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Nomenclature

The notation in this thesis is not fixed in a way that a specific symbol necessarily means the
same thing throughout the whole thesis. The symbols are defined according to common usage
and the formulas are aiming at readability instead of fulfilling a fixed symbol scheme.

The convention is the following:

• the symbols defined in the nomenclature represent the default usage for the whole thesis

• any symbol can be redefined in the thesis. This redefinition is then valid from the point of
redefinition till the end of the current hierarchy such as chapter/section/subsection.

Symbols:

XXX : bold face, upper case Latin letters denote
tensors of second order (matrices) or higher in symbolic notation

xxx : bold face, lower case Latin letters denote
tensors of first order (vectors) in symbolic notation

xi : denotes the i-th element of xxx
xxxi : denotes the vector xxx with index i
d : amount of free parameters
Λ : d-dimensional parameter space
λλλ : vector of parameters ∈ Λ
B : reference configuration of a body
X : a point in B
S : space in which the body moves
x : a point in S
ggg : Riemannian metric on B
GGG : Riemannian metric on S
Md : d-dimensional manifold
TxM

d : Tangent space of a manifold at at point x
FFF : deformation gradient
CCC : right Cauchy-Green-Tensor
EEE : material (Lagrange) or Green strain tensor
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SSS : second Piola-Kirchhoff stress tensor
C : elasticity tensor
DDD : flexibility tensor
MMM : mass matrix
KKK : stiffness matrix
BBB : damping matrix
NNN i : local shape function introduced by the finite element approach
N : number of nodes
DOF : degrees of freedom, in our case displacement degrees of freedom
n : number of degrees of freedom (DOF), in our case displacement degrees

of freedom including rotations
PDF : parametric degrees of freedom
N : solution space for displacements, Rn

D : subspace of Rn, designed to embed the solution manifold Md approximately
DDDi : mode, see description below, a global shape function, response manifold approach
Φ : operator transforming D to N

In this thesis the word mode is used multiple times. Basically it describes a vector of displacement
degrees of freedom. Therefore this vector represents some deflection shape. It is distinguished
between

• normal modes, solutions of the generalized eigenvalue problem [KKK − λMMM ]xxx.

• derivative modes defined in the thesis.

• residual modes, additional displacement vectors. Defined in the thesis.
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Abstract

This thesis is about a fast and accurate reanalysis procedure. It focuses on elastic structures
used in parametric design, optimization and reliability analysis. The mathematical description
bases on the manifold structure of parametric problems described by a non iterative system
of equations. Therefore the method will be called approximate response manifold (ARM). The
finite element method is used as the underlying method of simulating these structures.

An efficient set of solution vectors is derived to embed the solution manifold of the parametric
design space within an Euclidean subspace of the original problem. The solution is calculated
using the Hamilton principle and the Rayleigh-Ritz procedure.

Different strategies to obtain the solution vectors are discussed, depending on the parameter
range of the underlying reanalysis problem. After introducing the procedure, the numerical
effort and complexity is outlined in comparison to a traditional analysis.

The procedure is designed for large and complex optimization problems, characteristic for real
world problems in industrial structural design, such as the automotive design process. Focused
on a real world problem the efficiency of the formulation is discussed and compared, in terms
of accuracy and numerical effort, to a traditional surrogate model such as the response surface
method (RSM).

It is shown that the method can solve large scaled linear static structural problems with up to
hundreds of design variables very fast on low end computing systems. It is therefore suitable for
multi-criteria optimization, trade off studies and reliability analyses.
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1 Introduction and goals

In previous times the finite element (FE) based simulation had primarily a more advising role
concerning design decisions in the car body development. Main reasons for that were missing
accuracy of the simulation models and a too time consuming process to create a simulation
model out of computer assisted design (CAD) based geometry. Due to a steady accelerating
modeling process and a constant increase of computing power, as predicted by Moore’s law,
enough (affordable) computing resources were provided to solve models with enough details to
come close to the desired accuracy (linear statics, modal dynamics). The crossover point was
reached by dramatically improving the accuracy of the finite element models and limiting the
error, of displacements and stresses, to an acceptable engineering range of a few percent for static
and dynamic simulations. The most dramatic change however was not made by evolutionary
increase of model size and therefore affordable geometric details solvable on higher megaflop
machines. Instead the breakthrough occurred with a quantum leap considering connectivity
data such as weld spots and seem welds (see Vopel and Hillmann [120], Zhang and Richter

[124], and Heiserer, Sielaff and Chargin [39]).

After the introduction of this process-oriented spot weld approach many commercially available
finite element solvers came up with similar solutions (see [93]). This changed the role of the sim-
ulation significantly. From a more consulting role it changed to a confirming and more designing
role. The challenge nowadays is that, instead of only confirming or objecting design changes in
the car body development, design changes have to be suggested and introduced by the FE based
simulation.

Currently there are mainly two major bottlenecks visible in this design process. One is the cor-
relation of different simulation objectives (such as statics, dynamics, acoustics, crashworthiness,
durability, fatigue, etc.) among a certain CAD status. Design suggestions emerging from one
discipline must be reevaluated by other disciplines to obtain a coherent status. The other bot-
tleneck is the automated search for design improvements using numerical optimizers. A common
design evaluation for different criteria and disciplines is extremely time consuming.

Facing the fact that one single simulation of these large scaled models is still a crucial task
(hours and days of computing time) an automated search for improved designs, especially the
usage of mathematical optimization, is immense and turns out to be either not affordable or at
least not practicable in the given time frame if many criteria or disciplines have to be considered.
Due to the fact that most models are still growing with the computing resources, because of the
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need of more precise design forecasts, the hopes that the steady megaflop growth will solve the
multi-criteria optimization problem by itself have no real basis. This seems to be valid at least
for the next 5-8 years if we extrapolate the recent growth concerning computing power.

Beside the well known modal method for frequency response calculation there are few examples
in the finite element simulation which generate and reuse a priori knowledge of the system in
order to accelerate subsequent parametric analysis.

Fox and Miura [29] use a design of experiment to form a reduced basis which is used afterwards
as the solution space. Noor and Lowder [101], [102], and Noor [100], [97], [98] and [99], while
focusing on the solution of nonlinear systems, derive a reduced basis using continuous differen-
tiation of the initial solution. By iterating using a change in the stiffness operator Kirsch and
Liu [65], [61] use a polynomial expansion to form a reduced basis. Based on these Combined
Approximations a change in a sizing variable, a geometrical change (Kirsch and Pabalam-

bros [69]) a topological change (Kirsch [57], Kirsch and Pabalambros [70]) is efficiently
approximated. However, multiple parameters were not addressed with this approach.

A basis consisting of normal modes is used by Mass [87], Witta [121], and Freymann [30] to
predict the frequency response of moderate perturbed dynamic systems.

Common to all above listed approaches is the basic idea to reuse the results of prior calculations
and predict the subsequent analyses faster with a basis of a reduced Euclidean space. In this
thesis it is shown how such a subspace, which encapsulates the manifold of the parametric
solution most efficiently concerning accuracy and computing effort, can be generated.

Despite the above mentioned successes in this area of reanalysis a common theory for these
approaches is still missing. Due to that fact that a global understanding of the reduced basis
technique was difficult, an estimation of it’s mightiness and limitations was hardly possible.

The goal of this work is to contribute a common theory to this area and extend it to multi
parameters. By serving as a fast evaluation engine the approach can then, in multiple instances
representing different load cases, efficiently be used for multi criteria optimization.

Therefore the thesis focuses on the following contents and sub-ordinate targets:

• In chapter 2 the mathematical fundamentals of optimization are summarized to give an
overview of the design formulation. A typical optimization problem for structural problems
is presented and mathematically formulated. The deficiencies in todays procedures facing
large scaled optimization problems, as for example used in the automotive industry, are
outlined.

• Chapter 3 introduces the basic concept of the manifold, which represents the generalized
response surface of parametric systems. Chapter 3 also introduces the kinematic variables
to describe deformation and movement of elastic structures, which describe in conjunction
with the fundamental physical principles and equations of chapter 4 the structural system.

• Starting from a differential geometric point of view, the solution space of a multi para-
metric model is examined in chapter 5. Based on the analytic formulation of the equations

2



of motion, a convergent procedure for an approximation of the corresponding solution
manifold is given. This procedure will be called approximate response manifold (ARM).

Motivated by the before mentioned works of Fox/Miura and Noor, the Rayleigh-Ritz
method, the in 4 shown principle of the finite element method, is used to calculate efficiently
the approximated solution of the response manifold in the reduced basis.

• In chapter 6 it is shown that the solutions of fox [29], Kirsch [65], Noor [101], Mass

[87] and Witta [121] and even partly the Lanczos eigenvalue calculation, see Parlett

[107] and Komzsik [77], can be seen as special cases of this general scheme.

• The numerical complexity of the required operations is outlined in great detail in chapter
7 in order to estimate the numerical costs of the ARM method a priori.

• The last chapter 8 demonstrates the usage of the ARM method. Large scaled real world
problems are addressed, demonstrating accuracy and efficiency. The approach is demon-
strated with design variables typical for multi-criteria and multidisciplinary optimizations.
Based on an example, a comparison between the classical response surface method (RSM)
and the approximate response manifold (ARM) approach is given. It is shown that the
ARM approach can be interpreted as a physical based response surface instead of the most
widely used (at maximum) second order Taylor series based mathematical approaches for
response surfaces.

Special emphasis is put on the flexible use of existing FE programs. The formulation requires
mainly, in most programs existing, mathematical operators such as forward-backward substitu-
tions and decompositions. The data types are pure matrix and tensor based and the scheme can
be implemented in general FE programs which have a clean separation between mathematical
routines and finite element based modules. Therefore the approach is coherent with the require-
ment of the finite element method to be a flexible and modular approach for solving structural
mechanic problems.

3
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2 General demands for multi criteria

and multidisciplinary optimization

The mathematical formulation of a multi-criteria parametric problem is introduced. Typical
questions in engineering problems occurring in the automotive industry are presented and mathe-
matically formulated. A small example is introduced, which will be used throughout this thesis,
on which the formulation is demonstrated and the numerical approaches are applied later on.

2.1 Mathematical formulation

The general theory of mathematical optimization, as defined for example in Baier [8] or Es-

chenauer [22], bases on the following definitions:

λλλ is a d-dimensional vector, λλλ ∈ D and D ⊆ Rd open. (2.1)

f, hi : D → R, i = 1, . . . ,m+ p are real functions. (2.2)

The problem formulation looks like this:

Minimize f(λλλ) (2.3)

with the constraints (2.4)

hi(λλλ) ≤ 0, for i = 1, . . . ,m (2.5)

hi(λλλ) = 0, for i = m+ 1, . . . ,m+ p (2.6)

We call f(λλλ) the objective function. hi(λλλ) the constraints, and

R = {λλλ | hi(λλλ) ≤ 0, for i = 1, . . . ,m; hi(λλλ) = 0, for i = m+ 1, . . . ,m+ p} (2.7)

the feasible region. λλλ ∈ R is a feasible solution and

λ̄λλ ∈ R, f(λ̄λλ) ≤ f(λλλ), ∀ λλλ ∈ R (2.8)

is called the minimum, or global minimum. A local minimum λ̄λλ is defined as

∃ ε ∈ R 3 f(λ̄λλ) ≤ f(λλλ), ∀ λλλ ∈ S (2.9)

and S = {λλλ | λλλ ∈ R, ‖λλλ− λ̄λλ‖ ≤ ε} (2.10)
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To maximize a function f̄(λλλ) we can define f(λλλ) = −f̄(λλλ).

2.1.1 Multicriteria optimization

The multi-criteria problem can be formulated, see also Das [18], as:

F (λλλ) =


k1(λλλ)
k2(λλλ)
. . .

kn(λλλ)

 (2.11)

F (λ̂λλ) is said to dominate another F (λ̄λλ), denoted with F (λ̂λλ) ≺ F (λ̄λλ) if and only if ki(λ̂λλ) ≤ ki(λ̄λλ)
for all i ∈ {1, 2, . . . , n} and kj(λ̂λλ) < kj(λ̄λλ) for some j ∈ {1, 2, . . . , n}. A point λλλ∗ ∈ ΛΛΛ is said to
be Pareto optimal if and only if there does not exist λλλ ∈ ΛΛΛ satisfying F (λ̂λλ) ≺ F (λ̄λλ∗).

2.2 Practical formulation

In order to solve a physical problem numerically we have to describe it mathematically. Therefore
we will call the λi input parameters or design variables. In the case of a structural mechanical
problem these might be cross section values, sheet thicknesses etc.. The upper and lower bound-
aries on these parameters form D, which is called the definition space. Physical properties which
are design goals of our problem such as local and global stiffness, durability, etc., will be called
output parameters and denoted with ki(λλλ). Also other properties such as manufacturing costs,
weight etc. will be denoted as ki(λλλ). Generally we have certain restrictions or targets for the
ki(λλλ). Therefore the ki(λλλ) are mapped to the hi(λλλ) = hi(kj(λλλ)) and f(λλλ) = f(hi(λλλ)). λλλ’s which
do not violate any constraints form the design space. For certain problems trade-off studies be-
tween different ki are of interest instead of formulating a single target function f . Others just
require multidimensional parametric studies to understand relations between input and output
parameters or to show up the continuous evolvement from different points in the design space.

2.3 Numerical approaches and requirements

A lot of different numerical procedures exist to solve the optimization problem defined in 2.1 (see
for example Goldberg [33], Ingber [50] and [51], Fletcher and Reeves [26], Schitkowski

[116]). They all are suitable for different kinds of problems, such as problems for convex design
spaces, global or local search, linear and/or nonlinear constraints, continuous or discrete design
variables and so on. They all have in common that they need a lot of function evaluations to de-
rive the kj(λλλ). In many times the required function evaluations depend extremely on the number
of design variables. The in many cases least demanding optimization strategy concerning the
required function evaluations uses sensitivity information. Calculating the sensitivity, if done by
forward-/backward- or central-difference, would require an amount of simulations proportional
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Figure 2.1: Ten-bar truss problem. Italic numbers indicate element identifiers, the others are
node numbers.

to the number of design variables. Other search strategies can require significantly more function
evaluations. So the time for the function evaluation of the ki often becomes a bottleneck.

2.4 The classical ten-bar truss problem

Let’s look at the structure in Fig. 2.1. The structure has cross section areas of 1.0. The Young’s
modulus is 30,000. The structure is loaded with two nodal forces at the grid points number 3
and 4 in vertical direction. The goal is to reduce the weight of the structure by changing the
cross sections of the trusses. As constraints the displacements in vertical direction (coordinate
y) of points 3 and 4 should not increase and the maximum elastic strain in all members (1 to
10) should be below 1%.

A mathematical formulation would then look like:

λλλ ∈ R10 : design-variables, 10 cross sections (2.12)

f(λλλ) : weight of the structure (2.13)

7



Minimize f(λλλ) with the constraints

hi(λλλ) = −λi ≤ 0, for i = 1, . . . , 10 design variable constraints (2.14)

hi(λλλ) ≤ 0, for i = 11, . . . , 21 strain constraints (2.15)

hi(λλλ) ≤ 0, for i = 22 displacement constraint for degree of freedom 3-y (2.16)

hi(λλλ) ≤ 0, for i = 23 displacement constraint for degree of freedom 4-y (2.17)

This model will be used throughout the rest of the thesis to demonstrate some of the introduced
topics.
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3 Geometry and kinematics of bodies

The basic concepts of motion and elasticity are introduced using the abstract mathematical
formulation of tensors and manifolds. The outline is based on the formulations of Marsden

and Hughes [86], and Scheck [115]. The general concept of the manifold, introduced in 3.1
is essential for understanding the mathematical structure of the parametric solution which is
embedded in an abstract, higher dimensional mathematical space. The space of all displacement
degrees of freedom.

In the second part 3.2 the different configurations as well as motion and deformation specific
variables are introduced. This part is not essential for understanding the core of the thesis so it
can be skipped by the impatient reader. The interested reader is encouraged to immerse himself
in a complete and more exact derivation in the specific literature such as Marsden and Hughes

[86].

The introductory concept is oriented on the formulation of Haenle [35].

In continuum mechanics the word kinematics describes the deformation and motion of a body.
Such a body or continuum fills the open set B ∈ R3 of the Euclidean space with material
particles.

3.1 Abstraction of Euclidean space

3.1.1 Concept of manifolds

A manifold is the abstract mathematical generalization of a curve or a surface in the three
dimensional space. A d-dimensional manifold Md is essentially a space which is locally similar
to Euclidean space in a way that it can be covered by coordinate patches in R

d [37]. The
only concepts defined by the manifold structure are those which are independent of the choice
of a coordinate system. The abstraction gets rid of the embedding space and describes lower
dimensional objects, such as curves or surfaces in R3, independent from the embedding space. In
the context with manifolds the mapping onto the parameter space is called a chart or coordinate
system. A set of Cr-differentiable charts covering the whole manifold is called a Cr-atlas.
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3.1.2 Vectors and tensors

The tangent space TxMd of a d-dimensional manifold at a point x ∈ Md is spanned by the
tangent vectors on Md at x. A tangentvector v on Md in x ∈Md is a real function

v : F(Md)→ R (3.1)

with the properties

vx(αf + βg) = αvx(f) + βvx(g) R-linearity (3.2)

vx(fg) = f(x)vx(g) + g(x)vx(f) Leibniz rule (3.3)

Where f, g ∈ F(M) and α, β ∈ R. vx is the tangent vector on Md at point x. A linear function
fulfilling Eq. (3.2) and Eq. (3.3) is called a derivation. Partial derivatives of a function G ∈ F(M)
on Md cannot be build in general, but for the image of g in local charts. Lets assume (φ,U) is
a chart, p ∈ U a point of Md and g a function on Md. Then the derivative of g ◦ φ−1 is well
defined:

∂i

∣∣∣
p
(g) ≡ ∂g

∂xi

∣∣∣
p

:=
∂(g ◦ φ−1)

∂f i
(φ(p)) (3.4)

The functions

∂i

∣∣∣
p
≡ ∂

∂xi

∣∣∣
p

: F(M)→ R : g → ∂g

∂xi

∣∣∣
p
, i = 1, 2, . . . , n (3.5)

have the properties Eq. (3.2) and Eq. (3.3) and are therefore tangent vectors at M in point
p ∈ U ⊂ M . With Eq. (3.5) we gain two things. First we can define derivatives of smooth
functions g on M by projecting G via charts on an Euclidean space. Second we have a basis of
the tangent space TpM and every vector v in M has the natural basis

v =
n∑
i=1

v(xi)∂i (3.6)

The dual vector space to the tangent space TpM in p is the cotangent space T ∗pM . It is spanned
by its natural co-basis, which offers the following relationship

dxi
∣∣∣
p
(∂j
∣∣∣
p
) = δij , δij : Kronecker-Delta (3.7)

The vectors of the cotangent space T ∗pM are called covariant vectors, differential forms of degree
1, 1-forms or Pfaff forms. A contravariant vector is also called a tensor of type

(
1
0

)
, while a

covariant vector is called a tensor of type
(

0
1

)
. Multilinearforms

AAA = A
i1,...,ip
j1,...,jq

(∂i1 ⊗ . . .⊗ ∂ip ⊗ dxj1 ⊗ . . .⊗ dxjq) (3.8)

having the type
(
p
q

)
are called contravariant of rank p and covariant of rank q. Tensors not only

defined in one point on the manifold but on the whole manifold are called tensor fields. ⊗ is
the tensor product also called outer product. Further on we will also use Einstein summation
convention. If a sub/super script appears twice in a product, that double-appearance implies a
summation over that index:

ajbj =
∑
j

ajbj (3.9)
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3.1.3 Riemannian manifold

A differential manifold M is called Riemannian if it has a continuous
(

0
2

)
tensor field ggg with the

following properties:

• ggg is symmetric

• ggg(v, v) > 0, v ∈ TxMn if v 6= 0

The metric tensor ggg defines a scalar product < ·, · > on TxM
n:

< v,w >= gx(v, w) ∀v, w ∈ TxMn (3.10)

3.1.4 Maps of manifolds

Let X and Y be manifolds and

φ : X → Y (3.11)

a continuous map. φ is called a Cr-diffeomorphism if φ and φ−1 are Cr continuous (see also
Hawking [37]). For each scalar field g on Y the mapping φ defines the function φ∗g on X as
the function whose value at the point x of X is the value of g at φ(x):

φ∗g = g(φ(x)) (3.12)

φ∗g is called the pull-back of g to X under φ. Thus when φ maps points from X to Y , φ∗ maps
functions linearly from Y to X. With φ∗ we denote a linear operator (push-forward)

φ∗(x) : TxX → Tφ(x)Y (3.13)

3.2 Motion and deformation of a body on R3

3.2.1 Configurations

A body is an open set B ∈ R3. A configuration of B is a mapping φ : R3 ⊃ B → D ⊂ R3. The
configuration represents a deformed state of the body [86]. Therefore we differ between the refer-
ence configuration φ = identity and the physical configuration. We will denote the coordinates
of points in B with capital letters Xi(i = 1, 2, 3) and those in the current configuration φ(X)
with lower case letters xi(i = 1, 2, 3).

The displacements uuu are then denoted with:

uuu(XXX, t) = xxx(XXX, t)−XXX (3.14)
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3.2.2 Deformation gradient

The components of the deformation gradient F is defined via

F ab =
∂φa

∂Xb
=
∂xa

∂Xb
(3.15)

Using Eq. (3.14) we get:

∂xa

∂Xb
=
∂Xa

∂Xb
+
∂ua

∂Xb
(3.16)

↔ ∂xa

∂Xb
= δab +

∂ua

∂Xb
(3.17)

↔ ∂ua

∂Xb
=
∂xa

∂Xb
− δab (3.18)

3.2.3 Strain tensors

Although the deformation gradient implies the whole information of the motion of all particles
in our body, he is not useful for measuring strain. Rigid body rotations are contained within
the deformation gradient but do not contribute to the strain measurement. We assume that φ
is a one-to-one mapping, in mathematical terms bijective, and therefore the inverse φ−1 exists
(our deformation can be undone). We further assume that det(φ) > 0 (which implies together
with the bijectivity of φ that our mapping can be differentially small, otherwise we have to cross
det(φ) = 0 if we start from the identity mapping det(φ) = 1). The right Cauchy-Green-Tensor
is defined via

CCC = FFF TFFF positive definite and symmetric (3.19)

(3.20)

in components:

Cab = FjaF
j
b (3.21)

↔ Cab = gijF
i
aF

j
b (3.22)

(3.23)

The material (Lagrange) or Green strain tensor E is defined then by

EEE =
1
2

(CCC − 1) (3.24)

Eab =
1
2

(Cab − δab) (3.25)

3.2.4 Conservation of Mass

In classical mechanics the volume of a body B may change, but not its mass. Therefore we have
for the mass:

m =
∫
B
ρrefdV =

∫
φ(B)

ρdv (3.26)
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Where ρref is the mass density of the reference configuration and ρ the mass density of the
current configuration. Focusing on the infinitesimal volume element dV of the reference config-
uration and dv of the current one, we obtain using the transformation rule

dv = JdV (3.27)

with the (always positive) Jacobian

J = det(F )

√
det(g(x))√
det(G(X)

(3.28)

Combining Eq. (3.26) and Eq. (3.27) we get the correlation between the mass densities of the
two configurations

ρref = Jρ (3.29)

3.2.5 Velocity and acceleration

A motion of a body B is a mapping t → φt(X) = φ(X, t), X ∈ B, t ∈ R. The map starting
from the reference configuration Vt : B → R

3

Vt(X) = V (X, t) =
∂φ(X, t)

∂t
, Vt(X) ∈ TXM (3.30)

is called the material velocity of the motion. Because X is defined on whole B, Vt(X) defines
a vector field. According to Eq. (3.30) the material acceleration is defined by

At(X) = A(X, t) =
∂

∂t
V (X, t) =

∂2φ(X, t)
∂t2

, At(X) ∈ TXM (3.31)

A Map starting from the current configuration φt(B) → R
3 follows the movement of the body

in space. The spatial velocity vt is defined by

vt : φt(B)→ R
3, vt = Vt ◦ φ−1

t , vt ∈ TxM (3.32)

Vt(X) = vt(x) (3.33)

For the spatial acceleration at we have

at : φt(B)→ R
3, at = At ◦ φ−1

t , at ∈ TxM (3.34)

(3.35)

It is derived from the spatial velocity vt using the covariant derivative ∇v

at =
D

Dt
v =

d

dt
v
∣∣∣
X

=
∂v(x, t)
∂t

+∇vv (3.36)

∇v = (
∂va

∂xb
vb + Γabcv

bva)
∂

∂xa
(3.37)

Γabc is the Christoffel symbol (3.38)
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4 From the variational formulation to

the discretized equations of motion

In this chapter the equations of motion for structural dynamic systems using a variational formu-
lation are derived, based on the Hamiltonian principle. The resulting Lagrange equations, basing
on the conservative energies and nonconservative virtual work, introduced at the beginning of
this chapter, lead to a weak form of equilibrium representing the equations of motion.

At the end of this chapter general coordinates holding the discretization degrees of freedom
resulting from simplification of the underlying geometry are introduced and the equations of
motion are formulated for numerical analysis.

The core of the thesis focuses on structural optimization concerning load cases which assume a
linear structural behavior. However this introductory chapter starts with the general nonlinear
structural continuum. For the interested reader this introduction might be too rough and partly
incomplete, while the impatient reader who wants to get to the core of the thesis quickly is
bothered with the nonlinear overhead. The interested reader is encouraged to get a more detailed
and exact description in literature such as Marsden and Hughes [86]. The impatient one can
skip forward to sections 4.2 and 4.4 to get the basics necessary for the next chapters.

4.1 Energy functions of deformable bodies

In this section the kinetic and the strain energy of a continuum are formulated. The term kinetic
energy describes the macroscopic observable energy of the body. To calculate the strain energy
the Green-Lagrange strain tensor, earlier defined in Eq. (3.25), and a conjugated stress tensor
are needed.

4.1.1 Stress tensors and constitutive relation

According to the stress principle of Cauchy (see Marsden and Hughes [86]) there is a time
dependent vector field t(x, t, n) defined on any closed surface within a body or on the bounding
surface which counteracts in terms of force and moment an external force. t(x, t, n) represents a
force per unit area on a surface element with normal n.
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Based on Cauchy’s theorem a unique, symmetric tensor field σ(x, t) called Cauchy stress tensor
is defined, such that

ttt(x, t, n) =< σσσ(x, t),nnn > (4.1)

ta = σaigijn
j = σai n

i (4.2)

(4.3)

The first Piola-Kirchhoff stress tensor P is obtained by performing a Piola transformation on
the second index of σ:

P ab = J(F−1)aiσ
bi (4.4)

P is not symmetric and J is the Jacobi determinant defined in Eq. (3.28). The second Piola-
Kirchhoff stress tensor S is obtained by pulling the first leg of P back by φt:

Sab = (F−1)aiP
ib = J(F−1)aiσ

ij(F−1)bj (4.5)

The elasticity tensor C is derived from the second Piola-Kirchhoff strain tensor S and the right
Cauchy-Green tensor C Eq. (3.25):

Cabcc =
∂Sab

∂Ccd
(4.6)

It holds the following symmetry, due to the symmetry of EEE (Eq. (3.23)) and SSS Eq. (4.5).

Cabcd = Cbacd = Cabdc (4.7)

For hyper elastic materials (see also Marsden and Hughes[86]) there is an additional symmetry:

Cabcd = Ccdab (4.8)

4.1.2 Strain energy

Integrating over the total volume of a body the total strain energy V is obtained by

V =
1
2

∫
V
SijEij dV (4.9)

V =
1
2

∫
V
EijCijklEkl dV (4.10)

where Eab is the Green-Lagrange strain tensor and Cabcd the elasticity tensor.

4.1.3 Kinetic energy

The kinetic energy T of a body is given by

T =
1
2

∫
V
ρvava dV (4.11)

where ρ is the density of the body and vvv(X, t) = ẋxx(X, t) the velocity of the body.
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4.2 Hamiltonian principle

The Hamiltonian principle of least action states that for a conservative system the action integral
S : C1([t1, t2])⇒ R is stationary (see Abraham and Marsden [2], Scheck [115] and Landau

[79]):

S(qqq) =
∫ t2

t1

L (qqq(t), q̇qq(t), t) dt , qqq ∈ C1([t1, t2]) (4.12)

L : Lagrange function (4.13)

qqq := [q1, . . . , qN ] vector of generalized coordinates (4.14)

[t1, t2] : time interval (4.15)

If nonconservative terms, such as external forces or damping forces occur they have to be added
as an external work to the Lagrangian (Clough and Penzien [12]):

S(qqq) =
∫ t2

t1

(L(qqq(t), q̇qq(t), t) +Wnoncon) dt , q ∈ C1([t1, t2]) (4.16)

Wnoncon : nonconservative work such as done by external forces or damping forces (4.17)

qqq := [q1, . . . , qN ] vector of generalized coordinates (4.18)

The condition of stationarity states that the variation of the action integral is zero and leads to
the Euler-Lagrange equations:

δS(qqq) = 0 (4.19)

=⇒ d

dt
(
∂L

∂q̇qq
)− ∂L

∂qqq
−QQQnoncon = 0 (4.20)

with δW = QQQnonconδqqq (4.21)

QQQnoncon = [Q1noncon, . . . , QNnoncon] vector of generalized, non conservative forces (4.22)

This system of differential equations is a weak form of equilibrium. The vector qqq represents the
generalized degrees of freedom, which have, depending on the formulation, different meaning.
For a structural problem, the natural form of the Lagrangian is given by (see Scheck [115]):

L = T − V (4.23)

T : kinetic energy (4.24)

V : strain energy (4.25)

4.3 Spatial discretization of the Lagrangian

Arbitrary shaped domains are spatially discretized for solving the corresponding problems prac-
tically. The resulting time and space depended nodal values, for mixed formulations also stress
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values, have in general, despite to the more global approximation functions as in Rayleigh and
Ritz (see Ritz [113]), only local supports. See also Bathe [10] or Zienkiewicz and Taylor

[125],[126].

4.3.1 Kinematic assumptions

The discretization will base on the following assumptions:

• The motion of a body can result in large displacements, but the resulting strain and the
displacement derivatives and rotations will stay small.

• Further it is assumed that the material is elastic, based on a generalized Hooke’s law. This
means that there is a linear constitutive equation relating strain and stress.

• Furthermore hypotheses for a reduction of the continuum will be allowed. This can in-
clude the assumption of grave rigid bodies, one dimensional spring systems, as well as
the Euler-Bernoulli- or Timoshenko-beam theory, and shell theory. Using the beam theory
the mapping of the continuum leads to one-dimensional reference curves assuming plane
cross sections. In the shell theory using for example the Kirchhoff-Love-hypothesis the
continuum is mapped to a reference plane (shell mid surface).

4.3.2 Linearization

Generally nonlinear problems are not solvable in a one-step approach. The established procedure
is an iterative one. The standard approach for such systems is for example the Newton-Raphson
procedure (see also also Bathe [10] or Zienkiewicz and Taylor [125],[126]) which can guaran-
tee quadratic convergence if the corresponding analytical derivatives exist. In these procedures
each iterative step bases on a linearization of the current configuration. This involves the intro-
duction of the tangent stiffness matrix, which will be defined in the next subsections (see Eq.
(4.67)).

The focus in this thesis is on such a linearized step only, or more concrete, an underlying purely
linear model is assumed.

Subject of the linearization is the strain energy given in Eq. (4.9).

4.3.2.1 Material linearization

The constitutive relation (see Mang [85]):

Eab = G(Scd) (4.26)

basically couples the strain and the stress. Assuming an ideal elastic material 4.3.1 the relation

Eab = DabijSij (4.27)
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holds, whereDDD is the flexibility tensor. Using the elasticity tensor CCC as the inverse of the flexibility
tensor DDD second Piola-Kirchhoff stress tensor can be written as

Sab = CabijEij (4.28)

where the elasticity tensor C does not depend on the Green strain tensor E and contains only
constants such as the Young’s modulus and Poisson’s ratio. This converts Eq. (4.9) to

V =
1
2

∫
V
EijCijklEkl dV (4.29)

As seen in Eq. (4.7) and following the 4-th order tensor CCC holds multiple symmetries. This
reduces the amount of independent components as well.

The first symmetry, due to the symmetry of EEE, reduces the 81 components to 54.

The second symmetry, due to the symmetry of SSS, reduces them further to 36.

The third symmetry, due to the choice for a hyper elastic material, finally reduces them further
to 21 independent components.

4.3.2.2 Geometric linearization

Inserting the definition of the right Cauchy-Green-Tensor Eq. (3.23), the Green strain tensor
Eq. (3.25) becomes:

Eab =
1
2

(gijF iaF
j
b − δab) (4.30)

and with the deformation gradient Eq. (3.15):

Eab =
1
2

(
gij

∂xi

∂Xa

∂xj

∂Xb
− δab

)
(4.31)

Using Eq. (3.17) this leads to:

Eab =
1
2

[
gij

(
δia +

∂ui

∂Xa

)(
δjb +

∂uj

∂Xb

)
− δab

]
(4.32)

=
1
2

[
gij

(
δiaδ

j
b + δjb

∂ui

∂Xa
+ δia

∂uj

∂Xb
+

∂ui

∂Xa

∂uj

∂Xb

)
− δab

]
(4.33)

=
1
2

[
δjaδ

j
b + δib

∂ui

∂Xa
+ δja

∂uj

∂Xb
+

∂uj
∂Xa

∂uj

∂Xb
− δab

]
(4.34)

=
1
2

[
δab +

∂ub

∂Xa
+
∂ua

∂Xb
+

∂uj
∂Xa

∂uj

∂Xb
− δab

]
(4.35)

=
1
2

[
∂ub

∂Xa
+
∂ua

∂Xb
+

∂uj
∂Xa

∂uj

∂Xb

]
(4.36)
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The linearization of the strain tensor EEE uses the assumption of small displacement derivatives
in 4.3.1 (see Mang [85]):

∂ui
∂Xj

=
∂ui
∂xk

∂xk
∂Xj

(4.37)

↔ ∂ui
∂Xj

=
∂ui
∂xk

(δkj +
∂uk
∂Xj

) , using Eq. (3.17) (4.38)

↔ ∂ui
∂Xj

≈ ∂ui
∂xj

, for
∂uk
∂Xj

� 1 (4.39)

This linearization scheme transforms the Green strain tensor EEE into the linearized strain tensor
εεε:

Eij −→ εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.40)

Exchanging the indices it can be seen that the linearized strain tensor is symmetric. Therefore
only 6 of the 9 components are independent. The 6x1 strain vector εεε:

εεε = (ε1, ε2, ε3, γ12, γ23, γ31)T (4.41)

εεε = (ε11, ε22, ε33, 2ε12, 2ε23, 2ε31)T (4.42)

contains only the independent components of εεε.

Because the type of the strain object was changed and the indices of the linearized strain tensor
were rearranged in a way that they fit into a vector this has to be done simultaneously for the
elasticity tensor in order to keep the strain energy expression invariant. By this transformation
the resulting symmetric 6x6 elasticity matrix C̄CC has only 21 independent components.

Invariance of the strain energy:

1
2

∫
V
εijCijklεcd dV =

1
2

∫
V
εαC̄αβεβ dV (4.43)

It has to be denoted that Latin lower case indices such as i, j, k represent here the three spatial
coordinates and range from 1, 2, 3 while in this equation Greek lower case indices such as the
α, β represent the abstract 6 displacement degrees of freedom (translation and rotation) and
range from 1, 2, . . . , 6.

4.3.2.3 Summary

The total linearization scheme can be summed up for the strain energy as follows:

V =
1
2

∫
V
EabS

ab dV (4.44)

material linearization−−−−−−−−−−−−−→ 1
2

∫
V
EabCabcdEcd dV (4.45)

geometric linearization−−−−−−−−−−−−−−→ 1
2

∫
V
εabCabcdεcd dV (4.46)

notation simplification−−−−−−−−−−−−−−→ 1
2

∫
V
εαC̄αβεβ dV (4.47)
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For an isotropic, elastic material for example the elasticity matrix C̄CC becomes:

C̄CC =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2(1− 2ν) 0 0
0 0 0 0 1

2(1− 2ν) 0
0 0 0 0 0 1

2(1− 2ν)


(4.48)

Where E is Young’s modulus and ν Poisson’s ratio.

4.3.3 Discretization using the Rayleigh-Ritz procedure

The different forms of energy described in the previous sections and chapters consist, due to the
assumptions, of an infinite number of points defining the space of these bodies. (A molecular
or atomic structure is neglected.) This makes it impossible to solve the above equations for
complex geometries exactly. Nevertheless approximate solutions are possible. Their geometric
approximation error can practically be made as small as desired, limited only by the computing
resources. Besides the very general method of the weighted residuals, primarily the Galerkin
procedure (see Zienkiewicz and Taylor [125]), the Rayleigh-Ritz procedure (see Ritz [113])
is the more suitable for mechanical systems which can be described by the Hamiltonian prin-
ciple. In the Rayleigh-Ritz procedure the unknowns, in our case the displacements uuu(XXX, t) are
approximated using a finite sum of local shape functions N I

a :

ua(XXX, t) =
N∑
I=1

qI(t)N I
a (XXX) (4.49)

ua = qIN
I
a (4.50)

Here uppercase indices such as I indicate that:

their range is: I = 1, . . . , N and not 1, 2, 3 as for lowercase ones (4.51)

the metric is Euclidian: gIJ = δIJ (4.52)

The qqq are the unknowns and serve as the general coordinates qqq introduced in Eq. (4.14). This
leaves N unknowns which have to be determined. This approach has the further benefit to
separate the time from the space dependency. It has to be reminded that the choice (and number)
of the local shape functions N I

a entirely determines the error of our approach due to geometrical
approximation.

4.3.3.1 The finite elements

The Rayleigh-Ritz procedure however does not make any restrictions to the shape functions
beside the fact that they should be linear independent. Practically the geometrical body is
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split into sub-domains also called finite elements, for which corresponding solutions exist. These
sub-domains mostly are BEAM, TRIANGULAR and QUADRILATERAL, HEXAHEDRAL,
PENTAHEDRAL and TETRAHEDRAL bodies out of which any 1-dimensional, 2-dimensional
and 3-dimensional body can be approximately built. The according shape functions differ from
zero only locally, which simplifies the integration over geometrically complex bodies and leads
later on to sparse matrices.

4.3.3.2 Discrete form of kinetic energy

With the relation:

va = ẋa (4.53)

= u̇a ,using Eq. (3.14) (4.54)

(4.55)

Eq. (4.11) gives after inserting Eq. (3.14) and Eq. (4.49) (see also Bathe [10] or Zienkiewicz

and Taylor [125],[126]):

T =
1
2

∫
V
ρq̇INIa q̇JN

Ja dV (4.56)

=
1
2
q̇I q̇J

∫
V
ρNIaN

Ja dV (4.57)

=
1
2
q̇I q̇JMIJ (4.58)

using the definition of the mass matrix MMM :

MIJ =
∫
V
ρNIaN

Ja dV (4.59)

4.3.3.3 Discrete form of strain energy

The 6x3 differential operator B̂BB is used to express the strain energy in a similar way: B̂BB:

B̂BB =



∂X1 0 0
0 ∂X2 0
0 0 ∂X3

∂X2 ∂X1 0
0 ∂X3 ∂X2

∂X3 0 ∂X1


,with ∂Xa =

∂

∂Xa
(4.60)

→ εα = B̂ i
α ui (4.61)

→ εα = B̂ i
α qJN

J
i ,using approximation Eq. (4.49) (4.62)
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Inserting Eq. (4.62) into Eq. (4.47) gives: (see also Bathe [10] or Zienkiewicz and Taylor

[125],[126]):

V =
1
2

∫
V
B̂ i
K qIN

I
i C̄KLB̂

j
L qJN

J
j dV (4.63)

=
1
2
qIqJ

∫
V
B̂ i
K N I

i C̄KLB̂
j

L NJ
j dV (4.64)

=
1
2
qIqJK

IJ (4.65)

=
1
2
qIqJKIJ due to the Euclidean metric (4.66)

where the stiffness matrix KKK is defined by:

KIJ =
∫
V
B̂ i
K N I

i C̄KLB̂
j

L NJ
j dV (4.67)

This stiffness matrix is identical with the tangent stiffness matrix introduced on page 18.

4.3.3.4 Discrete form of nonconservative work

Two types of nonconservative work are considered:

• work created by external forces, Wnoncon,ext

• internal work performed by the system, Wnoncon,int. In general this includes damping forces
which dissipate energy.

The variational nonconservative external work shall be defined by:

δWnoncon,ext =
∫
V
hi(XXX, t)δxi dV +

∫
Ω
pi(XXX, t)δxi dA (4.68)

Where the hi(XXX, t) denote volume forces such as gravitational ones and pi(XXX, t) denote surface
forces (pressure) on the bodies surface. A similar approach for h and p as it was done for xxx in
Eq. (4.49) gives:

hi(XXX, t) =
N∑
J=1

HJ(t)NJ
i (XXX) (4.69)

pi(XXX, t) =
N∑
J=1

PJ(t)NJ
i (XXX) (4.70)

Inserting Eq. (4.69), Eq. (4.70) and Eq. (4.49) into Eq. (4.68) gives:

δWnoncon,ext =
∫
V
HJ(t)NJiδ(qIN I

i ) dV +
∫
∂V
PJ(t)NJiδ(qIN I

i ) dS (4.71)

= HJ

∫
V
NJiN I

i dV (δqI) + PJ

∫
Ω
NJiN I

i dA(δqI) (4.72)
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assuming ortho-normality between the shape functions

= HJδ
IJδqI + PJδ

IJ(δqI) (4.73)

= (HI + PI)δqI (4.74)

= FIδqI (4.75)

→ Qnoncon,extI = FI (4.76)

However, dissipated, internal nonconservative work and the responsible damping forces however
are difficult to obtain. In most cases a velocity proportional force, basically resulting from a
strain rate depended stress tensor, is sufficient (see also Clough and Penzien [12]). Therefore
the used approach for the virtual work performed by these forces is:

δWnoncon,int = −
N∑
J=1

BIJ q̇
JδqI (4.77)

= −BIJ q̇JδqI (4.78)

→ Qnoncon,intI = −BIJ q̇J (4.79)

with a symmetric damping matrix BBB.

4.4 Equations of motion in matrix notation

Inserting Eq. (4.23), the discretized forms of kinetic energy Eq. (4.58), strain energy Eq. (4.66)
and the nonconservative generalized forces Eq. (4.76) and Eq. (4.79) in the variational formula-
tion Eq. (4.20) lead to:

d

dt

(
∂(1

2 q̇
I q̇JMIJ − 1

2q
IqJKIJ)

∂q̇I

)
−
∂(1

2 q̇
I q̇JMIJ − 1

2q
IqJKIJ)

∂qI
− FI +BIJ q̇

J = 0 (4.80)

These are N equations for all I. Carrying out the differentiation in Eq. (4.80) gives:

MIJ q̈
J +BIJ q̇

J +KIJq
J = FI (4.81)

MMMq̈qq +BBBq̇qq +KKKqqq = FFF , symbolic notation (4.82)

If there is a harmonic loading and a steady state can be assumed the equation simplifies further:

FFF (t) = F̄FFeiωt (4.83)

assumption−−−−−−−→ qqq(t) = q̄qqeiωt (4.84)

q̇qq = iωqqq (4.85)

q̈qq = −ω2qqq (4.86)

(4.87)
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Inserting Eq. (4.83), Eq. (4.85), and Eq. (4.86) into Eq. (4.82) and dividing by eiωt 6= 0 leads to:

−ω2MIJq
J + iωBIJq

J +KIJq
J = FI (4.88)

−ω2MMMqqq + iωBBBqqq +KKKqqq = FFF , symbolic notation (4.89)

4.4.1 Eigenvalues for low damped dynamic systems and the characteristic

equation

Neglecting damping and loading forces Eq. (4.89) results in:

−ω2MMMqqq +KKKqqq = 0 , symbolic notation (4.90)

[−λMMM +KKK]qqq = 0 KKK,MMM ∈ RNxN (4.91)

This is a general eigenvalue problem and Eq. (4.90) is also called the secular equation. It has
N solutions with corresponding eigenvalues λi and eigenvectors qqqi also called natural or normal
modes. The eigenvalues as well as the eigenvectors aren’t necessarily unique.

4.4.2 System matrices for the ten-bar truss model

Using the integration scheme Eq. (4.59), allowing only translations in the x-y-plane and after
eliminating the constraints using the procedure described in the appendix A.4 the following
(lumped) mass matrix is obtained for the ten-bar truss model in Fig. 2.1:

MMM = 10−6



8.20
8.20

4.81
4.81

4.81
4.81

8.20
8.20


(4.92)

The same procedure holds for the stiffness matrix when using Eq. (4.67):

KKK =



225.59 0.00 −83.33 0.00 −29.46 29.46 0.00 0.00
0.00 142.26 0.00 0.00 29.46 −29.46 0.00 −83.33
−83.33 0.00 112.80 29.46 0.00 0.00 −29.46 −29.46

0.00 0.00 29.46 112.80 0.00 −83.33 −29.46 −29.46
−29.46 29.46 0.00 0.00 112.80 −29.46 −83.33 0.00
29.46 −29.46 0.00 −83.33 −29.46 112.80 0.00 0.00
0.00 0.00 −29.46 −29.46 −83.33 0.00 225.59 0.00
0.00 −83.33 −29.46 −29.46 0.00 0.00 0.00 142.26


(4.93)
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The load vector, see also Eq. (4.76):

FFF =



0
0
0
0
0
−100

0
−100


(4.94)

The degrees of freedom in the above mentioned matrices refer to (node id,degree-of-freedom):

DOF-label =



1, x-displacement
1, y-displacement
2, x-displacement
2, y-displacement
3, x-displacement
3, y-displacement
4, x-displacement
4, y-displacement


(4.95)

Solving the system of equations in the static (ω = 0) case, see Eq. (4.89), the displacement
vector becomes:

xxx =



2.3441
−5.5807
2.8254
−12.6489
−3.1737
−13.1304
−2.4553
−6.0066


(4.96)

The eigenfrequencies

fi =
1

2π

√
λi (4.97)

of this model are
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mode No. i eigenvalue λi radian ωi eigenfrequency fi

1 7.935579E+05 8.908187E+02 141.78

2 6.241317E+06 2.498263E+03 397.61

3 6.791647E+06 2.606079E+03 414.77

4 2.260450E+07 4.754419E+03 756.69

5 2.642408E+07 5.140436E+03 818.13

6 3.464264E+07 5.885799E+03 936.75

7 3.485494E+07 5.903808E+03 939.62

8 5.120596E+07 7.155833E+03 1138.89
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5 Parameterized equations of motion

and their solution manifold

In this chapter the solution manifolds of nonlinear parameter dependent equations will be pre-
sented. The term solution manifold describes the general concept of a response surface, as it is
known in literature. The parameters spanning up this space will be design variables for numer-
ical optimization, reliability analyses, or similar approaches. After the general description the
results will be applied on the equations of motion for structural problems, introduced in the
previous chapter. It will be shown that for the discretized problems the solution manifold can
be approximately embedded in a subspace with lower dimension. Therefore this approach will
be called approximate response manifold, short ARM.

For analytical operators this subspace is defined by the tangent space Txxx0M
d on the manifold,

where xxx0 is the baseline result, and optional higher derivatives. This leads directly to the de-
velopment of a convergent series of global shape functions, which can be used for an efficient
reanalysis.

5.1 Preliminaries and assumptions

A nonlinear parameter dependent system of equations F shall be defined by:

F (xxx,λλλ) = yyy0 (5.1)

where F is a mapping from a Banach space Z = X × Λ to a Banach space Y . X represents a
state space and Λ an d-dimensional parameter space, with 1 ≤ d < ∞. Depending on certain
conditions the solutions of Eq. (5.1) form an d-dimensional manifold.

Since Z and hence X are in general infinite dimensional, any computational examination requires
the introduction of finite dimensional approximations. Questions arising about the resulting
errors between these solution manifolds and their discretized versions are handled in Fink [25]
and Lee [81].

In this thesis it will be assumed that the discretization error introduced is sufficiently small
for λλλ = 0 (the baseline analysis). Furthermore it will be assumed that ∀λλλ ∈ Λ̂ ⊂ Λ the same
baseline discretization is valid in the engineering sense, or more precisely, sufficient concerning
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Figure 5.1: Schematic representation of the increase of the discretization/modeling error by
increasing the cross section diameter. The left side shows the geometry, while the right side the
respective, with BEAM elements discretized FE model. The patches on the right represent the
error.

its discretization or modeling error. Obviously this puts restrictions to the move limit of the
design variables λi and therefore defines the circumference of Λ̂ ⊂ Λ.

These assumptions are absolutely not trivial especially when reductions of the continuum are
involved as mentioned in 4.3.1 or certain parameters λi correspond to geometric properties as
they are used in shape optimization. An example can be seen in Fig. 5.1. There, a parameter
λi represents a cross section diameter. Due to the small angle formed by the two beams a large
amount of material is modeled twice. This error introduced depends on the size of of the cross
section diameter. A parametric change increases or decreases then also the modeling error.
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5.2 The solution space properties for the discretized problem

As mentioned above this thesis focuses on the discretized problem. Information about the general
solution and its discretization error can be found in Fink and Rheinboldt [23]. The unknowns
are the state space variables xi, i = 1, . . . , n in the configuration space N = R

n. Introducing
parameters into the equations of motion generally parametries the solution vector:

xxx = xxx(λλλ) (5.2)

In general the xxx(λλλ) form a solution manifold. It will be shown now that this solution manifold
is a sub manifold of the Rn, where n is the amount of degrees of freedom introduced during the
discretization process Eq. (4.49).

Definition 5.1 (see also [27]) Let Λ ⊂ Rd be open. A continuous differentiable map

φφφ = (φ1, . . . , φn) : Λ→ R
n (5.3)

is called an immersion if

rank
(
∂(x1, . . . , xn)
∂(φ1, . . . , φd)

)
(λλλ) = d for all λ ∈ Λ (5.4)

Annotation: due to the fact that rank
(
∂(x1,...,xn)
∂(φ1,...,φd)

)
(λλλ) ≤ min(d, n) d has to be smaller or equal

to n (or Λ = ∅).

Theorem 5.1 (see also Forster [28]) Let Λ ⊂ Rd be open and

φφφ = (φ1, . . . , φn) : Λ→ R
n (5.5)

an immersion of class Ca (a ≥ 1). Then there exists ∀c ∈ Λ an open set Λ̂ ⊂ Λ such that φφφ(Λ̂)
is a d-dimensional sub manifold of class Ca and

φφφ : Λ̂→ φφφ(Λ̂) (5.6)

is a homomorphism.

The proof is presented by Forster [28].

Theorem 5.2 The derivative of the inverse of a matrix XXX is given by:

∂λXXX
−1 = −XXX−1(∂λXXX)XXX−1 (5.7)

where ∂λ =
∂

∂λ
(5.8)

The proof is simple:

31



Proof 5.1

XXXXXX−1 = 1 (5.9)

→ ∂λ(XXXXXX−1) = 0 (5.10)

→ (∂λXXX)XXX−1 +XXX(∂λXXX−1) = 0 (5.11)

→XXX(∂λXXX−1) = −(∂λXXX)XXX−1 (5.12)

→ ∂λXXX
−1 = −XXX−1(∂λXXX)XXX−1 (5.13)

q.e.d.

The following examples illustrate the abstract theory:

Example 5.1 Look at the ten-bar truss model Fig. 2.1. It consists only of truss elements under
a static load. From Eq. (4.89) the following system of equations describing the deflection of the
nodes is obtained:

K(λλλ)ijxj = Fi (5.14)

xj = K(λλλ)−1
ij Fi (5.15)

where i = 1, . . . , n, and k = 1, 2. Now let λ1 represent the cross section area (A1) and λ2

represent the Young’s modulus (E1) of truss number 1. Truss elements have only membrane
stiffness km which is proportional to the product of their cross section area and their Young’s
modulus:

km1 ≈ E1A1 → (5.16)

∂

∂E1
≈ ∂

∂km1
(5.17)

∂

∂A1
≈ ∂

∂km1
(5.18)

(5.19)

The gradients

∂(x1, . . . , xn)
∂λ1

,
∂(x1, . . . , xn)

∂λ2
(5.20)

are then linear dependent :

∂(x1, . . . , xn)
∂λ1

≈ ∂(x1, . . . , xn)
∂km1

(5.21)

∂(x1, . . . , xn)
∂λ2

≈ ∂(x1, . . . , xn)
∂km1

(5.22)

→ rank
(
∂(x1, . . . , xn)

∂λ1
,
∂(x1, . . . , xn)

∂λ2

)
= 1 (5.23)

Therefore the solution manifold is only 1-dimensional. This means that any change of the solu-
tion vector introduced by changing E1 can also be achieved by changing A1.
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Example 5.2 Now look at the same model as above but under a dynamic harmonic load.[
−ω2M(λλλ)ij + iωB(λλλ)ij +K(λλλ)ij

]
xj = Fi (5.24)

xj = X(λλλ)−1
ijFi (5.25)

XXX(λλλ) = −ω2MMM(λλλ) + iωBBB(λλλ) +KKK(λλλ) (5.26)

Using Eq. (5.7) the dimension of the manifold is derived by:

rank
(
∂(x1, . . . , xn)

∂λ1
,
∂(x1, . . . , xn)

∂λ2

)
= (5.27)

= rank(XXX−1(∂λ1X)XXX−1FFF ,XXX−1(∂λ2X)XXX−1FFF ) (5.28)

= rank(XXX−1(−ω2 ∂

∂A1
MMM +

∂

∂A1
KKK))XXX−1FFF ,XXX−1(

∂

∂E1
KKK))XXX−1FFF ) (5.29)

In general the two derivatives will be linear independent and therefore the solution manifold
is 2-dimensional. This will result in a two dimensional response surface embedded in the eight
dimensional space of the independent displacement degrees of freedom.

5.3 Local approximation of the 1-dimensional manifold

In this section it will be discussed how xxx(λ) can be computed, when ΛΛΛ ⊂ R
1. The general

d-dimensional case will be shown in the next section basing on the 1-dimensional case.

Let xxx(λ) be analytic, which means xxx(λ) can be expressed as an (infinite) power series

xxx(λ) =
∞∑
i=0

aaaiλ
i (5.30)

or, more specifically as a Taylor series:

xxx(λ) =
m∑
i=0

λi

i!
∂ixxx

∂λi

∣∣∣∣∣
λ=0

+Rm(λ) (5.31)

with Rm(λ) =
∞∑

i=m+1

λi

i!
∂ixxx

∂λi

∣∣∣∣∣
λ=0

(5.32)

with a converging Rm:

lim
m→∞

Rm(λ) = 0 (5.33)

Introducing

αi =
λi

i!
(5.34)

∂ixxx =
∂ixxx

∂λi

∣∣∣∣∣
λ=0

(5.35)

∂∂∂i = ∂ixxx (5.36)
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Eq. (5.31) becomes

xxx(λ) =
∞∑
i=0

αi(∂ixxx) . (5.37)

As xxx ∈ Rn it follows that

rank
([
∂0xxx, ∂1xxx, . . . , ∂∞xxx

])
= m ≤ n . (5.38)

Theorem 5.3 Without restricting generality let d be such that {∂0xxx, ∂1xxx, . . . , ∂mxxx} are linear
independent and

∂m+1xxx =
m∑
i=0

ηi(∂ixxx) (5.39)

Then ∀s > m the following holds:

∂sxxx =
m∑
i=0

θi(∂ixxx) (5.40)

Proof 5.2 Proof is done by induction.

State s = m+ 1 was part of the assumption.
Lets look at s→ s+ 1:

∂s+1xxx = ∂(∂sxxx) (5.41)

= ∂

[
m∑
i=0

ηi(∂ixxx)

]
(5.42)

=
m∑
i=0

ηi(∂i+1xxx) (5.43)

=
m∑
i=1

ηi−1(∂ixxx) + ηm∂
m+1xxx (5.44)

=
m∑
i=1

ηi−1(∂ixxx) + ηm

m∑
i=0

ηi(∂ixxx) (5.45)

=
m∑
i=0

θi(∂ixxx) (5.46)

using θi = ηmηi + ηi−1, η−1 = 0

q.e.d.

As seen the first m derivatives, including the 0-th, are linear independent and therefore form, a
basis of a (m+ 1)-dimensional subspace D of Rn:

D = span
(
∂0xxx, ∂1xxx, . . . , ∂mxxx

)
(5.47)
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Because all higher derivatives are linear dependent they also are embedded within this subspace
D. This subspace is therefore, due to assumption Eq. (5.40) and the analyticity of xxx(λ), as given
in Eq. (5.30), the embedding space of the response manifold:

M1 ⊆ D ⊆ N (5.48)

An orthonormal basis for D in Rn can now be created using for example Gram-Schmidt ortho-
normalization. Let

DDD
0

= ∂0xxx (5.49)

DDD0 =
1

‖DDD0‖2
. (5.50)

and for i = 1, . . . ,m:

DDD
i

= ∂ixxx−
i−1∑
j=1

< ∂ixxx;DDDj >DDDj (5.51)

DDDi =
1

‖DDDi‖2
(5.52)

Where < aaa;bbb > is the scalar product or inner tensor product of the two vectors.

Using the ortho-normalized DDDj the ∂ixxx can be expressed through them:

∂ixxx =
min(i,m+1)∑

j=0

βijDDD
j (5.53)

using

βij =< (∂ixxx); (DDDj) > (5.54)

βββ =



β00

β10 β11

β20 β21 β22

β30 β31 β32 β33

. . .

β(m+1)0 β(m+1)1 β(m+1)2 β(m+1)3 . . . β(m+1)m β(m+1)(m+1)

β(m+2)0 β(m+2)1 β(m+2)2 β(m+2)3 . . . β(m+2)m β(m+2)(m+1)

. . .


∈ C∞×(m+1)

(5.55)

Instead of expressing xxx(λ) through an infinite series of ∂ixxx as in Eq. (5.37) it can be expressed
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now with a finite series of DDDi:

xxx(λ) =
∞∑
i=0

αi(∂ixxx)

=
∞∑
i=0

αi

min(i,m)∑
j=0

βijDDD
j


= α0

(
β00DDD

0
)

+

+ α1

(
β10DDD

0 + β11DDD
1
)

+

+ α2

(
β20DDD

0 + β21DDD
1 + β22DDD

2
)

+

+ . . .

= DDD0 (α0β00 + α1β10 + α2β20 + . . .) +

+DDD1 (α1β11 + α2β21 + α3β31 + . . .) +

+DDD2 (α2β22 + α3β32 + α4β42 + . . .) +

+ . . .

+DDDm (αmβmm + αm+1βm+1,m + αm+2βm+2,m + . . .)

=
m∑
i=0

γiDDD
i

(5.56)

with

γi =
∞∑
j=i

αjβji (5.57)

Basing on this series,

xxx(j)(λ) =
j∑
i=0

γiDDD
i (5.58)

can be defined.

Theorem 5.4 The sequence xxx(j)(λ), j = 0, 1, . . . , converges to xxx(λ)

Proof 5.3 Show that for each ε > 0 ∃p ∈ N 3 ‖xxx(λ)−xxx(j)(λ)‖ < ε ∀ j ≥ p (‖ ‖ denotes
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the 2-norm):

‖xxx(λ)− xxx(j)(λ)‖ =
√
< (xxx(λ)− xxx(j)(λ)); (xxx(λ)− xxx(j)(λ)) > (5.59)

=

√√√√< (
m∑
i=0

γiDDDi −
j∑
i=0

γiDDDi); (
m∑
i=0

γiDDDi −
j∑
i=0

γiDDDi) > (5.60)

=

√√√√< (
m∑

i=j+1

γiDDDi); (
m∑

i=j+1

γiDDDi) > (5.61)

=

√√√√ m∑
i=j+1

m∑
k=j+1

γi∗γk <DDDi;DDDk > ∗denotes complex conjugated value

(5.62)

=

√√√√ m∑
i=j+1

m∑
k=j+1

γi∗γkδik using ortho-normality of DDDi (5.63)

=

√√√√ m∑
i=j+1

|γi|2 (5.64)

‖xxx(λ)− xxx(j)(λ)‖ < ε (5.65)

⇐⇒

√√√√ m∑
i=j+1

|γi|2 < ε (5.66)

⇐⇒
m∑

i=j+1

|γi|2 < ε2 (5.67)

Trivially this holds for j = m. For j < m, p is defined by ε and γm, γm−1, . . . respectively. q.e.d.

Now it will be examined what sort of condition is necessary for such a rapid convergence that
any additional term improves the accuracy of the series less then the last one did:

‖xxx(j)(λ)− xxx(j−1)(λ)‖ > ‖xxx(j+1)(λ)− xxx(j)(λ)‖ (5.68)

⇐⇒ ‖γjDDDj‖ > ‖γj+1DDD
j+1‖ (5.69)

⇐⇒ |γj |2 > |γj+1|2 (5.70)

⇐⇒ |γj+1|
|γj |

≤ ε < 1 ∀j ≥ p (5.71)

(5.72)

Once this rapid convergence is fulfilled also d’Alembert’s criteria for an absolute convergence
would be fulfilled.
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5.4 Determination of coefficients using the Rayleigh-Ritz pro-

cedure

As seen in Eq. (5.56) the solution for any point on the response manifold can be expressed by
a finite series:

xxx(λ) =
m∑
i=0

γiDDD
i (5.73)

The problem by calculating the finite coefficients γi of this series is that they are defined via an
infinite sum Eq. (5.57):

γa =
∞∑
j=i

αjβja (5.74)

To determine these γi the baseline principles of the finite element method are used, described
in detail in the earlier chapter 4.2. These two principles are the Hamiltonian principle and the
Rayleigh-Ritz procedure for the determination of an approximate solution. The only difference
is, that instead of choosing the local shape functions NNN i, derived from the earlier introduced
finite elements, now global shape functions DDDi are used. The DDDi will be denoted as derivative
modes, borrowing the term mode from the normal modes resulting from an eigenvalue calculation.
Therefore instead of having displacements as degrees of freedom qqq now manifold coordinates or
modal coordinates γi are the unknowns:

qi = γi (5.75)

In order to distinguish them from the displacement coordinates all ARM related items will be
overlined. The approach Eq. (4.49) becomes:

uuu(XXX) =
m∑
i=1

qiDDD
i(XXX) (5.76)

uuu = qiDDD
i (5.77)

Once determined, the global shape functions can be expressed by the local shape functions:

DDDDDDDDDa(XXX) =
n∑
i=1

Φ a
i NNN

i(XXX) (5.78)

DDDDDDDDDa = Φ a
i NNN

i (5.79)

(5.80)

Inserting Eq. (5.78) into Eq. (5.76) leads to:

uuu =
m∑
j=1

qj

n∑
i=1

φ j
i NNN

i (5.81)

=
n∑
i=1

(
m∑
j=1

qjφ
j
i )NNN i (5.82)
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Comparing Eq. (5.82) with Eq. (4.49) gives:

qi =
m∑
j=1

φ j
i qj (5.83)

qqq = φφφqqq (5.84)

5.4.1 The equations of motion in transformed coordinates

5.4.1.1 The mass matrix in transformed coordinates

Similar to Eq. (4.58) the Eq. (3.14) and Eq. (4.49) lead Eq. (4.11) to:

T =
1
2

∫
V
ρ[q̇iD

i]α[q̇jD
j ]α dV (5.85)

=
1
2
q̇iq̇j

∫
V
ρ[Di]α[Dj ]α dV (5.86)

=
1
2
q̇iq̇j

∫
V
ρ[φ i

k N
k]α[φ j

l N
l]α dV (5.87)

=
1
2
q̇iq̇jφ

i
k φ

j
l

∫
V
ρ[Nk]α[N l]α dV (5.88)

=
1
2
q̇iq̇jφ

i
k φ

j
l M

kl (5.89)

=
1
2
q̇iq̇jM

ij (5.90)

(5.91)

with the modal mass matrix MMM :

M
ij = φ i

k φ
j
l M

kl (5.92)

MMM = φφφtMMMφφφ (5.93)

5.4.1.2 The stiffness matrix in transformed coordinates

Inserting Eq. (4.62) into Eq. (4.47) gives:

V =
1
2

∫
V
B β
α [qiD

i]β C̄αγB δ
γ [qjD

j ]δ dV (5.94)

=
1
2
qiqj

∫
V
B β
α [φ i

k N
k]β C̄αγB δ

γ [φ j
l N

l]δ dV (5.95)

=
1
2
qiqjφ

i
k φ

j
l

∫
V
B β
α [Nk]β C̄αγB δ

γ [N l]δ dV (5.96)

=
1
2
qiqjφ

i
k φ

j
l K

kl (5.97)

=
1
2
qiqjK

ij (5.98)
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with the modal stiffness matrix KKK:

K
ij = φ i

k φ
j
l K

kl (5.99)

KKK = φφφtKKKφφφ (5.100)

5.4.1.3 Nonconservative terms in transformed coordinates

The damping matrix BBB in Eq. (4.79) is transformed the same way as the stiffness matrix:

C
ij = φ i

k φ
j
l B

ij (5.101)

BBB = φφφtBBBφφφ (5.102)

The nonconservative external work is invariant and is given in modal coordinates by:

δWnoncon,ext = F iδq
i (5.103)

The governing equation in displacement coordinates was:

FFF = [−ω2MMM + iωBBB +KKK]qqq (5.104)

As the equation of motion must stay the same, it is in modal coordinates:

FFF = [−ω2MMM + iωBBB +KKK]qqq (5.105)

Inserting Eq. (5.93), Eq. (5.102), Eq. (5.100) into Eq. (5.105) gives:

FFF = [−ω2φφφtMMMφφφ+ iωφφφtBBBφφφ+φφφtKKKφφφ]qqq (5.106)

= φφφt[−ω2MMM + iωBBB +KKK]φφφqqq (5.107)

with Eq. (5.84)

= φφφt[−ω2MMM + iωBBB +KKK]qqq (5.108)

with Eq. (5.104)

= φφφtFFF (5.109)

5.5 Local approximation of the d-dimensional manifold

In general design problems, the amount of design variables is not restricted to one. The general
d-dimensional design problem has a d-dimensional solution manifold. Therefore the power series
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Eq. (5.30) must be represented with a multidimensional Taylor series (see also [27]):

xxx(λλλ) =
∑
|ααα|≤k

λλλααα

ααα!
∂αααλλλxxx

∣∣∣∣∣
λ=0

+Rk(λ) (5.110)

with: λλλ ∈ Rd (5.111)

ααα = (α1, . . . , αd) ∈ Nd (5.112)

|ααα| = α1 + . . .+ αd (5.113)

ααα! = α1!α2! · . . . · αd (5.114)

λλλααα = λα1
1 λα2

2 · . . . · λ
αd
d (5.115)

∂αααλλλxxx =
∂|ααα|xxx

∂α1λ1∂α2λ2 · . . . · ∂αdλd
(5.116)

Rk(λ) =
∑
|ααα|>k

λλλααα

ααα!
∂αααλλλxxx

∣∣∣∣∣
λ=0

(5.117)

In analogy to the one-dimensional case in chapter 5.3 the differential vectors are ortho-
normalized:

∂αααλλλ |ααα=(0,0,...,0) →DDD0 (5.118)

∂αααλλλ |ααα=(1,0,...,0) →DDD1 (5.119)

∂αααλλλ |ααα=(0,1,...,0) →DDD2 (5.120)

. . . (5.121)

∂αααλλλ |ααα=(0,0,...,d) →DDD1+d (5.122)

∂αααλλλ |ααα=(2,0,...,0) →DDD1+d+1 (5.123)

∂αααλλλ |ααα=(1,1,...,0) →DDD1+d+2 (5.124)

. . . (5.125)

∂αααλλλ |ααα=(0,0,...,2) →DDDd0+d1+d2
(5.126)

. . . (5.127)

The amount of differential vectors, which will serve as a basis for the response manifold, grows
with dk. k denotes the k-th derivative. This means on one side a lot of computing effort to reach
a certain step k on the other side it has a positive effect for enriching the constructing basis of
the manifold and therefore improves accuracy. In many cases, as seen later on in the example
8.1, the derivative vectors DDDi saturate the basis very fast and therefore the differentiation can
be stopped after the first derivatives.

It has to be noted that the mixed terms are in general not commutative, due to the fact that
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the matrix product is not commutative:

AAABBB 6= BBBAAAwith AAA,BBB rectangular matrices (5.128)

∂
(α1,α2,...)
λλλ 6= ∂

(α2,α1,...)
λλλ (5.129)

Furthermore it should be kept in mind that for practical reasons, when more then one derivative
per parameter is considered, the derivatives should not be calculated mulish in each direction
with the same effort. Sensitive variables should get more attention then others. However, this
has to be decided during the process of building up the response manifold and is very problem
specific.

As proven in the section about the 1-dimensional approximation the evaluation of the γi co-
efficients for an actual λλλ is no problem. Once the DDDi are determined, the direct use of the
Hamiltonian principle and the Rayleigh-Ritz procedure produces the missing coefficients.

5.6 Global and mixed local global approximation using interpo-

lation

On page 36 it was shown that for any ε > 0 at least p basis vectors DDDi were needed for
approximating the manifold with an error smaller then a desired ε. The number of necessary
basis vectors p depends significantly on λλλ. The smaller λλλ or the larger the accepted error ε the
less basis vectors are needed.

Up to this point the presented approach was basically a local one, giving better results the closer
λλλ is to λλλ0 = 0. Even if it is demonstrated later in example 8.2 that reasonably accurate results
for engineering type problems and parameter ranges can be obtained when applying this local
approach there may be a desire to improve accuracy for certain problems.

For example an exact answer from the response manifold at λλλ = λλλ0(= 0) and λλλ = λλλ1 is desired.
Where λλλ1 can be arbitrarily far away from λλλ0. For λλλ0 additionally an exact solution for the first
k derivatives is desired and therefore a good local approximation. This will be achieved creating
the required k derivative modes at λλλ = λλλ0 and adding to the basis [DDD0, . . . ,DDDk] an additional
residual vector DDDk+1 resulting from the exact result at point λλλ = λλλ1. As illustrated in 4.2 the
Hamiltonian principle and the Rayleigh-Ritz procedure will ensure that our resulting manifold
will have the desired accuracy locally and at λλλ = λλλ1. An excellent example using and comparing
local and global behavior can be seen in Fig. 8.6 through Fig. 8.9.

Basically with this approach a response manifold can be built up being able to approximate
any point λλλ ∈ Λ with any desired accuracy. It is a question of which and how many modes
are invested in the construction of the basis vectors of the manifold. The practical limitation
will simply be the amount of computing time necessary to create the reduced subspace and to
evaluate the approximate response manifold (ARM).

According to the accuracy discussed in this chapter, the question of efficiency will be discussed
in chapter 7.
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6 Practical implementation and

implications for structural problems

While the previous chapter introduced the concept of the response manifolds and proved the
convergence for general nonlinear equations, the focus in this chapter is on the consequences for
structural problems. By applying the assumption of analyticity imposed at Eq. (5.30) to typical
structural variables the process can be simplified. At the end the procedure is summarized in a
ready to code recipe.

6.1 Typical design variables in structural optimization

The focus of this thesis is on structural design and parameters common in optimization and
reliability analyses. These primarily contain material properties and elemental properties (see
Meywerk [89], Paas [104]). In this chapter examples will be given for:

• material properties: Young’s modulus, mass density

• shell element properties: thickness

• beam element properties: area, moment of inertia

• mass element properties: mass

• spring/damper element properties: stiffness, damping

Independent from the choice of elements and discretization the grid point coordinates can be
referenced by design variables as well. However this sort of design, shape optimization (see also
[40], [112]), will not be addressed in this thesis.

In general a structural model consists of various parts. Recovering the definition of the system
matrices KKK in Eq. (4.67), MMM in Eq. (4.59), and BBB in Eq. (4.78) and assuming that XXX represents
either one of them or any combination, it is seen that the volume integral covers the whole body
B defined in 3:

XXX =
∫
V
. . . dV (6.1)
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As the body got discretized in Eq. (4.14) the volume integral in Eq. (6.1) can be replaced through
the sum over all the volumes of the E individual elements

XXX =
E∑
e=1

∫
Ve

. . . dV (6.2)

or by clustering all the elements belonging to the same part and sharing the same properties

XXX =
P∑
p=1

∫
Vp

. . . dV (6.3)

=
P∑
p=1

Ep∑
ep=1

∫
Vep

. . . dV (6.4)

=
P∑
p=1

XXXi (6.5)

where P is the amount of different parts in the structural model. In most cases grid points and
therefore their corresponding (displacement) degrees of freedom are connected to one part only.
Nevertheless some degrees of freedom must be connected to at least two parts to prevent the
structure from falling apart. This results in a part related pattern for the XXX-matrix:

XXX =

XXX
i
11 XXXi

12 0
XXXi

21 XXXi
22 +RRR11 RRR12

0 RRR21 RRR22

 (6.6)

Here XXXi denotes the sub matrix of XXX belonging to part i and RRR represents the rest of the
structure defined by the other parts.

6.1.1 Derivatives of system matrices for shell elements

The contribution of shell elements to the stiffness matrix is based primarily on two different
kind of stiffnesses according to Kirchhoff shell theory (see Bathe [10]):

• membrane stiffness, which is linear to the thickness

• bending stiffness, which has a cubic relationship to the shell thickness

If transverse shear cannot be neglected Mindlin theory (see Mindlin [90] and Timoshenko

[119]) has to be applied. In this case the stiffness matrix of part i becomes:

KKKi = Ei(tiKKKm
i + ti

3KKKb
i +KKKs

i(ti)) (6.7)

with indices m for membrane, b for bending and s for transverse shear (6.8)

ti: thickness of part i (6.9)

Ei: Young’s modulus of part i (6.10)
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For the mass matrix there is a linear relationship concerning the shell thickness:

MMM i = ρi(tiMMMa
i) (6.11)

with index a for defining an area related matrix (6.12)

ρi: mass density of part i’s material (6.13)

(6.14)

The derivatives are:

∂

∂Ei
KKK =

1
Ei
KKKi (6.15)

∂d

∂Ei
d
KKK = 0 ∀ d ≥ 2 (6.16)

∂

∂ρi
MMM =

1
ρi
MMM i (6.17)

∂d

∂ρid
MMM = 0 ∀ d ≥ 2 (6.18)

∂

∂ti
KKK = Ei(KKKm

i + 3t2iKKK
b
i +

∂1
∂ti

KKKs
i(t)) (6.19)

∂2

∂ti2
KKK = Ei(6tiKKKb

i +
∂21
∂ti2

KKKs
i(t)) (6.20)

∂3

∂ti3
KKK = Ei(6KKKb

i +
∂31
∂ti3

KKKs
i(t)) (6.21)

∂d

∂tid
KKK = Ei(

∂31
∂ti3

KKKs
i(t)) ∀ d ≥ 4 (6.22)

∂

∂ti
MMM =

1
ti
MMM i (6.23)

∂d

∂tid
MMM = 0 ∀ d ≥ 2 (6.24)

(6.25)

If transverse shear can be neglected and only up to second order derivatives shall be considered
the derivative matrices ∂

∂ti
KKK and ∂2

∂ti2
KKK are linear combinations of KKKm

i and KKKb
i. Therefore it

is sufficient to consider only the later matrices when generating the derivative modes instead of
explicitly calculating the ∂1

∂ti1
KKK and ∂2

∂ti2
KKK, which requires a numerically more intensive process.

6.1.2 Derivatives of system matrices for beam elements

For beam elements the parts contributing to the stiffness are:

• cross section area A for axial forces

• moment of inertia about axis 1 I1 for bending
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• moment of inertia about axis 2 I2 for bending

• mixed moment of inertia I12 for bending

• torsional constant T for torsion

For truss (or rod) elements like the ones used in the example shown in Fig. 2.1 no bending or
torsional stiffness exist. If the beam elements are defined via geometrical beam cross sections the
values A, I1, I2, I12, T have to be calculated based on the geometric cross section values before
the system matrices are built up.

The stiffness matrix of a part i consisting of beams (Bernoulli-Euler theory, see Bathe [10]) is
given by:

KKKi = Ei(AiKKKL
i + I1KKK

I1
i + I2KKK

I2
i + I12KKK

I12
i + TKKKT

i) (6.26)

Ei: Young’s modulus of part i (6.27)

The mass matrix for a beam part is given by:

MMM i = ρi(AiMMML
i) (6.28)

with index L for defining the length of all concerned beams (6.29)

ρi: mass density of part i’s material (6.30)

(6.31)

This results in the following derivatives:

∂

∂Ei
KKK =

1
Ei
KKKi (6.32)

∂d

∂Ei
d
KKK = 0 ∀ d ≥ 2 (6.33)

∂

∂Xi
KKK = EiKKK

X
i with X ∈ [A, I1, I2, I12, T ] (6.34)

∂d

∂Xi
d
KKK = 0 ∀ d ≥ 2 and X ∈ [A, I1, I2, I12, T ] (6.35)

∂

∂ρi
MMM = AiMMM

L
i (6.36)

∂d

∂ρid
MMM = 0 ∀ d ≥ 2 (6.37)

(6.38)
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6.1.3 Derivatives of system matrices for mass elements

Mass elements contribute only to the mass matrix. Focusing on simple elements with no moments
of inertia the mass matrix contribution of a mass element i is:

MMM i = miδδδkj (6.39)

k: degrees of freedom to which the mass is attached (6.40)

m: mass of element i (6.41)

(6.42)

This means for the resulting derivatives:

∂

∂mi
MMM = δkj (6.43)

∂d

∂mi
d
MMM = 0 ∀ d ≥ 2 (6.44)

(6.45)

An important fact especially in a later generation of the derivative modes is that a mass element
is connected to only a few (in general 3 for x−, y−, z−) displacement degrees of freedom.
Therefore the rank of the derivative matrix ∂1

∂m1
MMM is mostly 3.

6.1.4 Derivatives of system matrices for spring/damper elements

Spring/damper elements contribute only to the damping and stiffness matrix. For structural
design problems these elements mostly connect only two degrees of freedom due to the fact that
bushings are mostly non isotropic and have therefore different values for stiffness/damping in
each direction. The damping/stiffness matrix contribution of a spring/damper element i is:

XXXi = xiXXX
B
i (6.46)

xi: stiffness or damping value (6.47)

XXXB
i: (mostly rank 2) symmetric matrix (6.48)

(6.49)

This means for the resulting derivatives:

∂

∂xi
XXXi = XXXB

i (6.50)

∂d

∂xid
XXXi = 0 ∀ d ≥ 2 (6.51)

(6.52)

In analogy to the mass elements the stiffness/damping matrix of bushing elements has low rank.
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6.2 Practical calculation of derivative modes

The derivative modes for structural models and the above mentioned design variables imply
certain simplifications. A general derivative mode is given by Eq. (5.116):

∂αααλλλxxx (6.53)

Basically that means that the displacement vector xxx has to be differentiated by the design
variables mentioned above. Using the equations of motion in matrix notation Eq. (4.89) and
setting the general coordinates to the displacement vector xxx the general derivative mode is given
by:

∂αααλλλxxx = ∂αααλλλ [XXX−1FFF ] (6.54)

with XXX = [−ω2MMM + iωBBB +KKK] (6.55)

As the force does not depend on the design variables

∂αααλλλxxx = [∂αααλλλXXX
−1]FFF (6.56)

is obtained. In order to calculate and discuss the m−th derivative of this matrix one has to start
with the first order. The derivative for the i−th design variable is, using the derivative of the
inverse given in Eq. (5.7).

∂

∂λi
xxx =

[
−XXX−1

(
∂

∂λi
XXX

)
XXX−1

]
FFF (6.57)

= −XXX−1

(
∂

∂λi
XXX

)(
XXX−1FFF

)
(6.58)

= −XXX−1

[
∂

∂λi
XXX

]
xxx (6.59)

The general second derivative of an inverse matrix is given by:

∂2

∂λiλj
2XXX
−1 =

∂

∂λi

[
∂

∂λj
XXX−1

]
(6.60)

=
∂

∂λi

[
−XXX−1

(
∂

∂λj
XXX

)
XXX−1

]
(6.61)

= −XXX−1

[
∂2

∂λiλj
2XXX

]
XXX−1

+XXX−1

(
∂

∂λj
XXX

)
XXX−1

(
∂

∂λi
XXX

)
XXX−1

+XXX−1

(
∂

∂λi
XXX

)
XXX−1

(
∂

∂λj
XXX

)
XXX−1 (6.62)

(6.63)

An expansion to higher derivatives is straightforward. More important here is the relevance for
structural problems. As seen in sections 6.1.1, 6.1.2, 6.1.3, 6.1.4 the second and higher derivatives

48



of the system matrices vanish, if it is assumed that bending and membrane stiffness are separate
but dependent design variables. Therefore what is left from the higher derivatives of the inverse
are the mixed terms:

∂2

∂λiλj
2XXX
−1 = [GjGi +GiGj ]XXX−1 using Gi = XXX−1

(
∂

∂λi
XXX

)
(6.64)

→ ∂2

∂λiλj
2xxx = [GjGi +GiGj ]xxx (6.65)

(6.66)

The m-th derivative of the displacement vector xxx can be expressed, if assumed that the 2nd and
higher derivatives of the original matrix XXX vanish, through:

∂αααλλλxxx =

 ∑
permutations

G1G1 . . . G1︸ ︷︷ ︸
α1times

G2G2 . . . G2︸ ︷︷ ︸
α2times

. . . GdGd . . . Gd︸ ︷︷ ︸
αdtimes

xxx (6.67)

Using the notation from Eq. (5.112) to Eq. (5.116).

6.3 Krylov sequence and Krylov subspaces

6.3.1 Dynamic steady state: frequency response

Assume there is only one parameter ω which represents the running frequency in a harmonic
dynamic load case, see Eq. (6.55). Having a solution at ω = ω0 for XXX solutions can be obtained
at nearby ω’s with the current method. If damping is neglected, the derivative modes

∂0

∂ω0
,
∂1

∂ω1
,
∂2

∂ω2
,
∂3

∂ω3
, . . . (6.68)

(6.69)

become

xxx,GGGxxx,GGG2xxx,GGG3xxx, . . . (6.70)

with

GGG = XXX−1 ∂

∂ω
XXX (6.71)

= XXX−1MMM (6.72)

Equation (6.70) defines actually a Krylov sequence (see also Parlett [107]), the base for the
Lanczos procedure (see also Lanczos [78], Paige [105],[106] and Komzsik [77]), one of todays
most efficient methods of calculating normal modes for large sparse systems. A comparison
between a solution with the above described Krylov vectors and a classical modal solution
with normal modes concerning accuracy and performance can be found in Arnold, Citerley,
Chargin and Galant [6].
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Also with multiple variables and higher derivatives the derivative modes are similar to Krylov
vectors and therefore the embedding space of the solution manifold can be seen as a sort of a
Krylov subspace. Nair shows in [96] the equivalence between the Krylov subspaces and Kirsch’s
[62] Combined Approximations. The relation between the Combined Approximations and the
ARM approach is given in chapter 6.6.2.

6.3.2 Exact results and the rank of the Krylov subspace

As discussed earlier (see Eq. (5.1)) the generated derivative modes are not necessarily linear
independent. Once one dependent vector appears, all the succeeding ones are also dependent
(Eq. (5.39)). As we know now that the sequence of the derivative modes is a Krylov sequence
(see Eq. (6.70)), at least if we have a one dimensional problem, we can assign the knowhow of
Krylov subspaces to our derivative modes. Using the definition from Eq. (6.71) we know that GGG
has at maximum the rank of the derivative matrix ∂

∂ωXXX. A Krylov sequence can only generate
as many independent vectors as it’s generating matrix has distinct non zero eigenvalues (see
also appendix C). This means that for parameters wetting only 2 degrees of freedom such as
springs or dampers a maximum of 2 derivative modes is necessary to obtain exact results using
the proposed approach. In this cases other exact approaches, such as static condensation (see
Guyan [34]) and the use of substructures (see also Craig [13], Craig and Bampton [14],
Craig and Chang [15] and Hurty [49]) can be considered inferior ways concerning efficiency
once it comes to design problems. .

6.4 Derivative modes of the ten-bar truss problem

Figure 6.1: Original deflection xxx of the ten-bar truss
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Figure 6.2: Derivative mode ∂
∂λ1

xxx of the ten-bar truss

Figure 6.3: Derivative mode ∂
∂λ2

xxx of the ten-bar truss
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Figure 6.4: Derivative mode ∂
∂λ3

xxx of the ten-bar truss

Applying the abstract context worked out in this chapter to the ten-bar truss problem in Fig.
2.1 it can actually be seen that the derivative modes are similar to the original deflection. This
has the extremely positive effect that the space D saturates very fast and only few derivative
modes are necessary for a rather accurate answer.

6.5 Data flow recipe

The necessary steps to approximate the response manifold for structural problems (XXX = −ω2MMM+
iωB +K) are summed up as follows:

1. calculate the baseline analysis

XXXxxx = FFF ←→ xxx = XXX−1FFF (6.73)

2. calculate the necessary derivatives

∂

∂λi
XXX, i = 1, . . . , d (6.74)

3. calculate the factors for the Krylov sequence

GGGi = XXX−1[
∂

∂λi
XXX] (6.75)

4. calculate as many derivative modes ∂αααλλλxxx as desired, starting with first order derivatives.
Stop criteria is a tradeoff consideration between accuracy and computational effort

∂

∂λi
xxx = GGGxxx (6.76)
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5. assemble all derivative modes into matrix ΦΦΦ and ortho-normalize it

ΦΦΦ = [
∂

∂λ1
xxx,

∂

∂λ2
xxx, . . .] (6.77)

6. if the accuracy is not sufficient, add residual modes to ΦΦΦ

ΦΦΦ = [ΦΦΦ, rrr1, rrr2, . . .] (6.78)

7. transform all system matrices from the displacement degree of freedom coordinates to the
manifold coordinates

XXX = ΦΦΦtXXXΦΦΦ (6.79)

XXXi = ΦΦΦtXXXiΦΦΦ (6.80)

FFF = ΦΦΦtFFF (6.81)

. . . (6.82)

To evaluate a new design (new parameter setting) using the fast approximate response manifold,
the following steps are necessary:

1. assemble the (manifold oriented) system matrices according to the desired parameter set-
ting

XXXnew = XXX +
∑

f(λi)XXXi (6.83)

2. solve the physical equation in manifold coordinates

xxxnew = XXX
−1
newFFF (6.84)

3. transform the manifold coordinates back to displacement degrees of freedom using the
transformation matrix ΦΦΦ

xxxnew = ΦΦΦxxxnew (6.85)

4. if desired calculate strains and stresses based on the displacements

6.6 Related approaches and similar procedures in literature

6.6.1 Global approximation in design space

The early work of Fox and Miura [29] can be seen as a special case of the current approach,
if the modes forming ΦΦΦ are restricted to the mentioned global method defined in section 5.6. In
their work 5 distinct points in the global design space were taken to form a basis with 5 residual
vectors for approximating a design space with 4 parameters.
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6.6.2 Combined approximation in the context

The Combined Approximation (CA) named procedure of Kirsch presented in numerous articles
is bascially summarized in [56] and [63]. His work represents a major motivation for this thesis.
The well converging method Kirsch presented in the above papers can basically be seen as a re-
striction of the present ARM method to a single variable with a first order parameter dependency
as it appears using truss elements. Kirsch further examined other categories of optimization
such as shape optimization in [69]. There he showed that the underlying procedure also had a
reasonable convergence for changes concerning nodal coordinates. Topology optimization using
the Combined Approximation was also adressed by Kirsch and Papalambros in their article
[70]. Kirsch and Papalambros made suggestions to handle the decreasing amount of displace-
ment degrees of freedom due to singularities in the stiffness matrix, which is a major problem
for the reanalysis of topological modified structures due to singularity issues.

6.6.3 The pure natural modes approach

The Vibro Acoustic Optimization (VAO) approach presented by Mass [87], Witta [121] and
Freymann [30] uses the natural modes generated by an eigenvalue analysis as the encapsulating
space ΦΦΦ of the response manifold. This has the benefit that the infrastructure for computing the ΦΦΦ
is already available. For modal frequency response analyses with moderate changes in parameters
Mass [87] has shown that there is a reasonable prediction possible using the mentioned modal
correction method. Nevertheless there are several factors that are disadvantageous compared to
the sensitivity and Ritz-vector based encapsulating space ΦΦΦ of the ARM method. These are:

1. The ΦΦΦ matrix of VAO contains all natural modes up to a certain frequency regardless
if and how much the corresponding natural mode contributes under the current loading
condition. This is especially critical due to the fact that the number of column vectors in
the reduced basis ΦΦΦ is the overall determining factor concerning computing time.

2. With natural modes alone there is no guarantee at all that more modes and therefore a
larger ΦΦΦ and more computation effort leads to a higher accuracy.

3. Large shell models can have extremely high modal densities. A few thousand natural modes
are not uncommon, see also Heiserer and Chargin [42]. This can totally destroy the
computational advantage of a coordinate transformation, as seen later on in Fig. 7.13.

Therefore the VAO approach seems primarily efficient for areas with low modal densities and
small parameter changes.

6.7 Mechanical interpretation

For a better understanding we restrict the general problem now to a static problem (ω = 0).
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6.7.1 Role of the strain energy

If we would not calculate any derivative or residual modes for the problem reduction we would
be left with the current displacement vector xxx:

ΦΦΦ = xxx (6.86)

(6.87)

The modal stiffness then basically represents the strain energy of the system:

KKK = ΦΦΦtKKKΦΦΦ (6.88)

= xxxtKKKxxx (6.89)

Restricting the stiffness matrix to one design variable we get the strain energy of this variable
contributing to the whole system:

KKKi = xxxtKKKixxx (6.90)

A new analysis with design variable i increased by α would lead to the following equation in
reduced coordinates:

ξξξ = [KKK + (α− 1)KKKi]−1[ΦΦΦtFFF ] (6.91)

xxxnew = ΦΦΦξξξ (6.92)

= xxx
xxxtFFF

KKK + (α− 1)KKKi

(6.93)

This is basically a scaling of the original deflection. The scaling factor is defined by the increase
of the strain energy of the modified part.

6.7.2 Load path interpretation

As seen in the previous subsection with one vector in the reduction basis the estimation is
restricted to scaling of the original design. If we add derivative modes or residual vectors to the
ΦΦΦ matrix we open new load paths for the forces. The generation of a new derivative mode or
load path was defined in Eq. (6.59) with:

∂

∂λi
xxx = −XXX−1

[
∂

∂λi
XXX

]
xxx (6.94)

The product
[
∂
∂λi
XXX
]
xxx can contain only high values if the extremely sparse matrix

[
∂
∂λi
XXX
]

has
high values at degrees of freedom where the displacement vector xxx has high deflection.

Therefore it is implicitly described by our formulation that stiffening the structure between
displacement degrees of freedom with high deflection has the largest impact on the generation
of new load paths. A well known and very intuitive method for engineers to stiffen structures.
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7 Computational complexities and

performance considerations

In this chapter we will derive an estimation of the amount of floating point operations (FLOPS)
necessary to solve the equations given in the previous chapter. Based on these results we are also
able to build an a priori interior estimation of the computing effort for an approximate response
manifold. This will be a crucial part of judging the introduced ARM method for the desired area
of application such as multi-criteria optimization in terms of performance and turnaround time.

7.1 Floating point operations and performance

For solving numerical problems we assume that we have a central processing unit, called CPU,
which carries out the operations. In order to forecast the time required by a whole calculation
the following components have to be considered:

• how much numerical data needs to be processed?

• where is the numerical data stored?

• how fast is the data transferred to the CPU?

• how fast can one unit (floating point number) be processed?

• how, how fast and how many resulting data has to be stored?

Throughout this thesis we measure the arithmetic requirements by counting the necessary float-
ing point operations. We distinguish between the following floating point operations which all
are counted as one FLOP:

• addition, referred as an ADD

• multiplication, referred as a MULT

• and for modern computing architectures a multiplication in combination with an addition,
referred as a MPYADD
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Many of the above mentioned steps are heavily dependent on the setup of the calculation engine
and implementation of the software. Their timing efforts can many times only be measured
during calculation and therefore be estimated empirically. But, as all of these steps have to be
in a logical order, they can be executed only sequentially. Therefore having an accurate time
measurement for one step we have at least an estimate for the minimum time required. Focusing
on the CPU, which effectively carries out the calculation, the minimum time required can be
calculated if it is known how many operations have to be done in total and how fast the CPU
can operate them per time unit (FLOP-rate). As the estimation of the required FLOPS can be
done analytically, we have a measurement independent from hard- and software.

Nevertheless we should not forget that this always underestimates the required time, because
the process of shuffling the data from storage to CPU and back via different levels of hierarchic
memory, such as disk storage, memory storage and different levels of cache, is a time consuming
and complex task and is extremely dependent on the implementation of the program and the
setup of the machine.

7.2 Floating point operation counts for basic matrix operations

For operations such as matrix addition and multiplication of full matrixes the counting of oper-
ations is shown. For the solution of a system of linear equations and for operations of sparse and
complex matrices the necessary FLOPS are derived from George, Liu [31], Parlett [107],
and Komzsik [76].

7.2.1 Matrix addition and subtraction

Matrix addition is an element by element operation.

C = A+B with A,B,C ∈ Rm×n (7.1)

cij = aij + bij ∀ i = 1, . . . ,m; j = 1, . . . , n (7.2)

Examining Eq. (7.2) it is obviously that for the addition of two matrices the following amount
of operations is needed:

FLOPS(C = A+B) full sparse

real mn mnρC

complex 2mn 2mnρC

where ρC is the density of the resultant C, if resultant 0’s are stored, but matching zero inputs
are not added.
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7.2.2 Matrix multiplication

Matrix multiplication is defined via:

C = A ·B with A ∈ Rm×l, B ∈ Rl×n, C ∈ Rm×n (7.3)

cij =
l∑

k=1

aikbkj ∀ i = 1, . . . ,m; j = 1, . . . , n (7.4)

This results in mnl MPYADD operations for full real matrices.

For complex operations we have to consider the multiplication of two complex numbers which
require four MPYADDs:

z1 = x1 + i·y1 x1, y1 ∈ R, z1 ∈ C (7.5)

z2 = x2 + i·y2 x2, y2 ∈ R, z2 ∈ C (7.6)

z3 = z1z2 (7.7)

= (x1x2 − y1y2) + i·(x1y2 + x2y1) (7.8)

FLOPS(C = A ·B) full sparse

real lmn lnmρC

complex 4lmn 4lnmρC

7.2.3 Solving symmetric systems

To solve the system of equations

AX = B A ∈ Rn×n, X,B ∈ Rn×m (7.9)

the inverse of A, A−1 is explicitly not computed. Instead a decomposition (DCMP)

A = LU for non-symmetric matrices (7.10)

A = LDLt for symmetric matrices (7.11)

= CCt Cholesky form for symmetric positive definite matrices (7.12)

and a forward backward substitution (FBS) are carried out. L is called the lower triangular
factor, U the upper triangular factor and C the Cholesky factor. Using Eq. (7.10) Eq. (7.9)
becomes

LY = B forward step (7.13)

UX = Y backward step (7.14)

For the decomposition of a symmetric matrix A with front-width f , which will be defined in 7.3,
the approximate complexity is [31]:
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FLOPS(DCMP(A→ LU)) full (f = n) sparse

real 1
2n

3 1
2nf

2

complex 2n3 2nf2

The computational complexity of the forward backward substitution is approximately [31]:

FLOPS(FBS(B,L,U)) full (c∅ = 1
2n

2) sparse

real mn2 2mc∅
complex 4mn2 8mc∅

Where c∅ is the number of non-zeroes in the Cholesky factor C.

7.2.4 Gram-Schmidt ortho-normalization

The [n × s] matrix Φ defined in Eq. (5.78) must have full rank in order to serve as a basis
for our design space. For reasons of numerical accuracy we use an ortho-normalized Φ. The
standard procedure of ortho-normalization is, beside a singular value decomposition (see [111]),
the Gram-Schmidt ortho-normalization (see Komzsik [75]) which we will use here. As the ortho-
normalization is a performance critical task in the preparation phase of the ARM method we
have to consider its computational complexity here in order to judge the new method. It must
be noted that this is a lower estimate of the required FLOPS, due to the fact that standard
Gram-Schmidt ortho-normalization can result in bad round-off errors due to finite precision
arithmetic and modified Gram-Schmidt or other more expansive procedures must be used.

Theorem 7.1 The computational complexity of Gram-Schmidt ortho-normalization is at most
n(s2 + s).

Proof 7.1 The procedure of ortho-normalization takes the [n× s] matrix

M = [m1,m2, . . . ,ms] (7.15)

of rank t ≤ s, where mi are column vectors of size n, and produces the matrix

Φ = [φ1, φ2, . . . , φt] (7.16)

with

< φi, φj >= δij Kronecker delta (7.17)
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For the proof we assume t = s.

for i = 1 : s (7.18)

φi = mi −
i−1∑
k=1

< φk,mi > φk (7.19)

φi =
1
‖φi‖

φi (7.20)

endfor Φ = [φ1, . . . , φi] (7.21)

(7.22)

Examining Eq. (7.19) we see a scalar product requiring n MPYADDs, and an additional n
MPYADDs for the vector subtraction. This sums up to 2n FLOPS. This is done i − 1 times.
The normalization takes another 2n FLOPS. So one loop requires 2n+(i−1)∗2n = 2ni FLOPS.
The total loop requires then

s∑
i=1

2ni = 2n
s∑
i=1

i (7.23)

= 2n
s(s+ 1)

2
(7.24)

= n(s2 + s) (7.25)

operations. q.e.d.

FLOPS(ORTHO(M)) full

real n(s2 + s)

complex 4n(s2 + s)

7.3 Matrix properties for structural problems

Looking at the discretized equations for solving structural problems in Eq. (4.88) in the frequency
domain we see 3 matricesKKK,BBB andMMM which form the dynamic stiffnessXXX = (−ω2MMM+iωBBB+KKK).
The structure of XXX is in general dominated by KKK, because MMM is in most cases nearly diagonal
(lumped mass approach, see also zienkiewicz [125]) and BBB is mostly either extremely sparse
or can have a similar pattern then KKK.

In order to give reasonable estimations for the computational efforts, required by solving struc-
tural problems we have to know the following properties of a matrix XXX depending on the model
size n:

• number of rows nrow(X) and columns ncol(X), both are n as the matrix is square and
symmetric
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• matrix density density(X), which is the number of non-zeroes divided by the matrix size
nrow(X) · ncol(X)

• number of non-zeroes per row i: nnzpri(X)

nnzpr(X) = max{nnzpri(X) | 1 ≤ i ≤ nrow(X)} (7.26)

• bandwidth as defined in [17]:

bandwidthi(X) = i−min{j | Xij 6= 0} (7.27)

bandwidth(X) = max{bandwidthi(X) | 1 ≤ i ≤ nrow(X)} (7.28)

• front-width, with

frontwidthi(X) = |{k | k > i and Xkl 6= 0 for some l ≤ i}| (7.29)

frontwidth(X) = max{frontwidthi(X) | 1 ≤ i ≤ nrow(X)} (7.30)

Note that frontwidthi(X) is simply the number of active rows at the i-th step in the
factorization and frontwidth(X) is the frontwidth of the whole matrix. Further we have
(George [31]):

bandwidth(X) ≥ frontwidth(X) ≥ nnzpr(X) (7.31)

Throughout this chapter we may also denote the front-width with the letter f for better
readability.

• number of non-zeroes of the Cholesky factor nnzchol(X) = nnz(C), where C is the
Cholesky factor of X (see Eq. (7.12)). Throughout this chapter we may also denote the
number of non-zeroes in the factor with the symbol c∅.

To obtain these properties for matrices used in structural analysis we look at the following
simplified models representing the basic discretization approaches in the 3-dimensional space
(see Fig. 7.1):

• 1-dimensional abstraction with beam elements, BEAM

• 2-dimensional abstraction with quadrilateral, QUAD, or triangular, TRIA, elements

• 3-dimensional model with pentahedral, PENTA or hexahedral, HEXA, elements.

An element with all edges of the same length we will call a perfect element. For each of these
models we consequently increase the number of degrees of freedom n by subdividing each edge of
the basic element with an increased number of new elements m of the same type. Therefore the
amount of elements increases proportional to m for one dimensional elements (BEAM), ≈ m2 for
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two dimensional elements such as QUAD and TRIA elements and ≈ m3 for three dimensional
ones like HEXA and PENTA elements.

We will not look at tetrahedral elements, because a perfect tetrahedral element cannot be split
into multiple perfect tetrahedral elements. For the further discussion we will focus on elements
with linear shape functions (see [125]) only.

The stiffness matrix K has in general, for a reasonable geometric topology, the following
characteristics:

Figure 7.1: Representative models for the matrix property study including the 2D and 3D models
for 1, 3 and 10 elements per edge
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(linear) element-type (number of nodes) nnzpr(K) 1 density(Ktype) see Eq. (7.33)

BEAM (2) 5 nnzpr(KBEAM)/n

TRIA (3) 21 nnzpr(KTRIA)/n

QUAD (4) 24 nnzpr(KQUAD)/n

PENTA (6) 63 nnzpr(KPENTA)/n

HEXA (8) 77 nnzpr(KHEXA)/n

With nrow(K) = ncol(K) = n the total amount of terms in matrix K is n2. Therefore we get
an upper bound of the density of sparse stiffness matrices of:

density(Ktype) ≤ nnzpr(Ktype)n
n2

(7.32)

≤ nnzpr(Ktype)
n

(7.33)

7.3.1 Approximation of front-width and non-zeroes in the Cholesky factor

K with nrow(K) = n will be denoted with Kn. In order to observe the behavior of
frontwidth(Kn) and nnzchol(Kn) for large as well as small models, we introduce two new
variables:

ξ =
log(frontwidth(Kn))

log(n)
(7.34)

η =
log(nnzchol(Kn))

log(n)
(7.35)

Table 7.3.1 shows the development of the amount of elements, the number of degrees of free-
dom, and the characteristic properties of the stiffness matrix such as frontwidth(Kn) and
nnzchol(Kn) for these models and a selective large range of degrees of freedom.

elements total number degrees frontwidth (nnzchol ξ η

per edge of elements of freedom (n) ±1000)
(m) n̄ = (m+ 1) /1000

type BEAM m 6n̄
(6 DOF/node)

1 1 12 4 1 0.56 2.78

3 3 24 6 1 0.56 2.17

10 10 66 22 1 0.74 1.65

31 31 192 12 2 0.47 1.45

100 100 606 28 8 0.52 1.40

316 316 1902 22 20 0.41 1.31

1000 1000 6006 34 91 0.41 1.31

3162 3162 18978 33 233 0.35 1.25
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elements total number degrees frontwidth (nnzchol ξ η

per edge of elements of freedom (n) ±1000)
(m) n̄ = (m+ 1) /1000

10000 10000 60006 37 1062 0.33 1.26

31622 31622 189738 37 3639 0.30 1.24

100000 100000 600006 37 11770 0.27 1.22

316227 316227 1897368 37 37487 0.25 1.21

type TRIA m2 5/2 · n̄·
(5 DOF/node) (n̄+ 1)

1 1 15 9 1 0.81 2.55

2 4 30 12 1 0.73 2.03

4 16 75 30 2 0.79 1.76

8 64 225 51 6 0.73 1.61

16 256 765 87 32 0.67 1.56

32 1024 2805 117 155 0.60 1.51

64 4096 10725 216 793 0.58 1.46

128 16384 41925 420 3957 0.57 1.43

256 65536 165765 6912 19051 0.57 1.39

1000 1000000 2507505 3393 401499 0.55 1.34

2073 4297329 10758875 8931 2144215 0.56 1.33

type QUAD m2 5n̄2

(5 DOF/node)

1 1 20 12 1 0.83 2.31

2 4 45 15 1 0.71 1.81

4 16 125 33 3 0.72 1.66

8 64 405 57 15 0.67 1.60

16 256 1445 99 75 0.63 1.54

32 1024 5445 195 399 0.61 1.50

64 4096 21125 321 1958 0.58 1.45

128 16384 83205 729 9554 0.58 1.42

256 65536 330245 1323 45969 0.57 1.39

512 262144 1315840 2913 221332 0.57 1.36

type PENTA m3 3/2 · n̄2·
(3 DOF/node) (n̄+ 1)

1 1 18 18 1 1.00 2.39

2 8 54 27 1 0.83 1.73

3 27 120 48 4 0.80 1.73

4 64 378 102 20 0.78 1.67

6 216 864 186 78 0.77 1.67
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elements total number degrees frontwidth (nnzchol ξ η

per edge of elements of freedom (n) ±1000)
(m) n̄ = (m+ 1) /1000

8 512 2808 417 455 0.76 1.64

12 1728 9234 957 2724 0.75 1.62

18 5832 27378 2085 14700 0.75 1.62

26 17576 91260 5757 85438 0.76 1.60

39 59319 202878 8562 260079 0.74 1.59

51 132651 521850 17316 1038091 0.74 1.58

type HEXA m3 3n̄3

(3 DOF/node)

1 1 24 24 1 1.00 2.17

2 8 81 36 3 0.82 1.82

3 27 192 72 9 0.81 1.73

5 125 648 168 56 0.79 1.69

8 512 2187 351 350 0.76 1.66

11 1331 5184 648 1244 0.76 1.64

17 4913 17496 1458 7564 0.75 1.62

27 19683 65856 4176 56559 0.75 1.61

38 54872 177957 8079 233701 0.74 1.59

57 185193 585336 21294 1427257 0.75 1.59

Table 7.1: Table of matrix properties for the simplified models

7.3.1.1 Behavior of the front-width

The bandwidth and with it the front-width depend extremely on the ordering of the degrees
of freedom and therefore on the numbering scheme of the nodes in the model. As highly so-
phisticated reordering schemes, such as Metis [52], used in most solvers today, are not topic
of this work we will use a straight forward numbering scheme and can give therefore only an
upper estimate of the asymptotic behavior of the front-width. Nevertheless we will show that
for our simplified models this numbering scene is close to an optimum concerning a minimum
front-width. Without restricting any generality we can focus for each dimension (1-D: BEAM,
2-D:QUAD, 3-D:HEXA) on a model with 2 elements (3 nodes) per edge. This is due to the fact
that the intermediate node has a full connection to the neighbors. As seen in Fig. 7.11 and Fig.
7.12 the front-width for the TRIA model shows almost the same behavior as the QUAD model.
This is also true for the PENTA model and the HEXA model.

Looking at the BEAM model in Fig. 7.2 we see that the grid with the number ID is connected
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with the grids ID − 1 and ID + 1 giving a bandwidth of:

bandwidthID(KBEAM
n ) = const. · (ID + 1− (ID − 1)) (7.36)

bandwidthID(KBEAM
n ) = const. (7.37)

For the two dimensional model we see a connectivity between ID ,ID−m− 1, and ID+m+ 1
(Fig. 7.2), where m is the number of grids per edge. This leads to a bandwidth of:

bandwidthID(KQUAD
n ) = const. · (ID +m+ 1− (ID −m− 1)) (7.38)

bandwidthID(KQUAD
n ) = const. ·m+ const. (7.39)

For the three dimensional model we have to increase the offset of the nodes with m2 (Fig. 7.3):

bandwidthID(KHEXA
n ) = const. · (ID +m2 +m+ 1− (ID −m2 −m− 1)) (7.40)

bandwidthID(KHEXA
n ) = const. ·m2 + const.m+ const. (7.41)

IDID−1 ID+1

ID−m ID−m+1ID−m−1

ID+m−1 ID+m ID+m+1ID+1

ID

ID−1

Figure 7.2: Numbering scheme for the 1D BEAM and 2D QUAD model.

Using Eq. (7.37) to Eq. (7.39) and Eq. (7.31) we can estimate the complexity of the front-width
for the demonstrated models. Using the data in tabular 7.3.1 we then fit the mathematical
models for the front-width in a least square sense.

The BEAM model’s front-width does also not depend on the matrix size n at all. Therefore the
front-width is:

frontwidth(KBEAM
n ) = c with c ∈ R (7.42)

For the QUAD model we saw a linear dependency on m which is the number of grids per edge.
For a 2 dimensional model this means that m ≈

√
n because the amount of degrees of freedom

is proportional to the total number of grids in the model. Again respecting Eq. (7.31) we assume
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ID−m^2+m+1

ID+m+1

ID+m^2+m+1

ID
ID+1ID−1

ID−m^2−m−1

ID−m−1

ID+m^2−m−1

Figure 7.3: Numbering scheme for the 3D HEXA model. m̂2 means m2.

the same complexity for the front-width as for the bandwidth we get the following test-function
for the front-width of the QUAD model:

frontwidth(KQUAD
n ) = b ·

√
n+ c with b, c ∈ R (7.43)

Applying the same procedure on the HEXA model we see a quadratic dependency on m ≈
√
n

3

according to the 3D nature of this model. For the test function we therefore apply the following
function:

frontwidth(KHEXA
n ) = a · n2/3 + b · n1/3 + c with a, b, c ∈ R (7.44)

In summary we get for the polynomial pre factors to fit the front-width:

a b c

1D/BEAM 37.000

2D/QUAD 2.587 0.261

3D/HEXA 2.803 -9.663 28.288

The observed and the fitted data can be seen in Fig. 7.4, Fig. 7.5 and Fig. 7.6.

7.3.1.2 Behavior of the number of non-zeroes in the Cholesky factor

For the number of non-zeros in the Cholesky factor, nnzchol(Kn), we observe in a log/log plot
(Fig. 7.7) a linear behavior between the amount of DOF n and the nnzchol(Kn).
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Figure 7.4: Front-width data of the artificial model and the fitted front-width for the BEAM
model.

log (nnzchol(Kn)) = d log (n) + ē (7.45)

↔ nnzchol(Kn) = exp(d log(n) + ē) (7.46)

↔ nnzchol(Kn) = end with e = exp(ē) (7.47)

Here d and e are model specific constants. The artificial data and the fitted curves can be seen
in Fig. 7.8, Fig. 7.9, and Fig. 7.10.

In summary we get for the constants to fit the number of non-zeroes in the Cholesky factor:

d e

1D/BEAM 1.105 4.86

2D/QUAD 1.180 13.80

3D/HEXA 1.492 3.56

7.3.1.3 Behavior of real world models

In addition to the study with the simplified models we can also see the properties of the stiffness
matrix for real world models in Fig. 7.11 and Fig. 7.12. This data represents characteristic
stiffness matrices, mostly dominated by QUAD and TRIA elements, of ≈ 50, 000 finite element
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Figure 7.5: Front-width data of the artificial model and the fitted front-width for the 2D models.

simulations. The data was produced during the development process of automotive structures
over several years at a major car company 2.

It can be clearly seen that the values for ξ and η for these models are close to these of the 2D
simplified models. The difference is explained by the following properties, which are not covered
within the simplified models:

• mixture of 1D, 2D and 3D element types

• different topology of the underlying geometry inserting holes and closures in the topology
of the mesh

• single and multi-point constraints caused by rigid elements and other boundary conditions,
which increase the matrix density, by eliminating degrees of freedom

2data is courtesy of BMW AG, collected over the years 1998-2003 in the development and research center FIZ

70



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000  1e+06  1e+07

fr
on

tw
id

th
 e

xp
on

en
t ξ

Matrix Size

HEXAdata
PENTAdata

fit for HEXAcurve

Figure 7.6: Front-width data of the artificial model and the fitted front-width for the 3D models.
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Figure 7.7: The log/log plot between the degrees of freedom and the number of non-zeros in the
Cholesky factor shows a linear dependency for larger amounts of degrees of freedom in the log
scale.
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Figure 7.8: Number of non-zeros in the Cholesky factor of the artificial model and the fitted
data for the 1D model.
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Figure 7.9: Number of non-zeros in the Cholesky factor of the artificial model and the fitted
data for the 2D model.
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Figure 7.10: Number of non-zeros in the Cholesky factor of the artificial model and the fitted
data for the 3D model.
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Figure 7.11: ξ = log(frontwidth(Kn))/ log(n) describing the front-width depending on n. The
real model data, mainly consisting of quadrilateral and triangular elements and some 3D ele-
ments, is, as predicted, close to the curve for the 2D elements.
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Figure 7.12: η = log(nnzchol(Kn))/ log(n) describing the amount of non-zeros in the Cholesky
factor depending on n. The real model data, mainly consisting of quadrilateral and triangular
elements and some 3D elements, is, as predicted, close to the curve for the 2D elements.
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7.4 Computational complexity for a structural optimization

problem

To judge the ARM method’s computational efficiency we have to add up the FLOPS of all the
steps of the solution procedure. The (linear) solution of a finite element model, can be described
basically with the following steps:

• element matrix generation: Ki,Mi, Bi for i = 1, . . . , Nele

• element matrix Assembly: Kg =
∑Nele

i=1 Ki,Mg =
∑Nele

i=1 Mi, Bg =
∑Nele

i=1 Ci,

• load generation

• single- and multi-point elimination, Kg → K, and respectively M and B

• decomposition of dynamic stiffness matrix X = −ω2M + i·ωB +K

• forward- and backward substitution

In general the decomposition and the forward-backward substitution are the performance critical
tasks.

For the optimization process we assume that we need σng function evaluations for non gradient
based search algorithms or σg iterations including τ gradient evaluations at each iteration for
gradient based optimization algorithms. d shall be the number of parameters.

7.4.1 Standard approach

7.4.1.1 Non-sensitivity based solution

Counting only the more time consuming tasks like DCMP and FBS, further assuming one right-
hand side and the complexities defined in 7.2.3 and 7.2.3, the necessary floating point operations
are:

Operation FLOPS

decomposition of stiffness matrix 1
2nf

2

forward-backward substitution (1 right-hand side) 2c∅
Total 1

2nf
2 + 2c∅

7.4.1.2 Gradient based solution

For gradient based solutions we have to calculate d gradients for each function evaluation. As
defined in Eq. (6.59) the gradient of the displacements, according to the i-th variable is given
by:

∂1
∂λi

xxx = XXX−1

[
∂1
∂λi

XXX

]
xxx (7.48)
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As the decomposed XXX is already available from the initial solution of the system, the procedure
of calculating the derivative of the displacements requires one matrix vector operation and
one forward-backward substitution only. The amount of floating point operations required by
the matrix vector operation depends on the density of the differential matrix ∂1

∂λi
XXX, cannot be

predicted in advance. Nevertheless some assumptions can be made, which are reasonable for
many cases.

The structure of the system matrix X has the following pattern:

XXX =

XXX
i
11 XXXi

12 0
XXXi

21 XXXi
22 +RRR11 RRR12

0 RRR21 RRR22

 (7.49)

Where XXXi denotes the sub matrix of XXX belonging to part i and RRR represents the rest of the
structure defined by the other parts.

The derivative of the system matrix according to the design variable i has then the following
sparsity pattern:

Sparsity[
∂

∂λi
X] =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (7.50)

Here 1 denotes entries in the matrix.

So let:

ni be the amount of DOF affected by variable i (7.51)

li∅ be the number of non-zeros per row in the mean for variable i (7.52)

n =
1
d

d∑
i=1

ni the average amount of DOF affected by each design variable (7.53)

l∅ =

∑d
i=1 nil

i
∅∑d

i=1 ni
the mean amount of non-zeroes per row of each design variable (7.54)

Theorem 7.2 The amount of floating point operations to calculate all d right-hand side vectors
for the FBS in Eq. (7.48) is:

dnl∅ (7.55)

Proof 7.2 We basically will carry out one forward backward substitution to calculate the gradi-
ents in one shot:[

∂1
∂λ1

xxx,
∂1
∂λ2

xxx, . . . ,
∂1
∂λ2

xxx

]
= XXX−1YYY (7.56)

with Y =
[(

∂1
∂λ1

XXX

)
,

(
∂1
∂λ1

XXX

)
, . . . ,

(
∂1
∂λ1

XXX

)]
(7.57)
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As x is a n× 1 vector the matrix product [∂iX]U requires ni · li∅ FLOPS. Therefore the number
of FLOPS to form Y is:

d∑
i=1

nil
i
∅ (7.58)

Based on Eq. (7.54) we have:

l∅ =

∑d
i=1 nil

i
∅∑d

i=1 ni
(7.59)

←→

(
d∑
i=1

ni

)
l∅ =

d∑
i=1

nil
i
∅ (7.60)

←→ d

(
1
d

d∑
i=1

ni

)
l∅ =

d∑
i=1

nil
i
∅ (7.61)

←→ dnl∅ =
d∑
i=1

nil
i
∅ using Eq. (7.53) (7.62)

.q.e.d

Operation FLOPS

decomposition of general stiffness matrix 1
2nf

2

forward-backward substitution 2c∅

matrix vector products for all i
[
∂1
∂λi
XXX
]
xxx dnl∅

d forward-backward substitutions 2dc∅
Total 1

2nf
2 + 2(1 + d)c∅ + dnl∅

7.4.2 Approximate Response Manifold (ARM) based solution

As shown in section 6.5 the ARM based solution is a two stage procedure. In the first stage the
embedding space of the response manifold is generated. In the second step the solution is carried
out in this space. It was demonstrated that the solution vectors of the ARM based solution are
equivalent to the shape functions of the element formulation in terms of generalized coordinates.
The only difference is that the solution manifold embedding space D is considered as the solution
space instead of the discretization space S. Therefore our modal basis Φ can be seen as the shape
functions of an approximated response space.

Concerning the discretization using finite elements, there is no exact definition of the right or
perfect discretization. The discretization is more based on general rules, experience concerning
the gained accuracy and available computing resources. The in many cases valid statement the
smaller the elements, the more accurate the solution is outweighed by the computing power and
the needed time to solution. A better geometric approximation through smaller elements is only
one factor for improving accuracy. In the same manner as we assume a general desired element
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edge length for discretizing our geometry we will assume the same amount of derivative modes
for each design variable when constructing the manifold encapsulating subspace D.

The numerical procedures for generating the base of an approximated manifold and their re-
spective computational complexities are, for a static structural problem and assuming that we
do not add additional residual modes:

Operation FLOPS O(n,s)

calculation of the fix points

1 decomposition of general stiffness matrix 1
2nf

2

1 forward- and backward substitution 2c∅
creating the derivative modes

d preparation of Ritz vectors, d matrix vector
products Yi =

[
∂1
∂λi

X
]
x

nl∅

d generation of Ritz vectors, forward-backward
substitution φi = X−1Yi

2c∅

generation and projection into the embedding solution space D s = d+ 1

1 generation of the solution manifold
M embedding solution space S, vec-
tor assembly and ortho-normalization
Φ = ortho([x, φ1, φ2, . . . , φd]) see Eq. (7.1)

n(s2 + s)

d transformation of the design part matrices from
discretization space S to the embedding solution
space D, triple matrix product Xj = Φt[Xj ]Φ

sn(s+ l∅)

1 transformation of the general stiffness matrix
from discretization space S to the embedding
solution space D, triple matrix product X =
ΦtXΦ
assuming density(K) ≈ nl∅

n2

sn(s+ l∅)

∑
≈ 1

2nf
2 + 2c∅s + (s −

1)nl∅ + n(s2 + s) + (s−
1)sn(s+ l∅)+sn(s+ l∅))

7.4.2.1 Non-sensitivity based solution

Based on the above projection scheme from the discretization space into the response space
we have to solve the equation in a s− and not in n−dimensional space. As a disadvantage the
matrices are not sparse any more and therefore the front-size f will be s. Also the number of
non-zeroes becomes c∅ = 1

2s
2. For that reason also forming of the resultant (dynamic) stiffness
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matrix X has to be considered, as it is now not a minor task compared to the DCMP and the
FBS. (The αi denote the pre-factors based on the new parameter setting).

Operation FLOPS

s forming new stiffness matrix X =
∑s

i αiXi s2

1 decomposition of new stiffness matrix 1
2s

3

1 forward- and backward substitution s2∑ 3
2s

3 + s2

7.4.2.2 Gradient based solution

The accounting of the flops for a gradient based ARM solution works in full analogy to 7.4.2.1
and 7.4.1.2.

Operation FLOPS

s forming new stiffness matrix X =
∑s

i αiXi s2

1 decomposition of stiffness matrix 1
2s

3

1 forward- and backward substitution s2

d matrix vector product [ ∂1
∂λi

X]x s2

d forward- and backward substitution s2∑ 7
2s

3 − s2

7.4.3 Discussion and comparison of numerical efficiency

Based on the results derived above the ARM method can now be compared with the traditional
way. Depending on the dimension s of D the calculation of the solution might be much faster then
in the original S-space. Nevertheless the effort for generating D has to be invested. Therefore it is
a question of how many reanalysis solutions will be carried out in order to make the calculation in
the D-space more efficient then in the (discretization) S-space. Figure 7.13 shows this principle.
Due to the ortho-normalization the dimension of D is always lower or equal then the dimension
of S. However, a function evaluation in D, based on full matrices, can take longer than one in
S, which benefits from sparse matrices. This would mean that there could be no break even
point for efficiency considerations. Practically the solution in D is faster then in S, due to the
dramatically reduced dimension. If we have a break even point it is given by:

σ := number of re-analyses (7.63)

FLOPStotal−S = σ · FLOPSsolve−S flops for the general method (7.64)

FLOPStotal−D = FLOPSgenerate−D + σ · FLOPSsolve−D flops for the ARM method (7.65)
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Figure 7.13: The amount of reanalysis necessary to make the ARM method more efficient ac-
cording to the number of floating point operations then the generic approach. The underlying
structural model is the 2D (QUAD) model discussed before in this chapter.

The total amount of FLOPS must be now equalized to obtain the number of structural analyses
σ where both methods take the same amount of time:

FLOPStotal−D = FLOPStotal−S (7.66)

←→ σ =
FLOPSgenerate−D

FLOPStotal−S − FLOPStotal−D
(7.67)

(7.68)

If the total number of analyses, for example in an optimization project, multi-parametric study,
robust design analysis or other project, is larger then σ then the ARM-method will be less time
consuming. If the planned number of function evaluations is lower then σ then the ARM method
is less efficient according to the total number of floating point operations. If there is a need to
have a very fast reanalysis, for example for quick design decisions, it might be worth to generate
the D-space anyway.

Figure 7.13 shows the amount of function evaluations, at which the ARM method pays off
according to the total number of floating point operations depending on n and s.
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7.4.3.1 Megaflop examples and computing time

To give some estimates for computing time we estimate the number of FLOPS for sparse and
full models according to the derived scheme. As the sparse model we take the QUAD model
from table 7.1 with 1315840 degrees of freedom. The FLOPS for the full models (for the ARM
approach) for sizes of 10, 100, 1000 and 10000 are taken from the derivations in this chapter.

Model size Estimated Gigaflops for one solution (FBS+DCMP)

1315840 sparse 5583.3

10 full 1.6e-6

100 full 0.0015

1000 full 1.50

10000 full 1500.1

Assume we have a 1 Gigaflop computer, which means that this computer is able to perform
109 floating point operations per second. Then we need at least the same amount of seconds as
we have Gigaflops to perform the described operations. A 1 Gigaflop computer can be either a
machine with a 1 Gigahertz CPU and 1 floating point operation per cycle or a 500 Megahertz
CPU with 2 floating point operations per cycle.

However, as mentioned in beginning of this chapter our estimates are lower estimates concerning
computing times. In practice there will be significant differences due to not considered hardware
and software features such as memory hierarchies and basic instruction code differences.

Nevertheless the above example shows that we could perform 3722 full solutions with a reduced
basis of size 1000 instead of one sparse solution with 1315840 degrees of freedom.

This demonstrates the capabilities of the proposed approach.
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8 Applications to structural design

problems

8.1 Uni parametric study: Pareto optimal stiffness of engine

hood

The target of this section is to show the convergence radius of a real world example with a
one dimensional parameter space. The second aspect will be the comparison with a traditional
straight forward response surface method.

Concerning the observed model the influence of glue stiffness (see Fig. 8.1) on the global static
stiffness of a car engine hood is examined. While increasing the glue stiffness the weight of the
interior shell will be reduced with the constraint, that certain static stiffness values do not fall
beyond their original settings.

This is carried out in two ways. First the ARM method is used for an efficient Pareto optimization
(see also Das [18] and Pietrzak [108]). During increasing the glue stiffness the sheet thickness
of the interior sheet will be decreased so far that the initial stiffness values are maintained. As a
comparison in a second step the stiffness is settled at a certain value and the weight is reduced
using topology optimization of the interior sheet. As one result the potential of a sizing and a
topology optimization are compared.

8.1.1 Model and loading conditions

The following load-cases where considered:

• cross member stiffness (load-case- 1)

• longitudinal member stiffness (load-case 2)

• corner-bending stiffness (load-case 3)

The corresponding finite element model consists of 115506 unconstrained displacement degrees
of freedom (DOF) and can be seen in Fig. 8.1.
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Figure 8.1: Model of engine hood with 115506 displacement degrees of freedom. The glue con-
necting the inner sheet (gray) with the outer sheet (transparent, mesh style) is displayed black.

8.1.2 Parametric task

The following procedures were carried out:

• Show the dependency of the stiffnesses of the 3 load-cases from the shear modulus of the
material (Fig. 8.1), which connects the inner and the outer sheet, in the range [0.1-70,000
N

mm2 ]. This shall show the stiffness potential due to different glue mixtures and even due to
a welding. The baseline material was a composition rubber based glue with shear modulus
of 4 N

mm2 , e.g. Totalseal from Le Joint Francais.

• Conversion of the stiffness gain at a shear modulus of G= 800 N
mm2 (using epoxy based

glue, e.g. Betamate 1496 from DOW Automotive AG) into a weight potential by

– decreasing the thickness t of the interior sheet.

– removing material from the interior sheet using topology optimization.

8.1.3 Procedure

The governing equation in this case is:

(KKKr +KKKg(G) +KKKi(t))xxx = FFF (8.1)

where KKKg(G) is the stiffness matrix of the glue and ∂
∂λ1

KKKg(G) = 1
GKKKg. Parameter λ1 = G

represents the shear modulus of the glue. KKKi(t) is the stiffness matrix of the inner shell and shall
be composed of

KKKi(t) = tKKKm
i + t3KKKb

i (8.2)
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neglecting transverse shear effects (m stands for membrane and b for bending stiffness). KKKr

represents the rest of the structure.

Using the approach for a one dimensional parametric problem the ortho-normalized
{xxx,AAA0xxx,AAA

2
0xxx, . . .} with AAA0 = KKK−1KKKg represent the global shape functions and form the ba-

sis for the new solution space. Due to the fact that the glue stiffness undergoes relative changes
of over 5 orders of magnitude additional residual modes were inserted. These are formed by
the displacement vectors at the lower and upper range of the glue stiffness, respectively xxxl and
xxxu. This takes care that the results at the upper and lower bounds can be predicted exactly.
Additionally Taylor series terms concerning the changes in the interior shell AAA1 = KKK−1KKKb

i and
AAA2 = KKK−1KKKm

i were inserted. The resulting global shape functions therefore are:

ΦΦΦ = orthog([xxx,xxxl,xxxu,AAA1xxx,AAA2xxx,AAA0xxx,AAA
2
0xxx, . . .]) (8.3)

8.1.4 The solution manifold
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Figure 8.2: 1-dimensional solution manifold of the glue stiffness.
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Figure 8.3: Displacement plot of load-case-1

The graphs of the three 1-dimensional solution manifolds are shown in Fig. 8.2. Figure 8.3, Fig.
8.4, and Fig. 8.5 show the corresponding displacement plots.

8.1.5 Comparison of approximate response manifold with response surface

method

Due to the similar behavior of the stiffness of all load-cases the focus is on the first subcase for
the comparison of the exact solution and the solution given by the approximate models. The
comparison focuses on local and global behavior.

8.1.5.1 The approximate response manifold

For the local behavior of the one-dimensional manifold the derivative modes were used, developed
for this case in chapter 6.2. In Fig. 8.6 the behavior using the global shape functions

Φ = orthog([xxx,AAAxxx,AAA2xxx, . . . ,AAAjxxx]) (8.4)

can be seen for different j’s. It can be clearly seen in Fig. 8.6 that in the range of changing the
stiffness by a factor 3 up or down an excellent matching with the exact results can be obtained
using only one derivative mode. This means that the Taylor series of derivative mode generation
can be stopped after the first differentiation.
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Figure 8.4: Displacement plot of load-case-2

It can be also seen that without any derivative mode, using the baseline analysis displacement
vector only, a reasonable result can be obtained. This benign behavior is gained, in spite of the
fact that the manifold encapsulating space D is only one dimensional, because the ARM-method
uses the same underlying physical equation as the original analysis. Figure 8.7 shows exactly the
same choice of global shape functions but in a global behavior. It is observed that the derivative
modes can predict accurate results for changes in the parameters up to a factor 3. For larger
changes residual modes have to be considered. These results can be seen in Fig. 8.8. The lower
residual mode xxxl takes care of convergence at the lower end while the additionally added upper
one, xxxu, fixes the approximated response manifold to the upper boundary. The usage of only the
baseline mode and the two residuals may be suggested when viewing this figure. Nevertheless
Fig. 8.9 shows that their local behavior is inferior compared to the derivative modes. Adding
only the first derivative mode, the 4-dimensional manifold encapsulating space D predicts very
good local and global behavior for parametric changes up to five orders of magnitude.

8.1.5.2 The response surface method

As this thesis is about a new surrogate model developed for parametric analysis it will be now
compared to one of the most commonly used methods used in this area. There are multiple
approaches for the response surface method. A deep overview is given in the book of Myers and
Montgomery [95]. However there are two basic facts that influence the surrogate model of the
response surface method:
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Figure 8.5: Displacement plot of load-case-3

• the underlying mathematical model

• the distribution of the data samples for fitting the model

• fitting of the free parameters

When knowing nothing about the underlying model the use of a second order Taylor series
model is the standard choice. Higher ordered Taylor series models for multi parameters are
mostly useless for practical applications due to their insatiable need for fitting data. (Needed
complexity is O(dk), for d dimensions and k-th order Taylor series).

To construct the response surface model several attempts are made:

• the parameters are chosen in a way that the result for the baseline parameter setting is
exact together with the first and second derivative: RSM(a, b, c; [1, f ′(1), f ′′(1)]) = a +
bx+ cx2

• the parameters are chosen in a way that the result at the baseline setting and at the min-
imum and maximum parameter setting is exact: RSM(a, b, c; [min(x), f(1),max(x)]) =
a+ bx+ cx2

• as seen in the Fig. 8.10 the above approaches are of limited prediction value. The fitting of
the curve is now done using all previously calculated data points: RSM(a, b, c; allpoints) =
a+ bx+ cx2

• as the results for the large range Fig. 8.11 was still not meaningful the curve will be fit
now in the logarithmic scale to selected data points.RSM(a, b, c; [min(x), f(1),max(x)]) =
a+ b log(x) + c log(x)2
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Figure 8.6: ARM based local approximation using derivative modes

• the same underlying model is fit now with all available data points:
RSM(a, b, c; allpoints) = a+ b log(x) + c log(x)2

For fitting the data the general approach was used:

N∑
j=1

(yj −RSM(a, b, c, xj))2 != Minimum where the j represent the data points (8.5)

As seen in the Fig. 8.10 and Fig. 8.11 additional information had to be put into the surrogate
model of response surface to get reasonable predictions. However the best global results were
achieved with the logarithmic scale of the abscissa parameters. This was necessary to the previ-
ously chosen spacing of the data points. This leads to the impression that arbitrary distributed
data points can make the response surface model useless depending on the fitting algorithm and
on the weighting of the different data points during the fitting algorithm. Due to this reason the
design of experiment, a method describing the sampling of data points, occupies much space in
the standard literature of the response surface method. See Myers and Montogmery in [95].
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Figure 8.7: ARM based global approximation using derivative modes

8.1.5.3 Approximate response manifold versus response surface method

Both methods require additional knowledge of the system. For the ARM method it is at least
necessary to define the amount and number of derivative modes and the use of residual modes.
The current example showed for the ARM method very good local approximation with one
derivative mode for relative changes up to factor 3. For sufficient approximation of larger changes
and a global approximation, residual modes had to be picked. However the calculation of residual
modes is numerically expensive compared to the generation of derivative modes. The amount of
desired/needed residual modes can significantly increase with more then one parameter.

The RSM needs more user input to provide reasonable results. The choice of the underlying
mathematical model, the sampling of the data points, and the provided fitting criteria deter-
mined entirely the usability of the surrogate model. According to numerical effort the least
expensive RSM (amount of data points equals amount of free RSM-parameters) is about as
cheap as an ARM approach. However the ARM model is in this case more accurate then the
RSM model. This can be seen in the Fig. 8.12 where the local approximation is displayed. For
both approaches the most accurate is displayed. The Fig. 8.13 shows the accuracy of the global
approximation. Only the ARM method could simultaneously approximate local and global be-
havior.

An alternative mathematical model for the response surface could be chosen. It would be obvious
to chose a mathematical model which has the same parametric behavior as the underlying
physical model. Obviously the best mathematical model would be the correct physical equation.
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Figure 8.8: ARM based global approximation using residual and derivative modes

After calculating the data samples and fitting the model parameters one would more or less end
up with a model similar to the ARM method, but without using its straight forward way of
generation.

In summary it can be stated that it makes not much sense to use a response surface method in-
stead of the demostrated approximate response manifold. From the engineering point of view the
best equation for approximating an solution is the correct physical equation, as used in the ARM,
despite to a surrogate mathematical replacement model which is used by the RSM method. As
long as the ARM method has, as shown for the underlying examples, a performance advantage it
should be the preferred approach. The RSM is more suited to approximate engineering problems
to which the ARM is not or cannot be expanded or to fit experimental results.

8.1.6 Corresponding weight potential of the interior sheet using Pareto op-

timization

In addition to the derivative modes of the glue, derivative modes of the interior sheet concerning
it’s thickness were calculated. This allows parametric changes in the glue stiffness as well as in
the thickness of the interior sheet. While increasing the glue stiffness a globally stiffer model
for the three load-cases is gained. While there is no need for additional stiffness, the weight can
be reduced by decreasing the thickness of the interior sheet simultaneously in a way that the
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Figure 8.9: ARM based local approximation using residual and derivative modes

global stiffness does not fall below the original values. This results in a certain weight gain per
added glue stiffness. This trade off curve between glue stiffness and interior sheet thickness was
carried out using the ARM method. The first run with 1000 analyses scanned the parameter
region and determined a feasible and infeasible area for pareto optimality. Due to the fact that
the manifold encapsulating space D was only of dimension 7 these analyses could be carried
out in a few seconds. After processing the results of this first run and creating the feasible and
infeasible pareto front another sample of 1000 shots between the two fronts was created in order
to illuminate the real boundary between feasibility and infeasiblity. This was repeated two more
times. The pareto curve in Fig. 8.14 shows us that the initial thickness of 0.9mm at a shear
modulus of 4 N

mm2 can be dropped down to 0.73mm at a shear modulus of 800 N
mm2 without

loosing stiffness. This represents a weight reduction of 530g.

The total run time for all 4000 data samples was below 3 minutes on a low end workstation (In-
tel(R) Xeon(TM) CPU 2.40GHz). The initial full analysis in N -space took 1 minute 39 seconds.
The generation of the subspace D took 3 minutes on a HP-PA-RISC compute server running at
750Mhz. So after the second analysis the break even point was reached. The disagreement with
the prediction of Fig. 7.13 indicating less then 2 analyses would be needed to reach the break
even point is explained at the beginning of chapter 7.1.
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Figure 8.10: RSM based local approximation

8.1.7 Corresponding weight potential of the interior sheet using topology

optimization

Based on these results topology optimization can be used to trim the interior sheet by maintain-
ing the global stiffnesses using an epoxy based glue (e.g. Betamate 1496 from DOW Automotive
AG) with a shear modulus of G = 800 N

mm2 instead of a composition rubber based glue (e.g.
Totalseal from Le Joint Francais) with a shear modulus of 4 N

mm2 .

The Fig. 8.15 shows the deleted elements. The dark elements show the relevant load-path, while
the light gray elements can be deleted. The medium gray elements are in an inter-medium stage.
They cannot be deleted by the topology optimizer with the current discretization. Neglecting
the light gray elements leads to a weight reduction from 2.8kg to 1.8kg and helps therefore to
save 1kg of material.
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Figure 8.11: RSM based global approximation
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Figure 8.12: ARM/RSM comparison for local approximation
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Figure 8.13: ARM/RSM comparison for global approximation
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Figure 8.15: Last cycle of topology optimization concerning the inner sheet. The elements indi-
cated for removal are displayed light gray. Dark gray areas show main load paths.
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8.2 Multi dimensional parametric study: static stiffnesses of a

complete car body

The following model represents a part of a typical multidisciplinary optimization problem in
the automotive industry (see also Heiserer and Baier [38]). The following scheme outlines
a decision making process and the involved calculation engines concerning the functional
requirements for a body in white.
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• cost
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?

..
.

-
Final
design

In realistic problems there exist not only a few but many variables which influence the design.
In this example the focus will be on a larger model with a corresponding high number of design
variables. The goal is to show the accuracy and efficency of the approach for these kind of
problems and to demonstrate the ability to serve as a high speed calculation and reanalysis
engine.

8.2.1 Model and loading conditions

The underlying finite element model consists of 232272 displacement degrees of freedom (DOF)
representing a full body in white. In order to show the load independent accuracy of the method
5 typical different load cases will be examined:

• 2 torsional load cases
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Figure 8.16: Example Model of a body in white

• 3 bending load cases

Figure 8.17: Example design-1: Linking of several design variables (thicknesses of parts) into one
for parametric studies.

The design model consisted of 106 design variables, the thicknesses of 103 shell parts and the cross
section diameters of 3 beam parts. To ensure that the comparison of the ARM method concerning
accuracy does not neglect certain critical design variables all design variables were considered.
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Also, the evaluation of multiple load cases and different output degrees of freedom is necessary,
see Fig. 8.18. To avoid unnecessary amount of data, three new design parameters were introduced
which lead to three parametric design studies. For each new design parameter a certain number
of design variables, in this case shell thicknesses of certain parts, were linked together. Each of
the three new parameters design-1, design-2 and design-3 contained approximately 50% of the
original DOF and also 50% of the area of all designed parts (see Fig. 8.17). The selection of these
parts and also their contribution factor to the new parameters (design-i) where chosen purely
randomly with the only boundary condition of being close to the mentioned 50%. The reason
for combining each time approximately the half of the model into one variable is that derivative
modes of variables wetting ≈ 50% of the DOF have mostly the worst convergence ratio. So the
examples shown here represent by statistical choice an upper limit of the approximation error.

Linked parts/variables for design studies:

% of total parts % of total area

design-1 47.170 47.657

design-2 49.686 56.082

design-3 44.025 53.365

Figure 8.18: Example of sensors for stiffness and strain measurement
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8.2.2 ARM specific formulation

The system can be described with:

KKKxxx = FFF (8.6)

(8.7)

The stiffness matrices Ki for shell elements (without transverse shear) are divided into the
following stiffness components:

• membrane stiffness component KKKm
i

• bending stiffness component KKKb
i

Also the stiffness matrix for beam elements (without transverse shear) is divided into the

• area part KKKA
i

• area moment of inertia for bending in plane 1 KKKI1
i

• area moment of inertia for bending in plane 2 KKKI2
i

• area product of inertia KKKI12
i

• torsional stiffness KKKJ
i

These separated stiffnesses can simply be added to represent the total stiffness as long as trans-
verse shear is negligible.

KKK = KKKr +
dshell∑
i=1

(tiKKKm
i + t3iKKK

b
i) (8.8)

+
dbeam∑
j=1

(AjKKKA
j + I1jKKK

I1
j + I2jKKK

I2
j + I12jKKK

I12
j + JjKKK

J
j ) (8.9)

The separation of the variables for beams also allows total freedom in changing the cross section
shapes of the beams. For each part, and each component stiffness, first order derivative modes
are created according to chapter 5.5 to form the basis for the reduction:

φφφi = KKK−1

[
∂

∂λi
KKK

]
xxx (8.10)

These vectors are assembled into a matrix and then ortho-normalized, as described in 5.127, to
form the basis of the approximate response manifold (reduced basis):

Φ = orthog([xxx,φφφ1,φφφ2,φφφ3, . . .]) (8.11)
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Then all necessary system matrices are transformed into the subspace:

XXX = ΦΦΦtXXXΦΦΦ (8.12)

The analysis carried out in the reduced space is then:

KKK = KKKr +
dshell∑
i=1

(
tiKKKm

i + t3iKKK
b
i

)
(8.13)

+
dbeam∑
j=1

(
AjKKKA

j + I1jKKK
I1
j + I2jKKK

I2
j + I12jKKK

I12
j + JjKKKJ

j

)
(8.14)

xxx = KKK
−1
F (8.15)

xxxnew = Φxxx (8.16)

The xxxnew represents the estimated displacement vector. Strains are derived from xxxnew using the
specific differential operator in Eq. (4.61).

In this case the rank of the reduced basis (per load case) was 222 (initial vector + 2x103 shell
vectors + 3x5 beam vectors). For each load case displacements (global stiffness) and strains
(local stiffness) were evaluated and compared to the exact analysis. 2

8.2.3 Comparison of the exact solution to the ARM method

Figure 8.19 compares the exact results with the ARM results. The parametric study was carried
out in 25 logarithmic steps 1.1j j = −12, . . . , 12. The parameter ranged from 1.1−12 = 0.31863
to 1.112 = 3.1384. In order to give a better illustration of the error introduced by the ARM
method, the relation between the ARM-analysis and the exact analysis is plotted in Fig. 8.20.
over the relative change of the exact analysis compared to the baseline (initial) analysis. The
Fig. 8.20 shows that a 400% change in the displacements can be predicted with an error of 10%.
E.g. a 360% change in the displacements is predicted and 400% is achieved.

For local stiffness comparison, the elastic strain of certain shell elements was evaluated. The
comparison is shown in Fig. 8.21. Also, a relative comparison for the strains is shown in Fig.
8.22.

It can be observed that the prediction of strain is not as good as for the displacements. Further-
more, the error trend for strain prediction is not convex as it is almost the case for displacements.

The reason is that strain evaluation requires a derivation of the displacements, as shown in
Eq. (4.61). A maximum error for displacements therefore can become quadratic for strains.
Nevertheless, most of the strains show a very good approximation using the ARM method. The
strains which are very badly predicted are those which are close to the marked region in Fig. 8.22.
Further investigation shows that these strains are very close to zero and are almost unaffected
by the design change of the specific parameter. These facts lead to bad relative errors. However

2The software used was MSC.Nastran
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these facts are not crucial for design optimization, as low strains and strains with small changes
concerning parameter changes are in general no subject of parametric design.

8.2.4 Numerical effort

As seen in chapter 7 the ARM method is a two step procedure consisting of data preprocessing
(to create the reduced basis, which has to be done once) and an analysis (using the reduced
basis), while the exact solution can be seen as a one step process.

The pure theoretical flop counts based Fig. 7.13 shows that the break even point for the ARM
method concerning this model would be approximately two baseline analyses.

A previous discussion 7.1 already stressed the point that the pure flop counting gives only a
lower estimate of the required computing time, due to fact that disk I/O and storage were not
considered. For this example more computing effort was needed to generate the approximate
manifold basis D then the two baseline analyses predicted by Fig. 7.13. This is mainly due to
the fact that the used implementation consists of interpreted code which cannot compete with
the over decades optimized and also compiled code of the software vendor.

Nevertheless the reanalysis in the reduced basis of the manifold is extremely fast and needs only
seconds on low end hardware. This makes it a perfect tool serving as an efficient calculation
engine for the proposed multi-criteria optimization task or robust design analyses.
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Figure 8.19: Displacement prediction accuracy of the ARM method. The design factor ranged
from 0.32 to 3.14, where 1 represents the baseline design.
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factor ranged from 0.32 to 3.14, where 1 represents the baseline design.
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Figure 8.21: Elastic strain prediction accuracy of the ARM method. The design factor ranged
from 0.32 to 3.14, where 1 represents the baseline design.
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9 Summary

Numerical optimization and reliability analysis have an extremely high demand on computing
capacities, because of the high number of required reanalyses for different parameter settings.
Especially more sophisticated approaches such as trade off studies, the evaluation of Pareto
optima and stochastic optimization are, at least for complex and large real world models beyond
the scope of structural simulation today. The capacity of steady growing computing resources is
mostly used up by the ever larger models, which are in the focus of the simulation. The solution
space of parametric models which is the target of the above mentioned approaches however does
primarily depend on the amount of free parameters in the model and not on the numerical
degrees of freedom.

After an introduction into structural mechanics and the abstract concept of a manifold, which
represents the solution space of parametric models, the thesis demonstrated how this manifold
can be practically embedded in a much lower dimensional subspace, starting with the tangent
space of the manifold at the baseline solution. It was shown that the response manifold can be
approximately embedded in that smaller subspace. Coherent to the derived classical solution
of a structural problem using the Hamiltonian principle in the displacement degree of freedom
space an analysis can be carried out in the embedding subspace. Instead of using local shape
functions, describing displacements of grids, the generalized coordinates are now global shape
functions, which are derivative modes of the baseline solution.

The dimension of the response manifold embedding Euclidian space does only depend on the
amount of free parameters and the desired accuracy. However this means that for todays ap-
proach of topology optimization, by treating each element as a design variable, the method will
be extremely inefficient if it is applied formally. If the method should be applied to topology
optimization problems other forms of reduction vectors as the described derivative modes have
to be developed in the future.

Although the theory is general enough to hold also for other non-iterative implicit system of
equations the approach for structural systems is given including a ready to code recipe.

The whole benefit of dramatically reducing computation time is supported by an intensive
study about the computational complexities of the presented ARM method and the standard
approach of using full analyses. It is shown for which amount of displacement degrees of freedom
and which amount of free parameters a computing time reduction can be expected. This also
demonstrates that, as long as the amount of desired parameters does not dramatically increase,
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future growth of model size does not restrict the optimization capabilities. Instead the process
of design evaluations will accelerate in the future due to faster computing capabilites.

Two larger real world examples demonstrate the capabilities and effectiveness of the approach.

1. A trade off study between glue stiffness and shell thickness of a engine hood’s inner sheet,
targeting weight and stiffness of a typical limousine, was the target of the first example. The
high accuracy of a huge parameter range was demonstrated in detail. The comparison with
the surrogate model of the response surface method showed advantage of the developed
approach.

2. A large scaled model of a full body in white of a sedan was subject to the second example.
There it was shown that also a larger amount of design variables (103) does not harm the
accuracy of displacement and strain prediction for reasonable parametric changes (factor
3).

The efficiency and mightiness, as demonstrated on real word examples, recommends further
investigation in the following subjects:

• Within the work of this thesis there exists no experience concerning the radius of conver-
gence (necessary amount of derivative modes) for shape optimization problems.

• The ratio of efficiency and accuracy for steady state dynamic load cases was not investi-
gated and should be of interest in further studies. Especially the eigenvalue spectrum of the
krylov subspace generating matrix is significantly different compared to static problems.
This might restrict the approach to either small frequency ranges or lead to inefficient
large subspaces.
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A Matrix Utility Operations

Not all physical degrees of freedom (DOF) introduced by the discretization step are mathe-
matically independent. In order to respect this feature these dependencies have to be resolved.
This is either done by using Lagrange multipliers with increasing the amount of DOF or by
eliminating the dependencies by matrix operations. Examples for these degrees of freedom are
those with boundary conditions, such as fixed displacements (single point constraints, SPC), or
multi-point constraints (MPC) which are defined by rigid body elements or constraint elements.
The current chapter defines these sets and shows the basic operations necessary to create an
equation of motion without dependencies between degrees of freedoms.

A.1 Physical sets introduced by discretization

For the following deliberations we have to define certain sets of degrees of freedom (DOF).
(See also [94]). The g-set defines all degree of freedom. It consists of the mutually exclusive
m-set, and n-set. The m-set contains all dependent degrees of freedom introduced by multi-
point constraints. The n-set represents the independent DOF. Itself consists of a k-set, which
describes independent DOF referenced by those in the m-set, and others which are not referenced
by any elements creating multi-point constraints. The n-set can also be split into an s-set and
an a-set. The s-set defines degrees of freedom containing boundary conditions (SPC), fixed or
prescribed displacements. After eliminating the m-set and s-set the resulting a-set remains as
the solution set for solving the equations of motion. For sub-models we introduce further the
p−set containing all degrees of freedom belonging to a certain part. As well as the q−set which
contains the intersection of the p−set and the n−set plus degrees of freedom on which certain
p−set DOFs depended on.

• g-set, all DOF of whole model

• n-set, independent DOF of whole model

• m-set, dependent DOF of whole model, g = n ∪m, n ∩m = ∅

• s-set, fixed DOF of whole model

• a-set, free DOF of whole model, n = a ∪ s, a ∩ s = ∅
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• p-set, inside DOF. DOF of a part p ⊆ g

• h-set, DOF referenced (masters of dependent one) by a part

• u-set, dependent DOF in part u = m ∩ p

• r-set, union of inside DOF and referenced DOF r = p ∪ h

• q-set, reduction of r-set to independent DOF r = q ∪ u, q ∩ u = ∅

• b-set, reduction of q-set by eliminating fixed (s-set) DOF b = q	s, with 	meaning without.

A.2 Matrix Notations

Matrices are in this chapter noted with capital letters. A lower index containing a × indicates
the size of the matrix. For example Xm×n contain the following information:

• X, the actual name of the matrix

• m the number of rows of the matrix

• n the number of columns of the matrix

• [Xm×n]ij denotes the element in the i−th row and j−th column.

A Capital letter with ,̂ for example X̂m
g denotes a partition vector. A partition vector is a column

vector which is used for partitioning/merging. In this case X̂ has g rows and m entries of these
rows are nonzero, g −m are zero.

Matrix-partitioning is denoted by[
A(g−m)×(h−n) B(g−m)×n

Cm×(h−n) Dm×n

]
:= Partn(Xg×h, Ê

m
g , F̂

n
h ) (A.1)

Ê is the row partitioning vector, F̂ the column partitioning vector.

• A(g−m)×(g−n) contains the rows and columns of Xg×h where Ê and F̂ have zeros.

• Bm×(g−n) contains the rows and columns of Xg×h where Ê has non-zeros and F̂ has zeros.

• C(g−m)×n contains the rows and columns of Xg×h where Ê has zeros and F̂ has non-zeros.

• Dm×n contains the rows and columns of Xg×h where Ê and F̂ have non-zeros.

Matrix-merging is similar, denoted by

G =

[
A(g−m)×(h−n) B(g−m)×n

Cm×(h−n) Dm×n

]
:=

Merge(A(g−m)×(h−n), B(g−m)×n, Cm×(h−n), Dm×n, Ê
m
g , F̂

n
h ) (A.2)

With Ê as the row merging vector and F̂ as the column merging vector.
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A.3 Multi-point Constraint Elimination

A.3.1 Multi-point Constraint Elimination for full sized matrices

Assume we have a system matrix in g-size Xg×g. In the matrixRm×g each row defines a constraint
equation. Rm×g will now be partitioned into R̄m×n and R̄m×m using the partition vector Âmg (Â
has m non-zeros).

[R̄m×nR̄m×m] = Partn(Rm×g, 0, Âmg ) wiht m+ n = g (A.3)

Rm×n = −[R̄m×m]−1R̄m×n (A.4)

Now the system matrix will be symmetrically partitioned according to the m-set and n-set and
then the constraints will be eliminated.

[
X̄n×n X̄n×m

X̄m×n X̄m×m

]
= Partn(Xg×g, Â

m
g , Â

m
g ) (A.5)

Xn×n = X̄n×n + [Rm×n]tX̄m×n + X̄n×mRm×n (A.6)

+ [Rm×n]tX̄m×mRm×n (A.7)

The remaining Xn×n is free of constraints.

A.3.2 Multi-point Constraint Elimination for sub-models (components)

A system operator like the stiffness matrix has in general full rank. In general it is a linear
combination of its d components (sub-models):

Xg×g =
∑d

i=1X
i
g×g (A.8)

where Xi
g×g is the corresponding system matrix of the i-th component having full system size

g. For numerical efficiency and generality in adding/removing components it is suitable not
storing the Xi

g×g, which contain lots of zero columns and rows, but therefore only the nonzero
part. Let’s assume we have p nonzero columns/rows in one of the Xi

g×g. We will store Xi
g×g,

then as Xi
p×p and a merge vector iP̂ pg with p nonzero entries indicating the columns and rows

where Xi
p×p has to be inserted to build Xi

g×g. We will derive now the process of Multi-point
Constraint Elimination (MCE) on a sub-model basis using partition vectors (seeking Xi

q×q and
the partition vector Q̂pn with q non-zeros).
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The following combinations of sets exist for our case:

(110000) = [Âmg ]t : indicates the m deepended DOF (A.9)

(011100) = [X̂p
g ]t : indicates the p DOF contributed by a part (A.10)

( 0110) = [Ĉhn ]t : indicates the h master DOF referenced by (A.11)

depended DOF of the part Xp×p (A.12)

(000110) = [Ĉhg ]t : indicates the h master DOF referenced by (A.13)

depended DOF of the part Xp×p (A.14)

(011110) = [D̂q
g]
t : the union of X̂p

g and Ĉkg , containing nonzeros of both (A.15)

(110000) = [Êpq ]t : the interscection of D̂q
g and X̂p

g (A.16)

(110000) = [F̂ uq ]t : the interscection of D̂q
g and Âpg (A.17)

[
0 0
0 Xp×p

]
g×g

= Merge(0, 0, 0, Xp×p, x̂
p
g, X̂

p
g ) (A.18)

We partition now X̂p
g using Âmg :[

X̂p−u
(g−m)

X̂u
m

]
g×1

= Partn(X̂p
g , Â

m
g , 0) (A.19)

If u = ∅ our sub-model contains no depended degrees of freedom and we are done by setting:

q = p

X̂q
n = X̂p

n

Xq×q = Xp×p (A.20)

Assume now u 6= ∅. We use now X̂u
m to partition Rm×n and get the depended degrees of freedom

of our sub-model, then we blow up the partition vector to g-size:[
R(m−u)×n

Ru×n

]
m×n

= Partn(Rm×n, X̂u
m, 0) (A.21)

[Ĉhn ]i∈n =

0 if [Ru×n]ji = 0,∀j ∈ u

1 else
(A.22)

Ĉhg = Merge(Ĉhn , 0, 0, 0, Â
m
g , 0) (A.23)

Ĉhg has h non-zeros. Now we merge the partition vectors Ĉhg and X̂p
g in order to get the new

r-size (r = p ∪ h), a temporary size which contains all DOFs of the part model as well as the

110



DOF which the part depends on. The system matrix Xp×p has now to be expanded to fill this
size:

D̂r
g = Ĉhg ∪ X̂p

g (A.24)[
X̂0
g−r
X̂p
r

]
g×1

= Partn(X̂p
g , D̂

r
g, 0) (A.25)

Xr×r =

[
0 0
0 Xp×p

]
r×r

(A.26)

= Merge(0, 0, 0, Xp×p, X̂
p
r , X̂

p
r ) (A.27)

Partitioning Âmg using D̂r
g will result in the partition vector Âur which now gives us the u depended

DOF of our part in the r-size.[
Âm−ug−r
Âur

]
g×1

= Partn(Âmg , D̂
r
g, 0) (A.28)

Now we can split Xr×r into a depended part and an independent part:[
Yq×q Yq×u

Yu×q Yu×u

]
r×r

= Partn(Xr×r, Â
u
r , Â

u
r ) (A.29)

To cut down Ru×n in Eq. (A.21) to our new part size we have to get the partition vector:[
D̂q
n

D̂u
m

]
g×1

= Partn(D̂r
g, Â

m
g , 0) (A.30)

Now we can partition Ru×n (Eq. (A.21)) down to the new independent part size q using Eq.
(A.4):

[Ru×(n−q) Ru×q] = Partn(Ru×n, 0, D̂q
n) (A.31)

The final part matrix and it’s partition vector for n-size we get using Eq. (A.7):

Xq×q = Yq×q + [Ru×q]tYu×q + Yq×uRu×q

+[Ru×q]tYu×uRu×q (A.32)

The corresponding merge vector is X̂q
n = D̂q

n.

A.4 Single-point Constraint Elimination

Single-point constraint elimination can be seen as a special case of multi-point point constraint
elimination, with the Rm×n = 0.[

X̂q−v
a

X̂v
s

]
n×1

= Partn(X̂q
n, Ŝ

s
n, 0) (A.33)
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If v ≡ 0 (no single point constraints in the component) we are done by setting:

b = q

X̂b
a = X̂q−v

a

Xb×b = Xq×q (A.34)

If v 6= 0 we derive the DOF which have to be eliminated in the component by first partitioning:[
Ŝbn−q
Ŝvq

]
n×1

= Partn(Ŝsn, X̂
q
n, 0) (A.35)

and then we eliminate the constrained DOF:[
Xb×b Xb×v

Xv×b Xv×v

]
q×q

= Partn(Xq×q, Ŝ
v
q , Ŝ

v
q ) (A.36)

The partition vector is then also X̂b
a.
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B Synthesis of system matrices

The ARM method requires that the system matrices for a current configuration, given e.g. by a
different setting of parameters and design variables, are generated for the solution of the system.
The general way to generate the system matrices for a given configuration would be to generate
the matrix in displacement coordinates S and then transform it into modal coordinates D. This
transformation is however a time consuming task and therefore not suitable for a fast reanalysis.

As long as the system matrix is analytical concerning the design variables, the presented ap-
proach is that the analytical components are transformed during the generation phase of the
response manifold. The assembling of the system matrices in the response manifold coordinates
obey then to the same analytical synthesis as in displacement coordinates. However for the gen-
eral case there might be no finite analytical description of this behavior or it simply might be
unknown.

This can be the case for example for shell elements with a large influence of transverse shear,
shape variables or simply any other unknown parametricity.

The subject of this chapter is to describe how to deal with them.

B.1 Analytical description

As discussed before we need an analytical description of the behavior of the system matrices
concerning the design variables. If we do not know this behavior we define one which is sufficient
by our needs. This can be done with one of the following approaches:

• for variables available only in discrete gauges, e.g. such as shell thicknesses we could provide
all of these (limited) gauges

• we can use Taylor series expansion of the system matrices according to the design variable

• we can use any interpolation scheme such as cubic splines to interpolate between some
discrete points
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B.1.1 Example for shell elements with transverse shear

The stiffness of shell elements without transverse shear can be simply synthesized by:

KKK(E, t) = E(tKKKm + t3KKKb) (B.1)

where m represents membrane and b bending stiffness.

There exists obviously a significant influence of transverse shear if the system matrix generated
by this approach differs significantly from the one generated using transverse shear using the
thickness of the baseline run. If the influence of transverse shear is significant, but still small we
can make the following assumption:

KKK(E, t) = E(tKKKm + t3KKKbs) (B.2)

Here the bs index indicates that we use a mixed transverse-shear-bending matrix. This approach
ensures that we get exactly the same result for the baseline run regardless of the coordinates
(displacement, arm).KKKbs is defined via the membrane stiffnessKKKm and the total stiffness defined
by the shell thickness of the baseline run (t = t0, E = E0):

KKK(E0, t0) = E0(t0KKKm + t0
3KKKbs) (B.3)

KKKbs =
1
t03 (

1
E0
KKK(E0, t0)− t0KKKm) (B.4)

The resulting stiffness matrix of arbitrary settings of E, t is then given by:

KKK(E, t) = E[tKKKm + t3(
1
t03 (

1
E0
KKK(E0, t0)− t0KKKm))] (B.5)

KKK(E, t) = E(t− t3

t03 t0)KKKm + (
Et3

E0t03 )KKK(E0, t0) (B.6)

This satisfies the following requirements:

• exact results for the baseline run

• reasonable stiffness behavior for moderate transverse shear influence

• simple and short analytical description
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C Properties of Krylov subspaces

The Krylov subspace Kr(x,A) plays an important role in approximating our response manifolds.
We will give some properties here which are used within the thesis.

C.1 Krylov subspaces

Let x ∈ Cn and x ∈ Cn×n. A Krylov subspace Kr(x,A) is defined by:

Kr(x,A) = span{x,Ax,A1x,A2x, . . . , Ar−1x} (C.1)

Let further be

C
n = B1 ⊕B2 ⊕ . . .⊕Bm (C.2)

the direct sum of subspaces. Where Bi is the eigenspace to the i-th of m distinct eigenvalues
λi of A. Without restricting generality we can assume that the Bi are labeled in that way
that |λi| < |λi+1|. Note that the Bi are not necessarily one-dimensional. Furthermore they are
spanned up by all eigenvectors with eigenvalue λi. Due to the orthogonality and completeness
of the Bi we can express x in terms of bi ⊂ Bi, with ‖bi‖ = 1:

x =
m∑
i=1

βibi βi ∈ C (C.3)

Lets denote xi the i-th Krylov vector Aix. Then the following states:

Theorem C.1

1. all xi, with i > 0 are orthogonal to kernel(A)

2. limi→∞ xi = αbm with α ∈ C

Proof C.1
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1. Lets assume that λ1 = 0, otherwise the kernel(A) = 0 and the proof is trivial, then

x0 =
m∑
i=1

βibi (C.4)

→ x1 = A
m∑
i=1

βibi (C.5)

→ x1 =
m∑
i=1

βiAbi (C.6)

→ x1 =
m∑
i=1

βiλibi (C.7)

→ x1 =
m∑
i=2

βiλibi (C.8)

as all bi are orthogonal, xi, i > 0 must be orthogonal to b1 (kernel(A))
q.e.d.

2. from Eq. (C.7) follows:

xj =
m∑
i=1

βiλ
j
i bi (C.9)

→ xj = λjm

[(
m−1∑
i=1

βi

(
λi
λm

)j
bi

)
+ βmbm

]
(C.10)

→ lim
j→∞

xj = λjm [βmbm] (C.11)

→ lim
j→∞

xj = αbm with α = λjmβm (C.12)

(C.13)
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