \hline Aufwand_N \\ Aufwand \\ n \\ \widehat{DF}_n/\ v\ _E \\ \hline \widehat{MF}_N/\ v\ _E \\ \hline skal_{MF}\cdot\widehat{MF}_N \\ \ v\ _E \\ \hline Fehler_{rel} \\ \hline Fehler_{rel,skal} \\ \hline homogene \ Geg \\ \hline Fehler_{rel,hom} \\ Aufwand_{hom} \\ \hline n_{hom} \\ \hline homogene \ Geg \\ \hline Fehler_{rel,hom} \\ Aufwand_{hom} \\ \hline Aufwand_{hom} \\ \hline \end{array}$	0.07 0.21 0.9 20842 193539 15186 0.0679 0.0682 0.0136 0.1067 0.0742 enrechnur 0.1039 109006 9141 enrechnur 0.0729 254273	$\begin{array}{r} 0.07\\ 0.28\\ 0.9\\ 13158\\ 188192\\ 15113\\ 0.0680\\ 0.0696\\ 0.0139\\ 0.1094\\ 0.0750\\ \text{ng für }Fe\\ 0.1089\\ 99865\\ 8447\\ \text{ng für }Fe\\ 0.0729\\ 254273\\ \end{array}$	$\begin{array}{c} 0.05\\ 0.25\\ 0.8\\ 15880\\ 539590\\ \end{array}$ $\begin{array}{c} 0.0489\\ 0.0098\\ 0.0885\\ 0.0565\\ \hline hler_{rel}:\\ 0.0878\\ 167116\\ 13487\\ \hline hler_{rel,ska}\\ 383620\\ \end{array}$	0.05 0.25 0.9 15880 568740 0.0473 0.0095 0.0879 0.0564 0.0878 167116 13487 <i>ı</i> : 383620	0.05 0.3 0.9 11946 568370 0.0455 0.0091 0.0858 0.0559 0.0833 181749 14633	0.05 0.3 0.8 11946 527800 0.0472 0.0094 0.0864 0.0560 0.0833 181749 14633	0.02 0.3 0.9 11946 3183600 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317 2578000	0.02 0.3 0.95 11946 4002400 0.0507 0.0101 0.0688 0.0298 0.0682 300931 24317 2578000

Tabelle 51: Testbeispiel 1 bei toleranzbezogener Auswahl für $\varepsilon = 0.001$ und Skalierungsfaktor $skal_{MF} = 0.02$.

TOL_{rel}	0.07	0.07	0.05	0.1	0.02
$TOL_{rel,grob}$	0.28	0.28	0.3	0.3	0.3
κ_{MF_h}	0.6	0.8	0.6	0.8	0.9
$Aufwand_N$	13158	13158	11946	11946	11946
Aufwand	283976	208469	568410	81223	4815000
n	22730	16405		6032	
$\widehat{DF}_n / \ v\ _E$	0.0692	0.0673		0.0998	
$\widehat{MF}_N / \ v\ _E$	0.0603	0.0721	0.0527	0.0931	0.0507
$\frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E}$	0.0121	0.0144	0.0105	0.0186	0.0101
$Fehler_{rel}$	0.1134	0.1139	0.0967	0.1430	0.0688
$Fehler_{rel,skal}$	0.0773	0.0758	0.0590	0.1073	0.0298
homogene Gege	enrechnu	ng für Fe	$hler_{rel}$:		
$Fehler_{rel,hom}$	0.1133	0.1133	0.0965	0.1415	0.0682
$Aufwand_{hom}$	91418	91418	129567	47684	300931
n_{hom}	7820	7820	10672	4432	24317
homogene Gege	enrechnui	ng für Fe	$hler_{rel,ska}$	<i>l</i> :	
$Fehler_{rel,hom}$	0.0770	0.0729		0.1039	
$Aufwand_{hom}$	233683	254273	400870	109006	3001900
n_{hom}	18836	20590		9141	

Tabelle 52: Testbeispiel ${\bf 1}$ bei toleranzbezogener Auswahl mit Interface-Korrektur für $\varepsilon=0.001$ und Skalierungsfaktor $skal_{MF}=0.02.$

16.2 Tabellen zu Testbeispiel 2.

Testbeispiel 2 mit Iteration.

Tabelle 33. Test delspiel 2 mit fieration fur $\varepsilon = 0.01$ und Skaner ungstaktor skut $M_F = 0.02$	Tabelle 53:	Testbeispiel 1	2 mit Iteration	für $\varepsilon = 0.01$	und Skalierun	gsfaktor <i>skal</i>	$l_{MF} = 0.02.$
--	-------------	----------------	------------------------	--------------------------	---------------	----------------------	------------------

TOL_{DF}	0.005	0.010	0.015	0.020	0.030	0.040
$TOL_{rel,grob}$	0.025	0.030	0.045	0.060	0.090	0.120
Ν	6322	3558	667	459	409	373
$Aufwand_N$	55149	29611	3660	1889	1430	1021
Aufwand	97101	34004	7397	3101	1778	1284
$\widehat{DF}_n / \ v\ _E$	0.0049	0.0099	0.0136	0.0189	0.0258	0.0281
$\widehat{MF}_N / \ v\ _E$	0.0102	0.0133	0.0240	0.0286	0.0389	0.0468
$\frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E}$	0.0020	0.0027	0.0048	0.0057	0.0078	0.0094
$Fehler_{rel}$	0.0133	0.0203	0.0334	0.0412	0.0546	0.0638
$Fehler_{rel,skal}$	0.0075	0.0103	0.0167	0.0222	0.0292	0.0304
$UserTime_{MATLAB}$	1.6400	0.8200	0.3100	0.1400	0.1000	0.1800
$UserTime_{PLTMG}$	104.164	25.0222	7.9238	2.9899	1.5266	1.1819
UserTime	105.804	25.8422	8.2338	3.1299	1.6266	1.3619
#Iterationen	8	3	6	4	2	2
$\#\Omega_e$	3	2	3	2	2	2
homogene Gegenree	hnung für	$Fehler_{rel}$:				
$Fehler_{rel,hom}$	0.0128	0.0198	0.0326	0.0402	0.0504	0.0566
$Aufwand_{hom}$	273803	99759	20046	7351	1889	1021
n_{hom}	28317	10982	2506	1099	459	373
$UserTime_{hom}$	229.366	68.9532	12.9355	4.6580	1.3005	0.7222
#Iterationen	41	32	19	12	5	3
homogene Gegenrec	hnung für	$Fehler_{rel}$,	$_{skal}$:			
$Fehler_{rel,hom}$		0.0100	0.0164	0.0216	0.0286	0.0298
$Aufwand_{hom}$		467856	157487	78932	33619	29611
n_{hom}		46990	16815	8823	4008	3558
$UserTime_{hom}$		437.875	120.447	53.4803	21.8419	19.1933
#Iterationen		46	36	30	23	22

TOL_{DF}	0.009	0.0095	0.01	0.015	0.02	0.025	0.03
$TOL_{rel,grob}$	0.018	0.019	0.02	0.03	0.04	0.05	0.06
N	3997	2725	1849	467	423	379	337
$Aufwand_N$	30479	19830	12610	1917	1450	1027	648
Aufwand	60761	41962	27444	5472	1803	1349	920
$\widehat{DF}_n / \ v\ _E$	0.0088	0.0094	0.0098	0.0141	0.0150	0.0151	0.0154
$\widehat{MF}_N / \ v\ _E$	0.0093	0.0112	0.0132	0.0283	0.0329	0.0431	0.0601
$\frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E}$	0.0019	0.0022	0.0026	0.0057	0.0066	0.0086	0.0120
$Fehler_{rel}$	0.0138	0.0158	0.0177	0.0333	0.0382	0.0470	0.0633
$Fehler_{rel,skal}$	0.0102	0.0112	0.0118	0.0175	0.0183	0.0190	0.021
$UserTime_{MATLAB}$	2.1500	1.5300	1.0400	0.2400	0.1000	0.1000	0.0800
$UserTime_{PLTMG}$	65.0768	44.0476	29.2077	6.0509	1.5475	1.2151	0.9272
UserTime	67.2268	45.5776	30.2477	6.2909	1.6475	1.3151	1.0072
#Iterationen	58	58	7	7	2	2	2
$\#\Omega_e$	2	2	2	2	2	2	2
homogene Gegenrech	nnung für l	$Fehler_{rel}$:					
$Fehler_{rel,hom}$	0.0136	0.0158	0.0176	0.0288	0.0348	0.0408	0.0524
$Aufwand_{hom}$	494516	114408	35037	1917	1450	1027	648
n_{hom}	55174	13687	4558	467	423	379	337
$UserTime_{hom}$	445.178	77.6672	22.3968	1.3301	0.9998	0.7035	0.4628
#Iterationen	43	31	22	5	4	3	2
homogene Gegenrech	nnung für l	$Fehler_{rel,sh}$	kal:				
$Fehler_{rel,hom}$	0.0102	0.0112	0.0117	0.0173	0.0182	0.0189	0.0205
$Aufwand_{hom}$	2456869	1568732	1250178	40186	26482	19830	10761
n_{hom}	259271	167952	134926	5149	3543	2725	1606
$UserTime_{hom}$	4244.6	2161.4	1550.7	25.6520	17.0815	12.8303	6.8424
#Iterationen	57	53	51	23	20	18	14

Tabelle 54: Test
beispiel ${\bf 2}$ mit Iteration für $\varepsilon=0.001$ und Skalierungsfaktor
 $skal_{MF}=0.02.$

Testbeispiel 2 mit Lösung in fünf Schritten.

Tabelle 55: Testbeispiel **2** mit Lösung in fünf Schritten für $\varepsilon = 0.01$ und Skalierungsfaktor $skal_{MF} = 0.02$.

TOL_{rel}	0.005	0.01	0.015	0.02	0.03	0.04
$TOL_{rel,grob}$	0.0250	0.030	0.045	0.060	0.090	0.120
N	6322	3558	667	459	423	373
$Aufwand_N$	55149	29611	3660	1889	1450	1021
Aufwand	219631	38051	5858	2739	2077	1583
$\widehat{DF}_n / \ v\ _E$	0.0035	0.0095	0.0141	0.0171	0.0094	0.0192
$\widehat{MF}_N / \ v\ _E$	0.0093	0.0121	0.0242	0.0274	0.0331	1.9437
$\frac{skal_{MF} \cdot \widehat{MF}_N}{\ v\ _E}$	0.0031	0.0024	0.0048	0.0055	0.0110	0.0160
$Fehler_{rel}$	0.0113	0.0192	0.0338	0.0368	0.0367	0.0571
$Fehler_{rel,skal}$	0.0056	0.0111	0.0171	0.0196	0.0162	0.0287
$UserTime_{MATLAB}$	1.1600	0.6300	0.3000	0.1100	0.1200	0.1100
$UserTime_{PLTMG}$	164.122	24.8394	4.1148	1.9460	1.4918	1.2308
UserTime	165.282	25.4694	4.4148	2.0560	1.6118	1.3408
$\#\Omega_e$	1	2	2	2	2	2
$\#\Omega_e$ homogene Gegenreck	1 hnung für	$\frac{2}{Fehler_{rel}}$	2	2	2	2
$ \begin{array}{c} \#\Omega_e \\ \text{homogene Gegenrech} \\ Fehler_{rel,hom} \end{array} $	1 hnung für 0.0111	$\frac{2}{Fehler_{rel}:}$ 0.0189	2 0.0326	0.0368	2	0.0566
$ \begin{array}{c} \#\Omega_e \\ \text{homogene Gegenrech} \\ Fehler_{rel,hom} \\ Aufwand_{hom} \end{array} $	1 hnung für 0.0111 378369	$ \frac{2}{Fehler_{rel}:} 0.0189 111979 $	2 0.0326 20046	2 0.0368 11547	2 0.0358 13323	2 0.0566 1021
$ \begin{array}{c} \#\Omega_e \\ \text{homogene Gegenreel} \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \end{array} $	1 hnung für 0.0111 378369 38424	$\frac{2}{Fehler_{rel}} \\ 0.0189 \\ 111979 \\ 12220$	2 0.0326 20046 2506	2 0.0368 11547 1568	2 0.0358 13323 1776	2 0.0566 1021 373
$ \begin{array}{c} \#\Omega_e \\ \hline \\ homogene \ Gegenrech \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \end{array} $	1 hnung für 0.0111 378369 38424 333.389	$ \frac{2}{Fehler_{rel}:} 0.0189 111979 12220 79.9421 $	2 0.0326 20046 2506 12.8999	2 0.0368 11547 1568 7.3892	2 0.0358 13323 1776 8.6340	2 0.0566 1021 373 0.7224
$ \begin{array}{c} \#\Omega_e \\ \hline \\ \text{homogene Gegenrech} \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \#Iterationen \end{array} $	1 hnung für 0.0111 378369 38424 333.389 44	$\begin{array}{r} 2\\ \hline Fehler_{rel}:\\ 0.0189\\ 111979\\ 12220\\ 79.9421\\ 33 \end{array}$	2 0.0326 20046 2506 12.8999 19	2 0.0368 11547 1568 7.3892 15	2 0.0358 13323 1776 8.6340 16	2 0.0566 1021 373 0.7224 3
$ \begin{array}{c} \#\Omega_e \\ \hline \\ homogene \ Gegenrech \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \#Iterationen \\ \hline \\ homogene \ Gegenrech \end{array} $	1 hnung für 0.0111 378369 38424 333.389 44 hnung für	$\begin{array}{r} 2\\ \hline Fehler_{rel}:\\ 0.0189\\ 111979\\ 12220\\ 79.9421\\ 33\\ \hline Fehler_{rel}, \end{array}$	2 0.0326 20046 2506 12.8999 19 skal:	2 0.0368 11547 1568 7.3892 15	2 0.0358 13323 1776 8.6340 16	2 0.0566 1021 373 0.7224 3
$ \begin{array}{c} \#\Omega_e \\ \hline \\ homogene \ Gegenreck \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \#Iterationen \\ \hline \\ homogene \ Gegenreck \\ Fehler_{rel,hom} \end{array} $	1 hnung für 0.0111 378369 38424 333.389 44 hnung für	$\begin{array}{r} 2\\ \hline Fehler_{rel}:\\ 0.0189\\ 111979\\ 12220\\ 79.9421\\ \hline 33\\ \hline Fehler_{rel,}\\ 0.0105\\ \end{array}$	2 0.0326 20046 2506 12.8999 19 skal: 0.0164	2 0.0368 11547 1568 7.3892 15 0.0189	2 0.0358 13323 1776 8.6340 16 0.0156	2 0.0566 1021 373 0.7224 3 0.0286
$ \begin{array}{c} \#\Omega_e \\ \hline \\ homogene \ Gegenrech \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \#Iterationen \\ \hline \\ homogene \ Gegenrech \\ Fehler_{rel,hom} \\ Aufwand_{hom} \end{array} $	1 hnung für 0.0111 378369 38424 333.389 44 hnung für	$\begin{array}{r} 2\\ \hline Fehler_{rel}:\\ 0.0189\\ 111979\\ 12220\\ 79.9421\\ 33\\ \hline Fehler_{rel,}\\ 0.0105\\ 420866\\ \end{array}$	2 0.0326 20046 2506 12.8999 19 skal: 0.0164 157487	2 0.0368 11547 1568 7.3892 15 0.0189 111979	$\begin{array}{c} 2\\ 0.0358\\ 13323\\ 1776\\ 8.6340\\ 16\\ \hline \\ 0.0156\\ 176154\\ \end{array}$	2 0.0566 1021 373 0.7224 3 0.0286 33619
$ \begin{array}{c} \#\Omega_e \\ \hline \\ homogene \ Gegenrech \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \#Iterationen \\ \hline \\ homogene \ Gegenrech \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \end{array} $	1 hnung für 0.0111 378369 38424 333.389 44 hnung für	$\begin{array}{r} 2\\ \hline Fehler_{rel}:\\ 0.0189\\ 111979\\ 12220\\ 79.9421\\ \hline 33\\ \hline Fehler_{rel,}\\ 0.0105\\ 420866\\ 42497\\ \end{array}$	2 0.0326 20046 2506 12.8999 19 skal: 0.0164 157487 16815	2 0.0368 11547 1568 7.3892 15 0.0189 111979 12220	$\begin{array}{c} 2\\ 0.0358\\ 13323\\ 1776\\ 8.6340\\ 16\\ \hline \\ 0.0156\\ 176154\\ 18667\\ \end{array}$	2 0.0566 1021 373 0.7224 3 0.0286 33619 4008
$ \begin{array}{c} \#\Omega_e \\ \hline \\ homogene \ Gegenreck \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \#Iterationen \\ \hline \\ homogene \ Gegenreck \\ Fehler_{rel,hom} \\ Aufwand_{hom} \\ n_{hom} \\ UserTime_{hom} \\ \end{array} $	1 hnung für 0.0111 378369 38424 333.389 44 hnung für	$\begin{array}{r} 2\\ \hline Fehler_{rel}:\\ 0.0189\\ 111979\\ 12220\\ 79.9421\\ 33\\ \hline Fehler_{rel,}\\ 0.0105\\ 420866\\ 42497\\ 379.127\\ \end{array}$	2 0.0326 20046 2506 12.8999 19 skal: 0.0164 157487 16815 118.107	2 0.0368 11547 1568 7.3892 15 0.0189 111979 12220 78.7457	$\begin{array}{c} 2\\ 0.0358\\ 13323\\ 1776\\ 8.6340\\ 16\\ \end{array}\\ 0.0156\\ 176154\\ 18667\\ 135.521\\ \end{array}$	2 0.0566 1021 373 0.7224 3 0.0286 33619 4008 21.6301

Literatur

- [1] ACHDOU, Y., B. MOHAMMADI und O. PIRONNEAU: The χ -Method for Flows with Boundary Layers and Separations. In: GLOWINSKI, R. (Herausgeber): Proceedings of the 10th International Conference on Computing Methods in Applied Sciences and Engineering, Seiten 621–632, 1992.
- [2] ADAMS, R. A.: Sobolev Spaces. Pure and Applied Mathematics. Academic Press, 111 Fifth Avenue, New York, 1975.
- [3] BABUŠKA, I. und W. C. RHEINBOLDT: Error Estimates for Adaptive Finite Element Computations. SIAM J. Numer. Anal., 15:736–754, 1978.
- [4] BANK, R. E.: A Simple Analysis of Some A Posteriori Error Estimators. Applied Numerical Mathematics, 26:153–164, 1998.
- [5] BANK, R. E.: PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Users' Guide 8.0. Software Environments Tools. SIAM, 3600 University City Science Center, Philadelphia, PA 19104-2688, 1998.
- [6] BANK, R. E., J. F. BÜRGLER, W. FICHTNER und R. K. SMITH: Some Upwinding Techniques for Finite Element Approximations of Convection-Diffusion Equations. Numerische Mathematik, 58:185–202, 1990.
- [7] BANK, R. E., W. M. COUGHRAN und L.C. COWSAR: Analysis of the Finite Volume Scharfetter-Gummel Method for Steady Convection Diffusion Equations. Computing and Visualization in Science, 1:123–136, 1998.
- [8] BANK, R. E. und A. WEISER: Some A Posteriori Error Estimators for Elliptic Partial Differential Equations. Mathematics of Computations, 44:283–301, 1985.
- [9] BORNEMANN, F. und P. DEUFLHARD: Numerische Mathematik II. Gewöhnliche Differentialgleichungen. Walter de Gruyter, Berlin, New York, 2. Auflage, 2002.
- [10] CANUTO, C. und A. RUSSO: A Viscous-Inviscid Coupling under Mixed Boundary Conditions. Mathematical Models and Methods in Applied Sciences, 2(4):461–482, 1992.
- [11] CANUTO, C. und A. RUSSO: On the Elliptic-Hyperbolic Coupling I: the Advection-Diffusion Equation via the χ -Formulation. Mathematical Models and Methods in Applied Sciences, 3(2):145–170, 1993.
- [12] CANUTO, C. und R. RUSSO: Recent Results on a Self-Adaptive Formulation for the Elliptic/Hyperbolic Coupling. In: BOFFI, V.C., F. BAMPI und G. TOSCANI (Herausgeber): Nonlinear Kinetic Theory and Mathematical Aspects of Hyperbolic Systems, Band 9 der Reihe Series on Advances in Mathematics for Applied Sciences. World Scientific, Singapur, New Jersey, London, Hong Kong, 1992.
- [13] DEUFLHARD, P. und A. HOHMANN: *Numerische Mathematik*, Band 1. Walter de Gruyter & Co., Berlin, 1991.

- [14] GASTALDI, F. und A. QUARTERONI: On the Coupling of Hyperbolic and Parabolic Systems: Analytical and Numerical Approach. Applied Numerical Mathematics, 6:3– 31, 1989/90. North-Holland.
- [15] GASTALDI, F., A. QUARTERONI und G. SACCHI LANDRIANI: On the Coupling of Two Dimensional Hyperbolic and Elliptic Equations: Analytical and Numerical Approach.
 In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Seiten 22–63, Philadelphia, 1989. SIAM.
- [16] GILBARG, D. und N. S. TRUDINGER: Elliptic Partial Differential Equations of Second Order. Nummer 244 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, 1977.
- [17] HÖRMANDER, L.: The Analysis of Linear Partial Differential Operators I. Springer-Verlag, Berlin, Heidelberg, 2. Auflage, 1990.
- [18] KORNHUBER, R. und R. ROITZSCH: Adaptive Finite-Element-Methoden für Konvektionsdominierte Randwertprobleme bei Partiellen Differentialgleichungen. In: TECFLAM-Seminar Stuttgart, Band 4, Seiten 103–116, 1988.
- [19] KORNHUBER, R. und R. ROITZSCH: On Adaptive Grid Refinement in the Presence of Internal or Boundary Layers. IMPACT Comput. Sci. Engrg., 2:40–72, 1990.
- [20] MORTON, K. W.: Numerical Solution of Convection-Diffusion Problems, Band 12 der Reihe Applied Mathematics and Mathematical Computation. Chapman & Hall, 1996.
- [21] O' MALLEY, R. E.: Introduction to Singular Pertubations. Academic Press, New York, London, 1974.
- [22] OOSTERLEE, C., A. SCHÜLLER und U. TROTTENBERG: *Multigrid*. Academic Press, 32 Jamestown Road, London, 2001.
- [23] QUARTERONI, A., F. PASQUARELLI und A. VALLI: Heterogeneous Domain Decomposition: Principles, Algorithms, Applications. In: KEYES, D. E., T.F. CHAN, G. MEU-RANT, J.S. SCROGGS und R. G. VOIGT (Herausgeber): Fith International Symposium on Domain Decomposition Methods for Partial Differential Equations, Seiten 129–150, Philadelphia, 1992. SIAM.
- [24] RENTROP, P. und U. WEVER: Theory and Application of the Exponential Spline. Preprint 282, TU München, DFG Schwerpunktprogramm Anwendungsbezogene Optimierung und Steuerung, 1991.
- [25] WLOKA, J.: Partielle Differentialgleichungen. B. G. Teubner, Stuttgart, 1982.