TECHNISCHE UNIVERSITAT MUNCHEN
ZENTRUM MATHEMATIK

On the control of nonlinear dynamical systems

Tanja Vocke

MUNCHEN
2001






ZENTRUM MATHEMATIK DER TECHNISCHENUNIVERSITAT MUNCHEN
LEHRSTUHL UNIV.-PROF. DR. J. SEHEURLE

On the control of nonlinear dynamical systems

Tanja Vocke

\ollstandiger Abdruck der von der Fakattflir Mathematik der Techni-
schen Universdt Miinchen zur Erlangung des akademischen Grades eines

Doktorsder Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

\orsitzende: Univ.-Prof. Dr. Heike FalRbender
Priifer der Dissertation: 1. Univ.-Prof. Drudjen Scheurle

2. Univ.-Prof. Dr. Fritz Colonius,
Universi@ét Augsburg

Die Dissertation wurde am 27.04.2001 bei der Technischen Uniaersit”
Muinchen eingereicht und durch die Fakuiftir Mathematik am 20.07.2001
angenommen.






Contents

Preface i

1 Preliminaries 1
1.1 Discrete dynamical systems and special solutions. . . . . . . 1
1.2 Stable and unstable manifolds of hyperbolic fixed points . . . . .
1.3 Attractors. . . . . . . . . e 8
1.4 Chaoticdynamics . . . . . .. .. .. ... ... .. .. ... 10

2 Thestabilization at hyperbolic saddle fixed pointsin R 12
2.1 The nonlinear stabilization at a saddle in two dimensions . . . . .
2.2 An existence and uniqueness theorem ... . . . . .. ... .. 18
2.3 The nonlinear control algorithm. . . . . . . ... ... ... .. 20

3 Anexample: The Hénon map 27
3.1 Dynamicsofthedhonmap .. .. ... ... .......... 27
3.2 Necessary computations . .. .. ... .. .. ... 29
3.3 Controlling a saddle fixed point. . . . .. ... ......... 32

4 Thestabilization at hyperbolic periodic orbitsin R™ 42
4.1 Preliminaries . . . . .. ... 42
4.2 Local coordinate systems at each periodic point..... . . . .. 46
4.3 An existence and uniqueness theorem ... . . . ... ... .. 52
4.4 Anapplicationtothe Brhonmap. . . . . . ... ... ... ... 55

5 A second application: Thelkeda map 60
5.1 Dynamicsofthelkedamap .... . . ... .. ... ... .... 60
5.2 Stabilization ina perio@-orbit . . . . . ... ... L. 62

12






Preface

Control theory deals with the design and analysis of control systems. Its aim is the
computation of a control law such that a particular state of the control system is
driven to a predefined state, e.g., a fixed point. Such controls are widespread. For
example, water storage tanks are control systems where the float inside the tank
restricts the inlet flow of the water as the water level rises. The water tank with
the float and the in- and outlet are the control system. The position of the float is
the control, because it adjusts the inlet flow. It either restricts it as explained above
or it keeps the water height in the tank if water is taken out. Another example of
a control system is the so-called rocket car. This is a car that runs on rails and is
equipped with two rocket engines. The goal is to move this car from some location
to a predefined place. The system is then given by the car and its track, and the
state is the position of the car and its velocity. Moreover, the control is represented
by the firing of one of the engines. Depending on which engine is fired, the car
moves to the left or right on the track, cf. [MS82].

The classical approaches to control theory deal with linear time-invariant con-
trol systems, which are well understood today. Not until the middle of the 20th
century, control theory for nonlinear control systems has emerged and thus, the
restriction to linear systems has at least partly been overcome. There exist sev-
eral approaches to nonlinear control theory, e.g., nonlinear controllability that
uses Lie-algebraic methods and nonlinear stabilization, which can be achieved
by Lyapunov functions. For a detailed introduction to nonlinear control systems,
cf. [Son98, 1si89] and [NS90]. In the present work, we are particularly inter-
ested in time-discrete control systems givendy, = f(z,, F(z,)), where
f:X xU — X, andF is a feedback control. That is a functidit X — U,
where X is the state space amdthe control space. The problem is to find a feed-
back F' so that the controlled system is asymptotically stable near some periodic
orbit.

Our approach is the stabilization of such a system from the point of view of
dynamical system theory. We can interpret a physical system as a control system,
when we use one of its system parametes time dependent feedback control
F(z,) = uy,. Thus, let us consider a nonlinear discrete dynamical system governed
by the evolution equation

Tn4+1 = f(xnaun)a



where f(-,u,): X — X andu, € U is a system parameter. The contigl is

a nonlinear feedback control, which means thatan be calculated in terms of
the current state;,. Assume that the dynamical system possesses a hyperbolic
unstable periodic orbi® with a stable manifold of dimension one at least. Since
we approach the stabilization problem from the point of view of dynamical system
theory, we will make use of the dynamics of this system. Especially, we take into
account the stable manifold of the periodic omitand the fact that this manifold

is invariant under the mayp. Stabilization of the nonlinear discrete dynamical
system at the unstable periodic orbit is achieved in the following manner: An orbit,
that is not on the stable manifold 6f but within some neighborhood of it, usually
will move away from the periodic orbit due to its instability. To prevent this from
happening, we compute the feedback controsuch that this orbit is forced onto

the stable manifold o). After the application of the feedback lamy at time

n, control is switched off again and by invariance of the stable manifold under
f, the orbit is attracted to the hyperbolic unstable periodic arbitThus, orbits

that usually move away from the periodic orbit, stay close to it and hence, the
system is stabilized &b. This kind of nonlinear stabilization has a background in
dynamical system theory and uses feedback control as is done in control theory.
In contrast to our approach, nonlinear stabilization in terms of Lyapunov functions
uses a feedback to construct a control so that one obtains a descent in the energy
levels of the Lyapunov function in order to reach its minimum, i.e., the periodic
orbit O.

Let us introduce our nonlinear stabilization method in more detail. For the
sake of simplicity, we first consider the stabilization at hyperbolic saddles in two
dimensions, cf. Figure 1. Note that fixed points are just a special case of periodic
orbits, which we will deal with later. Let the nonlinear discrete dynamical system
be given by

Tp+1 = f($naun)a

where f(-,u,):R? — R? is aC"-map,r > 1, andu, € R. Assume that for

up = Uy, the origin is a hyperbolic saddle fixed point of the uncontrolled system
Tnt1 = f(xn,us), €., f(0,uy) = 0. Then the eigenvalues @ f(0,w,) are

given by As, A, € Rwith |As] < 1 and|\,| > 1. Moreover, we assume that the
corresponding eigenvectors are unit vector&inHence, the linear subspaces of
the fixed point are given bg*(0) = span{(1 0)!} andE*(0) = span{(0 1)'}.

The Stable Manifold Theorem guarantees the existence of the local stable manifold
W#(0) with dimW#*(0) = dim E*(0) = 1 in an open neighborhood’ of 0.
Moreover, this theorem tells us that the local stable manifigjd(0) is represented

by the graph of &"-function: E£°(0) " U — E"(0) N U such that

Wee(0) = {(z1, (D)) : 21 € E*(0) nU}.

Letz( be a given initial condition that generates an oty ) which is not on
the stable manifold?¥*(0). Then we compute the feedback lay at some time
n so thatz, 1 = f(z,,u,) IS @ point on the stable manifold of the origin. Since



Figure 1: The nonlinear stabilization method in two dimensions.

W#(0) is positively invariant undeyf, the controlled orbitO(z, 1) approaches

the saddle fixed point. Thus, the nonlinear system is stabilized at the origin. Note
that one can derive an implicit equation for the computation of the feedback law
uy. One of the main results of this thesis is the following local existence and

unigueness theorem for such a nonlinear feedback control.

Theorem 1
Consider x,,+1 = f(xy,uy,) asabovewith f(0,u,) = 0. The systemisstabilizable
at the hyperbolic saddle fixed point 0 provided that

Ou [9(f1(0,0,u)) — f2(0,0,u)] # 0.
Let U € R? be an appropriate open neighborhood of the fixed point and V' C R be
an appropriate open neighborhood of «,. If x,, € U, then the control w,, at timen
is given by the unique solution u, € V of

Y (f1(Tn, un)) = f2 (Tn,un),
Wheref = (fl,fg)t.

Later in the thesis, we do not restrict ourselves to two dimensions and fixed
points, but generalize the above theorem to arbitrary dimension N and hy-
perbolic periodic orbits of perio&l > 1, which have a global stable manifold with
dimensions, wherel < s < m. The idea is the same as in case of the fixed
point control. Let{py,p1,...,pr_1} be ahyperbolic periodic orbit of periddof
Tpt1 = f(xn,uy,) for u, = u,. At some timen, we compute the feedback,
such thatz, 1 = f(zn,u,) IS @ point of the stable manifold of the following pe-
riodic pointp;;1, i.e.,z,+1 € W*(p;11). We obtain the following local existence
and uniqueness result:



Theorem 2

Let z,+1 = f(xn,u,) define a discrete dynamical system in R™, where
f( up): R™ — R™ isa C"-diffeomorphism and v € R™* is a system paramter.
Assume that f(xz,,-):R™™* — R™ isat least C' and that f possesses a hyper-
bolic periodic orbit {py,...,pr_1} of period & > 1 for w, = wu,. Assume that
Df*(p;) has s stable eigenvalues, m > s > 1, and m — s unstable ones with
corresponding generalized eigenvectors <, v4, ..., v’ and wi, ..., wi __, where
1=20,...,k— 1. Let U; C R™ be an appropriate open neighborhood of p; for
eachi € {0,...,k — 1} and D C R™~* be an appropriate open neighborhood
of u,. If z,, € U; attimen for onei € {0,...,k — 1}, then there exists a unique
control u,, € D near u, that stabilizes the dynamical system at O(y) provided
that

TBs i) |Ou(F (pirur))| (1)

isinvertible. mgu(,,, ):R™ — E"(p;1+1) denotes the projection onto the linear
unstable subspace E" (p;1).

Note that the feedback contra} is determined by an implicit equation similar
to

P (f1(zn,un)) = f2 (Tn,un)

in Theorem 1. In the proof of the Theorem 2, we apply the Implicit Function
Theorem to this equation. We obtaglé (pi,uix) € R™*™=5 gnd the projection

onto E*(p;11) leads to a matrix of dimensioR"—%)*("—5) which is invertible

by the assumption in the theorem above. Thus, local existence and unigueness of
u, €an be proven.

Summarizing, we will establish a stabilization method for nonlinear dynamical
systems that does not use typical control theory methods like Lyapunov functions.
One possible application of this stabilization procedure is so-called chaos control,
which was also a motivation for the derivation of the above results. One considers
a nonlinear dynamical system that possesses a chaotic attractor, in which unstable
periodic orbits are typically dense. Thus, there exists a large humber of periods and
the system can be stabilized in many different hyperbolic periodic orbits. Various
controls for chaotic system have been developed, e.g., [HL98] or [OGY90a]. A
good overview of present research on chaos control is given in [JMTV97, Sch99].

One of these chaos control techniques has been introduced in 1990 by Ott,
Grebogi and Yorke, cf. [OGY90a, OGY90b]. They present a simple geometric ap-
proach of how to compute the contrg] at a given timen for the nonlinear system
ZTn+1 = f(zn,un) Which contains a chaotic attractor. Ott et al. linearize the system
at the saddle fixed point at which the system should be stabilized. The feedback
law is computed for the linear system so that with respect to the stable subspace,
stabilization can be achieved. But since the original nonlinear system is iterated
and the controlled orbit is only forced onto the stable subspace, it might not reach
the saddle fixed point but wanders off again and undergoes a chaotic transient. In
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this case, control has to be applied again. This so-called OGY-method makes use of
the chaotic dynamics of the system, which ensures that an orbit comes eventually
close enough to the chosen hyperbolic saddle fixed point or periodic orbit. Since
this approach relies on the linearization of the original system = f(z,, uy),
stabilization of the system can only be achieved within the small neighborhood of
the fixed point in which the approximation of the nonlinear system is still valid.
The nonlinear stabilization method introduced above does not have this disadvan-
tage, because it uses the local stable manifold instead of the stable subspace. Here,
orbits which are further away from the saddle point can be controlled. As a result,
a much larger set of initial conditions is stabilizable compared to the OGY-method.
Accordingly, the nonlinear stabilization procedure is more global than the linear
one. Moreover, if one considers hyperbolic periodic orbits with periods greater
than one, it turns out that the nonlinear method is more uniform and needs less
control steps.

Stabilization procedures such as the OGY-method have been applied to phys-
ical systems such as the driven pendulum and the driven bronze ribbon [HDM94,
St97]. Moreover, in [ND92], the Duffing equation is controlled. A magneto-
elastic ribbon is stabilized in [DRS90] and [SGOY93] and a model of a laser given
by the Ikeda map in [SO95]. Recently, some experiments in medicine such as
in [CC96, S794] have been started. In [WJ96], the OGY-method is applied to a
nonlinear one-dimensional map that represents the relationship between action po-
tential duration and heart rate. This relation plays an important role in lethal heart
rhythm disorders. The authors point out that the chaos control algorithm might
have applications for the prevention of cardiac rhythm disturbances. An overview
about applications of chaos control is presented in [Sch99] and [JMTV97]. The
very first illustration of the OGY-method was an application to thenbti map,
cf. [OGY90a, OGY90b].

Let us return to the results established in Theorems 1 and 2. We point out that,
in theory, it would be sufficient to apply the feedback contgpbnce in order to
achieve stabilization at a periodic orbit. The problem is that we have to find a repre-
sentation of the stable manifold or the periodic orbit. In order to obtain such a rep-
resentation locally, we use the graph of the functiod” (p;) "\U — E"(p;) NU.

In the stabilization algorithm, this function is approximated by a Taylor series and
thus, in the implementation of the results, we work with this approximation and can
not expect that stabilization is successful with only one application of the control.
Furthermore, depending on the degree of nonlinearity of the system, the feedback
law has to be approximated as well. So in general, the controlled orbit is not exactly
on the stable manifold and thus, it leaves a certain neighborhood of the manifold
after a number of iterations. In conclusion, the system is not stabilized. To over-
come this, we check whether the controlled orbit is still within a neighborhood of
the local stable manifold. If it leaves this neighborhood, the feedback control is
applied again to stabilize the system. Note that in this regard, the OGY-method
iS just a special case of our stabilization procedure. Ott et al. control the orbit so
that it is on the linear stable subspag¢instead of the local stable manifoldf®.
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The subspacé’™ is the 0-th order approximation of the stable manifold. There-
fore, the OGY-method is the same as our nonlinear stabilization method using this
approximation.

In order to demonstrate the performance of our nonlinear stabilization algo-
rithm, we have chosen to stabilize thetn map and the lkeda map from all the
different systems the OGY-method has been applied to. To compare our results
with those obtained by the OGY-method, we implement the OGY algorithm and
use mainly the ldhon map to point out its shortcomings. As one expects, our im-
plemented nonlinear stabilization method acts more global, since it uses a higher
order approximation of the local stable manifold instead of the linear stable sub-
space. Therefore, stabilization can be achieved even when an orbit is still far from
the periodic orbit. In contrast, the linear method from [OGY90a] can only be ap-
plied for orbits within a small strip at the periodic orbit. Therefore, the globality
of the nonlinear stabilization is an enormous advantage. It is able to stabilize more
orbits than the OGY-method. Especially for periodic orbits, less control steps with
smaller values than in the linear setting are used. The price for controlling the
fully nonlinear system is that one has to put more computational effort into the
algorithm. Therefore, our method is more costly than the OGY-method.

The thesis is organized as follows: In the first chapter, an introduction to dy-
namical systems and chaos is given. The purpose of this chapter is to provide a
brief overview. Since the main results are applied to nonlinear discrete systems we
restrict ourselves to dynamical systems with discrete time. We present basic no-
tations and results in Section 1.1, in particular for steady state solutions and their
stability as well as hyperbolic periodic orbits. Further on, we state the Hartman
Grobman Theorem and introduce stable and unstable manifolds of hyperbolic fixed
points. This allows us to introduce the Stable Manifold Theorem in the second sec-
tion, which plays a central role later on. In Section 1.3, we define invariant sets and
attractors and finish the chapter with the basic definitions for chaotic systems such
as sensitive dependence on initial conditions, strange attractors and Lyapunov ex-
ponents. These definitions will be of use in Chapters 3 and 5, where we apply our
nonlinear stabilization method to theeRlbn map and the Ikeda map, which are
both chaotic.

Chapter 2 is concerned with the introduction of our stabilization method. We
restrict ourselves to the stabilization at a hyperbolic fixed pgitihat has a one-
dimensional stable and a one-dimensional unstable manifold. Section 2.1 intro-
duces the nonlinear stabilization method and in Section 2.2, we prove Theorem 1
using the Stable Manifold Theorem and the Implicit Function Theorem. The last
section of Chapter 2 introduces the corresponding algorithm for the nonlinear sta-
bilization method.

Chapter 3 gives some computational results and aspects of the algorithm, which
has been developed in the previous chapter. Our goal is to stabilizestinhinap
at a hyperbolic saddle point, which is embedded in the strange atttdavbithe
map. We present the results for our method and the OGY-method, which we have
also implemented. Both algorithms were tested for various initial conditions and



viii

with different bounds on the control parameter and on the neighborhood of the
local stable manifold.

Chapter 4 discusses the nonlinear stabilization method for periodic orbits of
periodk in m dimensions. The first section introduces basic facts from linear alge-
bra as well as properties of the local stable manifolds of periodic orbits. Section 4.2
introduces local coordinate transformatiofjsand further relevant details. Then
we prove the existence and uniqueness Theorem 2. In Section 4.4, the algorithm
for stabilizing systems at periodic orbits of period greater than one is given. Fi-
nally, we apply this algorithm to the étion map and its hyperbolic peri@dsrbit.

Again, we compare the results to those of the OGY-method.

In Chapter 5, we proceed with the application to a dynamical system that
has been derived from a realistic model. We have chosen the Ikeda map, which
represents a two-dimensional laser system. First, we introduce the system
dynamics, and then the stabilization at a hyperbolic periodic orbit of pekriisd
shown. Such a laser system is useful in many different areas of application, e.g.,
medicine, computer science or in biotechnologies. As it has been shown, lasers
are very sensitive to small perturbations, cf. [HIM85, Ott93, Sch99] and thus, it is
desirable to stabilize laser systems at a periodic behavior.

This work was supported by the Deutsche Forschungsgemeinschaft within
the Graduiertenkolleg Angewandte Algorithmische Mathematik at the Technische
Universitt Minchen. My advisor, Professoargien Scheurle, encouraged me to
stay with the subject of nonlinear stabilization and chaos control. During the past
three years, he kept giving me constant advice and support. | would like to thank
him as well as Professor James A. Yorke, who first introduced me to this interesting
topic. Special thanks to my colleagues Dr. Peter Giesl, Dr. Matthias Rumberger
and Dr. Hans-Peter Kruse for numerous fruitful discussions and for proof-reading
my thesis. | am most grateful to my parents for encouraging me. Their constant
support made it a lot easier to focus on this work. Last, but not least, | am deeply
indebted to Oliver Knopf. He always gave me steadying support, never lost faith
in me and kept patient during all the difficult moments.



Chapter 1

Praiminaries

This chapter introduces some standard results from discrete dynamical system the-
ory. We provide notations, definitions and fundamental theorems which will be
used throughout this thesis. In the first section, we define discrete autonomous dy-
namical systems as well as orbits of general and specific solutions such as fixed
points. The question of how to determine stability of periodic solutions is treated
as well as hyperbolicity. We close this section with the Hartman-Grobman The-
orem. Section 2 introduces invariant eigenspaces for hyperbolic fixed points. We
define stable and unstable manifolds and present the Stable Manifold Theorem.
The third section deals with attractors. The chapter finishes with some aspects
of chaotic dynamics. The results, which are presented in this chapter, are taken
from [Wig88, Wig90, GH83, Rob95, Dev86, KH97, Ott93, ASY97, Hal88].

1.1 Discrete dynamical systemsand special solutions

The emphasis of this work lies on autonomous discrete dynamical systems which
we define as follows. Lep"” : X — X be given, wheré X, d) is a metrix space.

We call X the phase space and n the discrete time, i.en € Z. A dynamical
system is characterized by the property that given any initial giageX at initial

time 0, i.e., zp = z(0), the system assigns to any future time a unique state. In
other words, the dynamical system is given by

¢": g =x(0) = x(n) = ¢"(xg) € X
such thatp™ fulfills the so-called flow property, i.e.,
¢* " (o) = ¢°(¢" (w0))-

Throughout this thesis, we consider discrete dynamical systems given by an au-
tonomous difference equation

Tpy1 = f(2n), (1.1)
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wheref: X — X, X C R™ nonempty and open, is @ -diffeomorphism,r >
1. If the mapf is linear, the system (1.1) is calledliaear dynamical system,
otherwise, the system i®nlinear.

Consider the initial value problem

Tni1 = f(zn), o€ X.

If we apply f to the initial conditionzy, then f(zy) € X, f(f(zp)) € X and so
on. Clearly, the initial value problem has a unique solution given by the sequence
{zn}nen. Sincef is C™, for each fixeth, =, dependsC” onz,, 1.

For an arbitrary initial condition;y € X, we define the:-th iterate ofz, as
follows:

UG (flxo) .- ))) = fofo...fof(x):=f"(z0).

n times

Theorbit of x5 underf is a bi-infinite sequence

O(z0) == {..., f"(@0),- .. [~ (w0), 0, f (20), .., ["(x0),.. . }.

Sometimes, one distinguishes betwedoraard andbackward orbit, i.e.,

OF (z0) := {xo, f(20),. .., f"(x0),-..}

and
O™ (zo) :=1..., f"(z0),-.. ,f_l(wo),xo}.

Note that the orbits of discrete dynamical systems differ from those which are
generated by an ordinary differential equation. Orbits of continuous systems are
curves, whereas orbits of maps are discrete sets of points.

Studying specific types of solutions of (1.1) turns out to be useful when one is
interested in the qualitative behavior of a dynamical system. Therefore, one of the
very first steps in the analysis is to seek special solutions such as fixed points or
periodic orbits of the system (1.1). Furthermore, a characterization of the behavior
of solutions nearby a specific solution is helpful, especially for nonlinear systems.
We callp € X afixed point or equilibrium for the difference equatiom,,; =
f(xy), if f(p) = p. From a geometrical point of view, a fixed point is the point of
intersection of the graph gf and the diagonaj(z) = z. We also refer to a fixed
point as aperiod-1 orbit. Periodic orbits with period greater than one are fixed
points of f* wherek is the corresponding peridd

Definition 1.1.1 (Periodic Orbit)

Apoint p € X iscalled a periodic point of period k for the map f if f(p) = p.
Here k is the smallest such positive integer. The orbit O(p) is called a periodic
orbit of period k or a period-£ orbit and consists of & points.
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From now on, lep be a fixed point off. Let us introduce the following defini-
tion of stability forp, cf. [Wig90].

Definition 1.1.2 (Lyapunov Stability)
Thefixed point p € X of adynamical system given by (1.1) issaid to be Lyapunov
stable or stable, if for every e > 0 there existsa § > 0 such that, if for iy € X
satisfying
d(xo _p) < 63
then
d(f"(zo) —p) <€
for n > 0.
If the fixed pointp is not stable, then it is calleghstable.

Definition 1.1.3 (Asymptotic Stability)

Let z,+1 = f(z,) be a discrete dynamical system given as in Definition 1.1.2.
The fixed point p € X isasymptotically stable, if it is stable, and in addition, it is
attractive, i.e., there existsa d > 0 such that

d(zo—p) <46 = lim f"(z) = p.

Remark
In order to describe the stability of periodic orbits of period 1, we just have to
replacef by g := f*.

We are not only interested in the stability pf but also in the behavior of
solutions nearby. Hence, we consider the linearization of the nonlinear dynamical
system (1.1) ap which is given by

Yn+1 = Df(P) Yn, (1.2)

whereDf(p) € R™*™ denotes the Jacobian matrix @fat p. The lineariza-
tion (1.2) of (1.1) has a fixed point &t It is a well-known fact that if all eigenval-
ues ofDf(p) lie inside the unit disk, thefl is asymptotically stable. If one of the
eigenvalues lies outside the unit disk, then the fixed point is unstable.

Throughout this chapter, we will consider the nonlinear system = f(z,)
and assume that it possesses a fixed peintn Chapter 2, we will discuss the
stabilization of a so-called hyperbolic saddle fixed p@int

Definition 1.1.4 (Hyperbolic Saddle Fixed Point)

Consider the discrete linear dynamical system (1.2). The fixed point 0 of (1.2) is
called a hyperbolic fixed point, if none of the eigenvalues of D f(p) has absolute
value one. Moreover, if at least one eigenvalue of D f (p) has absolute value less
than one and at least one eigenvalue has absolute value greater than one, 0 is
called a hyperbolic saddle fixed point.
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Now suppose that is a fixed point of the nonlinear system (1.1). It is hyper-
bolic, if none of the eigenvalues @ff (p) have absolute value equal to one. The
aim is to relate the stability af of (1.2) to the stability op from the original non-
linear system. The following theorem states that the nonlinear system (1.1) near
is topologically conjugated to its linearization (1.2).

Theorem 1.1.5 (HARTMAN GROBMAN)

Let p be a hyperbolic fixed point of z,,11 = f(z,), where f is a diffeomorphism.
The stability of the hyperbolic fixed point 0 of y — D f(p) y corresponds to stability
of the hyperbolic fixed point p.

A proof the theorem can be found, for example, in [KH97, Rob95]. This theo-
rem states that, in the hyperbolic case, instead of considering the original system,
we can determine the stability of a fixed point via the linearized system. As has
been said before, the stability of a fixed point is determined by the Jacobian matrix

Df(p):

Theorem 1.1.6
Let f: X — X be a diffeomorphism and let p € X be a fixed point of z,.1 =

(i) If the absolute value of each eigenvalue of D f (p) is strictly less than 1, then
p isasymptotically stable.

(ii) If the absolute value of at least one of the eigenvalues of D f(p) is greater
than 1, then p is unstable.

A proof of this theorem can be found in [Dev86].

Remark
If we consider a period-orbit of the mapf, we just replacef by g := f*. In this
case, the linearization of (1.1) is

Yn+1=Df¥(p) yn

instead of (1.2). Provided that all eigenvaluesigf(p) lie inside the unit disk,
the periodic orbit

{p, f(0),.... f*(p)}

is asymptotically stable.
1.2 Stable and unstable manifolds of hyperbolic fixed
points

Throughout this section, let € X be a hyperbolic fixed point of, 1 = f ().
The previous section told us how to determine the stability of p. Now we charac-
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terize the behavior of orbits nearin detail. We start with the simplest discrete
dynamical system, namely thigear system

Tni1=Ax,, z, € R, (1.3)

whereA € R™*™. The only fixed point of (1.3) is the origin. Assume titais
hyperbolic. Theorem 1.1.6 tells us that the Jacobian maXyix0) determines the
stability of the fixed point.

The eigenvectors corresponding to the eigenvalues défine, depending on
the modulus of the eigenvalue, subspaces as follows: Suppbasn eigenvalues
A1,---,Ap. and suppose there arg eigenvalues\; which have absolute value
less than one. These are the so cafiiathle eigenvalues, since orbits lying in the
eigenspaces of; are attracted tp with the rate|\;| < 1 fori = 1,...,n,. The
space spanned by the corresponding generalized eigenvactors v, is the so
calledlinear stable subspace which we denote:

E*(0) := spanf{vi,...,vp, }

The analogue is true for thenstable eigenvalues ); with corresponding general-
ized eigenvectors,, ..., u,,. Here,|\;| > 1forj = 1,...,n, and we define the
linear unstable subspace

E*(0) := span{uy, ..., up, }.

Note that the orbits ir2*(0) and E*(0) are characterized by contraction and ex-
pansion, respectively, cf. also Figure 1.1.

E°(p)

E"(p)

Figure 1.1: Stable and unstable eigenspaces of a hyperbolic fixedpdaifi .
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Remarks

(i) Since0 is a hyperbolic fixed point, then we haxg+ n, = dim(R™) = m
and in particularR™ = E*(p) @ E"(p). Due to thissplitting of the phase
space, we identifyfR™ with E*(p) & E“(p) such that we write: € R™ as
z = (z°,2"), wherez® € E*(p),z" € E"(p).

(i) Forthe linear map (1.3) given byt € R™* we define thespectral radius
of A by the maximal absolute value of an eigenvaluedofWe denote the
spectral radius by(A). Given any norm ofiR™, we define

[A]l :== sup [[Awv].
lol|=1

One can show that for everly> 0 there exists a norm il®" such that
IA]l < r(4) 44,

cf. [KH97]. Furthermore, we can define the largest contraction and smallest
expansion rate ofl as follows:

AA) = 7“<A

vo)

w(A) = (r((A Eu(o))1)>l

The above result aboutA|| leads to[|Ag. )l < A(4) +4d < 1 and
Al gu(oyll = w(A) =0 > 1.

(iii) In case, thap is not a hyperbolic fixed point, i.e., at least one eigenvalue has
modulus equal to one, the so-calledear center subspace is given by

E*(p) := span{n, generalized eigenvectors
whose eigenvalues have modulus1},

whereng + n, + n. = m.

For the remaining part of this section, Igtbe a hyperbolic saddle fixed
point of the nonlinearC”-diffeomorphism f that defines the dynamical system
ZTnt1 = f(zn). We consider the linearization of the form (1.3) with= D f(p).

Note that the stability behavior is completely determinedljy{p). The Hartman-
Grobman Theorem 1.1.5 tells us thais a fixed point for (1.2) with the same
stability properties as those effor (1.1). Furthermore, in some neighborhood
U c X C R™ of p, the systemw: — f(z) is topologically conjugated to

y — Df(p)y. Due to the considerations above, we can classify the stability of
p. We define the stable and unstable manifold of a hyperbolic fixed point for a
nonlinear discrete dynamical system as follows:



CHAPTER 1. PRELIMINARIES 7

Definition 1.2.1 (Local Manifolds)
Let p be a hyperbolic fixed point of the local C"-diffeomorphism f andlet U C X
be a neighborhood of p. The local stable manifold of p is defined as

We.(p) :={xecU: fM(z) = pand f*(z) eU Vn >0}
Analogously, the local unstable manifold of p is defined as
Wi (p) :={z €eU: f"(z) = pand f "(z) €U Vn >0}

The corresponding global manifolds are given by the union of all preiterates,
respectively iterates, of the local manifolds:

= U ")
n>0
and
U f Wloc
n>0

One interesting property of the stable and unstable manifold of a hyperbolic
fixed point is invariance with respect to the system (1.1). In the following chapters,
where the control procedure is introduced, we will especially make use of the fact
that the local stable manifold is positively invariant unger

Definition 1.2.2 (Invariant Set)

Aset A C X iscalled positively invariant under f, if f(z) € Afor all z € A.
The set A is negatively invariant, if f~!(z) € A for all z € A. Finally, A is said
to be invariant provided that f(A) = A.

Note that fixed points and periodic orbits are always invariant sets yndeat
us return to the local manifolds of The nonlinear system, ;1 = f(z,) defined
onX C R™ can locally be transformed aroupdo thatp is translated to the origin
and the coordinates are chosen such that the unit vegtors, e; spank?(0) and

€s+1,-- - Em SPANE™(0), cf. [Wig90]. This transformed system then reads
Ynt1 = A’Yn + P(yn, 2n)
Znp1 = A"z + Q(yn, 2n),

wherey € RS,z € R*,s +u = m. Letr > 1,V C R® x R* be an open

neighborhood 0f0,0), P € C"(V,R*),Q € C"(V,R") such thatP(0,0) =
Q(0,0) = 0, DP(0,0) = DQ(0,0) = 0. The matricesd® € R5*% A% ¢ R***

have only eigenvalues with absolute value smaller or greater than one, respectively.
This implies that(0, 0) is a hyperbolic fixed point. Since we assurh¢o be C"

with » > 1, the transformed system is alé®. The following theorem states that
E*(0,0) is the0-th order approximation df;? .(0,0).
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Theorem 1.2.3 (STABLE MANIFOLD THEOREM)
Let (0,0) be a hyperbalic fixed point of the system

Yn+1 = Asyn+P(ynazn)
Zn+l1 = Auzn—{—Q(yn,zn),

with the assumptions made above. There exists unique local stable and local un-
stable C"-manifolds

Wiee(0,0) = {(y,2) €U CV :z=1(y)}

and
I/Vl%c(ovo) = {(yaz) ceUCV:iy= H(z)},

where U is an open neighborhood of (0,0) and 4(0) = #(0) = 0, Dy(0) =
DA(0) = 0, i.e, W} _(0,0) and W} (0,0) are tangent to £° and E" at (0,0),
respectively. Moreover, W7 (0, 0) is positively invariant with respect to the system
and W} (0, 0) is negatively invariant with respect to the system.

A proof of the theorem can be found in, e.g., [KH97].

Remark

The dimensions of the local stable and unstable manifold correspond to the dimen-
sions of the stable and unstable subspace, respectively. Furthermane,d are

as smooth ag. The theorem allows us to represent the local manifolds as graphs
of functions+ and @, respectively, where: £°(0,0) N U — E*(0,0) N U and

0: E*(0,0)NU — E(0,0) NU.

The Stable Manifold Theorem gives us the following picture of the local dy-
namics ofz,; = f(z,) near the fixed poinp, cf. Figure 1.2. Every point that is
not onW; .(p) leavesU under forward iteration. Points on the local stable mani-
fold converge t@ at an exponential rate given by the bound on the stable spectrum,
cf. Figure 1.2 and the remark on page 6.

1.3 Attractors

In Section 1, we have seen that fixed points and periodic orbits can be attracting.
Besides those attractors, there exist other sets with attracting properties. We in-
troduce some basic definitions in order to define attractors in a general way. In
Chapters 3 and 5, we are going to apply the control methods from Chapters 2 and
4 to two different dynamical systems, theehbn and the lkeda map. Both sys-
tems possess a local attractdr Thus, we give a defintion of local attractor that
suits the set-up in the corresponding chapters. As before, we consider a discrete
dynamical system as in (1.1), whele C R™, » > 1 and f is a nonlinear local
C"-diffeomorphism.
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Figure 1.2: Local stable and unstable manifolds of a hyperbolic fixed pami
with corresponding eigenspaces.

Definition 1.3.1 (Attracting Set)
Let A,B#0and A C B C X. Theset A issaidto attract B under f if for all
r€B

lim dist(f"(z), A) = 0.

n—00

Note that we assume that C B because this is the case in the examples in
Chapters 3 and 5. One could also define an attracting set without assumirg that
is a set that containd. In Definition 1.2.2, we have already defined invariance. To-
gether with the attracting property of a sétwe are able to define local attractors
according to [Hal38].

Definition 1.3.2 (Local Attractor)

Aset A C X iscalled alocal attractor if A iscompact and invariant with respect
to the system (1.1) and if there exists a bounded neighborhood B of A such that A
attracts B.

There exists no generally accepted definition of an attractor. As it is pointed
out in [Mil85, Rob95], there exists several other definitions. For example, Milnor
introduced a definition that require$to attract a set of positive measure. Instead,
we prefer the Definition 1.4.2, where points in a whole neighborhoaod léve to
approachA. Furthermore, one could also define a global attractor of a system. For
example, if we consider thedtion map, which will be introduced in Chapter 3,
and restrict the phase space fri#nto a certain rectangl® (cf. Section 3.1), then
R corresponds to the bounded neighborhd®dnd there exists a global attractor
A for the Hénon map. But if one choosés = 2, then A is only a local attractor.
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The setB in Definition 1.3.1 that is attracted hy is also called a trapping
region, cf. [Wig90, GH83].

Definition 1.3.3 (Trapping Region)
A closed connected set B C X isatrapping region if f*(B) C B for all n > 0.

In case that there exists such a trapping region, one can define the associated
attracting set by

A=) fMB).

n>0

1.4 Chaotic dynamics

In this section, we give a definition of chaotic dynamical systems. Since the re-
search of chaos theory started comparatively recently, there exists no terminology
that is generally agreed upon. For some notions like chaotic attractors, there even
exist several definitions. Thus, we emphasize that there exists no standardized def-
inition of chaos. In Chapters 3 and 5 of this thesis, we consider systems which
contain a single chaotic attractor. Accordingly, we define chaotic behavior in terms
of chaotic attractors, i.e., a system is chaotic if the dynamigsaf a local attrac-

tor A is chaotic.

Definition 1.4.1 (Sensitive Dependence on Initial Conditions)

Amap f: X C R™ — X issaid to have sensitive dependence oninitial conditions,
if there exists R € R such that, for every z € X and for each e > 0, thereisa
point y € X withd(z,y) < e andann > 0 so that d(f"(x), f"(y)) > R.

This definition is given in [Dev86, Rob95]. So far we have restricted our con-
siderations to local attractors that are not necessarily undergoing sensitive depen-
dence on intial conditions. Now, we define chaotic dynamics on such an attractor
as follows, cf. [Wig90].

Definition 1.4.2 (Chaotic System)

Let z,+1 = f(x,) be adiscrete dynamical system with phase space (X, d) and
local attractor A C X. If the system displays sensitive dependence on initial
conditions on A4, then the system is called chaotic.

In Chapter 3, we treat thedihon map as an example for the control mechanism
developed in Chapter 2. It will be pointed out that there exists a rectahgle®
and a compact invariant sgt C R that attractsk. Thus, A is a local attractor for
the Hénon map and one can show that the map undergoes sensitive dependence on
intial conditions and. Hence, by Definition 1.4.2, thedtion map is a chaotic dy-
namical system. An analogous result can be shown for the lkeda map, cf. Chapter
5.
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Another interesting classification of a dynamical system is given by the Lya-
punov exponents of the system. These exponents characterize the stretching and
the contracting characteristics of attractors.

Definition 1.4.3 (Lyapunov Exponent)

Let f: X — X be a diffeomorphism on the metric space (X, d) and 2y € X be
aninitial condition with corresponding orbit O(a). Consider an infinitesimal dis-
placement from x in the direction of a tangent vector y,. e define the Lyapunov
exponent for o and initial orientation of the infinitesimal displacement given by

uo = Yo/|yo| by

1 n
L(zg,up) = nlLHc}oE In |Df"™(xp) ug.

Depending on the orientation af, there are several possible values of the Lya-
punov exponents. In general, there willdyen(X) = m or less distinct Lyapunov
exponents for one given initial value. For a more detailed discussion of Lyapunov
exponents, the reader is referred to the literature cited within the beginning of this
chapter. [ASY97, Ott93] introduce the concept of a Lyapunov exponent of an at-
tractor 4. The authors calld chaotic, if the largest Lyapunov exponent of this
attractor is positive. With respect to this definition, theridh map possesses a
chaotic attractor, cf. also Chapter 3.

Later on, when we consider theeH6n map and the lkeda map in Chapters 3
and 5, we will see that the local chaotic attractdrsf these maps have a noninteger
dimension. The dimension of an attractor can be defined in many different ways.
Here, we use the box counting dimension, which is defined as follows.

Definition 1.4.4 (Box Counting Dimension)
Let A C X beacompact set. The box counting dimension of A is defined by

dimy(A) = Tim inf 28V 4)
e=0  log(e~!)

)

where N (e, A) isthe minimal number of closed cubes with length ¢ that cover A.

Provided that an attractot has a box counting dimension that is not an integer,
we call it astrange attractor.



Chapter 2

The stabilization at hyperbolic
saddle fixed pointsin R?

This chapter introduces the main part of the thesis, the nonlinear stabilization pro-
cedure from the point of view of dynamical systems theory. For a better illustration
of this particular kind of stabilization, we first restrict our considerations to a two-
dimensional dynamical system and stabilize it at a hyperbolic saddle fixed point In
Chapter 4, we will generalize the stabilization procedureitt 2 dimensions and

to hyperbolic periodic orbits of general peri@d> 1. By stabilizing a nonlinear
dynamical system at a hyperbolic saddle fixed point, we mean that an orbit with
an aperiodic behavior is forced onto the the stable manifold of the fixed point. By
invariance of the stable manifold under the systems evolution equation, the con-
trolled orbit is attracted to the unstable fixed point. Thus, the irregular movement
of the orbit is stabilized.

Section 1 is concerned with the introduction of the stabilization procedure for
the special case described above. We introduce all relevant details such that in
the second section, we prove the local existence and uniqueness result of the feed-
back control by which stabilization is achieved. In Section 3, our nonlinear sta-
bilization method is implemented. Moreover, we mention that the OGY-method,
cf. [OGY90a, OGY90Db], is nothing but a special case of our method.

2.1 Thenonlinear stabilization at a saddle in two dimen-
sions

The goal of this section is to set up all details needed for the stabilization of a
two-dimensional nonlinear autonomous discrete dynamical system. We consider a
system together with one of its system parameterBhis parameter is taken to be

the feedback control such that it stabilizes the system at a hyperbolic saddle fixed
point p,. Note that in the two-dimensional cagg,possesses a one-dimensional
stable and a one-dimensional unstable manifold. Since we approach the stabiliza-

12
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tion problem from the point of view of dynamical system theory, we will make
use of the dynamics of this system. Especially, we take into account the stable
manifold of the saddle and the fact that this manifold is invariant under the evolu-
tion equation. Stabilization is achieved in the following manner: An orbit, that is
not on the stable manifold @f, but within some neighborhood of it, usually will
move away from the saddle due to its instability. To prevent this, we compute the
feedback control,, at timen so that this orbit is forced onto the stable manifold

of p,. After the application of the feedback lawy, control is switched off again

and by invariance of the stable manifold, the orbit is attracteg.tdhus, orbits

that usually move away from the saddle fixed point, stay close to it and hence, the
system is stabilized ai.. Schematically, the stabilization procedure can be viewed
as in Figure 2.1.

Figure 2.1: The feedback control takes the iterate of a pgjntwhich is in a
neighborhood of the fixed poipf, onto the local stable manifold;} , of p,. Then,

Tn41 IS @ point onW;? , and by invariance of the manifold, the ort6X(z, )
approacheg,. Thus, the system is stabilizedat

Let us carry out the stabilization method in detail. We consider a nonlinear
discrete dynamical system given by

Tp+1 = f(xnaun) (21)

wheref: X xR — X, X C R?, is aC"-map,r > 1, with respect tar €

X and f is at leastC' with respect tou,, € R. The parameter, € R is an
adjustable system parameter, which we use as the time dependent feedback control.
We assume that far,, = u,, there exists a hyperbolic saddle fixed pginof (2.1),

i.e., f(p«, ux) = px. The so-called uncontrolled system is given by

Tnt1 = f(Tn, ) (2.2)

Sincep, is a hyperbolic saddle iX C R?, the Jacobian of atp, has two eigen-
values, s, A, € R with |\s] < 1 and|\,| > 1. Letv, € R? andv, € R? be
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the corresponding eigenvectors. Then the linear stable and unstable subspace are
given by E*(p,) = span{v,} and E*(p,) = span{v, }, respectively.

Our goal is to force an orbid(z) onto the stable manifolé/*(p,). Thus, the
main tasks are to find a suitable description of the stable maniféig,) and to
determine an equation for the computation of the necessary captrdlhe first
task is answered by the Stable Manifold Theorem 1.2.3uf-e* u,, the theorem
tells us that there existd’®(p,) tangent toE?*(p,) at p, with the same dimension
asE*®. In this casedim E*(p,) = 1. Therefore, we need to find a representation of
the one-dimensional local stable maniféid (p,). The easiest way is to represent
the manifold locally as a graph of a functign E¥ (p,) N U — E“(p,) N U where
U € X is an open neighborhood pf. Theorem 1.2.3 leads to the existence of the
local stable manifoldV? (p.) such that

loc
Wise(pe) = {(@, (1)) : 2V € B*(p,) N U}

for fixed u,. The remaining task is the computation of the feedback comnjrak
time n. Furthermore, we have to ensure that such a control exists at all. This will
be done in the next section. For now, we concentrate on the problem of how to
computeu,.

First, for the sake of a simpler illustration, we shift the hyperbolic sagdie
the origin while we keep the parametefixed atw,. Moreover, we transform the
linear subspaceg®(p,) and E*(p,) such that they are equal to the new axes of the
transformed coordinate system. For the moment, we,fixt v, since we consider
the local transformation of the uncontrolled system.

Recall that the spectrum of the Jacobian matrix @it p, consists of

As, Ay € Rwith [Ag] < 1,[Ay] > 1

with corresponding eigenvectois € R? andwv, € R%. The local coordinate
transformationp in Figure 2.2 is defined as follows:

Definition 2.1.1 (Local Coordinate Transformation)
Let f: X — X C R? beaC"-mapwithr > 1 that defines the nonlinear dynamical
system (2.1). We define ¢ : X — Y C R? asfollows:

z=¢(x) =T " (z —ps), (2.3)

whereT' € Gly(R) consists of the two eigenvectors v, vy, 1.€.,

(m (1)
v v
T = : 2 . 24
( o ol ) (24
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Figure 2.2: Local coordinate transformatignat the hyperbolic saddlg of the
uncontrolled nonlinear dynamical systemy; = f(z,, uy).

The inverse transformation is given by
r=¢ Hz)=Tz+p, (2.5)

1 1 /I)Q(Lz) —/Uq(})
T =dr | oo o |

Using Definition 2.1.1, we can define a transformed discrete system such that
the origin is the hyperbolic saddle fixed point, cf. Figure 2.2. In the new coordinate
system, the eigenspaces coincide with the axes of the transformed system, and the
evolution equation for the transformed system reads

where

Zny1 = H(Tny1)
= 7t (Tnt1 + )
= 7t (f (zn, ux) — ps)
= 7! (f(T zn + pay us) — Ds)-

Now let us come back to the system with general paramgtdnstead ofx,, .1 =
f(xn,uy), we consider the discrete dynamical system

Znt1 = h(zn, up), (2.6)
where theC™-maph: Y — Y is defined by
h(z,u) =T (F(T 2+ peu) = o).

If we use (2.3) withz, = (2, 27)t pe = (B, pP)E F = (1, f2)!, then (2.6)

is equivalent to
27(11)1 = hi(zn, un)
ol

n+1 hQ(Znaun)a
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where(zT(zl),zy(f))lt denotes the the transposed. In detail, we obtain

m _ L | (1) (1) (1) ,2) 4 D
Zp+1 det T Uy, (fl(vs Zn +Uu Zn + i’
o2 ) 4 of2 2 45 ) V)
o) (ol 20+ o) 2 + Y,
o) 20 ) 1) <)
@ _ _1 |_ o (1) 1) o (1) ) 4 (1)
Zp+1 = detT Vg <f1(vs Zn, +vu 2 +0x,
v® 20 4 0@ 22 4 p®) ) - pi”)

ol (Fa0D o0 + o) 22 450,

o) 20 ) ) <

Corollary 2.1.2
The point z, = 0 € R? isa fixed point for A for w, = u,, with eigenvalues )\, and
X, and corresponding eigenvectors e; = () and e, = (7)), respectively.

Pr oof
Itis easy to see that

Dh(zp,uy) = DT (f(T 20 + prs i) — pi)) = T D (T 2 + sy 1)) T,
which implies
Dh(0,u,) = 71 Df (py,ux) T.

SinceT consists of the eigenvectors Dff (p,), it follows from linear algebra that

As 0
Dh(oau*) = ( 0 )\ >7
u

and the corresponding eigenvectors @randes. m

The set-up with the transformed coordinate system allows us to establish an im-
plicit equation from which one can compuig, so thatz,, 1 = h(zy,,u,) IS a point
onW; .(0). As already has been mentioned, the local stable mani#)d0) can
be represented as a graph over the linear stable subspace. Due to the coordinate
change, we considé#/? .(0) locally as a graph ovek®(0) = span{e; } which is
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the z(1) axis, cf. also Figure 2.3. Using the Stable Manifold Theorem 1.2.3, we
conclude thaty: E5(0) N U — E*(0) N U exists withy(0) = 0 andD(0) = 0
such that

Wie(0) = {(zV,2%) € U : 2P(2)},
wherelU C Y is an open neighborhood 6f Sincef is aC"-map, so ish, and by
Theorem 1.2.3y is alsoC", wherer > 1.

loc

Figure 2.3: The local stable manifold? (0) for the uncontrolled system, | =
h(zn, uy) is given by the graph of.

Finally, we can introduce our stabilization procedure. We consider the sys-
tem (2.6), which possesses a hyperbolic saddle fixed point at the origin for
u, = us. The linear subspaces of the fixed point are given by the spans of the
unit vectors inR%. Moreover, the local stable manifold .(0) is represented as
graph ofy in a neighborhood’ of 0.

Our goal is to stabilize the system (2.6) at the origin by forcing an orbit onto
W#(0). Letzy be a given initial condition that generates an ofBik)), which is
not on the stable manifoltl;? .(0). Assume that at some time € N, the state
zn € O(zp) is in the given neighborhoold of the origin. In this case, we compute
u, such that the next iteratg,,; of the orbitO(z,) is on the stable manifold

W#(0), or equivalentlyz, = (z,(}), sz)) is a point oni¥#(0). More precisely, we
want o 0
2 1
Zn—l—l = w (zn—i-l) :
We need to finds, so that(zgll, zﬁl) is onW#(0). In other words,

1 _ (1) (2
z = hi(zn’,2zn’, Uy
{ Z?§s1 ! (2) ) 2.7)

n+l — hZ(Z7(11)7ZTL 7un)
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should be a point of’*(0), which is equivalent to

Y (%9421) = Zfﬁ)l
S (hl(z,(Ll),zg),un)) = hy (zg),zg),un) . (2.8)

As a consequence(,zﬂl,ng is automatically a point on the stable manifold
given foru,. Now we switchu back tou, for all & > n + 1, i.e., we turn the
control off. Due to the invariance d¥*(0) underh, all the succeeding iterates

of z,41 lie on the stable manifold and the controlled omDitz, ) is attracted to

0. Hence, the system is stabilized. Consequently, the nonlinear control law can
be computed from equation (2.8), since all parameters and functions are known
except foru,. Note that there may exist different solutionsof this equation or

no solution at all. Thus, we prove an existence theorem in the following section.

Remarks

() In case that there exists more than one possible solution of (2.8), one has to
choose the optimal solution, for example, thewith |u, — u,| having the
smallest absolute value.

(i) Note thatin the derivation of the implicit equation (2.8) f@r, we have used
the fact that the graph af represents the local stable manifold fgr= w,.
Therefore, this equation determingsonly locally. As a consequence, we
have to consider an open neighborhdéaf p. and assume that, € U at
timen.

2.2 An existence and uniqueness theorem

So far, we have shown that it is indeed possible to find an implicit equation that
determines the feedback control which stabilizes the nonlinear system (2.1) at a
given saddle fixed point. Naturally, the question arises whether one can always
find such a control and if so, under what conditions.

Let us consider the nonlinear discrete dynamical system

Znt1 = h(zn, up)

given as in (2.6) and assume that igr = u,, the system possesses a hyperbolic
saddle fixed point at the origin. As we have seen in the previous section, we can
derive the system given by, 1 = h(z,,u,) from the original system,,; =
f(xn,uy), which has a hyperbolic fixed poipf{ for u,, = u,. Therefore, we can
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either consider the mapandp, or the mapy and the origin with the same stability
properties ag.

The following theorem states the local existence and uniqueness of a control
uy, for the transformed system such that (2.8) is satisfied.

Theorem 2.2.1
Consider z,+1 = h(z,,uy) wWith the assumptions made above. The system is
stabilizable at the hyperbolic saddle fixed point 0 provided that

U=Ux

Let U C Y be an appropriate open neighborhood of 0 € Y and V' C R be an
appropriate open neighborhood of u,. Assumethat z, = (z,(zl), sz)) € U for some
timen € N. Then thelocal feedback control near v, isgiven by the unique solution
uy € V of

r‘/’ <h1 (Z7(11)7 Z’I(’L2)7un)> = h2 <Z7(11)7 Z7(12)7un>
for (zg),zg)) eU.
Pr oof

The proof of the theorem is based on the Implicit Function Theorem. FLet
Y x R C R* — R be aC"-function defined by

F (z(l),z@),u> =) <h1(z(1),z(2),u)> — ho (z(l),z@),u> .

Obviously,F' has a zero a0, 0, u.). The goal is to solvé’ for v in a neighborhood
of (0,0, uy). A necessary and sufficient condition for this is that'(0, 0, u, ) does
not vanish. Hence, we compute

g_F(Z(l)a Z(2)7 ’LL) = 8u['lz/}(h1 (Z(l)a Z(2)7 U)) - hZ(Z(l)a 2(2)7 U)]
u
and in particular, using assumption (2.9),

oF

%(07 Oa Uf*) 7é 0.

Also by assumptionz, € U. The Implicit Function Theorem implies that there
exists a uniques’-mappingG : U — V with appropriate neighborhoodg V as
stated in the theorem, such that

F (zg),z,(f),un> =0 Vv (zg),z,(f),un> eUxV

if and only if
up, =G (zg),zg)) v (z,(}), sz)) eU.
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Therefore, the existence of a unique contigl € V is implied by the Implicit
Function Theorem.
Let us return to the stabilization procedure. We iterate the uncontrolled system

Z7(11<|)>1 = hl Z7(11)7 Z7(12) y U
27(3421 = h? ZT(LI)a ZT(LZ) y Ux

forn=0,1,... until <z§bl),z7(12)> € U for some timen. This conditions is satisfied
by assumption. In this case, we set

Uy =G (znl), 2(2)> (2.10)

n

and by construction it follows that (z,(ll), sz),un> = 0. With u,, given by (2.10),
we compute

Z7(11—i)—1 = (zg)v'zg)’un)
D= ()

Therefore, by definition of’, we obtain that) (zﬂl) = zﬁl i.e.,zpy1 IS @
pointon;; (0). Settingug := u, for K > n, we iterate the uncontrolled system

further. Due to the invariance of the stable manifold untldro «,, the orbit is
attracted to the origin. Thus, the system is stabilized at the origin. m

If we switch back to the original system,1 = f(zn,u,) using the inverse
transformationy—!, we have reached our original goal: The successful stabiliza-
tion of a nonlinear system at a hyperbolic fixed pgint Since¢ and its inverse
are affine linear transformations, one can switch back and forth between the two
systemse, 11 = f(zn,u,) andz,+1 = h(z,,uy,). Thus, the original problem is
equivalent to stabilizing;,+1 = h(z,,uy) at the origin. Note that in the trans-
formed system, it is easier to find a representation of the local stable manifold of
the fixed point. Therefore, we establish the control algorithm within this system
and then go back to the original one.

2.3 Thenonlinear control algorithm

So far, we have introduced the theory of stabilization at hyperbolic saddle fixed
points in two-dimensional nonlinear dynamical systems. In order to be able to im-
plement our nonlinear stabilization method, we need to establish a corresponding
algorithm. In Chapters 3, 4 and 5, we will use this algorithm.

From the theoretical point of view, it suffices to compute the feedback con-
trol u,, once because of the invariance of the stable manifold. The ©rbijt, ),
wherexz,, 1 = f(x,,u,), stays on the manifold, whemy is set back ta., for
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K > n. Hence, the system is stabilized by a single control step. However, we
do not obtain the stable manifold’®(p,) exactly. Instead, we use a Taylor ap-
proximation to determine the majpthat represents only the local stable manifold.
Furthermore, the contral,, is obtained numerically in most cases, depending on
the degree of nonlinearity gf. Thus, it is not sufficient to control the system once
in order to stabilize it. From this point of view, we introduce the algorithm.

Our approach is as follows: First, we fix the hyperbolic saddle fixed pgint
and the nominal value,. The computation of the Jacobidf (p,) leads to the
eigenvalues\;, \, and corresponding eigenvectassv,,, respectively. This leads
to the definition of the transformatiog. Altogether, we obtain the transformed
evolution equation, 1 = h(z,,u,) with b = (Z;) As explained in Section 1,
we obtain

hi(zn,un) = ﬁ vz(f) (fl(vgl) z,(f) + vq(}) sz) ~|—p9), (2.11)
0@ 2D 402 2 4 pg),u*) - pi”)
oD (2o 20 + 02 2 4 90,
v@ 20 4o 2 +pP ) — p@) - pil)]
1
ha(zn,un) = et T | v§2) <f1 (vgl) zg) + vz(}) z,(f) ~|—p£1), (2.12)

o D 02 o2+, ~ 1)

ol (Fa0D o0 + o) 2 450,

o) 20 ) 1) <

Next, we determing¥}’ (0) as graph ofy) : E°(0) — E*“(0) with (0) =
0,D%(0) = 0. To obtain an approximation af, we expandy in a Taylor se-
ries at the origin. Assume thdtis given by

P(z) = so+s1 (21) 455 (20)2 453 2P +. . +sx (ZD)N +O((zD)NH

and that we expang up to orderN. Sincew(0) = 0,D%(0) = 0 has to be true
because of Theorem 1.2.3, we conclude that

s0 =81 =0,

W) s (2D 43 GO 4GV, (243)



CHAPTER 2. THE STABILIZATION AT SADDLES INR? 22

We need to determine the remaining coefficients = 2,..., N of 4 by com-
parison. We make use of the fact that the local stable manifigjd(0), i.e.,
the graph ofy, is invariant under the map. If z, is a point onW; (0), then
h(zn,us) = 2,41 is @lso a point o¥;? (0) and thus,

2l = (=) & he (20, 9(D), ) = (b (0, 0(0), )

must be true. If we now replacg by (2.13), use the evolution equations (2.11),
and (2.12) andsz) = w(zél)), we obtain two polynomials with unknown coef-
ficientss;,i = 2,...,N. We can calculate the coefficients ¥fby comparison.
The graph ofyp(2(1)) = s (2(0)2 + 53 (210)3 + ... + sy (V)N gives us an
approximation of the local stable manifol; (0). Once the functiony is deter-
mined, one can write down the control equation (2.8). In special cases, depending
on the degree of nonlinearity gf, this equation can be solved explicitely fgy.
Otherwise, we use Newton'’s method to obtajnnearu,.

Now we are able to formulate the control algorithm. We transform paipts
to z, = ¢(z,) as defined in Definition 2.1.1. Then we check whether some point
zn, lies within a neighborhood’ of the saddlez = 0. In this case, we solve the
equation (2.8) fon,. In order to do so, we need the evolution equatipn =
h(zp, un) With b = (22) and the coefficients af. The solutionu, is plugged into
Zn+1 = h(zn,u,). Now we switch off the control, i.eyx = u, for K > n, and
iterate the uncontrolled system. Due to the computational errors made within the
approximation ofyy andw,,, we might have to control again if pointg, K > n,
leave are-strip around the local stable manifold.

Consequently, the new control algorithm is as follows.

% Set the initial condition
% and initialize all necessary val ues
% such as the position of the saddle (P1, P2)
n=1;
whi | e (n<k)
if (x(n),y(n)) is not in U(P1, P2)
Iterate the uncontrolled system
el se
if (x(n),y(n)) is in UPL P2)
if (x(n),y(n)) is wthin nbhd. of Ws(P1, P2)
Iterate the uncontroll ed system
el se
% Orbit is close enough to (P1, P2)
% and the control is sw tched on
Comput e | ocal coordinates of (x(n),y(n));
Sol ve the control equation for u(n);
Apply u(n) to local coordinates;
Compute (x(n+1),y(n+l1));
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i f abs(u*-u(n))>u(max)
% Control is too large !
u( n) =u*;
Compute (x(n+l),y(n+1)) wi th u(n)=u*;
end
end
end
end
n=n+1;
end

Summarizing, a nonlinear autonomous discrete dynamical system

Tpy1 = f(@n, un)

in R? can be stabilized at a hyperbolic saddle fixed pgintia the feedback con-

trol v, € R. Due to the necessary approximationsiigf,.(p,) and the control,
stabilization is possible when one corrects the controlled orbit whenever it leaves a
neighborhood of the local stable manifold. Results of this algorithm are shown in
the next chapters.

Remark

Note that one motivation for our stabilization method was so-called chaos con-
trol. Here, a nonlinear dynamical system that possesses a chaotic attdactor
is considered. Within such a chaotic system, unstable periodic orbits are typi-
cally dense, cf. [GOY88]. Thus, there exists a large humber of periods and the
system can be stabilized in many different hyperbolic periodic orbits. The most
well-known method for chaos control has been established by Ott, Grebogi and
Yorke in 1990, cf. [OGY90a, OGY90b]. As has been pointed in [Voc98], many
interesting applications and succeeding results of the so-called OGY-method have
been obtained during the last decade. For example, Nitsche and Dressler [ND92]
improved the control method and applied it to the Duffing oscillator. The arti-
cles [PMT94, RGOD92] also present the OGY-method, and in [RGOD92], the
control is applied to the kicked double rotor. Another example of a useful applica-
tion to a laser, which is represented by the lkeda map, is given in [SO95], cf. also
Chapter 5. Furthermore, [SGOY93] provides a good overview of chaos control and
in [JMTV97] and [Sch99], a variety of results on this research topic is given.

We point out that the OGY-method is only a special case of our nonlinear sta-
bilization. Ott et al. present a simple geometric approach of how to compute the
feedback controls, at a given timen for the nonlinear system, 1 = f(zn, un)
which contains a single chaotic attractdr The system is linearized at the saddle
fixed pointpy, that is embedded iA for u,, = u,. The system should be stabilized
atp,. The corresponding feedback law is computed for the linear system so that,
with respect to the stable subspace, stabilization can be achieved. Hence, Ott et
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al. work with the0-th order approximation o}’ (p.), namely, the linear stable
subspacd’® (py).

Let us review the OGY-method, because we will use it in the applications in
Chapter 3 to compare it with our stabilization algorithm. Without loss of generality,
Ott, Grebogi and Yorke set, := 0 andp, := 0, which can be achieved by a
simple transformation. Thep, = 0 is a hyperbolic saddle for the uncontrolled
system (2.2). The linearization of the systempais given by

Tpy1 — P(Un) = Tyt — un g = A (T — upn g),

where 3 1
SOl gy Pl ) T Ly (24

ou  lu=u, Un—0 Up, Up,

Here,p(u,) denotes the position of the saddle fixed point, whgn# w,. The
matrix A € R?*? is given by

A = Df(p*au*)

and its eigenvalues arg,, |A,| > 1, and ), |As] < 1, with A, Ay € R. Let
vu, U5 € R2X1 be corresponding right eigenvectors andw, € R'*? left eigen-
vectors so that

</U,5,w5> - <Uu,wu> :].
Vg, Wy > = <y, ws> = 0.

In[OGY90a, OGY90b], the formula for finding an appropriate contspis given,
but not proven. The following theorem introduces the OGY formula, which is
proven in detail in [Voc98].

Theorem 2.3.1
We consider the nonlinear two-dimensional dynamical system s, 11 = f(zy, up)
and itslinearization z, 1 — up, g = A (z, — uy g) With all the assumptions made
above. The system can be stabilized at its hyperbolic saddle fixed point p. = 0
with

A <ap,wl>
A — 1 <g,wh>

Up ; (2.15)
provided that z,, € U at sometimen, where U C R? is an open neighborhood of
the hyperbolic saddle fixed point 0.

Here,<-,-> denotes the standard inner producBfnand«!, is the transposed
of w,. Note that the original nonlinear system is iterated and the controlled orbit is
only forced onto the stable subspat¥p, ).

The OGY-method makes use of the chaotic dynamics of the system, which en-
sures that an orbit comes eventually close enough to the chosen hyperbolic saddle
fixed point or periodic orbit. Since this approach relies on the linearization of the
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\ ,//, p(U)

Figure 2.4:. Geometric interpretation of the OGY-method: The saddle fixed point
py is shifted alongy (dashed line) as changes ta,,. Chooseu,, # u, So that the
point z,1 lies on the stable linear subspa&gp,).

original systemx,, .1 = f(zn, uy), Stabilization of the system can only be achieved
within the small strip ofp, = 0 given by

Ay — 1
Tmazx = Umaz UT < g,wZ >, (216)
u

with the assumption that,, — u.| = |u,| < Umas fOr u, given by (2.15), There-
fore, we activate the contrai, only for x,, being in

|<$n,wz>| < Tomaa-

For smallu,,.., a typical initial condition will execute a chaotic orbit, unchanged
from the uncontrolled case, unti}, is in the strip. Because of the nonlinearity
not included in the feedback law, the control at timenay not be able to keep the
controlled orbit near the fixed point. In this case, the orbit leaves the strip again and
wanders around chaotically as before, despite the activated control. This is called
a chaotic transient. Ott et al. derived a formula for the length of such a chaotic
transient in [OGY90a, OGY90b]. They show that after some finite amount of time,
the orbit will come back into the strip, since by assumption almost all trajectories
are dense in the attractgt. Thus, if the orbit is again within the strip, then control

is achieved. So we are finally able to stabilize the orbit which is preceded by a
chaotic transient, where the orbit is similar to orbits on the uncontrolled attractor.
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Remark
Note that the OGY-method for controlling chaos can be seen from a control theoret-
ical point of view. It was shown in [Moc98] that the OGY-method is quite similar
to a common control theoretical approach. In this case, we consider the control
system

Tnt1 = Axy + Buy,

or equivalently,
Tn4+1 = (A—BF):En,

with v, = —F x,,. We can compute the so-called feedback gain matrix from the
Pole Shifting Theorem [Son98]. It turns out that Ott et al. do just the same, al-
though from a geometrical point of view. In fact, the control law (2.15) is one
possibility to compute the feedback gain matfix Both the control theoretical
approach and the OGY-method do not at all depend on the dynamics of the sys-
tem. No matter whether the dynamical system is chaotic or not, the system can be
stabilized near the saddle.

In conclusion, we have seen in Chapter 2 that in a neighborlioat the
hyperbolic saddle fixed poini, with u,, = wu,, there exists, at least locally, a
unique control of the nonlinear system,; = f(z,,u,). We expect that our
stabilization method works better than the OGY-method, which is based on the
linearization of the system. In the OGY scenario, only a small number of initial
conditions can be controlled, because they useOttie order approximation of
W .(p+). On the other hand, our nonlinear stabilization technique is valid for a
wider range of initial conditions, since this algorithm works with a higher order
approximation ofi¥;} .(p.). As has been pointed out before, the OGY-method is
just a special case of our stabilization method. In Chapter 3, we give an example
for such a stabilization. Both methods are applied to teadfi map and it turns out
that the our algorithm indeed works more globally than the one from Ott, Grebogi
and Yorke.



Chapter 3

An example: The Henon map

In this chapter, we present an application of the algorithm for stabilizing nonlinear
dynamical systems which has been developed in Chapter 2. We want to compare
the new algorithm with the OGY-method. For this reason, we consider émei”
map, which has already been taken as an example in the work by Ott, Grebogi
and Yorke [OGY90a, OGY90b]. Thedion map is a two-dimensional quadratic
map that was introduced bydron in 1976, cf. [leh76]. It is a model problem

of a simple two-dimensional map that exhibits the same essential properties as
the Lorenz system, cf. [Lor63]. The first section begins with an overview of the
dynamics of the map. Section 2 introduces all necessary computations in order to
implement the nonlinear algorithm from Section 2.3. In the last section, we actually
stabilize the map at an unstable fixed point which lies on the strange attractor.
We numerically illustrate both stabilization methods, the one by Ott, Grebogi and
Yorke and our nonlinear one and compare the results.

3.1 Dynamicsof the Hénon map
Consider the lghon mapf: B2 — R? which is usually given by

f(z,y,a) = (a — 2> + by, z) (3.1)
or equivalently, by defining the two componentsfdby fi, fo, i.e.,

{ Ipn+1 = Gp — 37% + byn = fl(xnayn,an)
Yn+1 = Tp =: fQ(xnaynaan)'

The Hénon map has two parameter,d € R with ¢ > 0 and|b| < 1. Throughout
this chapter, we fix atb = 0.3, whereas: is the feedback control with nominal
valuea, = 1.4, cf. [OGY90a, OGY90b]. Consequently, the uncontrolleenidh
map is given by

f(z,y,1.4) = (1.4 — 2> + 0.3y, z).

By varyinga overa,, we can stabilize the system as will be shown in Section 3.

27
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Let us have a look at the properties of thertdh map. Obviouslyf is aC>-
map. Since # 0, f is invertible and its inverse reads

F @9,0) = (g (5~ at 47).

Thus, the Khon map is one-to-one. Singe! is also aC>°-map, the mayf is a
C*°-diffeomorphism with respect to the state variabtesndy.

Another property of the Enon map is that the determinant of the Jacobian
matrix is constant. Let us consider the Jacobiarf att every point(z,y) € &,

i.e.,
Df(z,y) = ( _fx 8 >

detDf(z,y) = —b V(z,7y) € R

Thus,|det Df(z,y)| = |b] < 1 by assumption. It follows that thedtion map is
area contracting, or, as one can also sajssipative.

As it has been pointed out byddon in 1976, the dynamical system given
by (3.1) possesses a strange attragtdior certain parameter valuesandb. In
our casep = 0.3 anda varies abouty, = 1.4. It can be shown that fos = 0.3
anda, = 1.4, there exists a quadrilaterd € R? which is mapped inside itself.
The setR is compact and*(R) c R for k > 0. In Figure 3.1, the sel C R is
shown.R is attracted by the invariant sgt By Definition 1.3.3,R is the trapping
region for the attractod. The attracting setl is a strange attractor, since

Note that

dimy(A) = 1.27.

Thus, the box counting dimension dfis noninteger, see e.g. [ASY97]. It can be
shown that orbit€)(x, yo) either diverge to minus infinity or tend to the strange
attractorA, if (zo, yo) € R.

The attracting sefl has not only a non-integer dimension, but with respect to
Lyapunov exponents, it is also a chaotic attractor. In Chapter 1, we called an attrac-
tor A of a dynamical system chaotic, if the largest Lyapunov exponent with respect
to A is positive. A computation of the Lyapunov exponents fofor the Hénon
map leads to the approximate valubs = 0.42 and L, = —1.2, cf. [ASY97].
Therefore, the largest Lyapunov exponent is greater than zero. By definition,
is a chaotic attractor. A picture of the attractdrof the system (3.1) is shown
below. We start with some initial conditiofxy, yo) = (0,0) in R and iterate the
system (3.1)10* times withb = 0.3, a = 1.4. The first 20 iterates are not plotted.
Thus, we obtain the following picture of the strange attragtor
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1.51

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 3.1: The strange attractor of themdn map withu = 1.4 andb = 0.3.

3.2 Necessary computations

We want to stabilize the &lon map at a hyperbolic saddle fixed point. So let us
determine, for general parameterandb, the fixed points off. They are obtained
by solving f(x,y,as) = (x,y,a,) for z andy. The second evolution equation
fa(z,y,a,) = zyieldsy = z. Thus,

0=a>+xz(1-0b)—a,

1
12 = 5(()— 1+ \/(b— 1)2 +4a)
Accordingly, fixed points of the Brion map exist as long as
—4a < (b—1)?

which is true forae = a, = 1.4 andb = 0.3. Due to the fact that,(z, v, ay) = z,
the fixed points lie on the line = y. Let us check if one of the fixed points is
embedded in the strange attractbiand let us determine their stability. Using the
specific parameter values= a, = 1.4 andb = 0.3, we obtain approximately

(zp,yr) = (0.8839,0.8839) and (i, jr) = (—1.5839, —1.5839).

The second fixed pointzr, yr) does not lie within the strange attractdr, as
can be seen in Figure 3.2. However, the fixed péint, y») is contained inA.
Thus, this is our fixed point of interest, at which the system is stabilized, provided
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Figure 3.2: The strange attractor and the two fixed points of #old map.

(xr,yr) is a hyperbolic saddle. In order to determine the stability of the fixed
point, we evaluate the Jacobian pfat (zy,yr) and compute the corresponding
eigenvalues and eigenvectors. We obtain

—1.7678 0.3

with eigenvalues
As =0.1559 and A, = —1.9237 (3.2)

and corresponding eigenvectors
_ (—0.1541 q _ (—0.8873
Vs = (—0.9881> and = ( 0.4612 )
Thus, by Theorem 1.1.6, the fixed point is a hyperbolic saddle point with a one-
dimensional stable and one-dimensional unstable subspace.

The goal is to apply our stabilization method developed in the previous chapter
and stabilize the system at the hyperbolic saddie y). A given orbit should be
stabilized by forcing it onto the stable manifdig} (zr, yr). To achieve this, we
use the system parametens a feedback control and vagyovera, = 1.4. Since
we want to apply the theory from Chapter 2, we need to shift the fixed point to the
origin and transform the coordinates such that the stable linear subBH#éce)
is equal to the x-axis an#“ (0, 0) is perpendicular td*(0,0). Moreover, a Taylor

approximation for the local stable manifold has to be done to obtain the local stable
manifold as a graph over the neswaxis. We consider

f(xayaa*) = (a’* - :L,Z + by7$)
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and its hyperbolic fixed pointzy, yr) in A. We shift(zx, yr) to (0,0) and trans-
form the linear subspaces lygiven as in Definition 2.1.1

(o) (-2

[ —0.1541 —0.8873
—\ 09881 04612 /-

where

v
v

0w oW —
e =

7= (0, 0 = (

The inverse matrix is

71 . 1 v~y

detT \ —v? o}
with det T = —1. These computations can be carried out either by Matlab or
Maple. ¢ transformsv, andwv, such that the stable eigenvector of the hyperbolic

fixed pointé(zr,yr) = (0,0) is e; and the unstable oneds, wheree; , e; denote
the unit vectors iR%. Using the transformation and its inverse

()=o) =0+ )

we obtain the transformedeétion maph(u, v). Consider
(:L'n+1> _ 4 (un+1> _r (Un—i—l) N (:w) _ (vi Unt1 + Vg Unt1 +:L'F>
Yn+1 Vn41 V1 Yr V2 Upg1 + V2 Vngr + yr
and
(wn+1> _ (a* -2 + byn>
Yn+1 In

Write z,, andy,, in terms ofu,, andv,, by the inverse transformation and use the
fact thatzr = yr. Then set the two equations equal and obtain two equations

1 1 1 1 2 2 2
Vg Unt1 + Uy Unt1 = Gx— (Vg Up+v, vn+zp)° + b (v; up+v, vn+or)—Tp

2 2 — 1
Vg Upt1 + Uy Unt1 = Vg Up + Uy Up

with two unknowns, namely,, 1 andv, ;. We solve this set of equations using
Maple and obtain the transformedehidn map

(Unt1,Vn41) = h(Un, Uy, an)

with its components

1
hi(tp, vp,an) = = (— UZ (vg (an — (v; Uy, + v}L Vp + )2
S

b (02t + 02 00) + 25 (b= 1)) = v} (0} i + v} v0) )
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1 1
+vg up + v, vn>

2

ho(tp,vp,an) = vj (an — (’U; Uy, + ’Ui vy, + :1cF)2

b (02t + 02 0p) + 3 (b 1)) = 0} (0] 1 + 0} o).

The maph possesses a hyperbolic fixed poin{@t0) with £5(0,0) = span{e; }
andE*(0,0) = span{ey}. Note that the original strange attractdris just under-
going a coordinate transformatighsuch that its properties remain the same.

The local stable manifold?;’ .(0,0) is obtained by a Taylor approximation
as described in Section 2.3. The coefficients for the functioR — R were
computed by Maple. The functiof reads

(u) = 0.01414u% + 0.00218 u® + O(u),

where the values for the coefficients have been rounded.

In order to perform the desired control, we have to verify the assumption of
Theorem 2.2.1, which is necessary and sufficient for the existence of a control
a, # 1.4, i.e., we need to check that

O [ (h1(u,v,a)) — ho(u,v,a)] # 0

=0, u=v=0

In this case we obtain

0a [52 (uig (—v2 (v2 (an, — (VL uy + vk vp + )% + b (02 up + 02 0y,)
+zp (b—1)) — v} (wlup +vlv,)) + ol u, + o) vn)>2
+s53 (L (=02 (v2 (an — (v} up + 0l v, +2p)? + b (V2 up + 02 0y,)

(

3
b—1)) —o! (wu, +vlvy)) +olu, +ol vn)>

—vs (ap — (v; Uy + v}l vy, + :EF)2

—b (W uy +v2v,) —zp (b—1)) — v} (viuy + vl vn)]

=0, u=v=0

~ 0.4866 # 0

3.3 Controlling a saddle fixed point

The implicit equation (2.7), from which,, is computed, is rather complicated.
This is the reason why we do not write it down here. We have implemented both
the nonlinear stabilization algorithm and the OGY-method in Matlab. Our non-
linear method is programmed as described in Section 2.3 and the OGY-method
is programmed according to [OGY90a] with) given by (2.15) and:,,., given



CHAPTER 3. AN EXAMPLE: THE HENON MAP 33

by (2.16). All necessary symbolic computations have been done in Maple. The
nonlinear implicit equation (2.7) that determingsvas obtained by Maple as well
as the transformed éfion map. We use these results in the main Matlab program.
The following pictures illustrate the results of the two algorithms.

We consider an initial conditiorizy, y0) within [-2,2]%. Note thatA lies
within this square. Lefxzg,yo) = (0.75,—0.5) be an exemplary initial condi-
tion, which lies on the inner right arc of.

< Of
_l [
-2 I I I I
0 20 40 60 80 100
n
2
1+
= oL
= 0
_1 - -
-2 I I I I
0 20 40 60 80 100

Figure 3.3: The uncontrolled éfion map with(zy, yo) = (0.75, —0.5).

Figure 3.3 shows the first hundred iterationg®&f, yo) under the original uncon-
trolled mapf in order to show what happens without control. The two components
x andy of the map are shown separately so that one is able to see the evolution of
points dependent on time. The first row shows the paiptsn they axis and the
second row showg, on they axis. In all figures, time is on the axis.

As one can see in Figure 3.3, y0) = (0.75, —0.5) generates an orbit which
behaves irregular. We apply both stabilization methods, our nonlinear one and the
OGY-method, to the orbiO(zy,yo). As we will see, both methods are able to
control this orbit and thus stabilize the system behavior at the saddle. The first
step is to apply our algorithm to this initial condition. Note that it is implemented
such that if the orbit leaves anneighborhood of the local stable manifold, then
the control is switched on again. Here we take 0.01.

More precisely, we start with the initial condition and iterate the uncontrolled
system as long as ! (z,,,yn) = (z,(f), sz)) € B,(0,0) whereB, (0,0) is the ball
centered at the fixed poirg0, 0) with radiusr. Here, we take: = 1. In this case,

we computez,, and the controlled poir{tzgll, 2’7(3421)- As described in Section 2.3,

the orbitO(zﬂl,zgl) eventually leaves aa- neighborhood of the local stable
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manifold. Thus, after each iteration of the uncontrolled system, we check whether
(z§§>,z§§>) for K > n is in thee-neighborhood of¥? (0,0). Equivalently, take

loc

( (1) (2)) and comput€z;, Z») such that)(z;) = 2, is a point on the local stable

ZK ,ZK
manifold so that
RONEEpE
()= () * (osian)
( zg) Z2 Dy (z1) /)
If |z§§> —z1? + |z§?) —2? > €2, then(zg),zg)) has left thes-neighborhood and

we have to control again, i.e., compute and the controlled poir(tzgzrl, zgll).

To prevent the vertical componeﬁf) from being too far away from the fixed

point, we also ensure thm(f)| < 6 wheres = 0.1. Moreover, we set a bound on
the controla,,. Leta,,q, := 0.3, then|a,, — 1.4] < 0.3.

To check whethery, K > n, is still within the e-neighborhood oV} .(0),
we use the following routine.

% Suppose that we have al ready controll ed
%at time n and let (X k,Y_k) be sone

% state at time k>n.

% We now conpute (X, Y) which fulfills the
% above requirenent, i.e., (X k-X Y _Kk-Y) is
% perpendi cular to the stable nmanifold

% s(x)=0.01414*x"2+0. 00218*x~ 3 and

%s’'(x) is its derivative.

X=fsolve(’ (X_k-x)+(Y_k-s(x))*s’ (x)’, X k);
Y=s(X);
while (((abs(X k-X))"2+(abs(Y_k-Y))"2)<epsilon™2)
& (abs(Y_k)<delta)
& (k<=max. nunber of iterations)
compute (X (k+1),Y (k+1)) with a*;
k=k+1;

Remark

Note that this subroutine is very costly and that we use it only to test the algorithms,
cf. also the following Figures, where we apply our control algorithm to the hyper-
bolic fixed point of the Khon map. In practical situations, it will not be wise to
use such an expensive Newton’s method like 'fsolve’ in Matlab. Instead, one could
think of the following implementation. Regularly, after a fixed amount of tifhe

one switches the control on in order to achieve stabilization. Thefirhas to be
found by trial and error.
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Figure 3.4: The nonlinearly controlledgddon map with(zy, yo) = (0.75, —0.5).

As one can see in Figure 3.4, our nonlinear method forces the orbit
0(0.75,—0.5) onto the local stable manifold of the hyperbolic fixed point
(xr,yr). The orbit stays close to the hyperbolic fixed paint, yr). Thus, the
control is successful. Note that the conttgl has to be activated several times
since the orbit leaves theneighborhood of the stable manifold. One of our fur-
ther investigations will be to determine the behavior of the control algorithen, if
is varied.

Now we apply the OGY-method to the same initial conditib,yy) =
(0.75,—0.5). According to the control law (2.15) given in Theorem 2.331js
computed using the right eigenvectagsaandv,, as given above, and the left eigen-
vectorsw, andw, and the vectoy. Recall that the left and right eigenvectors have
to fulfill the following conditions.

Vg, Wg> = Uy, w,> =1
Vg, Wy > = <Vy,ws> = 0.

We obtain

0.4052
wy = (0.4867 0.9362), w, = (—1.0425 0.1626) andg = ( )

0.4052

Since we have chosen,,,; := 0.3, we compute the width of the strip
|<Tp,w!,>| < Tpmar = 0.1621. If z, is in this strip, then the control is acti-
vated according to (2.15). This happensiat 91, cf. Figure 3.5.

Let us compare the results of the two algorithms, which are shown in Figures 3.4
and 3.5. It is obvious, that with our stabilization method, the control can be acti-
vated much earlier than with the OGY-method. In the OGY set-up, we have to wait
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Figure 3.5: The OGY-controlled éfion map with(zy, o) = (0.75, —0.5).

91 iterations before we can activate the control. This is due to the fact that control
can only be activated if,, is in the strip defined by<z,,, w!,>| < Z;;4.. In con-
trast, in the nonlinear case, control is switched on w(hélﬁ, zﬁf)) € B,(0,0) and
the control is activated within the first iteration. Thus, the globality of new algo-
rithm, in the sense that one usé$ (0, 0) instead ofF*(0, 0), is a big advantage.
Nevertheless, our method is more costly, since we have to approxiiate, 0).
Due to this approximation and computational errors, the controlled orbit leaves the
e-neighborhood of¥}? .(0,0) and we have to adjust the control value. The last row
in the figures show the control values depending on time.. The differences
|a, — 1.4 for all n, wherea,, # 1.4, in Figure 3.4 are larger than the difference
lagr —1.4] = 0.0026 of the single control step used in Figure 3.5. Thus, in this case,
the OGY-method is better than our method, since it only requires one control step
and no further control steps are needed as in the nonlinear set-up. Nevertheless, in
general, our nonlinear stabilization acts more global than the OGY-method.

Let us take a different initial condition, e.d4y,yo) = (—1,1.5). Note that
this initial condition lies in the upper left part of. The parameters, § anda,,,,
are the same as before, cf. Figures 3.6 and 3.7.
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Figure 3.6: The nonlinearly controlleddddon map with(z, yo) = (-1, 1.5).
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Figure 3.7: The OGY-controlled étion map with(zy, yo) = (—1,1.5).

The following two figures in Figure 3.8 show the controllable initial conditions
in the squaré—3, 3]> with unbounded control. We observe that controlling initial
conditions, which are further away fro(er, yr), is possible with our algorithm,
whereas the OGY-method fails to control these orbits. The reason for this failure
is that those initial conditions are not in a small vicinity of the fixed point. But this
is a necessary condition for the OGY control in order to stabilize the system. In
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Figure 3.8: The nonlinearly controlledgddon map (upper figure) and the OGY-

controlled HEnon map (lower figure) witkwy, 1) € [—3, 3]°.

contrast, the local stable manifold given by the approximation isfa much better

approximation of the stable manifold and thus, our algorithm is able to stabilize the

system, even if initial conditions are further apart from the hyperbolic fixed point.

Now we pose the following question: Is our stabilization better, when the ap-
proximation of the local stable manifold has a higher order? So far, we have used

the graph of the function

0.01414 4> + 0.00218 u>.

P(u)
It is possible to obtain coefficients for higher order terms.
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Figure 3.9: The nonlinear stabilization algorithm applied t®,y,) =
(—=0.5,—1.5) with e = 0.2,06 = 0.1. The upper figure uses the approxima-
tion ¢(u) = 0.01414 %> and the lower one)(u) = 0.014144? + 0.00218 u® +
0.00042 u*.

But as our computational experiments show, an approximation with higher or-
ders of W .(0,0) leads not necessarily to better results. In Figure 3.9, we apply
the nonlinear stabilization method to the initial conditi@p, yo) = (—0.5, —1.5)
with ¢ = 0.2 andd = 0.1. First, we use the lowest approximation of the local
stable manifold, i.e.,

Y(u) = 0.01414u? + O(u®).
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The result is shown in the upper figure. The lower figure of Figure 3.9 shows the
same algorithm applied to the same initial data, but with the local stable manifold
given as graph of

Y(u) = 0.01414 4> + 0.00218 u® + 0.00042 u* + O(u®).

Note that there is no difference in the stabilization that is achieved. The reason
might be that the computational errors are adding up and that an approximation
with higher order is no more accurate than a lower one. Furthermore, if we com-
pute s, we obtains; ~ 0.0004195, which is of orderl0~*. Such a small value
might not make much difference in the control procedure and it only adds up to
the computational errors. Thus, the order of the approximation plays no role in the
implementation of the stabilization procedure, as long as a higher order than in the
OGY case is used.

The last observation we want to make is how the nonlinear control algo-
rithm depends on the choice of We take the initial condition to bén, yy) =
(0.75,—0.5). Figure 3.10 shows results for different valuescsofin Figure 3.4,
we hade = 0.01. In Figure 3.10¢ is ten times larger than in Figure 3.4, i.e.,
¢ = 0.1. If one compares the last row of Figure 3.4 to that of 3.10, then one
notes that in the latter figure, more control steps are needed and in particular, those
are larger than in the first figure. This is due to the fact that in Figure 3.10, we
have are-neighborhood arount} (xr, yr) with € ten times bigger than before.

St Y Y e e R ey
< ol i
% 0
_2 L L L L
0 20 40 60 80 100
2 T T T T
< ol i
= 0
-2 I I I I
0 20 40 60 80 100
2 T T T T
1l i
1 Il Il Il Il
0 20 40 60 80 100

Figure 3.10: The nonlinear stabilization algorithm applied (tg,y,) =
(0.75, —0.5) with & = 0.1.
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Consequently, the controlled orbit needs a longer time until it leaves this neighbor-
hood and we have to apply larger controls in order to get back to the local stable
manifold.

Summarizing, our stabilization of theddon map is successful. The nonlin-
ear method is able to control a much larger set of initial conditions compared to
the OGY-method. Furthermore, the smaller theeighborhood o#V® .(zr, yr)
is, the better the stabilization. There is no difference in the result of nonlinear
stabilization, when a higher order approximation/gf (z, yr) is used.



Chapter 4

The stabilization at hyperbolic
periodic orbitsin R

In Chapter 2, our nonlinear method for stabilizing nonlinear autonomous dynam-
ical systems has been introduced. The corresponding algorithm for the stabiliza-
tion of a system at a hyperbolic fixed point in two dimensions has successfully
been applied in Chapter 3. So far, we have restricted our considerations to a two-
dimensional phase space. We now get rid of this simplification and introduce the
analogue stabilization method for higher dimensions. In applications it might be
necessary to force trajectories onto a more complicated behavior than it is repre-
sented by a hyperbolic fixed point. Thus, we show how to stabilize systems at
hyperbolic periodic orbits of period greater than one. As before, this method will
be implemented. The resulting algorithm is based on the algorithm, which has
already been introduced in Section 2.3.

The first section establishes necessary facts about local stable manifolds at pe-
riodic points. Section 2 is concerned with local coordinate transformations that will
be used to compute the local stable manifolds and the control parameter. There-
after, we are able to introduce the complete stabilization procedure. In Section 4,
we prove a local existence and uniqueness result for the feedback control. The cor-
responding algorithm, which is based on the one from Section 2.3, is introduced
in Section 5 as well as an illustration of a stabilization at a pe2iantbit of the
Hénon map.

4.1 Preiminaries

In the following letX be the phase space, wheXeC R" is an open subset. We
consider the nonlinear discrete dynamical system given by

Tn+1 = f(xnaun)a (41)

wheref (-, u,): X — X is aC"-map withr > 1. The parameter,, € R" ¢ is a
system parameter, which represents the feedback controk antlis the dimen-

42
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sion of the linear stable subspace of the periodic orbit at which we are planning to
stabilize the system (4.1). We assume thas C' with respect tau,. Note that

we do not writef: X x R™ 5 — X, but instead, we think of a family of maps

fu, + X = X. We assume that the control parameigcan be varied oveR”~%.

As in Chapter 2, the control is bounded [y, — u.| < wmqez, Wherew, is the
nominal value for the uncontrolled system

i1 = f(Zn, uy). (4.2)

Throughout this chapter, we assume thatfpe u,, the system (4.2) possesses a
hyperbolic periodic poingy. Letpy generate a hyperbolic periodic orbit of period
k>1,ie.,

O(po) = {po, f(po), F*(po),- - f* " (po)}

and f*(py) = po. We abbreviatefi(py) =: p;, wherei € {0,....k — 1}, i.e.,
Pk = Do, Pk+r1 = P1, P2k = po and so on. We assume that thé-map f is a
local diffeomorphism at the periodic orlit(m).

Within this section, we consider the uncontrolled system wjtb= v, for all
n. First, we determine the stability behavior at each point of the periodic orbit. In
the following, we introduce a series of lemmas, which will be of use in the later
sections. We assume thatis a saddle fixed point of* with s > 1 stable direc-
tions andm — s unstable ones, where< m. As we have seen in Theorem 1.1.6,
the stability of the periodic orbifm, p1,p2, ..., pr_1} is determined by the Jaco-
bian matrixD f*(py). Using the chain rule and the fact thétp,) = p; yields

Lemma 4.1.1
Consider the periodic orbit {py, p1,...,pr_1} Of the system (4.2). Then the fol-
lowing holds:

Df*(po) = Df (pr—1) Df (pr—2) - - Df (p1) Df (po) (4.3)

Thus, instead oD f*(p,), we can consider the product of Jacobiang oAs
we will show, it is sufficient to compute the eigenvalues of just one of the Jacobian
matricesD f*(p;). The following lemmas are basic facts from linear algebra, so
we omit the proofs.

Lemma 4.1.2

Let A € R™*™ B € Gl,,(R) and let X be an eigenval ue of the matrix product A B
with eigenvector v € R™. Then X isalso an eigenvalue of B A with corresponding
eigenvector w = Bv € R™,

The result of Lemma 4.1.2 can be generalized to arbitrary finite products of
matrices.
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Lemma 4.1.3

Let Ay,..., A, € R™™  Assume that for 1 < [ < mn, the matrix
product A;.q--- A, is invertible. Then A;--- A, and the cyclic permutation
Apy1--- A Ay - - A have the same set of eigenvalues, where 1 <[ < n.

The assertion follows from settind := A;... A;andB := A;;... A, in
Lemma4.1.2

Remark
The assumption in Lemma 4.1.3 thdt,; - -- A, is invertible, is equivalent to
Aiq1,..., A, each being in GL(R). In our case, the matrice§ are the Jacobians

Df(p;) of f atp;.. We considerD f*(p;), which is the product of th® f(p,),

cf. Lemma 4.1.1. Due to Lemma 4.1.3, we need to assume that all Jacobians
Df(p,) are invertible, i.e.Df(p;) € Gl,,(R), which yieldsD f*(p;) € Gl,,,(R).
Equivalently, we note that none of the eigenvaluesDgf (p;) is zero. Hence,

D f*(p;) is an isomorphism for all and thus f is a local diffeomorphism.

Due to the lemmas above, it is possible to determine the stability of each point
of the periodic orbit. By assumptiony is hyperbolic, thus all eigenvalues of
D(f*(po)) : R™ — R™ have modulus different from one. We call the eigenvalues
Aj andyy, where

Ny € Cand|Aj| < 1, || > 1withj=1,....s, I=1,...,m—s. (4.4)

The corresponding generalized eigenvectors are giveR,by. ,+? for the stable
eigenvectors\;, andw?, ..., w?,_ for the unstable eigenvalugs. Lemma 4.1.3

and Lemma 4.1.1 yield that; andy; are also the eigenvalues bif* (p;) for all

i€ {l,...,k —1}. Hence, the saddle point structure is preserved at each point of
the periodic orbit. Also, the dimensions of the linear stable and unstable subspaces
are the same at eagh. Only the eigenvectors differ for eadhf”*(p;). They are
determined by the product of Jacobians in the following way.

Lemma 4.14

Let {po,p1,...,pr—1} be aperiodic orbit of period £ of the system (4.2). Let ),
and 1, be given asin (4.4), and let +! # 0 and w) # 0 be the corresponding
eigenvectors for D f(py). Then the eigenvectors of D f%(p,) for 1 < ¢ < k —1
are determined by

vf =Df(pg-1)---Df(po) vy, j=1,....s (4.5)

and
’U)?:Df(pq_l)Df(po)’U)?, I=1...,m=s,

respectively.
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It is sufficient to prove the lemma just for one of the eigenvectors. If one uses

Df*(po) v} = A;j v}

and applies Lemma 4.1.1 to the left hand side, the multiplication of
Df(pg—1)Df(pg—2)...Df(po) from the left leads to the desired result. Thus, all
stable eigenvectomg for1 < ¢ < k — 1 are determined by the Jacobian matrices
Df(p;) and the eigenvectors.

Next, we show that each local stable manifé# (p;) is invariant underf*.
Let M := W} .(po) be the local stable manifold @t with respect tof*. By
Definition 1.2.1, it follows thatM/ is invariant underf*. Since the whole periodic
orbit is to be stabilized, we need to know more about the structure at each periodic
pointp;. The fact that) is positively invariant undef* implies that thef-images
of the local stable manifold/ are also positively invariant:

Lemma 4.15
Forallie {1,...,k—1},theimagesof M, f*(M), are positively invariant under
f*

Proof
Due to the invariance ¥/, we know that for all: € M it follows that f*(z) € M.
Now lety € f*(M) for somei € {1,...,k — 1}. There existsc € M such that
fi(x) = y. Hence,
) = 1) = [ @) = £ ) € f1(M),

which holds for ally € f/(M) andi € {1,...,k — 1}. Thus, f!(M) is invariant
with respect tof* forall i = 1,...,r — 1. n

Following the definition of a local stable manifold, we know that foralt M
we have(f*)"(z) — py asn — co. One immediately deduces

Lemma 4.1.6
The f*(M) arelocal stable manifolds with respect to f* at p;, i.e.,

F{(M) = Wi (pi),
wherei € {0,...,k —1}.
Proof

By definition, for allz € M the iterates f*)"(x) tend topy asn — oc. The
continuity of f leads to

Vyefi(M): (f")"(y) — pi asn— oo

foralli € {0,...,k —1}. ]
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Moreover, the local stable manifold of the hyperbolic periodic orbit
{po,sp1,---,pk—1} IS given by the union of allk local stable manifolds
U= W (p;) with respect tof*. The existence of the local stable manifolds
at each periodic poin; is guaranteed by the Stable Manifold Theorem 1.2.3.

Remark

The same is true for the local unstable manifolds of each periodic point. The proofs
are the same except that one has to change oo ton — —oo. We are only
interested in the stable manifolds, because the control algorithms forces points of
an orbit onto the local stable manifold of the periodic orbit.

4.2 Local coordinate systemsat each periodic point

Our goal is to stabilize a dynamical system at the hyperbolic period orbit
{po,...,pr_1} using the system paramete; € R™ *. The strategy will be

the same as in Section 2.1. In the case of periodic orbits, we have to be careful of
how to define the stabilization procedure itself. As already has been pointed out
in [RGOD92, Voc98], control of a periodic orbit can be achieved by taking:ttie
iterate of f and usef* to control a hyperbolic saddle fixed poiptof f*. In this

case, the control takes place only at one of the periodic pginige could then use

the stabilization method from Chapter 2. However, takifigs overly sensitive to
noise, especially, when large periods are involved. Moreover, the neighborhood in
which control could be achieved would be very small. Therefore, we introduce an
alternative method, where we are able to stabilize the system at the whole periodic
orbit and not only at one periodic point. This has the advantage of a more uniform
stabilization. By a uniform stabilization we mean that we can stabilize atgach

In case that the controlled orbit leaves the local stable manifold of the periodic or-
bit, we are able to adjust the control whenever necessary. If onefiiseen this

can only be done every-th iteration and we need to wait until the orbit comes into
the neighborhood of that particular Hence, our goal is to control an orloX( x)

in the following manner. I, of O(zy) is within a neighborhood of some, then

force z,,11 = f(zn,u,) onto the local stable manifold of the next periodic point
Pit+1-

In this section, we introduce local coordinate transformations which makes the
dealing with the local stable manifolds more manageable. As we will see, one can
establish a stabilization method for the original system giveryf byHowever, it
is easier to obtain an explicit representation for the local stable manifolds of the
transformed system. We wish to achieve the diagram shown in Figure 4.1.

In the following, we first fixu, atu, and establish the necessary transfor-
mations as in Chapter 2. Later on, we will come back to variaplesince we
then consider the transformed system with contfol Using Theorem 1.2.3, we
can introduce a coordinate chart neafor all 7 € {0,...,k — 1}, mappingp;
onto the origin so that the stable and unstable linear subsgé¢es and E*(p;)
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Figure 4.1: Local chartg;, the local stable manifolds given as graph/pand the
induced mapg; ;1.

are tangent t&®° x {0} and{0} x R™~*% atp,, correspondingly. Therefore, we
obtain smooth adapted coordinates such Wg(p;) is the graph of a function
P; : R — R™%, Later in the implementation of the algorithm, we use this fact to
approximate the local stable manifolds at egcliet us define transformations

in a neighborhood of;:

Definition 4.2.1 (Local Charts)

Let z, 11 = f(zn,us) begiven asin Section 1. Suppose that the hyperbolic pe-
riodic orbit {py, ..., pr—1} of the uncontrolled system has s stable directions and
m — s unstable ones. The linear stable and unstable subspace are given by

Eé(p;) = span{vi, ... ,vi,}
and . .
E%(p;) = span{wi,...,w;,_}

for i € {0,...,k — 1}, respectively. Define a local coordinate transformation
¢i:U; — V; by

z=¢i(x): =T, ' (x—p;), Vie{0,....k—1}. (4.6)
M]a’e . . . . .
T;:=[v] vy...v% wi...w,, ] 4.7)

and U; C X,V; C R™ areneighborhoods of p; and ¢;(p;) = 0, respectively.
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The chartsp; are exactly those charts introduced in Figure 4.1. Note that each
¢; is an isomorphism. The transformation matri@gsonsist of generalized eigen-
vectors corresponding to the stable and unstable eigenvagly@sand their mul-
tiplicities.

Remark

Since we will make use of the real Jordan normal form of the matiiggp;),

we recall some basic facts. Depending on the eigenvalpesd , the Jordan
normal form ofD f*(p;) consists of real Jordan block, and.J,,. These Jordan
blocks can be different for each eigenvalue. They are of one of the following types:

(i) If all eigenvalues are real and distinct with multiplicitié4, . . ., M,,, then
A0 0 ... 0 0
0 X 0 ... 0 0
A 0 0 X3 ... 0 0
Dff(pi) =1 . _ _ € Rmxm,
0 0 O Pm—s—1 0
0 0 0 0 Hm—s

(ii) If an eigenvaluex is real with multiplicity m, > 1, then the corresponding
Jordan blockJ, has the form

a 1 0 ... 0 O
0 a 1 0 0
0 0 a ... 0 O
Jo = ) ) . € RMa XMa
0 0 O a 1
0 0 O 0 «

(i) If X =a +ibis acomplex eigenvalue with multiplicity one, then

_ a b 22
J/\_<—ba>€R .

(iv) In case that such a complex eigenvalue occurs with multiplieity> 1, the
Jordan block consists of, as in (i) and the identity matrid, € R?*2.

S L ... 0 0
0O Jy ... 0 0
I = : :
0 0 ... Jy I

0 0 ... 0 Jx
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Now we define a new majy; that repr~esent$’c in the local coordinate system
atp;. The maph; maps points fron¥; to V;, whereV; N V; # () such that; N V;
is still a whole neighborhood of the transformed periodic pfint

Definition 4.2.2 )
Under the assumptions made above, we define a map h;: V; — V; in the local
coordinate system of each p; for fixed u,, = u.., where

hi(z) = ¢i(f*(d; ' (2),un)) = T (FH(T3 2 + pis i) — pi)
for eachi € {0,...,k — 1}.
Obviously, h;(0) = 0 for eachi, i.e., the origing;(p;) = 0 of each local

coordinate system is a fixed point af. We will show that the Jacobian @f
evaluated at this fixed point has the same set of eigenvalueg*és,).

Lemma 4.2.3
Let h; be defined asin Definition 4.2.2. Then

Dhi(0) = T, Df*(pi) Ty
and thus, the eigenvalues of DA;(0) areidentical to those of D f*(p;).

Proof
Clearly,

Dhi(z) = DT, " (f*(T; 2 + pi,us) — pi)]

T, ' DT 2 + piy us)
= T, 'Df*((Ti 2 + pi,us)) T

Thus,Dh;(0) = 77 D f*(p;) T;. Due to the definition of}, Dh;(0) is the Jordan
normal form ofD f*(p;) and the eigenvalues are the same. m

The fact thatZ; is the coordinate transformation matrix which transforms
E*(p;) to R® x {0} implies that the linear stable subspaces at the fixed points
¢i(p;) = 0 are given byE?(0) = span{ey, ..., es}. Analogously, the linear unsta-
ble subspaces ai€'(0) = span{esy1,...,en}. Actually, there exists a so-called
splitting of h; into its stable and unstable component.

Corollary 4.2.4
The map h; can be split into two components, namely

= (0 ) = (1 e )
i - h£2)(2) - Jm—s 4(2) + Hz(z(l),z@)) ’
where z(1) € E#(0),2) € E*0), Hy(0,0) = 0,DH,(0,0) = 0 for o = 1,2

and J, € Rs*5_ J,,_o € Rim=s)x(m=s) gre the block matrices that consist of the
Jordan forms corresponding to the eigenvalues \; and 4., respectively.
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Proof
As we have seen above, the Jacoldin(0) is the Jordan normal form @ f*(p;).
By Lemma 4.2.3, we obtain

where the upper left block is of dimensienx s and the lower right block is of
dimension(m — s) x (m — s). All the Jordan blocks of the stable eigenvalues

Aj,j = 1,...,s, together form a Jordan block of dimensions x s and the
Jordan blocks of the unstable ones fory of dimension(m — s) x (m — s)
wherel = 1,...,m — s. Therefore,Dh;(0) leavesE?(0) and E}*(0) invariant.

SinceDh;(0) is the derivative ofh; at zero andh;(0) = 0 holds, we conclude
that the linear part of,; has to be of the fornf.J,, 21, J,, 2(?)!, wherez(l) €

R, 2(2) € R™~%. Due toH,(0,0) = 0 andDH,(0,0) = 0, there is no linear part
in H, with respect taz = (21, 2()t for & = 1.2. Thus, the nonlinear part @

is given by H, (21, 2?), o = 1,2, of corresponding dimensions and we obtain
the desired splitting of;. m

Now we can apply the Stable Manifold Theorem 1.2.3;tavith 0 as hyper-
bolic saddle fixed point for,, = u, fixed. It tells us that there exists, for eagh
the local stableC”-manifold W;? .(0) which is tangent taZ*(0) at0. Moreover,
W .(0) is the graph of & -functiony;: EZ (0) N W; C R® — E NW; C R™™*
with 1);(0) = 0 andD%;(0) = 0 such that

Wise(0) = {(v,9i(v)) : v € B} (0) N Wi},

whereW; C R™ is an open neighborhood 6f There existk such local stable
manifolds, one for each periodic poipt By Definition 1.2.1, all these manifolds
are positively invariant with respect to the corresponding

So far we defined the coordinate chagtswhich have been introduced in Fig-
ure 4.1. In order to be able to present the complete stabilization method for hyper-
bolic periodic orbits with a saddle structure, we still need to establish the induced
maps f; ;+1 from Figure 4.1 for arbitrarys,. In order to compute the feedback
controlu,, we set up the local coordinates, cf. Definition 4.2.1 and Figure 4.1, and
a new mapf; ;+1, which maps points from the local coordinate system & the
one of the following periodic poing; ;. Let us definef; ;1 as follows.

Definition 4.2.5 (Induced Maps)
Let ¢;: U; — V; be given asin (4.6), where U; is an open neighborhood of p; for
each 7. Then define f; ;11: Vi x R™"™% — V;, for general ,, by

fiir1(z,u) = div1 0 fo gy ' (z,u) = T (F(Ti 2+ piyu) = pir1).  (4.8)
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Foru, = u,, the mapf; ;;.1 can be split into an- and an(m — s)-dimensional
part since

[ EO) - B0
Df”“'{ EXN0) — EY(0)

is a bijective mapping. The proof is the same as the one of Corollary 4.2.4, except
thath; containsf* whereasf; ;.1 contains onlyf. We denote

o (ff;il(z,m)
ii+1(2, U) = )

£ ()

where fz.(;ll € R* and fz.(fll € R™75.
Lemma 4.2.6
Each f; ;41 maps W} (¢;(p;)) in one local coordinate system to the next, i.e., to

Wi (div1(Pig1))-

Proof

The assertion follows from the set-up in the diagram introduced in Figure 4.1. If
we take a part of the diagram consisting of two successive periodic points together
with the corresponding transformations, then this part of the diagram commutes.
So let us consider two periodic poings and p;;1, wherei € {0,...,k — 1}.

We have seen in the global coordinates thfatW;.(p;)) C W;.(p;) and
FEWE (piy1)) C W (piy1), €., the local stable manifolds are positively in-
variant underf*, compare Lemma 4.1.5 and Theorem 1.2.3. In the local co-
ordinate systems, we obtain analogouslyiW;? (¢i(pi))) C W .(¢:i(p;)) and
hz’+1(Wﬁ)c(¢z’+1(pi+1))) C I/Vﬁ;c(¢i+1 (pi-l—l))- It follows by Definition 1.2.1, that
forw, € W ¢i((pi)) andwy € WS (¢iy1(pi+1)) we have

Jim A (w1) = ¢i(pi) = 0
and
lim_ by (w2) = dita (pit1) =0,
respectively. Using Definitions 4.2.2 and 4.2.5, we conclude

lim,, o0 fiit1 © i (w1)
= limnﬁoo ¢i+1 © f © QS;I ° Qsl o (fk)n ° @b;l(wl)
limp, o0 i1 0 fEHY 0 ¢! (wy)
= limy o0 Gi1 0 (f¥)" 0 ¢} 0 his10 f oy H(wy)
limy, 00 Aily © fii1(wi)
limy, 00 A7ty (w2)
= $it1(piy1) =0,

which completes the proof. m
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4.3 An existence and uniqueness theorem

The aim is to activate the nonlinear feedback contyokE R™~*% within one iter-
ation of f. Suppose we start with some poit, which is in the vicinity ofp; for
somei. We definel/; to be an open neighborhood of the periodic pgiribr each
i € {0,...,k — 1}. If one computes the following iteratg, ;; = f(zy, uy) with
Uy = Uy, thenz, 1 € U;;1. Controlling the orbitO(x,,) means to find., such
thatz,, 1 = f(zn,uy,) is a point on the local stable manifold gf, ;.

After introducing all necessary details shown in Figure 4.1, we are able to
derive an implicit equation for the contral,. Assume thatz,, € U; for one
1 =20,...,k —1andu,_1 = u,. First, one switches to the local coordinate
system, using;(z,,) = z,. Then we wish to obtain a point, 1 = fii+1(zn, un)
on Wj (¢it1(pi+1)) for suitablew,. The goal is to determines,. Since
fii+1 can be split into the stable and the unstable compom%m(zn,un) €
RS, fi(fzrl(zn,un) € R™ %, respectively, we can spli, . into its two compo-

nents as well. Explicitelyz, 1 = (zgl, zﬁl)t. Now we requirez, 1 to be a
point on the local stable manifold}? (¢i41(pi+1)). Taking into account that the
manifold is given as the graph g@f;, one deduces that

22 = in (%9421) : (4.9)
Usingzp4+1 = fi,i+1(2n, u,), One immediately concludes that

fz'(,?zA(znv“n) = Pit1 (fz'(,gd(znaun)) . (4.10)

The nonlinear equation (4.10) now determines the control vajudecause all
other variables and maps are known.

The question that arises now is whether one can solve equation (4.1) for
Indeed, we can show that under certain assumptions such a control exists locally.
The proof of the following existence theorem is mainly based on the previous sec-
tions, where we have introduced all the relevant notations and results, together
with an application of the Implicit Function Theorem, cf. also Theorem 2 in the
Introduction of the thesis.

Theorem 4.3.1 (EXISTENCE AND UNIQUENESS THEOREM)

Letz, 1 = f(x,,uy,) beadiscrete dynamical systemgiven asin (4.1), which pos-
sesses a hyperbolic periodic orbit {m, . .., pr_1} of period k > 1 for u,, = u,. As-
sume that D f*(p;) has s stable eigenvalues, m > s > 1, and m — s unstable ones
with corresponding generalized eigenvectors «, vs,...,v. and wi,... , w’, .,
where: = 0,...,k — 1. Define ¢;, f; ;-1 as in Definitions 4.2.1 and 4.2.5. Let
U; C X bean appropriate open neighborhood of p, for eachi € {0,...,k—1} and
D C R™5 be an appropriate open neighborhood of w,. We denote V; = ¢;(U;),
which is an open neighborhood of ¢ (p;) = 0. If 2, € U; at time n for one
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i € {0,...,k — 1}, then there exists a unique control «, € D near u, that stabi-
lizes the dynamical systemat O(py) provided that

T | Oulf (pis 0))] (4.11)

is invertible. g denotes the projection onto the linear unstable subspace

Eu(Pz‘H)-

Pit1)

Proof
In order to control the system, we demangl,;, or equivalently, z,,; =
$i+1(xn11), to be on the local stable manifolé? . (p;;1) fori € {0,...,k — 1},
respectively ori¥;? (0), i.e.,
2
20 = Pl

~ fi(,2.1(znaun) = Yin1 <fz z+1(znaun)> .
We definef;: R™ x R™~% — R™~¢% py

Fi(z,u) = fi(,2-1( u) — iy <fz H_l(z,u)) .
Then
Fa ) = b (L (5w) & Fzu) =0,
In particular, forz = ¢;(p;) = 0 andu = u,,
F(0,uy) =0

holds true with0 € V;, u, € D, whereV; := ¢,(U;) is determined by an appropri-
ateU; as stated in the theorem. Let us consider

OuF,(z, U,) € R(mfs)x(mfs)

0,u4)

where|(g,,,) means that one takes= 0 andu = u,. If this matrix is invertible,
then we are able to apply the Implicit Function Theorem in order to obtain the
existence of the contral,, which stabilizes the system. We compute

OuF,(z,u)‘ 0,u4)

= 0Oy (fi(,?ll( u) — ¢z+1(fz z+1( “))> (00

_ (2) (1)

= o (fhGw)| o (Ui ew)|
Recall that); 1 (0) = 0 and, in particularD+; 1 (0) = 0. We conclude

(?,/Jz+1(fz z+1(z’u))> ‘(o,u*)

Oy 7/’z’+1(y)‘y:0 Oy (fz(a»l(zﬂu)>

= D?/Jz’+1(y)‘ o Oy (fz'(,Brl(Z’u)> ‘
= 0

=1 l+1( u)

(0,ux)

(0,u4)
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Therefore,

3uFi(ZaU)‘ = 0Oy (fi(jzrl(z’u» ‘

(0us)

(0,u4)

Our goal is now to rewrite the derivative ‘ff?ﬂ with respect tou in terms of
the original mapf and the local coordinate transformatiofis Let us recall the
Definitions 4.2.1 and 4.2.5 in order to obtain the following.

0, (£ (=)
o)

Here, mgu, ) R™ — E"(pi+1) denotes the projection onto then — s)-
dimensional linear unstable subspdggp; ). The projection can be exchanged
with the derviative such that we obtain

R 00 (B (GO @) |
f(T; 2 + piyu) — pis1)) ‘(Ou

(
(T 2 + pi,u)) — Tijrllpiﬂ)
(

(0,u+)

— Au[rreun ((¢i+1(f(¢;1(z),u)))

|

(0,u)

(

= mu(piir) | O (Tig
= TEu i) O
u

= TE(pit1) _au T,

~0y (T3 piv1)

Ou(Tiyy Pie1)=0

T sy | Ou (T3 (1T 2+ piyw)

(0,11.*):|
= g [T @@z +piw) |

(Ou)d’

Finally, we have shown that

OuF(0)| = T [T (Ou(f(Ti2+ piyw)) |

(o,u*)] '

(0,u4)

By assumption (4.11),
7-‘—E'“(pH_l) [au(f(plﬂ u*))]

is invertible. Thus, we conclude thé];Fi(z,u)‘ is invertible, which allows

sUx

us to apply the Implicit Function Theorem. There exist open neighborh@aufs
0 = ¢i(p;) andD C R™~* of u, and a unique mapping;: V; — D such that
Fl(Z,Gl(Z)) =0 VzeV.

Is (z,u) a point with F;(z, ) = 0, it follows thatu = G;(z). Hence, we can find
open neighborhoodg and D so that equation (4.10) has a unique solutipn m
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Remark

The proof of the above theorem relies on the Implicit Function Theorem and the
Stable Manifold Theorem 1.2.3, which have also been used to prove the main theo-
remin Chapter 2. Since we ugg’ . instead ofi¥’* of the periodic orbit, this result

is only a local one.

4.4 An application to the Henon map

In Section 3.3, we have already demonstrated the stabilization strategy for hyper-
bolic saddle fixed points of thed#ion map. Since we are now able to stabilize sys-
tems at hyperbolic periodic orbits of period greater than one, we apply our method
from the previous sections to a peri@drbit of the uncontrolled dhon map

f(@,y,0,) = (14 —2® + 0.3y, z).

Recall that the fixed points of the map are given by

1
$1’2:§(b—1ﬂ:\/(b—1)2+4a).

Now we compute the perio2l-orbits for f. Here we use the knowledge about
the fixed points in order to simplify the equation. We determ(ingy) such that

f2($7 y? a’*) = ($7 y)1 Iel
f2($7y7a*) = f(a* - 172 +by7$) = ($7y
& (ay — (ay — 2° +by)? +bz,ay — 22 + by) = (z,7)

~—

Solving the second equation fgrwe get
a* - (I;Z
1-b "

Now we solve the first equation farand obtain

y:

r =a, — (a, — 2%+ (ay —2%))? 4+ bz

1-0
e 0 =(a—2)?+2(1-0)>—a,(1-0)?

fixed pt. eq.

MEERMC o 2z —a (1)) (@2 2 (1 —b) —ay)

The term(z? + z (1 — b) — a,) = 0 is the part which comes from solving the fixed

point equation. Therefore, we only need to solve

0=2—(1—-bz—a,+(1—-0)?

for 2 to obtain the periodic orbits of periczl There exists exactly one peri@d-
orbit for the HEnon map as long asz > 3 (1 —b)?, which is true fora = a, = 1.4
andb = 0.3. Thez-coordinates of the periof-orbit are given by

1
Tp1,P2 = §(l—b:i: \/4a*—3(1 —b)z).
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If we denote the periodic orbit by(zp1,yp1), (zp2,yp2)}, it follows from the
evolution equation that the orbit lies along the line- y = 1 — b and moreover,
rp1+ypr1 = Tp2+Yp2 = Tp1 +2p2 = yp1 +yp2 = 1 —b. Thus, we can easily
write down the period orbit:

{(%(1 —b+v/Aa, —3(L )%, (1—b—+/2a, —3(L - b)?)),
1

(5(1—b—+4a, =30 —b)2),%(1—b+ \/4a*—3(1—b)2))}.

We check that the periodic orbit we have found, is a hyperbolic saddl|€ famd
embedded in the strange attraciyrcf. Figure 4.2.

DO | =

2

2 -15 -1 -05 0 0.5 1 15 2
x(n)

Figure 4.2: The strange attractdrand the hyperbolic saddle peri@darbit of the
Hénon map.

Using the specific parameter values- a, = 1.4 andb = 0.3, we obtain approxi-
mately
(xp1,yp1) = (1.3661, —0.6661)

and
($p2,yp2) = (—06661, 13661)

Since we already introduced all the extensive computations for the fixed point
case of the l@hon map in Section 3.2, we will not go into detail here. We shift
(xpi,ypi) fori = 1,2 to (0,0) by defining the coordinate chargs. The eigen-
values ofD f?(zp1,yp1) are approximatelp, = 0.1758 and\, = —3.2158. The
two transformation matriceg andT; are given by the corresponding eigenvectors

. [—0.0454\ | [/—0.7896\ 0.0929 \ , [/—0.9351
v = v = v — v —
y —0.9990/)" —0.6136 ) ¢ —0.9957)" ¢ 0.3543 )’
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where v}, vl are the eigenvectors db f?(xp1,yp1) and v2,v2 are those of

Df2(xp2,yp2). Thus, we can write down the transformatiofsand¢, as well as

the functionsf; » and f2; according to Sections 2 and 3. The coefficients for the
two local stable manifolds can be computed by Maple. Approximately, they are
given as follows:

s1, = 0.01840966191 and s, = 0.003068471051
for the manifold at the first periodic poitp, yp1) and
s9, = 0.04312614006 and sy, = —0.01655869774

for W (zp2,yp2). Note that in the periodic set-up, we use the same algorithm in
Maple as for the fixed point case. We just replace the fhafith >

Now the control algorithm can be implemented as it was described in Section
2.3. LetU; be an open neighborhood 6fp1,yp1) andUs be an open neighbor-
hood of (zp2, yp2) such that; N U, # (). For example, one can compute

d := dist((zp1,yp1), (P2, yP2))

and taker := d — ¢ for some small positivé. ThenU; := B,(zp1,yp1) and
Us := B, (zp2, yp2) are balls with radius centered at the corresponding periodic
point such that/; N U, # (. A given orbitO(xy, yo) with either (z,,,y,) € Uy
or (z,,yn) € U, at timen should be controlled by forcing it onto one of the
local stable manifold$V;’ .(xpi, ypi), i = 1,2. We need to make a distinction
of the two cases wherér,,y,) € U; or (z,,y,) € Us. Then, depending on
the fact in which neighborhootk;,, v,,) lies, this point is transformed into local
coordinates by the corresponding transformatiprfterwards, the control value
ayn, IS computed according to (4.10). In Section 3.3, using Maple, we were able to
compute the control explicitly, although the control law was rather complicated.
Unfortunately, it is not possible to derive such an explicit formula for the petiod-
case. We have to use Newton’s method ('fsolve’ in Matlab) in order to obtain the
control valuea,,. Usinga,, we compute the next iterate,, 1, yn+1). Then the
control is switched off again, i.eaxr = a, for all K > n, until the orbit leaves an
e-neighborhood ot} .(zpi,ypi), i = 1,2.

The difference between the control algorithm in Section 2.3 and the one pre-
sented here is that we have to distinguish between the two neighborbpads
U, and choose the corresponding coordinate ch@arfBhe stabilization algorithm
for the period2 case is successfully implemented as we will illustrate now.

We consider the initial conditiofizy, y9) = (0,0) within the trapping region
R of the strange attractod.
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0 20 40 60 80 100

0 20 40 60 80 100

Figure 4.3: The uncontrolled ¢tion map with(zy, yo) = (0, 0).

Figure 4.3 shows the iterations @fy, yo) = (0,0) under the original uncontrolled
map. Our goal is to compare our nonlinear method with the OGY-method for pe-
riodic orbits. Note that the algorithm for the OGY-method was implemented using
the procedure described in [RGOD92]. The next two figures show both algorithms
applied to the same initial conditiqy, o) = (0,0).

0 20 40 60 80 100

0 20 40 60 80 100

Sqcl |
=15 Av

0 20 40 60 80 100

Figure 4.4: The nonlinearly controlledgddon map witha, o) = (0, 0).
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0 20 40 60 80 100

Figure 4.5: The OGY-controlled éfion map with(zy, o) = (0,0).

Again, we have divided each Figure in three parts, showing the two state variables
and the control. As can be seen in Figures 4.4 and 4.5, both methods work success-
fully. The z-coordinates are stabilized oni¢; andzpy and they-coordinates

are stabilized ontgp; andyps. Nevertheless, there are some differences in the
way the stabilization is achieved. On a first glance, both methods force the or-
bit O(0,0) on the periodic orbit. But in comparison, our method is more precise
in the following sense: If one compares the distanaegs- zp;| and |y, — yp;|

for i = 1,2, then one realizes the following. The nonlinearly controlled orbit
O(z9,yo) has almost no difference in the coordinates to the pe2iodbit. In con-

trast, the OGY controlled orbit differs more from the coordinates of the periodic
orbit. Thus, the nonlinear stabilization is more precise and even. Furthermore, the
orbit controlled with the OGY-method leaves the coordinates of the periodic orbit
quite often, cf. Figure 4.5. As a result, the OGY-method has to control much more
often with larger controls than our method. Considering the last row of the Fig-
ures 4.4 and 4.5, one can see the values of the captrdh the OGY case, there

are large peaks within about every five iterations whereas in the nonlinear control
case, the control is basically applied at the beginning and then differs only in tiny
amounts fromu, = 1.4. Thus, only slight control steps are necessary to keep the
orbit near the perio@-orbit if one uses our stabilization procedure.

In conclusion, we emphasize that our stabilization method is more global and
effective in case of periodic orbits than the OGY-method. The stabilization is uni-
form and less control steps are needed. However, the new method demands more
computational effort, and thus, it is more costly than the OGY-method.



Chapter 5

A second application: Thelkeda
map

In this chapter, we illustrate our nonlinear stabilization method, which has been
developed in Chapter 4. So far, we applied the feedback control to émeriH”
map, that is somewhat artificial. Therefore, our remaining task is to apply the
stabilization procedure to a dynamical system that has been derived from a realistic
model. We choose the so-called Ikeda map which represents a nonlinear optical
ring cavity. In the first section, we give an overview of the map and its dynamics.
Section 2 is a numerical illustration of the control method. Here, we stabilize the
system at a hyperbolic periodic orbit of period 3.

5.1 Dynamicsof the lkeda map

Generally speaking, a laser is an optical oscillator where coherent radiation is gen-
erated by stimulated emission of radiation from an atomic medium contained in
the sample cell. In our case, the atomic medium (electrons, atoms or molecules)
is a two-level atom, e.gC'Os. It has been shown in numerous examples, that at
high input power, the output of a laser system can behave in an irregular manner,
cf. [Mil91]. Numerical and theoretical examination have shown that this irregular
behavior illustrates aspects of chaos theory such as period doubling bifurcation and
strange attractors, cf. for example [HIM85, Ott93, Sch99].

We consider the one-dimensional complex nfafy — C, which is given by

f(z) =a+ Rz exp (z (p — 1+p|z|2)>' (5.1)

The mapf defines a discrete dynamical system
Zn+1 = f(zn) (52)
that describes the dynamics of a simplified laser. It was introduced by K. Ikeda in

1979 [Ike79]. In the setting of [Ike79], equation (5.2) describes a nonlinear optical

60
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sample cell

A

M3 N\ /M,

Figure 5.1: The nonlinear ring cavity which is described by the lkeda map (5.1).

ring cavity. The schematic diagram in Figure 5.1 depicts situation.

The Ikeda map represents the evolution of the electric field (the light) inside the ring
cavity, i.e., the laser. The ring cavity itself consists of four mirtfs M-, M3 and

My, where M3 and M, have reflectivityl, whereasiM; and M, have reflectivity

R. Moreover, the sample cell inside the cavity contains the atomic medium that
has two levels. One can view the system given by (5.1) as follows: A string of light
pulses with amplitude enters atM; and is partially transmitted. The light now
enters the sample cell where stimulated emission and absorption take place. The
transmitted light hits\f;, and is then partially transmitted fd; and M. Thus, we
obtain a ring resonator. Let the statec C be given. Thenz,| is the amplitude

and the angle of, is the phase of the-th light pulse just to the right ol4. The
amplitudea is the amplitude of the so-called pumping light on the left of the ring
cavity. The parametep is the phase shift experienced by the pulse in the vacuum
region and the term-p/(1 + |2,|?) is the phase shift in the nonlinear medium,
which is caused by the stimulated emission and absorption in the two-level atom.
Thus, the complex amplitude af,,; of the electric field at thén + 1)st cavity

pass can be understood as function of the electric field amplitude atttheavity

pass.

Remark
The one-dimensional complex system given by (5.1) can be written as a two-
dimensional real system which reads

(o) = ("R ). e
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wheref := ¢ — p/(1 + 22 + y2).

In [Ike79], a detailed derivation of the system (5.2) is given and it is stated
that the transmitted light exhibits chaotic behavior. Hammel et al. [HIM85] put the
emphasis on a detailed description of the dynamics of the map. They point out that
the mapf: C — C is invertible and the inverse map is

_ 1 . R
)

Moreover, the Ikeda map is area contracting siegD f (z,y)) = R < 1 for all
(z,y). The Jacobia® f (x,y) is given by

R A B
Df(xay):m(c D>a

where
A = (1+2°+y*? cos(h) —2pz? sin(f) —2pzy cos(h),
B = —(1+4z%+y%)?sin(0) —2py?® cos() — 2pzy sin(h),
C = (L+z®+y*?sind) +2pz? cos(d) — 2pzy sin(h),
D := (1+z*+y%)?% cos(f) —2py?® sin(f) +2pzy cos(h).

Another important observation in [HIM85] is the existence of a positively invariant
disk B, (a,0) in the complex plane centered(at 0) with radiusr := a R/(1 — R)

such that all points in the complex plane are mapped e, 0). Hence, by
Definition 1.3.3, the disk3,(a,0) is a trapping region and it turns out that there
exists an attracting set defined by

A= m fi(B,(a,,O)).
i=1

Because the mapis area contracting, the area of the image undef the disk is

R? times the area of the disk itself. Sinée< 1, the attracting setl has a fractal
dimension less than two. A figure of the strange attracting4sein be seen in
Figure 5.2.

5.2 Stabilization in a period-3 orbit

The stabilization of the Ikeda map is achieved by changes of the amplitude of the
light pulses entering the optical ring cavity. Thus, we uses our time dependent
feedback control parameter. The nominal value,is= a, = 1. Moreover, let
R =0.9,0 = 0.4 andp = 6, cf. [SO95]. The aim is to stabilize the Ikeda map at
a higher periodic orbit that is hyperbolic with a saddle structure.

We choose to find periodic orbits of peridd Due to the nonlinearities in
the system given by (5.1), we can not expect to find periodic orbits of p&riod
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Figure 5.2: The strange attractdrof the Ikeda map witlh, = 1, R = 0.9, = 0.4
andp = 6.

analytically. Thus, one could use one of the numerous dynamical system programs
such as Dynamics [NY94]. Another possibility is to write a Matlab program in the
following manner, which is what we have done.

% size of the gridis d

d=0. 1;
for j=-2:d:2
for i=-3:d:3

x=[i;j];
fsolve("f"3(x,y)-(x,y)",[x;y])
end
end

It turns out that a hyperbolic periodic orbit of periéd= 3 is approximately given
by

{(xzp1,ypP1), (xp2,yP2), (xpP3,yP3)}
—  {(0.085797, —0.88323), (0.77797,0.76717), (1.014, —0.98324)},

cf. also [SO95]. The period-orbit is not stable. The strange attractor in Figure 5.2
has been obtained in the following way. We compute the fiistterations of the
Ikeda map with initial condition(xy, yo) = (zp1,yp1). After about 13 iterations,
the orbitO(xzp1,yp1) leaves the hyperbolic periodic orbit of peri@dwhich is
embedded in the strange attracting detthat is shown in Figure 5.2. Our goal is
the stabilization of the Ikeda map at this periodic orbit.
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As in Chapter 4, we compute the Jacobi@ng (zp;, yp;) for i = 1,2, 3 with
the corresponding eigenvalues and generalized eigenvectors. We obtain the eigen-
values)\; = —0.0479 and \, = —11.0979. The transformation matriceg are
given by

oo (08440 —04312\ [ 08723 —0.9999
70 05364 09022 /0 "2\ —0.4890 0.0107

and

7. [ 04215 —0.8980
37\ —0.9068 0.4401 /-

Again we use the Maple program to compute the approximations of the stable
manifolds. We obtain

Y1 (u) = 0.5437u® + 0.2358 u>, 1y (u) = 0.9117 u? — 1.5458 u3

and
3(u) = 0.3277 u? — 0.0347 u®.

Remark

This time, the coefficients afy, 1o ands could not be obtained as directly as in
Section 4.4. Instead, we have to expand the equations from which the coefficients
are computed into a Taylor series. This is due to the fact that we do not have a poly-
nomial evolution equation, but one with sine and cosine terms. These terms have
to be approximated by series in order to make a comparison of two polynomials to
find the coefficients.

We start with the control of the orbit which is generated by the initial condition
(z0,y0) = (0,0) wheree = 0.01 anda,,., = 1. The uncontrolled orbi©(0, 0)
can be seen in Figure 5.3. The successful stabilization of the orbit with initial
condition (zy,y0) = (0,0) is shown in Figure 5.4. It takes quite a long time for
the control to reach its goal, but at time= 46, we can control. If we take a
smaller bound on the control, e.@,,.. = 0.05, then stabilization is impossible.

In this case, the values of the feedback congroére such thafa, — 1| > 0.05.

The controls that would be needed for stabilization are too large. Therefore, we
can not stabilize the lkeda map, because we have chosen the bound on the control
too small.

Now we choose an initial condition which is close to one of the periodic points,
e.g.,(zo,yo) = (0.08,-0.9) € U(xzp1,yp1). AS we have seen in Figure 5.2, the
period3 orbit generates the picture of the strange attracting set. It is shown below
that it takes only small changes in the contiglin order to stabilize the system.

In contrast to the control in Figure 5.4, where stabilization was achieved with quite
large control values, the nonlinear stabilization is much easier achieved here, since



CHAPTER 5. A SECOND APPLICATION: THE IKEDA MAP 65

2 T T T T
- N\/\/\/W\/U\/\/\N\/\/\/\/\/\/V\NV\/\MV\/\
= 0
_2 L L L L
[0] 20 40 60 80 100
2
= i
s OWWWWWW
_2 L L L L
0] 20 40 60 80 100
2 T T n T T
=
?5/1
O L L L L
0] 20 40 60 80 100

Figure 5.3: The uncontrolled lkeda map with, yo) = (0,0).
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Figure 5.4: The nonlinearly controlled Ikeda map Wth, yo) = (0,0) ande =
0.01, amey = 1.

the initial condition is close to one of the periodic points.

This orbit is stabilizable and can be kept close to the pesiodbit, cf. Figure 5.5.

If one reduces the maximal control valuedg,, = 0.05, then control is no more
possible, cf. Figure 5.6. The reason for this is that larger control values are needed
than those admitted by the inequaljty, — 1| < 0.05. But since we do not allow
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Figure 5.5: The nonlinearly controlled Ikeda map witly, yo) = (0.08,—0.9)
ande = 0.01, a;nqz = 0.06.
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Figure 5.6: The nonlinearly controlled Ikeda map witly, vo) = (0.08,—0.9)
ande = 0.01, ayqy = 0.05.

the control to leave this bound, the stabilization of the system failg,if is too
small. Nevertheless, far,,, = 0.06, nonlinear stabilization is possible.
In summary, our method is able to stabilize the lkeda map.



Bibliography

[ASY97]

[CC96]

[Dev86]

[DRS90]

[GH83]

[GOY88]

[Halgs]

[HDM94]

[Hen76]

[HIM85]

[HLO8]

K. T. Alligood, T. D. Sauer, and J. A. YorkeChaos - An Introduction
to Dynamical Systems. Springer Verlag, New York, 1997.

D. J. Christini and J. J. Collins. Using chaos control and tracking to
suppress a pathological nonchaotic rythm in a cardiac méthgkical
Review E, 53:49-52, 1996.

R. Devaney. An Introduction to Chaotic Dynamical Systems. The
Benjamin/Cummings Publ. Co. Inc., Menlo Park, 1986.

W. L. Ditto, S. N. Rauseo, and M. L. Spano. Experimental control of
chaos.Physical Review Letters, 65:3211-3214, 1990.

J. Guckenheimer and P. Holmesonlinear Oscillations, Dynamical
Systems and Bifurcation of Vector Fields. Springer Verlag, New York,
1983.

C. Grebogi, E. Ott, and J. A. Yorke. Unstable periodic orbits and
the dimensions of multifractal chaotic attractoRhysical Review A,
37:1711-1724, 1988.

J. K. Hale. Asymptotic behavior of dissipative systems. AMS, Provi-
dence, 1988.

B. Hubinger, R. Doerner, and W. Martienssen. Controlling chaos ex-
perimentally in systems exhibiting large effective lyapunov exponents.
Physical Review E, 50:932-948, 1994.

M. Hénon. A two-dimensional mapping with a strange attrac@om-
munications in Mathematical Physics, 50:69—-77, 1976.

S. M. Hammel, C. K. R. T. Jones, and J. V. Moloney. Global dynamical
behavior of the optical field in a ring cavityournal of Optical Society
Am. B, 2:552-564, 1985.

A. Hubler and E. wscher. Resonant stimulation and control of non-
linear oscillators.Naturwissenschaften, 76:67—69, 1998.

67



BIBLIOGRAPHY 68

[Ike79]

[Isi89]

[IMTV97]

[KH97]

[Lor63]

[Mil85]

[Mil91]

[MS82]

[ND92]

[INS90]

INY94]

[OGY904]

[OGY90b]

[Ott93]

[PMT94]

K. Ikeda. Multiple-valued stationary state and its instability of the
transmitted light by a ring cavity systemOptics Communications,
30:257-261, 1979.

A. Isidori. Nonlinear Control Systems. Springer Verlag, New York,
1989.

K. Judd, A. Mees, K. L. Teo, and T. L. Vincen€ontrol and Chaos.
Birkhauser Verlag, Boston, 1997.

A. Katok and B. HasselblattIntroduction to the Modern Theory of
Dynamical Systems. Cambridge University Press, Cambridge, 1997.

E. N. Lorenz. Deterministic nonperiodic flodournal of Atmospheric
Sciences, 20:130-141, 1963.

J. Milnor. On the concept of attracto€ommunications in Mathemat-
ical Physics, 99:177-195, 1985.

D. L. Mills. Nonlinear Optics. Basic Concepts. Springer Verlag, New
York, 1991.

J. Macki and A. Strauss.Introduction to Optimal Control Theory.
Springer Verlag, New York, 1982.

G. Nitsche and U. Dressler. Controlling chaotic dynamical systems
using time delay coordinate®hysica D, 58:153-164, 1992.

H. Nijmeijer and A. J. van der Schafilonlinear Dynamical Control
Systems. Springer Verlag, New York, 1990.

H. E. Nusse and J. A. Yorke Dynamics. Numerical Explorations.
Springer Verlag, New York, 1994.

E. Ott, C. Grebogi, and J. A. Yorke. Controlling chadghysical
Review Letters, 64:1196-1199, 1990.

E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaotic dynamical
systems.CHAOS Soviet American perspectives on nonlinear science,
64:153-172, 1990. ed. D. K. Campbell.

E. Ott. Chaos in Dynamical Systems. Cambridge University Press,
Cambridge, 1993.

M. Paskota, A. |. Mees, and K. L. Theo. Stabilizing higher periodic
orbits. International Journal of Bifurcation and Chaos, 4:457—-460,
1994,

[RGOD92] F. J. Romeiras, C. Grebogi, E. Ott, and W. P. Dayawansa. Controlling

chaotic dynamical systemPhysica D, 58:165-192, 1992.



BIBLIOGRAPHY 69

[Rob95]

[S+94]

[S+97]

[Schog]

[SGOY93]

[SO95]

[Son98]

[Voc9g]
[Wig88]

[Wig90]

[WJ96]

C. RobinsonDynamical Systems: Sability, Symbolic Dynamics and
Chaos. CRC Press, Boca Raton, 1995.

S. J. Schiff et al. Controlling chaos in the braifature, 370:615-620,
1994.

A. Schenck zu Schweinsberg et al. Quasicontinuous control of a
bronze ribbon experiment using time-delay coordinakRtg/sical Re-
view E, 55:2145-2158, 1997.

H. G. Schustelandbook of Chaos Control. Wiley-VCH, Weinheim,
1999.

T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke. Using small pertur-
bations to control chaod\ature, 363:411-417, 1993.

P. So and E. Ott. Controlling chaos using time delay coordinates.
Physical Review E, 51:2955-2962, 1995.

E. SontagMathematical Control Theory. Springer Verlag, New York,
2nd edition, 1998.

T. Vocke. Control of Chaos. Diplomarbeit, Bremen, 1998.

S. Wiggins. Global Bifurcations and Chaos: Analytical Methods.
Springer Verlag, New York, 1988.

S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems
and Chaos. Springer Verlag, New York, 1990.

M. Watanabe and R. F. Gilmour Jr. Strategy for control of complex
low-dimensional dynamics in cardiac tissueurnal of Mathematical
Biology, 35:73-87, 1996.



| ndex

area contracting, 62

area contracting map, 28
attracting set, 9

attractor, 9

autonomous difference equation, 1

box counting dimension, 11, 28

chaotic system, 10
chaotic transient, 25

diffeomorphism, 2
local, 2

dynamical system
chaotic, 10
dissipative, 28
linear, 2,5
nonlinear, 2

eigenvalue
stable, 5
unstable, 5
existence and uniqueness theorem,
19, 52

fixed point, 2
asymptotically stable, 3
attractive, 3
hyperbolic, 3
saddle, 3
stable, 3
unstable, 3

Hénon map, 27

fixed points, 29

strange attractor, 28
Hartman Grobman Theorem, 4

70

Ikeda map, 60
period3 orbit, 63
strange attractor, 62
Implicit Function Theorem, 19, 52
induced map, 50
initial condition, 2
initial value problem, 2
invariant set, 7
negatively, 7
positively, 7

Jacobian matrix, 3

laser, 60
local attractor, 9
Lyapunov exponent, 11

manifold
global stable, 7
global unstable, 7
local stable, 7
local unstable, 7

nonlinear control law, 18

optical ring cavity, 60
orbit, 2
backward, 2
forward, 2
period%, 2
periodic, 2

phase space, 1

sensitive dependence on initial con-
ditions, 10

spectral radius, 6

splitting, 6, 49



INDEX

Stable Manifold Theorem, 8
strange attractor, 11
subspace

linear center, 6

linear stable, 5

linear unstable, 5

trapping region, 10

71



