
Declaration and Enforcement of
Access Restrictions for Distributed

Geospatial Information Objects

Andreas Matheus

Fakultät für Informatik der Technischen Universität München
Lehrstuhl für Angewandte Informatik

Declaration and Enforcement of
Access Restrictions for Distributed

Geospatial Information Objects

Andreas Matheus

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. P. P. Spies
Prüfer der Dissertation: 1. Univ.-Prof. Dr. J. Schlichter

2. Univ.-Prof. Dr. G. Teege,
Universität der Bundeswehr München

Die Dissertation wurde am 4.11.2004 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 1.02.2005 angenommen.

Zusammenfassung

Geoinformationen sind heutzutage in vielen Bereichen eine wesentliche Grundlage für die
Bearbeitung komplexer Arbeitsabläufe. Anbieter von Geoinformationen sind verschiedene
staatliche und amtliche Stellen sowie private Institutionen und Gesellschaften, die Geoinfor-
mationen in verschiedenen Formaten erheben und anschließend fortführen. Die sich daraus
ergebende Verteiltheit von heterogenen Geoinformationen, kann über eine Infrastruktur von
interoperablen Geo Web Services verfügbar gemacht werden. Ein Geo Web Service ist ein
spezieller Web Service, der Funktionalitäten bereit stellt mit der eine Erzeugung, Verar-
beitung und Fortführung von Geoinformationen möglich ist. Dies geschieht über standard-
isierte Schnittstellen, die unabhängig vom jeweiligen Format der angebundenen Geoinforma-
tionen ist. Eine kombinierte Nutzung, wie sie in komplexen Arbeitsabläufen erforderlich ist,
basiert somit auf der Kombination von Abbildungen von Geoinformationen, die von den Geo
Web Services auf Anfrage erstellt werden.

Weil die Nutzung mancher Geoinformationen lizenzrechtlichen Einschränkungen unter-
liegt, oder weil eine Bezahlung gefordert ist, muss der Anbieter von Geo Web Services
entsprechende Zugriffsbeschränkungen deklarieren und durchsetzen. Dieser Schutz vor uner-
laubtem Zugriff kann durch eine Zugriffskontrolle erfolgen. Geht man von einer objektartigen
Struktur der Geoinformationen aus, so können Zugriffsbeschränkungen direkt für diese Infor-
mationsobjekte oder deren Raumbezug deklariert und durchgesetzt werden. Die wesentlichen
Anforderungen sind:

• Eine Zugriffsbeschränkung gilt für bestimmte Typen von Informationsobjekten.

• Eine Zugriffsbeschränkung gilt nur für bestimmte Informationsobjekte.

• Eine Zugriffsbeschränkung gilt für ein geographisches Gebiet und somit für bestimmte
Typen oder Instanzen von Informationsobjekten, die eine bestimmte raumbezogene Re-
lation zu diesem geographischen Gebiet besitzen.

Das Ziel dieser Arbeit ist die Deklaration und Durchsetzung dieser Zugriffsbeschränkungen
in einer Infrastruktur von verteilten raumbezogenen Informationsobjekten, die über interop-
erable Geo Web Services verfügbar sind. Ausgehend von einer validierbaren, XML kodierten
Darstellung von Informationsobjekten, deren Raumbezug und Geometrie durch die Verwen-
dung der Geography Markup Language (GML), eine XML Auszeichnungssprache des Open
GIS Consortiums Inc. (OGC) beschrieben ist, soll eine Lösung aufgezeigt werden, die die
obigen Anforderungen umsetzt. Bei der Deklaration der Zugriffsbeschränkungen kann es we-
gen der Feingranularität und des Raumbezugs zu verschiedenen Arten von Inkonsistenzen

vi

der deklarierten Zugriffsbeschränkungen kommen. Hier werden Mechanismen vorgestellt, die
eine Detektion und Klassifizierung bestehender Inkonsistenzen erlauben, um eine erforderliche
Behebung vornehmen zu können.

Eine Durchsetzung der deklarierten Zugriffsbeschränkungen erfolgt unter Erweiterung des
OASIS Standards eXtensible Access Control Markup Language (XACML). Diese Erweiterung
(GeoXACML) beinhaltet zum einen die erforderlichen Sprachelemente, um die raumbezo-
genen Zugriffsbeschränkungen deklarieren zu können und zum anderen die entsprechenden
Algorithmen, die eine entsprechende Durchsetzung erlauben. Die vorgestellte Lösung ist
prototypisch als Web Service implementiert und stellt somit eine umfassende Lösung zur
Deklaration und Durchsetzung von Zugriffsbeschränkungen bei der Nutzung von verteilten
Geoinformationen mittels Geo Web Services dar.

Abstract

Today, geographic information is the key data for enabling decision making in many busi-
ness sectors. Government agencies, private institutions and commercial companies provide
geographic data of different kinds. Independent from each other, they collect and maintain
geographic data in different formats. This results in an infrastructure of heterogenous and
distributed geographic data. A service-oriented infrastructure can make the geographic data
accessible in an interoperable way, independent from the original data format. A specific
implementation of this infrastructure is based on Geo Web Services. A Geo Web Service is
a specialization of a Web Service that allows the creation, continuation and geo-processing
of geodata. The required functionality is available through standardized service interfaces.
The combined use of different kinds of geographic data relies on the capabilities of a service,
as it transforms the original data format to an interoperable format, based on the service
invocation.

The access to geographic data can be restricted due to different issues such as licensing or
commercial use. The data providers can achieve the desired protection by the declaration and
enforcement of restrictions as they regulate the use of a service. The functional capabilities
for the declaration and enforcement can be provided by an access control system. Assuming
an object-oriented data model of the geographic data, access restrictions can be enforced for
individual objects according to the following requirements:

• A restriction must be enforceable for all objects of a particular class.

• A restriction must be enforceable for individual objects.

• A restriction must be enforceable for individual objects based on their geometry if a
particular topological relation between the object geometry and a given geometry is
satisfied.

The aim of this work is the declaration and enforcement of these requirements for the
infrastructure of heterogenous and distributed geospatial information objects, as they are
accessible via the service-oriented infrastructure. Assuming a valid XML markup of the
objects and their geometry using the Geographic Markup Language (GML), which is an
international standard of the Open GIS Consortium, Inc. (OGC), a solution is introduced
that allows the declaration an enforcement. Due to the introduced restrictions, the declaration
of access restrictions can result in different kinds of inconsistencies. This work describes
mechanism for the detection and classification of the different kinds of inconsistencies as they
help to correct the problems.

viii

The declaration and enforcement of the access restrictions is based on an extension of the
eXtensible Access Control Markup Language (XACML), which is an international standard
of the Organization for the Advancement of Structured Information Standards (OASIS).
This extension (GeoXACML) contains the language constructs in order to declare the spatial
restrictions and provides the algorithms to allow enforcement. The prototype implementation
of the introduced solution for the service oriented infrastructure provides a comprehensive
contribution for the use of protected heterogenous and distributed geographic information.

Acknowledgement

This work is the result of research done during my affiliation at the Technische Universität
München. The topic of this work was embossed by the research project GeoPortal, sponsored
by the Bavarian Government.

First of all, I would like to say thank you to Univ.-Prof. Dr. Johann Schlichter for
supervising this work and give the freedom to work on it. Next, I like to say thank you to
Univ.-Prof. Dr. Gunnar Teege for been a mentor during research and the preparation of
this work. Then, I like to say thank you to my colleagues for many fruitful discussions; in
particular Dr. Michael Koch and Dr. Wolfgang Wörndl.

I would also like to say thank you to Mrs. Suzette LaGray and Mr. Andre Farci for their
American English proofreading and Mr. Matthias Presch for his valuable feedback.

Finally, I like to say thank you to my wife Nicole for her support, motivating words and
giving me the freedom during leisure time to continue working on this dissertation.

x

Contents

Zusammenfassung v

Abstract vii

Acknowledgement ix

1 Introduction and Motivation 1

1.1 Interoperable Use of Distributed and Heterogenous Geodata 2

1.2 Geodata and Geospatial Information Object 4

1.3 Protected and Distributed Geospatial Information Objects 5

1.4 A Motivating Example . 7

1.5 The Scientific Method of this Dissertation . 10

2 Basic Concepts 13

2.1 XML, XML Schema and Xpath . 13

2.1.1 Extensible Markup Language (XML) 13

2.1.2 XML Schema . 14

2.1.3 Xpath . 15

2.2 Geodata . 16

2.2.1 Geospatial Information Object . 16

2.2.2 Geometry . 19

2.2.3 Testing Topological Relations between Geometries 21

2.3 The Geography Markup Language (GML) . 23

2.3.1 Encoding of Geospatial Information Objects and Geometry 23

2.3.2 Encoding of an Application Specific Data Model 27

2.3.3 GML and Interoperability . 30

2.4 Interoperable Use of Distributed and Heterogenous Geodata 31

xii CONTENTS

2.4.1 The Open GIS Consortium and their Interoperability Specifications . 32

2.4.2 Definition of Interoperability . 33

2.4.3 The Web Map Service (WMS) Implementation Specification 35

2.4.4 The Web Feature Service (WFS) Implementation Specification 37

2.4.5 Conclusion on Interoperability and Implications to Access Control . . 39

2.5 Introduction to Access Control . 39

2.5.1 Used Terminology . 39

2.5.2 Different Strategies for Managing Access Rights 40

2.5.3 The Basic Access Control System . 41

2.5.4 Introduction to Role Based Access Control 42

2.5.5 Introduction to Rule Based Access Control 43

2.5.6 Enforcement of Declared Permissions 44

2.5.7 Finding Applicable Policies and Rules 45

2.5.8 Deriving an Authorization Decision . 47

2.5.9 Illustrating the Decision Process . 47

2.5.10 Different Strategies for the Declaration of Access Restrictions 50

2.6 Introduction to Distributed Access Control 52

2.6.1 Standardized Language for Assertions 53

2.6.2 Standardized Permission Language . 54

2.6.3 Standardized Communication Between Components 54

3 Access Control Requirements and Related Standards and Systems 55

3.1 Access Control Requirements . 55

3.1.1 Enforce Restrictions on the Resources, Independent from the Service . 55

3.1.2 Class- and Object-Based Requirements 55

3.1.3 Spatial Requirements . 56

3.1.4 Representational Requirements . 57

3.1.5 Temporal Requirements . 57

3.1.6 Communication Security Requirements 57

3.2 Framing the Problem Space and Identifying Infrastructure Constraints 57

3.2.1 Constraints from the Distributed Aspect 59

3.3 Standards for Distributed Access Control . 60

3.3.1 Security Access Control Markup Language (SAML) 60

3.3.2 XML Access Control Language (XACL) 61

3.3.3 eXtensible Access Control Markup Language (XACML) 62

CONTENTS xiii

3.3.4 Digital Rights Management (DRM) 68

3.3.5 EXtensible Rights Markup Language (XrML) 70

3.4 Systems, Implementing Distributed Access Control 70

3.4.1 Shibboleth . 71

3.4.2 Cardea . 71

3.5 Conclusion of Useability and Implications for this Work 71

4 Declaration and Enforcement of Access Restrictions 73

4.1 Declaration of Restrictions . 73

4.1.1 The XACML Request Tuple . 74

4.1.2 Class-Based Restrictions . 74

4.1.3 Object-Based Restrictions . 76

4.1.4 Spatial Restrictions . 77

4.1.5 Complex Spatial Restrictions . 78

4.1.6 Declaration of General/Exceptional Restrictions 80

4.2 Enforcement of Restrictions . 80

4.2.1 Enforcement of Class-Based Restrictions 81

4.2.2 Enforcement of Object-Based Restrictions 83

4.2.3 Enforcement of Spatial Restrictions 83

4.3 Visualization of Access Restrictions . 94

4.3.1 Visualization of the Permission Hierarchy 94

4.3.2 Visualization of Spatial Restrictions 96

4.3.3 Visualization of Combined Spatial Restrictions 98

4.3.4 Remarks to the Visualization . 100

4.4 Approximate Detection of Inconsistent Permissions 101

4.4.1 The Essential Test Conditions . 103

4.4.2 Approximate Detection of Unreachable Class-Based Permissions . . . 105

4.4.3 An Illustrating Example of Unreachable Permissions 108

4.4.4 Approximate Detection of Complete Class-Based Permissions 110

4.4.5 Approximate Detection of Contrary Class-Based Permissions 111

4.4.6 Approximate Detection of Unreachable Object-Based Permissions . . 112

4.4.7 Approximate Detection of Complete Object-Based Permissions 112

4.4.8 Approximate Detection of Contrary Object-Based Permissions 113

4.4.9 Approximate Detection of Unreachable Spatial Permissions 113

4.4.10 Approximate Detection of Incomplete Spatial Permissions 114

xiv CONTENTS

4.4.11 Approximate Detection of Contrary Spatial Permissions 114

4.5 Exact Detection of Inconsistent Permissions 130

4.5.1 Exact Detection of Unreachable Permissions 132

4.5.2 Exact Detection of Contrary Permissions 132

4.5.3 Exact Detection for Complete Permissions 134

4.6 Recommending a Structured Declaration of Permissions 142

4.6.1 Implications, using One Authorization Service 143

4.6.2 The Coordinate Reference System . 144

4.6.3 Recommended Matching of PolicySet, Policy and Rule 145

4.6.4 An Illustrating Example, obeying the Recommend Structure 147

5 Evaluation and System Design 151

5.1 Architecture . 151

5.2 GeoXACML, the Geospatial Extension to XACML 153

5.2.1 Extending the XACML Data Types 153

5.2.2 Extending the XACML Functions . 154

5.3 Declaration of Permissions, using GeoXACML Encoding 156

5.3.1 The Target Element . 156

5.3.2 The Declaration of Class-Based Restrictions 157

5.3.3 The Declaration of Object-Based Restrictions 158

5.3.4 The Declaration of Spatial Restrictions 159

5.4 Enforcement of Declared Permissions . 159

5.4.1 The Authorization Decision Request 160

5.4.2 An Enforcement Service for the Web Feature Service 162

5.4.3 An Enforcement Service for the Web Map Service 165

5.5 Implementation and Evaluation of a Geospatial Authorization Service 171

5.5.1 Implementation of the SpatialPDP Main Class 171

5.5.2 Implementation of the GeoXACML Attribute Values 172

5.5.3 Implementation of the SpatialSelectorModule 174

5.5.4 Implementation of the GeoXACML Rule Combining Algorithms . . . 175

5.5.5 Implementation of the GeoXACML Spatial Functions 176

5.6 Evaluation of the Implemented System . 177

5.6.1 Evaluation of Class-Based Restrictions 177

5.6.2 Evaluation of Object-Based Restrictions 178

5.6.3 Evaluation of Spatial Restrictions . 180

CONTENTS xv

5.6.4 Evaluation of the Spatial Method Within 180

5.6.5 Evaluation of the Spatial Method Touches 180

5.6.6 Evaluation of the Complex Spatial Restriction 182

6 Conclusion and Outlook 187

6.1 Conclusion . 187

6.2 Recommendation to the World of (Geospatial) Science 188

6.3 Outlook . 189

6.3.1 The ‘’Not Authorized‘’ Response and the Adversary Issue 189

6.3.2 The Handling of Requests with Insufficient Permissions 191

6.3.3 Permission Management and the Development of Service Orchestrations 193

6.3.4 Context-based Permissions . 193

6.3.5 Dynamic Negotiation of Authentication Information under Considera-
tion of Privacy . 196

A Notation 197

A.1 Nomenclature . 197

A.2 Font Types . 202

A.3 XML Spy Diagram Notation . 203

B The City Model 205

B.1 Map of the City Model . 205

B.2 City Model Application Schema . 206

B.3 City Model GML Document . 207

Bibliography 209

xvi CONTENTS

List of Figures

1.1 Combined use of different kinds of geospatial data 2

1.2 Consolidated data integration . 3

1.3 Federated data integration . 3

1.4 Initial situation before land parcel splitting 7

1.5 The resulting situation after land parcel splitting 7

1.6 Workflow for splitting a land parcel and updating the ownership information 8

1.7 Alternative example process . 10

1.8 The structure of this dissertation . 12

2.1 Object-oriented data model example . 14

2.2 The WGS84 coordinate grid for Germany . 20

2.3 The Gauss-Krüger coordinate grid for Germany 20

2.4 Simple geometry examples . 21

2.5 Simplified geometry model for GML 2.1.2 . 24

2.6 GML 2.1.2 feature schema . 25

2.7 The City Model example data model . 29

2.8 GML application schema for the city model example 30

2.9 The basic functionality of an access control system 41

2.10 Representation of an example policy structure 49

2.11 Infrastructure of distributed access control . 52

3.1 The service infrastructure for online access to protected resources 58

3.2 XML Schema definition of the XACML authorization decision request 63

3.3 XML Schema definition of the XACML PolicySet element 64

3.4 XML Schema definition of the Subject matching 65

3.5 The different Digital Rights Management processes 69

3.6 How to play an encrypted Windows Media with Microsoft DRM 70

xviii LIST OF FIGURES

4.1 Activity diagram of the specific enforcement process 81

4.2 GR is outside of GP . 86

4.3 GR is inside the hole of GP . 86

4.4 GR is on the outer boundary of GP . 86

4.5 GR is on the inner boundary of GP . 86

4.6 GR is inside the ring of GP . 87

4.7 GR is outside of GP . 87

4.8 GR is inside the hole of GP . 87

4.9 GR is outside but touching GP . 88

4.10 GR is inside the hole but touching GP . 88

4.11 GR is on the outer boundary of GP . 88

4.12 GR is on the inner boundary of GP . 88

4.13 GR is inside the ring but touching GP on the outer boundary 89

4.14 GR is inside the ring but touching GP on the outer boundary 89

4.15 GR is inside the ring of GP . 89

4.16 GR crosses GP’s outer boundary . 89

4.17 GR crosses GP’s inner boundary . 89

4.18 GR crosses GP’s inner and outer boundary . 90

4.19 GR crosses GP’s inner and outer boundary . 90

4.20 GR is outside of GP . 91

4.21 GR is inside the hole of GP . 91

4.22 GR is outside but touching GP . 91

4.23 GR is inside the hole but touching GP . 91

4.24 GR is outside but touching GP . 91

4.25 GR is inside the hole but touching GP . 91

4.26 GR is inside the ring but touching GP on the outer boundary 92

4.27 GR is inside the ring but touching GP on the inner boundary 92

4.28 GR is inside the ring but touching GP on the outer boundary 92

4.29 GR is inside the ring but touching GP on the inner boundary 92

4.30 GR is inside the ring of GP . 93

4.31 GR is overlapping GP on the outer boundary 93

4.32 GR is overlapping GP on the inner boundary 93

4.33 GR is overlapping GP . 94

4.34 GR is overlapping GP . 94

LIST OF FIGURES xix

4.35 Visualization of an example permission tree 95

4.36 Line styles for rendering spatial restricted areas 96

4.37 Line styles for rendering negative spatial restricted areas 97

4.38 Visual representation of the spatial example permission 97

4.39 Visual representation of the spatial example permission 97

4.40 Illustrating a permission-tree using an AND-graph 99

4.41 Visualization of the spatial conditions of an AND-graph 99

4.42 Illustrating a permission-tree using an OR-graph 99

4.43 Visualization of the spatial conditions of an OR-graph 99

4.44 Visualization of spatial permissions, as a multi-layered map 101

4.45 A permission tree with unreachable and potentially unreachable rules 108

4.46 An annotated permission tree with unreachable rules 110

4.47 A simple complete permission tree . 112

4.48 Classification legend for illustration of satisfying and not satisfying geometries 117

4.49 Illustrating the test constraint Disjoint(GP1,GP2) 118

4.50 Illustrating the test constraint Overlaps(GP1,GP2) 119

4.51 Illustrating the test constraint Within(GP2,GP1) 120

4.52 Illustrating the test constraint Equals(GP1,GP2) 120

4.53 Illustrating the test constraint Disjoint(GP1,GP2) 122

4.54 Illustrating the test constraint Overlaps(GP1,GP2) 123

4.55 Illustrating the test constraint Equals(GP1,GP2) 123

4.56 Illustrating the test constraint Within(GP2,GP1) 124

4.57 Illustrating the test constraint Within(GP2,GP1) 125

4.58 Illustrating the test constraint Within(GP1,GP2) 125

4.59 Illustrating the test constraint Disjoint(GP1,GP2) 127

4.60 Illustrating the test constraint Disjoint(GP1,GP2) 127

4.61 Illustrating the test constraint Disjoint(GP1,GP2) 128

4.62 Illustrating the test constraint Touches(GP1,GP2) 129

4.63 Illustrating the test constraint Within(GP1,GP2) 130

4.64 A permission tree with contrary rules . 133

4.65 An annotated permission policy tree with contrary rules 134

4.66 Policy tree for the detection of incompleteness 136

4.67 Policy tree, annotated with incompleteness information 140

4.68 A permission tree with double matching . 141

xx LIST OF FIGURES

4.69 Recommended permission tree . 150

5.1 4-Tier architecture for a service oriented architecture 151

5.2 Extended 4-Tier architecture, including access control 153

5.3 Calculation of the real-world location for the GetFeatureInfo request 170

5.4 Class diagram of the GeoXACML attributes 174

5.5 Class diagramm of the GeoXACML combining algorithms and and or 176

6.1 Unveiling of restricted information without permission 190

6.2 Software limitations for requesting a map for a restricted areas 192

6.3 Applying an obligation image to the WMS map 192

6.4 Transparent chaining of protected services . 194

6.5 Translucent chaining of protected services . 195

6.6 Opaque chaining of protected services . 195

A.1 Conventions for diagrams, taken with Altova XML Spy 203

B.1 The City Model map . 205

List of Tables

2.1 XML Schema constructus for object-oriented markup 14

2.2 Xpath predefined location path and node set functions 17

2.3 Xpath 1.0 example expressions . 18

2.4 Geospatial information objects of the City Model 29

2.5 Semantics of the combining algorithms . 48

3.1 Requirements for access control standards . 59

4.1 Xpath expressions for class-based restrictions 75

4.2 Xpath example expressions for object-based restrictions, based on the City
Model example, 2.3.2, page 28 . 76

4.3 Truth table for the logical AND/OR combination of rule outcomes 79

4.4 Semantics of the GeoXACML combining algorithms or and and 79

4.5 Which spatial methods can be used to determine a particular topological method 85

4.6 Evaluation of matching criteria for permissions 104

4.7 Worst case classification for the topological relations Within and Within . . . 121

4.8 Worst case classification for the topological relations Within and Touches . . . 126

4.9 Worst case classification for spatial relations Touches and Touches 130

4.10 Metadata for the Services A and B (figure 3.1) 146

5.1 GeoXACML structured data types for some simple geometries 154

5.2 GeoXACML spatial functions . 155

5.3 URI, class name and geometry data type for the spatial attributes 173

5.4 Test cases for the evaluation of class-based restrictions 178

5.5 Test cases for evaluation of object and class-based restrictions 179

5.6 Test cases for evaluation of spatial restrictions using the spatial relation Within 181

5.7 Test cases for evaluation of spatial restrictions using the spatial relation Touches182

xxii LIST OF TABLES

5.8 Test cases for evaluation of complex spatial restrictions using the combining
algorithm and . 185

5.9 Test cases for evaluation of complex spatial restrictions using the combining
algorithm or . 186

List of Listings

2.1 XML Schema representation of the object-oriented example data model . . . 15

2.2 XML representation of a data collection of the object-oriented data model
example . 16

2.3 GML encoding of the simple geometry Point 26

2.4 GML encoding of the simple geometry LineString 26

2.5 GML encoding of the simple geometry LinearRing 27

2.6 GML encoding of the simple geometry Polygon 27

2.7 Simple GML application schema . 28

2.8 GML feature collection snippet of the city model 31

2.9 WMS GetMap requests for retreaving the map from figure 1.1 36

3.1 XML Schema definition of the <Condition>element 65

3.2 XACML <Condition>element example . 66

3.3 BNF description of the tree representation of the Authorization decision . . . 67

3.4 Associating a permission to a role . 67

3.5 Declaring permissions for a role hierarchy in XACML 68

4.1 Resource content example, comprising ’real’ information objects 82

4.2 Resource content template example, comprising ’template’ information objects 83

4.3 Resource content template for the City Model 105

4.4 Encoding of an environment attribute value that defines the used CRS 144

4.5 Service operation selector for associating policy sets to Service A’s operation
DescribeFeatureType . 146

4.6 Rule matching to ensure CRS correlation . 147

5.1 Encoding of a 2-D Point geometry as a XACML <AttributeValue> 154

5.2 GeoXACML encoding of a spatial condition 155

5.3 XACML encoding of the subject, identified as Bob 156

5.4 XACML encoding of the operation read . 157

5.5 Example XACML encoding of a class-based restriction using string-equal . . . 157

xxiv LIST OF LISTINGS

5.6 Example XACML encoding of a class-based restriction using a tag count . . . 158

5.7 Example XACML condition for selecting one specific information object . . . 158

5.8 Example XACML condition that matches all but one specific information object159

5.9 Example XACML condition, encoding of an object-based restriction 160

5.10 Example GeoXACML Rule expressing a spatial restriction 161

5.11 Example for a WFS Insert operation . 165

5.12 XACML authorization decision request for the WFS Insert operation 166

5.13 XML Schema definition for a WMS resource content 167

5.14 WMS example request for the operation GetMap 168

5.15 XACML encoded authorization decision request for the operation GetMap . . 169

5.16 WMS example request for the operation GetFeatureInfo 171

5.17 GeoXACML encoding of an authorization decision for a WMS example request
for the operation GetFeatureInfo . 172

5.18 Code segment for the main class . 173

5.19 Code segment of the PointAttribute constructor 174

5.20 Selection of the root node of the resource content 175

5.21 Code segment for the processing of the nodes, matching the Xpath expression 176

Chapter 1

Introduction and Motivation

This chapter frames the problems of interoperability for online access to distributed geodata
and their combined use as it outlines the infrastructure for this work. It also highlights the
requirements for a distributed access control system that allows the declaration and enforce-
ment of access restrictions to protected resources; geospatial information objects. This chapter
gives a motivating example that will be reused throughout this work to illustrate theoretical
concepts. It closes with the explanation of the scientific methods for this dissertation, which
are similar to the procedures for software development: requirements collection, evaluation of
capabilities of existing standards and systems, developing of a solution and finally evaluation
and system design for that solution.

Geodata is an important information base for decision making in simple and complex
work processes in different fields of use. The term geodata is an abbreviation for geospatial
information1. It is a synonym for information with a relative location to the surface of the
Earth.

Different data providers, like government agencies, organizations and private companies,
collect and maintain geodata of different kinds, such as satellite images of the weather and
surface conditions, land parcel information as well as street and topographic maps. Organi-
zations and private companies may collect geodata related to their field of work such as their
infrastructure of oil pipelines, radio link antennas or electricity cables.

In particular, the combination of specific kinds of geodata is the key for enabling and
supporting complex decision making in the first place. One example for such decision making
is whether to issue a gale warning for certain areas of the Gulf of Mexico. This decision making
is based on the combined use of this information: Populated areas, political boundaries and
coastlines for the area of the Gulf of Mexico and a weather map that shows the gale intensity
and movement. The decision making requires the combination of geodata from multiple data
providers; one for populated areas and the coastline and another for the weather maps. This
combination in form of a map is shown in figure 1.1 [OGC 2000-028, p. 6].

Each data provider can restrict the access to their own geodata for different reasons such
as licensing issues or commercial aspects. Data users may obtain access rights, which allow
designated use of the protected geodata.

1Some publications also refer to it as geospatial, spatial data

2 1. Introduction and Motivation

Figure 1.1: Political boundaries, coastlines, and populated areas of the Southeastern United
States and a NOAA hurricane image of the Gulf of Mexico [OGC 2000-028]

1.1 Interoperable Use of Distributed and Heterogenous Geo-
data

Different kinds of geodata are collected for different purposes by independent data providers.
The major requirement for the combined use of geospatial data is its interoperability. But,
the data format and model depend on the characteristics of the geodata and the intended use.
Both can be specified by the data provider, independent from each other. This results in an
initial situation of distributed and heterogenous geodata, as illustrated in [Donaubauer 2004].

For the combined use, this initial situation can be overcome by data integration. Geo-
data integration is the procedure that enables the combined use by bringing different kinds
of geodata together for further processing. In [IDC 2003] data integration is described that
it ‘’takes many forms, from simple file transfers to virtual database platforms. According to
IDC, data integration software attempts to provide nonnative, programmatic access to persis-
tent structured data, whether in heterogeneous, homogeneous, distributed, or centralized data
sources.‘’ IDC give three reasons for data integration: (i) Provide an integrated view of data,
(ii) Allow multiple applications to behave cooperatively and harmoniously and (iii) Improve
operational efficiency of the IT department.

They further highlight different integration strategies, from which two are important to
mention in the context of geodata integration.

The consolidated data integration brings all different kinds of geodata together into one
single database; the geodata repository. Any processing and maintenance of the data requires

1.1 Interoperable Use of Distributed and Heterogenous Geodata 3

access to this central geodata repository. This strategy is typically supported by traditional
Geo Information Systems (GIS) .

Figure 1.2: Consolidated data integration brings together different geodata kinds into one
Target System

The federated data integration approach leaves the geodata in their original storage, where
it is maintained and updated. The processing is possible through a virtual database schema
that represents a mediated schema. This schema allows a common use of the data, as it is
transformed to the appropriate structure of the federated data storages, before the actual
access takes place. In such respect, the meditated schema hides the original data structure
and model from the end user.

Client

Provider A

geodata

repository

A

Provider B

geodata

repository

B

Provider X

geodata

repository

X

network

Figure 1.3: Federated data integration provides online access to distributed and heterogenous
geodata through mediator schema

4 1. Introduction and Motivation

Both approaches have pros and cons. The consolidated data integration can use geodata
that has been shipped on CD from the different data providers to the end user’s site. Here, an
administrator has the duty to perform the data integration by importing the shipped data into
the data store of the so-called Target System, which is typically a GIS. One disadvantage -
among others- is that the geodata of the Target System is never up-to-date. This disadvantage
is the major advantage of the federated integration, where the processing takes place on the
up-to-date data.

One implementation of the federated data integration is based on Internet Technology. The
data providers set up an Internet access point, called a Web Service that provides well defined
access to the federated geodata. If the service supports geodata specific processing functions
like mapping, intersection of geometries or coordinate reference system transformation, it
is called a Geo Web Service (GWS). A simple black box view of a Geo Web Service can
characterize it as a processing unit that combines processing functions and geodata for a
particular field of use.

The interoperable use of geodata, obtained from a Geo Web Service relies on the basic
concept that the output of the service can be controlled by its input parameters. This allows
the decoupling between the original (internal) format and model as it is used by a data provider
and an interoperable mediator data format, which is offered by the Geo Web Services. In
short, this attempt is based on online and on time data transformation and not on exhaustive
and permanent data storage.

One limitation of the federated data integration results from the required network. Geo-
processing can require large amount of data that must be sent to the service or received from
the service. Thus, the processing speed relies on the network capacity.

In order to use an online infrastructure of distributed services, which provide access to
federated geodata, distributed access control is required. This ensures that a data provider
can enforce the desired geodata protection.

1.2 Geodata and Geospatial Information Object

As already stated, geodata is collected and maintained in different data formats and data
models, according to the purpose of processing. Some kinds of geodata are inappropriate to
have a structure. For example, high volume image data as collected from weather satellites is
raster-based geodata. It is not predestinated to exist in any data model. But other phenomena
that can be observed and measured through specific (geodetic) equipment, can be modeled
in an object-oriented model. For example, a street can be represented in an object-oriented
data model.

According to ISO 19107, an information object -in this context- is an abstraction of a
real world phenomenon. The information object is called a geospatial or spatial information
object if associated with a location relative to the surface of the Earth.

According to object-oriented modeling, an object is an instance of a class that defines the
properties of the object. This representation of information has the advantage in reference to
the raster-based information that an object can be uniquely identified and automatically be
processed. The processing of raster data mainly requires manual processing.

1.3 Protected and Distributed Geospatial Information Objects 5

The object-oriented approach has another big advantage that allows to combine informa-
tion that belongs together, define operations for processing and model relationships between
the objects. This brings the tremendous advantage that in contrast to the previous case, a
machine can distinguish between objects of either class and a human is not required looking at
the graphical representation. Also, the object-oriented approach allows to give each instance
of a class (an object) a unique identity where further processing can be based on, even if the
values of the properties change. Based on this unique identification, it is possible to express
relations between objects. These relations can be of spatial or non-spatial kind. An example
for a non-spatial relation is the ownership relation; an example for a spatial relation is the
adjacent relation, grounded on the geometries of a spatial information objects.

The object-oriented modeling of geospatial information objects requires the presentation
of the geospatial characteristics. The location and shape of a geospatial information object
is described by geometry.

1.3 Protected and Distributed Geospatial Information Ob-
jects

In general, the use of geodata might be restricted due to licensing issues or electronic com-
merce. Each data provider can declare permissions, which express the restrictions.

Requirements for declaration and enforcement of access restrictions in the context of
geodata have been collected at an informal poll at the InterGeo 20022. The poll assumed
that distributed and heterogenous geodata is available for online access via the introduced
infrastructure of Geo Web Services. The collected requirements can be separated into four
categories:

(i) Requirements for security based access restrictions result from the a priori insecure
Internet communication. The data provider argue that depending on the kind of the
geodata a user likes to access, different security conditions like confidentiality, integrity
and authentication must be met. If the declared conditions are not met, the request
is rejected. As an example, the request of personal information such as ownership
information of buildings requires security endurance, as stated in the law. If such a
request is made via the Internet, security must be applied to the communictation from
the provider to the consumer. Another argument is that the data/service provider
generates a certified result. It must be ensured that this result has not been tampered
unnoticed during transmission from the data/service provider to the consumer. An
example exists in this field of road work, where a digging request is made for a particular
area to check for existing gas pipelines or electricity cables. It must be guaranteed that
the ’no dig’ result information has not been changed unnoticed to ’dig’.

Even though this is a very interesting topic, it will not be considered in further detail.

(ii) Requirements for service based access restrictions focus on restricting the functionality
of a service. One addressed requirement is to restrict a particular interface only to clients

2The InterGeo is a German trade fair that is held annually. Geodata provider and user, hardware and
software providers of the Geoinformatic sector meet, in order to show their most recent and mature products.

6 1. Introduction and Motivation

from the local network and not to clients, connecting from the Internet. Another aspect
is the time and day, when a service function can be invoked; resp. not to be invoked.
As an example, a particular service interface can be invoked from all clients, connecting
from a local network between the business hours, Mon-Fri 8 a.m. to 5 p.m.

Also, invocation parameter dependent restrictions have been named for mapping re-
quests: The request of a binary (raster) map is free, if the scale is not finer than 1:5000;
otherwise the request is restricted. If the map is requested in a vector format, which
usually allows further processing, the map request is also restricted. But, different ac-
cess rights are required to access a restricted binary map and a restricted vector format
map. Also restrictions are desired, which depend on the used rendering style of the
map. For example, if the map is rendered in black/white style, it is free but if rendered
in color style, it’s restricted.

These types of requirements are not the prime focus of this work. However, they can
also be declared and enforced with the provided solution. This is based on the access
control capability to express conditions.

(iii) Requirements for content based access restrictions result from the object-oriented data
model. The interviewed people said that it is important to express existing restrictions
on the geodata for the online access; hence on the service level. In such a respect, the
content is the information that either represents the input or the output of a service.
For particular service interfaces, which allow the modification of the underlying geodata,
the authorization must be checked before the actual access takes place. But for other
interfaces, the authorization can only be checked after the result is generated. This is
different from the traditional approach, where the authorization is always checked prior
to execution.

Assuming an object-oriented data model on the service interface level, the ’content’
comprises of information objects which are instances of a particular class. This results
in the class-based and object-based restrictions.

A declared class-based restriction is related to a particular class and must be enforced
for all objects, which are instances of that class. For example, an access restriction
declared for the class Building must be enforced for the objects ”The White House”
and ”The Dome of Cologne”, assuming both are instances of that class.

An object-based restriction must be enforced for all objects, for which the specified
characteristics match. Different possibilities exist for referencing: One attempt can
use the identify of the object or the values of characterizing properties. Assuming the
uniqueness of the identity, the restriction is enforced for the lifetime of the object. If
using modifiable object properties for the declaration of an access restriction, the same
restriction can apply to different objects for subsequent requests. For better readability
and consistency, it was desired that a declared restriction can refer to one object or a
set of objects. As an example, a restriction that identifies instances of the Building
class by the string ”The White House” does not match ”The Dome of Cologne”; but
the reg.-expr. string ”*” matches both instances.

This topic is the first prime topic, covered by in this work.

(iv) The request for spatial restrictions result from the geospatial characteristics of the
information objects. Most interviewees highlighted this requirement as very important

1.4 A Motivating Example 7

and stated that it must be possible to declare spatial access restrictions to geospatial
information objects, depending on their location and geometry. This shall be achieved
by declaring a specific spatial condition that expresses the spatial relation between the
geometry of requested geospatial information objects and a 2-D geometry for which the
restriction is to be enforced.

This topic is the second prime topic, covered by this work.

The developed access control model, introduced in chapter 4, supports the declaration
and enforcement of class-based and object-based access restrictions as well as 2-D spa-
tial restrictions. The object-oriented model is based on the Simple Features specification
([OGC 1999-049]) and the Feature Geometry model, introduced in [OGC 2001-101].

1.4 A Motivating Example

The purpose of the following example is to show the need for a distributed access control
that allows to declare and enforce access restrictions as highlighted earlier. For this purpose,
a real world process (‘’Building Permit Process‘’) is simplified as necessary to focus on the
main aspects: Restricted access to distributed heterogenous and protected geodata resources.
The example process (‘’parcel splitting and change of ownership‘’) involves different types of
access to different kinds of geodata. The example data model is simplified from the real world
data model in order to be useful for illustrating theoretical concepts throughout this work.

Figure 1.4: Initial situation before land
parcel splitting

Figure 1.5: The resulting situation after
land parcel splitting

The process is initiated if one or more land parcel owners like to open a construction site,
let’s say for building private houses. Their large land parcels must be split, sold and the new
owner must be registered in the cadastre. On the newly created land parcels, the new owners
can then build their own houses. Figure 1.4 shows an initial situation, where a large land
parcel (no. 1949) is about to be split. The resulting situation is shown in figure 1.5, where
inside the land parcel no. 1949, new land parcels with the no. 1949/32 and no. 1949/33 have
been created3.

Looking at the process in more detail, it comprises of multiple sequential steps, as illus-
trated in figure 1.6. The first step is to lock the land parcel, which is to be split so that it

3For simplicity, the ownership information of the land parcels is not displayed.

8 1. Introduction and Motivation

cannot be modified meanwhile. In the example, the land parcel, identified by no. 1949 is
locked. This is achieved by using the lock operation of the GWS Land Parcel. The second
step involves the creation of the new land parcels, identified by the no. 1949/32 and 1949/33.
The create operation of the GWS Land Parcel is used to do so. After creating the land
parcels, the ownership information is updated by using the write operation of the GWS Land
Parcel and Cadastre. The last step in the work flow is to update the geometry of land parcel
1949 and unlock it. This can be achieved, using the write and unlock operation of the GWS
Land Parcel.

The detailed view on the work flow unveiled the requirements for distributed geodata.
The data model that exists for the land parcel information is linked with the data model that
exist for the ownership information. In order to set the ownership as a double sided relation, a
mechanism must exist to uniquely refer to a person, which owns one or multiple land parcels.
But, it must also be possible to refer to the land parcel(s) uniquely from the cadastre in order
to associate ownership information in that data model. In the introduced infrastructure of
online access, interfaces allow unique identification of resources, made available by the service,
independent from the internal data structure and data model. One existing approach, how
to assign a unique identity to resources is introduced in [Bishr 1999]. One approach for this
service based infrastructure is to prefix the local identities with a unique Uniform Resource
Name (URN). The service simply removes the URN, in order to get the original local identity.

In [Schlichter 2000], the unique naming of software agents is defined using a global name
and a network address. The name has the email format, where the local name of the email
represents the name of the agent and the global part represents the domain name of the
agent. The network address represents the URL, which can be used to execute the agent.
Adopting this to the given problem of unique resource identifiers, the URN can be created
from the unique name of the service. For example, resources which are accessed via the service
http://foo.xyz can use this identifier as a unique URN.

lock land

parcel no. 1949

create parcel

no. 1949/32 and

no. 1949/33

change ownership of

parcel no. 1949/32

and no. 1949/33

update and unlock

land parcel no. 1949

update cadastre

Bob owns 1949/32

Alice owns 1949/33

GWS

Land Parcel

lock parcel
 write
 parcels

GWS

Cadastre

update ownership

create parcels

update & unlock land parcel

Figure 1.6: Workflow for splitting a land parcel and updating the ownership information

For further reference, it is assumed that the required geodata is modeled in an object-
oriented way and exist in one data model4. However, separating the cadastre and the land

4The use of one data model simplifies the example for further use

1.4 A Motivating Example 9

parcel into different data models is not too difficult: The two-sided ownership relation must
be represented as a reference to an information object of another data model and not as a
reference to an information object, blonging to the same data model.

This process is based on the land parcel information (Ger. ‘’Digitale Flurkarte‘’) and
the cadastre information about ownership (Ger. ‘’Grundbuch‘’). Assuming that Geo Web
Services provide an interoperable access to the geodata, both kinds of geodata can be used
together. The underlying data model must ensure that unique relations exist between a land
parcel and its owner.

An abstraction of the real world data model is to represent the land parcel information in
an object-oriented model. Using an object-oriented data model, it is possible to combine the
required geodata in an application specific way. A land parcel can be modeled as a geospatial
information object by the class Landparcel that has properties, which hold the border line,
the identification number and a reference to the owner. The owner can be modeled as a non-
spatial information object5 by the class Person.

The object-oriented model is also important for the declaration of access restrictions,
because class- and object-based restrictions are based on that. In Germany, the access to the
cadastral information is primarily restricted by existing law regulations6.

The following access restrictions can be envisioned for the example process:

(i) read access on the class Landparcel is associated to Bob for an area that contains the
requested land parcel (e.g. area of figure 1.4). This can be declared using the class-based
and spatial restrictions.

(ii) write and create access on the class Landparcel is associated to Alice for the area of the
original land parcel (no. 1949). This area is determined by the boundary property of the
Landparcel object. With the continuous splitting, the area of the original land parcel
gets smaller and smaller. But because the access restriction refers to that boundary, it
is always correct. Declaring an independent area based on the original land parcel shape
would be incorrect, after the first split. This can also be declared using the class-based
and spatial restrictions.

(iii) lock and unlock access on the land parcel object (no. 1949) is associated to Alice. In
contrast to Bob, she has the appropriate job assignment. This restriction can be declared
using the object-based restriction.

(iv) write access to the cadastre (class Person) is associated to Joe. This can also be declared
using the class-based restriction.

An alternative to the previously described process is to obtain the required geodata (the
content) from the designated services by online access. Further work uses the offline content,
until all modifications are done. As the final step, the original content is updated via online
access. This alternative process has the advantage that the online access and therefore the
network load is minimized. The frequent access to the content -creating new land parcels and
associate new ownership- is done offline. This process is to be favored if either many small

5No geometry is associated to a person in this model
6This might be different in other countries but Germany.

10 1. Introduction and Motivation

land parcels are to be created, in order to save network capacity or if the process requires
a longer period of time as it can be expected with real private construction sites. In such a
case, an engineering bureau can obtain the content and work on it on behalf of a government
agency. This work flow is illustrated in figure 1.7.

obtain content

lock land parcel

create parcel

no. 1949/32 and

no. 1949/33

change ownership of

parcel no. 1949/32

and no. 1949/33

update land parcel

no. 1949

update ownership

Bob owns 1949/32

Alice owns 1949/33

lock
 parc

el

obtai
n co

nten
t

create parcels
 write
 parc

els

local system

update parcel

update

 owners
hip

obtain content

update ownership

and land parcel

& unlock parcel

GWS

Land Parcel

update content

unlock parcel

GWS

Cadastre

update
 co

nten
t

Figure 1.7: Alternative process for land parcel splitting and modification of ownership

The process starts, when the engineering bureau -in person of an employee- obtains the
necessary geodata content. The content comprises of land parcel and ownership information.
All required actions to split the land parcel and associate new owner is achieved using a local
system. The last step in this alternative process is to update the original data stores and
unlock existing locks. The same set of declared access restrictions apply to this alternative
process. However, the enforcement is different. The enforcement in the previous example is
limited to the monitoring of the online access. With this approach, it requires the enforcement
of operations to an offline content. One strategy to enforce declared access restrictions on
an offline content can be achieved by using the principles of the Digital Rights Management
(DRM). In a nutshell, DRM relies on the encryption of the content, before transmitted from
the provider to the user. Access to the (offline) content is possible by requesting a license,
which includes a key for decryption. Assuming an appropriate encryption, the access restric-
tions can be enforced by controlling the license delivery. The user must specify the intended
use and the access control derives a decision if the user has the rights to receive the requested
key. For example, a user of the engineering bureau requests a license to perform create oper-
ation inside the area of the land parcel no. 1949 to create new land parcels (create access to
the class Landparcel). If the license is issued, the local system must enforce them.

1.5 The Scientific Method of this Dissertation

This dissertation aims at the development and implementation of an access control system
that can be used to declare and enforce the introduced restrictions: class-based, object-based
and spatial restrictions. The scientific method, applied to this work, is similar to the software
development and engineering process. First, requirements for an access control have been

1.5 The Scientific Method of this Dissertation 11

collected in the field of distributed geoprocessing. For the collected requirement and the
constraint of a distributed environment, existing standards and systems have been evaluated.
The outcome of this evaluation was that no standard or system exists, which can be used to
implement the requirements. This was the point to start developing a model that has the
capabilities to implement the requirements. The model was developed according to/based on
existing standards, which fit best into the initial situation. The final stage was to evaluate
the developed model by implementation and testing.

This work is structured according to this modus operandi of software engineering. Chapter
1 (this chapter) gives a brief introduction to the initial situation and highlights the need
for an access control system that supports the declaration and enforcement of class- and
object-based restrictions as well as spatial restrictions. Chapter 2 introduces basic concepts,
important to understand this work. Chapter 3 evaluates relevant standards and system
in the field of distributed access. The chapter concludes with drawing a comparison and
argument, why existing standards and systems are not capable to be used for implementing
the requirements. Chapter 4 introduces the model for declaration and enforcement of the
outlined access restrictions for the distributed environment. It introduces different structures
for organizing existing access permissions in the context of deriving an authorization decision.
It focuses on the problems of incomplete or incorrect policy sets and introduces approaches
to avoid or to deal with these problem. Chapter 5 frames the evaluation of the developed
access control and describes the implementation of the authorization process as an extension
to the XACML standard. This work finishes with chapter 6, which covers the conclusion and
outlook.

Figure 1.8 illustrates the possible reading paths of this work. Chapter 4 consists of two
parallel paths: One covers the declaration and the other the enforcement of access restrictions.

12 1. Introduction and Motivation

1. Motivation

2. Introduction to

basic concepts

3. Evaluating

standards and

systems

4. Declaration and

enforcement of

access restrictions

5. Evaluation and

system design

declaration

of permissions

enforcement

of permissions

organizing

permissions

incomplete

permissions

illustating

permissions

finding

enforceable

permissions

the request

authorization

process

6. Conclusion and

outlook

class-based

permissions

object-based

permissions

spatial

permissions

unreachable

permissions

incorrect

permissions

detection of

incorrect

permissions

Figure 1.8: The structure of this dissertation.

Chapter 2

Basic Concepts

This chapter introduces the relevant concepts and standards for this work in a brief manner as
it is relevant to understand this work. For advanced reading, the interested reader is referred
to the original documents and standards, as cited in chapter Bibliography.

This second chapter also introduces own formalizations in order to describe existing con-
cepts as they are being used throughout this work.

2.1 XML, XML Schema and Xpath

The eXtensible Markup Language (XML) ([W3C 2001b]), XML Schema ([W3C 2001d] and
[W3C 2001e]) and Xpath ([W3C 1999]) are important W3C standards, used in this work.
This section gives a brief introduction to understand the basic concepts and capabilities.

2.1.1 Extensible Markup Language (XML)

The ‘’Extensible Markup Language (XML) is a simple, very flexible text format derived
from SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange of a wide
variety of data on the Web and elsewhere.‘’ [W3C 2001b]).

In short, XML is a markup much like HTML but it was designed to describe data (focus
on what the data is) and not how the data is presented. This is the distinguishing difference to
HTML, which was designed to focus on the representation of data (how data looks like). XML
uses tags (elements) for the markup, which are not predefined. The tags and the structure of
the tags are defined by a Document Type Definition (DTD) or an XML Schema.

An XML document that does not refer to an XML Schema is well formed, if the structure
obeys to the grammar of XML. An XML document is valid if the structure obeys to a
referenced XML Schema.

14 2. Basic Concepts

2.1.2 XML Schema

XML Schema is an XML based successor of the Document Type Definition (DTD). XML
Schema describes the markup of an XML document: Its structure, the elements (tags) that
can occur in the structure and representation of the elements itself. An element can have
attributes and properties, which are represented by child elements. XML Schema defines
common capabilities to declare constraints on the XML document structure: The order and
number of child elements, the type of the elements and attributes. In addition, XML Schema
supports the object-oriented approach of inheritance through extensibility. It also supports
the concept of namespaces, which make the unique identification of elements possible. In
short, XML Schema defines an XML markup for an object-oriented data model.

Object-oriented construct XML Schema equivalent

class / class-name <complexType name=”class-name”>

inherit class-name <extension base=”class-name”> as a sub-element of <complex-

Type>

property / property-name <element name=”property-name”> or <attribute

name=”property-name> as a subelement of <complexType>

object / object-name <element name=”class-name”> defined as global element

Table 2.1: XML Schema constructus for an XML markup of an object-oriented data model

Table 2.1 contains a lineup of XML Schema and object-oriented constructs. XML Schema
provides the element and attribute constructs to represent class properties. As a rule of
thumb, an element represents object characteristics, which are useful to a user, whereas the
attribute holds metadata about the object, which is required for machine processing. One
example of the attribute use in such respect is the unique identification of an object.

The following example provides an XML Schema representation of a simple object-oriented
data model, which is shown in figure 2.1. The data model contains of the two classes
InformationObject and Person. The Person class inherits from the InformationObject
class. The InformationObject class has one property named id and the Person class has
the characterizing property name.

-id : String

InformationObject

-name : String

Person

Figure 2.1: Object-oriented data modelexample

One possible XML Schema representation is shown in listing 2.1. The classes Information-
Object and Person are represented as global elements and the complexType construct is
being used to enable inheritance. The XML Schema requires to define a – so-called – root
element, which becomes the container of the XML document that holds all instances of

2.1 XML, XML Schema and Xpath 15

marked-up objects. In this example, the root element has the name OOExample and it holds
a sequence of objects of class Person. The example uses the namespace am that refers to
http://www.in.tum.de/am. This is encoded using the root element’s xmlns attribute.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <xs:schema targetNamespace=”http://www.in.tum.de/am”
3 xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:am=”http://www.in.tum.de/am”
4 xmlns=”http://www.in.tum.de/am” elementFormDefault=”qualified”
5 attributeFormDefault=”unqualified”>
6 <xs:element name=”OOExample”>
7 <xs:annotation>
8 <xs:documentation>
9 An example represemtation of an object−oriented data model

10 </xs:documentation>
11 </xs:annotation>
12 <xs:complexType>
13 <xs:sequence maxOccurs=”unbounded”>
14 <xs:element ref=”am:Person”/>
15 </xs:sequence>
16 </xs:complexType>
17 </xs:element>
18 <xs:element name=”InformationObject” type=”am:InformationObjectType”/>
19 <xs:element name=”Person” type=”am:PersonType”/>
20 <xs:complexType name=”InformationObjectType”>
21 <xs:attribute name=”id” type=”xs:string” use=”optional”/>
22 </xs:complexType>
23 <xs:complexType name=”PersonType”>
24 <xs:complexContent>
25 <xs:extension base=”am:InformationObjectType”>
26 <xs:sequence>
27 <xs:element name=”name” type=”xs:string”/>
28 </xs:sequence>
29 </xs:extension>
30 </xs:complexContent>
31 </xs:complexType>
32 </xs:schema>

Listing 2.1: XML Schema representation of the object-oriented example data model (OOEx-
amplr.xsd)

One example of a data collection is shown in listing 2.2. The data collection is comprised
of two objects, being instances of the class Person. The first instance may be identified by
the lifetime identity (id=P1) or through the characteristic name (name=Bob).

2.1.3 Xpath

Xpath is a syntax to fetch parts of an XML document. Xpath is based on the UNIX path like
expressions to refer to elements, which are separated by a slash (‘’/‘’). A path expression with
a leading slash represents an absolute path, starting at the root node. A path expression with
no leading slash refers to a relative path, starting at the currently selected node. It uses a
tree representation of the XML document. The top node of the tree represents the document
root, referenced by the path ‘’/‘’. The nodes of the tree can be traversed by using a Xpath
expression. The path ‘’/A/B‘’ refers to the element named B, which is a child element the root
element A. The path expression can fetch a particular set of elements, using a double-slash
‘’//‘’. The expression ‘’//A/B‘’ selects all sub-elements of the root element A, named B.

16 2. Basic Concepts

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <OOExample xmlns=”http://www.in.tum.de/am”
3 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
4 xsi:schemaLocation=”http://www.in.tum.de/am OOExample.xsd”>
5 <Person id=”P1”>
6 <name>Bob</name>
7 </Person>
8 <Person id=”P2”>
9 <name>Alice</name>

10 </Person>
11 </OOExample>

Listing 2.2: XML representation of a data collection of the object-oriented data model
example

Xpath supports the declaration of Boolean expressions to test particular circumstances
like the existence of particular elements, the unary of elements or if an element has particular
characteristics, represented by sub-elements and attributes. Xpath also defines a library of
functions that can be used with the path expression. The most important functions are the
node set functions, which allow particular traversal of the tree and fetching of (string) values
from elements and attributes. Table 2.2 presents a sub-set of Xpath 1.0 functions, which are
important for the declaration of access restrictions in XACML.

For the previous example content of the object-oriented data model from figure 2.1, table
2.3 represents different Xpath expressions for fetching elements under different constraints.

2.2 Geodata

Geodata is geographic information about objects and phenomena with a location relative
to the surface of the Earth. It is collected and maintained by different government agencies,
organizations or commercial companies (data providers) for numerous purposes. The purpose
pre-defines the format and the data model of the geodata. For advanced geoprocessing,
geodata must have an object-oriented structure.

2.2.1 Geospatial Information Object

Many definitions of an information object exist. In this context, an information object is a
representation of a real world entity. It comprises of a set of properties, holding the charac-
terizing information and relations to other objects. This data model allows to query for the
owner of a land parcel by evaluating the value of the according property.

A geographic, geospatial or just spatial information object is a specialization of an infor-
mation object. It represents a real world entity that has a location, relative to the surface of
the Earth. Its geographic characteristics such as the location and shape are encoded by ge-
ometry. The geospatial information object can hold explicit and implicit geospatial relations
through their geometry. Making geospatial relations explicit is covered by topology, which

2The function position and count are added to the cited table.

2.2 Geodata 17

Function Argument Description

ancestor element-name returns all element-name ancestors of the context node

ancestor-or-self element-name returns all element-name ancestors of the context node

and if the context node is an element-name element, the

context node as well

descendant element-name returns all element-name descendants of the context node

descendant-or-self element-name returns all element-name descendants of the context node

and if the context node is an element-name element, the

context node as well

following element-name returns all the element-name nodes that are after the

context node in the document order, excluding any de-

scendants, attribute nodes, and namespace nodes

following-sibling element-name returns all the following element-name siblings of the con-

text node

preceding element-name returns all the element-name nodes that are before the

context node in the document order, excluding any an-

cestors, attribute, nodes, and namespace nodes

preceding-sibling element-name returns all the preceding element-name siblings of the

context node

parent element-name returns the parent of the context node if there is one

and it is an element-name element, and otherwise returns

nothing

child element-name returns all element-name elements children of the context

node

self element-name returns the context node if it is an element-name element,

and otherwise returns nothing

attribute attribute-name returns attribute-name of the context node

namespace namespace returns the namespace nodes of the context node

position N/A returns the position in the node list of the node that is

currently being processed

count element-name returns the number of nodes in the argument node-set

name element-name returns the name of the tag

Table 2.2: Xpath predefined location path and node set functions [Damiani et. al. 2002, p.
182]2

is not covered by this work. However, this work uses spatial methods, which can test two
geometries for a given topological relation.

In order to model the adjacency relation between land parcels from the example explic-
itly, the data model can be extended. A property like adjacentTo can be added to the class
Landparcel, which is of type sequence and holds the identifiers of adjacent land parcels. In
order to express that land parcel 1949/33 is adjacent to 1949/32, 1949/24 and 1949, the ‘’ad-
jacentTo‘’ property of 1949/33 holds the values ‘’1949/32‘’, ‘’1949/24‘’ and ‘’1949‘’. However,
the adjacency relation can also be determined dynamically by processing the geometries of

18 2. Basic Concepts

Xpath expression Return type Explanation Xpath result

/OOExample/* node-list returns a node-list of all an-

cestor nodes

<Person id=”P1”>,

<Person id=”P1”>

/OOExample/Per-

son

node-list returns a node-list of all an-

cestor nodes

<Person id=”P1”>,

<Person id=”P1”>

/OOExample/Per-

son/*

string-list returns a node-list of all an-

cestor nodes

<name>=”Bob”,

<name>=”Alice”

/OOExample//* node/string-list returns a node-list of all

decedent nodes

<Person id=”P1”>,

<Person id=”P1”>,

<name>=”Bob”,

<name>=”Alice”

/OOExample/Per-

son[1]

node returns the first node named

<Person>

<Person id=”P1”>

/OOExample/Per-

son[1]/name

string returns the value of the node

<name> of first node named

<Person>

Bob

/OOExample/Per-

son[@id= ’P2’]/name

string returns the value of the node

name of node Person, iden-

tified by the attribute id,

which value is ”P2”

Alice

(/OOExample/Per-

son[@id=

’P2’]/name)=”Alice”

boolean returns the boolean result

(true) of expression

true

count(//Person) integer returns the count of el-

ements representing in-

stances of class Person

2

count(//Person[@id=

’P1’])

integer returns the count of in-

stances of class Person with

the id equals ”P1”

1

name(//Person[1]) string returns the tag name of the

first element matching the

Xpath

Person

Table 2.3: Xpath 1.0 example expressions for fetching elements based on different constraints
and testing particular situations

each land parcel. Defining spatial adjacency as the condition of two geometries g1 and g2

if g1 and g2 share at least one point, then a comparison of all points of the geometry of g1

and g2 can result to an implicit relation. The purpose of this implicit relation example is to
make the reader aware that geometry keeps implicit spatial relations that are relevant for the
enforcement of spatial access restrictions.

2.2 Geodata 19

2.2.2 Geometry

Geometry provides a quantitative description of geographic characteristics like location, shape
in different dimensions. The encoding of geometry depends on the used coordinate reference
system (CRS) or Spatial Reference System (SRS). A coordinate reference system models the
shape of the Earth, using a particular mathematical model. The geometry changes, when
the geospatial information is transformed from one coordinate reference system to another.
Different coordinate reference systems are available, which represent the Earth surface with
different accuracy for different areas.

Standarizing Coordinate Reference System Identifiers

‘’The European Petroleum Survey Group (EPSG) was formed in 1986. It comprises special-
ist surveyors, geodesists and cartographers from Oil Companies based in Europe and having
international operations. Meetings are held twice yearly to discuss survey and positioning
topics within those areas of oil industry business where cooperation is generally agreed to be
mutually beneficial.‘’ [EPSG 2004]. The geodesy working group of the European Petroleum
Survey Group maintains and publishes a list of unambiguous CRSs. One important Coordi-
nate Reference System is the World Geodetic Standard 1984 (WGS84), which is widely used
with the Global Positioning System (GPS). The EPSG identification string for WGS84 is
EPSG:4326.

In a 2D geometry model, a location is encoded as a two-valued coordinate tuple X Y . The
semantics of X and Y depend on the used CRS. For EPSG:4326, the coordinate is encoded
as latitude and longitude. Latitude (LAT) is measured northward and southward of the
Equator. Longitude (LON) is measured eastward and westward the prime meridian, which
goes through the Royal Observatory, in Greenwich.

In Germany, locations are encoded using the Gauss-Krüger projection, which divides the
globe into 120 zones. Each zone is 3◦ wide (1.5◦ eastward and 1.5◦ westward) and has its own
(virtual) prime meridian. The prime meridian of Zone 1 is 3◦ east of Greenwich. The EPSG
codes for the zones are EPSG:31491 for Zone 1, EPSG:31492 for Zone 2, etc. Germany is
divided into five zones, 2 to 5. The coordinate tuple elements have the following meaning:
X has the semantics of distance from the equator (Ger. ‘’Hochwert‘’) and Y from the prime
meridian of each zone (Ger. ‘’Rechtswert‘’). Both distances are typically measured in meter.
In order to avoid negative Y-distances, 500,000 meters is added. For encoding the zone, its
number is prefixed to the actual Y value. As an example, Y=4530000 is a point 30km west
of the 12◦ meridian.

Figures 2.2 and 2.3 show the different grids for Germany: Figure 2.2 displays the latitude
and longitute grid for WGS84 and the figure 2.3 displays the grid for the Gauss-Krüger
projection.

An example for the different encodings is based on the location of the main entrance
of the Technische Universität München, Arcisstr. 21, Munich, Germany. The location is
LAT = N40◦, 08′56.4′′, LON = E11◦34′11.6′′. The equivalent WGS84 encoding is X =
40.1490◦, Y = 11.5699◦. Because Munich resides in zone 4 (prime meridian 12◦ east of
Greenwich), the Gauss-Krüger encoding is X = 5318468.41, Y = 4425482.06.

20 2. Basic Concepts

Figure 2.2: The WGS84 coordinate grid
for Germany

Figure 2.3: The Gauss-Krüger coordinate
grid for Germany

Simple Geometries

This work uses a 2D geometry model according to the OGC specification Feature Geometry
([OGC 2001-101]). The following subset of simple geometries is relevant for this work:

Point: A 2D Point has the dimension zero (0). It can be encoded as a tuple of Coordi-
nate Reference System (CRS) and the Coordinate, which represents the location. The
numerical values of X and Y have the meaning as previously stated.

Point = {CRS,Coord} (2.1)
Coord = X Y (2.2)

The previous example of the location of the Technische Universität München, can be
encoded using the Point construct:

TUMEntrance = {EPSG:4326, 40.1490 11.5699}

Line: A 2D Line has the dimension one (1). It is encoded as a three-valued tuple: CRS and
two coordinates using the CRS. The first coordinate represents the start location and
the second coordinate represents the end location of the line. If Coord1 and Coord2 are
identical, the dimension reduces to zero.

Line = {CRS,Coord1, Coord2} (2.3)

LineString: A 2D LineString has the dimension one (1). It is encoded as a multi-valued
tuple of at least two or more coordinates, encoded in the same CRS. A LineString can

2.2 Geodata 21

be self crossing but never be closed. This is reflected in the constraint that Coord1 must
be different from CoordN. A closed LineString becomes the semantics of a LinearRing.

LineString = {CRS,Coord1, Coord∗i , CoordN} | Coord1 6= CoordN (2.4)

LinearRing: A 2D LinearRing has the dimension one (1). It describes the boundary of a
2D surface. It is encoded as a closed LineString: The first and last Coord-tuples are
identical. A LinearRing must have at least three different coordinates.

LinearRing = {CRS,Coord1, Coord2, Coord+
i , Coord1} (2.5)

Surface: A 2D Surface has the dimension two (2). It describes a 2D area, which outer
boundary is encoded by a LinearRing. The surface can be simple or complex. If the
Surface does not contain holes, it is called a simple surface. The holes of a complex
surface have boundaries, which are called inner boundaries. Each inner boundary is
encoded as a LinearRing. In order to describe a surface, each linear ring must have
at least three different coordinates. Because the start and end coordinate are explicitly
encoded, the LinearRing must have at least four coordinates. The first linear ring
encodes the mandatory outer boundary and the other linear rings represent the inner
boundaries of the holes.

Surface = {LinearRing1, LinearRing∗i } (2.6)

The following examples show the encodings of a simple and a complex surface from
figure 2.4. The encoding uses the pseudo CRS foo, which represents the Cartesian
Coordinate System.

SimpleSurface = {foo, 0 0, 3 0, 3 4, 0 4, 0 0}
ComplexSurface = {{foo, 0 0, 3 0, 3 4, 0 4, 0 0}, {foo, 1 1, 2 1, 2 3, 1 3, 1 1}}

Figure 2.4 shows examples of simple geometries.

Point
 LineString
 Self-crossing

LineString

simple Surface
LinearRing
 complex Surface

Figure 2.4: Examples of the simple geometries: Point, LineString, LinearRing and Surface

2.2.3 Testing Topological Relations between Geometries

Topology describes the characteristics of a geometry and the connectivity between geometries
that stay invariant if the coordinate reference system changes. A common representation of

22 2. Basic Concepts

a topological structure is a graph, where the nodes represent the geometries and the edges
represent the topological relation.

A Spatial Relation Operation is a Boolean function that tests two geometries for the
existence of a particular topological spatial relation. The concepts of Interior, Boundary and
Exterior ([Clementini 1993]) can be applied to 2-dimensional objects in 2-dimensional space
(R2). The boundary of a given geometry g, expressed as B(g) is a set of geometries of the
next lower dimension. The boundary of a Point is the empty set (∅). The boundary of a non-
closed Line or LineString consists of two Points; the start and end location. The boundary
of a closed LineString or a LinearRing is empty. The boundary of a Surface consists of
its set of LinearRings. The interior of a given geometry g, expressed by I(g) are the left over
points when the boundary points are removed. The exterior of a given geometry g, expressed
by E(g) consists of those points, which are left over when the interior and boundary points
are removed.

Different spatial relations, based on The Dimensionally Extended Nine-Intersection Model
[OGC 1999-049] are defined. Seven of these methods are considered for testing spatial rela-
tions between two geometries in this work.

Let g be a geometry, then dim(g) returns the dimension of the geometry.

dim(g) ∈ {0, 1, 2}, g is a geometry (2.7)

Disjoint: The two geometries have no Point in common. Given two (topologically closed)
geometries g1 and g2,

Disjoint(g1, g2) ⇔ g1 ∩ g2 = ∅ (2.8)

Touches: The two geometries have at least one point in common, but no interior points.
Given two geometries g1 and g2, the Touches relation is defined for the following combi-
nations of geometry dimensions: { dim(g1)=2, dim(g2)=2}, { dim(g1)=1, dim(g2)=1},
{ dim(g1)=1, dim(g2)=2}, { dim(g1)=0, dim(g2)=2}, { dim(g1)=0, dim(g2)=1}. The
Touches relation is not defined for the geometry combination {dim(g1)=0, dim(g2)=0}.

Touches(g1, g2) ⇔ (I(g1) ∩ (g2) = ∅) ∧ (g1 ∩ g2) 6= ∅ (2.9)

Crosses: The geometries have some but not all interior points in common. The method can
be applied if the dimension of the intersection of the two geometries is less than that of at
least one of the geometries. Given two geometries g1 and g2, the Crosses relation is de-
fined for the following combinations of geometry dimensions: {dim(g1)=0, dim(g2)=1},
{dim(g1)=0, dim(g2)=2}, {dim(g1)=1, dim(g2)=1}, {dim(g1)=1, dim(g2)=2}.

Crosses(g1, g2) ⇔ (dim(I(g1) ∩ I(g2)) < max(dim(I(g1)), dim(I(g2))))
∧ (g1 ∩ g2 6= g1) ∧ (g1 ∩ g2 6= g2) (2.10)

Within: Given two geometries g1 and g2, the Within relation is true if g1 lies in the interior
of g2.

Within(g1, g2) ⇔ (g1 ∩ g2 = g11) ∧ (I(g1) ∩ I(g2) 6= ∅) (2.11)

2.3 The Geography Markup Language (GML) 23

Overlaps: The geometries have some but not all points in common. The intersection of the
two geometries have the same dimension as each geometry. Given two geometries g1 and
g2, the Overlaps relation is defined for the following combinations of geometry dimen-
sions: {dim(g1)=2, dim(g2)=2}, {dim(g1)=1, dim(g2)=1}, {dim(g1)=0, dim(g2)=0}.

Overlaps(g1, g2) ⇔(dim(I(g1)) = dim(I(g2)) = dim(I(g1) ∩ I(g2)))∧
(g1 ∩ g2 6= g1) ∧ (g1 ∩ g2 6= g2) (2.12)

Intersects: The inverse of Disjoint3. Given two geometries g1 and g2,

Intersects(g1, g2) ⇔ ¬g1.Disjoint(g2) (2.13)

Equals: The geometries are topological identical. Given two geometries g1 and g2,

Equals(g1, g2) ⇔ g1 ≡ g2 (2.14)

Different geospatial relations between geometries are illustrated in section 4.2.3.

2.3 The Geography Markup Language (GML)

‘’The Open GIS Consortium, Inc. (OGC) is a member-driven, non-profit international trade
association that is leading the development of geoprocessing inter operability computing stan-
dards. OGC works with government, private industry, and academia to create open and
extensible software application programming interfaces for geographic information systems
(GIS) and other mainstream technologies.‘’ [OGC 2004]. ‘’OGC envisions the full integration
of geospatial data and geoprocessing resources into mainstream computing and the widespread
use of interoperable geoprocessing software and geodata products throughout the information
infrastructure.‘’ [OGC 1999-100r1, p. 1].

The Geography Markup Language (GML) is an international standard of the OGC. ‘’The
Geography Markup Language (GML) is an XML encoding for the transport and storage of
geographic information, including both the spatial and non-spatial properties of geographic
features.‘’ [OGC 2002-069, p. 2]. This work uses the GML version 2.1.24, which assumes a
linear interpolation between the coordinates of simple geometries. Even though the GML
version 3.0 has been released, it is not considered relevant here. This is because the sup-
port of geometry types like spline and arc, which support a non linear interpolation between
coordinates do not influence the developed access control model. It only influences the im-
plementation of the system.

2.3.1 Encoding of Geospatial Information Objects and Geometry

GML provides an XML encoding for the object-oriented simple feature model ([OGC 1999-049]),
shown in figure 2.5. In this respect, GML provides XML markup for the previous defined
geographic information object. A feature is a GML encoding of an information object; a real

3In contrast to Overlaps, it is more general because no dimension restrictions exist.
4Please note that the GML version 2.1.2 is implicitly meant when using the term GML.

24 2. Basic Concepts

world phenomenon with no location to the surface of the Earth. A spatial feature is the GML
encoding of a geographic information object that allows the presentation of spatial properties.
In order to ensure interoperability, GML provides a definition for the XML markup of fea-
tures, spatial features and their geometry. For the interoperable exchange of geodata, GML
defines the construct of a feature collection.

Geometry
 SpatialReferenceSystem

Point
 Curve
 Surface

LineString

Line
 LinearRing
 Polygon

 2..*

1..*

Figure 2.5: Simplified geometry model for GML 2.1.2 from [OGC 2002-069, p. 6], not showing
the classes for geometry collection and multi geometry

GML 2.1.2 uses the W3C standard XML Schema ([W3C 2001d] and [W3C 2001e]) for the
XML encoding. The XML namespace for the encoding is gml, which refers to the URL
http://www.opengis.net/gml.

GML Feature and Feature Collection

The GML feature schema5 defines an XML markup for the GML object model. A geographic
feature is essentially a named list of properties. Some or all of these properties may be
geospatial, describing the position and shape of the feature. Each feature has a type, which is
equivalent to a class in object modeling terminology, such that the class-definition prescribes
the named properties that a particular feature of that type is required to have.

The characteristics of a feature are encoded using the {name, type, value} triplet. For
a GML encoding, these triplets are marked-up in XML. In the GML feature schema, the

5The feature schema is included in the file ‘’feature.xsd‘’, which is available for download from the OGC
Web site: http://schemas.opengis.net/gml/2.1.2/feature.xsd.

2.3 The Geography Markup Language (GML) 25

element gml: Feature defines the basic structuring and XML markup for a feature.

For interoperable exchange of geodata, ‘’GML 2.1 provides support for building feature
collections. An element in an application schema that plays the role of a feature collection must
derive from gml:AbstractFeatureCollectionType and declare that it can substitute for the
(abstract) gml: FeatureCollection element. A feature collection can use the featureMember
property to show containment of other features and/or feature collections.‘’ [OGC 2002-069].

Each abstract element gml: Feature and gml: FeatureCollection has the optional at-
tribute fid, which holds the unique identification string (feature ID) for the feature, resp.
the feature collection. Figure 2.6 shows the XML markup for these elements.

Figure 2.6: GML 2.1.2 feature schema defines the XML markup for a feature and a feature
collection

GML Geometry

GML also provides XML markup for geometry, which is defined in the geometry schema6. The
abstract base class of the geometry schema is gml: Geometry. It has the optional attributes
gid and srsName, which are inherited by all geometry classes. The attribute gid holds the
unique identifier for the geometry and the attribute srsName holds the identifier of the used
CRS. GML 2.1.2 defines a set of basic geometry classes, from which the following are used
for this work: Point, LineString, LinearRing and Polygon.

6The geometry schema is included in the file ‘’geometry.xsd‘’, which is available for download from the
OGC Web site: http://schemas.opengis.net/gml/2.1.2/geometry.xsd.

26 2. Basic Concepts

Point The GML encoding of the simple geometry gml:Point is shown in listing 2.3. The loca-
tion of the point can either be encoded using the element gml:coord or gml:coordinates.
The coord element keeps the pair (X,Y,Z), where Y and Z are optional. Alternatively,
the coordinates element can be used, whose value is a formatted string that keeps the
values for X, Y and Z. The format of the string is fixed by the attributes decimal, cs
and ts. The attribute decimal defines the character for the decimal separator, cs is the
coordinate separator and ts is the tuple separator. The default coordinate separator is
the comma (”,”), the default decimal separator is the dot (”.”) and the default tuple
separator is the space character (” ”).

1 <element name=”Point” type=”gml:PointType” substitutionGroup=”gml: Geometry”/>
2 <complexType name=”PointType”>
3 <annotation><documentation>
4 A Point is defined by a single coordinate tuple.</documentation>
5 </annotation><complexContent>
6 <extension base=”gml:AbstractGeometryType”>
7 <sequence><choice>
8 <element ref=”gml:coord”/>
9 <element ref=”gml:coordinates”/>

10 </choice></sequence>
11 </extension>
12 </complexContent>
13 </complexType>

Listing 2.3: GML encoding of the simple geometry Point

gml:LineString The GML encoding of the simple geometry gml:LineString shows listing
2.4. The sequence of two or more coord elements hold the points of the line string. The
simple geometry Line can be encoded by a LineString with two coord elements.

1 <element name=”LineString” type=”gml:LineStringType” substitutionGroup=”gml: Geometry”/>
2 <complexType name=”LineStringType”>
3 <annotation><documentation>
4 A LineString is defined by two or more coordinate tuples, with linear interpolation between them.
5 </documentation></annotation>
6 <complexContent>
7 <extension base=”gml:AbstractGeometryType”>
8 <sequence><choice>
9 <element ref=”gml:coord” minOccurs=”2” maxOccurs=”unbounded”/>

10 <element ref=”gml:coordinates”/>
11 </choice></sequence>
12 </extension></complexContent>
13 </complexType>

Listing 2.4: GML encoding of the simple geometry LineString

gml:LinearRing The GML encoding of the simple geometry gml:LinearRing shows listing
2.5. The sequence of four or more coord elements hold the points of the line string. It
is essential that the linear ring has a closed topology. Therefore, the first and the last
coordinate must be identical. But this is not enforced by GML.

gml:Polygon In GML, there is no direct encoding of the geometry Surface. Instead, the
derived class Polygon is used (see listing 2.6). The element gml:outerBoundaryIs holds

2.3 The Geography Markup Language (GML) 27

1 <element name=”LinearRing” type=”gml:LinearRingType” substitutionGroup=”gml: Geometry”/>
2 <complexType name=”LinearRingType”>
3 <annotation><documentation>
4 A LinearRing is defined by four or more coordinate tuples, with linear interpolation between them;
5 the first and last coordinates must be coincident.
6 </documentation></annotation>
7 <complexContent>
8 <extension base=”gml:AbstractGeometryType”>
9 <sequence><choice>

10 <element ref=”gml:coord” minOccurs=”4” maxOccurs=”unbounded”/>
11 <element ref=”gml:coordinates”/>
12 </choice></sequence>
13 </extension>
14 </complexContent>
15 </complexType>

Listing 2.5: GML encoding of the simple geometry LinearRing

a gml:LinearRing geometry that describes the outer boundary of the gml:Polygon.
The boundaries of the optional holes are encoded as a sequence of gml:innerBoundaryIs
elements. Each gml:innerBoundaryIs element holds the geometry, which is encoded
as a gml:LinearRing.

1 <element name=”Polygon” type=”gml:PolygonType” substitutionGroup=”gml: Geometry”/>
2 <complexType name=”PolygonType”>
3 <annotation><documentation>
4 A Polygon is defined by an outer boundary and zero or more inner boundaries
5 which are in turn defined by LinearRings.
6 </documentation></annotation>
7 <complexContent>
8 <extension base=”gml:AbstractGeometryType”>
9 <sequence>

10 <element name=”outerBoundaryIs”>
11 <complexType>
12 <sequence><element ref=”gml:LinearRing”/></sequence>
13 </complexType>
14 </element>
15 <element name=”innerBoundaryIs” minOccurs=”0” maxOccurs=”unbounded”>
16 <complexType>
17 <sequence><element ref=”gml:LinearRing”/></sequence>
18 </complexType>
19 </element>
20 </sequence>
21 </extension>
22 </complexContent>
23 </complexType>

Listing 2.6: GML encoding of the simple geometry Polygon

2.3.2 Encoding of an Application Specific Data Model

The GML defines a common XML encoding for features and geometries to ensure syntactical
interoperability. The defined markup has also fixed semantics to ensure semantical inter-
operability. These constructs must be used as defined and may not be changed. In order
to markup application specific data structures and data models, these constructs from the

28 2. Basic Concepts

feature.xsd and geometry.xsd files must be extended by defining an application specific
schema; the GML application schema. It includes the GML basic definitions and defines the
specific markup of the application’s object-oriented data model. It is important to notice that
the application specific definitions may not use the GML namespace.

Because the exchange of GML marked-up geodata is based on feature collections, the appli-
cation schema’s root element must be declared as a substitutable to the element gml: Feature-
Collection and its type extends the GML type gml:AbstractFeatureCollectionType. The
root element can hold features through the gml:featureMember element, which is marked-up
as a sequence. Listing 2.7 shows a simple example of a feature collection that can contain
instances of the feature LandParcel.

1 <xs:element name=”LandparcelCollection” type=”am:LPCType”
2 substitutionGroup=”gml: FeatureCollection”/>
3 <xs:complexType name=”LPCType”>
4 <xs:complexContent>
5 <xs:extension base=”gml:AbstractFeatureCollectionType”/>
6 </xs:complexContent>
7 </xs:complexType>
8 <!−− Defintion of feautres −−>
9 <xs:element name=”LandParcel” type=”am:LPType”

10 substitutionGroup=”gml: Feature”/>
11 <xs:complexType name=”LPType”>
12 <xs:complexContent>
13 <xs:extension base=”gml:AbstractFeatureType”>
14 <xs:sequence minOccurs=”0”>
15 <xs:element name=”Identifier”/>
16 <xs:element name=”shape” type=”gml:LinearRingType”/>
17 </xs:sequence>
18 </xs:extension>
19 </xs:complexContent>
20 </xs:complexType>

Listing 2.7: Simple GML application schema that defines a feature collection that can hold
one feature type, named LandParcel

The City Model Example

The City Model represents a geodata content to be used later for illustrating theoretical
concepts and problems in the fields of declaration and enforcement of access restrictions. In
this section, it’s used to illustrate the development of a GML application schema. Later, the
illustration of declaration and enforcement of access restrictions is based on that application
schema. The development uses the object-oriented data model from figure 2.7.

The data model comprises of the classes Building, Intersection and Street. Each class
has properties, which hold the characteristics of the object. The geometry of the Building
class is described by the simple geometry class Surface and the Street geometry is described
by the class LineString. The data content (the objects) of this model is displayed in table
2.4. It comprises of two instances of the class Building, six instances of the class Street and
five instances of the class Intersection. All geospatial information objects are included in
the model to illustrate spatial restrictions on 0D, 1D and 2D geometry. The building’s shape
is defined by a 2D geometry, the street’s path is defined by a 1D geometry and finally the

2.3 The Geography Markup Language (GML) 29

Feature

-shape : Surface

-address : String

Building

-location : Point

Intersection

Surface

Point

LineString

Geometry

-name : String

-line : LineString

Street

Figure 2.7: The City Model example data model

intersection’s location is defined by a 0D geometry.

class id non-spatial properties geometry

Building
HouseA address=String(3 Street A) shape=Surface(foo, -1 2,0 2,0 3,-1 3)

HouseB address=String(5 Street D) shape=Surface(foo, 5 4,6 4,6 5,5 5)

Street

StreetA name=String(Street A) line=LineString(foo, 0 0,0 4)

StreetB name=String(Street B) line=LineString(foo, 0 4,3 4)

StreetC name=String(Street C) line=LineString(foo, 0 0,3 0)

StreetD name=String(Street D) line=LineString(foo, 3 4,6 4,6 3)

StreetE name=String(Street E) line=LineString(foo, 3 0,6 3)

StreetF name=String(Street F) line=LineString(foo, 3 0,2 2,3 4)

Intersection

XA name=String(X A) location=Point(foo, 0 0)

XB name=String(X B) location=Point(foo, 0 4)

XC name=String(X C) location=Point(foo, 3 0)

XD name=String(X D) location=Point(foo, 3 4)

XE name=String(X E) location=Point(foo, 6 3)

Table 2.4: Geospatial information objects of the City Model

The development of an application schema requires the definition of a namespace. For
the GML encoding of the City Model, the namespace am is used. The GML encoding
further requires to define a root element for the feature collection. This element must be
a substitutable for the gml: FeatureCollection. The type definition must extend the
gml:AbstractFeatureCollectionType. Each feature of the model is named according to
the class name and substitutable to gml: Feature. The geometries of the features must be
encoded using GML simple geometry definitions.

30 2. Basic Concepts

Figure 2.8: GML application schema for the city model example

The City Model application schema7 defines the tag CityModel as the top level ele-
ment. This element is a substitute for the gml: FeatureCollection and therefore defines
a GML feature collection. According to GML, it has an optional fid attribute, the manda-
tory element gml:boundedBy and a sequence of gml:featureMember elements. The element
gml:boundedBy is a rectangular box, which represents the convex hull of the geometries of the
features, contained in the feature collection. Each gml:featureMember element holds one el-
ement, which represents a GML feature. The elements Building, Street and Intersection
are GML features. Please note that this is just one possible way to encode the City Model in
GML. A part of the city model application schema is shown in figure 2.8.

According to that City Model application schema, the content can be marked-up in GML.
A part8 of a valid GML feature collection encoding of the geospatial information objects from
the City Model is shown in listing 2.8.

2.3.3 GML and Interoperability

It is wrong to say that GML is interoperable. But it is true to say that GML provides the
means and XML markup which can be used to encode geodata in an interoperable way. Thus,
interoperability can only be achieved if all involved parties agree on used GML application

7The City Model application schema is printed in appendix B.2.
8A complete feature collection for the City Model is provided in section B.3.

2.4 Interoperable Use of Distributed and Heterogenous Geodata 31

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <CityModel xmlns=”http://www.in.tum.de/am” xmlns:am=”http://www.in.tum.de/am”
3 xmlns:xlink=”http://www.w3.org/1999/xlink” xmlns:gml=”http://www.opengis.net/gml”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”http://http://www.in.tum.de/am CityModel.xsd” fid=”CityModel”>
6 <gml:boundedBy><gml:Box gid=”box1” srsName=”foo”>
7 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
8 <gml:coord><gml:X>6</gml:X><gml:Y>5</gml:Y></gml:coord>
9 </gml:Box></gml:boundedBy>

10 ...
11 <gml:featureMember>
12 <Building fid=”HouseA”>
13 <address>3 Street A</address>
14 <shape srsName=”foo”>
15 <gml:outerBoundaryIs>
16 <gml:LinearRing>
17 <gml:coord><gml:X>−1</gml:X><gml:Y>2</gml:Y></gml:coord>
18 <gml:coord><gml:X>0</gml:X><gml:Y>2</gml:Y></gml:coord>
19 <gml:coord><gml:X>0</gml:X><gml:Y>3</gml:Y></gml:coord>
20 <gml:coord><gml:X>−1</gml:X><gml:Y>3</gml:Y></gml:coord>
21 <gml:coord><gml:X>−1</gml:X><gml:Y>2</gml:Y></gml:coord>
22 </gml:LinearRing>
23 </gml:outerBoundaryIs>
24 </shape>
25 </Building>
26 </gml:featureMember>
27 ...
28 </CityModel>

Listing 2.8: GML feature collection snippet of the City Model

schemas. In that sense, it is essential that all parties agree on the used XML markup and the
meaning of the elements. In order to keep the GML predefined semantics for elements and
type definitions, it is not permitted to use the gml namespace as the target namespace of the
application schema and it is also not permitted to change GML pre-defined elements. For a
common understanding, the use of GML pre-defined elements shall only be used in the sense,
expressed by the OGC.

2.4 Interoperable Use of Distributed and Heterogenous Geo-
data

One of the first approaches of interoperable access to distributed and heterogenous geodata
was started by the OGC in 1993. ‘’The Open GeoData Interoperability Specification (OGIS)
... is an attempt to design methods that provide an object-oriented architectural framework for
access to geodata, independent of the specific data structures and file formats used to model
the data. From the user’s point of view, OGIS allows access to geodata at remote locations,
no matter the format. From an application developer’s point of view, OGIS provides a set
of network services to identify, interpret, and represent dataset from a geodata server to a
geoprocessing client.‘’ [Kenn Gardeks]. This approach results in different OGC specifications,
which describe required aspects in detail.

32 2. Basic Concepts

2.4.1 The Open GIS Consortium and their Interoperability Specifications

The OGC has released abstract and implementation specifications. The purpose of the ab-
stract specifications is to provide a general, but sufficient model for different issues of interop-
erable geoprocessing. Among other topics, the following OGC abstract and implementation
specifications are relevant for this work9:

Topic 5 – Features [OGC 1999-105r2]: A feature is a software representation of a real
world phenomenon, which may have a location relative to the Earth. Each feature has
an identity which is unique in the domain it belongs to. The encoding of the feature’s
location and extend is defined in topic 1.

Topic 10 – Feature Collections [OGC 1999-110]: A feature collection is a set of features
instances, encoded according to the associated feature and projection schema. The fea-
ture schema describes the structure of the features and the projection schema describes
the structure of the feature collection.

Topic 1 – Feature Geometry [OGC 2001-101]: This international standard provides con-
ceptual schemas for describing and manipulating the geospatial characteristics of fea-
tures. The standard specification defines the encoding of feature locations and extends,
which is relevant in the context of defining and enforcing spatial access restrictions.

Topic 12 – The OpenGIS Service Architecture [OGC 2002-112]: This international
standard describes the taxonomy of services for processing geospatial information. It
also describes three basic models for service chaining: transparent, translucent and
opaque chaining.

Web Map Service (WMS) [OGC 2001-068r3]: The WMS is a Geo Web Service that pro-
duces maps of geospatial data. The content of the map comprises of a set of geographic
features. Each feature is represented by a graphical symbol, whose position on the map
is related to the location of the feature. Different input parameters control the result
of the service: the map.

Web Feature Service (WFS) [OGC 2002-058]: The WFS is a Geo Web Service that pro-
vides operations which allow read, change, create and delete features from an associated
feature store, typically a database. The service result is a feature collection that is
primarily serialized using GML. Different input parameters control the behavior of the
service in order to exchange geospatial information objects.

Geographic Markup Language (GML) [OGC 2002-069]: ‘’The Geography Markup Lan-
guage (GML) is an XML encoding for the transport and storage of geographic infor-
mation, including both the spatial and non-spatial properties of geographic features.‘’
[OGC 2002-069, p. 2]. A valid GML document shall be compliant to an application
schema that defines the structure of features and the structure of the GML document.

Simple Features - SQL [OGC 1999-049]: The standard defines a geographic model for
simple feature geometry and operators for the different geographic types. This model
and the defined operators and their semantics becomes relevant when enforcing spatial
access restrictions.

9The interested reader may find all original specifications on the OGC Web site at www.opengis.org.

2.4 Interoperable Use of Distributed and Heterogenous Geodata 33

2.4.2 Definition of Interoperability

Interoperable is an adjective, which definition is ‘’able to operate in conjunction‘’ (Concise
Oxford Dictionary, 9th Edition). Another definition of the term interoperability is ‘’. . . the
ability of a system or a product to work with other systems or products without special effort on
the part of the customer.‘’ (www.whatis.com). As described in [Miller 2000], interoperability
has many flavors: Technical, semantic, political/human, inter-community, international and
legal interoperability.

The technical interoperability focuses on the ability to overcome the challenge to describe
system interfaces and processing in such a way that they can work together in a seamless
way. It also focuses on the requirements to describe the messages, sent between the systems
in such a way that they can be processed without intervention of the customer or user.

The semantic interoperability focus on the challenge to give defined message structures,
systems and their interfaces an unambiguous meaning. The semantic interoperability copes
with the problem to share a common meaning, known as the rhetorical theory triangle of
meaning, as introduced by C.K. Ogden and I.A. Richards [Richards 1979]. One approach to
overcome the semantic challenge is the Semantic Web approach, where concepts and ontologies
are the central building blocks.

The feature of a system or the exchanged data to be interoperable becomes more important
today as it was in the past. This results in the globalization, where the borders between
companies and government agencies are flattered. In the geographic field, many companies
and government agencies have collected and maintained large amounts of geodata. Each
repository does not have a great value, but the combination has. This drives a continuous
process to become interoperable and to make information available to others so that all
can benefit from it: The user benefits from the interoperability, because complex decision
making becomes available and the data providers benefit from interoperability as it opens
new market potential to get more paying users. In order to have interoperability for this to
happen, superordinate organizations such as the W3C, OASIS and the OGC are important
as they define how to ensure interoperability on different levels.

Interoperability in this work focuses on three different technical levels: data interoper-
ability, service interoperability and access control interoperability. Different viewpoints on
interoperability exist that reflect these different levels.

Geodata Interoperability

Data interoperability is essential for data exchange or processing between parties. It is based
on a mutual agreement of all involved parties in respect of syntax and semantics, as stated
in [OGC 2002-112, p. 5]. It is the informational viewpoint that focuses on the syntax and
semantics of the exchanged data, required for processing.

The syntax defines the structure of the data and the semantics focus on the meaning of
used terms. For the object-oriented approach, used terms refer to the name of class and
their properties, as well as the type of the properties. The semantics refer to a common
understanding what the classes, properties and types mean.

In this respect, GML defines the foundation for interoperability storage and exchange of

34 2. Basic Concepts

geodata. It provides means for an XML encoding of the object-oriented model for simple
features and different types of geometry.

Geographic interoperability can be defined as an extension to this general data interoper-
ability, because it also defines the requirements for the exchange and processing of geometry
information. Because geometry relies on a particular CRS, it is important to use unique
identifiers for the CRS. GML provides a placeholder (attribute srsName) for a unique identifi-
cation of the used CRS. This attribute can keep any identifier string such as the EPSG-codes,
which provide a unique identifier for Coordinate Reference Systems.

In order to guarantee interoperability over domains, it is essential that the used definitions
can be referenced in a unique and unambiguous way. Using GML, the GML namespace
guarantees that pre-defined constructs can be referenced in such respect.

Service Interoperability

Service interoperability is a very broad term. The IEEE defines it as ‘’the ability of two
or more systems or components to exchange information and to use the information that
has been exchanged‘’ [IEEE 1990]. A more detailed definition is that ‘’interoperability is the
capability to communicate, execute programs, or transfer data among various functional units
in a manner that requires the user to have little or no knowledge of the unique characteristics
of those units.‘’ [OGC 2002-112].

The OGC Service Architecture ([OGC 2002-112]) specification defines service interoper-
ability based on the Reference Model of Open Distributed Processing (ISO/IEC 10746). That
specification approaches service interoperability from different viewpoints.

The enterprise viewpoint focuses on the purpose and scope of the services. The engineering
viewpoint is concerned with the environment for distribution of the services and the network
infrastructure. The technology viewpoint describes the hardware and software issues for
implementation. The implementation constraints take the cost and availability issues under
consideration.

Important for this work is the communication viewpoint, which is concerned with the
interaction pattern for a service, manifested by their interfaces. In this respect, a service is a
functional unit that implements a particular set of interfaces. This is an important viewpoint
for the enforcement process. It is essential to understand the parameters of a service and the
service response in order to form an appropriate input for the authorization process.

Access Control Interoperability

Access control interoperability is important for enterprise wide declaration, modification and
enforcement of access restrictions.

Declaration of access restrictions throughout the enterprise requires (i) a common language
to encode the restrictions and (ii) enterprise wide identical procedures to enforce the declared
restrictions. Even the enterprise wide management of the access restrictions is an important
topic, it is not covered in this work.

Access control interoperability from the user’s point of view ensures that she/he can access

2.4 Interoperable Use of Distributed and Heterogenous Geodata 35

restricted resources without the awareness that an enforcement of declared access restrictions
exist. This assumes that the user already has a unique identifier or has been authenticated
by assertions, for which appropriate access rights exist.

Access control interoperability from the communication point of view ensures that different
systems (clients or services) can communicate with each other, without specific knowledge of
the internals of the access control.

2.4.3 The Web Map Service (WMS) Implementation Specification

This open standard [OGC 2001-068r3] describes a set of generic service interfaces. One in-
terface returns the capabilities of the service, the second interface is capable of controlling
transformation of geodata into map representations. The third interface is optional. It returns
metadata for selected features on a requested map.

GetCapabilities: The GetCapabilities interface can be used to retrieve the capabilities of the ser-
vice. This interface returns service metadata as a valid XML document, the capabilities
document. It can be processed by a WMS compatible client or any other application in
order to provide ’on-the-fly’ configurable client functions. The content of the document
can also be transformed into HTML for user readability.

GetMap: The GetMap interface supports the request of map representation of geodata. Dif-
ferent geospatial and dimensional parameters control this transformation.

SRS (Spatial Reference System) is a unique string representation of the Coordinate
Reference System (CRS) for which the map shall be generated. Possible values
are listed in the capabilities document. An example string for this parameter is
EPSG:4326, which denotes the CRS WGS84.

BBOX describes the area of interest for which the map is to be generated. The format
of the parameter is a comma separated string of the coordinate tuples for the left
lower and upper right corner of the area of interest. The values fit to the used
SRS string. An example for the BBOX parameter is the string ‘’-97.105, 24.913,
-78.794, 36.358‘’. This BBOX describes the area of interest for the map from figure
1.1. The coordinate of the left lower corner is (W97.105◦, N24.913◦) and of the
upper right corner is (W78.794◦, N36.358◦). The maximum area, for which a WMS
instance provides maps and metadata is described in the capabilities document.

WIDTH Gives the width of the requested map in pixels (x-axis for the Cartesian
Coordinate System).

HEIGHT Gives the height of the requested map in pixels (y-axis for the Cartesian
Coordinate System).

FORMAT is a string, representing the MIME encoding for the map format. For
example, the Compuserve GIF format is referenced by the string image/gif. The
supported formats are listed in the capabilities document’.

LAYERS refers to the service internal structuring of the WMS geodata. When think-
ing of an object-oriented approach, a layer is equivalent to a class or in GML
terminology a spatial feature type. Instances of the class build the resources of the
Web Map Service, which can only be fetched according to their geometry.

36 2. Basic Concepts

GetFeatureInfo: The GetFeatureInfo interface is optional. It can be used to retrieve particular
metadata about a feature, presented on the map. Because the WMS is a stateless service,
it does not know the map for which the user likes to retrieve additional information.
Therefore, the use of the GetFeatureInfo interface requires to attach the parameters of
the GetMap request plus the coordinate of the point of interest, using the Cartesian
Coordinate System. The WMS calculates the absolute (real-world) location according
to the CRS from that location. This interface uses three important parameters to
control the fetching of the metadata.

QUERY LAYERS A QUERY LAYER is a layer of the GetMap interface for which
metadata about features can be queried. Which layers can be queried is listed in
the capabilities document.

X,Y These parameters define the location of the point of interest, based on a previously
requested map. The values define the position in pixels, according to the Cartesian
Coordinate System.

In Figure 5.3, page 170, the calculation of the feature’s real-world location, based on the
given parameters is illustrated.

Implications to Access Control

With respect to access control, it is essential to understand how the combination of GetMap
parameters control the service output. Let’s take the WMS GetMap request for the example
map from listing 2.9:

1 http://a−map−co.com/mapserver.cgi?VERSION=1.1.0&REQUEST=GetMap&
2 SRS=EPSG:4326&BBOX=−97.105,24.913,−78.794,36.358&WIDTH=560&HEIGHT=350&
3 LAYERS=AVHRR−09−27&STYLES=&FORMAT=image/png&BGCOLOR=0xFFFFFF&
4 TRANSPARENT=TRUE&EXCEPTIONS=application/vnd.ogc.se inimage
5
6 http://b−maps.com/map.cgi?VERSION=1.1.0&REQUEST=GetMap&
7 SRS=EPSG:4326&BBOX=−97.105,24.913,78.794,36.358&WIDTH=560&HEIGHT=350&
8 LAYERS=BUILTUPA 1M,COASTL 1M,POLBNDL 1M&STYLES=0XFF8080,0X101040,BLACK&
9 FORMAT=image/png&BGCOLOR=0xFFFFFF&TRANSPARENT=TRUE&

10 EXCEPTIONS=application/vnd.ogc.se inimage

Listing 2.9: WMS GetMap requests for retreaving the map from figure 1.1

The map format is image/png, which denotes a binary image. Therefore, the authorization
decision cannot be based on the response of the service. The SRS and BBOX paramters declare
the area of interest. For this area, all geospatial information objects from the layer AVHRR-
09-27 are selected. The identities of the included objects are not known. The authorization
decision can only be based on the area of interest and the layer information.

An authorization decision for the GetFeatureInfo interface can be based on similar infor-
mation. The parameter QUERY LAYERS denotes the classes and the X and Y parameters
denote the point of interest on the displayed map.

The GetCapabilities interface is not subject for access control because it returns the capa-
bilities of the service and not the personalized capabilities of the user. In order to have a user
request his capabilities from the WMS, an additional interface (GetUserCapabilities(user-ID))is
recommended.

2.4 Interoperable Use of Distributed and Heterogenous Geodata 37

2.4.4 The Web Feature Service (WFS) Implementation Specification

This international standard [OGC 2002-058] is very complex. It supports an ‘’SQL-like‘’
transformation of geodata into structured text. The actual version of this specification is
1.0.0. It supports the simple feature model of GML 2.1.2, as introduced in section 2.3.

In more detail, a Web Feature Service implementation defines the GetFeature interface
to transform an object-oriented structure of (geospatial) information objects into a GML
encoded feature collection, as introduced in section 2.3. The WFS also has the mandatory
interfaces GetCapabilities and DescribeFeatureType and the optional interfaces LockFeature and
Transaction. A service that just implements the mandatory interfaces is called a basic WFS.
A service that implements all interfaces is called a transactional WFS.

The Basic Web Feature Service

GetCapabilities: The GetCapabilities interface has the same semantics as for the WMS. It
returns an XML encoded capabilities document of the service metadata.

DescribeFeatureType: The DescribeFeatureType interface allows the request of a valid GML
application schema that defines the XML markup for the requested feature type. The
mandatory parameter for this interface is TypeName.

TypeName defines the feature type for which the schema definition is to be returned.
If this parameter is missing or empty, the WFS returns the schema definition for
all supported feature types.

GetFeature: The GetFeature interface returns a gml:FeatureCollection, which per default
is a valid GML document. The markup of that feature collection is defined by a specific
GML application schema. This application schema, which includes the GML schemas
for simple features and geometry, has two duties: First, it defines the markup of the
(geospatial) features by a XML Schema type declaration. Each feature has mandatory
attributes and elements, inherited from the GML basic types and application specific
attributes and elements. Second, it defines the structure (markup) of the feature col-
lection. A valid GML feature collection is shown in listing 2.8.

Regarding the WFS response (a feature collection), the parameters of the GetFeature
interface can be separated into two different categories. The first category of parameters
defines, which feature types are included in the response and what properties of the
features are fetched. This is controlled by the parameters TypeName and PropertyName.

TypeName is the parameter that represents a supported feature type. All supported
feature types are listed in the capabilities document.

PropertyName is the parameter that controls what properties of a feature type (speci-
fied by TypeName) are to be included in the feature. If the PropertyName parameter
is not being used or empty, all properties of the feature type are included.

The second category of parameters control which feature instances are included into the
response, the feature collection. The three mutual exclusive parameters are FeatureID, FILTER
and BBOX.

38 2. Basic Concepts

FeatureID is the parameter to query a particular feature, identified by its feature ID (at-
tribute fid). This assumes that a WFS associates unique fids to all accessible features
and always uses the same fid for the same feature. This is particular important for the
updating of features, using the Transaction interface. A fid remains unchanged for the
lifetime of the feature.

FILTER is the parameter that holds an XML encoding of the OGC filter implementation
specification [OGC 02-059]. The filter encoding ‘’... defines an XML encoding for
filter expressions based on the BNF definition of the OpenGIS Common Catalog Query
Language as described in the OpenGIS Catalog Interface Implementation Specification,
Version 1.0.‘’ [OGC 02-087r3]. It can be compared with the WHERE section of an SQL2
([ISO 1992]) based query. In relation to the FeatureID parameter, a filter supports the
selection of features, based on their characteristics, expressed as properties.

BBOX is the parameter that allows to define an area of interest for which features of a
particular type (specified by TypeName) are fetched. Thus, this parameter fetches spa-
tial features according to their geospatial characteristics. The geometry of the area of
interest is represented by a rectangular bounding box. The format of the parameter is
equivalent to the parameter BBOX of the WMS implementation specification.

The Optional (Transactional) Interfaces of the Web Feature Service

A transactional Web Feature Service implements the optional interfaces LockFeature and
Transaction. In order to support sequential write operations, the service can no longer be
stateless. Therefore, the use of the LockFeature interface can be used to lock feature instances
of the same type for a specific time. After the time is expired, the WFS releases the lock.
During the locking time, modification operations can be carried out on the locked features.
The lock ID must be supplied with the operations in order to refer to the same lock. The Filter
parameter can be used to select multiple features, according to their characteristics. The state
diagram of the transactional WFS ([OGC 2002-058, figure 5, p. 3] shows the mechanism of
locking.

During an active lock, the Transaction interface can be used to modify the data store of
a WFS. The interface supports the Delete, Update and Create operations. The associated
parameters depend on the used operation. For example, the Delete operation takes a Filter
parameter that specifies the feature instances to be deleted. The parameter releaseAction
determines what the WFS shall do after a successful completion of the invoked operation.

Implications to Access Control

With respect to an access control for distributed geospatial information objects, it is important
to keep in mind that the WFS supports an object-oriented organization of the geodata. For
this work, it is assumed that the identities of the accessible features are unique. Regarding
the authorization decision, it is important to understand how the WFS fetches the features
of the output, based on the input parameters.

Depending on the service operation and the parameters of a request, the authorization
decision can only be based on the service response. Even this seems to be rather awkward,

2.5 Introduction to Access Control 39

it is inevitably correct processing. The features (geospatial information objects), for which
declared access restrictions must be enforced is dynamically created by the service through
the request parameter. However, certain service operation/parameter combinations allow or
require to derive an authorization decision upon the request parameter already.

For example, the use of the service operation Transaction allows to invoke operations that
modify the repository. Before such a request can be executed by the service, the authorization
of the subject must be evaluated. More detailed investigations about deriving an authorization
decision on the request parameters are deferred until chapter 5.

2.4.5 Conclusion on Interoperability and Implications to Access Control

Putting the building blocks together brings interoperability from the geodata store to the
combined use in a client application. On the service level, implementation specifications like
the WMS and the WFS allow geodata processing by generic and interoperable interfaces. If
these interfaces are implemented by services, which can be invoked via Internet Technology,
they are called Geo Web Services. On the data exchange level, interoperability is ensured by
using a common format or markup of the geographic information. For map representations,
different international -non OGC- formats are available. Different binary formats like GIF,
JPEG, etc. and vector formats like SVG enable the combined use of maps. For the textual
representation of geodata, GML provides the means of interoperability through a common
XML markup, based on an object-oriented model for simple features and geometries.

The example use case from chapter 1 (figure 1.1) to issue a gale warning for the area of
the Gulf of Mexico actually uses the combination of maps from two different data providers.
The combined use is powered by two Web Map Service implementations, where the maps are
requested and combined in the client.

2.5 Introduction to Access Control

Access control is a framework that allows to regulate the access to protected resources. This
is based on the framework’s capabilities to express the protection in access permissions. For a
concrete request, the access control system evaluates the available permissions if the initiator
of the request has adequate access rights. If so, the request is accepted and rejected otherwise.
In short, an access control system regulates ‘’who may do what‘’.

2.5.1 Used Terminology

Before continuing, the used terminology is specified in order to help the reader to understand
relevant aspects.

Authentication is the verification of the identity of a person or process, initiating a request.
It is a prerequisite for access control, because it is required by the authorization process.

Authorization is the legislative of an access control system. It is the process that tries to
confirm that a subject is allowed or disallowed to access a resource in the intended way.

40 2. Basic Concepts

Enforcement is the executive of an access control system. It is the process that intercepts
the communication between the subject and the protected resources. It fetches required
information from the request, essential to the authorization process. It requests an
authorization decision from the authorization process. Based on that decision, the
current request is accepted or rejected.

Subject is the activator or initiator of a request. This can be a user or a software agent,
uniquely identified through the authentication process. One possible representation of
the identity is to use assertions.

Assertions in this context are used to verify that the assumptions of a subject made about
its identity are actually valid. Assertions can be represented by a set of attribute value
pairs that uniquely identify a subject. The validity is guaranteed by the authentication.

Operation (or action) is the method or function that a subject intends to invoke on the
resource. For geospatial information objects, different standard operations such as read,
write, delete, create and print are meaningful. Due to the geospatial aspect, operations
such as map or transform can be defined. The map operation allows to create a graphical
representation of the geodata and transform recalculates the geometry from a given CRS
to a target CRS.

Resource is the entity that is protected by the access control system. In the context of
this work it is geographic information, accessible in an object-oriented model. In the
environment of this work, a resource can only be accessed via a service.

Permission is a machine read- and interpretable expression for making the declaration pro-
tection to resources explicit. It can define an allowance or a disallowance for a particular
subject to use a designated operation on an intended resource. For detailed usage, this
work refers to an allowance as a positive permission (P+) and to a disallowance as a
negative access statement (P-).

P+ is a machine read- and interpretable expression that explicitly permits an identified
subject the access to a designated resource(s) using a particular operation.

P- is a machine read- and interpretable expression that explicitly denies an identified subject
the access to a designated resource(s) using a particular operation.

2.5.2 Different Strategies for Managing Access Rights

Access rights are positive permissions that give subjects the ability to access certain resources
with designated operations. The management of access rights can follow the access control
or information flow strategy.

The information flow strategy, better known as the Bell-La Padula model, defines classifi-
cations to resources and privileges to subjects. In short, the management of access rights can
be defined as ‘’No read up - no write down‘’. This strategy ensures that information, which
has a certain classification level cannot be made less classified by writing. Also no subject
can get read access to higher classified information as it corresponds to his privilege level.

2.5 Introduction to Access Control 41

Because this strategy is typically important for military use, it is not considered a relevant
topic in this work.

The access control strategy for managing the assignment of access rights to users differ-
entiates between the Mandatory Access Control (MAC) and Discretionary Access Control
(DAC) strategy. The DAC is based on the owner principle. Each owner of a resource can
decide, who else gets access and if that subject also gets the right to pass access rights on
to other users as well. This strategy is very complex to handle and bears the problem that
the owner of a resource looses control, resp. cannot verify, what subjects have actually access
to owned resources. In contrast to DAC, the MAC strategy defines system-wide restrictions
on resources. These restrictions are typically managed by a responsible person – the policy
writer –, who has the duty to declare restrictions in a way that the access control system can
enforce them.

This work does not cope with the strategies of managing access rights. However, it assumes
that access permissions are encoded by a policy writer, who is responsible to fix existing flaws.
Therefore, the results of testing existing permissions for inconsistencies can be presented to
that policy writer.

2.5.3 The Basic Access Control System

The implementation of an access control system requires three components: authentication,
authorization and enforcement. This work excludes the authentication component. It is
assumed that each subject, issuing a request to protected resources is uniquely identified
by assertions, validated and guaranteed by a trusted authentication component. The basic
functionality of the access control system with the components authorization and enforcement
illustrates figure 2.9.

A
cc

es
s

C
on

tr
ol

 L
is

t

Object
Operation

Pe
rm

it
/ D

en
y

ca
pa

bi
lit

ie
s

Subject

subject-sided

authorization

resource-sided

authorization

Pe
rm

it
/ D

en
y

subject-sided

enforcement

resource-sided

enforcement

Figure 2.9: The basic functionality of an access control system

The authorization component is the legislative of the access control system. For deriving
authorization decisions, a set of permissions is available that can be evaluated. The basic

42 2. Basic Concepts

model for the declaration of permissions uses positive permissions. Every access is denied,
unless an explicit positive permission is available that matches the request, represented by the
subject assertions, the operation and the resource(s). For simplicity, the subject assertions
are restricted to a simple identity string. The declared access rights can be modeled, using an
access control matrix. This matrix has the structure that the subjects occupy the rows of the
matrix and the resource occupies the colons of the matrix. The fields of the matrix express
the allowed operations. The following matrix shows a simple example, where Bob is allowed
to write and read the resource Building and Alice is allowed to read the resource Building
and Intersection.

AccessControlMatrix =

 Building Intersection
Alice read read
Bob write, read


The implementation of an enforcement component can be achieved in two ways: imple-

mentation on the subject or resource side.

For the implementation of the enforcement component on the subject side, the capabilities
of a subject must be extracted from the matrix. This can be achieved by selecting the matrix
fields of the corresponding row. This results in a so-called capabilities list of two-valued
tuples: {object, operation}. For the above example, the capabilities list of the subject Bob
contains the tuples {Building, read} and {Building, write}.

For the implementation of the enforcement component on the resource side, the so-called
access control list is extracted from the matrix. It contains the two-valued tuples {subject,
operation} for a resource. This can be achieved by selecting the matrix fields of the corre-
sponding column. For the above example, the access control list of the resource Intersection
results in the single entry {Alice, read}.

The primary concern of an access control system is to protect resources. Two major
reasons exist, why the resource sided enforcement is widely used: The access restrictions on
the resources is defined by a resource provider. When using the subject sided enforcement,
the provider must trust that the enforcement is done correctly. Also, once a subject has
received a valid capabilities list, it is difficult to revoke that list.

The major concern of a resource provider is that the enforcement is error-free. One aspect
of the resource sided implementation of the enforcement component is that the changing of
subjects require a modification/update of the access control lists. Role Based Access Control
addresses this issue.

2.5.4 Introduction to Role Based Access Control

A Role Based Access Control (RBAC) addresses the challenge to maintain a consistent set
of access rights. The resource sided implementation of the enforcement component, based on
access control lists has one major disadvantage: The change of subjects has direct influence
to the access control lists and requires its update. Because such an update has the potential
to result in an inconsistent set of policies, it is desired to separate the subject from the access
control list. This can be achieved by the role construct. The role is used as an indirection
between the resource and subject side. It replaces the subject in the access control list.

2.5 Introduction to Access Control 43

Because the role defines a distinguishing set of access rights, required to perform specific
tasks, the change of the role construct is less likely than the change of subjects. In particular
in companies, the role can be associated with the job assignment in the company as defined
in an organization chart. This enables a stable environment on the access control list.

In order to have subjects associated with particular access rights, a certain set of rules
must be associated with the subject. Because the access to a resource is granted on the
presentation of a particular role, the subject is required to have that role active in order to
gain access.

The use of RBAC has -in addition to the previous issues- the advantage that it allows
to model access rights based on job functions. A job function can be represented by a role
that comprises required access rights. This enables the modelling of employee access rights
by associating them to one or multiple roles, according to the job function.

Different RBAC extensions to the original model, known as RBAC0, have been developed:
RBAC1 allows the structuring of roles by inheritance. One role can inherit all permissions
from the superior role. RBAC2 allows the definition of constraints that determine under
which conditions a subject can make a passive role active. RBAC3 supports the assignment
of mutually exclusive roles and role hierarchy.

Even the RBAC is a very important model for access control, its capabilities do not
provide the flexibility to declare the introduced access control requirements. Therefore, the
introduced model is based on Rule Based Access Control. The permissions can be associated
to subject assertions, which provides the flexibility to incorporate with RBAC by using the
assertion Role10.

2.5.5 Introduction to Rule Based Access Control

A Rule Based Access Control system uses the Rule construct as its basic building block. It
allows the declaration of positive and negative permissions. It can be represented as a four-
valued tuple of the elements Subject, Operation, Resource and Condition, which effect is Permit
or Deny.

Rule := {SMR, OMR, RMR, C} → {Deny, Permit} (2.15)

The elements of the rule have the following meaning:

Subject (SMR) represents a set of assertions, identifying the subject to which this rule is
associated. An assertion can be an attribute value pair, represented by the triplet
Name(value) := Type. The assertion about a role can be modeled as role(administrator)
:= RoleType. For simplicity, this work uses an abbreviation for the unique identification
of subjects. Only the value is written but the name of the attribute and the type is
suppressed. Instead of writing identity(Bob) := String, only the value Bob is being used.

Operation (OMR) is an assertion with of a fixed name and type: operation(value) := Opera-
tionType. For simplicity, this work uses just the string, when referring to an operation.
For example, write is short for operation(write) := OperationType.

10The introduced model is based on XACML, which allows to use a role based profile as explained in
[OASIS 2004d].

44 2. Basic Concepts

Resource (RMR) is a placeholder for an Xpath expression. Because resources are encoded
in XML, a resource can be represented by the triplet Xpath(value) := String. For sim-
plification, just the value is used.

Condition (C) is the construct that keeps a Boolean expression (Condition → {True, False}).
The result of that statement must result in True or False. The condition allows to declare
complex constraints on all available information, such as environment, subject, opera-
tion or resource information. Examples are date, time or the geometry of a resource
object.

The Rule construct allows to declare positive and negative access statements in a very
flexible way. For example, the allowance that the subject Bob can write the resource Building
if the address is ’1600 Pennsylvania Avenue NW, Washington, DC 20500’ can be declared by
the following rule:

{Bob,write, //Building, if(./address == ’1600 Pennsylvania Avenue NW,
Washington, DC 20500’)} → Permit

Even the Rule construct is the basic building block of this type of access control, it may
not live in isolation. A set of rules are combined by the Policy construct, using a particular
combining algorithm. The combining algorithm compresses the outcomes11 of a rule to one
single value. In such a respect, a Policy can be modeled as a five-valued tuple. The first three
elements are Subject, Operation and Resource. Similar to the Rule construct, these elements
define the applicability of the policy. The fourth element is the CombiningAlgorithm that has
the function to compress the outcomes of the rules to one single result. The fifth element
represents a list of Rule constructs, where at least one rule is required.

Policy := {SMP , OMP , RMP , CAP , Rule+} (2.16)

The effect of a Policy cannot be defined. It results from the outcomes of the comprised
rules and the combining algorithm. A combining algorithm is a function that transforms
a vector of outcome (−→o) values to one single outcome. Equation 2.17 formally defines the
logic of the combining algorithm. Because the order of the outcomes is essential for some
combining algorithms, the input must be defined as a vector and not as a set. The output of
the algorithm is a single value.

CombiningAlgorithm := f(−→o) → {N/A,Deny, Permit, Indeterminate} (2.17)

Table 2.5, page 48 defines different combining algorithms, which can be used for this
model.

2.5.6 Enforcement of Declared Permissions

The enforcement of declared permissions can be characterized as the executive process in
the access control system. It relies on the authorization process, which can be seen as the

11The outcome of a rule is different from the effect (see section 2.5.8).

2.5 Introduction to Access Control 45

legislative. The enforcement process fetches required information from a particular request
and forms an authorization decision request, which is sent to the authorization process. The
response of the authorization process is the authorization decision, which instructs the en-
forcement process to block or accept the current request.

Therefore, the authorization process has the duty to derive an authorization decision
based on a particular authorization decision request and a set of permissions. The introduced
model encodes the permissions as a hierarchy of Policy and Rule constructs. Both constructs
use a {Subject, Operation, Resource} (SOR)-tuple to define their applicability. The SORP-
Tuple represents the applicability of the Policy construct and the SORR-Tuple represents the
applicability of the Rule construct.

In order to derive an authorization decision, the authorization process must find applicable
policies and rules for a given request. This can be achieved by matching Subject, Operation
and Resource from a Policy or Rule construct with the request. This is possible, because the
request can be characterized as a SOR-tuple.

Request := SOR = {S, O, R} (2.18)

2.5.7 Finding Applicable Policies and Rules

The finding of applicable policies and rules is based on matching the SOR-tuples from the
request and the policies and rules. This matching takes place using different matching func-
tions. What matching functions are available depend on the implementation of the access
control system. Examples of simple matching functions are string-equal or regular-expression-
equal. The distinguishing difference between them is that string-equal only accepts two string
values. The possible existence of regular expressions is not resolved. In contrast, the regular-
expression-equal matching function processes regular expressions. This difference is important
in respect to define valid values for the SOR-tuple.

The introduced model supports the identification of subjects by assertions. An assertion
can be represented as an attribute-value-pair. The name of the attribute must be unique and
the value must be valid for the type of the attribute. Examples of assertions are name=”Bob”
or email=”matheus@in.tum.de”. Thus, the Subject element of the Request-tuple keeps a set of
attribute-value-pairs that identify the issuer of the request. In contrast to that, the operation
is identified by one specific attribute with a unique name. The value of that attribute keeps
the name of the operation. Therefore, the Operation element of the Request-tuple is a regular
string. The resource is identified by a valid Xpath expression, because one assumption of the
model is that resources are encoded in XML, resp. GML.

For the purpose of finding matching policies and rules for a given request, the existence
of matching algorithms is assumed. Each matching algorithm accepts two parameters and
returns a Boolean value. The algorithm returns True for a positive match and False in case
that no matching can be determined. The first parameter represents the Subject, Operation
or Resource of the request and the second parameter the according element of the Policy or

46 2. Basic Concepts

Rule.

MatchS :=Match(S, s) ⇔
∀assertion : Match(assertion(S), assertion(s)) → True, s ∈ {SP , SR}

(2.19)

MatchO :=Match(O, o) ⇔ O ≡ o, o ∈ {OP , OR} (2.20)
MatchR :=Match(R, r) ⇔ XQuery(r, R) 6= ∅, r ∈ {RP , RR} (2.21)

2.19: MatchS returns a True value if all assertions of the Subject element of the Request
tuple and the SOR tuple of a rule or policy match. The generic Match algorithm is a
placeholder for the actual defined matching algorithm. If one of the assertions does not
satisfy the match criteria, MatchS returns a False value.

2.20: MatchO returns a True value, if the string values of the Operation element of the Request
and the SOR are identical.

2.21: MatchR queries the given resource content, represented by the R element for XML nodes,
based on the Xpath expression of the resource element of the SOR tuple. If the set of
fetched XML nodes is not the empty set, a True value is returned. In case that the
resource content does not contain any XML nodes that match the Xpath expression,
the value False is returned. XQuery represents the actual call to fetch the nodes of the
resource XML document.

Based on the previous definitions, the matching of policies and rules for a given request
can be defined in the following manner: A Policy or Rule is applicable to a given request if
MatchS, MatchO and MatchR all return the value True. The set of applicable policies and
rules build a subset to the overall available policies and rules.

P ⊇ PA =
⋃
i

Policyi | (MatchS ∧MatchO ∧MatchR) → True (2.22)

R ⊇ RA =
⋃
j

Rulej | (MatchS ∧MatchO ∧MatchR) → True (2.23)

2.22: P is the set of available policies. The set of applicable policies PA is defined as a subset
of P. It is defined as the union of all policies that satisfy the matching conditions for
the Subject, Operation and Resource element. In case that all available policies match
the request, the subset equals the set of available policies (PA ≡ P).

2.23: R is the set of existing rules of a policy. The set of applicable rules RA is defined as a
subset of R. It is defined as the union of all rules that satisfy the matching conditions
for the Subject, Operation and Resource element. In case that all existing rules match
the request, the subset equals the set of available rules (RA ≡ R).

The optional Condition of a Rule is not considered for finding applicable rules. The result
from the evaluation of the condition is used for the determination of the effect of the Rule.
According to the definition, a Rule returns the effect N/A if either the SOR-tuple does not
match or the condition is not satisfied. Thus, the matching of the rule’s SOR-tuple is the
sufficient and essential pre-condition, before evaluating the condition.

2.5 Introduction to Access Control 47

2.5.8 Deriving an Authorization Decision

The procedure of deriving an authorization decision for a rule based access control model
is based on two distinguishing characteristics: the outcome of a rule and the combining
algorithm.

• The outcome of a rule can be characterized as the basic driver for the authorization
process. The outcomes of enforceable rules are combined to one single authorization
decision, based on the logic of the combining algorithm.

According to the introduced model, a Rule can have two different effects: Permit or Deny.
The effect Permit represents a positive access (the specified subject and operation can be
invoked on the resources) and the effect Deny represents a negative access (the specified
subject cannot invoke the operation on the resources). From the matching process,
the outcome of a rule can also be N/A, which represents the situation that either the
SOR-tuple of the Rule does not match the given request or the Condition could not be
satisfied12.

This results in the definition of the set of enforceable rules, which is a subset of the
applicable rules. Let RE be the set of enforceable rules, Outcome(Rule) be the function
that returns the outcome of a rule, then −→o is the vector of the outcomes from the
enforceable rules.

RA ⊇ RE =
|RA|⋃

i

Rulei | Condition → True, Rulei ∈ RA (2.24)

−→o :=
|RE |⋃

j

Outcome(Rulej), Rulej ∈ RE (2.25)

The set of enforceable rules, defined as RE contains all rules, which satisfy the matching
criteria and where the Condition satisfies to true. This set of rules drives the autho-
rization decision process.

• A combining algorithm has two purposes: First, it controls the processing of rules and
second, it combines the outcomes of matching rules to one single outcome.

Depending on the logic of a combining algorithm, one or multiple rules are processed
in order to determine the matching and the outcome. Some combining algorithms
return the outcome of the first matching rule. Other compress the outcome of multiple
matching rules to one single outcome, dependent or independent from the sequence of
the rules. Therefore, the outcome depends on the three factors, from which two can
be correlated: the logic of the algorithm, the sequence of the rules and the outcome of
enforceable rules. Table 2.5 gives a list of different combining algorithms.

2.5.9 Illustrating the Decision Process

A policy is comprised of one combining algorithm and multiple rules. Each rule can have an
optional condition, which declares additional constraints that control the enforceability of the

12An implementation can also define additional outcomes, which represent processing errors.

48 2. Basic Concepts

Combining algorithm Semantics

deny-overrides This combining algorithm returns Deny in case that at

least one of the matching rules have the outcome Deny.

This algorithm interrupts the processing if the first rule

with a Deny outcome is found.

permit-overrides This combining algorithm returns Permit in case that at

least one of the matching rules have the outcome Permit.

This algorithm interrupts the processing if the first rule

with a Permit outcome is found.

first-applicable This combining algorithm returns the outcome of the first

matching rule and thus interrupts further processing of

rules.

only-one-applicable This algorithm processes all rules. It creates a set of en-

forceable rules and then determines if the order is greater

one (| RE |> 1). If that is the case, the combining algo-

rithm returns a processing error. In case that the order

is exactly one (1), the outcome of the enforceable rule is

returned.

ordered-deny-overrides This combining algorithm is identical to the deny-

overrides algorithm with the exception that the process-

ing of the rules is according to their sequence.

ordered-permit-overrides This combining algorithm is identical to the permit-

overrides algorithm with the exception that the process-

ing of the rules is according to their sequence.

specific-general This combining algorithm has the same logic as the first-

applicable combining algorithm. But, it carries different

semantics: The rules that are combined by this algorithm

are correlated and declare a general/exceptional permis-

sion.

Table 2.5: Semantics of combining algorithms

rule. This structure defines two flows: the flow for matching purposes (control flow) and the
flow for decision making (result flow). The flow for matching determines applicable/enforce-
able rules. The flow starts at the policy and continues to the comprised rules. The decision
flow starts at the rules and continues to the combining algorithm, which returns one single
outcome.

The visualization of such a structure can be based on a tree representation of a policy.
Each node of the tree represents either a policy, rule or combining algorithm. The root
node is restricted to be the start node. It defines the entry node for the control flow of
the authorization decision. The leaves of the node represent the conditions of the rules.
The edges of the tree have two directions. The direction from the root node to the leaves
represent the control flow. The edges therefore keep the SOR-tuples for a policy (SORP) or a
rule (SORR). The direction from the leaves to the combining algorithm represent the result
flow and therefore keep the outcome from the rules / combining algorithm. For illustration

2.5 Introduction to Access Control 49

purposes, the following example policy and rule definitions are used:

P1 = {∗, ∗, Building, first-applicable, R1, R2}
R1 = {Bob,write, Building, if(address == ’3 Street A’)} → Permit

R2 = {∗, read, Building} → Permit

Policy P1 declares that it is applicable for all Request-tuples, that refer to the resource
Building. It does not define any matching constraints to the Subject and Operation elements.
It defines that the outcome of the containing rules are compressed, using the combining
algorithm first-applicable. Rule R1 declares the access right that Bob is entitled to invoke the
write operation on the resource Building if the resource has the address ‘’3 Street A‘’. Rule
R2 declares the access right that any subject can read the Building resource.

{*,read,Building}

{*,*,Building}

{Bob,write,Building}

P1
R2 -> Permit
 R1 -> Permit

first-applicable

{N/A, Permit, Deny}

control flow

result flow

{N/A, Permit, Deny}

if (Building.address == "3 Street A")

{N/A, Permit, Deny}

Figure 2.10: Representation of the example policy structure

This policy structure, as visualized in figure 2.10 can be used to demonstrate the deriving
of an authorization decision. In order to do this, the following example Request-tuples are
used:

Req1 = {Bob,write,Building(address = ’3 Street A’)}
Req2 = {Alice, read,Building(address = ’3 Street A’)}
Req3 = {Alice, write, Building(address = ’3 Street A’)}

Deriving an authorization decision for request Req1

First, the request Req1 is matched against the policy P1, which results in a positive
match. Therefore, the further processing of the request is controlled by the combining
algorithm first-applicable. Next, the request is matched against Rule R1. This match-
ing is positive, which requires the processing of the condition. The evaluation of the
condition can be satisfied, which triggers the rule R1 to return the outcome Permit to
the combining algorithm. Because the combining algorithm first-applicable stops after
receiving one outcome of a rule, the rule R2 is not processed. This results in the policy
outcome Permit.

50 2. Basic Concepts

Deriving an authorization decision for request Req2

First, the request Req1 is matched against the policy P1, which results in a positive
match. Therefore, the further processing of the request is controlled by the combining
algorithm first-applicable. Next, the request is matched against Rule R1. This match-
ing is positive, which requires the processing of the condition. Because the condition
cannot be satisfied, the rule returns N/A to the combining algorithm. This requires the
processing of the rule R2. Here, the matching is positive and because the satisfaction
of the condition is always given, the rule returns the outcome Permit to the combining
algorithm. This results in the combining of the values N/A from rule R1 and Permit
from the rule R2, which results in a final Permit.

Deriving an authorization decision for request Req3

First, the request Req1 is matched against the policy P1, which results in a positive
match. Therefore, the further processing of the request is controlled by the combining
algorithm first-applicable. Next, the request is matched against Rule R1. This matching
is negative, which triggers the rule R1 to return the outcome N/A. Next, the request is
matched against the rule R2 which also results in the outcome N/A. Because no more
rules exist, the combining algorithm stops processing. The combination of the outcome
values N/A and N/A results in a final N/A result.

2.5.10 Different Strategies for the Declaration of Access Restrictions

Any access control system must regulate the access to protected resources, according to the
declared permissions. For a distributed access control system, where the enforcement is sepa-
rated from the authorization, it is important that the authorization decision is unambiguous.
Because the enforcement can either block or accept a request, the authorization decision must
be in a binary form. If more than two values are allowed for the authorization decision, the
enforcement must understand the value and map it to block or accept. This requires addi-
tional information, such as a mapping table. For example, a unique authorization decision
can carry the values Permit or Deny. If the value N/A is present, the enforcement must
choose a fail-safe action, which typically results in blocking the request.

The introduced model of Rule Based Access Control supports three different strategies
for the declaration of the permissions. Each strategy has pros and cons, which are discussed
in more detail:

1. The all-permitted strategy assumes that access to resources is permitted if not explicitly
denied through declared negative permissions ({Subject, Operation, Resource, Condi-
tion} → Deny). This implies that the enforcement process must interpret all N/A
authorization decisions as Permit.

This strategy is favored if most of the access is permitted. Thus, a very small set of
negative permissions is required. However, this strategy keeps an important risk: all
errors in the system, regardless of the origin can result in an erroneous acceptance of
the request. Not all existing errors must exploit to an unintended access, but bare a
potential, which must be eliminated under all possible circumstances. The two main
risks are that

2.5 Introduction to Access Control 51

• not all requests, which are to be denied are clearly defined or known. Erroneous
and missing permissions result in a N/A decision and therefore provide unallowed
and unintended access.

• a spelling error in the policy, rule or condition can result in a N/A decision. This
would also results in unallowed access.

Another contra to this strategy is that it is impossible to test an existing set of policies
for completeness. This is because all unmatched requests result in the not applicable
outcome. The correctness can only be tested according to defined test cases. If the list
of test cases is incomplete or incorrect, the access control system might be incorrect.

2. The all-denied strategy assumes that access to resources is denied if not explicitly per-
mitted through positive permissions ({Subject, Operation, Resource, Condition}→ Per-
mit). This implies that all N/A authorization decisions are interpreted as Deny.

This strategy is favored if most of the access is prohibited. The distinctive strength of
this strategy is that it is fail-safe. All errors if not resulting in a Permit decision due to
an erroneous permission, result in the blocking of the current request.

Similar to the all-permit strategy, it is not possible to verify the correctness unless using
defined test cases. But, the fail-safe characteristics does not exploit protected resources.
A missing positive rule can result in an erroneous blocking, which can be announced by
the user.

3. The all-explicit strategy assumes that all possible access requests result in a Permit or
Deny authorization decision. The N/A authorization decision is not admitted.

Thus, this declaration strategy requires the most policies and rules. However, it has
the important strength that a N/A authorization decision indicates an error. This can
trigger the authorization process to generate an error message for the policy writer to
correct the cause of the error. In order to have the enforcement process take the fail-safe
action, the authentication result can be altered to Deny, before send to the enforcement
process.

For a distributed access control system, where the authorization decision and the en-
forcement process are separated, the enforcement process does not know the access control
strategy upon which the decision process derives the decision results. For the introduced
declaration strategies, the N/A decision must be interpreted in a different way: For the all-
permit/all-deny strategy, the interpretation is accept/block of the request. For the all-explicit
strategy, it indicates an error and must therefore result in the fail-safe block of the request. In
an environment, where an enforcement process depends on different authorization decisions,
different strategies can drive the authorization decisions. In cases, where the all-permit and
all-deny strategies are allowed, additional metadata must be added to the authorization
decision. This metadata controls the mapping of different authorization decision values to
the actions block or accept.

52 2. Basic Concepts

2.6 Introduction to Distributed Access Control

Distributed access control differentiates from the traditional access control in such a way that
the authentication, authorization and enforcement processes are implemented as autonomous
components. The resulting infrastructure and the information flow is illustrated in figure
2.11.

Authentication

Component

Access Control

Metadata Handler

Client
 +

Enforcement

Component

assertions

login

request

request

subject

assertions

request +

assertions

authorization

request

authorization

decision

Authorization

Component

permission

repository

subject-sided components
 resource-sided components

Service

resource

repository

original

request

Figure 2.11: Infrastructure and information flow of distributed access control

The use of such an infrastructure results in different constraints and requirements that
must be satisfied.

The separation of the Authentication Component presents a single point, where the user
can login in. The Authentication Component provides a set of assertions about the user. They
are either be forwarded to a particular handler or kept for later enquiries. This work does not
cope with the authentication itself. It simply uses the assertions for matching permissions.
For simplicity, it is assumed that the assertions are forwarded to an appropriate handler,
such as the Access Control Metadata Component. This component has the duty to fetch the
original request, issued by a client on behalf of the user in order to add relevant access control
metadata. Here, the adding of subject assertions is required. In case that conditions exist,
which require more environment information such as date, time, etc., this information must
also be added by this handler. The output of this handler is the actual request as it is send
to the target service.

Before the request reaches the target service, the request is fetched by the Enforcement
Component. It detaches the access control metadata from the original request. Based on
information from the metadata and the original request, an authorization decision request
is created. This is send to the Authorization Component, which derives an authorization
decision. That decision is returned to the Enforcement Component and used to block or
accept the original request. In case that the request is blocked, the Enforcement Component
returns an error message to the client. In case that the request is accepted, it is forwarded to
the actual service. The service response is then forwarded to the client.

From this functional overview, the requirements for a distributed access control can be
derived:

• The communication between the components must use a well defined syntax and se-

2.6 Introduction to Distributed Access Control 53

mantics in order to guarantee the appropriate interpretation of message content. This
results in the demand for a language, which defines that syntax and semantics.

• Trusted relationships must exist between the components. The Authorization Com-
ponent relies on the correctness of the authorization decision requests. Vice versa, the
Enforcement Component relies on the authorization decision of the Authorization Com-
ponent. Enforcement and authorization rely on the subject assertions, created by the
Authentication Component.

• The communication security is also very important. It must be established in connection
with the trust relationships, in order to guarantee a certain level of overall security.

• Unique identification of subjects and resources is required.

Even these aspects are important to establish a distributed access control, security related
aspects are outside the scope of this work. The interested reader is redirected to different
standards, which enable the establishment of the highlighted topics:

• XML Encryption by W3C [W3C 2002a]

• XML Signature by W3C [W3C 2002b]

• SOAP Message Security standard by OASIS [OASIS 2004f]

• X.509 Certificate Token Profile 3 by OASIS [OASIS 2004g]

• UsernameToken Profile 1.0 3 by OASIS [OASIS 2004e]

• SAML by OASIS [OASIS 2004b]

[Chen 2004] provides in his work a classification of communication threads for an environ-
ment of distributed Web Services and how to establish communication security based on the
existing standards.

The focus of this work is the declaration and enforcement of access restrictions for geospa-
tial information objects. In respect to distributed access control, one requirement results from
the aspect that one Authorization Component can derive decisions for multiple Enforcement
Components. In such an environment, it must be possible to associate a particular autho-
rization request with the corresponding set of permissions. This aspect must be taken into
account, when developing the access control model.

Because the declaration and enforcement relies on the subject assertions provided by the
Authentication Component, a particular syntax and semantics must be defined for the markup
of these assertions.

2.6.1 Standardized Language for Assertions

Due to the separation of the authentication component and the authorization component, a
common language is required to define assertion attributes and their structure. The asser-
tions, issued by the Authentication Component are used by the Authorization Component

54 2. Basic Concepts

to match policies and rules. This can only work out if both sides obey the definition of an
assertion attribute, the type and their structure. For example, if the assertion for an email
address is defined as email(matheus@in.tum.de) := RFC822Name, the syntax and the mean-
ing is unambiguous. Assuming the attribute email is a property of the Subject element, an
example usage in a rule can be like this:

Rule = {email(matheus@in.tum.de) := RFC822Name, . . . , . . .} → . . .

The declared rule matches a request if this assertion matches. This requires the definition
of matching algorithms for the different assertion types. In order to match the email asser-
tion, a RFC822Name matching algorithm is required. The next chapter introduces different
standards that provide the capabilities to define assertions and their markup in XML.

Because the Authorization Component relies on the assertion attributes, issued by the Au-
thentication Component, it is essential to estabilsh trust. As described in [Johnston et.al. 1998],
this can be achieved using certificates. They state that widely distributed access control re-
quires the authentication by certificates. In their motivating example, different stakeholder
exist that specify access restrictions on common resources.

2.6.2 Standardized Permission Language

In the distributed access control environment, the standardized permission language has two
duties:

1. Define common language constructs to express the access statements in an unambigu-
ous way. The policy writer must understand and agree to the language constructs,
their meaning and their structure. This is essential that the authorization component
processes the permissions in a foreseeable way.

2. Define common processing of the permissions in order to derive an authorization deci-
sion. This refers in particular to the logic of combining algorithms: How they control
the processing of permissions and which result they return for a certain input.

The next chapter evaluates related standards to determine in how far this requirement is
met.

2.6.3 Standardized Communication Between Components

Due to the separation of the Enforcement Component and the Authorization Component, the
need for a standardized language arrives that defines a structure of the authorization request
and response messages. The authorization request, which is send from the Enforcement
Component to the Authorization Component contains the information about the subject
assertions, the operation and the resource content. The resource content is an XML encoding
of the resources, which are addressed by the request.

The next chapter evaluates related standards to determine in how far this requirement is
met.

Chapter 3

Access Control Requirements and
Related Standards and Systems

This chapter starts with introducing the access control requirements as they result from
an informal poll at the InterGeo 2002. It further evaluates different standards and quasi
standards, in how far they support the requirements as they resulted from the poll. Also,
capabilities of different systems are evaluated in how far they support the infrastructure
constraints and access control requirements. This chapter concludes with the comparison and
quantifies the standard’s usability.

3.1 Access Control Requirements

The demands for restrictions of data providers for an access control system have been collected
from talks to government and private geodata providers on the InterGeo 2002. The resulting
access control restrictions are condensed in the following subsections.

3.1.1 Enforce Restrictions on the Resources, Independent from the Service

For a service based geodata infrastructure, the declaration and enforcement of access restric-
tions must be independent from the used services. This is because one service operation can
carry different operations to be invoked on the resource(s). In such respect, the same opera-
tion can obtain access to different resources using different access modes, depending on the
operation parameters.

One example of such a service is the Web Feature Service ([OGC 2002-058]). The service
operation Transaction allows to invoke the operations Delete, Create and Update on the
accessible resources.

3.1.2 Class- and Object-Based Requirements

It must be possible to declare and enforce access restrictions based on an object-oriented
data model. In such respect, restrictions can be declared for a class or individual object(s).

56 3. Access Control Requirements and Related Standards and Systems

The class-based restrictions must be enforced for all instances of the class. The object-based
restrictions must be enforced for particular objects, as referenced by the declared permis-
sion. Assuming an object-oriented data model of geodata, accessible through the services
infrastructure, the service response/request information must also be modeled according to
an object-oriented data model. This is given by the GML encoding of the exchanged geodata,
according to the simple feature specification ([OGC 1999-100r1]).

Based on GML markup, objects are represented by features. The characteristics of a
feature is modeled by recursive structured sub-elements and attributes. Because GML uses
the XML encoding, the required referencing to classes (feature types) and particular objects
(features) can be achieved by using Xpath ([W3C 1999]) expressions.

An example for a class-based access permission is that Bob can read all objects of class
Building.

{Bob, read, //Building, ε} → Permit

An example for an object-based access permission is that Alice can write information to the
instance of the class Building, where the address equals ”1600 Pennsylvania Avenue NW”.

{Alice, write, //Building, if(address == ”1600PennsylvaniaAvenueNW”)} → Permit

3.1.3 Spatial Requirements

An obvious requirement results from the geographic characteristics of the geospatial infor-
mation objects. Geographic or geospatial information objects describe real world entities,
which have a spatial reference; hence a location relative to the surface of the Earth and a
shape, expressed by geometry. The interviewee named the spatial access control requirement
as essential for this type of data. The requirement is that spatial restrictions allow to declare
permissions, based on the spatial relation between a feature’s geometry and a given geometry;
the permission geometry. Two important spatial relations were named in the informal poll:
Within and Touches.

The Within relation allows to restrict access inside a given area; the permission area.
For example, employees of a municipal government are allowed to access particular resource
objects if their geometry satisfy the given topological relation with the geometry of their
sovereign territory. The other spatial relation is Touches, which restricts the access to objects,
where both geometries are adjacent to each other. An example use of this restriction is that
a subject, which has access to a particular land parcel can also access all land parcels if both
geometries satisfy the given topological relation.

The spatial relations are not declared in isolation. They must be combined with a class-
based restriction. In such a respect, the spatial restriction can be seen as a constraint to the
class-based access restriction, which limits the access to objects, based on their geometry.

An example, according to the spatial access restriction is that Bob can read all objects of
class Building, if the geometry (expressed by the property shape) is within the area {foo, 0
0,3 0,3 4,0 4,0 0}.

{Bob, read, //Building, if(Within(shape, {foo, 0 0, 3 0, 3 4, 0 4, 0 0}))} → Permit

3.2 Framing the Problem Space and Identifying Infrastructure Constraints 57

3.1.4 Representational Requirements

This kind of requirements focus on the representation of the geodata, primarily as a map.
For example, geodata that is represented as a binary map image can be unrestricted if the
scale does not exceed a particular threshold. An example access right of this kind that Bob
can request a binary map with a scale less than 1:25.000.

Another kind of representational requirement is that particular rendering styles are re-
stricted. For example, the request of b/w weather maps is free, but the request of colored
weather maps is restricted.

In addition to the graphical representation, the data format can result in a restriction. A
map in a vector format can potentially be used for further processing. Therefore, request of
maps in vector format can be restricted: Bob can request maps in format image/svg.

3.1.5 Temporal Requirements

Some of the interviewed data providers argued that it is relevant to restrict the access based on
time and date. Some said that access to the service (and hence to the geodata) may only be
allowed between business hours from Monday to Friday, 9.00 am to 5.00 p.m.1 Another
temporal requirement is to restrict access relative to the current local system time. As
example, the request of weather or doppler-radar maps is for free if older than a certain
time window. In contrast, the request of actual maps can be restricted.

3.1.6 Communication Security Requirements

Some interviewed people argued that the request of confidential or personal information can
only be granted if particular communication security aspects are met. The classes of an object-
oriented data model can be classified according to the security requirements: confidentiality,
integrity and accountability. If objects of classified classes are accessed, the corresponding
security aspects must be satisfied.

An example for this kind of restriction is that objects of class Building can only be
accessed if the connection is based on HTTPS. Another, more complex example is that objects
of class Building can only be accessed if the service output is confidential for the subject,
which must use an X.509 certificate for identification, issued by a certain trust center.

3.2 Framing the Problem Space and Identifying Infrastructure
Constraints

Many important kinds of geographic data are collected and maintained by different gov-
ernment agencies and organizations. The combined use of that distributed and heteroge-
nous geodata build the fundamental basis for decision making and geoprocessing for different
purposes. Therefore, it is the key issue to make the distributed and heterogenous geodata

1The time is the local service time, independent from the local time of the user.

58 3. Access Control Requirements and Related Standards and Systems

available in an interoperable way. This work is based on the service oriented infrastructure
([OGC 1999-100r1]), implemented as Geo Web Services.

The owner of the geodata defines access restrictions for protected geodata. Because the
geodata is accessible through Geo Web Services, which have the capability to transform the
local data model and structure into an interoperable data model and structure on the interface
level, these restrictions must be declared for the service result, the resource content. Because
this work assumes the GML markup of object-oriented geodata, the access permissions can
reference the protected resource objects through Xpath expressions. This enables the dec-
laration and enforcement of class-based and object-based restrictions. The declaration and
enforcement of spatial access restrictions can be based on functions, testing the satisfaction
of particular topological relations between two geometries.

The distributed constraint requires that a standardized language provides a vocabulary
for the declaration of access restrictions in an unambiguous way and defines the process of
enforcement of the declared access restrictions in a transparent way.

Geo Web

Service A

Geo Web

Service B

geodata

repository

A

geodata

repository

B

Enforcement

Service A

Enforcement

Service B

Decision

Service

au
th

or
iz

at
io

n
de

ci
si

on

re
sp

on
se

au
th

or
iz

at
io

n
de

ci
si

on

re
qu

es
t

au
th

or
iz

at
io

n
de

ci
si

on

re
sp

on
se

au
th

or
iz

at
io

n
de

ci
si

on

re
qu

es
t

request

response

request

response

Client

request

response

request

response

request structure
 request structure

re
sp

on
se

 s
tr

uc
tu

re

re
sp

on
se

 s
tr

uc
tu

re

Figure 3.1: The service infrastructure for online access to protected resources

Figure 3.1 illustrates the initial infrastructure of online access through Geo Web Services.
Each service accepts a designated set of parameters on a particular operation. The operation
provides the functionality to access the geodata store and fulfills the request. The Enforcement
Service intercepts the request to the service, isolates the authorization metadata and service
operation parameters from the request. An authorization decision is either requested from
the information of the request or the service result. The Authorization Service answers the

3.2 Framing the Problem Space and Identifying Infrastructure Constraints 59

request with a Permit or Deny statement, upon which the Enforcement Service makes the
service result available to the requestor.

The requirements for an access control standard are summarized in table 3.1.

Requirement Explanation

Unambiguous vocabulary The language that supports the declaration of permissions must

support a naming convention, which is extendable and unam-

biguous. This is required because all involved parties must un-

derstand and agree on the syntax and semantics of the language.

Extendable Required, to declare and enforce access restrictions which are

problem domain specific. In this context, the declaration and

enforcement of spatial restrictions is a domain specific problem.

Define authorization process The access control language must define a generic processing of

authorization decision requests. For the introduced rules and

policies, this can be achieved through the combining algorithm,

the matching and the declaration of conditions.

Define language structure

and processing rules for au-

thorization decision request

and response

In an environment, where the enforcement and decision process

are separated, it is required that the access control language

defines the structure of authorization decision requests and re-

sponses as well as their processing. In addition, it is important

that the assertions and the resource content can be defined in

an unambiguous way.

Define vocabulary and for-

mat for authorization meta-

data

The access request to a service, issued by the client is inter-

cepted by the Enforcement Service. The request contains ser-

vice specific parameters and authorization metadata, which is

relevant for the authorization decision request. Therefore, the

Enforcement Service must understand the used vocabulary and

structure of the authorization metadata.

Capable for declaration and

enforcement of named re-

strictions.

Among other requirements, the capabilities of the access control

requirements must allow to declare and enforce the restriction,

as highlighted in the previous section. In particular the require-

ments for class- and object-based restrictions as well as spatial

restrictions must be realizable.

Table 3.1: Requirements for access control standards

3.2.1 Constraints from the Distributed Aspect

The enterprise wide enforcement of declared access restrictions can be based on multiple
or one central Authorization Service. The policy language must provide the capability to
relate access permissions to data, exchanged with a particular service. This is required for
the centralized authorization, because different enforcement services request authorization
decisions: each service for a particular resource content.

In order to ensure reliable access control in a distributed environment, it is essential that

60 3. Access Control Requirements and Related Standards and Systems

the Subject, Operation and Resource are uniquely identified. Because it is difficult to ensure
globally unique identifiers, an access control domain can be defined. All subjects, operations
and resource objects, which belong to that domain have a unique identifier. The authentica-
tion process assigns a unique identifier to each user. The uniqueness of operations and resource
objects is simply based on an agreement between cooperating parties. In [OGC 1999-049] an
informative section describes how to ensure unique identifiers for the environment of dis-
tributed Geo Web Services, providing access to distributed geospatial information objects.
Assuming that resources have a unique local and domain wide identifier, the policy language
must support to express this identifier.

3.3 Standards for Distributed Access Control

The focus of this work is the declaration and enforcement of access restrictions based on a
distributed service infrastructure. For the declaration, it requires a language to formulate the
introduced restrictions (see 3.1). For the enforcement, an Authorization Service is required,
which delivers an access decision for a particular request. In particular, an authorization
process must be implemented that derives the authorization decision based on a particular
request and the set of permissions, available in the permission repository.

In this regard, the following standards are evaluated, what capabilities they provide for
the declaration and enforcement. This chapter concludes with a comparison of the introduced
standards and judges their useability for this work.

3.3.1 Security Access Control Markup Language (SAML)

The Security Access Control Markup Language (SAML) ([OASIS 2004b]) is an international
standard of The Organization for the Advancement of Structured Information Standards
(OASIS) ([OASIS 2004c]).

SAML defines a framework for exchanging security information between online business
partners. For this purpose, SAML defines XML schemas that define the markup of the security
information, called assertions. The assertions are being used for exchanging authentication
and authorization information. There is always an asserting party and a relying party. The
asserting party creates assertions about subjects which are being used by the relying party.
For example, an assertion about a subject can be that its email address is matheus@in.tum.de
and that this was proven by an X.509 certificate. The relying party can use this assertion
for an authorization decision. Thus, a trust relationship must exist between the relying and
the asserting party. This enables the Single Sign On (SSO): A subject’s identity is proven
once by the asserting party and all relying parties base the access control enforcement on the
assertion. Thus, the user does not have to authenticate itself with each relying party.

The SAML framework is based on different key concepts.

Assertions define an information set that includes one or more statements about Authenti-
cation, Attribute and Authorization decisions. The Authentication assertion gives the
information that a subject was authenticated by a specific means at a particular time.
The Attribute assertion gives more characteristics of the subject, like his email address.

3.3 Standards for Distributed Access Control 61

The Authorization decision assertion identifies what the subject is entitled to do. SAML
defines the XML Schema for XML markup of assertions.

Protocol: SAML defines a request/response protocol mechanism for querying and obtaining
assertions. A SAML request can either request for known assertions or for a particular
Authentication, Attribute or Authorization assertion. SAML defines the XML schema
for XML markup of the request/response messages.

Bindings specify, how SAML assertions are mapped onto transport specific protocol, such
as HTTP Post or SOAP.

Profile defines the sequence of SAML messages for a particular purpose.

According to the pre-requisite of declaration and enforcement of access restrictions, SAML
can be used to add the access control required metadata to the request from the client to the
service. SAML can also be used for establishing interoperable communication between the
Enforcement Services and the Authorization Service.

However, SAML cannot be used for the declaration of access restrictions. Hence writing
the permissions, which are used by the Authorization Service to derive an access decision is
not possible.

3.3.2 XML Access Control Language (XACL)

XML Access Control Language (XACL) is a research project at IBM ([IBM et. al. 2002]).
It provides the means for declaring access restrictions on XML encoded resources. XACL
also defines the Provisional Authorization Architecture, which allows the definition of certain
actions to be taken by the Enforcement Service before or after the access to the resource is
allowed. XACL is not an extendable language.

The policy is a container for permissions, based on the {Subject, Operation, Resource,
Condition} tuple, as introduced in equation 2.15. The XACL DTD defines the exact structure
of the policy.

Subject: A subject must be identified by a name or optionally by a group or role.

Resource: Resources are selected by an Xpath expression.

Operation: The allowed operations (actions) are limited to read, write, create and delete.

Condition: A Boolean expression that evaluates to True or False.

Effect: The outcome of a policy can either be grant or deny.

XACL defines the means for declaration and enforcement of restrictions to XML encoded
resources. In this respect, XACL can be used to protect the access for GML encoded geo-
data. However, XACL lacks about extensibility, which prevents the declaration of spatial
restrictions. XACL does also not declare the message structures, exchanged between an
Authorization Service and the Enforcement Services and a client and a Geo Web Service.

62 3. Access Control Requirements and Related Standards and Systems

3.3.3 eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) is an international standard
from OASIS ([OASIS 2003]). It describes a general purpose policy system, which supports
the most common needs to establish an authorization decision in a distributed environment.
The distributed environment is similar to the environment introduced in figure 3.1, page
58. In XACML terminology, the Enforcement Service is called the Policy Enforcement Point
(PEP) and the Authorization Service is called the Policy Decision Point (PDP).

XACML supports the declaration and enforcement of access restrictions through policies,
based on three types of definitions:

Policy syntax: XACML defines XML Schema syntax for a policy language, which supports
the declaration of access restrictions in an interoperable way. Interoperability is ensured
by the use of well known data types and functions. XACML supports simple datatypes
and provides extension points for the definition of complex (structured) data types,
according to the XACML Schema capabilities. XACML also supports different functions
and provides extension points for the definition of new, problem specific functions. This
gives the freedom to adapt XACML to express almost all access restrictions.

Policy processing: XACML defines the semantics for processing existing access permissions
in order to derive an authorization decision. It also defines the processing of policy
obligations in the PEP. Obligations are certain actions, which are to be taken by the
PEP after receiving a decision response from the PDP.

Request/response format: XACML defines the structure of messages, exchanged between
the PEP to the PDP. The authorization decision request is send from a PEP to the
PDP. It comprises of attributes that describe the current request and an XML encoded
resource content. After the PDP has derived an authorization decision, the decision
result is send back to the PEP.

The declaration of access restrictions is expressed by using attribute value tuples. This
gives the freedom to either use pre-defined attributes or to define new, problem specific at-
tributes. This allows the association of permissions to subjects through any attributes. The
association of permissions to a subject identity can happen by using the XACML attribute
subject-id. It is also possible to define a RBAC, as illustrated in [OASIS 2004d]. XACML
defines two different mechanisms, how to resolve attributes in the policy logic: AttributeDes-
ignator and AttributeSelector. The AttributeDesignator allows the selection of simple attributes
from the decision request message and the AttributeSelector enables the selection of attributes
from an XML formatted request content, using Xpath expressions.

Intercommunication between PEP and PDP

XACML ’at work’ can be explained, using figure 3.1. The workflow of XACML empowered
transactions start, when the PEP (Enforcement Service in figure 3.1) receives a request. The
PEP extracts all available access control relevant metadata from the request. In particular,
the PEP fetches the information about the initiator -the Subject-, the resources and the
operation to be invoked on the resources. In addition, other information such as the date

3.3 Standards for Distributed Access Control 63

and time of the request an other environmental information can also be fetched. The PEP
then creates the decision request message, which is to be send to the PDP (Authorization
Service in figure 3.1). The XML encoded structure of the authorization decision message,
according to the XACML schema definition is shown in figure 3.2. The PDP tries to match
permissions against the information from the decision request. The PDP returns a decision to
the PEP, which might include obligations. After the PEP has received the decision result, it
interprets the information and either forwards the request to the resource or service, it denies
the request or it allows the request with processing of the obligations. The PDP can request
that the obligations are carried out before the PEP forwards the request or after the request
has completed and before the result is forwarded to the initiator. The PEP function can be
characterized as a resource specific mediator, intercepting communication between clients and
a service, providing access to protected resources.

Figure 3.2: XML Schema definition of the XACML authorization decision request

The PolicySet, Policy and Rule Hierarchy

XACML defines XML tags, which are involved in the declaration of permissions. The basic
building block is the Rule element, which holds a permission, according to definition 2.15,
page 43. A sequence of Rule constructs is comprised in a Policy and a set of Policy elements
is comprised in the PolicySet element. The coherence between the elements is shown in figure
3.3.

The Target element, which is defined for the PolicySet, Policy and the Rule element hold
the {Subject, Operation, Resource} tuple through the elements Subject, Action, Resource. The
Target element is being used for matching applicable policy sets, policies and rules to a given
request.

The matching is controlled by attribute value pairs, which can be an AttributeSelector

64 3. Access Control Requirements and Related Standards and Systems

Figure 3.3: XML Schema definition of the XACML PolicySet element

or SubjectAttributeDesignator. The AttributeSelector allows the fetching of simple attribute
values from the ResourceContent element, which is part of the authorization request. The
SubjectAttributeDesignator allows the fetching of simple AttributeValue elements from the Sub-
ject element and match the value against the attribute value of the request. Figure 3.4 shows
the Target element structure and in detail the internal structure for the Subject element. The
structure for the elements Resource and Action is similar to the Subject element, but the name
of the designator elements is different: The SubjectAttributeSelector in named ResourceAt-
tributeSelector for fetching attributes from the Resource element, resp. ActionAttributeSelector
for fetching attributes from the Action element. The subject matching is shown in figure 3.4.

The matching algorithm for comparing the values of the AttributeValue and the Attribute-
Selector, resp. AttributeDesignator can be declared by using the MatchId attribute of the
surrounding element SubjectMatch, ActionMatch or ResourceMatch.

3.3 Standards for Distributed Access Control 65

Figure 3.4: XML Schema definition of the Subject matching

The Condition Element

The Condition element allows the declaration of complex conditions, which drive the outcome
of a rule. Listing 3.1 shows the XML Schema structure of that XACML element. Here, just
a brief introduction highlights the capabilities as required in this work. For further details,
please see [OASIS 2003].

1 <xs:element name=”Condition” type=”xacml:ApplyType”/>
2 <xs:complexType name=”ApplyType”>
3 <xs:choice minOccurs=”0” maxOccurs=”unbounded”>
4 <xs:element ref=”xacml:Apply”/>
5 <xs:element ref=”xacml:Function”/>
6 <xs:element ref=”xacml:AttributeValue”/>
7 <xs:element ref=”xacml:SubjectAttributeDesignator”/>
8 <xs:element ref=”xacml:ResourceAttributeDesignator”/>
9 <xs:element ref=”xacml:ActionAttributeDesignator”/>

10 <xs:element ref=”xacml:EnvironmentAttributeDesignator”/>
11 <xs:element ref=”xacml:AttributeSelector”/>
12 </xs:choice>
13 <xs:attribute name=”FunctionId” type=”xs:anyURI” use=”required”/>
14 </xs:complexType>

Listing 3.1: XML Schema definition of the <Condition> element

Unlike the PolicySet, Policy and Rule element, the Condition element supports the definition
of constraints on all types of attributes by the SubjectAttributeDesignator, ActionAttributeDes-
ignator, ResourceAttributeDesignator and EnvironmentAttributeDesignator. Also, complex con-
ditions can be defined, using the Apply and Function elements. In contrast to this mechanism,
the matching on the Target element supports only simple string matching. This is reflected by
XACML by declaring the applicability of the matching functions (see [OASIS 2003][A.14]).

Listing 3.2 presents the example, where the resource objects are checked if at least one
particular instance exists: The instance of the class Building, where the value of the sub-
element Name is equal to House A.

Lines 5-7 select the string values from the property Name of all resource objects of class
Building. Lines 3-4 define the string value for the matching: ”House A”. Line 2 defines the
matching function for the result from lines 5-7 and lines 3-4. In line 1, the Boolean match
function is defined that is applied to the matching results from the function, defined in line

66 3. Access Control Requirements and Related Standards and Systems

1 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any−of”>
2 <Function FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”/>
3 <AttributeValue
4 DataType=”http://www.w3.org/2001/XMLSchema#string”>House A</AttributeValue>
5 <AttributeSelector
6 RequestContextPath=”//CityModel/gml:featureMember/Building/name/text()”
7 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
8 </Condition>

Listing 3.2: XACML <Condition> element expressing an example condition on the existence
of a particular instance of class Building

2. If the result is True, the effect of the rule is considered in the process for deriving an
authorization decision.

Obligations

XACML defines obligations as processing instructions for the PEP, which are included in the
authorization decision. The authorization decision can request the processing of obligations
either before the actual service request is made or afterwards. The processing of obligations
before invoking the information service can be used to modify the original request and the
processing of obligations after the PEP has fetched the service result can be used to modify
the result according to access rights of the subject. More details on the use of obligations is
highlighted in the outlook section (6.3, page 189).

A Tree Representation for Deriving an Authorization Decision

Based on the hierarchy of PolicySet, Policy and Rule, the authorization decision is driven by
the outcome of the rules. This depends on the satisfaction of the rule’s condition. The autho-
rization decision is influenced by that hierarchy and the combining algorithms: A sequence
of Rule constructs is comprised in a Policy. The compression of the rule outcomes is achieved
by a rule combining algorithm, encoded by the RuleCombiningAlorithm element. The same
combining mechanism is defined for policies. The outcome from a set of Policy elements of one
PolicySet is combined by the PolicyCombiningAlgorithm. Finally, the outcomes of a sequence
of policy sets result in the authorization decision.

These hierarchy and processing rules can be described by a tree. The root node of the
tree is the decision node. This node holds a combining algorithm and the available PolicySets
of the permission repository. Each of the PolicySet nodes hold one CombiningAlgorithm node
a at least one Policy node. In the same fashion, the Policy node holds one CombiningAlgorithm
and at least one Rule node. Each Rule node holds one Condition node, which represents a
leave of the tree. The existence of a condition is optional. A Rule without a condition is an
implicit declaration for an existing rule that is always satisfied, e.g. if(True).

This tree structure can be defined by BNF production rules, as shown in listing 3.3.

The process of deriving an authorization decision can be separated into two steps: (i)
Finding enforceable rules, polices and policy sets and (ii) calculating a final outcome of the
enforceable constructs.

3.3 Standards for Distributed Access Control 67

1 DecisionNode ::= CombiningAlgorithm PolicySets | CombiningAlgorithm Policies
2 PolicySets ::= PolicySet | PolicySets
3 PolicySet ::= PolicyCombiningAlgorithm Policies
4 Policies ::= Policy | Policies
5 Policy ::= RuleCombiningAlgorithm Rules
6 Rules ::= Rule | Rules
7 Rule ::= Condition

Listing 3.3: BNF description of the tree representation of the Authorization Decision

The finding of enforceable permissions depends on the matching of the Request tuple and
the Target element from the PolicySet, Policy and Rule. Using the tree representation, this
can be achieved by traversing the tree from the root node to the leaves, following the edges
of the tree.

The calculating of an authorization decision can be achieved by processing the tree in the
upward direction. Starting at the enforceable rules, the outcome on each level of the tree
is compressed by the combining algorithm. One single outcome is calculated, when the root
node is reached. This outcome represents the authorization decision.

For the XACML version 1.1, the combining algorithm of the root node (decision node)
is restricted to only-one-applicable. This requires an appropriate structuring of the PolicySet,
Policy and Rule constructs as described in chapter 4.

RBAC Encoding with XACML

The support for Role Based Access Control is described in [OASIS 2004d]. XACML natively
supports a RBAC model if an application specific attribute is defined that has the seman-
tic of a role. The value of that attribute define the used role. As an example, the URI
http://www.andreas-matheus.de/geoxacml/1.0/attribute#role can be used to associate a per-
mission to a role. The permission is associated to a role by using the SubjectMatch construct
and the previous defined URI. For example, the following SubjectMatch defines a permission,
associated to the role manager.

1 <SubjectMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
2 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
3 employee
4 </AttributeValue>
5 <SubjectAttributeDesignator
6 AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/attribute#role”
7 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
8 </SubjectMatch>

Listing 3.4: Associating a permission to a role

XACML also supports role hierarchy, as defined in RBAC1. This can be achieved by
using the PolicySetIdReference/PolicyIdReference constructs. For example, the superior role
manager has all the permissions from the subordinated role employee. This can be achieved
by declaring a PolicySet with the id Role:Employee defines the permissions for the role em-
ployee. The PolicySet, declaring the permissions for the manager role declares the associated

68 3. Access Control Requirements and Related Standards and Systems

permissions and inserts the permissions of the role employee by using the reference construct.
This is shown in listing 3.5.

1 <PolicySet xmlns=”urn:oasis:names:tc:xacml:1.0:policy” PolicySetId=”Role:Manager”
2 PolicyCombiningAlgId=”urn:oasis:names:tc:xacml:1.0:policy−combining−algorithm:permit−overrides”>
3 <Target>
4 <Subjects>
5 <Subject>
6 <SubjectMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
7 <AttributeValue
8 DataType=”http://www.w3.org/2001/XMLSchema#string”>manager</AttributeValue>
9 <SubjectAttributeDesignator

10 AttributeId=”urn:www.in.tum.de/am:attribute:role”
11 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
12 </SubjectMatch>
13 </Subject>
14 </Subjects>
15 <Resources><AnyResource/></Resources>
16 <Actions><AnyAction/></Actions>
17 </Target>
18
19 <!−− Use permissions associated with the employee role −−>
20 <PolicySetIdReference>Role:Employee</PolicySetIdReference>
21 </PolicySet>
22
23 <PolicySet xmlns=”urn:oasis:names:tc:xacml:1.0:policy” PolicySetId=”Role:Employee”
24 PolicyCombiningAlgId=”urn:oasis:names:tc:xacml:1.0:policy−combining−algorithm:permit−overrides”>
25 <Target>
26 ...
27 </Target>
28 ...
29 </PolicySet>

Listing 3.5: Declaring permissions for a role hierarchy in XACML

3.3.4 Digital Rights Management (DRM)

Digital Rights Management (DRM) is about copyright protection. Because a digital content
can be copied in equal quality and modified for own interest, the enforcement of licensed use
is important. DRM is a platform to protect and enforce licensed use of a delivered (offline)
digital content. In order to enforce licensed use, the content is encrypted before transmitted
to the (end) user. The use of the content, such as playback is only possible with a certified
software that obtains a key from a key delivery system. The delivery of the key is protected
through an authorization process. It takes assertions about the requesting user (subject) and
checks for sufficient rights. If the appropriate rights exist, the key is delivered and the user
can use the content. Figure 3.5 illustrates the DRM processes, which can be separated into
seven steps:

1. Packaging is the process where the digital content is encrypted and locked with a Key.
The decryption key is stored and the information, how and where the encryption key
can be requested is added to the content.

2. Distribution is the process, where the encrypted content is made available on a CD or
for online download.

3.3 Standards for Distributed Access Control 69

Digital

Content

Encrypted

Media

Web Server

License Server
 Client

Software

1. Packaging

2. Distribution

3. License

Acquireing

4. Request

Content

5. Request

License

6. Decyrption

7. Use of

content

Figure 3.5: The different Digital Rights Management processes

3. License Acquisition is the process, where license information and the encryption key is
forwarded to the license server. A user, who likes to use the content requests a license
from the license server.

4. Request Content is the process, where the user requests the encrypted content for use.
The content can be used online or offline. Before the use begins, a license must be
requested. The user can initiate this or the client software does this autonomous.

5. Request License is the process, where the license is requested from the license server,
required to use the encrypted content. The license contains the constraints of use such
as how long the license is valid or how often the content can be used. Also, time
constraints can be included in the license which can regulate at what times and days
the content can be played. A received license can be saved to the local computer for
further use.

6. Decryption is the process, where the client software decrypts the content and allows the
licensed use. The client software contains an access control system that enforces the
usage constraints, declared in the license.

7. Content use is the process, where the client software makes the content useable.

This general scenario is used by different companies to protect their digital audio or
video files for unlicensed playback. For example, Microsoft licenses the use of Windows
Media through the Windows Media Rights Manager. This scenario is shown in figure 3.6
[Microsoft 2004]. The encrypted (protected) content can only be played with the Windows
Media Player and the appropriate license, including the decryption key.

The Digital Rights Management cannot be used for implementing the introduced require-
ments, because it is limited to playback a protected audio or video media. It does not support
the declaration of fine-grained permissions, as required.

70 3. Access Control Requirements and Related Standards and Systems

Figure 3.6: How to play an encrypted Windows Media with Microsoft DRM [Microsoft 2004]

3.3.5 EXtensible Rights Markup Language (XrML)

The eXtensible rights Markup Language (XrML) is a quasi standard from ContentGuard
([ContentGuard 2004]) for expressing rules and conditions of licensed use. It is a general-
purpose language, using the XML markup to express rules and conditions. The encryption
of a digital content enables DRM in the first place. XrML also defines mechanisms to ensure
message integrity and entity authentication.

Even though it is not an international standard yet2, Microsoft supports it by their Rights
Management Services (RMS). Implementations in the Windows Media Player and Office 2003
aim to enforce licensed use of digital content such as audio and video files as well as Office
documents. Windows Media Rights Manager (version 9) supports the licensed use of Windows
Media content. The newest initiatives in Office 2003 are about to prevent the illegal ‘’copy
and paste‘’ usage of valuable text and graphics from Office documents. Beside Microsoft,
other major companies support XrML in their products and services such as IBM, HP und
VeriSign.

3.4 Systems, Implementing Distributed Access Control

Many systems exist that ’deal’ with access control in the broader term and authorization in
the narrower term. This work is interested in the existence of systems that support the decla-

2The XrML version 2.0 is frozen and submitted to the International Organization for Standardization (ISO).
Based on XrML, ISO has specified the Rights Expression Language (REL).

3.5 Conclusion of Useability and Implications for this Work 71

ration and enforcement of the introduced requirements for access restrictions in a distributed
environment.

3.4.1 Shibboleth

’Shibboleth is an initiative to develop an open, standards-based solution to the needs for or-
ganizations to exchange information about their users in a secure, and privacy-preserving
manner.‘’ [Internet2]. The privacy-preserving is enabled by the use of subject attributes
(assertions) rather then subject identity.

Shibboleth [Erdos et. al. 2002] is a very specific system that provides web-based authen-
tication and authorization. The main use case behind it is to secure interactions between
sites: A student, using a Web Browser likes to access course material on a Web Server. The
request of the Web Browser does not carry any user identity information. Therefore, an au-
thentication system is used, where the user ’logs in’. After the request is issued, a Shibboleth
component fetches subject attributes from the authentication system. Upon the fetched at-
tributes, an authorization decision is derived. The system uses the XACML policy syntax
for the declaration of the policies. An open source PDP (sunxacml.sourgeforge.net) is used,
which implements the XACML semantics of policy processing.

3.4.2 Cardea

Cardea [Lepro 2003] is a distributed authorization system. It separates the authentication
and authorization process and establishes communication between them using SAML. Upon
an authorization decision is received, the decision process starts receiving subject assertions
from an Attribute Authority. In order to establish a trusted communication, the messages
are encrypted using the XMLDSig standard.

Policies in Cardea are written in XACML. The authorization decision is derived from
processing the policies, using the dynamically obtained subject assertions.

The system does not cover how to deal with an incomplete or inconsistent policy set. The
system does not allow the declaration and enforcement of spatial restrictions and therefore
does not support one major requirement for this work.

The dynamic request of subject assertions provides the basis for enabling subject privacy.
On the Attribute Authority, access restrictions can control, which assertions can be requested
under which context.

3.5 Conclusion of Useability and Implications for this Work

The focus of this work is to declare and enforce access restrictions for distributed geospatial
information objects. As previously introduced, the environment is an infrastructure of dis-
tributed services, which provide the means of access and bring interoperability on the data
structure through GML markup. For this infrastructure it must be possible to declare and
enforce the introduced requirements for class-based, object-based and spatial restrictions.

Under this focus, non of the evaluated standards and systems provide such capabilities.

72 3. Access Control Requirements and Related Standards and Systems

Therefore, the question is wether one of the standards provide a basis for the development of
the required capabilities.

SAML provides the means for declaring user assertions, which is required to travel as meta-
data to the request to the Enforcement Service. In a similar fashion, SAML can be used
to describe the decision request and response messages between the Enforcement Ser-
vice and the Authorization Service. However, SAML does not provide the means for the
declaration of permissions. It also does not declare the semantics how an authorization
decision can be derived.

In this respect, SAML cannot be used for the declaration and enforcement of the intro-
duced access restriction requirements.

XACL supports the declaration of access restrictions based on the elements and attributes
of an XML document. But, XACL does not allow extensions. It can therefore not be
used to declare the spatial restrictions.

XACML is an international standard that supports the declaration of ‘’fine-grained‘’ access
restrictions for XML structured resources. Even the standard does not support the
declaration of spatial restrictions, this capability can become available by extending the
standard. This extension must define the required attributes and functions to support
the declaration and enforcement of spatial restrictions.

XACML declares the semantics for processing a policy store in order to derive an au-
thorization decision. The described process has its limits if declaring object type and
instance restrictions as well as spatial restrictions.

XACML also defines message structures for the decision request and response messages,
exchanged between the PEP and the PDP.

XACML is therefore the standard, which has be selected to be used as a base for
developing a system that supports the declaration and enforcement of access restrictions,
as introduced in section 3.1.

DRM declares processes that can be used to enforce licensed use for a static content. But
the assumed environment comprises of services, which dynamically create a content,
upon which access restrictions must be enforced. In that respect, DRM can only be
used to enforce restrictions on the entire content.

XrML is a specification that enables the processes of DRM. It is being used to protect
copyrights on a static content. As explained earlier, it is not suitable for this work.

Shibboleth and Cardea are specific implementations to given use case scenarios. Both do
not fully support the introduced requirements. However, the architecture of Cardea is
very similar to the intended architecture of the prototype implementation of this work.
Cardea dynamically requests the subject assertions whilst deriving an authorization
decision. But the prototype implementation of this work assumes that all authorization
metadata is send with the service request. Therefore, no dynamic loading of subject
assertions is performed.

Chapter 4

Declaration and Enforcement of
Access Restrictions

This chapter focuses on the presentation of a model for declaration and enforcement of the
highlighted class-based, object-based and spatial access restrictions. This is achieved by using
the XACML standard for declaration and enforcement of class- and object-based restrictions.
For the declaration and enforcement of spatial restrictions, XACML is extended to GeoX-
ACML. The presented solution assumes that the protected resources are accessible via an
infrastructure of distributed services. It is also assumed that the requested resources -the
resource content- is dynamically created by the access request and that its structure obeys to
an object-oriented model, encoded in GML1.

Because an error-free enforcement of access restrictions relies on the encoded permissions
that declare all desired restrictions in a correct and complete way, this chapter introduces also
two kinds of detections: Approximate and exact detection of inconsistent permissions. Incon-
sistent permissions are unreachable, incomplete or contrary permissions. The approximate
detection does not make any assumptions about possible requests and the resulting resource
content as the exact detection does.

4.1 Declaration of Restrictions

The class- and object-based restrictions are fundamental for an access control system to
protect resources, using an object-oriented data model. As stated in the requirements, a
class-based restriction protects all instances of a class, whereas the object-based restriction
protects individual objects. A spatial restriction allows to enforce the restricted access to
resources, based on their geometry.

In order to formalize the permissions, which encode the different restriction kinds using
XACML, resp. GeoXACML language constructs, the previous definition from the Rule Based
Access Control section must be refined. This is because XACML distinguishes the match-
ing for two type of resources: Resource attributes, as they are explicitly comprised in the

1This convention is not necessary but it simplifies the explanation of the interconnections between refer-
encing resources in the policy and the resource content, comprised in the authorization decision request.

74 4. Declaration and Enforcement of Access Restrictions

authorization decision request and the resource objects, defining the resource content.

4.1.1 The XACML Request Tuple

The XACML authorization decision request contains information about subjects, operations,
resource attributes and resource objects, describing the resource content encoded in XML;
hence GML for this work. This requires to represent the request as a four-valued tuple,
differentiating between the resources, encoded as attribute-value-pairs (RA) and the resource
objects (resource content) (RO):

Request := {S, O,RA,RO} (4.1)

In the Request, S represents the identification of a subject and O represents the intended
operation. BecauseRA andRO represent the protected resources, declared access restrictions
must be enforced for the union of the RA and RO (RA∪RO).

4.1.2 Class-Based Restrictions

The class-based restriction limits the Resource to refer to a class of the object-oriented data
model. The GML equivalent is a feature type, as defined in the GML application schema.
In the introduced model, the superscript C refers to a class-based permission and is used
to define the Resource matching element (RMR) and the Resource Content match element
(XMC

R), which holds an Xpath expression for matching GML feature types. The Condition
of a rule may not be used, which is represented by the ε. For all other cases, representing
a class-based restriction, CC can be represented by a three-valued tuple. XF represents an
Xpath node-set function, XMC is the Xpath expression to be used with XF and V defines a
set of string values to be used for matching against the result of the Xpath node-set function.
The condition evaluates to True, if the result of the Xpath node-set function matches the
values of V and returns False otherwise.

RuleC := {SMR, OMR, RMR, XMC
R , CC} → {Deny, Permit} (4.2)

CC :=


ε → True

{XF, XMC ,V} →
{

True, XF(XMC) ≡ V
False, else

(4.3)

For the services based infrastructure, the access control system must protect resources,
based on GML markup. This can be achieved if the value of the XMC

R element keeps an Xpath
expression. For the class-based restriction, this expression must be limited to reference XML
elements, which represent a class of the underlying object-oriented data model, a feature
type in GML. The GML application schema defines a feature type as a global XML element,
which is substitutable to gml: Feature. Therefore, a valid Xpath expression for XMC

R can
be evaluated in the following way: Let Name be the local name of the XML element that is
fetched with the Xpath expression from the XMC

R construct. Then, a correct reference to a
GML feature can be verified, if used for matching based on the GML application schema2.

2It is an implementation issue to access the correct GML application schema.

4.1 Declaration of Restrictions 75

Let local-name(. . .) be the Xpath node-set function that returns the local name of a node,
then the following expressions verify, if XMC

R refers to a GML feature type.

tag-name =local-name(XMC
R) (4.4)

’element’ ≡local-name(/schema/element[@name = tag-name
and @substitutionGroup = ’gml: Feature’])

⇒ XMC
R refers to a GML feature type (4.5)

For example, the City Model application schema (see B.2) defines the classes Building,
Street and Intersection. These XML elements are defined globally and substitutable for
the XML Schema element gml: Feature. Applying the previous definitions to the example
allows to validate the XMC

R value ”//am:CityModel/gml:featureMember/am:Building”:

Building =local-name(//am:CityModel/gml:featureMember/am:Building)

’element’ ?=local-name(/schema/element[@name = ’Building’
and @substitutionGroup = ’gml: Feature’]) → True

⇒ XMC
R refers to a GML feature type

Table 4.1 enumerates example Xpath expressions for the XMC
R element and according

verification expressions based on the City Model application schema.

Class XMC
R Xpath verification expression

Building //am:Building local-name(/xs:schema/xs:element[@name=’Building’

and @substitutionGroup=’gml: Feature’])

Street //am:Street local-name(/xs:schema/xs:element[@name=’Street’

and @substitutionGroup=’gml: Feature’])

Intersection //am:Intersection local-name(/xs:schema/xs:element[@name=’Intersection’

and @substitutionGroup=’gml: Feature’])

Table 4.1: Xpath expressions for class-based restrictions and verification expressions based
on the City Model example

Using the definitions 4.2 and 4.3, example class-based restrictions can be declared. The
access right that Bob can read objects of the class Building, based on the City Model example
GML markup can be expressed as:

RC = {Bob, read, ε, /am:CityModel/gml:featureMember/am:Building, ε} → Permit

For the Rule that encodes a class-based restriction, the condition CC is not mandatory,
because the matching of XMC

R must not be refined. However, the condition must be used to
encode a permission that applies to a resource content, not containing objects of a particular
class. This is important in order to express complete matching as pointed out in section 2.5.10.
For declaring permission according to the all-explicit strategy, it is important to allow the
declaration of permissions for a resource content, not containing particular resource objects.

76 4. Declaration and Enforcement of Access Restrictions

In this case, the regular matching -as supported by the XMC
R- can not be used, because it

associates a rule to particular existing resource objects and not to the absence of particular
resource objects. Therefore, the condition C must be used to express the required matching.

For example, the following rule and condition declare that the read access to a resource
content is unrestricted if it does not contain objects of the class Building. The matching of
the rule R1 provides matching for all subjects, the operation read and all resource content
objects. The condition C refines the matching for the resource content objects in that sense
that it counts the existence of the objects of class Building. If the count equals zero, the
condition returns True, which triggers the rule to return Permit.

RC = {∗, read, ε, //∗, CC} → Permit

CC = {count, /am:CityModel/gml:featureMember/am:Building, {0}}

4.1.3 Object-Based Restrictions

The object-based restriction is an extension to the class-based restriction. Whereas the class-
based restriction must be enforced for all instances of the class, the object-based restriction
is to be enforced for particular objects only. In this model, an object-based restriction is
encoded as permissions, which use the superscript O as identification. The object-based
restriction can reference one single object or a set of objects, as expressed by the Xpath.
In XACML, the Resource Content matching is restricted to simple string matching, which
requires the combined use of the XMC

R and Condition matching elements. The XMC
R references

to the XML element, representing the class and the Xpath matching element of the Condition
XMO

C defines a condition to restrict the matches for particular instances. For the object-based
restriction, the condition function XF can be any of the valid Xpath functions.

RuleO = {SMR, OMR, RMR, XMC
R , CO} → {Deny, Permit} (4.6)

CO = {XF,XMO
C ,V} →

{
True, XF (XMO

C) ≡ V
False, else

(4.7)

Table 4.2 enumerates example conditional Xpath expressions, based on the City Model
example.

Class Object restriction XMC
R XF XMO

C

Building address=”3 Street A” //am:Building boolean am:address=’3 Street A’

Building address=”3 Street A” or

address=”5 Street D”

//am:Building boolean am:address=’3 Street A’ or

am:address=’5 Street D’

Building fid=”HouseA” //am:Building boolean ./@fid=’HouseA’

Table 4.2: Xpath example expressions for object-based restrictions, based on the City Model
example, 2.3.2, page 284

4The namespace for the XML document is am and the root element is CityModel as defined in the GML
application schema 2.8, page 30.

4.1 Declaration of Restrictions 77

Using the definitions 4.6 and 4.7, example object-based restrictions can be declared. The
access right that Bob can read the object of the class Building at the address 5 Street D
based on the City Model example GML markup can be expressed as:

RO ={Bob, read, ε, //am:CityModel/gml:featureMember/am:Building, CO} → Permit

CO ={boolean, ./am:address=”5 Street D”, {True}}

4.1.4 Spatial Restrictions

Condensing the polled spatial access control requirements from section 3.1.3, page 56 results
in the capabilities of the access control model to extend the class-based restriction with a
spatial condition. In this model, an object-based restriction is encoded as permissions, which
use the superscript S as identification. The spatial condition expresses complex constraints
based on a topological relation between a permission geometry and the resource object’s
geometries.

According to the introduced requirements for spatial access restrictions (3.1.3, page 56),
permissions can be declared for resource classes satisfying a particular spatial condition. The
Topological Condition Function (TCF) can be expressed by defining a Boolean expression, using
the defined spatial methods Disjoint, Touches, Crosses, Within, Overlaps, Intersects and Equals
(2.2.3, page 21) on the resource and permission geometry. Even these spatial methods can be
applied to combinations of different geometry dimensions, only the case of a 2D restriction
geometry was named to be practical. This results in the initial situation that a permission
can be defined for a 2D surface. For this model, the geometry of a surface can be defined,
using the definition 2.6, page 21 and encoded by using a GML Polygon.

The requirement to express a spatial permission in combination with a class resource is
supported by the Rule construct (2.15, page 43). In that definition, SMR, OMR and RMR

define the matchmaking for the rule and the CS defines a general expression for refining the
resource content matching expressed by XMC

R. For the declaration of spatial conditions, the
Condition definition must be specialized in order to express the constellation between the
permission geometry (GP) and a resource geometry (GR). This can be achieved by defining
a spatial condition CS, which is a three-valued tuple: {xpath to GR (XMC

R), spatial method
(TCF), permission geometry (GP)}. An alternative representation can be used, if the resource
geometry is known: {TCF(GR,GP)}.

RuleS :={SMR, OMR, RMR, XMC
R , CS} → {Deny, Permit} (4.8)

CS :={XMS
C , TCF,GP } = {TCF (GR, GP)} (4.9)

TCF ∈{Disjoint, Touches, Crosses, Within, Overlaps, Intersects, Equals,

¬Disjoint,¬Touches,¬Crosses,¬Within,¬Overlaps,¬Intersects,

¬Equals} (4.10)
GR :=XQuery5(XMC) (4.11)
GP :=Polygon (4.12)

In order to support the declaration of spatial restrictions that express a topological rela-
5XQuery is a function that fetches XML elements, based on the Xpath expression value, hold by XMS

C.

78 4. Declaration and Enforcement of Access Restrictions

tion condition in a negative way, the possible TCFs are extended to the logically negative:
¬Disjoint, ¬Touches, ¬Crosses, ¬Within, ¬Overlaps, ¬Intersects and ¬Equals.

For a rule, encoding a spatial restriction, the resource match RMR can be used to correlate
the CRS used for the encoding of the permission geometry and the CRS of the resource content
object geometries.

One example for a spatial restriction that can be declared with the previous RuleS construct
is that Bob is entitled to read objects of class Building if the geometry of the spatial property
shape is Within the area, encoded by GP={foo,0 0,10 0,10 10,0 0}. Because the permission
geometry is encoded by using the CRS foo, the matching of RMR must reflect that.

In order to use appropriate Xpath expressions, the restriction encoded for the City Model
example.

RS ={Bob, read, foo, //am:Building, CS} → Permit

CS = {./am:shape,Within, {foo,0 0,10 0,10 10,0 0}}

4.1.5 Complex Spatial Restrictions

A complex spatial restriction allows the declaration of permissions based on a combination
of permitting or denying access rights for multiple permission geometries. As an example,
access is granted if the geometry of the geospatial information object is neither within the
restricted areas GP1 and GP2.

A complex spatial restriction is declared through a Policy that combines subordinate Rule
constructs, where each rule declares a spatial restriction as introduced in the previous section.
In order to combine the outcome of the rules to one permission, the logical operators AND,
resp. OR. can be used. Because the XACML standard -as of version 1.1- does not support
the combining algorithms AND, reps. OR, they are defined by the GeoXACML extension as
introduced in this work. The combining algorithms are defined by the following URIs:

http://www.andreas-matheus.de/geoxacml/1.0/rule-combining-algorithm#and (4.13)
http://www.andreas-matheus.de/geoxacml/1.0/rule-combining-algorithm#or (4.14)

The outcome of the combining algorithms AND/OR depends on the outcome of the sub-
ordinate Rule constructs. Because the combining algorithms do not compute on binary values
(the rule’s outcome can be N/A, Permit, Deny or Indeterminate), a truth table must be de-
fined. The table 4.3 defines the combining algorithm’s outcome, based on the outcome of two
different rules (oR1 and oR2).

The semantics of these combining algorithms is explained in table 4.4. It is important to
note that Deny and N/A are interpreted as False and Permit is interpreted as True.

The support for the logical combining algorithms AND/OR in combination with the logical
Negation -as it is supported by the spatial condition- allows the declaration of advanced spatial
restrictions. The capabilities are extended by the possibility that the permission areas can
be a complex area.

Two simple examples of a complex spatial restriction is that Alice can read resource objects
of class Building that location is not Within the restricted area GP1 and not Within the

4.1 Declaration of Restrictions 79

oR1 oR2 oR1 ∧ oR2 oR1 ∨ oR2

N/A N/A N/A N/A

N/A Permit N/A Permit

N/A Deny N/A Deny

Permit Deny Indeterminate Indeterminate

Permit Permit Permit Permit

Deny Deny Deny Deny

Table 4.3: Truth table for the logical AND/OR combination of rule outcomes

Combining algorithm Semantics

or This combining algorithm determines the outcome of the policy,

based on the truth table 4.3. The outcome of the combining

algorithm is Indeterminate if the processing of at least one of the

subordinate rules results in an error.

and This combining algorithm determines the outcome of the policy,

based on the truth table 4.3. The outcome of the combining

algorithm is Indeterminate if the processing of at least one of the

subordinate rules results in an error.

Table 4.4: Semantics of the GeoXACML combining algorithms or and and

restricted area GP2:

P1 ={∗, ∗, ε, //∗, and,R1, R2}
R1 ={Alice, read, ε, //Building, C1} → Permit

C1 ={./location,¬Within,GP1}
R2 ={Alice, read, ε, //Building, C2} → Permit

C2 ={./location,¬Within,GP2}

A second simple example of a complex spatial restriction is that Alice can read resource
objects of class Building that location is either Within the restricted area GP1 or Within
the restricted area GP2:

P1 ={∗, ∗, ε, //∗, or, R1, R2}
R1 ={Alice, read, ε, //Building, C1} → Permit

C1 ={./location,Within, GP1}
R2 ={Alice, read, ε, //Building, C2} → Permit

C2 ={./location,Within, GP2}

80 4. Declaration and Enforcement of Access Restrictions

4.1.6 Declaration of General/Exceptional Restrictions

The support of positive and negative permissions allow to declare exceptions to general per-
missions in a very compact way. As an example, a class-based restriction defines the general
permissions that applies to all resource content objects of a class. Object-based and/or spatial
restrictions can declare the exceptional permissions to an existing class-based restriction as
they have the capability to make the rule apply to particular objects. In this respect, the
effect of the rules that declare the general and exceptional permission is typically different.
In order to distinguish this situation from a set of rules that declare contrary permissions,
the combining algorithm specific-general may be used. Then, the situation of an exceptional
permission can be declared by a sequence of rules, all subordinate to the same policy. The
last rule in the sequence defines the broadest matching, which represents the general per-
mission and all previous rules define a more specific matching, representing the exceptional
restrictions.

For example, the following restriction must be declared: Bob can read all objects of class
Building, but may not read the Building object with the address ’1600 Pennsylvania Avenue
NW, Washington, DC 20500’. The declaration requires one policy and two subordinate rules:

P1 = {∗, ∗, ε, //∗, specific-general, R1, R2}
R1 = {Bob, r, ε, C1} → Deny

C1 = {//Building, ./am:address,{”1600 Pennsylvania Avenue NW, Washington, DC 20500”}
R2 = {Bob, r, ε, //Building, ε} → Permit

Without knowing that the declared rules R1 and R2 define correlated permissions for a
general/specific restriction, this declaration can be misinterpreted as contrary permissions.
Therefore, the combining algorithm first-applicable (see table 2.5, page 48) cannot be used,
even it has the same processing logic.

4.2 Enforcement of Restrictions

In the infrastructure of distributed services, the resource content upon which an authorization
decision must be derived is dynamically created by the service parameters of the request. This
requires in general that the service request must be forwarded to the service and that the
response of the service is used to represent the resource content. Depending on the format
of the service output, it can directly be used for the resource content. For example, if the
service output is a binary map, it cannot be used for the resource content. But, if the service
output is marked-up in valid GML, it can be used as the resource content.

Under certain circumstances, the authorization decision can be based on the information
of the request. This decision process is illustrated in figure 4.1. The intercepted service re-
quest contains, beside the access control metadata, information about the service operation
and parameter to be used. Upon interception of the original request, the enforcement pro-
cess checks if an authorization decision can or must be derived from the service operation
parameters. If that is the case, the authorization decision is requested by the Authorization
Service. In case that the received result is Permit, the original access request is forwarded to
the service and the result is relayed to the requestor.

4.2 Enforcement of Restrictions 81

request authorization

decision from

decision process

Can an

authorization

decision be based on

the request?

request

received

 y
es

permit / deny

fetch response

from (geo)data

service

resource

content

no

Figure 4.1: Activity diagram of the specific enforcement process

Situations, where the authorization decision must be derived from the access request exist
with the Web Map Service, where no real object-oriented data model can be used to represent
the service result and where the service result can be in binary format; a binary map. Another
scenario, where the authorization decision must be derived from the request is for operations
that result in a modification of the resource repository. If an authorization decision cannot
be derived from the access request parameters, the Enforcement Service obtains the result
from the (geo)data service and keeps a temporary copy. This result represents the resource
content, upon which the authorization decision is derived. The resource content plus the
authorization metadata is therefore used to form a decision request. After the enforcement
service has received the authorization decision, the temporary copy of the service result is
either forwarded to the requestor (Permit case) or deleted and an error message is sent to the
requestor (Deny case).

It is quite obvious that much more processing is required if the authorization decision must
be based on the service response and not on the service request parameters. Chapter 5 presents
more details, how to evaluate the service parameters for the OGC Web Map Service and
Web Feature Service. The next subsections illustrate requirements for the resource content,
depending on the type of access restriction to be enforced.

4.2.1 Enforcement of Class-Based Restrictions

Class based restrictions refer to the structure of the resource content, marked-up in valid XML
or GML. A class-based restriction is expressed by an Xpath expression, which is the value of
the Resource element of a Rule construct. According to definition 2.15, page 43, a rule that
expresses a class-based restriction must be included into the authorization decision, if the
request subject matches the rule subject, the request operation matches the rule operation
and the rule resource is part of the request resource; the resource content.

The Resource element of a Rule that expresses a class-based restriction is an Xpath ex-
pression that references an XML tag, which represents the class of an information object. For
the enforcement, it is irrelevant if the resource content is comprised of one or multiple infor-
mation objects of that class. If at least one object of a class is present, the matching can take
place. Also, it is not compulsory that the information object is comprised of characterizing

82 4. Declaration and Enforcement of Access Restrictions

values. The sole existence is sufficient that an existing rule can be matched.

Based on these considerations, the resource content must not necessarily be created from
the actual service response. A template resource content can possibly be created from the
service request parameter. The template resource content is comprised of XML tags that
represent classes of information objects from the underlying object-oriented data model, ac-
cording to the GML application schema definition.

For example, the listings 4.1 and 4.2 show different resource contents from the City Model
example. The first resource content comprises of ’real’ information objects and the other
resource content of template objects.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <CityModel xmlns=”http://www.in.tum.de/am” xmlns:am=”http://www.in.tum.de/am”
3 xmlns:xlink=”http://www.w3.org/1999/xlink” xmlns:gml=”http://www.opengis.net/gml”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”http://http://www.in.tum.de/am CityModel.xsd” fid=”CityModel”>
6 <gml:boundedBy><gml:Box gid=”box1” srsName=”foo”>
7 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
8 <gml:coord><gml:X>6</gml:X><gml:Y>5</gml:Y></gml:coord>
9 </gml:Box></gml:boundedBy>

10 <gml:featureMember>
11 <Street fid=”StreetA”>
12 <name>Street of streets A,C</name>
13 <location srsName=”foo”>
14 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
15 </location>
16 </Street>
17 </gml:featureMember>
18 <gml:featureMember>
19 <Building fid=”HouseA”>
20 <address>3 Street A</address>
21 <shape srsName=”foo”>
22 <gml:outerBoundaryIs>
23 <gml:LinearRing>
24 <gml:coord><gml:X>−1</gml:X><gml:Y>2</gml:Y></gml:coord>
25 <gml:coord><gml:X>0</gml:X><gml:Y>2</gml:Y></gml:coord>
26 <gml:coord><gml:X>0</gml:X><gml:Y>3</gml:Y></gml:coord>
27 <gml:coord><gml:X>−1</gml:X><gml:Y>3</gml:Y></gml:coord>
28 <gml:coord><gml:X>−1</gml:X><gml:Y>2</gml:Y></gml:coord>
29 </gml:LinearRing>
30 </gml:outerBoundaryIs>
31 </shape>
32 <isOwnedBy xlink:role=”simple” xlink:href=”Alice”/>
33 </Building>
34 </gml:featureMember>
35 </CityModel>

Listing 4.1: Resource content example, comprising ’real’ information objects

Both actual resource content and the resource template match for the same class-based
restriction. Therefore, the use of a template resource content has one obvious advantage:
the size of the resource content can be reduced dramatically. Using the resource template
from listing 4.2 instead of the resource content from listing 4.1 reduces the size from 1179 to
434 bytes, which is a reduction of ≈ 63% (non-space characters). This has two positive side
effects. First, the transmission time of the authorization decision request, which is send from
the Enforcement Service to the Decision Service, is much faster. Also, -assuming the same
combining algorithm- the deriving of an authorization decision is faster, because the resource

4.2 Enforcement of Restrictions 83

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <CityModel xmlns=”http://www.in.tum.de/am” xmlns:am=”http://www.in.tum.de/am”
3 xmlns:xlink=”http://www.w3.org/1999/xlink” xmlns:gml=”http://www.opengis.net/gml”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”http://http://www.in.tum.de/am CityModel.xsd” fid=”CityModel”>
6 <gml:featureMember>
7 <Street/>
8 </gml:featureMember>
9 <gml:featureMember>

10 <Building/>
11 </gml:featureMember>
12 </CityModel>

Listing 4.2: Resource content example, comprising ’template’ information objects

content is not comprised of redundant objects. Altogether, the reduction of the size of the
resource content improves the overall processing time before an Enforcement Service receives
an authorization decision.

4.2.2 Enforcement of Object-Based Restrictions

In contrast to the class-based restrictions, the enforcement of the object-based restrictions
requires the resource content as it is generated by the service. This is because the object-
based access restrictions relies on characteristics of object instances, such as the name or the
address, as they cannot be created from the GML application schema.

4.2.3 Enforcement of Spatial Restrictions

In order to enforce spatial restrictions, the Access Control System must be able to determine,
which Rule constructs applies to a given resource content. This is based on the geometry
of the resource objects, comprising the resource content. The geometry encoding depends
on the used Coordinate Reference System. Therefore, it must be ensured that a rule only
matches those requests, where the geometry of the resource content objects is equivalent to
the CRS, used to encode the permission geometry. With XACML, two options exist to control
that matching: (i) Explicit encoding as an attribute value pair in the authorization decision
request or (ii) based on the GML encoding of the resource object geometry.

The explicit encoding as an attribute value gives the opportunity of using the rule’s re-
source matching element RMR. This matching has the advantage that the applicability of the
rule can be determined without evaluating the resource content. However, the Enforcement
Service must know the CRS of the resource content. This is not a problem if the CRS is a
request parameter. But, if the CRS is not a request parameter, it requires the processing and
interpretation of the given resource content.

For all requests, where the used CRS is not encoded as an explicit attribute value, the
processing of the Condition must provide the capabilities to verify the equivalence of the used
CRSs.

Spatial restrictions can be encoded by using different topological relations between the
permission and the resource object geometry. In order to illustrate the applicability of a

84 4. Declaration and Enforcement of Access Restrictions

spatial restriction, different categories can be specified that are based on the dimension of
resource geometry. For this access control model, the dimension of the permission geometry
(GP) is 2D (dim(GP)=2) and the dimension of the resource geometry (GR) is either 0D, 1D
or 2D (dim(GR)∈ {0,1,2}.

Category one comprises all situations for a 0D resource geometry (dim(GR)=0). Respec-
tively, category two comprises of all situations for the 1D resource geometry (dim(GR)=1) and
category three contains all situations for the 2D resource geometry (dim(GR)=2). For each
situation in each category, the topological relation between the resource and the permission
geometry can be identified by using spatial methods. The spatial methods have the charac-
teristics that they take two arguments: The first argument represents the resource geometry
(GR) and the second argument represents the permission geometry (GP). The spatial meth-
ods return a boolean value: True if the topological relationship, represented by the spatial
method is satisfied; False otherwise. A method may also return False if used inappropriate
as stated in table 4.5.

Equals(GR,GP) The geometries are topological equal

Disjoint(GR,GP) The geometries have no point in common

Intersects(GR,GP) The geometries have at least one point in common

Touches(GR,GP) The geometries have at least one boundary point in common, but no
interior points

Crosses(GR,GP) The geometries share some but not all interior points and the dimension
of the resource geometry is 1D6 (dim(GR) ≡ 1).

Within(GR,GP) Geometry GR lies in the interior of geometry GP

Overlaps(GR,GP) The geometries share some but not all points in common and the inter-
section has the same dimension as the geometries themselves (dim(GR) = dim(GP))

From the spatial methods (SM), a seven-valued spatial method vector −→sm can be con-
structed

−→sm =



Equals(GR, GP)
Disjoint(GR, GP)

Intersects(GR, GP)
Touches(GR, GP)
Crosses(GR, GP)
Within(GR, GP)

Overlaps(GR, GP)



T

(4.15)

Because the spatial methods return either True or False, an instance of the spatial method
vector (−→smI) can be interpreted as a Boolean tuple that characterizes a particular topological
relationship. Because not all spatial methods can be used for all combinations of request and
permission geometry dimensions, the tuple can also contain the value ε, expressing that this

6Based on the dimension of the permission geometry, which is 2D.

4.2 Enforcement of Restrictions 85

spatial method is inappropriate for testing. Which methods are appropriate, resp. inappro-
priate is stated in table 4.5.

−→smI = {sm1, sm2, sm3, sm4, sm5, sm6, sm7}, smi ∈ {0, 1, ε}7 (4.16)

Method dim(GR)=0 dim(GR)=1 dim(GR)=2

Equals(GR,GP) N/A, because

dim(GP) 6= dim(GR)

N/A, because

dim(GP) 6= dim(GR)

Applicable

Disjoint(GR,GP) Applicable Applicable Applicable

Intersects(GR,GP) Applicable Applicable Applicable

Touches(GR,GP) Applicable Applicable Applicable

Crosses(GR,GP) N/A, because

dim(GP) 6= dim(GR)

Applicable N/A, because

dim(GP)=dim(GR)

Within(GR,GP) Applicable Applicable Applicable

Overlaps(GR,GP) N/A, because a 0D

geometry can not

overlap with a 2D

geometry

N/A, because a 1D

geometry can not

overlap with a 2D

geometry

Applicable, because

two 2D geometries

can overlap

Table 4.5: Which spatial methods can be used to determine a particular topological method
for dim(GP) = 2 and dim(GR) ∈ {0,1,2}

Category 1: 0D Request Geometry, 2D Permission Geometry

All identified spatial method vectors (−→smI) for dim(GR)=0 are listed in this section. According
to table 4.5, the usage of the spatial methods Equals, Crosses and Overlaps are inappropriate.
The resulting spatial method vector has the following pattern:

−→smI,1 = {ε, sm2, sm3, sm4, ε, sm6, ε} (4.17)

The resource geometry is 0D (e.g. Point) and the permission geometry is characterized by
a Polygon with zero, one or multiple holes. If the permission geometry is hole-free, the cases
1b and 1d do not apply. All possible situations and their spatial method tuples are illustrated
in figures 4.2 to 4.6.

Situation 1a, 1b: In this situation, the resource geometry is outside of the permission ge-
ometry (see 4.2, 4.3). This can be detected by the spatial method vector

−→smI,1a = −→smI,1b = {ε, 1, 0, 0, ε, 0, ε} (4.18)

7O is equivalent to the Boolean value False and 1 is equivalent to the Boolean value True.

86 4. Declaration and Enforcement of Access Restrictions

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.2: Situation 1a: GR is outside of
GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.3: Situation 1b: GR is inside the
hole of GP

Situation 1c, 1d: In this situation, the resource geometry is located on the inner/outer
boundary of the permission geometry (see 4.4, 4.5). This can be detected by the spatial
method vector

−→smI,11c = −→smI,11d = {ε, 0, 1, 1, ε, 0, ε} (4.19)

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.4: Situation 1c: GR is on the
outer boundary of GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.5: Situation 1d: GR is on the
inner boundary of GP

Situation 1e: In this situation, the request is located in the ring of the permission geometry
(see 4.6). This can be detected by the spatial method vector

−→smI,1e = {ε, 0, 1, 0, ε, 1, ε} (4.20)

Category 2: 1D Request Geometry, 2D Permission Geometry

All identified method tuples (−→smI) for dim(GR)=1 are listed in this section. According to
table 4.5, the usage of the spatial methods, Equals and Overlaps are inappropriate. The
resulting method tuple has the following pattern:

−→smI,2 = {ε, sm2, sm3, sm4, sm5, sm6, ε} (4.21)

4.2 Enforcement of Restrictions 87

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.6: Situation 1e: GR is inside the ring of GP

The resource geometry is 1D (e.g. Line or LineString) and the permission geometry is
characterized by a Polygon with zero, one or multiple holes. If the permission geometry is
hole-free, the cases 2b, 2d, 2f, 2h, 2k, 2l and 2m do not apply. All other situations and their
spatial method vectors are illustrated in figures 4.7 to 4.19.

Situation 2a, 2b: In this situation, the resource geometry is located completely outside the
permission geometry or inside the hole (see 4.7, 4.8). This can be detected by the spatial
method vector

−→smI,2a = −→smI,2b = {ε, 1, 0, 0, 0, 0, ε} (4.22)

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.7: Situation 2a: GR is outside of
GP

(2,3)

(2.5,3)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.8: Situation 2b: GR is inside the
hole of GP

Situation 2c, 2d: In this situation, the resource geometry is located completely outside
the permission geometry or inside the hole, but is touching the permission outer/inner
boundary with one start/end point of the LineString (see 4.9, 4.10). This can be detected
by the spatial method tuple

−→smI,2c = −→smI,2d = {ε, 0, 1, 1, 0, 0, ε} (4.23)

88 4. Declaration and Enforcement of Access Restrictions

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.9: Situation 2c: GR is outside
but touching GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.10: Situation 2c: GR is inside the
hole but touching GP

Situation 2e, 2f: In this situation, the resource geometry is located on the permission out-
er/inner boundary (see 4.11, 4.12). This can be detected by the spatial method vector

−→smI,2e = −→smI,2f = {ε, 0, 1, 1, 0, 0, ε} (4.24)

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.11: Situation 2e: GR is on the
outer boundary of GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.12: Situation 2f: GR is on the
inner boundary of GP

Situation 2g, 2h: In this situation, the resource geometry is located in the ring of the
permission geometry. However, the resource geometry and the permission boundary
have one point in common (see 4.13 and 4.14). This can be detected by the spatial
method vector

−→smI,2g = −→smI,2h = {ε, 0, 1, 0, 0, 1, ε} (4.25)

Situation 2i: In this situation, the resource geometry is located in the ring of the permission
geometry (see 4.15). This can be detected by the spatial method tuple

−→smI,2i = {ε, 0, 1, 0, 0, 1, ε} (4.26)

4.2 Enforcement of Restrictions 89

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.13: Situation 2g: GR is inside the
ring but touching GP on the outer bound-
ary

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.14: Situation 2h: GR is inside the
ring but touching GP on the outer bound-
ary

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.15: Situation 2i: GR is inside the ring of GP

Situation 2j, 2k: In this situation, the resource geometry is partly located in the ring of
the permission geometry (see 4.16, 4.17). This can be detected by the spatial method
vector

−→smI,2j = −→smI,2k = {ε, 0, 1, 0, 1, 0, ε} (4.27)

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.16: Situation 2j: GR crosses GP’s
outer boundary

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.17: Situation 2k: GR crosses
GP’s inner boundary

90 4. Declaration and Enforcement of Access Restrictions

Situation 2l, 2m: In this situation, the resource geometry is crossing the permission geom-
etry (see 4.18, 4.19). This can be detected by the spatial method tuple

−→smI,2l = −→smI,2m = {ε, 0, 1, 0, 1, 0, ε} (4.28)

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.18: Situation 2l: GR crosses GP’s
inner and outer boundary

Request Geometry (G
R
)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Figure 4.19: Situation 2m: GR crosses
GP’s inner and outer boundary

Category 3: 2D Request Geometry, 2D Permission Geometry

All identified method tuples (−→smI) are valid for dim(GR)=2. According to the table 4.5, the
usage of the spatial method Crosses is not appropriate here. This results in the spatial method
vector pattern

−→smI,3 = {sm1, sm2, sm3, sm4, ε, sm6, sm7} (4.29)

The resource geometry is 2D (e.g. Polygon) and the permission geometry is characterized
by a Polygon with zero, one or multiple holes. If the permission geometry is hole-free, the
cases 3b, 3d, 3f, 3h, 3j, 3m, 3n, 3p, 3q and 3s do not apply. For all other cases, possible
methods are illustrated8 in figures 4.20 to 4.34.

Situation 3a, 3b: In this situation, the resource geometry is located completely outside the
permission geometry or inside the hole (see 4.20, 4.21). This can be detected by the
spatial method vector

−→smI,3a = −→smI,3b = {0, 1, 0, 0, ε, 0, 0} (4.30)

Situation 3c, 3d: In this situation, the resource geometry is located completely outside
the permission geometry or inside the hole, but touching the permission outer/inner
boundary with one point (see 4.22, 4.23). This can be detected by the spatial method
vector

−→smI,3c = −→smI,3d = {0, 0, 1, 1, ε, 0, 0} (4.31)

8Situations 3q, 3r and 3s are not illustrated.

4.2 Enforcement of Restrictions 91

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.20: Situation 3a: GR is outside
of GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.21: Situation 3b: GR is inside the
hole of GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.22: Situation 3c: GR is outside
but touching GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.23: Situation 3d: GR is inside the
hole but touching GP

Situation 3e, 3f: In this situation, the resource geometry is completely outside the permis-
sion geometry or inside the hole, but one boundary of the resource geometry is located
on the outer- or inner-boundary of the permission geometry (see 4.24, 4.25). This can
be detected by the spatial method tuple

−→smI,3e = −→smI,3f = {0, 0, 1, 1, ε, 0, 0} (4.32)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.24: Situation 3e: GR is outside
but touching GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.25: Situation 3f: GR is inside the
hole but touching GP

92 4. Declaration and Enforcement of Access Restrictions

Situation 3g, 3h: In this situation, the resource geometry is located in the ring of the
permission geometry. However, the resource geometry and the permission boundary
have one point in common (see 4.26, 4.27). This can be detected by the spatial method
vector

−→smI,3g = −→smI,3h = {0, 0, 1, 0, ε, 1, 0} (4.33)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.26: Situation 3g: GR is inside the
ring but touching GP on the outer bound-
ary

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.27: Situation 3g: GR is inside the
ring but touching GP on the inner bound-
ary

Situation 3i, 3j: In this situation, the resource geometry is located in the ring of the permis-
sion geometry. However, the resource geometry and the permission boundary have one
line segment in common (see 4.28, 4.29). This can be detected by the spatial method
vector

−→smI,3i = −→smI,3j = {0, 0, 1, 0, ε, 1, 0} (4.34)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.28: Situation 3i: GR is inside the
ring but touching GP on the outer bound-
ary

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.29: Situation 3j: GR is inside the
ring but touching GP on the inner bound-
ary

Situation 3k: In this situation, the resource geometry is located completely in the ring of
the permission geometry (see 4.30). This can be detected by the spatial method tuple

−→smI,3k = {0, 0, 1, 0, ε, 1, 0} (4.35)

4.2 Enforcement of Restrictions 93

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.30: Situation 3k: GR is inside the ring of GP

Situation 3l, 3m: In this situation, the resource geometry is overlapping the permission
geometry (see 4.31, 4.32). This can be detected by the spatial method tuple

−→smI,3l = −→smI,3m = {0, 0, 1, 0, ε, 0, 1} (4.36)

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.31: Situation 3l: GR is overlap-
ping GP on the outer boundary

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.32: Situation 3m: GR is overlap-
ping GP on the inner boundary

Situation 3n, 3o: In this situation, the resource geometry is overlapping the permission
geometry (see 4.33, 4.34). This can be detected by the spatial method tuple

−→smI,3n = −→smI,3o = {0, 0, 1, 0, ε, 1, 0} (4.37)

Situation 3p: In this situation, the resource geometry is equal to the permission geometry.
This can be detected by the spatial method tuple

−→smI,3p = {1, 0, 1, 0, ε, 1, 0} (4.38)

Situation 3q: In this situation, the resource geometry is equal to the outer boundary of
the permission geometry; the resource geometry does not have the hole. This can be
detected by the spatial method tuple

−→smI,3q = {0, 0, 1, 0, ε, 0, 0} (4.39)

94 4. Declaration and Enforcement of Access Restrictions

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.33: Situation 3n: GR is overlap-
ping GP

Permission Geometry (G
P
)

y

0

1

2

3

4

5

x

1
 2
 3
 5
4
 6
 7
 8
 9
 10
0

Request Geometry (G
R
)

Figure 4.34: Situation 3o: GR is overlap-
ping GP

Situation 3r: In this situation, the resource geometry is equal to the inner boundary of the
permission geometry; the request geometry is equal to the hole. This can be detected
by the spatial method tuple

−→smI,3s = {0, 0, 1, 1, ε, 0, 0} (4.40)

4.3 Visualization of Access Restrictions

The visualization of access restrictions is an important support for the policy writer to un-
derstand the declared permissions. The different kinds of permissions can be visualized in
different ways. The class- and object-based restrictions can be visualized as a tree (see 3.3,
page 67). In addition, the spatial permissions can be visualized as a map, expressing their
geospatial nature.

4.3.1 Visualization of the Permission Hierarchy

The declaration of permissions is based on the hierarchy as defined by XACML. The hierarchy
can contain one or more different PolicySet levels, one Policy level, one Rule level and one Con-
dition level. For each permission, a specific matching for requests determines its applicability.
The combining algorithm of a PolicySet or Policy construct defines if one or all subordinate
constructs must be evaluated, in order to derive an authorization decision.

The use of a combining algorithm that uses the effect of the first matching Rule -hence
one rule- are first-applicable, only-one-applicable and specific-general. This processing behavior
can be visualized as an OR-tree: The PolicySet or Policy construct is the root node, from
which edges go to the subordinate constructs.

In contrast to the previously stated combining algorithms, the following combining al-
gorithms process each subordinate permission, in order to derive an authorization decision:
deny-overrides, permit-overrides, ordered-deny-overrides, ordered-permit-overrides, and and or.
This processing behavior can be visualized as an AND-tree: The PolicySet or Policy construct
is the root node, from which edges go to the subordinate constructs.

In order to illustrate the visualization, lets use the following example permission tree that

4.3 Visualization of Access Restrictions 95

defines on PolicySet, two Policy constructs, using different combining algorithms. Each Policy
has subordinate rules with spatial conditions:

PS = {∗, ∗, ε, //∗,deny-overrides, P1, P2}
P1 = {∗, ∗, ε, //Building,first-applicable, R11, R12}
P2 = {∗, ∗, ε, //Street,first-applicable, R21, R22}

R11 = {Bob,write, ε, //Building, C11} → Permit

C11 = {./am:shape,Within, {foo,3 1,11 2,15 5,15 10,4 15,1 2,3 1}}
R12 = {Alice, write, ε, //Building, C12} → Deny

C12 = {./am:shape,Within, {foo,10 2,15 1,20 5,20 15,8 11,10 2}}
R21 = {∗, ∗, ε, //Street, C21} → Deny

C21 = {./am:shape,Within, {foo,10 1,12 20,25 10,30 5,25 3,10 1}}
R22 = {∗, ∗, ε, //Street, C22} → Deny

C22 = {./am:shape,Within, {foo,10 10,15 5,25 5,25 20,10 10}}

{*,*, ,//*}

P1

R11 -> Permit

C11=Within(shape, {foo,

3 1,11 2,15 5,15 10,4 15,1 2,3 1})

first-applicable

PS

{*
,*,

 ,//
Buil

din
g}

P2

{*,*, ,//Street}

R21 -> Deny

{*,*, ,//Street}

C21=Within(shape, {foo,

10 1,12 20,25 10,30 5,25 3,10 1})

R12 -> Deny

C12=Within(shape, {foo,

10 2,15 1,20 5,20 15,8 11,10 2})

{Alice,write, ,//Building}

first-applicable

{Bob,write, ,//Building}

deny-overrides

R22 -> Deny

C22=Within(shape, {foo,

10 10,15 5,25 5,25 20,10 10})

{*,*, ,//Street}

Figure 4.35: Visualization of an example permission tree

Figure 4.35 shows an AND-tree that starts at the top level PolicySet. This is because the
PolicySet PS uses the combining algorithm deny-overrides. Both subordinate Policy constructs
use the combining algorithm first-applicable. The visualization of their subordinate rules can
take place as OR-trees.

In respect, helping the policy writer to understand the declared permissions, such a tree
representation can be used to illustrate the different kinds of errors as they are introduced

96 4. Declaration and Enforcement of Access Restrictions

in this work: unreachable, incorrect or incomplete permissions. In order to do so, different
coloring can be used to illustrate the different kinds of errors. Even different classifications of
errors are possible by simply changing the color of edges and nodes. Examples for illustrating
different kinds of permission errors are provided in later sections.

A tree visualization can not only be used to show existing permissions, but also be used
to edit, create or delete permissions. In order to do so, the supporting application must have
the capabilities to create native XACML constructs from the tree representation.

4.3.2 Visualization of Spatial Restrictions

Spatial access restrictions are naturally suitable to be represented as a map. The spatial
conditions can be rendered according to the permission geometry, using different line styles
for representing the different spatial relations (2.2.3, page 21). The matching criteria of the
spatial condition and the effect of the superordinate rule can be printed on the outer borderline
of the permission geometry.

Figure 4.36 shows the different line styles for the defined spatial relations. The spatial re-
lation Within is represented by a line with vertical fringes to the inside; Touches is represented
by a line with filled points; Crosses is represented by a line with vertical fringes that cross the
line; Equals is represented by a thin line on a brighter bold line; Overlaps is represented by a
line with crossing and solid diamonds; Disjoint is represented by a line with filled diamonds on
the outside of the line; Intersects is represented by a zig-zag line. The rendering of the outer
boundary and inner boundary/boundaries of a complex restriction area (Surface with holes)
for the spatial relation Within, the figs must show in the appropriate direction: The figs of
the inner boundaries must point to the outer boundary and the figs of the outer boundary
must point toward the inner boundary/boundaries.

Within
 Crosses
 Equals
Overlaps
 Touches
 Disjoint
 Intersects

Figure 4.36: Line styles for rendering spatial restricted areas

The encoding of spatial permissions that use the negation of a defined spatial relation
can be visualized, using the line styles as illustrated in figure 4.37. The spatial relation
¬Within is represented by a line with vertical negation symbols9 to the inside; ¬Touches is
represented by a line with unfilled points; ¬Crosses is represented by a line with the logical
negation symbols (¬) crossing the line; ¬Equals is represented by a line that is comprised of
negation (¬) symbols; ¬Overlaps is represented by a line with crossing and unfilled diamonds;
¬Disjoint is represented by a line with unfilled diamonds on the outside of the line; ¬Intersects
is represented by a zig-zag line on the outside of the borderline. The rendering of the outer
boundary and inner boundary/boundaries of a complex restriction area (Surface with holes)

9In order to avoid confusion with the semantics of outside, this visualization is used.

4.3 Visualization of Access Restrictions 97

for Within and ¬Within, the figs must show in the appropriate direction: The figs of the inner
boundaries must point to the outside and the negation symbols of the outer boundary must
point toward the inside.

NOT Within
 NOT Crosses
 NOT Equals
NOT Overlaps
 NOT Touches
 NOT Disjoint
 NOT Intersects

Figure 4.37: Line styles for rendering negative spatial restricted areas

Using these visualization conventions, the following spatial example restrictions can be
displayed as a map, as shown in figure 4.38 and 4.39.

R1 ={Bob, read, foo, //am:Building, C1} → Permit

C1 ={./am:shape,Within, {foo,0 0,9 0,9 4,0 4,0 0}}

R2 ={Bob, read, foo, //am:Building, C2} → Permit

C2 ={./am:shape,¬Within, {foo,0 0,9 0,9 4,0 4,0 0}}

For condition C1, the permission geometry is represented as a simple surface where the
borderline is rendered by the line with vertical fringes to the inside, representing the spatial
relation Within (figure 4.38). For condition C2, the permission geometry is represented as a
simple surface where the boundary line is rendered by the line with vertical negation symbols
to the inside, representing the spatial relation ¬Within (figure 4.39). For both permissions,
the matching conditions of the associated rule, the outcome and the resource object matching
is printed on the outer borderline.

./shape

(0,0)
 (9,0)

(9,4)
(0,4)
 {Bob,read, ,//Building}
 Permit

Figure 4.38: Visual representation of the
spatial example permission R1 and C1, us-
ing the spatial relation Within

./shape

(0,0)
 (9,0)

(9,4)
(0,4)
 {Bob,read, ,//Building}
 Permit

Figure 4.39: Visual representation of the
spatial example permission R2 and C2, us-
ing the spatial relation ¬Within

98 4. Declaration and Enforcement of Access Restrictions

4.3.3 Visualization of Combined Spatial Restrictions

The need for the visualization of combined spatial restrictions come from different spatial
permissions, being comprised in a permission tree. As stated earlier, a permission tree can
have OR- and/or AND-branches, depending on the used combining algorithms in a PolicySet
or Policy.

The combined visualization of all spatial permissions of a permission tree can be achieved
by visualizing the individual spatial restrictions as illustrated before. In order to reflect the
different processing of AND- and OR-branches of a permission tree, a layered map can be
used.

• The spatial conditions of an AND-branch potentially apply to the same request. The
corresponding visual representations of the spatial permissions are therefore drawn on
the same layer.

• The spatial conditions of an OR-branch do not all have effect on the deriving of an
authorization decision. Just one of the rules is being used. Therefore, the spatial
conditions of an OR-branch can be drawn in a multi-layer map. Each layer contains the
spatial condition of one OR-branch.

In order to illustrate the visualization for an AND-branch, the following example shall be
used:

P1 = {. . . , . . . , . . . , . . . ,deny-overrides, R11, R12, R13}
R11 = {. . . , . . . , . . . , . . . , C11} → Permit

C11 = {. . . , Within, {foo, 3 1,11 2,15 5,15 10,4 15,1 2,3 1}}
R12 = {. . . , . . . , . . . , . . . , C12} → Permit

C12 = {. . . , Within, {foo, 10 2,15 1,20 5,20 15,8 11,10 2}
R13 = {. . . , . . . , . . . , . . . , C13} → Permit

C13 = {. . . , Within, {foo, 12 8,17 17,7 20,12 8}}

In figure 4.40, the permission hierarchy for the previous permission constructs is shown10.
Figure 4.41 shows the visualization of the spatial conditions, declared in C11, C12 and C1311.
Because the spatial conditions belong to an AND-tree, all permission geometries are drawn
in the same layer (layer 1).

In order to illustrate the visualization of an OR-branch, the following example shall be

10The matching conditions are omitted for simplicity.
11The use of the introduced visualization is omitted for readability.

4.3 Visualization of Access Restrictions 99

P1

R11 ->

Permit

R12 ->

Permit

R13 ->

Permit

C11
 C12
 C13

deny-overrides

Figure 4.40: Illustrating a permission-tree
for a Policy construct that uses the com-
bining algorithm deny-overrides

C21

Y

C11

C31

la
ye

r

CRS=foo

X

1

Figure 4.41: Visualization of the spa-
tial conditions of the example AND-graph
from the figure to the left

used:

P2 = {. . . , . . . , . . . , . . . ,first-applicable, R21, R22, R23}
R21 = {. . . , . . . , . . . , . . . , C21} → Permit

C21 = {. . . , Within, {foo, 3 1,11 2,15 5,15 10,4 15,1 2,3 1}}
R22 = {. . . , . . . , . . . , . . . , C22} → Permit

C22 = {. . . , Within, {foo, 10 2,15 1,20 5,20 15,8 11,10 2}
R23 = {. . . , . . . , . . . , . . . , C23} → Permit

C23 = {. . . , Within, {foo, 12 8,17 17,7 20,12 8}}

In figure 4.42, the permission hierarchy for the following permission constructs is shown12.
Figure 4.43 shows the visualization of the spatial conditions, declared in C21, C22 and C2313.
Because the spatial conditions belong to an OR-tree, each permission geometry is drawn on
a separate layer (layers 1 to 3).

P2

R21 ->

Permit

R22 ->

Permit

R23 ->

Permit

C21
 C22
 C23

first-applicable

Figure 4.42: Illustrating a permission-tree
for a Policy construct that uses the com-
bining algorithm first-applicable

la
ye

r

CRS=foo

X

Y

C21

C22

C23

1

2

3

Figure 4.43: Visualization of the spatial
conditions of the example OR-graph from
the figure to the left

12The matching conditions are omitted for simplicity.
13The use of the introduced visualization is omitted for readability.

100 4. Declaration and Enforcement of Access Restrictions

According to these conventions, the visualization of all spatial restrictions of a permission
tree requires in general a multi-layered map. The number of required layers and which spatial
conditions must be drawn together on the same layer, can be determined from the permission
tree that potentially can contain one or multiple AND- and/or OR-subtrees: The permission
tree can be represented as an equation, using the multiply (•) and plus (+) symbols. Each
AND-branch of two or more permissions can be presented as a multiplication of the branches.
Each OR-branch of two or more permissions can be presented as an addition.

For example, a PolicySet PS is the root node and defines an AND-branch to the direct
subordinate policies P1 and P2, then PS can be represented as PS = P1 • P2. In the
same manner, an OR-branch can be represented as an addition of the direct subordinate
permissions. For example, the Policy P1 that has two direct subordinate rules R11 and R12,
which can be represented as P1 = R11 + R12. After creating all equations, a recursive
replacement can take place, starting at the root node of the permission tree and ending at the
leaves that represent a spatial condition. In order to know the number of required layers, the
final equation of the tree must be in a form, similar to the disjunctive form: The permission
tree can be represented by the form Term1 + Term2 + · · · + Termn. The number n represents
the required number of layers. Each term consists of a spatial conditions that must be drawn
on the same layer. For example, Term1 = C11 • C12 requires to draw the spatial restrictions
C11 and C12 on the same layer: Layer 1 for the example.

In order to illustrate that approach, lets use the permission tree from figure 4.35. The root
of the permission tree is PS. It is also the root node of an AND-branch with direct subordinate
policies P1 and P2. This can be represented as PS = P1 • P2. The policy constructs P1
and P2 define an OR-tree. This results in the following representations: P1 = R11 + R12
and P2 = R21 + R22. Because each rule has just one spatial condition, P1 and P2 can be
represented as P1 = C11 + C12 and P2 = C21 + C22 by substituting the rules with the
spatial conditions. Substituting the equations P1 and P2 into the equation for PS results in
the following equation: PS = (C11 + C12) • (C21 + C22). Multiplying out the parenthesis
results in the desired form: PS = C11 • C21 + C11 • C22 + C12 • C21 + C12 • C22. As
the result denotes, the visualization requires four different layers: Layer 1 keeps the spatial
conditions C11 and C21, layer 2 keeps C11 and C22, layer 3 keeps C12 and C21 and layer 4
keeps C12 and C22. The resulting graphical representation of this permission tree is shown
in figure 4.44.

Even the approach is illustrated for just one example, it is possible to transform any per-
mission tree into the required form by applying basic mathematics. For example, exchanging
the combining algorithms PS and P1 would result in the following equations14: PS = P1+P2,
P1 = R11•R12, P2 = R21+R22. Substituting P1 and P2 -and the spatial conditions- results
in the equation PS = C11 • C12 + C21 + C22. The corresponding visualization requires 3
layers: Layer 1 contains C11 and C12, layer 2 contains C21 and layer 3 contains C22.

4.3.4 Remarks to the Visualization

The introduced model does not allow the definition of complex rule conditions, using more
than one permission geometry for encoding a spatial restriction and more than one spatial
relation. However, the model supports the use of complex surfaces, which already represents

14The combining algorithm of PS is first-applicable and of P1 is deny-overrides now.

4.4 Approximate Detection of Inconsistent Permissions 101

 C21

 C22

C12

C22
C11

C21

la
ye

r

Y

CRS=foo
 X

C11

C12

1

2

3

4

Figure 4.44: Visualization of spatial permissions, as a multi-layered map

a complex spatial condition. Due to this limitation, it is not possible that additional AND-
and/or OR-trees result from the spatial conditions itself.

The visualization of the spatial restrictions does not consider the declared matching. The
introduced visualization supports the policy writer to realize, which permissions are associated
to which areas. Because the map of all spatial permissions of a permission tree can become
quite complex and very confusing, a visualization tool may support the on/off-switching of
layers. In such a way, the policy writer can select the branches of interest. In addition,
the visualization may support the selection of specific areas of interest. The combination of
selecting the area of interest and the layers of concern can improve the significance of the
visualization.

4.4 Approximate Detection of Inconsistent Permissions

The approximation of inconsistent access permissions does not require the knowledge about
existing subjects, operations and resources. The approximation evaluates the used matching
of policy sets, policies and rules. The approximation results in a classification that indicates
potential inconsistencies. The information can be used to annotate the visualization in order
to direct the policy writer to the potential cause. The simplest cause of inconsistent permis-
sions is the misspelling of matching expressions, the use of wrong combining algorithms or
erroneous structuring of permission encodings. However, the information is not sufficient to
instruct the policy writer how to fix a problem. The exact detection of inconsistent permis-
sions, as illustrated in sections 4.5.1, 4.5.2 and 4.5.3 is based on the knowledge of possible

102 4. Declaration and Enforcement of Access Restrictions

subjects, existing operations and available resource objects. Only this allows to determine
concrete information for a policy writer to correct any existing problems.

Different inconsistencies can exist in a set of declared access permissions: unreachable,
incomplete and incorrect permissions.

Unreachable permissions express the constellation that a superordinate permission declares
a matching in such a way that the subordinated permission is never reached. This means
that for a given permission tree not all nodes can be reached. The unreachable per-
missions do not have effect on the authorization decision and are therefore unnecessary.
Their existence simply make the permission repository unnecessarily large and com-
plicated. However, they can influence the deriving of an authorization decision if the
permission structure or the matching changes.

Incomplete permissions express the constellation that not all possible requests are matched.
For the all-explicit declaration strategy, the existence of incomplete permissions represent
the error case, where an authorization decision results in N/A. For the all-deny or all-
permit declaration strategy, the existence of incomplete permissions result in a wrong
enforcement, because the N/A authorization decision is interpreted as additional (not
declared) accept or block of the request. For an error-free enforcement, it is therefore
essential to detect their existence.

Contrary permissions express the constellation that at least two permissions match for the
same request, but with different effects: One declares the effect Deny and the other
Permit. It is important to detect the incorrect permissions, because their existence
bare potential error, which can not be accepted. For the introduced types of access
restrictions, two different constellations can exist: At least two permissions match the
same subject, operation and resources and their effect is different. This constellation is
to be corrected.

The other constellation expresses a general permission and a specific permission. This
constellation can be detected if one permission matches a subset of the resources from
the other permission and the combining algorithm specific-general is being used. This
constellation must not be corrected, because it is intended by the policy writer.

The introduced model for expressing class-based, object-based and spatial restrictions
uses XACML for the encoding and processing. This allows the subject, operation and re-
source matching based on attribute value pairs. For the resources, an additional matching
based on Xpath expressions is possible for the resource content. XACML defines a Target
element for the permission constructs PolicySet, Policy and Rule. The Target element holds
the Subject, Operation and Resource elements, which provide the matching expressions. In ad-
dition, the Rule can contain a Condition element that defines additional matching constraints
for the subject, operation, resource or even environment attributes. This section restricts
the capabilities of the Condition to restrict the matching effective for the resource content.
This assumption still allows the declaration of object-based and spatial restrictions, because
the condition is used to restrict the applicability of the rule based on object’s spatial and
non-spatial characteristics.

For the approximation of an inconsistent constellation, it is essential to declare the essential
matching condition. This is based on the matching expression of the Target element. Without

4.4 Approximate Detection of Inconsistent Permissions 103

a request, the matching criteria for subject, operation and resource of the Target elements from
different permissions are evaluated against each other. If the essential condition is satisfied
by two different permissions, the Condition must be evaluated in order to fetch additional
information.

This chapter provides a systematic approximation for the class-based, object-based and
spatial restrictions. But before, the matching for resource objects based on the Xpath ex-
pression is introduced.

4.4.1 The Essential Test Conditions

As mentioned earlier, the essential condition for inconsistent permissions is that at least
two different permissions are applicable to the same request. This can be determined upon
the matching conditions of the Subject, Operation, Resource and Resource Content elements.
Because no information about the possible requests (subjects, operations, resource attributes
and resource objects) is available, the test must evaluate the matching conditions of the
declared permissions.

Sub/Superordinate Relation between Permissions

For the detection of inconsistent permissions, the relationship between permissions is impor-
tant. In particular, which policies are comprised in a policy set and which rules are comprised
in a policy. This can be defined, using the introduced tree representation (3.3, page 67) in
the following way: A PolicySet is superordinate to a Policy if a path exists from the PolicySet
to the Policy that has the distance one (1). In the same manner, a Policy is superordinate to
a rule if a path exist with the distance one (1). This super/subordinate relationship between
a Rule and a Policy, resp. a Policy and a PolicySet can be defined by the subordinate operator
(6) :

Rule 6 Policy 6 PolicySet (4.41)

Because the 6 operator is transitive, a Rule is also subordinate to a PolicySet. Then, the
distance from the PolicySet to the Rule is two (2).

Rule 6 PolicySet (4.42)

The relationship also expresses the relation that the PolicySet is superordinate to Policy,
the Policy is superordinate to Rule and therefore the PolicySet is superordinate to Rule.

Subject, Operation and Resource Matching

The introduced model supports the use of attribute value pair matching in order to find
an applicable permission. This matching actually takes place between the SM, OM and
RM expressions of a permission and a request. Because no request is available, matching
expressions of permissions must be checked for correlation. Such an evaluation is required on
all levels of the permission tree: PolicySet, Policy and Rule.

104 4. Declaration and Enforcement of Access Restrictions

For simplicity, it is assumed that the matching expressions are defined for the same at-
tribute. For example, two permissions use the subject attribute id for matching a subject.
Then, two permissions match to the same request based the subjects or operations if their
matching expressions satisfy the conditions, enumerated in table 4.6.

Type SM1 Type SM2 Condition

String String The condition is satisfied if both matching expressions are iden-

tical: SM1 ≡ SM2.

String Reg. expr. The condition is satisfied if the string S1 is a word of the language

that the reg.-expr. defines.: SM1 ∈ L(SM2)

Reg. expr. Reg.expr. The condition is satisfied if the language defined by SM1 is a

subset of the language, defined by SM2: L(SM1) ⊆ L(SM2)

Table 4.6: Evaluation of matching criteria for permissions

For explaining further proceedings, let Match be the function that evaluates the matching
according to table 4.6 for the subject, operation and resource.

Match(string1, string2) →
{

True | string1 ≡ string2

False | string1 6= string2
(4.43)

Match(expr., string) →
{

True | string ∈ L(expr.)
False | string 6∈ L(expr.)

(4.44)

Match(expr.1, expr.2) →
{

True | L(expr.1) ⊆ L(expr.2)
False | L(expr.1) 6⊆ L(expr.2)

(4.45)

Resource Content Object Matching based on Xpath Expressions

The introduced access control system protects the access to online resources. These resources
are requested from services, which encode the response in GML. This response contains
the resource content, for which the access restrictions are enforced. It is required that the
resource content is valid GML, according to the definitions of the associated GML application
schema. This schema defines the possible elements, their XML markup as well as the markup
of the resource content itself. For the approximation, a concrete resource content is not
available. However, the use of a resource content template can be used to evaluate the Xpath
based resource matching. Therefore, it allows to test if the essential condition of resource
content matching is satisfied. For the class-based restrictions, where no conditions on the
resource content is necessary, the template provides sufficient resource information. For the
object-based restrictions, the template does not provide sufficient information. For the spatial
restrictions, the template provides useful information about the dimension of resource object
geometries.

A resource template contains of elements that represent resource objects of the supported
classes; hence feature types. But, it does not carry characterizing information of the objects.
The listing 4.3 provides a resource content template for the City Model, according to the
previously defined GML application schema from figure 2.8.

4.4 Approximate Detection of Inconsistent Permissions 105

1 <CityModel xmlns=”http://www.in.tum.de/am” xmlns:am=”http://www.in.tum.de/am”
2 xmlns:gml=”http://www.opengis.net/gml” xmlns:xlink=”http://www.w3.org/1999/xlink”
3 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
4 xsi:schemaLocation=”http://http://www.in.tum.de/am CityModel.xsd”
5 fid=”CityModel”>
6 <gml:boundedBy>
7 <gml:Box><gml:coordinates/></gml:Box>
8 </gml:boundedBy>
9 <gml:featureMember>

10 <Street>
11 <name/>
12 <location><gml:coord><gml:X/><gml:Y/></gml:coord></location>
13 </Street>
14 </gml:featureMember>
15 <gml:featureMember>
16 <Building>
17 <address/>
18 <shape>
19 <gml:outerBoundaryIs>
20 <gml:LinearRing><gml:coordinates/></gml:LinearRing>
21 </gml:outerBoundaryIs>
22 </shape>
23 </Building>
24 </gml:featureMember>
25 <gml:featureMember>
26 <Street>
27 <name/>
28 <line><gml:coordinates/></line>
29 </Street>
30 </gml:featureMember>
31 </CityModel>

Listing 4.3: Resource content template for the City Model

Let RT be the resource content template and xp be the value expression for the resource
content matching XMR, then MatchXR is the function that returns True, if at least one resource
element could be fetched, based on the Xpath expression. Let the function XQuery be the
function that fetches XML nodes for a given Xpath and XML document.

MatchXR(xp,RT) →
{

True | XQuery(xp,RT) 6= ∅
False | XQuery(xp,RT) ≡ ∅ (4.46)

4.4.2 Approximate Detection of Unreachable Class-Based Permissions

The approximation of the existence of unreachable class-based permissions is possible without
the knowledge about possible subjects, operations and resources. Assuming two permissions
with a super/subordinated relation match according to the subject and operation expressions,
the matching on the resource content must be determined. For XACML encoded permissions,
unattainability can occur on two levels of the permission tree: Policy and Rule. The PolicySet
as the top level node of the tree is always reachable but may not always match. The class-
based permission does not require the use of a condition. Therefore, the unattainability for a
Policy or Rule can be determined in the same way. It depends on the matching expression of
the Target element only.

Reachable: A Policy or Rule is reachable if the essential condition is satisfied: The matching

106 4. Declaration and Enforcement of Access Restrictions

for SM, OM and RM is satisfied. In addition it is required that the resource content
matching of both constructs (XM) is satisfied in the following way: The matching of
resource content objects for the subordinate construct must be a subset of the resource
content objects, matched by the superordinate construct. This can be formalized as
follows:

Match(SMP , SMPS) ∧Match(OMP , OMPS) ∧Match(RMP , RMPS) ∧
(XQuery(XMPS ,RT) ⊇ XQuery(XMP ,RT)), P 6 PS

⇔ Policy reachable (4.47)
Match(SMR, SMP) ∧Match(OMR, OMP) ∧Match(RMR, RMP) ∧
(XQuery(XMP ,RT) ⊇ XQuery(XMR,RT)), R 6 P

⇔ Rule reachable (4.48)

An example for a reachable rule is the following permission hierarchy, which is based
on the City Model resource template:

P1 ={Alice, r, ε, //Street, . . . , R1}
R1 ={Alice, ∗, ε, //Street, ε} → . . .

Match(Alice,Alice) → True

Match(∗, r) → True

Match(ε, ε) → True

X1 =XQuery(//Street, {Building, Street, Intersection}) = {Street}
X2 =XQuery(//Street, {Building, Street, Intersection}) = {Street}

X1 ⊇ X2 → True

⇒ Rule is reachable

Potentially unreachable: A Policy or Rule is potentially unreachable if the essential condi-
tion is satisfied -the Match for SM, OM and RM are satisfied- but the resource content
matching does not refer to the same class. In such a case, a conclusion can only be made
for a particular resource content. This is because the resource content template contains
objects that represent all possible classes. For this content, a subordinated policy or
rule can always be reached, even if the Xpath expressions do not refer to the same class.
But, if a concrete resource content does not contain objects, which are required to make
the superordinate PolicySet or Policy applicable, the subordinated Policy or Rule is not
reachable. This can be formulated as follows:

Match(SMP , SMPS) ∧Match(OMP , OMPS) ∧Match(RMP , RMPS) ∧
(XQuery(RMPS ,RT) 6⊇ XQuery(RMP ,RT)), P 6 PS

⇔ Policy potentially unreachable (4.49)

Match(SMR, SMP) ∧Match(OMR, OMP) ∧Match(RMR, RMP) ∧
(XQuery(XMP ,RT) 6⊇ XQuery(XMR,RT)), R 6 P

⇔ Rule potentially unreachable (4.50)

4.4 Approximate Detection of Inconsistent Permissions 107

For example, the resource template from listing 4.3 contains of elements that represent
the classes Building, Street and Intersection. Let the policy P1 use the resource
matching expression //am:Building and the subordinated rule R1 uses the resource
matching expression //am:Street.

P1 ={Alice, r, ε, //Building, . . . , R1}
R1 ={Alice, ∗, ε, //Street, ε} → . . .

Match(Alice,Alice) → True

Match(∗, r) → True

Match(ε, ε) → True

X1 =XQuery(//Building, {Building, Street, Intersection}) = {Building}
X2 =XQuery(//Street, {Building, Street, Intersection}) = {Street}

⇒ Rule R1 is potentially unreachable

Unreachable: A Policy or Rule is unreachable if the essential condition is not satisfied; at
least one of the matches for SM, OM and RM is not satisfied. In such a case, the
matching for the resource content must not be determined.

Match(SMP , SMPS) ∨Match(OMP , OMPS) ∨Match(RMP , RMPS) , P 6 PS

⇔ Policy unreachable (4.51)

Match(SMR, SMP) ∨Match(SMR, SMP) ∨Match(RMR, RMP) , R 6 P

⇔ Rule unreachable (4.52)

For example if a superordinate policy matches the subject Alice and the subordinate
rule matches the subject Bob, this rule is never reached.

P1 ={Alice, ∗, ε, //Building, . . . , R1}
R1 ={Bob, ∗, ε, //Building, ε} → . . .

Match(Bob,Alice) → False

Match(∗, ∗) → True

Match(ε, ε) → True

⇒ Policy is unreachable

108 4. Declaration and Enforcement of Access Restrictions

4.4.3 An Illustrating Example of Unreachable Permissions

In order to illustrate the detection of unreachable permissions, the following declarations15,
as illustrated in figure 4.45, are used:

PS = {∗, ∗, ∗, ε, . . . , P1, P2, P3}
P1 = {Alice, ∗, ε, //Building, . . . , R11, R12}
P2 = {Alice, ∗, ε, //∗, . . . , R21, R22}
P3 = {Bob, ∗, ε, //∗, . . . , R3}

R11 = {∗, r, ε, //Street, ε} → . . .

R12 = {∗, w, ε, //Street, ε} → . . .

R21 = {∗, r, ε, //Building, ε} → . . .

R22 = {Bob,w, ε, //Building, ε} → . . .

R3 = {Alice, ∗, ε, //∗, ε} → . . .

SOR
PS

SOR
R

SOR
P

P1

PS

P2
 P3

{Alice,*, ,//*}
{Alice,*, ,//Building}
 {Bob,*, ,//*}

R11
 R12
 R21
 R22
 R3

{*,r, ,//Street}
 {Bob,w, ,//Building}

{*,*, ,//*}

{Alice,*, ,//*}

{*,w, ,//Street}
 {*,r, ,//Building}

Figure 4.45: A permission tree with unreachable and potentially unreachable rules

This example is based on the resource content template RT , as enumerated in listing 4.3.

RT ={Building, Street, Intersection}

15The used combining algorithms and rule effects are irrelevant.

4.4 Approximate Detection of Inconsistent Permissions 109

R11, R12: The rules R11 and R12 are potentially unreachable.

MatchS =Match(SMR11, SMP1) = Match(∗, Alice) → True

MatchO =Match(OMR11, OMP1) = Match(r, ∗) → True

MatchR =Match(RMR11, RMP1) = Match(ε, ε) → True

ROP1 =(XQuery(XMP1,RT)) = {Building}
ROR11 =(XQuery(XMR11,RT)) = {Street}

MatchS ∧MatchO ∧MatchR ∧ROR11 6⊆ ROP1 → True

⇒ potentially unreachable

MatchS =Match(SMR12, SMP1) = Match(∗, Alice) → True

MatchO =Match(OMR12, OMP1) = Match(w, ∗) → True

MatchR =Match(RMR12, RMP1) = Match(ε, ε) → True

ROP1 =(XQuery(XMP1,RT)) = {Building}
ROR12 =(XQuery(XMR12,RT)) = {Street}

MatchS ∧MatchO ∧MatchR ∧ROR12 6⊆ ROP1 → True

⇒ potentially unreachable

R21: The rule R21 is a reachable rule.

MatchS =Match(SMR21, SMP2) = Match(∗, Alice) → True

MatchO =Match(OMR21, OMP2) = Match(r, ∗) → True

MatchR =Match(RMR21, RMP1) = Match(ε, ε) → True

ROP2 =(XQuery(XMP2,RT)) = {Building, Street, Intersection}
ROR21 =(XQuery(XMR21,RT)) = {Building}

MatchS ∧MatchO ∧MatchR ∧ROR21 ⊆ ROP2 ⇒ reachable

R22: The rule R22 is unreachable, because it results from the matching of the subject and
operation from P2 and R22.

MatchS =Match(SMR22, SMP2) = Match(Bob,Alice) → False

MatchO =Match(OMR22, OMP2) = Match(w, ∗) → True

MatchR =Match(RMR22, RMP2) = Match(ε, ε) → True

MatchS ∧MatchO ∧MatchR ⇒ unreachable

R3: The rule R3 is also unreachable, because it results from the matching of the subject and
operation from P3 and R3.

MatchS =Match(SMR3, SMP3) = Match(Alice,Bob) → False

MatchO =Match(OMR3, OMP3) = Match(∗, ∗) → True

MatchR =Match(RMR3, RMP3) = Match(ε, ε) → True

MatchS ∧MatchO ∧MatchR ⇒ unreachable

110 4. Declaration and Enforcement of Access Restrictions

The resulting annotated permission tree is shown in figure 4.46. The reachable policy set,
policies and rule R21 are not colored. The potentially unreachable rules R11 and R12 are
colored yellow and the unreachable rules R22 and R3 are colored red.

SOR
PS

SOR
R

SOR
P

P1

PS

P2
 P3

{Alice,*, ,//*}
{Alice,*, ,//Building}
 {Bob,*, ,//*}

R11
 R12
 R21
 R22
 R3

{*,r, ,//Street}
 {*,w, ,//Street}

{*,r, ,//Building}

{Bob,w, ,//Building}

{*,*, ,//*}

{Alice,*, ,//*}

potentially unreachable

unreachable

reachable

Figure 4.46: An annotated permission tree with unreachable rules

4.4.4 Approximate Detection of Complete Class-Based Permissions

The approximate detection of the existence of complete class-based permissions is possible
without the knowledge about possible subjects, operations and resources. However, the only
solution of completeness is that a permission sub-tree exists, which matches the all-quantifier
{*,*,*} for subject, operation and resource on all levels. For the top level, this is the PolicySet.
In addition it must be satisfied that at least one subordinate permission of that policy set
also provides the all-quantifier matching. For the XACML permission hierarchy, this requires
that at least one subordinate Policy exists that provides the all-quantifier matching. The same
applies to the subordinate rules of that policy. At least one Rule must exist that provides an
all-quantifier matching.

Let PS be the set of top-level PolicySet permissions and let PSi be the i-th permission
of the PolicySet. Let PSCi be the ith policy set that satisfies the condition to define the all-
quantifier matching. Then, the top level of the permission tree provides a complete matching
if at least one policy set exists, where SMPS = OMPS = RMPS=”*” and XMPS=”//*”.

PSCi := (SMPSi = OMPSi = RMPSi = ” ∗ ” ∧XMPSi = ”// ∗ ”) (4.53)

PolicySet level complete ⇔
‖PS‖∨

i

PSCi → True (4.54)

4.4 Approximate Detection of Inconsistent Permissions 111

The Policy level of the sub-tree defines a complete matching, if at least one policy provides
the all-quantifier matching. And, this policy must be subordinate to the PolicySet, which
defines the all-quantifier matching in the superordinate level. Let P be the set of policy
permissions and let Pj be the jth policy. Let PCj be the jth policy that satisfies the condition by
defining the all-quantifier matching and be subordinate to the ith permission of the PolicySet,
which satisfies the condition PSCi. Then, the policy level provides a complete matching if
at least one policy exists, where SMP = OMP = RMP = ”*” and XMP = ”//*” and the
superordinate policy set PSi satisfies PSCi.

PCj := (SMPj = OMPj = RMPj = ” ∗ ” ∧XMPj = ”// ∗ ”) (4.55)

Policy level complete ⇔
‖P‖∨

j

(PCj | Pj 6 PSi ∧ PSCi) → True (4.56)

The Rule level of the sub-tree defines a complete matching if at least one rule provides
the all-quantifier matching. And, this rule must be subordinate to the policy, which defines
the all-quantifier matching in the superordinate level. Let R be the set of rule permissions
and let Rk be the kth rule. Let RCk be the kth rule that satisfies the condition by defining
the all-quantifier matching and be subordinate to the jth policy, which satisfies the condition
PCj. Then the rule level provides a complete matching if at least one rule exists, where SMR

= OMR = RMR = ”*” and XMR = ”//*” and the superordinate policy Pj satisfies PCj.

RMCk = (SMRk = OMRk = RMRk = ” ∗ ” ∧XMRk = ”// ∗ ”) (4.57)

Rule level complete ⇔
‖R‖∨

k

(RCk | Rk 6 Pj ∧ PCj) → True (4.58)

One example of a permission tree that provides complete matching on all levels is shown
in figure 4.47

4.4.5 Approximate Detection of Contrary Class-Based Permissions

The approximate detection of the existence of contrary class-based permissions is possible
without the knowledge about possible subjects, operations and resources. Under these pre-
conditions, two reachable permissions are contrary if they define contrary effects. For the
XACML encoding, only the Rule defines an effect that is either Deny or Permit. The essential
condition is that the rule is reachable. Otherwise it does not influence the process of deriving
an authorization decision. Also, the rules must be subordinate to the same policy. Let R1 and
R2 be reachable rules that are subordinate to the policy P (R1 6 P) and (R2 6 P). Further
let ER1 be the effect of rule R1 and ER2 be the effect of rule R2. Then, the contradiction of

112 4. Declaration and Enforcement of Access Restrictions

SOR
PS

SOR
R

SOR
P

P1

PS2

P2
 P3

{Alice,*, ,//*}
 {Bob,*, ,//*}

P11
 P21
 P22
 P3

{*,*,*,//*}
 {*,r, ,//Building}
 {*,w, ,//Building}

{*,*, ,//Building}

{*,*, ,//*}

PS1

{*,*,*,//*}

the all-quantifier path

{*,*,*,//*}

Figure 4.47: A permission tree with a sub-tree that provides complete (all-quantified) match-
ing

R1 and R2 can be detected as follows:

IC
R1,R2 :=L(SMR1) ∩ L(SMR2) 6= ∅ ∧ L(OMR1) ∩ L(OMR2) 6= ∅ ∧

L(RMR1) ∩ L(RMR2) 6= ∅ ∧
(XQuery(XMR1,RT) ≡ XQuery(XMR2,RT)) (4.59)

R1 is contrary to R2 ⇔IC
R1,R2 ∧ (ER1 6= ER2) | R1 6 P, R2 6 P, R1 6= R2 (4.60)

4.4.6 Approximate Detection of Unreachable Object-Based Permissions

The approximate detection of the existence of unreachable object-based permissions is possi-
ble without the knowledge about possible subjects, operations and resources. The proceeding
is identical to the detection of unreachable class-based permissions. For the object-based
permission, the condition of a rule defines additional matching on the non-spatial character-
istics of resource objects. This additional constraint reduces the set of matching resource
objects, which defines the distinctive difference to the class-based permission. Therefore, an
object-based permission is reachable, if the essential conditions for detection of a reachable
class-based permission can be satisfied. In the same manner, an object-based permission is
potentially unreachable or unreachable, as defined for the class-based permission.

4.4.7 Approximate Detection of Complete Object-Based Permissions

The approximate detection of the existence of complete object-based permissions is not pos-
sible without the knowledge about available resources. The condition of a rule reduces the

4.4 Approximate Detection of Inconsistent Permissions 113

set of matched resource content objects based on non-spatial characteristics. The detection
of a complete resource matching can only be achieved by comparing the union of all matched
resource objects from all rules and the superordinate policy. But, this is -per definition- not
possible.

It is also questionable if this detection is necessary and meaningful, because the policy
writer must not have the intention to declare object-based restrictions is such a way that they
result in a complete matching. Typically, an object-oriented permission is declared to express
an exception to a general permission, encoded as a class-based restriction.

4.4.8 Approximate Detection of Contrary Object-Based Permissions

The approximate detection of the existence of contrary object-based permissions is possible
without the knowledge about possible subjects, operations and resources. Assuming that two
rules are reachable and match according to the subject and operation, the resource matching
and the condition constraint must be evaluated.

It is the essential condition that both rules match the same class, defined through the
resource match expression. The refinement matching, defined by the condition of the rule can
apply to any (non-spatial) attribute of the resource object. If the conditional matching of
two rules do not refer to the same attribute, no approximation is possible. This relies on the
limitation that it cannot be verified if the conditional matching refers to the same resource
object. Only if both conditions match for the same attribute, a further evaluation is possible.
In this case it can be tested if both matching patterns select the same object. This can be
evaluated, using the MatchXR function.

Let CR1 and CR2 be the conditions of rules R1 and R2. And, let XMO
C1 be the resource

content matching expression of condition CR1 and XMO
C2 be the resource content matching

expression of condition CR2. Then, two rules are contrary if they are reachable, declare
different effects and match the same resource content objects, defined by XMO

C1 and XMO
C2.

XO
1 :=XQuery(XMR1,RT) ∩XQuery(XMO

C1,RT)

XO
2 :=XQuery(XMR2,RT) ∩XQuery(XMO

C2,RT)

IO
R1,R2 :=L(SMR1) ∩ L(SMR2) 6= ∅ ∧ L(OMR1) ∩ L(OMR2) 6= ∅ ∧

L(RMR1) ∩ L(RMR2) 6= ∅ ∧XO
1 ∩XO

2 6= ∅ (4.61)

R1 is contrary to R2 ⇔IO
R1,R2 ∧ (ER1 6= ER2) | R1 6 P, R2 6 P, R1 6= R2 (4.62)

4.4.9 Approximate Detection of Unreachable Spatial Permissions

The reaching of spatial permissions depend on the subject, operation and resource matching
in the first place. Therefore, the reaching of a spatial permission can be defined as for a
class-based permission. Because the spatial characteristics is only evaluated in the condition
of the rule, it has not effect on the matching for the superordinate policy and policy set.

114 4. Declaration and Enforcement of Access Restrictions

4.4.10 Approximate Detection of Incomplete Spatial Permissions

The approximate detection of spatial permissions define a complete set cannot be verified
without the knowledge of possible resource object geometry. The spatial permissions redefine
the matching for resource objects, based on their spatial characteristics. If the possible
geometries are unknown, it cannot be verified if all resource object geometries are handled by
declared spatial permissions.

It is also questionable if this detection is necessary and meaningful, because the policy
writer must not have the intention to declare spatial restrictions is such a way that they result
in a complete set. Typically, spatial permissions declare permissions for restricted areas only.

4.4.11 Approximate Detection of Contrary Spatial Permissions

The approximate detection if contrary spatial permissions is possible without the knowledge
of concrete subjects, operations and resources. In particular, the approximation is possible
without having specific information about the geometries of the resource objects.

As for the class-based permissions, the contrary spatial permission must be reachable in
order to influence the authorization decision process. The XACML encoding of a spatial
permission is possible with a Rule construct that uses a Condition construct that expresses a
spatial condition.

The essential condition for two rules to be contrary is that they are reachable and both
match the same subject, operation and resource, as defined for reachable class-based re-
strictions. Two rules, satisfying this condition must declare different effects in order to be
contrary.

The sufficient condition for the two rules to be actually contrary, depend on the spatial
matching constraint defined by the condition. For the spatial permission, the condition defines
a topological relation between a fixed permission geometry and a resource object geometry.
The rule applies if the topological relation can be satisfied. The topological relation is ex-
pressed by the already defined spatial methods Disjoint, Touches, Crosses, Within, Overlaps,
Intersects and Equals.

According to the essential condition, both rules apply to resource objects of the same
class. The spatial condition therefore applies to the same resource object. For the following
detection, it is essential to differentiate between the geometry of the resource object from
rule R1 and the geometry of the resource object from rule R2. This is because it is possible
that different spatial properties are matched by the spatial condition of rule R1 and rule
R2. As an example, let’s use one geospatial information object representing an area of oil
resources in the Atlantic. This area might have different spatial properties of 0D geometry,
defining the locations of oil platforms: locationOfPlatform1 defines the location of platform
one, locationOfPlatform2 defines the location of platform two, etc. Then, it is possible
that rule R1 matches the property locationOfPlatform1 and rule R2 matches the property
locationOfPlatform2. From that matching, GR1 represents the geometry, represented by the
property locationOfPlatform1 and GR2 represents the geometry of locationOfPlatform2
respectively.

Let R1 and R2 be the rules to be tested, GP1 and GP2 the permission geometries of R1

4.4 Approximate Detection of Inconsistent Permissions 115

and R2 and let GR1 and GR2 be the resource content object geometries that are matched
by the spatial conditions of rule R1 and R2. Then, two rules are contrary if the following
conditions can be satisfied at the same time:

SC1 := SpatialRelation1(GR1, GP1) (4.63)
SC2 := SpatialRelation2(GR2, GP2) (4.64)
SC3 := SpatialRelation1(GR2, GP1) (4.65)
SC4 := SpatialRelation2(GR1, GP2) (4.66)

SC1: The spatial condition SC1 defines the condition that the resource object geometry of
the spatial relation of rule R1 must satisfy the topological relation with the permission
geometry of rule R1. This essential condition must be satisfied in order to make rule
R1 become applicable.

SC2: The spatial condition SC2 defines the condition that the resource object geometry of
the spatial relation of rule R2 must satisfy the topological relation with the permission
geometry of rule R2. This essential condition must be satisfied in order to make rule
R2 become applicable.

SC3: This spatial condition is the first test condition that must be satisfied, in order to
have rule R2 apply to the resource object geometry, matched by rule R1. Therefore,
the resource geometry of rule R2 (GR2) must satisfy the spatial relation of rule R1
(SpatialRelation1) with the permission geometry of rule R1 (GP1).

SC4: This spatial condition is the second test condition that must be satisfied, in order to
have rule R1 apply to the resource object geometry, matched by rule R2. Therefore,
the resource geometry of rule R1 (GR1) must satisfy the spatial relation of rule R2
(SpatialRelation2) with the permission geometry of rule R2 (GP2).

For the evaluation, under which circumstances the spatial conditions SC3 and SC4 can
be satisfied, it is assumed that the dimension of the permission geometry is 2D (dim(GP1) =
dim(GP2)=2). Thus, the permission geometry defines a 2D surface, encoded as a Polygon.

The satisfiability of SC3 and SC4 depend on two factors: the dimension of the resource
geometries and the topological relation between the permission geometries. The likelihood
that SC3 and/or SC4 can be satisfied at the same time can be classified into Impossible, Likely,
Assured. The classification Impossible describes the constellation that can never be satisfied
at the same time. In such sense, Assured represents the constellation that the conditions SC3

and SC4 are always satisfied. Likely describes a constellation, where SC3 and SC4 may get
satisfied and no condition can be defined that either result in the classification Impossible or
Assured.

Let CL := {Impossible (I), Likely (L), Assured (A)} be the set of possible classifications,
I 6 L 6 A be the superordinate relation and CLs ⊆ CL. Then, Max6 (CLs) → cl, cl ∈ CL is

116 4. Declaration and Enforcement of Access Restrictions

the function that selects the maximum superordinate classification.

CL :={I, L,A}, I 6 L 6 A, cl 6 cl | cl ∈ CL (4.67)

Max6 (CLs) →


I | ∃I ∈ CLs,∀cli ∈ CLs : cli 6 I
L | ∃L ∈ CLs,∀cli ∈ CLs : cli 6 L
A | ∃A ∈ CLs,∀cli ∈ CLs : cli 6 A

(4.68)

Let CL1(SC3) be a relation that returns the classification for the given SpatialRelation of
the constellation SC3 and let CL2(SC4) be a relation that returns the classification for the
given SpatialRelation of the constellation SC4. Then, the classification cl of the satisfiability
that rule R1 and rule R2 are contrary, is the most superordinate classification.

cl1(GR2, GP1) → cl1, cl1 ∈ CL (4.69)
cl2(GR1, GP2) → cl2, cl2 ∈ CL (4.70)

cl := Max6 (cl1 ∪ cl2) (4.71)

Before starting the classification of possible constellations, the worst case number of dif-
ferent constellations has the following outcome: There are seven (7) different spatial methods
defined that can be used to represent the spatial conditions SC3 and SC4. This results
in twenty-eight (28) possible permutations16 for the spatial conditions (Disjoint-Disjoint,
Disjoint-Touches, . . . Intersects-Equals, Equals-Equals). For each permutation, it is required
to test all possible topological relations between the permission geometries. Because the
spatial method Crosses does not apply to 2D geometries, only six (6) spatial methods must
be evaluated. However, the spatial relation Within is not a symmetrical relation. Therefore
the topological relations Within(GP1,GP2) is different from Within(GP2,GP1). This results in
seven (7) different topological relations between the permission geometries. For the worst
case, different evaluations are required for each dimension of the resource object geometry
from rule R1 and rule R2. The possible dimensions are 0D, 1D and 2D, which results in
nine (9) permutations for the geometry dimension. This results in 28 ∗ 7 ∗ 9 = 1764 testable
constellations for the worst case.

In order to reduce the possible constellations to a reasonable number, the topological
relations can be limited. This can be done according to the informal poll, where the two
most important topological relations have been named as Within and Touches. Within allows
the declaration of permissions for a restricted area such as a sovereign, county or municipal
territory or a military site. Touches allows to express spatial permissions for geospatial in-
formation objects that are adjacent with another geometry. The limitation of the possible
spatial conditions results in three (3) different permutations. This results in 3 ∗ 7 ∗ 9 = 189
constellations for the worst case. Fortunately, not all permutations of resource object geom-
etry dimensions must be tested for each topological relation between the resource geometries
of rules R1 and R2.

For the illustration of the different test constellations throughout the following subsections,
the legend of figure 4.48 is being used. The resource geometries, represented by blue squares
satisfy the spatial conditions SC1 and SC4, resp. SC2 and SC3. The resource geometries,
represented with red circles do satisfy the conditions SC1, resp. SC2 but do not satisfy the

16P7
i=1 i = 28

4.4 Approximate Detection of Inconsistent Permissions 117

test condition SC3, resp. SC4. For example, a resource geometry GR1 represented as a red
circle satisfies SC1 but not SC4. In the same fashion, GR2 represented as a red circle satisfies
SC2 but nor SC3.

G
R2

G
R2

G
R1

Resource geometry of rule R1, satisfying SC
1
 but not SC
4

Resource geometry of rule R2, satisfying SC
2
 but not SC
3
 Resource geometry of rule R2, satisfying SC
2
 and SC
3

G
R1

Resource geometry of rule R1, satisfying SC
1
 and SC
4

Figure 4.48: Classification legend for illustration of satisfying and not satisfying geometries

Classification of the Spatial Methods Within and Within

This situation appears if two reachable rules are tested that use the spatial condition Within.
Two example rules that belong into this category are R1 and R2:

R1 = {. . . , //aClass, C1} → Permit

R2 = {. . . , //aClass, C2} → Deny

C1 = {Within(GR1, GP1)}
C2 = {Within(GR2, GP2)}

According to the previous considerations, it is essential that SC1 and SC2 are satisfied:

SC1 = Within(GR1, GP1) ⇔ True

SC2 = Within(GR2, GP2) ⇔ True

The spatial conditions that determine the classification are

SC3 = Within(GR2, GP1)
SC4 = Within(GR1, GP2)

For this test situation, the dimension of the resource geometries must not be considered.
The pre-conditions Within(GR1, GP1) and Within(GR2, GP2) can only be satisfied if the
resource geometries do not extend the interior of GP1, resp. GP2: GR1 ∩ I(GP1) 6= ∅ ∧GR1 ∩
B(GP1) = GR1 ∩ E(GP1) ≡ ∅. The classification depends on the satisfiability of SC3 and
SC4, which depend on the topological relation between GP1 and GP2.

Disjoint(GP1,GP2) results in the classification I.

For this topological relation between GP1 and GP2, as illustrated in figure 4.49, SC3 and
SC4 can never be satisfied at the same time. A resource geometry GR1 that satisfies
the essential spatial condition Within(GR1, GP1) can never satisfy the test condition
Within(GR1, GP2). This is because GP1 and GP2 are disjoint. The same argument is

118 4. Declaration and Enforcement of Access Restrictions

true for a resource geometry GR2.

SC3 := Within(GR2, GP1)
SC4 := Within(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I, I}) → I

G
R2

G

 R

2

G

 R

2
G

 R

1

G

 R

1

G
R1

G
P2
G
P1

Figure 4.49: Illustrating the test constraint Disjoint(GP1,GP2)

Touches(GP1,GP2) results in the classification I.

For this topological relation between GP1 and GP2, SC3 and SC4 can never be satisfied
at the same time17.

SC3 := Within(GR2, GP1)
SC4 := Within(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I, I}) → I

Overlaps(GP1,GP2) results in the classification L.

For this topological relation between GP1 and GP2, as illustrated in figure 4.50, SC3

and SC4 can be satisfied at the same time. Let GP12 be the intersection of GP1 and
GP2 (GP12 = GP1∩ GP2). Then, SC3 and SC4 are satisfied if the topological relations
Within(GR2,GP12) and Within(GR1,GP12) are satisfied. This is possible, because GP12

is within GP1 and GP2 (Within(GP12,GP1) ∧ Within(GP12,GP2)). The classification is
Likely and not Assured, because the exterior of each resource object cannot be restricted
to be within GP12.

The spatial condition SC3 cannot be satisfied if GR2 is inside of GP2 but outside GP1.
Let GP2-1 be the geometry area of GP2 minus the area or GP1 (GP2-1 = GP2 \ GP1).
Then, SC3 cannot be satisfied if GR2 is within GP2-1 Within(GR2,GP2-1)).

The spatial condition SC4 cannot be satisfied if GR1 is inside of GP1 but outside GP2.
Let GP1-2 be the geometry area of GP1 minus the area or GP2 (GP1-2 = GP1\ GP2).

17See argument for Disjoint(GP1,GP2).

4.4 Approximate Detection of Inconsistent Permissions 119

Then, SC4 cannot be satisfied if GR1 within GP1-2 (Within(GR1,GP1-2)).

GP12 := GP1 ∩GP2

GP1-2 := GP1\GP2

GP2-1 := GP2\GP1

SC3 := Within(GR2, GP1)
SC4 := Within(GR1, GP2)

cl1 := CL1(SC3) →
{

L | Within(GR2, GP12)
I | Within(GR2, GP2-1)

cl2 := CL2(SC4) →
{

L | Within(GR1, GP12)
I | Within(GR1, GP1-2)

cl := Max6 ({L, I} ∪ {L, I}) → L

G
R2

G

 R

2

G

 R

2
G

 R

1

G

 R

1

G
R1

G
P1

G
R1

G
R1

G

 R

1

G
P2

G
R2

G
R2

G

 R

2

Figure 4.50: Illustrating the test constraint Overlaps(GP1,GP2)

Within(GP2,GP1) results in the classification A.

For this topological relation between GP1 and GP2, as illustrated in figure 4.51, SC3

and SC4 can be satisfied at the same time. The resource object geometry GR2 satisfies
the essential spatial condition Within(GR2, GP2). This satisfies the test condition SC3

= Within(GR2, GP1) at the same time, because GP2 is within GP1 (Within(GP1, GP2).

The resource geometry object does not necessarily satisfy the spatial condition SC4.
Let GP1-2 be the geometry area GP1 minus GP2 (GP1-2 = GP1\ GP2) and let GP12

be the intersection of the geometries GP1 and GP2 (GP12 = GP1∩ GP2). Then, GR1

cannot satisfy the spatial condition SC4 if within GP1-2. But, GR1 can satisfy the spatial
condition SC4 if within GP12.

GP12 := GP1 ∩GP2

GP1-2 := GP1\GP2

SC3 := Within(GR2, GP1)
SC4 := Within(GR1, GP2)
cl1 := CL1(SC3) → A

cl2 := CL2(SC4) →
{

L | Within(GR1, GP12)
I | Within(GR1, GP1-2)

cl := Max6 ({A} ∪ {L, I}) → A

120 4. Declaration and Enforcement of Access Restrictions

G

 R

1

G

 R

1

G
R1

G
P2

G
R2

G
R2

G

 R

2

G
P1

G
R1

G
R1

G

 R

1

Figure 4.51: Illustrating the test constraint Within(GP2,GP1)

Within(GP1,GP2) results in the classification A.

For this topological relation, the same logical argument as for Within(GP2,GP1) is valid.

Equals(GP1,GP2) results in the classification A.

For this topological relation between GP1 and GP2, as illustrated in figure 4.52, SC3 and
SC4 are always satisfied at the same time. The resource object geometry GR2 satisfies
the essential spatial condition Within(GR2, GP2). This satisfies the test condition SC3

= Within(GR2, GP1) at the same time, because GP2 is equal to GP1 (GP2 ≡ GP1).

The similar argument is valid for GR1. The resource object geometry GR1 satisfies the
essential spatial condition Within(GR1, GP1). This satisfies the test condition SC4 =
Within(GR1, GP2) at the same time, because GP1 is equal GP2 (GP1 ≡ GP2).

SC3 := Within(GR2, GP1)
SC4 := Within(GR1, GP2)
cl1 := CL1(SC3) → A

cl2 := CL2(SC4) → A

cl := Max6 ({A} ∪ {A}) → A

G
P1
=G
P2

G
R2

G
R2

G

 R

2

G
R1

G
R1

G

 R

1

Figure 4.52: Illustrating the test constraint Equals(GP1,GP2)

Table 4.7 combines the results from the different test cases.

Classification of the Spatial Methods Within and Touches

This situation appears if two rules are tested, where the spatial conditions from rule R1 is
Within and from rule R2 is Touches. Two example rules, which fall into this category are R1

4.4 Approximate Detection of Inconsistent Permissions 121

Within(GR1,GP1) ∧Within(GR2,GP2) ∧Within(GR2,GP1) ∧Within(GR1,GP2)

SpatialRelation dim(GR1) dim(GR2) classification

Disjoint(GP1, GP2) No restriction No restriction Impossible

Touches(GP1, GP2) No restriction No restriction Impossible

Equals(GP1, GP2) No restriction No restriction Assured

Overlaps(GP1, GP2) No restriction No restriction Likely

Within(GP1, GP2) No restriction No restriction Assured

Within(GP2, GP1) No restriction No restriction Assured

Table 4.7: Worst case classification for the occurrence of incorrect spatial restrictions, based
on the spatial relations Within and Within

and R2:

R1 = {. . . , //aClass, C1} → Permit

R2 = {. . . , //aClass, C2} → Deny

C1 = {Within(GR1, GP1)}
C2 = {Touches(GR2, GP2)}

According to the previous considerations, it is essential that SC1 and SC2 are satisfied:

SC1 = Within(GR1, GP1) ⇔ True

SC2 = Touches(GR2, GP2) ⇔ True

The spatial conditions that determine the classification are

SC3 = Within(GR2, GP1)
SC4 = Touches(GR1, GP2)

For some topological relations between GP1 and GP2, the classification must be differenti-
ated based on the dimension of the resource object geometry GR2. The essential spatial rela-
tion for GR2 is that is touching with GP2. For all 0D resource geometries GR2 (dim(GR2)=0),
the exterior is the empty set. This reduces the extension of such a geometry to its location.
Therefore, all resource geometries that satisfy Touches(GR2,GP2) are located on the boundary
of GP2 (GR1∈ B(GP2)). For resource geometries GR2 with the dimension 1D or 2D, the ex-
terior cannot be restricted. The restriction of the possible exterior of the geometry GR2 – as
for 0D – enables to approximate the satisfiability of the spatial constraint SC3. The exterior
of the resource geometry GR1 is restricted by its topological relation with GP1, independent
from its dimension (GR1 ∪ I(GP1) 6= ∅)).

Disjoint(GP1,GP2) results in the classification I.

For this topological relation between GP1 and GP2, as illustrated in figure 4.53, it is not
necessary to make assumptions on the dimension of GR2. This is because SC3 and SC4

can never be satisfied at the same time.

122 4. Declaration and Enforcement of Access Restrictions

For GR1 it is essential to satisfy the spatial condition SC1. This restricts the extension
of GR1 to the interior of GP1. This prevents that GR1 can satisfy the test condition SC4

(Touches(GR1, GP2)) at the same time, because GP1 and GP2 are topologically disjoint
(Disjoint(GP1,GP2)). In the same fashion, the resource geometry GR2 that satisfies the
essential spatial condition C2 cannot satisfy the spatial condition SC3 at the same time.

SC3 := Within(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I} ∪ {I}) → I

G
P2
G

 R

1

G

 R

1

G
R1

G
P1

G
R2

G
R2

G
R2

Figure 4.53: Illustrating the test constraint Disjoint(GP1,GP2)

Touches(GP1, GP2) results in the classification I.

For this topological relation between GP1 and GP2, it is not necessary to make assump-
tions on the dimension of GR2. This is because SC3 and SC4 can never be satisfied at
the same time. The argument is logically equivalent to the previous argument for the
topological relation Disjoint(GP1, GP2).

Overlaps(GP1, GP2) results in the classification L.

For this topological relation between GP1 and GP2, it is not necessary to make assump-
tions on the dimension of GR2. This is because the satisfaction of SC3 is independent
from the dimension of GR2. The spatial condition Touches does not allow to restrict the
extension of the resource geometry GR2 in such a way that the satisfaction of SC3 can
be assured. It is also impossible to make assumptions that allows to classify the spatial
condition SC4 as impossible. Therefore, this topological relation is classified as Likely.
The same is true for GR1: No assumption can be made that qualifies GR1 to assure a
satisfaction of SC4 or make it impossible.

SC3 := Within(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → L

cl2 := CL2(SC4) → L

cl := Max6 ({L} ∪ {L}) → L

4.4 Approximate Detection of Inconsistent Permissions 123

G
P2

G
R1

G
P1

G
R2

G
R1

G
R2

G
R1

G
R1

G
R1

G
R2

G
R1

G
R2

G
R2

Figure 4.54: Illustrating the test constraint Overlaps(GP1,GP2)

Equals(GP1, GP2) results in the classification I.

For this topological relation between GP1 and GP2, as illustrated in figure 4.55, it is not
necessary to make assumptions on the dimension of GR2. This is because SC3 and SC4

can never be satisfied at the same time.

For GR1 it is essential to satisfy the spatial condition SC1. This restricts the exterior of
GR1 to the interior of GP1. This prevents that GR1 can satisfy the test condition SC4

(Touches(GR1, GP2)) at the same time. This is because GP1 and GP2 are topologically
equal and therefore Within(GR1,GP1) and Touches(GR1,GP1) can never be satisfied at
the same time.

In order to satisfy SC4, GR1 must share geometry points on the boundary of GP2, which
is equal to GP1 and is therefore impossible.

SC3 := Within(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I} ∪ {I}) → I

G
P1
=G
P2

G
R2

G
R1

G

 R

2

G
R2
G
R1

G

 R

1

Figure 4.55: Illustrating the test constraint Equals(GP1,GP2)

Within(GP2, GP1) For this situation, the classification must be differenciated for dim(GR2)=0
and dim(GR2)>0.

dim(GR2)=0 results in the classification A.
The type of geometry GR2 is limited to a Point, which has per definition no exterior
(E(GR2 = ∅)). Therefore, each resource geometry GR2 that satisfies the essential

124 4. Declaration and Enforcement of Access Restrictions

spatial condition SC2 satisfies the test condition SC3 at the same time. This is
because the valid locations of GR2 are limited to the boundary of GP2, which is per
definition inside GP1: GR2∩I(GP2) ≡ ∅, GR2∩E(GP2) ≡ ∅ and GR2∩B(GP2) 6= ∅.
The satisfaction of the spatial test condition SC4 is possible, because each resource
geometry GR1 that satisfies SC1 has that potential. However, it is also possible
that GR1 does not satisfy SC4: All resource geometries GR1 that are within GP2

do not satisfy the spatial condition Touches(GR1,GP2).

SC3 := Within(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → A

cl2 := CL2(SC4) → L

cl := Max6 ({A} ∪ {L}) → A

G
P2

G
R1

G
P1

G
R1

G
R2

G
R1

G
R1

G
R1

G
R1

G
R1

G
R1

Figure 4.56: Illustrating the test constraint Within(GP2,GP1) for dim(GR2)=0

dim(GR2)>0 results in the classification L.
The relaxing of the dimension restriction for GR2 prevents that concrete constel-
lations can be defined, which result in the classification Assured as illustrated in
figure 4.57.
A resource geometry GR2 that satisfies the condition Within(GR2, GP1) can also
satisfy Touches(GR2, GP2). But, a resource geometry GR2 that satisfies the con-
dition Touches(GR2, GP2) must not necessarily satisfy the condition Within(GR2,
GP1). This is because its exterior is not limited to the interior of GP1. This results
in the classification L.

SC3 := Within(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → L

cl2 := CL2(SC4) → L

cl := Max6 ({L} ∪ {L}) → L

Within(GP1,GP2) results in the classification I.

For this topological relation between GP1 and GP2, as illustrated in figure 4.58, it is
not necessary to make assumptions on the dimension of GR2. This is because SC3 and

4.4 Approximate Detection of Inconsistent Permissions 125

G
P2

G
R1

G
P1
G
R1

G
R1

G
R1

G
R2

G

 R

2

G
R2

G
R1

G
R1

G
R1

G
R2
 G
R1

G
R1

Figure 4.57: Illustrating the test constraint Within(GP2,GP1) for dim(GR2)>0

SC4 can never be satisfied at the same time: Touches(GR2, GP2) limits GR2 to share no
interior points of GP2 which is essential to satisfy the condition Within(GR2,GP1).

For GR1 it is essential to satisfy the spatial condition SC1. This restricts the extension
of GR1 to the interior of GP1. This prevents that GR1 can satisfy the test condition SC4

– Touches(GR1, GP2) – at the same time. This is because GP1 and GP2 do not share
any geometry point, for which the condition can become true.

SC3 := Within(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I} ∪ {I}) → I

G
R1

G
P1

G
R1

G

 R

1

G
P2

G
R2

G
R2

G
R1

Figure 4.58: Illustrating the test constraint Within(GP1,GP2)

Table 4.8 combines the results from the different spatial situations.

Classification of the Spatial Methods Touches and Touches

This situation appears if two rules are tested, where both spatial methods are Touches. Two
example rules, which fall into this category are rules R1 and R2.

R1 = {. . . , //aClass, C1} → Permit

R2 = {. . . , //aClass, C2} → Deny

C1 = {Touches(GR1, GP1)}
C2 = {Touches(GR2, GP2)}

126 4. Declaration and Enforcement of Access Restrictions

Within(GR1,GP1) ∧Touches(GR2,GP2) ∧Within(GR2,GP1) ∧Touches(GR1,GP2)

SpatialRelation dim(GR1) dim(GR2) classification

Disjoint(GP1, GP2) No restriction No restriction Impossible

Touches(GP1, GP2) No restriction No restriction Impossible

Equals(GP1, GP2) No restriction No restriction Impossible

Overlaps(GP1, GP2) No restriction No restriction Likely

Within(GP1, GP2) No restriction No restriction Impossible

Within(GP2, GP1)
No restriction 0 Assured

No restriction 1,2 Likely

Table 4.8: Worst case classification for the topological relations Within and Touches

According to the previous considerations, it is essential that SC1 and SC2 are satisfied:

SC1 = Touches(GR1, GP1) ⇔ True

SC2 = Touches(GR2, GP2) ⇔ True

The spatial conditions that determine the classification are

SC3 = Touches(GR2, GP1)
SC4 = Touches(GR1, GP2)

For some topological relations between GP1 and GP2, the classification must be differen-
tiated based on the dimension of the resource object geometry for GR1 and GR2.

The essential spatial relation for GR2 is touching with GP2. For all 0D resource geometries
GR2 (dim(GR2)=0), the exterior is the empty set. This reduces the extension of such a
geometry to its location. Therefore, all 0D resource geometries that satisfy Touches(GR2,GP2)
are located on the boundary of GP2. For resource geometries GR2 with the dimension 1D
or 2D, restrictions on the exterior are impossible. The restriction of the possible extension
of the geometry GR2 enables to approximate the satisfiability of the spatial constraint SC3.
The extension of the resource geometry GR1 is restricted by its topological relation with GP1,
independent from its dimension. This is due to the spatial relation Touches that does not
restrict the exterior of the resource geometries GR1 and GR2 a priori, as Within does it. Only,
if the dimension of GR1 and GR2 is zero, the geometry is limited to a Point and the location
of GR1, resp. GR2 is restricted to the boundary of the permission geometry GP1 or GP2.

Disjoint(GP1, GP2) For this topological relation between GP1 and GP2, it is necessary to
distinguish the dimension of the resource geometries.

(dim(GR1)=0) ∧ (dim(GR2)=0) results in the classification I.
In this situation a resource geometry GR1, which satisfies the topological relation
Touches(GR1, GP1) can never satisfy the spatial method Touches(GR1, GP2) at the
same time. This is because GR1 is restricted to locations on the boundary of GP1

and GR2 is restricted to locations on the boundary of GP2, but GP1 does not share

4.4 Approximate Detection of Inconsistent Permissions 127

any points with GP2.

SC3 := Touches(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I} ∪ {I}) → I

(dim(GR1)=0) ∨ (dim(GR2)=0) results in the classification L.
In this situation, a resource geometry GR1, which satisfies the topological relation
Touches(GR1, GP1) can never satisfy the spatial method Touches(GR1, GP2) at the
same time. This is because GR1 is restricted to locations on the boundary of GP1,
but GP1 does not share any points with GP2 (Disjoint(GP1, GP2)).
The same logical argument is valid for GR2. A resource geometry GR2, which
satisfies the topological relation Touches(GR2, GP2) can never satisfy the spatial
method Touches(GR1, GP1) at the same time. This is because GR2 is restricted to
locations on the boundary of GP2, but GP2 does not share any points with GP1

(Disjoint(GP1, GP2)).

SC3 := Touches(GR2, GP1)
SC4 := Touches(GR1, GP2)

cl1 := CL1(SC3) →
{

L
I | dim(GR2) = 0

cl2 := CL2(SC4) →
{

L
I | dim(GR1) = 0

cl := Max6 ({L, I} ∪ {L, I}) → L

G
P1
 G
P2

G
R2

G
R1

G
R2

G
R2

G
R2

Figure 4.59: Illustrating the test con-
straint Disjoint(GP1,GP2) for dim(GR1)=0
and dim(GR2)>0

G
P1
 G
P2

G
R1

G
R1

G
R2

G
R2

G
R2

Figure 4.60: Illustrating the test con-
straint Disjoint(GP1,GP2) for dim(GR1)>0
and dim(GR2)=0

(dim(GR1)>0) ∧ (dim(GR2)>0) results in the classification L.
The distinguishing characteristic of this situation is that neither the extension of
GR1 nor GR2 has any restrictions that allow the concrete classification of SC3 and
SC4. The illustration of this situation is shown in figure 4.61.

128 4. Declaration and Enforcement of Access Restrictions

Each resource geometry GR1 that satisfies SC1 has the potential to satisfy SC3.
The same is true for the resource geometry GR2. However, no assumptions can be
made to identify situations that can be classified as Assured or Impossible.

SC3 := Touches(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → L

cl2 := CL2(SC4) → L

cl := Max6 ({L} ∪ {L}) → L

G
P1

G
P2

G
R1

G
R1

G
R1

G
R2

G
R1

G
R2

G
R2

G
R2

Figure 4.61: Illustrating the test constraint Disjoint(GP1,GP2) for dim(GR1)>0 and
dim(GR2)>0

Touches(GP1, GP2) results in the classification L.

For this topological relation between GP1 and GP2, it is not necessary to differentiate
the classification for the resource geometry dimensions. No situation can be identified
that results in the classification Impossible or Assured. Each resource geometry that
satisfies the essential condition SC1, resp. SC2 has the potential to satisfy SC3, resp.
SC4. This situation is illustrated in figure 4.62.

SC3 := Touches(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → L

cl2 := CL2(SC4) → L

cl := Max6 ({L} ∪ {L}) → L

Overlaps(GP1, GP2) results in the classification L.

The argument is logically identical to that for the topological relation Touches(GP1,
GP2). Common points of GP1 and GP2 exist that allow GR1 and GR2 to satisfy the test
condition. However, the satisfaction can not be assured.

SC3 := Touches(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → L

cl2 := CL2(SC4) → L

cl := Max6 ({L} ∪ {L}) → L

4.4 Approximate Detection of Inconsistent Permissions 129

G
P1
 G
P2

G
R2

G
R1

G
R2

G

 R
1

G
R1

G
R2

G
R1

G
R2

G
R2

G
R1

G
R1

G

 R
2

Figure 4.62: Illustrating the test constraint Touches(GP1,GP2)

Within(GP1, GP2) results in the classification I.

For this topological relation between GP1 and GP2, as illustrated in figure 4.63, it is not
necessary to make assumptions on the dimension of GR2. This is because SC3 and SC4

can never be satisfied at the same time.

A resource geometry GR1 that satisfies the essential condition SC1 can never satisfy the
condition SC3 at the same time. If the dimension of GR1 is 0D, the location is limited
to be on the boundary of GP1. Because GP1 is within GP2, GR1 can never be touching
with GP2. For a 1D resource geometry GR1 that touches GP1, it can only satisfy the
topological relations Within(GR1,GP2) or Crosses(GR1,GP2). But it can never satisfy the
topological condition Touches(GR1,GP2).

A resource geometry GR2 that satisfies the essential condition SC2 can never satisfy the
condition SC4 at the same time. The essential condition is Touches(GR2,GP2). Because
the touches relationship prohibits that any geometry points of GR2 fall in the interior
of GP2, it is impossible that GR2 can satisfy the condition Touches(GR2,GP1). This is
because GP1 is within GP2.

SC3 := Touches(GR2, GP1)
SC4. = Touches(GR1, GP2)
cl1 := CL1(SC3) → I

cl2 := CL2(SC4) → I

cl := Max6 ({I} ∪ {I}) → I

Equals(GP1, GP2) results in the classification A.

A resource geometry GR1 that satisfies the essential condition Touches(GR1,GP1) satis-
fies the condition Touches(GR1,GP2) always at the same time, because GP1 is equal to

130 4. Declaration and Enforcement of Access Restrictions

G
P2
G
P1

G
R2
G
R1

G
R2

G
R2

G
R1

G
R1

G
R1

Figure 4.63: Illustrating the test constraint Within(GP1,GP2)

GP2 (GP1 ≡ GP2. The same logical argument applies to a resource geometry GR2.

SC3 := Touches(GR2, GP1)
SC4 := Touches(GR1, GP2)
cl1 := CL1(SC3) → A

cl2 := CL2(SC4) → A

cl := Max6 ({A} ∪ {A}) → A

Table 4.9 combines the results from the different spatial situations.

Touches(GR1,GP1) ∧Touches(GR2,GP2) ∧Touches(GR2,GP1) ∧Touches(GR1,GP2)

SpatialRelation dim(GR1) dim(GR2) classification

Disjoint(GP1, GP2)
0 0 Impossible

6= 0 6= 0 Likely

Touches(GP1, GP2) No restriction No restriction Likely

Equals(GP1, GP2) No restriction No restriction Assured

Overlaps(GP1, GP2) No restriction No restriction Likely

Within(GP1, GP2) No restriction No restriction Impossible

Within(GP2, GP1) No restriction No restriction Impossible

Table 4.9: Worst case classification for spatial relations Touches and Touches

4.5 Exact Detection of Inconsistent Permissions

The duty of an access control system is to ensure an error-free enforcement of existing access
restrictions to protected resources. This requires that all restrictions are encoded as per-
missions. For the exact detection of incorrect permissions, such as unreachable, incomplete
or contrary permissions, it is essential to know all possible requests. Only if all possible
subjects, operations and resources are known18, an exact detection is possible. This is the
distinguishing difference to the approximate detection, as introduced earlier.

18This implies a read-only access to the resource objects.

4.5 Exact Detection of Inconsistent Permissions 131

For a resource-sided enforcement, all possible resources and operations are known. In case
that only class-based restrictions are enforced, the possible resource objects are identical to
the existing classes. In such a case, the resource content template, created from the GML
application schema is sufficient for the detection. For the object-based and spatial restrictions,
the permissions can be declared for individual resource objects. It is therefore essential to
have a resource content that contains all possible permutations of resource objects. This is
a valid assumption, even for a large content: The number of permutations is always finite,
because the number of resource objects is finite.

For the resource-sided enforcement, it is difficult to determine the possible subjects if the
permissions use arbitrary subject attribute assertions. But, if a Role Based Access Control
model is used, the possible subjects are limited to the defined roles. Because RBAC is a
widespread access control model, it is a good assumption for further considerations.

In such a case, where all possible requests are known, the simplest approach to detect
incorrect permissions is based on requesting authorization decisions for each possible request.
This approach has two important drawbacks: Complexity and statelessness.

Complexity: The approach has a high complexity, because all permutations of possible
requests must be created and processed by the authentication process. Let S be the set
of possible subjects (hence roles), O be the set of possible operations, RA be the set
of possible resource attributes and let RO be the set of possible resource objects. Let
s ∈ S be one possible subject, o ∈ O be one possible operation, r ∈ RA be one possible
resource and ROS ⊆ 2RO be a subset of the powerset19 of resource objects. Then, one
possible request SOR and the set of all possible request SOR is defined as follows:

SOR := {s, o, r,ROS}, s ∈ S, o ∈ O, r ∈ RA, ROS ⊆ 2RO\∅ (4.72)

SOR := S ×O ×RA× {2RO\∅} (4.73)

This results in ‖S‖ ∗ ‖O‖ ∗ ‖RA‖ ∗ (‖2RO‖ − 1) possible requests20. As an example,
assuming twenty (20) subjects (or roles), five (5) operations, two (2) resource attributes
and ten-thousand (10,000) resource objects, the total number of requests is 20 ∗ 5 ∗ 2 ∗∑10,000

i=1 = 10, 001, 000, 000.

Statelessness: The approach is stateless, because each processed request has no correlation
to the current structure of permissions. Therefore, the detection as it is based on the
simple processing requires to process all request each time a permission in the repository
has been changed, added or deleted.

The advantage of the introduced approaches is that they are state-full and independent
from the combining algorithms. They evaluate the matching expressions for the subject,
operation and resource in order to determine incorrectness. Because the approach uses the
permission tree to process the existing permissions and save results, it enables incremental
processing, in case that permissions change or get added. This can be achieved if a policy
writing tool exists that incorporates with the detection algorithm by marking the changed,
added or deleted nodes.

19RO = {A, B, C} ⇒ 2RO = {∅, {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}
20One (1) is subtracted from the order of 2RO, because the empty set does not represent a valid request.

132 4. Declaration and Enforcement of Access Restrictions

4.5.1 Exact Detection of Unreachable Permissions

The exact detection of unreachable permissions has no distinguishing differences to the ap-
proximate detection. If a permission is reachable, depends on its matching and the matching
of the superordinate permission. The exact detection is therefore not different from the ap-
proximate approach. Based on the criteria of the approximate detection, the reachability of
permissions can be classified as reachable, potentially unreachable and unreachable.

4.5.2 Exact Detection of Contrary Permissions

The exact detection of contrary permissions is not limited to class-based permissions, as the
approximate detection is. This is, because the refined matching of the rule’s condition is no
longer limited to the same property. The exact detection of contrary permissions relies on the
full set of resource objects, which allows to select resource objects on any matching criteria.

As for the approximate detection, it is essential that at least two rules, subordinate to the
same policy are reachable or potentially reachable. Also, the combining algorithm (CAP) of
the policy may not be specific-general, which explicitly defines contrary permissions.

Assuming that two rules satisfy the sufficient condition that their effects are different,
then potentially reachable rules are considered to be potentially contrary and reachable rules
are considered to be contrary.

Let R1 and R2 be reachable rules that are subordinate to the policy P (R1 6 P) and
(R2 6 P). Further let ER1 be the effect of rule R1 and ER2 be the effect of rule R2. Then,
the contradiction of R1 and R2 can be detected as follows:

R1 is contrary to R2 ⇔IR1,R2 ∧ (ER1 6= ER2)∧
(CAP 6= specific-general) | R1 6 P, R2 6 P, R1 6= R2 (4.74)

ROR1 :=(XQuery(XMR1,RO) ∩XQuery(XMC1,RO)) (4.75)
ROR2 :=(XQuery(XMR2,RO) ∩XQuery(XMC2,RO)) (4.76)
IR1,R2 :=L(SMR1) ∩ L(SMR2) 6= ∅ ∧ L(OMR1) ∩ L(OMR2) 6= ∅ ∧

L(RMR1) ∩ L(RMR2) 6= ∅ ∧ ROR1 ∩ROR2 6= ∅ (4.77)

For illustrating the detection of contrary permissions, the following set of one policy
set, two policies and four rules is given. Rule R11 uses a condition to refine the matching,
according to the object-based restriction.

PS = {∗, ∗, ε, //∗, . . . , P1, P2}
P1 = {RoleA, ∗, ε, //Street, specific-general, R11, R12}
P2 = {∗, ∗, ε, //∗,deny-overrides, R21, R22}

R11 = {∗, r, ε, //Street, C11} → Deny

C11 = {boolean, ./name, {”3 Street A”}}
R12 = {∗, ∗, ε, //Street, ε} → Permit

R21 = {∗, r, ε, //Building, ε} → Permit

R22 = {RoleB, ∗, ε, //Building, ε} → Deny

4.5 Exact Detection of Inconsistent Permissions 133

SOR
PS

SOR
R

SOR
P

P1

PS

P2

{*,*, ,//*}
{Role
A
,*, ,//Street}

R11

-> Deny

R12

-> Permit

R21

-> Permit

R22

-> Deny

{*,r, ,//Street}
 {*,*, ,//Street}
 {*,r, ,//Building}

{*,*, ,//*}

XQuery

(./name='3 Street A')

{Role
B
,*, ,//Building}

specific-general
 deny-overrides

Figure 4.64: A permission tree with contrary rules

The following subjects, operations, resource attributes and resource objects are available:

S := {RoleA, RoleB}
O := {w, r}

RA := {ε}
RO := {Street(”3 Street A”), Street(”5 Street D”), Building}

For the detection of contrary permissions, each possible request must contain all resource
objects, because this represents the maximum likelihood for finding contrary permissions.
This results in the following requests, represented by SOR:

SOR := {{RoleA, w, ε, {Street(”3 Street A”), Street(”5 Street D”), Building}},
{RoleA, r, ε, {Street(”3 Street A”), Street(”5 Street D”), Building}},
{RoleB, w, ε, {Street(”3 Street A”), Street(”5 Street D”), Building}},
{RoleB, r, ε, {Street(”3 Street A”), Street(”5 Street D”), Building}}}

Policy P1 uses the specific-general combining algorithm. Therefore, the subordinate rules
must not be processed. Because the rules of policy P2 are reachable, the detection of contrary

134 4. Declaration and Enforcement of Access Restrictions

rules result in the following:

ER21 = Permit

ER22 = Deny

CAP2 = deny-overrides 6= specific-general
L(SMR21) ∩ L(SMR22) = {RoleB} 6= ∅
L(OMR21) ∩ L(OMR22) = {r} 6= ∅
L(RMR21) ∩ L(RMR22) = {ε} 6= ∅

XQuery(XMR12,RO) ∩XQuery(XMC22,RO) = {Building} 6= ∅
IR1,R2 → True

⇒ Rule R21 and R22 are contrary

The rules R21 and R22 both match to the request tuple {RoleB, r, ε, Building}, define
different effects and the superordinate policy does not use the combining algorithm specific-
general. This information can be used to annotate the tree representation, as illustrated in
figure 4.65.

SOR
PS

SOR
R

SOR
P

P1

PS

P2

{*,*, ,//*}
{Role
A
,*, ,//Street}

R11

-> Deny

R12

-> Permit

R21

-> Permit

R22

-> Deny

{*,r, ,//Street}
 {*,*, ,//Street}
 {*,r, ,//Building}

{*,*, ,//*}

XQuery

(./name='XA')

{Role
B
,*, ,//Building}

specific-general
 deny-overrides

contrary permissions

Figure 4.65: An annotated permission policy tree with contrary rules

4.5.3 Exact Detection for Complete Permissions

Using XACML, permissions are encoded by using the constructs PolicySet, Policy and Rule
and organize them according to the XACML hierarchy (figure 3.3), which can be represented
as a permission tree (listing 3.3). In addition, XACML enforces to declare the permissions,

4.5 Exact Detection of Inconsistent Permissions 135

using the all-explicit strategy. Therefore, the detection of incomplete permissions is vital for
an error-free permission repository.

The detection of incomplete restrictions can be based on the matching criteria of the
permission constructs and their tree hierarchy. Each PolicySet, Policy and Rule construct uses
a Target element, which contains the Subject, Action21, Resource. The Target element therefore
defines the matching of a permission.

For this work, the capabilities of the XACML Condition is limited in such respect that it
can only refine the matching of a rule according to the resource objects, as required for the
declaration of the object-based and spatial restrictions.

The basic idea behind this detection is that at the policy set, policy and rule level of the
tree, the possible request must be processed. It is essential that this is ensured for all levels of
the tree, because the driver of the authorization decision is a rule. At the top most level, a set
of PolicySet constructs SORPS must provide the complete processing by correlated matching
expressions. The set of subordinate policies of a policy set must also provide the complete
matching. And finally, all subordinate rules of a policy must provide complete matching.

Because each PolicySet and Policy defines a matching criteria for subject, operation and
resource objects that can be seen as a filter, the subordinate polices or rules must only process
a subset of possible requests. This is true for the subject and operation matching expression,
because only one single element can exist in the request. It is different for the resource, because
in the introduced model, resource matching takes place for a resource content, encoded as
GML. This requires to declare the resource matching as Xpath expressions. Because the
XACML processing of a request does not modify the request, the resource content of the
request remains unchanged if processed by a PolicySet, Policy, Rule or Condition. Therefore,
for the exact detection of incomplete permissions, subordinate matching must only consider
a subset of possible subjects and operations, but not resource objects.

However, each level of the tree defines a complete matching, if the union of the matched
request tuples is identical to the possible request tuples.

An Illustrating Example

Before formalizing the exact detection for incomplete permissions, the following example may
illustrate the approach. For visualization purposes, a simplified tree with one policy and
two rules from figure 2.10, page 49 is used. The use of one PolicySet and multiple Policy
constructs can be omitted, because their processing is identical to the processing of rules. If
the procedure provides the correct result for the rule level, it can be applied to the Policy and
PolicySet level in the same fashion. The simplified tree is shown in figure 4.66.

In the example, one policy P exists that has two subordinate rules, R1 and R2. Because
it is also essential to know the possible roles, operations and resource objects, this can be

21The Action element represents the operation.

136 4. Declaration and Enforcement of Access Restrictions

SOR
R

SOR
P

{*,*, ,//Building}

P1

R1
 R2

{Role
B
,w, ,//Building}
{*,r, ,//Building}

Figure 4.66: Policy tree for the detection of incompleteness

declared as follows:

P1 = {∗, ∗, ε, //Building, . . . , R1, R2}
R1 = {∗, r, ε, //Building} → . . .

R2 = {RoleB, w, ε, //Building} → . . .

S = {RoleA, RoleB}
O = {r, w}

RA = {ε}
RO = {Building, Street}

For the exact detection of complete matching for declared permissions, all available re-
source content objects are used. From the previous declarations and assumptions about the
subjects, operations and resource objects, the following requests must be considered:

SOR = {{RoleA, r, ε, {Building, Street}}, {RoleA, w, ε, {Building, Street}},
{RoleB, r, ε, {Building, Street}}, {RoleB, w, ε, {Building, Street}}}

Policy P matches all subjects, all operations and resource attributes but only the resource
object of class Building. Therefore, another policy is required that matches the remaining
requests. This can be achieved with the rule {*,*,ε,//Street,ε}. According to the matching of
policy P, the subordinate rules R1 and R2 must process the requests that remain. According
to the matching of the rules R1 and R2, another rule is required that defines the following
matching: {RoleA, w,ε,//Building,ε}.

4.5 Exact Detection of Inconsistent Permissions 137

Formalizing the Approach

For the formalization of the approach, two different types of Subject-Operation-Resource
tuples can be identified: SOR+ defines all tuples that are matched by a permission and
SOR- defines all tuples that are not processed by the permission. Because matching takes
place on three levels of the tree, the SOR+ tuple exists in three variations: For the PolicySet
level defines SOR+

PS, for the Policy level defines SOR+
P and for the Rule level defines SOR+

R

the matched tuples. In the same manner, the different variations of SOR- can be defined:
For the PolicySet level, SOR-

PS defines the remaining tuples for the subordinate policies and
SOR-

P defines the remaining tuples for the subordinate rules. According to the assumptions,
the Condition is correlated to the rule in such respect that it reduces the matched resource
objects, as defined by the Resource matching expression. Therefore, no remaining tuples for
the rule level must be determined.

PolicySet level: Let PS be one PolicySet and PS be the set of available policy sets for an
authorization process and NPS = ‖PS‖ be the number of policy sets. Also let SMPS,
OMPS, RMPS and XMPS be the matching elements of a policy set PS, then a single
policy set reduces the possible requests SOR to the processed requests SOR+

PS and the
remaining requests for additional required policy sets SOR-

PS in the following fashion:

SOR :=S ×O ×R× 2RO (4.78)
PS :={SMPS , OMPS , RMPS , XMPS} (4.79)

SOR+
PS :=SPS ×OPS ×RAPS ×ROPS (4.80)
SPS :=L(SMPS) ∩ S (4.81)
OPS :=L(OMPS) ∩ O (4.82)

RAPS :=L(RMPS) ∩RA (4.83)
ROPS :=XQuery(XMPS ,RO) (4.84)

The union of all SOR+
PS defines all request tuples that are processed by the set of policy

sets. If that union is equivalent to the possible requests SOR than the set of policies
declare a complete set of permissions. Let SOR+

PS,i be the SOR+ tuple of the ith policy
set, then the completeness can be defined as follows:

SOR ≡
NPS⋃

i

SOR+
PS,i ⇔ Completeness on PolicySet level (4.85)

The unmatched requests that must be processed by additional PolicySet constructs can
be determined by subtracting the matched tuples from the possible tuples:

SOR−
PS := SOR\SOR+

PS (4.86)

Policy level: Let P be one Policy and P be the set of policies, subordinate to the PolicySet
PS and NP = ‖P‖ be the number of the policies. Also let SMP, OMP, RMP and XMP be
the matching elements of a policy P, then a single policy reduces the possible requests

138 4. Declaration and Enforcement of Access Restrictions

SOR+
PS to the processed requests SOR+

P and the remaining requests for additional
required policies SOR-

P in the following fashion:

P :={SMP , OMP , RMP , XMP } (4.87)
SOR+

P :=SP ×OP ×RAP ×ROP (4.88)
SP :=L(SMP) ∩ SPS , P 6 PS (4.89)
OP :=L(OMP) ∩ OPS , P 6 PS (4.90)

RAP :=L(RMP) ∩RAPS , P 6 PS (4.91)
ROP :=XQuery(XMP ,RO) (4.92)

The union of all SOR+
P defines all request tuples that are processed by the set of

policies. If that union is equivalent to the possible requests SOR+
PS, then the set of

policies declare a complete set of permissions. Let SOR+
P,i be the SOR+ tuple of the

ith policy, than the completeness can be defined as follows:

SOR+
PS ≡

NP⋃
i

SOR+
P,i ⇔ Completeness on Policy level (4.93)

The unmatched requests that must be processed by additional policies can be deter-
mined by subtracting the matched tuples from the possible tuples:

SOR−
P := SOR+

PS\SOR
+
P | P 6 PS (4.94)

Rule level: Let R be one Rule andRO be the set of subordinate rules to a Policy P and NR =
‖R‖ be the number of rules. Also let SMR, OMR, RMR, XMR be the matching elements
of a rule R, then a single rule reduces the possible requests SOR+

P to the processed
requests SOR+

R and the remaining requests for additional required rules SOR-
R in the

following fashion:

R :={SMR, OMR, RMR, XMR, XMC} (4.95)
SOR+

R :=SR ×OR ×RAR ×ROR (4.96)
SR :=L(SMR) ∩ SP , R 6 P (4.97)
OR :=L(OMR) ∩ OP , R 6 P (4.98)

RAR :=L(RMR) ∩RAP , R 6 P (4.99)
ROR :=XQuery(XMR,RO) ∩XQuery(XMC ,RO) (4.100)

The union of all SOR+
R defines all request tuples that are processed by the set of rules.

If that union is equivalent to the possible requests SOR+
P , than the set of rules declare

a complete set of permissions. Let SOR+
R,i be the SOR+ tuple of the ith rule, then the

completeness can be defined as follows:

SOR+
P ≡

NR⋃
i

SOR+
R,i ⇔ Completeness on Rule level (4.101)

4.5 Exact Detection of Inconsistent Permissions 139

Applying the Formalism to the Illustrating Example

The example does not declare any PolicySet constructs. Therefore, all request tuples are
processed by the policy P. This can be formalized by assigning the possible requests SOR to
the requests, matched by the not existing PolicySet constructs SOR+

PS.

SOR = {{RoleA, r, ε, {Building, Street}}, {RoleA, w, ε, {Building, Street}},
{RoleB, r, ε, {Building, Street}}, {RoleB, w, ε, {Building, Street}}}

SORPS = SOR

According to the declaration of policy P1={*,*,ε,//Building, . . . , R1, R2}, the calculation
of SOR+

PS takes place as follows:

P = {∗, ∗, ε, //Building}
SOR+

P = {{RoleA, r, ε, Building}, {RoleA, w, ε, Building},
{RoleB, r, ε, Building}, {RoleB, w, ε, Building}}

SOR−
P = {{RoleA, r, ε, {Building, Street}}, {RoleA, w, ε, {Building, Street}},

{RoleB, r, ε, {Building, Street}}, {RoleB, w, ε, {Building, Street}}}\
{{RoleA, r, ε, Building}, {RoleA, w, ε, Building},
{RoleB, r, ε, Building}, {RoleB, w, ε, Building}}}

= {{RoleA, r, ε, {Street}}, {RoleA, w, ε, {Street}},
{RoleB, r, ε, {Street}}, {RoleB, w, ε, {Street}}}

According to the matching for the rules R1 and R2, the detection results in the following
expressions:

SOR+
P = {{RoleA, r, ε, Building}, {RoleA, w, ε, Building},

{RoleB, r, ε, Building}, {RoleB, w, ε, Building}}
R1 = {∗, r, ε, //Building, ε}

SOR+
R1 = {{RoleA, r, ε, Building}, {RoleB, r, ε, Building}}
R2 = {RoleB, w, ε, //Building, ε}

SOR+
R2 = {RoleB, w, ε, Building}

SOR+
R = {{RoleA, r, ε, Building}, {RoleB, r, ε, Building}, {RoleB, w, ε, Building}}

SOR−
R = {RoleA, w, ε, Building}

The information of unmatched request s on the policy and rule level can be used to
annotate the tree representation, as illustrated in figure 4.67.

Identical Matching at the same Level: PolicySet, Policy or Rule

XACML defines a particular hierarchy of the permission constructs PolicySet, Policy and
Rule. However, it does not restrict how the matching is associated for a given structure.
It is therefore possible that two or more permissions (PolicySet or Policy constructs) use

140 4. Declaration and Enforcement of Access Restrictions

SOR
R

SOR
P

{*,*, ,//Building}

P1

R1
 R2

{Role
B
,w, ,//Building}
{*,r, ,//Building}

R3

{Role
A
,w, ,//Building}

P2
{*,*, ,//Street
}

R4

{*,*, ,//Street
}

Figure 4.67: Policy tree for the detection of completeness, annotated with the request tuples
that are not being matched

identical matching for the subject, operation, resource and resource content (SM, OM, RM
and XM). This requires that the exact detection for complete permissions combines these
permissions first, before starting the detection process for subordinate permissions (Policy or
Rule constructs). This is because the introduced detection processes each permission and the
subordinates separately. But in this case, the results must be merged in order to determine
a complete matching.

An example permission tree, where two policies define the identical matching is shown in
figure 4.68. The visualized permissions can be declared as follows22:

PS = {∗, ∗, ε, //∗, . . . , P1, P2, P3}
P1 = {RoleA, ∗, ε//∗, . . . , R11, R12}
P2 = {RoleA, ∗, ε, //∗, . . . , R21, R22}
P3 = {RoleB, ∗, ε, //∗, . . . , R3}

R11 = {∗, r, ε, //Street, ε} → . . .

R12 = {∗, w, ε, //Street, ε} → . . .

R21 = {∗, r, ε, //Building, ε} → . . .

R22 = {∗, w, ε, //Building, ε} → . . .

R3 = {∗, ∗, ε, //∗, ε} → . . .

This set of permissions declares a complete matching, because all possible requests are
processed. But, if the policies P1 and P2 and their subordinate rules are processed without
combining, the result is that the rules of P1 and P2 do not define complete matching, which is
wrong. For this example, the subordinate rules of P1 (R11 and R12) do not allow processing
of the requests, as they are processed by the subordinate rules of P2 (R21 and R22). But

22For the detection of completeness, the used combining algorithms and the effect of the rules is irrelevant.

4.5 Exact Detection of Inconsistent Permissions 141

SOR
PS

SOR
R

SOR
P

P1

PS

P2
 P3

{Role
A
,*, ,//*}

R11
 R12
 R21
 R22
 R3

{*,r, ,//Street}
 {*,w, ,//Street}
 {*,r, ,//Building}
 {*,w, .//Building}

{*,*, ,//*}

{*,*, ,//*}

{Role
A
,*, ,//*}
 {Role
B
,*, ,//*}

Figure 4.68: A permission tree with double matching

after merging the sub-trees of policy P1 and P2, which results in the combining of rules R12,
R12, R21 and R22 to one superordinate policy, result in the correct result.

Assuming the subjects S={RoleA, RoleB}, operations O={r, w}, resource attributes
RA={ε} and resource content RO={Building, Street}, the following matching can be iden-
tified: P1 and P2 matches the request tuples {RoleA,*,ε,//*} and P3 matches the request
tuple {RoleB,*,ε,//*}. This results to a complete matching on the policy level.

SOR = {{RoleA, r, ε, Building}, {RoleA, w, ε, Building},
{RoleA, r, ε, Street}, {RoleA, w, ε, Street},
{RoleB, r, ε, Building}, {RoleB, w, ε, Building},
{RoleB, r, ε, Street}, {RoleB, w, ε, Street}}

The matching for the three policies result in the following SORs:

SOR+
P1 = {{RoleA, r, ε, Building}, {RoleA, w, ε, Building},

{RoleA, r, ε, Street}, {RoleA, w, ε, Street}}
SOR+

P2 = {{RoleA, r, ε, Building}, {RoleA, w, ε, Building},
{RoleA, r, ε, Street}, {RoleA, w, ε, Street}}

SOR+
P3 = {{RoleB, r, ε, Building}, {RoleB, w, ε, Building},

{RoleB, r, ε, Street}, {RoleB, w, ε, Street}}

The completeness on the policy level can be verified with the union of SOR+
Pi tuples:

SOR ?=
3⋃
i

SORPi → True

142 4. Declaration and Enforcement of Access Restrictions

The SORs for the rules of the policies:

SOR+
R11 = {RoleA, r, ε, Street}

SOR+
R12 = {RoleA, w, ε, Street}

SOR−
R1 = {{RoleA, r, ε, Building}, {RoleA, w, ε, Building}}

SOR+
R21 = {RoleA, r, ε, Building}

SOR+
R22 = {RoleA, w, ε, Building}

SOR−
R2 = {{RoleA, r, ε, Street}, {RoleA, w, ε, Street}}

SOR+
R3 = {{RoleB, r, ε, Building}, {RoleB, w, ε, Building},

{RoleB, r, ε, Street}, {RoleB, w, ε, Street}}

This results in the following completeness checks for the permission rules, which reflect
that the subordinate rules of policy P1 and P2 do not declare complete matching:

SOR+
P1

?= (SOR+
R11 ∪ SOR

+
R12) → False

SOR+
P2

?= (SOR+
R21 ∪ SOR

+
R22) → False

SOR+
P3

?= SOR+
R3 → True

After joining the matching from P1 and P2 to permission P12 with four rules P11, P12,
P21, P22, the following SOR tuples emerge for P12:

SOR+
P12 = {SOR+

P2 ∪ SOR
+
P2}

= {{RoleA, r, ε, Building}, {RoleA, w, ε, Building},
{RoleA, r, ε, Street}, {RoleA, w, ε, Street}}

SOR+
R12 = {RoleA, r, ε, Street}

SOR+
R12 = {RoleA, w, ε, Street}

SOR+
R21 = {RoleA, r, ε, Building}

SOR+
R22 = {RoleA, w, ε, Building}

The tests for incompleteness return the following results:

SOR+
P12

?= (SOR+
R11 ∪ SOR

+
R12 ∪ SOR

+
R21 ∪ SOR

+
R22) → True

SOR+
P3

?= SOR+
R3 → True

Therefore, the detection returns the correct result, after matching the policies with iden-
tical matching.

4.6 Recommending a Structured Declaration of Permissions

XACML foresees the encoding of a permission as a Rule construct, because it allows to de-
clare an effect (Permit or Deny). The PolicySet and Policy constructs are used to structure

4.6 Recommending a Structured Declaration of Permissions 143

the existing rules in an appropriate way. This requires that each PolicySet and Policy defines
a particular matching and combining algorithm that controls the processing of an outcome of
subordinated constructs. According to the previous sections, it is important that the struc-
ture defines a complete set of reachable and non-contrary permissions. For the declaration
and enforcement of the introduced permission kinds (class-based, object-based and spatial
permissions), this section defines a recommendation about the structuring of PolicySet, Policy
and Rule constructs. This can be seen as a guideline for policy writing that allows one or
multiple policy writers to declare permissions in the same fashion.

4.6.1 Implications, using One Authorization Service

XACML foresees an infrastructure, where one Authorization Service (Policy Decision Point
in XACML terminology) serves multiple Enforcement Services (Policy Enforcement Point in
XACML terminology). For such an infrastructure, it is essential that the Decision Service can
correlate the resources, about which restrictions are to be enforced with the appropriate set
of permissions. This is essential, because each permission uses an Xpath expression to match
for resource objects. If the actual structure of the resource objects (the resource content)
does not fit to the Xpath expression, wrong enforcement is the result.

One obvious approach to achieve this association is to give each resource object a unique
ID, which is being used by the encoded permission for matching. However, this approach has
two main drawback: Performance and matching limitations. This can be explained best, when
thinking about the organization of encoded permissions. This organization can be illustrated
by the tree, introduced in listing 3.3.

Performance: Let’s recapitulate: The process of creating an authorization decision is driven
by the outcome of a rule. Enforceable rules are reached after matching took place on
the superordinate policy and policy set constructs. The correlation of permissions with
a particular set of resource objects takes place at the third level of matching. This
approach does not empower the available hierarchy in an appropriate way. For this
approach, the hierarchical structure is useless.

Matching limitations: Correlating permissions to resource objects through the unique iden-
tity has the limitation that a sole matching on other characteristics of the objects cannot
take place. Each matching must use the identity AND the additional matching. This
results in complex matching terms and has a drawback on performance.

Knowledge about identity: The approach to correlate permissions and resource objects
by their unique identity requires, that the policy writer must know all identities of
resource objects, to be protected at the time of policy writing. This is unfeasible and
practically impossible.

From the previous thoughts, the correlation between resource objects and permissions
cannot be achieved by a unique identity. For the introduced service infrastructure, metadata
about the service can be used to direct the authorization process into a distinct path of the
XACML permission hierarchy. This results in a recommendation, how to use the XACML
permission hierarchy, as explained in the the next section.

144 4. Declaration and Enforcement of Access Restrictions

4.6.2 The Coordinate Reference System

The enforcement of spatial restrictions requires specific processing, which diverge from the
processing defined in XACML. In particular, the correlation between the Coordinate Ref-
erence System of the permission geometry and the resource geometry is essential for the
enforcement of spatial restrictions. This is because the geometry changes if the CRS changes.
This correlation can be verified by evaluation of the srsName attribute of GML geometries.
This represents matching ‘’at the last occasion‘’, within the <Condition> element. For an
earlier matching at the PolicySet, Policy or Rule level, using the <Resource> tag of the
<Target> element, an additional attribute can be defined:
http://www.andreas-matheus.de/geoxacml/1.0/resource#crs-id. One appropriate encoding
of the CRS is shown in listing 4.4.

1 <Attribute AttributeID=”http://www.andreas−matheus.de/geoxacml/1.0/resource#crs−id”
2 DataType=”http://www.w3c.org/2001/XMLSchema#anyURI”>
3 <AttributeValue>EPSG:4326</AttributeValue>
4 </Attribute>

Listing 4.4: Encoding of an environment attribute value that defines the used CRS

For a service that supports access to geodata, encoded in different Coordinate Reference
Systems, the correlation between the resource geometry CRS and the permission CRS can be
achieved in two different approaches:

1. One master rule encoding exists, where the permission geometry is encoded in one
supported CRS. All requests for another supported CRS require the transformation of
the permission geometry, according to the resource geometry CRS.

The advantage with this approach is that only one master rule exists, which is used for
enforcement. It therefore keeps the permission repository simple, because it requires just
the master rule. The approach also provides the flexibility to enforce spatial permissions
for GML feature collections, where the contained feature geometries are encoded in
different CRSs. The drawback is that a transformation of the permission geometry is
required for each authorization decision request, if the resource (request) CRS is not
identical to the permission geometry’s CRS.

2. Multiple rules exist, each declaring the same spatial restriction for another supported
CRS.

This approach has the advantage that no CRS transformation is required. However,
it requires a more complex structuring of the permission repository, as matching for
the .../resource#crs-id attribute must be supported. Also, it does not support the
enforcement of spatial restrictions for a GML feature collection that contains geometry
encodings in different CRSs.

In order to match permissions, based on the value of the .../resource#crs-id attribute,
the Enforcement Service must add this attribute to the authorization decision request and
associate the correct value. Depending on the service request parameters, the Enforcement
Service may not always be able to obtain the information.

4.6 Recommending a Structured Declaration of Permissions 145

For the WMS, the request does always contain the CRS information and the service
response does not represent a GML feature collection. This allows the handling of the CRS
by using approach one or two.

For the WFS, not all requests must contain the CRS information. The enforcement is
then based on the GML feature collection – the resource content – as it is the response of the
WFS. Because the contained features can potentially be encoded in different CRSs, only the
handling according to the first approach is possible.

4.6.3 Recommended Matching of PolicySet, Policy and Rule

For the introduced service infrastructure, resource objects can only be accessed by using
available service operations. Each service operation is a carrier for operations, which are to
be invoked on resource objects. The implication to access control is that resource objects
and their structuring is correlated with service operations. This correlation can be used to
organize the permissions, encoded in XACML using the PolicySet, Policy and Rule constructs.

PolicySet matching:

The XACML standard does not instruct a particular organization of the permissions. In
order to empower the full capabilities of the permission hierarchy, this work recommends
a particular use that fits to the service oriented infrastructure: On the top level, a set of
PolicySet constructs can exist. Each PolicySet organizes the matching in such a way that
it is applicable to one service operation. The assumption behind it is that each service
operation provides an output that has a particular structure of resource objects. All
subordinate permissions can rely on that structure and refine matching. This work uses
the service identification named service-id and the service operation identification named
operation-id for switching between policy sets, because it ensures natural uniqueness.
The full names of the GeoXACML identifiers are

http://www.andreas-matheus.de/geoxacml/1.0/resource#service-id (4.102)
http://www.andreas-matheus.de/geoxacml/1.0/resource#operation-id (4.103)

For the declaration of permissions to protect resources on Service A and B from figure
3.1, additional information for the identifiers #service-id and #operation-id is listed in
table 4.10. The appropriate combination of the identifiers allows the correlation of a
particular set of permissions to a service operation as it is important for the association
of the possible resource context structure and the rule’s Xpath matching expression.

In addition to these resource identification attributes, XACML enforces the use of the
resource-id attribute (urn:oasis:names:tc:xacml:1.0:resource:resource-id). It can be used
to control matching based on the target namespace of the GML application schema.
This ensures the appropriate matching if one operation of a service supports different
resource content structures.

An example XACML encoding that defines a PolicySet matching for the GetFeature
operation of the service http://serviceA.xyz and the GML application schema target
namespace www.in.tum.de/am is illustrated in listing 4.5. A formalization of this Pol-
icySet that matches to the subject Bob and the operation read, using the combining

146 4. Declaration and Enforcement of Access Restrictions

Service .../resource#service-id .../resource#operation-id

SerivceA http://serviceA.xyz

GetFeatureWithLock

GetFeature

Transaction

Lock

ServiceB http://serviceB.xyz
GetMap

GetFeatureInfo

Table 4.10: Metadata for the Services A and B (figure 3.1)

algorithm first-applicable is as follows:

PS = {Bob, read, {.../resource#service-id == http://serviceA.xyz,
.../resource#operation-id == GetFeature,

.../resource#resource-id == www.in.tum.de/am},
//∗,first-applicable, . . .}

1 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
2 <AttributeValue
3 DataType=”http://www.w3.org/2001/XMLSchema#string”>
4 www.in.tum.de/am
5 </AttributeValue>
6 <ResourceAttributeDesignator
7 AttributeId=”urn:oasis:names:tc:xacml:1.0:resource:resource−id”
8 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
9 </ResourceMatch>

10 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
11 <AttributeValue
12 DataType=”http://www.w3.org/2001/XMLSchema#string”>
13 http://serviceA.xyz
14 </AttributeValue>
15 <ResourceAttributeDesignator
16 AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#service−id”
17 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
18 </ResourceMatch>
19 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
20 <AttributeValue
21 DataType=”http://www.w3.org/2001/XMLSchema#string”>
22 GetFeature
23 </AttributeValue>
24 <ResourceAttributeDesignator
25 AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#operation−id”
26 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
27 </ResourceMatch>

Listing 4.5: Service operation selector for associating policy sets to Service A’s operation
DescribeFeatureType

Policy matching:

Using the recommended matching for a PolicySet organizes the permission tree in such
a way that all policies, subordinate to a PolicySet match for the same service operation.

4.6 Recommending a Structured Declaration of Permissions 147

Therefore, the subordinate Policy constructs correspond to the same resource content
structure, because the structure is – per definition – related to a service operation. For
the Policy matching it is recommended to use only the subject and operation matching.
This is similar to an ACL of a resource content object. Each subordinate Rule and
Condition construct can than match particular resource objects. This enables to declare
the class-based, object-based and spatial restrictions as rule and condition matching
that must declare particular Xpath expressions for the matching.

Rule matching:

According to the matching of the superordinate Policy and PolicySet constructs, it is
ensured that a Rule is correlated to a particular resource content structure as it is
important for the Xpath matching of the Rule and Condition. This allows the focusing
of the encoding of class-based, object-based and spatial restrictions. It is the duty of
the rule matching that encodes a spatial restriction to correlate the used CRS of the
permission geometry with the resource content object geometry. This can be achieved
by using a rule matching as illustrated in listing 4.6. The matching ensures matching
for the CRS, identified with the code EPSG:4326.

1 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
2 <AttributeValue
3 DataType=”http://www.w3.org/2001/XMLSchema#string”>
4 EPSG:4326
5 </AttributeValue>
6 <ResourceAttributeDesignator
7 AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#crs−id”
8 DataType=”http://www.w3.org/2001/XMLSchema#nayURL”/>
9 </ResourceMatch>

Listing 4.6: Rule matching to ensure CRS correlation between the permission geometry and
the possible resource content geometry CRS EPSG:4326

The introduced organization for the declaration of GeoXACML permissions provides a
clear and manageable structure.

4.6.4 An Illustrating Example, obeying the Recommend Structure

The following example shall illustrate the recommendation for the structured encoding of
permissions. For this example, the service infrastructure consists of two services (WFS and
WMS) as introduced in table 4.10. For simplicity, only the GetFeature and Transaction oper-
ation of the service http://serviceA.xyz are considered.

Let’s assume two subjects exist: Bob and Alice. The possible operations on the resource
content objects for service A are read, write, insert, delete and lock as they are provided by
the service. For service B, the possible operations are map and read. Then, the following
restrictions are to encoded, assuming the City Model resource content structure and objects
for the WFS (http://serviceA.xyz) and the resource content structure from listing 5.17 for
the WMS (http://serviceB.xyz):

PS1: http://serviceA.xyz, GetFeature, Operation: read

148 4. Declaration and Enforcement of Access Restrictions

R111: Alice can read all resource content objects of class Building.

R121: Bob cannot read resource content objects of class Street according to the geometry,
expressed by the spatial property gml:LineString, inside the permission geometry
GP = {foo,0 0,10 0,10 10,0 0}.

R122: Bob can read all resource content objects of class Street.

PS2: http://serviceA.xyz, Transaction, Operations: write, create, delete and lock

R211: Alice can write all resource content objects of class Building.

R212: Alice cannot write the Building object, identified by the address ’1600 Pennsylvania
Avenue NW, Washington, DC 20500’.

PS3: http://serviceB.xyz, GetMap, Operation: map

R311: Alice can map resource content objects of layer Building if the area of interest,
encoded from the request parameter BBOX is inside the permission geometry GP

= {foo,-2 0,2 0,2 6,-2 6,-2 0}
R321: Bob can map resource content objects of layer Building if the area of interest,

encoded from the request parameter BBOX is inside the permission geometry GP

= {foo,2 0,7 0,7 6,2 6,2 0}

PS4: http://serviceB.xyz, GetFeatureInfo, Operation: read

R411: Alice can read resource content objects of class Building if the point of interest,
encoded from the request attributes X and Y are inside the permission geometry
GP = {foo,-2 0,2 0,2 6,-2 6,-2 0}

For the top level matching, four PolicySet constructs are recommended. Each PolicySet
uses the first-applicable combining algorithm that allows the declaration of general/specific
permissions. This is used on the Policy level for ensuring complete matching.

PS1 ={∗, ∗, {#service-id == http://serviceA.xyz,#operation-id == GetFeature},
//∗,first-applicable, P11, P12, P13}

PS2 ={∗, ∗, {#service-id == http://serviceA.xyz,#operation-id == Transaction},
//∗,first-applicable, P21, P22}

PS3 ={∗, ∗, {#service-id == http://serviceB.xyz,#operation-id == GetMap},
//∗,first-applicable, P31, P32}

PS4 ={∗, ∗, {#service-id == http://serviceB.xyz,#operation-id == GetFeatureInfo},
//∗,first-applicable, P41, P42}

4.6 Recommending a Structured Declaration of Permissions 149

According to these declarations, the following policies and rules can be defined:

P11 ={Alice, r, ε, //∗,first-applicable, R111, R112}
R111 ={∗, ∗, ε, //Building, ε} → Permit

R112 ={∗, ∗, ε, //∗, ε} → Deny

P12 ={Bob, r, ε, //∗,first-applicable, R121, R122, R123}
R121 ={∗, ∗, foo, //Street, C121} → Deny

C121 ={./gml:LineString,Within, {foo,0 0,10 0,10 10,0 0}}
R122 ={∗, ∗, ε, //Street, ε} → Permit

R123 ={∗, ∗, ε, //∗, ε} → Deny

P13 ={∗, ∗, ε, //∗,first-applicable, R131}
R131 ={∗, ∗, ε, //∗, ε} → Deny

P21 ={Alice, w, ε, //∗,first-applicable, R211, R212, R213}
R211 ={∗, ∗, ε, //Building, C211} → Deny

C211 ={boolean, ./address, {”1600 Pennsylvania Avenue NW, Washington, DC 20500”}}
R212 ={∗, ∗, ε, //Building, ε} → Permit

R213 ={∗, ∗, ε, //∗, ε} → Deny

P22 ={∗, ∗, ε, //∗,first-applicable, R231}
R221 ={∗, ∗, ε, //∗, ε} → Deny

P31 ={Alice,m, ε, //∗,first-applicable, R311, R312}
P311 ={∗, ∗, foo, //Building, C311} → Permit

C311 ={//am:WMSResourceContent/gml:boundedBy,Within, {foo,-2 0,2 0,2 6,-2 6,-2 0}}
R312 ={∗, ∗, ε, //∗, ε} → Deny

P32 ={Bob,m, ε, //∗,first-applicable, R321, R322}
R321 ={∗, ∗, foo, //Building, C321} → Permit

C321 ={//am:WMSResourceContent/gml:boundedBy,Within, {foo,2 0,7 0,7 6,2 6,2 0}}
R322 ={∗, ∗, ε, //∗, ε} → Deny

P41 ={Alice, r, foo, , first-applicable, R411, 412}
R411 ={∗, ∗, ε, //Building, C411} → Permit

C411 ={./gml : Point,Within, {foo,-2 0,2 0,2 6,-2 6,-2 0}}
R412 ={∗, ∗, ε, //∗, ε} → Deny

P42 ={∗, ∗, ε, //∗,first-applicable, R421}
R421 ={∗, ∗, ε, //∗, ε} → Deny

150 4. Declaration and Enforcement of Access Restrictions

PS3

PS4

PS1

PS2

PS11
 PS12
 PS13

R111 ->

Permit

R112 ->

Deny

R121 ->

Deny

R122 ->

Permit

R123 ->

Deny

R131 ->

Deny

PS21

R211 ->

Deny

R212 ->

Permit

R213 ->

Deny

PS22

R221 ->

Deny

PS31

R311 ->

Permit

R312 ->

Deny

PS32

R321 ->

Permit

R322 ->

Deny

PS41

R411 ->

Permit

R412 ->

Deny

PS42

R421 ->

Deny

{*,*,{...:service-id == http://

serviceB.xyz, ...:operation-id

== GetMap}, //*}

{*,*,{...:service-id == http://

serviceB.xyz, ...:operation-id ==

GetFeatureInfo}, //*}

{*,*,{...:service-id == http://

serviceA.xyz, ...:operation-id

== Transaction}, //*}

{*,*,{...:service-id == http://

serviceA.xyz, ...:operation-id

== GetFeature}, //*}

{*,*, ,//*}
{Bob,r, ,//*}
{Alice,r, ,//*}

{*,*, ,//Building}
 {*,*, ,//*}
 {*,*, ,//*, }
 {*,*, ,//*, }
{*,*, ,//Street}

./gml:LineString, Within,

{foo, 0 0,10 0,10 10,0 0}

{*,*, ,//Street}

{Alice,w, ,//*}
 {*,*, ,//*}

{*,*, ,//*}
{*,*, ,//*}
{*,*, ,//Building}
 {*,*, ,//Building}

boolean, ./address, {"1600

Pennsylvania ...")}

{*,*, ,//*}

{Alice,m, ,//*}
 {Bob,m, ,//*}

//WMSResourceContent/gml:

boundedBy, Within,

{foo,2 0,7 0,7 6,2 6,2 0}

//WMSResourceContent/gml:

boundedBy, Within,

{foo,2 0,7 0,7 6,2 6,2 0}

{*,*, ,//*}

{*,*, ,//*}

./gml: Point, Within,

{foo,-2 0,2 0,2 6,-2 6,-2 0}

{Alice,r, ,//*}

{*,*, ,//Building}
 {*,*, ,//Building}

{*,*, ,//Building}
 {*,*, ,//*}

{*,*, ,//*}

Figure 4.69: Recommended permission tree for the example policies and rules

Chapter 5

Evaluation and System Design

This chapter describes the implementation of an Authorization Service that derives autho-
rization decision based on declared class-based, object-based and spatial restrictions, encoded
in GeoXACML. Further, the implementation of two different Enforcement Services for the
OGC Web Map Service and the Web Feature Service are introduced. This chapter closes with
providing test cases that allow the evaluation of the implementation. This chapter starts with
a discussion about the appropriate implementation infrastructure.

5.1 Architecture

This work introduces a solution for an access control system that allows the protection of
geospatial information objects, accessible through a distributed services infrastructure. The
question discussed in this section is how an access control system can be integrated in the
existing services infrastructure.

Figure 5.1: 4-Tier architecture for a service oriented architecture

The existing infrastructure of distributed services can be described as a 4-Tier architecture,

152 5. Evaluation and System Design

as illustrated in figure 5.1. The tiers have the following responsibility:

Tier 1: The Client-Tier provides the user interface that allows the system to sent access
requests to the service and display the received response.

Tier 2: The Presentation-Tier provides the environment to host the representation logic;
the Web Service. The client communicates with the Web Service by sending the re-
quest. The service communicates with the business logic that is responsible to create
the response for the request.

Tier 3: The Business-Tier accepts requests, fetched by the Web Service and contacts the
DBMS in order to create the response. The response is forwarded to the Web Service.

Tier 4: The DBMS-Tier provides the means for the actual data storage and allows the
business logic to access the geodata by using designated operations.

In order to apply access control to such an architecture, where does it fit? Extending the
functionality at Tier 1 results in a subject-sided enforcement of access restrictions, which is
not intended. Extending Tier 4 does not provide transparency for the enforcement of access
restrictions. Because the access restrictions apply to the service response, access control on
the DBMS Tier is not transparent to the output of the business logic. This leaves Tiers 2
and 3 for the integration of the access control system.

Software developer who are in charge of the development of the business logic would
probably tend to integrate the access control system into the business logic itself. This is not
recommended, as outlined in [SecureWeb 2001]: ‘’This practice is a major cause of applica-
tions vulnerabilities (including backdoor access). Holes and vulnerabilities in commercial and
in-house web software constantly crop up and need to be fixed or plugged with upgrades or
patches.‘’ And: ‘’Web applications consist of bugs, backdoors, poor input validation, and weak
state control. Businesses can’t afford to wait passively for security glitches to be discovered
and fixed manually. Continually fixing code written in-house by hand is an expensive, time-
consuming and never-ending task. In fact, most sites add so much new code every day that
they could never hope to keep up by patching or fixing holes manually. This makes a majority
of sites essentially insecure. Protecting the applications running at the heart of your online
business by manually patching or upgrading is a strategy that will fail you.‘’ The conclusion
is that a separate piece of processing logic is required that is independent from the business
logic. This results in extending the capabilities of Tier 2. Here, an isolated Enforcement
Service implements the interpretation of the fetched service requests, does exhaustive param-
eter validation, specific for the protected service. This extension to the 4-Tier infrastructure
shows figure 5.2.

The bidirectional communication between the client and the service is intercepted by
the Enforcement Service. Because the Enforcement Service requires access control specific
metadata with the request, the client side must also be extended. Here, a specific software
component called the client handler, adds required metadata to the actual request. As stated
previously, this access control metadata can be encoded using SAML1. The implementation
of two different Enforcement Services for the OGC Web Map Service and the Web Feature
Service analyses the request parameter, resp. uses the service response in order to create an
authorization decision request.

1A SAML encoding is not considered in this work.

5.2 GeoXACML, the Geospatial Extension to XACML 153

Figure 5.2: Extended 4-Tier architecture of a service oriented architecture with an Enforce-
ment Service

5.2 GeoXACML, the Geospatial Extension to XACML

The declaration of spatial restrictions is not supported by the XACML standard. In par-
ticular, it does not support the encoding of geometry types and spatial relations. However,
XACML defines extension points for the definition of the required spatial language constructs
([OASIS 2003, chapter 8]). This geospatial extension to XACML, as introduced in this work,
is called GeoXACML.

5.2.1 Extending the XACML Data Types

XACML supports primitive data types, which define the type of an AttributeValue element.
The primitive data type String is defined by the XACML specific URN http://www.w3.org/
2001/XMLSchema#string. Structured XML data types can either be flattened to a string
or the CDATA section must be used. For the flattening, the special characters are trans-
formed by using the URL representation like <‘’ for ‘’<‘’ and ‘’>‘’ for ‘’>‘’. For ex-
ample, a GML Point encoding is flattened to the String: ‘’<Point srsName=”foo”>
<coord><X>0</X><Y>0</Y></coord></Point>‘’.
The use of the CDATA section enables to represent XML encoded text inside the string value of
a XML tag. It requires to mark the begin of the section with ‘’<![CDATA[‘’ and the end with
‘’]]>‘’. The presentation of the GML Point encoding, using the CDATA section is represented
by the following: ‘’<![CDATA[<Point srsName=”foo”><coord><X>0</X><Y>0</Y>
</coord></Point>]]>‘’.

However, XACML supports the declaration of new structured data-types. The introduced
model supports the declaration of spatial access restrictions for the defined simple geometries
of section 2.2.2, page 20. For these geometries, GeoXACML declares structured data types
using a GML 2.1 encoding (see 2.3.1, page 25). Table 5.1 lists the structured data types2.

2This list can be extended as necessary in order to represent more complex geometry constructs.

154 5. Evaluation and System Design

Geometry type XACML URN GML 2.1 element

Point http://www.opengis.net/gml#point gml:Point

LineString http://www.opengis.net/gml#linestring gml:LineString

LinearRing http://www.opengis.net/gml#linearring gml:LinearRing

Polygon http://www.opengis.net/gml#polygon gml:Polygon

Box http://www.opengis.net/gml#box gml:Box

Table 5.1: GeoXACML structured data types for a subset of simple geometries using a GML
2.1 encoding

According to the defined structured data types, the GeoXACML representation of an
AttributeValue of a 2D Point, holding the geometry information for the main entrance of the
Technische Universität München, is shown in listing 5.1.

1 <AttriuteValue DataType=”http://www.opengis.net/gml#Point”>
2 <Point srsName=”EPSG:4326”>
3 <coord>
4 <X>40.1490</X>
5 <Y>11.5699</Y>
6 </coord>
7 </Point>
8 </AttributeValue>

Listing 5.1: Encoding of a 2-D Point geometry as a GeoXACML <AttributeValue>

5.2.2 Extending the XACML Functions

The declaration of spatial restrictions requires – among spatial data types – spatial functions.
They are used in association with the spatial data types and define the spatial methods for
testing a specific topological constellation between two geometries. Each function takes two
parameters, which can be of any type of the spatial data types and returns True or False,
according to the definition in 2.2.3, page 21. Each of the defined spatial methods is defined
by a unique GeoXACML URN, as presented in table 5.2. All function URIs are identified by
the same prefix: http://www.andreas-matheus.de/geoxacml/1.0/function.

The functions can only be used with the <Condition> element to refine matching of
resource objects, according to their spatial properties as required by the spatial restriction.
The <Condition> tag can reference a function by using the attribute FunctionId and/or an
optional sub-element, named <Function>. This depends on the intended semantics. For
example, if access is to be restricted to objects of the class Intersection, where the location
is within a given restricted area, encoded as the permission geometry. Assuming resource
objects with the structure and GML encoding from the City Model, the following permission
can be expressed: Bob is not entitled to write the geospatial information objects of class
Intersection if the location is inside the following restricted area: {foo,3 0,6 1,6 5,1 5,0 2,3

5.2 GeoXACML, the Geospatial Extension to XACML 155

Spatial relation URI

Disjoint http://www.andreas-matheus.de/geoxacml/1.0/function#disjoint

Touches http://www.andreas-matheus.de/geoxacml/1.0/function#touches

Crosses http://www.andreas-matheus.de/geoxacml/1.0/function#crosses

Within http://www.andreas-matheus.de/geoxacml/1.0/function#within

Overlaps http://www.andreas-matheus.de/geoxacml/1.0/function#overlaps

Intersects http://www.andreas-matheus.de/geoxacml/1.0/function#intersects

Equals http://www.andreas-matheus.de/geoxacml/1.0/function#equals

Table 5.2: GeoXACML spatial functions

0}. This can be declared by using the rule and condition constructs R1 and C1:

R1 ={Bob,write, //Intersection, C1} → Deny

C1 ={./location,Within, {foo, 3 0, 6 1, 6 5, 1 5, 0 2, 3 0}}

Listing 5.2 shows the equivalent GeoXACML encoding.

1 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any−of”>
2 <Function FunctionId=”http://www.andreas−matheus.de/geoxacml/1.0/function#within”/>
3 <AttributeValue DataType=”http://www.opengis.net/gml#polygon”>
4 <Polygon gid=”P1” srsName=”foo”>
5 <outerBoundaryIs>
6 <LinearRing>
7 <coord><X>3</X><Y>0</Y></coord>
8 <coord><X>6</X><Y>1</Y></coord>
9 <coord><X>6</X><Y>5</Y></coord>

10 <coord><X>1</X><Y>5</Y></coord>
11 <coord><X>0</X><Y>2</Y></coord>
12 <coord><X>3</X><Y>0</Y></coord>
13 </LinearRing>
14 </outerBoundaryIs>
15 </Polygon>
16 </AttributeValue>
17 <AttributeSelector
18 RequestContextPath=”//am:CityModel/gml:featureMember/am:Intersection/am:location”
19 DataType=”http://www.opengis.net/gml#point”/>
20 </Condition>

Listing 5.2: GeoXACML encoding of a spatial condition

The <Condition> tag in line 1 uses the Boolean function any-of, which returns True if at
least one of the comprising expressions can be satisfied. Here, the comprising expressions are
spatial functions that check the geometry value of the Intersection class, encoded by the
element named location. The spatial method is referenced by the attribute FunctionId of the
<Function> element in line 2. The spatial function Within requires two input parameters: the
geometry of the permission geometry and the geometry of the resource object. The geometry
of the permission geometry is encoded as an <AttributeValue> in lines 3-16. The type of
the attribute value is encoded, using the attribute DataType. The geometry of the resource
object, represented by the property location is fetched by the <AttributeSelector> element,

156 5. Evaluation and System Design

encoded from lines 17-19. The data type of the <AttributeSelector> element is declared by
the attribute <DataType>. The used Xpath expression for fetching the resource object’s
geometry fits into the GML encoding for the City Model.

5.3 Declaration of Permissions, using GeoXACML Encoding

Section 3.1, page 55 enumerates access control requirements from an informal poll at the
Intergeo 2002. Even all of these requirements are important, this work covers the class-based,
object-based and spatial requirements. Therefore, this section focuses on the encoding of
these restrictions only.

5.3.1 The Target Element

Common to the declaration of the different restrictions in XACML is the use of the <Target>
element. It defines the matching of a PolicySet, Policy or Rule to a given Request. The
<Target> tag holds the elements <Subject>, <Action> and <Resource>. The <Subject>
element defines the matching for the permission Subject, the <Action> element defines the
matching for the permission Operation and the <Resource> tag defines the matching for the
permission Resource, resp. the resource content contained by the <ResourceContent> tag.

XACML foresees the identification of subjects through attribute value pairs. This work
simplifies the identification of subjects through their identities as it is similar to the role based
approach. Therefore, the <Subject> tag holds the identification for the subject, using the
XACML attribute urn:oasis:names:tc:xacml:1.0:subject:subject-id. A valid XACML encoding
of the Subject Bob, as used for the illustrating examples in previous sections, is shown in
listing 5.3.

1 <Subject>
2 <SubjectMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
3 <AttributeValue
4 DataType=”http://www.w3.org/2001/XMLSchema#string”>Bob</AttributeValue>
5 <SubjectAttributeDesignator
6 SubjectCategory=”urn:oasis:names:tc:xacml:1.0:subject−category:access−subject”
7 AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−id”
8 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
9 </SubjectMatch>

10 </Subject>

Listing 5.3: XACML encoding of the subject, identified as Bob

The operation, which can be invoked on the resource is encoded by the <Action> tag.
Even this work does not restrict the different operations, the examples deal with the common
read and write operations. An XACML encoding of the read operation is shown in listing 5.4.

The resources, for which a Rule defines permissions, is addressed using the <Resource>
tag. It holds an Xpath expression that allows the fetching of a particular set of XML elements
from the resource content. Depending on the kind of the restriction, the Xpath expression is
different. The next two sections present different examples for class-based and object-based
restrictions.

5.3 Declaration of Permissions, using GeoXACML Encoding 157

1 <Action>
2 <ActionMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
3 <AttributeValue
4 DataType=”http://www.w3.org/2001/XMLSchema#string”>read</AttributeValue>
5 <ActionAttributeDesignator
6 AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action−id”
7 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
8 </ActionMatch>
9 </Action>

Listing 5.4: XACML encoding of the operation read

5.3.2 The Declaration of Class-Based Restrictions

A restriction, which is declared for a class in the geodata’s object-oriented data model must be
enforced for all instances of that class, resp. for all objects. This requires an object-oriented
data model, which is used for encoding of the service input and output. Based on the GML
encoding, this can be achieved using a particular Xpath expression and comparison function.

The convention in this model is that a class from the underlying object-oriented data
model is represented as a globally declared XML element, substitutable to gml: Feature. Due
to the limited capabilities of the Xpath matching capabilities, a permission can be linked to a
feature type in the following way: Xpath allows to query the tag’s name by using the function
name and a parameter, representing the Xpath expression to the tag. Then, a simple string
compare between the returned tag name and the name of the class relates the permission to
the class; hence the feature type.

In order to illustrate this in more detail, let’s take an example class-based restriction,
based on a part of the City Model resource objects. A class-based restriction shall pro-
tect the class Building. According to the structure of the GML encoded resource con-
tent for the City Model, the Xpath expression that fetches the name of the building tags is
name(//am:CityModel/gml:featureMember/am:Building). Because the restriction is already
applicable if just one single tag exists in the XML document, it is sufficient to check for
the first occurrence. This is encoded by adding the selector ‘’[1]‘’ to the previous Xpath
expression. A simple string compare with the name of the class completes the <Resource>
construct. Listing 5.5 shows the corresponding XACML encoding.

1 <Resource>
2 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
3 <AttributeValue
4 DataType=”http://www.w3.org/2001/XMLSchema#string”>Building</AttributeValue>
5 <AttributeSelector
6 RequestContextPath=”name(//am:CityModel/gml:featureMember/am:Building[1])”
7 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
8 </ResourceMatch>
9 </Resource>

Listing 5.5: Example XACML encoding for the class-based restriction on the class Building
using the XACML function string-equal

XACML supports another solution for encoding class-based restrictions. In this case, the

158 5. Evaluation and System Design

<Resource> element keeps an Xpath expression that counts the number of occurrences of
the class representing XML tag. For the example above, the corresponding Xpath expression
is count(//am:CityModel/gml:featureMember/am:Building). If the resulting number is greater
than zero (0), the restriction must be enforced. Listing 5.6 shows the XACML encoding for
that option.

1 <Resource>
2 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:integer−less−than”>
3 <AttributeValue
4 DataType=”http://www.w3.org/2001/XMLSchema#integer”>0</AttributeValue>
5 <AttributeSelector
6 RequestContextPath=”count(//am:CityModel/gml:featureMember/am:Building)”
7 DataType=”http://www.w3.org/2001/XMLSchema#integer”/>
8 </ResourceMatch>
9 </Resource>

Listing 5.6: Example XACML encoding for the class-based restriction on the class Building
using the XACML function integer-less-than

The <ResourceMatch> uses the XACML function integer-less-than and not integer-greater-
than, because the order of the arguments corresponds to the order of the <AttributeValue>
and <AttributeSelector> tags, which is predefined in XACML. Therefore, the integer-less-
than function actually checks if at least one of the named tags exist in the resource content
(0 integer-less-than count(. . .)).

5.3.3 The Declaration of Object-Based Restrictions

The declaration of object-based restrictions can be achieved in a similar fashion to the class-
based restrictions. The difference is that designated elements are addressed by an Xpath
expression that refines the fetching of elements to specific instances. These constraints are
encoded as a condition, using the <Condition> element. Per convention, object-based re-
strictions refine the matching of resource objects based on their non-spatial characteristics
and the spatial restriction according to the spatial characteristics.

For example, let’s declare a condition that matches just the single information object of
class Building, with the address ‘’3 Street A‘’. Using the resource content from the City
Model example, the value of the address can be fetched by the following Xpath expression:
//am:CityModel/gml:featureMember/am:Building/am:address. The corresponding XACML
condition encoding is shown in listing 5.7.

1 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any−of”>
2 <Function FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”/>
3 <AttributeValue
4 DataType=”http://www.w3.org/2001/XMLSchema#string”>3 Street A</AttributeValue>
5 <AttributeSelector
6 RequestContextPath=”//am:CityModel/gml:featureMember/am:Building/am:address”
7 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
8 </Condition>

Listing 5.7: Example XACML condition for selecting one specific information object

5.4 Enforcement of Declared Permissions 159

The Condition construct is comprised of a <AttributeSelector> element, which keeps the
Xpath expression. The attribute selector fetches all elements from the resource content. For
this result set, each entry is compared to the value of the <AttributeValue> element, using
the function string-equal. If at least one of the comparisons result in a positive match, the
condition evaluates to True. This is controlled by the condition function any-of.

In order to declare a condition that expresses the negative matching – the resource content
does not contain of the Building object with the address ‘’3 Street A‘’ – the <Apply> element
must be used in addition. This encoding is shown in listing 5.8.

1 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:not”>
2 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any−of”>
3 <Function FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”/>
4 <AttributeValue
5 DataType=”http://www.w3.org/2001/XMLSchema#string”>3 Street A</AttributeValue>
6 <AttributeSelector
7 RequestContextPath=”//am:CityModel/gml:featureMember/am:Building/am:address”
8 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
9 </Apply>

10 </Condition>

Listing 5.8: Example XACML condition that matches all but one specific information object

The <Apply> element takes the construct that is held by the <Condition> element
in the previous example. In listing 5.8, the <Condition> element keeps the function not
that inverses the result of the function from the <Apply> element. Based on the previous
considerations, a complete object-based constraint can be declared that denies Bob to write
the information object of class Building, characterized by the address 3 Street A. Listing 5.9
shows the XACML encoding of that restriction.

5.3.4 The Declaration of Spatial Restrictions

The declaration of spatial restrictions can be achieved in a similar manner as for the decla-
ration of object-based restrictions: The <Resource> element of the <Target> element keeps
the Xpath expression to an XML tag, representing a class of the object-oriented data model.
The difference to the object-based restrictions is the use of a spatial function inside the <Con-
dition> element. For example, the frequently used spatial restriction that Bob can read all
geospatial information objects, being instances of the class Building if within the boundary
{foo,3 0,6 1,6 5,1 5,0 2,3 0}, can be encoded as a GeoXACML <Condition>, as illustrated in
listing 5.10.

5.4 Enforcement of Declared Permissions

The XACML standard defines the processing of permissions, encoded as a PolicySet, Policy
or Rule construct. However, the association of permissions to a particular ResourceContent
structure and hence a service/operation correlation is not defined.

160 5. Evaluation and System Design

1 <Rule RuleId=”diss:kapitel5:rule1” Effect=”Deny”>
2 <Description>Only Bob cannot write the Building object with address ’3 Street A’</Description>
3 <Target>
4 <Subjects>
5 <Subject>
6 <SubjectMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
7 <AttributeValue
8 DataType=”http://www.w3.org/2001/XMLSchema#string”>Bob</AttributeValue>
9 <SubjectAttributeDesignator

10 SubjectCategory=”urn:oasis:names:tc:xacml:1.0:subject−category:access−subject”
11 AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−id”
12 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
13 </SubjectMatch>
14 </Subject>
15 </Subjects>
16 <Resources>
17 <AnyResource/>
18 </Resources>
19 <Actions>
20 <Action>
21 <ActionMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
22 <AttributeValue
23 DataType=”http://www.w3.org/2001/XMLSchema#string”>write</AttributeValue>
24 <ActionAttributeDesignator
25 AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action−id”
26 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
27 </ActionMatch>
28 </Action>
29 </Actions>
30 </Target>
31 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any−of”>
32 <Function FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”/>
33 <AttributeValue
34 DataType=”http://www.w3.org/2001/XMLSchema#string”>3 Street A</AttributeValue>
35 <AttributeSelector
36 RequestContextPath=”//am:CityModel/gml:featureMember/am:Building/am:address”
37 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
38 </Condition>
39 </Rule>

Listing 5.9: Example XACML restriction that denies Bob to write the building object,
characterized by the address ‘’3 Street A‘’

5.4.1 The Authorization Decision Request

The XACML authorization decision request is an XML document, valid according to the
XML schema is shown in figure 3.2. According to this schema, a request contains one or more
attribute value pairs that build the subject’s attribute assertion. The attribute value pairs
are encoded, using the <AttributeValue> tag. A similar encoding applies to the remaining
attribute value pairs for specifying the operation3, the environment and resource attributes.
XACML provides a native support for the enforcement of access restrictions, based on XML
encoded resources. Therefore, resources can be represented in two ways: As attribute value
pairs, encoded using the <AttributeValue> tag or as an XML, resp. GML encoded document,
inserted in the <ResourceContent> tag.

Applying this capability to the introduced model that is based on the service oriented

3In XACML, an operation is encoded, using the <Action> tag.

5.4 Enforcement of Declared Permissions 161

1 <Rule RuleId=”diss:kapitel5:rule2” Effect=”Permit”>
2 <Target>
3 <Subjects>
4 <Subject>
5 <SubjectMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
6 <AttributeValue
7 DataType=”http://www.w3.org/2001/XMLSchema#string”>Bob</AttributeValue>
8 <SubjectAttributeDesignator
9 SubjectCategory=”urn:oasis:names:tc:xacml:1.0:subject−category:access−subject”

10 AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−id”
11 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
12 </SubjectMatch>
13 </Subject>
14 </Subjects>
15 <Resources>
16 <AnyResource/>
17 </Resources>
18 <Actions>
19 <Action>
20 <ActionMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
21 <AttributeValue
22 DataType=”http://www.w3.org/2001/XMLSchema#string”>read</AttributeValue>
23 <ActionAttributeDesignator
24 AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action−id”
25 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
26 </ActionMatch>
27 </Action>
28 </Actions>
29 </Target>
30 <Condition FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any−of”>
31 <Function FunctionId=”http://www.andreas−matheus.de/geoxacml/1.0/function#within”/>
32 <AttributeValue DataType=”http://www.opengis.net/gml#polygon”>
33 <Polygon gid=”P2” srsName=”foo”>
34 <outerBoundaryIs>
35 <LinearRing>
36 <coordinates>3 0,6 1,6 5,1 5,0 2,3 0</coordinates>
37 </LinearRing>
38 </outerBoundaryIs>
39 </Polygon>
40 </AttributeValue>
41 <AttributeSelector
42 RequestContextPath=”//am:CityModel/gml:featureMember/am:Building/am:shape”
43 DataType=”http://www.opengis.net/gml#polygon”/>
44 </Condition>
45 </Rule>

Listing 5.10: Example GeoXACML Rule expressing a spatial restriction

infrastructure has implications on the functionality of the Enforcement Service. The Enforce-
ment Service is responsible to create an authorization decision, based on available information.
Depending on the capabilities of the protected service, different options exist for encoding
resource information.

Service returns a GML encoded response

This is the default case: A Geo Web Service takes the request and its parameters
and creates a GML encoded response. Declared restrictions must be enforced for this
response as it represents the resource content.

This procedure has the advantage that the Enforcement Service must not interpret the

162 5. Evaluation and System Design

GML encoded response. This provides a generic handling of the response, independent
from the structure of the resource content.

Service does not return a GML encoded response

In this case, an authorization decision cannot be created from the service response. The
Enforcement Service must use the service request parameters to create an authorization
decision. With this approach, the information about accessed resources can be encoded
using the <AttributeValue> or the <ResourceContent>. Arguing with the function-
ality of the enforcement Service, it is not possible to make a general assumption how
to encode the resource information. However, a commitment must exist between the
programmed functionality of the Enforcement Service and the resource matching in a
declared permission. If the policy writer assumes that a particular resource information
is encoded as an <AttributeValue> and declares according matching, the Enforcement
Service must use the <AttributeValue> option to encode the information.

For example, this work introduces the Enforcement Service for the Web Feature Service
and the Web Map Service. Because the WMS response is not GML encoded, the
authorization decision request must be created from the request. For the introduced
Enforcement Service, a GML encoding of a resource content is defined, based on the
structure of the geodata of the WMS. The Enforcement Service creates the resource
content from the request parameters and inserts it to the authorization decision as a
valid GML document, using the <ResourceContent> tag.

The question, how resource information must be encoded, can be answered based on
the XACML capabilities for matching a permission to an authorization decision request.
For resources, which are encoded by using the <AttributeValue> tag, only simple string
matching is allowed. For resources that are encoded as an XML, resp. GML document, a
permission matching can be declared in a more complex way. This matching takes place in
the <Condition> element, which provides nesting of matching conditions using simple and
complex string matching, bag and Boolean expressions as well as Xpath matching.

This results in the following recommendation: The use of explicit encoded resource infor-
mation using the <AttributeValue> tag allows to add information for checking if a permission
is applicable in the first place. For example, this work uses the service/operation identification
information for switching between policy sets as it is encoded by using the <AttributeValue>
tag. Any resources that exist in the geodata, as it belongs to a service, shall be encoded as
an XML, resp. GML document and inserted in the authorization decision request by using
the <ResourceContent> tag. This ensures the enforcement of the class-based and possibly
object-based and spatial restrictions.

5.4.2 An Enforcement Service for the Web Feature Service

A Web Feature Service provides the following operations: GetCapabilities, DescribeFeature-
Type, GetFeature, LockFeature, GetFeatureWithLock and Transaction. Some of these operations
must not be monitored by an Enforcement Service: The operation GetCapabilities returns the
capabilities of a particular service instance. The result of this operation does not return the
personalized capabilities of the actual subject, according to her/his access permissions. If this
result is desired, a new operation, e.g. GetUserCapabilities is recommended, which requires

5.4 Enforcement of Declared Permissions 163

the identification of the user as input. Also, the DescribeFeatureType does not require to be
monitored by an access control system, because it does not provide access to the protected
resources. It returns the GML encoding of the features, according to the GML application
schema. For the other operations (GetFeature, LockFeature, Transaction and GetFeatureWith-
Lock) all introduced kinds of restrictions can be enforced.

Definition of a Resource Content Structure

For this work, it is assumed that the response of the WFS represents a valid GML encoding.
In particular, the GML version 2 is assumed. This assumption results in a straight forward
definition of the structure of the resource content. The GML application schema defines the
XML markup of the service response, thus the resource content. This approach has the benefit
that the Enforcement Service must not interpret the service response and not reformat it. This
can save memory and processing time, because the response of a WFS can become Mega- or
even Giga-Bytes. The Enforcement Service simply copies the fetched service response into
the <ResourceContent> tag of the XACML authorization decision request.

Creating an Authorization Decision Request for the GetFeature Operation

Among the fetching and copying of the service response, the Enforcement Service must in-
terpret service request parameters. For the GetFeature request, the following parameters are
important, as they provide information required in the authorization request. The combina-
tion of used parameters and their values also directs the Enforcement Service if the creation
of an authorization decision request is possible without the actual service response (see figure
4.1, page 81).

The Enforcement Service has the functionality to create the corresponding resource con-
tent and fill required subject and action related attributes. The subject related resource is the
identification of the subject, which is assigned to the <AttributeValue>, identified with the
XACML identifier ...:subject:subject-id. The requested operation from the GetFeature param-
eter is read. This requires that the XACML <AttributeValue> with the XACML identifier
...:action:action-id must be assigned with the value read. In addition, the <AttrivuteValue>
for the service identifier .../resource#service-id must be set.

The following mandatory parameters provide the basic information for the authorization
decision.

REQUEST: This parameter identifies the intended operation on the resources. In this case,
the value to be assigned to the ...:action:action-id is read and the operation identifier
.../resource#operation-id is assigned to GetFeature.

TypeName: This parameter indicates the feature type to be queried. In this work, this
parameter defines the class of a resource object.

The mutual exclusive parameters for the GetFeature operation are

FeatureID: A comma separated list of feature IDs. The parameter identifies the resource
objects by their unique identifier. In combination with the TypeName parameter, a

164 5. Evaluation and System Design

valid authorization decision cannot be created. This is because no characterizing infor-
mation about the resource object is known, as it can be required for object-oriented or
spatial restrictions. If this parameter is used, the Enforcement Service must fetch the
service response and create an authorization decision by copying the response to the
<ResourceContent> tag.

BBOX: This parameter defines the area of interest, in which the WFS shall query for par-
ticular resource objects. In addition with this parameter, the class information from the
TypeName parameter is available. From this information, no authorization request
can be created. The argument is identical to the FeatureID parameter case. If this
parameter is used, the Enforcement Service must fetch the service response and create
an authorization decision by copying the response to the <ResourceContent> tag.

FILTER: This parameter carries a complex SQL-like statement, which must not be inter-
preted by the Enforcement Service. The logic, required to interpret the filter is part
of the specific WFS instance. If this parameter is used, the Enforcement Service must
fetch the service response and create an authorization decision by copying the response
to the <ResourceContent> tag.

Creating an Authorization Decision Request for the Transaction Operation

The Transaction operation of the WFS supports three different operations on resources: Write,
Insert and Delete. For each of these operations, the creation of the authorization decision
request must be handled different.

Delete/Update For these operations, no authorization decision request can be created
from the request. Therefore, the Enforcement Service must change the operation from
Delete/Update to Read, invoke the service and fetch the result. That result – as it
defines the resource content – can be used in the next step to create the actual au-
thorization decision request for the Delete/Update operation. The XACML Attribute-
Value ...:action:action-id for the corresponding authorization request must be set to
delete/write.

Insert The insert request carries information about the feature(s) that are to be inserted in
the resource repository. Each feature is encoded in GML according to the GML applica-
tion schema, which can be requested by the WFS service operation DescribeFeatureType.
Therefore, it is possible to create an XACML encoded authorization request based on
the request itself. The resource content can be created, using the request features to be
inserted. An example WFS Transaction request, defining the Insert operation, is shown
in listing 5.11. The XACML encoding for the corresponding authorization decision
request is shown in listing 5.12.

Creating an Authorization Decision Request for the LockFeature Operation

The WFS LockFeature operation is logically connected to the Transaction, GetFeatureWith-
Lock and GetFeature operations. Due to the stateless communication with the service, this
operation is not tightly coupled to the other operations. This prohibits the correlation of

5.4 Enforcement of Declared Permissions 165

1 <?xmlversion=”1.0”?>
2 <wfs:Transactionversion=”1.0.0” service=”WFS” xmlns=”http://www.in.tum.de/am”
3 xmlns:wfs=”http://www.opengis.net/wfs” xmlns:am=”http://www.in.tum.de/am”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”http://www.opengis.net/wfs 1.0.0/WFS−transaction.xsd”>
6 <wfs:Insert>
7 <Intersection fid=”IntersectionG”>
8 <name>Isolated intersection</name>
9 <location srsName=”foo”>

10 <gml:coordinates>10 0</gml:coordinates>
11 </location>
12 </Intersection>
13 </wfs:Insert>

Listing 5.11: Example for a WFS Insert operation

the write, delete and insert access modes with this operation. For access control purposes, a
separate operation (e.g. lock, unlock) is required, which allows the separation. The policy
writer must take care that a subject, who is entitled to write, delete or insert resource objects
might require to use the lock operation and must therefore have corresponding permissions.

Because this operation selects the features to be locked in the same fashion as the Get-
Feature operation, the same considerations apply to create an authorization decision request.

Creating an Authorization Decision Request for the GetFeatureWithLock Operation

The GetFeatureWithLock operation combines the read and the lock operations on selected
resource objects. In order to grant or deny this request, the Enforcement Service can send one
authorization decision request if the read-lock operation is supported. If this is not the case,
the Enforcement Service must first modify the request to GetFeatureWithLock and fetch the
response. For this fetched response, which represents the resource content, the enforcement
service must send two authorization decision requests to the Authorization Service: One for
the read, the other for the lock operation. If both results are True, the fetched response can be
forwarded to the user. If one of the authorization decisions result in False, the Enforcement
Service must request the service to release the lock. Even though it is not required, it is
recommended that the read-lock operation is supported, because it simplifies the processing
of the Enforcement Service and improves the processing performance.

5.4.3 An Enforcement Service for the Web Map Service

The Web Map Service provides three operations: GetCapabilities, GetMap and GetFeatureInfo.
No access control is required for the GetCapabilities operation (see argument for WFS).
The operations, which require to be monitored by an Enforcement Service are GetMap and
GetFeatureInfo.

The WMS does not support an object-oriented data model. Therefore, no object-based
restrictions can be enforced. However, the internal structuring of the queryable layers can be
interpreted as classes, which allow the enforcement of the class-based restrictions. Because
both operations (GetMap and GetFeatureInfo) query information according to geometry, spa-

166 5. Evaluation and System Design

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <Request xmlns=”urn:oasis:names:tc:xacml:1.0:context”
3 xmlns:xacml−context=”urn:oasis:names:tc:xacml:1.0:context”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”urn:oasis:names:tc:xacml:1.0:context
6 cs−xacml−schema−context−01.xsd”>
7 <Subject>
8 <Attribute AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−id”
9 DataType=”http://www.w3.org/2001/XMLSchema#string”>

10 <AttributeValue>Bob</AttributeValue>
11 </Attribute>
12 </Subject>
13 <Resource>
14 <ResourceContent>
15 <WMSResurceContent xmlns=”http://www.in.tum.de/am”
16 xmlns:gml=”http://www.opengis.net/gml”
17 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
18 xsi:schemaLocation=”http://www.in.tum.de/am WMS.xsd”>
19 <gml:boundedBy><gml:null/></gml:boundedBy>
20 <gml:featureMember>
21 <Intersection fid=”IntersectionG”>
22 <name>Isolated intersection</name>
23 <location srsName=”foo”>
24 <gml:coordinates>10 0</gml:coordinates>
25 </location>
26 </Intersection>
27 </gml:featureMember>
28 </WMSResurceContent>
29 </ResourceContent>
30 <Attribute
31 AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#service−id”
32 DataType=”http://www.w3.org/2001/XMLSchema#anyURI”>
33 <AttributeValue>http://foo.xyz</AttributeValue>
34 </Attribute>
35 <Attribute
36 AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#operation−id”
37 DataType=”http://www.w3.org/2001/XMLSchema#anyURI”>
38 <AttributeValue>Transaction</AttributeValue>
39 </Attribute>
40 </Resource>
41 <Action>
42 <Attribute AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action−id”
43 DataType=”http://www.w3.org/2001/XMLSchema#string”>
44 <AttributeValue>insert</AttributeValue>
45 </Attribute>
46 </Action>
47 </Request>

Listing 5.12: XACML authorization decision request for the WFS Insert operation

tial restrictions can also be enforced. Due to the missing object-oriented data model, object-
based restrictions can not be enforced. Even though the GetFeatureInfo interface supports
the request of additional information for individual geospatial information objects. This is,
because the selection is restricted to the location of the feature.

Because the service output is typically a binary image or a vector graphic, the enforcement
of access restrictions must be based on the parameter values of the service request. Even for
vector graphic formats, it is impossible to identify the comprising geospatial information
objects through machine processing. This is due to the missing object-oriented data model.

5.4 Enforcement of Declared Permissions 167

Definition of a Resource Content Structure

The XML formatted resource content, as it is contained in an authorization decision request
(<ResourceContent>), can be structured according to the capabilities of the service instance.
Each layer of the service is represented by a global element in the resource content. Unlike
to the resource content for the WFS, only one element with no characterizing attributes or
properties for each layer exists.

For example, let’s take the WMS from [OGC 2001-068r3, p. 4] that provides the following
layers: BUILTUPA, COASTL, POLBNDL. Using a GML feature collection encoding, the
XML Schema from listing 5.13 defines the resource content template structure.

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <schema targetNamespace=”http://www.in.tum.de/am” xmlns:gml=”http://www.opengis.net/gml”
3 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
4 xmlns:am=”http://www.in.tum.de/am” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
5 xmlns=”http://www.w3.org/2001/XMLSchema” elementFormDefault=”qualified”>
6 <import namespace=”http://www.opengis.net/gml” schemaLocation=”feature.xsd”/>
7 <import namespace=”http://www.w3.org/1999/xlink” schemaLocation=”xlinks.xsd”/>
8 <!−− Definition of the root element for the resource content−−>
9 <element name=”WMSResurceContent” type=”am:WMSFeatureCollectionType”

10 substitutionGroup=”gml: FeatureCollection”/>
11 <complexType name=”WMSFeatureCollectionType”>
12 <complexContent><extension base=”gml:AbstractFeatureCollectionType”/></complexContent>
13 </complexType>
14 <!−− Definition of layers, represented by features −−>
15 <element name=”BUILTUPA” type=”am:WMSFeatureType” substitutionGroup=”gml: Feature”/>
16 <element name=”COASTL” type=”am:WMSFeatureType” substitutionGroup=”gml: Feature”/>
17 <element name=”POLBNDL” type=”am:WMSFeatureType” substitutionGroup=”gml: Feature”/>
18 <!−− Definition of the common WMS feature type −−>
19 <complexType name=”WMSFeatureType”>
20 <complexContent><restriction base=”gml:AbstractFeatureType”>
21 <sequence minOccurs=”0” maxOccurs=”1”>
22 <!−− The element PointOfInterest represents the location for requesting additional
23 information, using the GetFeatureInfo interface−−>
24 <element name=”PointOfInterest” type=”gml:PointType”/>
25 </sequence>
26 </restriction></complexContent>
27 </complexType>
28 </schema>

Listing 5.13: XML Schema definition for a WMS resource content (WMS.xsd)

Creating an Authorization Decision Request for the GetMap Operation

The GetMap operation has different parameters, which can be used to create an authorization
decision request and the comprising resource content. In this context, it is the duty of the
Enforcement Service to interpret the parameter and create the corresponding resource content
by filling the required subject, operation, resource and resource content related attributes.
The subject related resource is the identification of the subject, which is assigned to the
<AttributeValue>, identified with the XACML identifier ...:subject:subject-id. The operation
from the GetMap is identified as map. This requires that the XACML <AttributeValue>
with the XACML identifier ...:action:action-id must be assigned with the value map and the
.../resource#service-id must be assigned with the service identification.

168 5. Evaluation and System Design

REQUEST: This parameter has the value GetMap. This denotes a map access to the re-
sources and therefore requires to assign the ...:action:action-id with the value map and
the service operation identification .../resource#operation-id to GetMap.

SRS: This parameter defines the Coordinate Reference System, which has been used for
the request. The values of the parameters BBOX depend on this parameter. The
value of this parameter is associated to the srsName attribute of the <Box> element
of the resource content. In addition, the CRS identifier .../resource#crs-id must also be
assigned.

BBOX: This parameter defines the rectangular area, for which a map of resources is re-
quested. The value of this parameter is associated to the <coordinates> element of the
resource content, which is a sub-element of the <Box> element.

LAYERS: This parameter denotes the quasi classes for which information is requested. Each
value of the comma-separated list can be mapped to one feature type element of the
resource content.

In order to illustrate the creation of an XACML authorization decision request, let’s use
the complete example from [OGC 2001-068r3, p.4] and assume that the subject Bob has
initiated the following request:

1 http://b−maps.com/map.cgi?VERSION=1.1.0&REQUEST=GetMap&
2 SRS=EPSG:4326&BBOX=−97.105,24.913,−78.794,36.358&
3 WIDTH=560&HEIGHT=350&LAYERS=BUILTUPA,COASTL,POLBNDL&
4 STYLES=0XFF8080,0X101040,BLACK&FORMAT=image/png&BGCOLOR=0xFFFFFF&
5 TRANSPARENT=TRUE&EXCEPTIONS=application/vnd.ogc.se inimage

Listing 5.14: WMS example request for the operation GetMap4

From this WMS request, the parameter VERSION is important for the Enforcement
Service, because it determines the syntax and semantics of the request parameters. The pa-
rameter REQUEST=GetMap commands the Enforcement Service to use the operation map.
The parameter EXCEPTIONS directs the Enforcement Service to return information about
inappropriate authorization as an image. For the given example, the image has the format
that is defined by the MIME type ‘’application/vnd.ogc.se inimage‘’. For the enforcement of
the class-based and spatial restrictions, the parameters WIDTH, HEIGHT, STYLES, BG-
COLOR, TRANSPARENT are not important. Under these considerations, the corresponding
XACML encoding of an authorization request is shown in listing 5.15.

Creating an Authorization Decision Request for the GetFeatureInfo Operation

The GetFeatureInfo operation allows to request additional metadata of information objects,
which are available on a map, previously requested from the same WMS instance. For the
request, the user selects the location of interest on the displayed map and selects a particular
layer from which the metadata are to be queried. This request can be represented as a request

5WMS request from [OGC 2001-068r3, p. 4]. The layer names have been shortened for simplicity and the
third value of the BBOX parameter has been changed to -78.794.

5.4 Enforcement of Declared Permissions 169

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <Request xmlns=”urn:oasis:names:tc:xacml:1.0:context”
3 xmlns:xacml−context=”urn:oasis:names:tc:xacml:1.0:context”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”urn:oasis:names:tc:xacml:1.0:context
6 cs−xacml−schema−context−01.xsd”>
7 <Subject>
8 <Attribute AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−id”
9 DataType=”http://www.w3.org/2001/XMLSchema#string”>

10 <AttributeValue>Bob</AttributeValue>
11 </Attribute>
12 </Subject>
13 <Resource>
14 <ResourceContent>
15 <WMSResurceContent xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
16 xmlns=”http://www.in.tum.de/am” xmlns:gml=”http://www.opengis.net/gml”
17 xsi:schemaLocation=”http://www.in.tum.de/am WMS.xsd”>
18 <gml:boundedBy>
19 <gml:Box srsName=”EPSG:4326”>
20 <gml:coordinates decimal=”.”>−97.105 24.913,−78.794 36.358</gml:coordinates>
21 </gml:Box>
22 </gml:boundedBy>
23 <gml:featureMember><BUILTUPA/></gml:featureMember>
24 <gml:featureMember><COASTL/></gml:featureMember>
25 <gml:featureMember><POLBNDL/></gml:featureMember>
26 </WMSResurceContent>
27 </ResourceContent>
28 <Attribute AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#service−id”
29 DataType=”http://www.w3.org/2001/XMLSchema#anyURI”>
30 <AttributeValue>http://b−maps.com</AttributeValue>
31 </Attribute>
32 <Attribute AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#operation−id”
33 DataType=”http://www.w3.org/2001/XMLSchema#anyURI”>
34 <AttributeValue>GetMap</AttributeValue>
35 </Attribute>
36 </Resource>
37 <Action>
38 <Attribute AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action−id”
39 DataType=”http://www.w3.org/2001/XMLSchema#string”>
40 <AttributeValue>map</AttributeValue>
41 </Attribute>
42 </Action>
43 </Request>

Listing 5.15: XACML encoded authorization decision request for the operation GetMap5

to a geospatial information object, where the class and the location of the object is known.
The following parameters are to be used for this request:

The Enforcement Service has the duty to create the corresponding resource content and
fill required subject and action related attributes. The subject related resource is the identifi-
cation of the subject, which is assigned to the <AttributeValue>, identified with the XACML
identifier ...:subject:subject-id. The requested operation from the GetFeatureInfo parameter is
identified with read. This requires that the XACML AttributeValue with the XACML iden-
tifier ...:action:action-id must be assigned with read. Also, the service identification must be
assigned to the XCML attribute .../resource#service-id.

REQUEST: This parameter equals GetFeatureInfo. This denotes a read access to the re-
sources and therefore requires to assign the ...:action:action-id with the value read and

170 5. Evaluation and System Design

the service operation identification .../resource#operation-id to GetFeatureInfo.

QUERY LAYERS: This parameter defines the quasi class for which additional information
is requested. It can be handled in a similar fashion to the LAYER parameter for the
GetMap request.

X,Y: X and Y define the position on the displayed map, from which the real-world’s location
can be calculated, using the original BBOX request parameters, which have been used
to request the displayed map. Due to this calculation, the entire GetMap request must
be included in the GetFeatureInfo request as it provides the required information about
the CRS and BBOX.

For example, the previously used WMS supports GetFeatureInfo requests for the layer
BUILTUPA. The following request queries information for the QUERY LAYERS=BUILTUPA
and the position X=280 and Y=175, which represents a location Point ≈ {EPSG:4326,-88.9
30.6}. This location must and can be calculated by the Enforcement Service based on the
BBOX information, the HEIGHT and WIDTH as well as on the X and Y parameter values,
as shown in figure 5.3. For the calculation, it is important to note that the values of X and
Y are measured from the left top corner of the displayed map6.

���
���

X

Y

CRS = EPSG:4326

-97.105
 -78.794

24.913

36.358

X

Y

BBOX as

defined by the

GetMap
request

Location, defined by the
GetFeatureInfo
request parameters

is X=280 and Y=175

Location, according to EPSG:4326 is X=-88.9 and Y=30.6

WIDTH=560

HEIGHT=350

Computer Coordinate System

Y=30.6

X
=-

88
.9

Y=175

X=280

-X

Figure 5.3: Calculation of the real-world location for the GetFeatureInfo request

This request can be encoded as a GeoXACML authorization decision request, as shown
in listing 5.17. The bounding box is set according to the previous map request and the
feature type is set to BUILTUPA. The location of the feature is set to the calculated location
{EPSG:4326,-88.9 30.6}.

The use of the PointOfInterest element within the WMSResourceContent enables the
delaration and enforcement of spatial restrictions for the information objects, fetched by
the GetFeatureInfo request. For example, the following restriction defines that Bob can

6See [OGC 2001-068r3, table 9, page 40].

5.5 Implementation and Evaluation of a Geospatial Authorization Service 171

1 http://b−maps.com/feature info.cgi?VERSION=1.1.0&REQUEST=GetMap&
2 SRS=EPSG:4326&BBOX=−97.105,24.913,−78.794,36.358&
3 WIDTH=560&HEIGHT=350&LAYERS=BUILTUPA,COASTL,POLBNDL&
4 STYLES=0XFF8080,0X101040,BLACK&FORMAT=image/png&BGCOLOR=0xFFFFFF&
5 TRANSPARENT=TRUE&EXCEPTIONS=application/vnd.ogc.se inimage&
6 QUERY LAYERS=BUILTUPA&X=280&Y=175

Listing 5.16: WMS example request for the operation GetFeatureInfo

read Information Objects of the quasi class BUILTUPA if within the permission area GP =
{EPSG:4326,-100 30,-70 40}:

R1 = {Bob, read, ε, //BUILTUPA,C1} → Permit

C1 = {./PointOfInterest,Within, {EPSG:4326,-100 30,-70 40}}

5.5 Implementation and Evaluation of a Geospatial Autho-
rization Service

A Policy Decision Point (PDP) is a software program that accepts an XACML encoded
authorization decision request and returns an XACML authorization decision, according to
the XACML standard [OASIS 2003]. A Geospatial Policy Decision Point (SpatialPDP) is an
extension of the PDP in that sense that it implements the functionality to allow the deriving
of authorization decisions from spatial access restrictions. In particular, it implements the
handling of the GeoXACML specific attribute values and spatial functions, as presented in
section 3.1, page 55.

The SpatialPDP is implemented in Java, version 1.4.2, available from SUN Microsys-
tems at http://java.sun.com/j2se/1.4.2/index.jsp. The implementation is based on Sun’s
XACML implementation, version 1.1 ([SUN 2003]) as it can be downloaded from http://sun-
xacml.sourceforge.net. The implementation of the spatial functions is based on the Java
Topology Suite (JTS), version 1.4 ([VIVID 2003]) as it can be downloaded from
http://www.vividsolutions.com/jts/jtshome.htm.

5.5.1 Implementation of the SpatialPDP Main Class

The implementation of the main class is based on the available example that is included in
the XACML implementation, as it can be downloaded from sourgeforce.net. The example im-
plementation provides the class SimplePDP, which was changed to SpatialPDP and extended
in order to provide the GeoXACML capabilities.

The corresponding source code, providing the spatial capabilities is partially shown in list-
ing 5.18. Lines 3-10 show the creation of the proxy for the spatial attribute PointAttribute.
In line 14, the methods addSpatialFunctions() is called that registers the spatial functions as
listed in table 5.2. In line 17, the AttributeFinder class is instantiated for supporting the
handling of XACML standard attributes. The specific handling for spatial attributes is loaded
by instantiating the SpatialSelectorModule in line 20.

http://java.sun.com/j2se/1.4.2/index.jsp
http://prdownloads.sourceforge.net/sunxacml/sunxacml-1.1.zip?download
http://prdownloads.sourceforge.net/sunxacml/sunxacml-1.1.zip?download
http://www.vividsolutions.com/jts/bin/jts-1.4.0.zip

172 5. Evaluation and System Design

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <Request xmlns=”urn:oasis:names:tc:xacml:1.0:context”
3 xmlns:xacml−context=”urn:oasis:names:tc:xacml:1.0:context”
4 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
5 xsi:schemaLocation=”urn:oasis:names:tc:xacml:1.0:context
6 cs−xacml−schema−context−01.xsd”>
7 <Subject>
8 <Attribute AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject−id”
9 DataType=”http://www.w3.org/2001/XMLSchema#string”>

10 <AttributeValue>Bob</AttributeValue>
11 </Attribute>
12 </Subject>
13 <Resource>
14 <ResourceContent>
15 <WMSResurceContent xmlns=”http://www.in.tum.de/am”
16 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
17 xmlns:gml=”http://www.opengis.net/gml”
18 xsi:schemaLocation=”http://www.in.tum.de/am WMS.xsd”>
19 <gml:boundedBy>
20 <gml:Box srsName=”EPSG:4326”>
21 <gml:coordinates decimal=”.”>−97.105 24.913,−78.794 36.358</gml:coordinates>
22 </gml:Box>
23 </gml:boundedBy>
24 <gml:featureMember>
25 <BUILTUPA>
26 <PointOfInterest srsName=”EPSG:4326”>
27 <gml:coordinates decimal=”.”>−88.9 30.6</gml:coordinates>
28 </PointOfInterest>
29 </BUILTUPA>
30 </gml:featureMember>
31 </WMSResurceContent>
32 </ResourceContent>
33 <Attribute AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#service−id”
34 DataType=”http://www.w3.org/2001/XMLSchema#anyURI”>
35 <AttributeValue>http://b−maps.com</AttributeValue>
36 </Attribute>
37 <Attribute AttributeId=”http://www.andreas−matheus.de/geoxacml/1.0/resource#operation−id”
38 DataType=”http://www.w3.org/2001/XMLSchema#anyURI”>
39 <AttributeValue>GetFeatureInfo</AttributeValue>
40 </Attribute>
41 </Resource>
42 <Action>
43 <Attribute AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action−id”
44 DataType=”http://www.w3.org/2001/XMLSchema#string”>
45 <AttributeValue>read</AttributeValue>
46 </Attribute>
47 </Action>
48 </Request>

Listing 5.17: GeoXACML encoding of an authorization decision for a WMS example request
for the operation GetFeatureInfo

5.5.2 Implementation of the GeoXACML Attribute Values

The GeoXACML spatial attributes are implemented as listed in table 5.3. Each class is derived
from the class com.sun.xacml.attr.AttributeValue, as it is illustrated in figure 5.4. Each
class has a private attribute that holds the geometry. The data type of the geometry is defined
by the corresponding class of the JTS library.

8The package for all JTS geometry classes is com.vividsolutions.jts.geom

5.5 Implementation and Evaluation of a Geospatial Authorization Service 173

1 ...
2 // point
3 AttributeFactory.addAttributeProxy(PointAttribute.identifier, new AttributeProxy() {
4 public AttributeValue getInstance(Node root) {
5 return PointAttribute.getInstance(root);
6 }
7 public AttributeValue getInstance(String value) {
8 return PointAttribute.getInstance(value);
9 }

10 });
11 // all other spatial attributes
12 ...
13 // add spatial functions
14 SpatialFunction.addSpatialFunctions();
15
16 // setup the AttributeFinder
17 AttributeFinder attributeFinder = new AttributeFinder();
18
19 // setup spatial attribute finder modules supporting the spatial functionality
20 SpatialSelectorModule selectorAttributeModule = new SpatialSelectorModule();
21 ...

Listing 5.18: Code segment for the main class SpatialPDP

Attribute URI Class name Geometry type8

http://www.opengis.net/gml#point PointAttribute Point

http://www.opengis.net/gml#box BoxAttribute Box

http://www.opengis.net/gml#linestring LineStringAttribute LineString

http://www.opengis.net/gml#linearring LinearRingAttribute LinearRing

http://www.opengis.net/gml#polygon PolygonAttribute Polygon

Table 5.3: URI, class name and geometry data type for the spatial attributes

Each class provides two constructors with the parameter of type java.lang.String and
org.w3c.dom.Node. The first constructor transforms a string value, representing a GML ge-
ometry encoding, into the corresponding JTS geometry. The second constructor transforms
the information from a given DOM node, holding a GML geometry encoding, into the corre-
sponding JTS geometry. The geometry can be read, using the function getGeometry(). The
return type corresponds to the represented JTS geometry type.

Each spatial attribute is added to the SpatialPDP by using the addAttributeProxy(...)
method of the AttributeFactory class. This enables the use of the spatial attributes, using
the <AttributeValue> tag. In order to use the spatial values by the AttributeSelector, another
handling is required. This handling is implemented in the SpatialSelectorModule, which
extends the XACML class AttributeFinderModule.

In listing 5.19, the source for the constructor of the class PointAttribute is shown. The
constructor parameter has the data type org.w3c.dom.Node. The constructor fetches the gml
namespace as it is required for querying the sub-nodes that hold the GML encoding for the
Point geometry. This is achieved in lines 2-6. In line 8, the CRS value of the resource

9The object-oriented data model for the geometry classes is illustrated in figure 2.5

174 5. Evaluation and System Design

com.sun.xacml.attr.AttributeValue

+getGeometry() : Geometry

+identifier : String

-SRS : String

-geom : Polygon

-value : String

PolygonAttribute

+getGeometry() : Geometry

+identifier : String

-SRS : String

-geom : Box

-value : String

BoxAttribute

+getGeometry() : Geometry

+identifier : String

-SRS : String

-geom : LinearRing

-value : String

LinearRingAttribute

+getGeometry() : Geometry

+identifier : String

-SRS : String

-geom : Point

-value : String

PointAttribute

+getGeometry() : Geometry

+identifier : String

-SRS : String

-geom : LineString

-value : String

LineStringAttribute

Figure 5.4: Class diagram of the GeoXACML attributes9

1 public PointAttribute (Element root) {
2 Namespace gml = null;
3 List additionalNamespaces = root.getAdditionalNamespaces();
4 for (int ix = 0; ix < additionalNamespaces.size(); ix ++)
5 if (”gml”.equals(((Namespace)additionalNamespaces.get(ix)).getPrefix()))
6 gml = (Namespace)additionalNamespaces.get(ix);
7
8 srsName = root.getAttributeValue(”srsName”);
9 String X = root.getChild(”coord”,gml).getChild(”X”,gml).getValue();

10 String Y = root.getChild(”coord”,gml).getChild(”Y”,gml).getValue();
11
12 try {
13 geometry = (Point) new WKTReader().read(”POINT(” + X + ” ” + Y + ”)”);
14 }
15 catch (Exception e) {
16 e.printStackTrace();
17 }
18 }

Listing 5.19: Code segment of the PointAttribute constructor

geometry is fetched. The values of the X and Y coordinates of the Point are fetched in lines
9 and 10. The creation of the JTS geometry is handled in line 13. The possible exceptions
are catched in lines 15-17.

5.5.3 Implementation of the SpatialSelectorModule

The SpatialSelectorModule class supports the selection of information from a GML doc-
ument that is a sub-node to the <ResourceContent>. That GML document is called the
resource content that has a root tag, according to the corresponding GML application schema.

5.5 Implementation and Evaluation of a Geospatial Authorization Service 175

The input parameters to the findAttribute(...) method include the Xpath expression,
the <ResourceContent> node and the URI representation of the resulting attribute. The class
SpatialSelectorModule replaces the original XACML class SelectorModule, because it sup-
ports the namespace sensitive selection of DOM nodes. This is required if the resource content
carries different namespaces, as a GML feature collection does. For example, the feature col-
lection for the City Model example uses the XML namespace am=”http://www.in.tum.de”
and gml=”http://www.opengis.net/gml” for the GML pre-defined elements.

The functionality of the SpatialSelectorModule class can be described in sequential
steps, using the partial source code listings 5.20 and 5.21.

1. Selecting the root node of the resource content, being a sub-node to the <Resource-
Content> tag can be achieved by the source code from listing 5.20.

Line 1 gets a new instance of org.jdom.input.SAXBuilder. From the SAX-Builder,
the org.jdom.Document representation is created in line 2. Line 3 handles the fetching
of the <ResourceContent> tag. The path is hardcoded, as defined in the XML Schema
for the authorization decision request. Line 5 handles the selection of the root tag of the
resource content. With this root node, as it is the root element of the GML document,
the fetching of attributes can take place. It is important to note that this root node
keeps additional namespace information, which is required for further processing of the
spatial attributes.

1 SAXBuilder builder = new SAXBuilder();
2 Document doc = builder.build(new StringBufferInputStream(ctx.getRequestRoot().toString()));
3 Xpath xPath = Xpath.newInstance(”/xacml−context:Request/xacml−context:Resource/
4 xacml−context:ResourceContent/∗”);
5 resourceContentRoot = (Element) xPath.selectSingleNode(doc);

Listing 5.20: Selection of the root node of the resource content

2. Fetching the nodes from the resource content that match the Xpath expression is han-
dled in lines 1 and 2, source code listing 5.21. For each fetched node, it is essential to
add the additional namespaces, because the processing of the sub-elements requires the
gml namespace. This is achieved in lines 7-9. The actual creation of the attributes is
handled in lines 10 and later.

5.5.4 Implementation of the GeoXACML Rule Combining Algorithms

The combining algorithms
http://www.andreas-matheus.de/geoxacml/1.0/rule-combining-algorithm#and and
http://www.andreas-matheus.de/geoxacml/1.0/rule-combining-algorithm#or are implemented by
extending the existing XACML class RuleCombiningAlgorithm from the package
com.sun.xacml.combine. The implementing classes have the names ORRuleAlg and
ANDRuleAlg. Both exist in the package de.andreasmatheus.combine, as shown in figure 5.5.

The implementation of both combining algorithms obeys to the logical requirement for
AND or OR. Also, the implementation obeys to the XACML processing that defines the

176 5. Evaluation and System Design

1 Xpath xPath2 = Xpath.newInstance(path);
2 matches = xPath2.selectNodes(resourceContentRoot);
3 ...
4 for (int i = 0; i < matches.size(); i++) {
5 if (Element.class == matches.get(i).getClass()){
6 Element node = (Element)matches.get(i);
7 for (int ix = 0; ix < resourceContentRoot.getAdditionalNamespaces().size(); ix ++)
8 node.addNamespaceDeclaration(
9 (Namespace)resourceContentRoot.getAdditionalNamespaces().get(ix));

10
11 // handle spatial attribute types
12 if (PointAttribute.identifier.equals(type.toString()))
13 list.add(new PointAttribute(node));
14 else if (BoxAttribute.identifier.equals(type.toString()))
15 list.add(new BoxAttribute(node));
16 else if
17 ...
18 }
19 }

Listing 5.21: Code segment for the processing of the resource content nodes, matching the
Xpath expression and creation of the corresponding spatial attributes

com.sun.xacml.combine.RuleCombiningAlgorithm

+combine()

+algId : String = http://www.andreas-matheus.de/geoxacml/1.0/rule-combining-algorithm#and

com.sun.xacml.combine.ANDRuleAlg

+combine()

+algId : String = http://www.andreas-matheus.de/geoxacml/1.0/rule-combining-algorithm#or

com.sun.xacml.combine.ORRuleAlg

Figure 5.5: Class diagramm of the GeoXACML combining algorithms and and or

outcome Indeterminate if the processing of at least one rule results in an error and NotApplicable
if no rule applies to the given request.

5.5.5 Implementation of the GeoXACML Spatial Functions

The implementation of the spatial functions is handled by the class SpatialFunction, which
is derived from the XACML class FunctionBase. The static function addSpatialFunctions()
supports the registration of the spatial functions, which is called from the class SpatialPDP.

Each spatial function accepts two parameters. All spatial functions in this implementation
are limited to support only 2D policy geometries. The first parameter of a spatial function is
restricted to the PolygonAttribute, which represents the permission geometry. The second

5.6 Evaluation of the Implemented System 177

argument must be an instance of any GeoXACML spatial attribute type. Each function
returns a XACML boolean attribute (BooleanAttribute). The value is True if the tested
topological relation is present and False in all other cases10.

5.6 Evaluation of the Implemented System

The implemented Geospatial Authorization Service (SpatialPDP) allows the declaration of
the class-based, object-based and spatial restrictions as introduced earlier. For each different
kind of restriction, use cases are introduced that define tests for the declaration of a particular
access restriction. There are two different subjects available: Bob and Alice. They can use
the read or write operation on resources. The resource content is a subset of the City Model
example, satisfying the structure as defined in CityModel.xsd (see B.2, page 206).

5.6.1 Evaluation of Class-Based Restrictions

The evaluation of the implementation for the class-based restrictions is based on the existence
of the following subjects, operations, resources and resource objects as well as the defined
access statements:

1. S = {Alice, Bob}

2. O = {read, write}

3. RA = {ε}

4. RO = {Building, Intersection}

5. Statement1 = ‘’Bob can write information objects of class Building‘’:
{Bob,write, ε, //Building, ε} → Permit.

6. Statement2 = ‘’Alice cannot write information objects of class Intersection‘’:
{Alice, write, ε, //Intersection, ε} → Deny.

7. Statement3 = ‘’All users can read information objects of class Building‘’:
{∗, read, ε, //Building, ε} → Permit.

Assuming the all-explicit declaration strategy, the above access statements declare an in-
complete set. According to the definitions of section 4.5.3, page 134, the following requests
are not matched: {Alice, write, Intersection}, {Alice, read, Intersection}, {Bob, read, Inter-
section}, {Bob, write, Intersection}. The result of the test cases is listed in table 5.4. Please
note that the unmatched requests result in the authorization decision N/A.

10The implementation does not evaluate the applicability of a spatial function based on the geometry di-
mensions, as illustrated in table 4.5, page 85.

178 5. Evaluation and System Design

Test case identification Decision Explanation

No. Sub. Op. Res.

1 Alice read Building Permit The resource content contains a restricted re-

source. Alice is allowed to read the resource

(Statement3).

2 Alice write Building N/A No explicit statement is made about this re-

source, which results in N/A.

3 Alice read Intersection N/A No explicit statement is made about this re-

source, which results in N/A.

4 Alice write Intersection Deny The resource content contains a restricted re-

source. Alice is not allowed to write that re-

source (Statement2).

5 Bob read Building Permit The resource content contains a restricted re-

source. Bob is allowed to read the resource

(Statement3).

6 Bob write Building Permit The resource content contains a restricted re-

source. Bob is allowed to write the resource

(Statement1).

7 Bob read Intersection N/A No explicit statement is made about this re-

source, which results in N/A.

8 Bob write Intersection N/A No explicit statement is made about this re-

source, which results in N/A.

Table 5.4: Test cases for the evaluation of class-based restrictions

5.6.2 Evaluation of Object-Based Restrictions

The proper evaluation of the object-based restrictions requires that different instances of the
same class are available. For the test purposes, the instances of the Building class from
the City Model example are used. For simplification purposes, the access statements use the
address of the Building objects to select specific instances. Assuming the same subjects and
operations as with the class-based restrictions, the resources are limited to two instances of
the Building class. The following statements describe the access control permissions:

1. S = {Alice, Bob}

2. O = {read, write}

3. RA = {ε}

4. RO ={Building (address=’3 Street A’), Building(address=’5 Street D’), Intersection}

5. Statement1 = ‘’Bob can write the information object of class Building, identified by
address ’3 Street A’‘’:
{Bob,write, ε, //Building, {boolean, ./address, {”3 Street A”}}} → Permit.

6. Statement2 = ‘’Alice cannot write information object of class Intersection‘’:
{Alice, write, ε, //Intersection, ε} → Deny.

5.6 Evaluation of the Implemented System 179

7. Statement3 = ‘’All users can read information objects of class Building‘’:
{∗, read, ε, //Building, ε} → Permit.

Assuming the all-explicit declaration strategy, the above access statements declare an in-
complete set. According to the definitions of section 4.5.3, page 134, the following requests are
not matched: {Alice, write, Building (’3 Street A’)}, Alice, {write, Building (’5 Street D’)},
{Alice, read, Intersection}, {Bob, write, Building (’5 Street D’)}, {Bob, read, Intersection},
{Bob, write, Intersection}. The authorization decision for these requests results in N/A.

Test case identification Decision Explanation

Alice read Building (’3 Street A’) Permit The resource content contains a re-

stricted resource. Alice is allowed to

read the resource (Statement3)

Alice write Building (’3 Street A’) N/A No explicit statement is made about

this resource, which results in N/A.

Alice read Building (’5 Street D’) Permit The resource content contains a re-

stricted resource. Alice is allowed to

read the resource (Statement3)

Alice write Building (’5 Street D’) N/A No explicit statement is made about

this resource, which results in N/A.

Alice read Intersection N/A No explicit statement is made about

this resource, which results in N/A.

Alice write Intersection Deny The resource content contains a re-

stricted resource. Alice is not allowed

to write the resource

Bob read Building (’3 Street A’) Permit The resource content contains a re-

stricted resource. Bob is allowed to

read the resource (Statement3)

Bob write Building (’3 Street A’) Permit The resource content contains a re-

stricted resource. Bob is allowed to

write the resource (Statement1)

Bob read Building (’5 Street D’) Permit The resource content contains a re-

stricted resource. Bob is allowed to

read the resource (Statement3)

Bob write Building (’5 Street D’) N/A No explicit statement is made about

this resource, which results in N/A.

Bob read Intersection N/A No explicit statement is made about

this resource, which results in N/A.

Bob write Intersection N/A No explicit statement is made about

this resource, which results in N/A.

Table 5.5: Test cases for evaluation of object and class-based restrictions

180 5. Evaluation and System Design

5.6.3 Evaluation of Spatial Restrictions

The evaluation of the spatial restrictions require that specific instances of geospatial infor-
mation objects are contained in the resource content. Depending on the resource geometry,
the access is permitted or denied. Assuming the following subjects and access statements,
exhaustive evaluation tests can be carried out by permutation of all possible constellations.
The evaluation, documented in this work is limited to describe the test cases for the spatial
methods Within and Touches.

1. S = {Alice, Bob}

2. O = {read, write}

3. RA = {ε}

4. RO ={Building, Intersection (location ={foo,3 0}), Intersection (location={foo,3 4})}

5. The policy geometry is defined by the following Polygon
GP = {foo,3 0,6 1,6 5,1 5,0 2,3 0}

5.6.4 Evaluation of the Spatial Method Within

The following set of permissions declares the access statements for this evaluation.

1. Statement1 = ‘’Bob can write information object of class Intersection if the location
is within GP‘’:
{Bob,write, ε, //Intersection, {./location,Within,GP }} → Permit.

2. Statement2 = ‘’Alice cannot write information objects of class Building‘’:
{Alice, write, ε, //Building, ε} → Deny.

3. Statement3 = ‘’All users can read information objects of class Intersection‘’:
{∗, read, ε, //Intersection, ε} → Permit.

Assuming the all-explicit declaration strategy, the above access statements declare an in-
complete set. According to the definitions of section 4.5.3, page 134, the following requests
are not matched: {Alice, write, Intersection (foo,0 0)}, {Alice, write, Intersection (foo,3 0)},
{Alice, read, Building}, {Bob, write, Intersection (foo,3 0)}, {Bob, read, Building}, {Bob,
write, Building}. These requests result in the authorization decision N/A.

5.6.5 Evaluation of the Spatial Method Touches

The following set of permissions declares the access statements for this evaluation.

1. Statement1 = ‘’Bob can write information object of class Intersection if the location
is touching GP‘’:
{Bob,write, ε, //Intersection, {./location, Touches,GP }} → Permit.

5.6 Evaluation of the Implemented System 181

Test case identification Decision Explanation

Alice read Intersection (foo,3 0) Permit The resource content contains a re-

stricted resource. Alice is allowed to

read the resource (Statement3)

Alice write Intersection (foo,3 0) N/A No explicit statement is made about

this resource, which results in N/A.

Alice read Intersection (foo,3 4) Permit The resource content contains a re-

stricted resource. Alice is allowed to

read the resource (Statement3)

Alice write Intersection (foo,3 4) N/A No explicit statement is made about

this resource, which results in N/A.

Alice read Building N/A No explicit statement is made about

this resource, which results in N/A.

Alice write Building Deny The resource content contains a re-

stricted resource. Alice is not allowed

to write the resource (Statement2)

Bob read Intersection (foo,3 0) Permit The resource content contains a re-

stricted resource. Bob is allowed to

read the resource (Statement3)

Bob write Intersection (foo,3 0) N/A No explicit statement is made about

this resource, which results in N/A.

Bob read Intersection (foo,3 4) Permit The resource content contains a re-

stricted resource. Bob is allowed to

read the resource (Statement3)

Bob write Intersection (foo,3 4) Permit The resource content contains a re-

stricted resource. Bob is allowed to

write the resource (Statement1)

Bob read Building N/A No explicit statement is made about

this resource, which results in N/A.

Bob write Building N/A No explicit statement is made about

this resource, which results in N/A.

Table 5.6: Test cases for evaluation of spatial restrictions using the spatial relation Within

2. Statement2 = ‘’Alice cannot write information object of class Building‘’:
{Alice, write, ε, //Building, ε} → Deny.

3. Statement3 = ‘’All users can read information objects of class Intersection‘’:
{∗, read, ε, //Intersection, ε} → Permit).

Assuming the all-explicit declaration strategy, the above access statements declare an in-
complete set. According to the definitions of section see 4.5.3, page 134, the following requests
are not matched: {Alice, write, Intersection (foo,0 0)}, {Alice, write, Intersection (foo,3 0)},
{Alice, read, Building}, {Bob, write, Intersection (foo,3 4)}, {Bob, read, Building}, {Bob,
write, Building}. These requests result in the authorization decision N/A.

182 5. Evaluation and System Design

Test case identification Decision Explanation

Alice read Intersection (foo,3 0) Permit The resource content contains a re-

stricted resource. Alice is allowed to

read the resource (Statement3)

Alice write Intersection (foo,3 0) N/A No explicit statement is made about

this resource, which results in N/A.

Alice read Intersection (foo,3 4) Permit The resource content contains a re-

stricted resource. Alice is allowed to

read the resource (Statement3)

Alice write Intersection (foo,3 4) N/A No explicit statement is made about

this resource, which results in N/A.

Alice read Building N/A No explicit statement is made about

this resource, which results in N/A.

Alice write Building Deny The resource content contains a re-

stricted resource. Alice is not allowed

to write the resource (Statement2)

Bob read Intersection (foo,3 0) Permit The resource content contains a re-

stricted resource. Bob is allowed to

read the resource (Statement3)

Bob write Intersection (foo,3 0) Permit The resource content contains a re-

stricted resource. Bob is allowed to

write the resource (Statement1)

Bob read Intersection (foo,3 4) Permit The resource content contains a re-

stricted resource. Bob is allowed to

read the resource (Statement3)

Bob write Intersection (foo,3 4) N/A No explicit statement is made about

this resource, which results in N/A.

Bob read Building N/A No explicit statement is made about

this resource, which results in N/A.

Bob write Building N/A No explicit statement is made about

this resource, which results in N/A.

Table 5.7: Test cases for evaluation of spatial restrictions using the spatial relation Touches

5.6.6 Evaluation of the Complex Spatial Restriction

The evaluation of the complex spatial restrictions requires to verify the correctness of the
GeoXACML specific combining algorithms or and and. In order to do so, two different sets
of permissions are declared. The first set declares spatial restrictions, using the combining
algorithm and and the other set declares spatial permissions, using the combining algorithm
or. Within each set, three different statements exist: The first statement declares a positive
access right, the second statement defines a negative access right and the third statement
defines an inconsistent permission.

5.6 Evaluation of the Implemented System 183

Evaluation of the Complex Spatial Restriction using the combining algorithm and

The following set of permissions declares access statements for this evaluation. Statements
1 and 2 represent consistent access restrictions and statement 3 represents an inconsistent
access restriction. This is required to test the error processing of the combining algorithm,
according to the truth table 4.3, page 79.

1. Statement1 = ‘’Alice can read spatial information objects of class Intersection if the
location is not within GP1 and not within GP2‘’:

P1 = {∗, ∗, ε, //∗, and,R11, R12}
R11 = {Alice, read, ε, //Intersection,C11} → Permit

R12 = {Alice, read, ε, //Intersection,C12} → Permit

C11 = {./location,¬Within, {foo, 3 0,6 1,6 5,1 5,0 2,3 0}}
C12 = {./location,¬Within, {foo, -1 -1,1 -1,1 1,-1 1,-1 -1}}

2. Statement2 = ‘’Alice cannot read spatial information objects of class Intersection if
the location is not within GP1 and not within GP2‘’:

P2 = {∗, ∗, ε, //∗, and,R21, R22}
R21 = {Alice, read, ε, //Intersection,C21} → Deny

R22 = {Alice, read, ε, //Intersection,C22} → Deny

C21 = {./location,¬Within, {foo, 3 0,6 1,6 5,1 5,0 2,3 0}}
C22 = {./location,¬Within, {foo, -1 -1,1 -1,1 1,-1 1,-1 -1}}

3. Statement3 = ‘’Alice can read spatial information objects of class Intersection if the
location is not within GP1and not within GP2‘’ (The declaration is inconsistent):

P3 = {∗, ∗, ε, //∗, and,R31, R32}
R31 = {Alice, read, ε, //Intersection,C31} → Permit

R32 = {Alice, read, ε, //Intersection,C32} → Deny

C31 = {./location,¬Within, {foo, 3 0,6 1,6 5,1 5,0 2,3 0}}
C32 = {./location,¬Within, {foo, -1 -1,1 -1,1 1,-1 1,-1 -1}}

Evaluation of the Complex Spatial Restriction using the combining algorithm or

The following set of permissions declares access statements for this evaluation. Statements
1 and 2 represent consistent access restrictions and statement 3 represents an inconsistent
access restriction. This is required to test the error processing of the combining algorithm,
according to the truth table 4.3, page 79.

184 5. Evaluation and System Design

1. Statement1 = ‘’Alice can read spatial information objects of class Intersection if the
location is within GP1 or within GP2‘’:

P1 = {∗, ∗, ε, //∗, or, R11, R12}
R11 = {Alice, read, ε, //Intersection,C11} → Permit

R12 = {Alice, read, ε, //Intersection,C12} → Permit

C11 = {./location,Within, {foo, 3 0,6 1,6 5,1 5,0 2,3 0}}
C12 = {./location,Within, {foo, -1 -1,1 -1,1 1,-1 1,-1 -1}}

2. Statement2 = ‘’Alice cannot read spatial information objects of class Intersection if
the location is within GP1 or within GP2‘’:

P2 = {∗, ∗, ε, //∗, or, R21, R22}
R21 = {Alice, read, ε, //Intersection,C21} → Deny

R22 = {Alice, read, ε, //Intersection,C22} → Deny

C21 = {./location,Within, {foo, 3 0,6 1,6 5,1 5,0 2,3 0}}
C22 = {./location,Within, {foo, -1 -1,1 -1,1 1,-1 1,-1 -1}}

3. Statement3 = ‘’Alice can read spatial information objects of class Intersection if the
location is within GP1 or within GP2‘’ (The declaration is inconsistent):

P3 = {∗, ∗, ε, //∗, or, R31, R32}
R31 = {Alice, read, ε, //Intersection,C31} → Permit

R32 = {Alice, read, ε, //Intersection,C32} → Deny

C31 = {./location,Within, {foo, 3 0,6 1,6 5,1 5,0 2,3 0}}
C32 = {./location,Within, {foo, -1 -1,1 -1,1 1,-1 1,-1 -1}}

5.6 Evaluation of the Implemented System 185

Test case identification Decision Explanation

Evaluation of statement 1

Alice read Intersection (foo,3 0) Permit The resource geometry is not within

GP1 and not within GP2. Therefore,

both rules (R1 and R2) apply.

Alice read Intersection (foo,0 0) N/A The resource geometry is not within

GP1 but within GP2. Therefore, rule

R1 does but rule R2 does not apply.

Alice read Intersection (foo,3 4) N/A The resource geometry is within GP1

but not within GP2. Therefore, rule R1

does not apply but rule R2 does apply.

Alice read Intersection (foo,0 0),

Intersection (foo,3 4)

N/A The resource geometries are within GP1

and within GP2. Therefore, neither

rule (R1 nor R2) apply.

Evaluation of statement 2

Alice read Intersection (foo,3 0) Deny The resource geometry is not within

GP1 and not within GP2. Therefore,

both rules (R1 and R2) apply.

Alice read Intersection (foo,0 0) N/A The resource geometry is not within

GP1 but within GP2. Therefore, rule

R1 does but rule R2 does not apply.

Alice read Intersection (foo,3 4) N/A The resource geometry is within GP1

but not within GP2. Therefore, rule R1

does not apply but rule R2 does apply.

Alice read Intersection (foo,0 0),

Intersection (foo,3 4)

N/A The resource geometries are within GP1

and within GP2. Therefore, neither

rule (R1 nor R2) apply.

Evaluation of statement 3

Alice read Intersection (foo,3 0) Indeterminate The resource geometry is not within

GP1 and not within GP2. Therefore,

both rules (R1 and R2) apply. But,

the effects are different, so it results in

Indeterminate

Alice read Intersection (foo,0 0) N/A The resource geometry is not within

GP1 but within GP2. Therefore, rule

R1 does but rule R2 does not apply.

Alice read Intersection (foo,3 4) N/A The resource geometry is within GP1

but not within GP2. Therefore, rule R1

does not apply but rule R2 does apply.

Alice read Intersection (foo,0 0),

Intersection (foo,3 4)

N/A The resource geometries are within GP1

and within GP2. Therefore, neither

rule (R1 nor R2) apply.

Table 5.8: Test cases for evaluation of complex spatial restrictions using the combining algo-
rithm and

186 5. Evaluation and System Design

Test case identification Decision Explanation

Evaluation of statement 1

Alice read Intersection (foo,3 0) N/A The resource geometry is not within

GP1 and not within GP2. Therefore,

neither rule (R1 nor R2) applies.

Alice read Intersection (foo,0 0) Permit The resource geometry is not within

GP1 but within GP2. Therefore, rule

R1 does but rule R2 does not apply.

Alice read Intersection (foo,3 4) Permit The resource geometry is within GP1

but not within GP2. Therefore, rule R1

does not apply but rule R2 does apply.

Alice read Intersection (foo,0 0),

Intersection (foo,3 4)

Permit The resource geometries are within GP1

and within GP2. Therefore, rules R1

and R2 apply.

Evaluation of statement 2

Alice read Intersection (foo,3 0) N/A The resource geometry is not within

GP1 and not within GP2. Therefore,

neither rule (R1 nor R2) applies.

Alice read Intersection (foo,0 0) Deny The resource geometry is not within

GP1 but within GP2. Therefore, rule

R1 does but rule R2 does not apply.

Alice read Intersection (foo,3 4) Deny The resource geometry is within GP1

but not within GP2. Therefore, rule R1

does not apply but rule R2 does apply.

Alice read Intersection (foo,0 0),

Intersection (foo,3 4)

Deny The resource geometries are within GP1

and within GP2. Therefore, rules R1

and R2 apply.

Evaluation of statement 3

Alice read Intersection (foo,3 0) N/A The resource geometry is not within

GP1 and not within GP2. Therefore,

neither rule (R1 nor R2) applies.

Alice read Intersection (foo,0 0) Permit The resource geometry is not within

GP1 but within GP2. Therefore, rule

R1 does but rule R2 does not apply.

Alice read Intersection (foo,3 4) Deny The resource geometry is within GP1

but not within GP2. Therefore, rule R1

does not apply but rule R2 does apply.

Alice read Intersection (foo,0 0),

Intersection (foo,3 4)

Indeterminate The resource geometries are within GP1

and within GP2. Therefore, rules R1

and R2 apply. But, both define differ-

ent effects, which results in Indetermi-

nate.

Table 5.9: Test cases for evaluation of complex spatial restrictions using the combining algo-
rithm or

Chapter 6

Conclusion and Outlook

This chapter concludes with the results of this work, provides recommendations to the world
of science and an outlook for possible additional research.

6.1 Conclusion

The starting point for this work was the lack of access control for the service-oriented infras-
tructure, enabling interoperable use of distributed and heterogenous geodata. International
standards of the Open GIS Consortium, Inc. (OGC) are available that covers the construction
of such an infrastructure. But, access control is not covered by the standards. A poll at the
InterGeo in 2002 and the discussion with OGC members unveiled the urgent need of access
control for such an infrastructure. In particular important was named the aspect to allow a
fine-grained declaration of permissions, based on an object-oriented data model. It was also
named important to declare permissions, based on the spatial characteristics of the geospatial
information objects. These investigations caused the ‘’initial ignition‘’ for this work.

Before starting own research and development in this field, relevant standards, quasi
standards and existing systems have been evaluated. The standards have been evaluated
to see if they support the required declaration and enforcement of access restrictions and
the implementation of a distributed access control system. The systems have been evaluated
under the constraint if such a system meets the requirements. The result was that no standard
and system is compliant with the introduced requirements. However, the eXtensible Access
Control Markup (XACML) standard by OASIS was selected as a baseline for this work.

The given service-oriented infrastructure enables an interoperable use of distributed and
heterogenous geodata. Because the use of the geodata is not always unrestricted, an access
control system must enforce existing restrictions. This work has introduced requirements for
such an access control system as it is important from the geodata providers perspective. Three
of the important geodata provider requirements have been used to develop a distributed access
control system: class-based, object-based and spatial requirements. Assuming an object-
oriented data model that is marked-up in GML, a class-based access restriction controls the
access to objects as they are instances of a particular class. The object-based restriction is
more specific as it supports to restrict access to particular instances of information objects.
Hence, it restricts the access to be based on non-spatial characteristics. The spatial access

188 6. Conclusion and Outlook

restriction enables to declare restrictions on objects, based on their spatial characteristics;
their geometry. In order to express such spatial restrictions, spatial attributes and functions
are used that test a topological relation of two geometries: One geometry defines the boundary
of the restricted area (the permission geometry) and the other is the geometry of a resource
object.

This results in one of the main achievements of this work: Extending the existing XACML
standard to GeoXACML and providing the means for the declaration and enforcement of
spatial access restrictions. A prototype for GeoXACML has been implemented to verify the
theoretical model. Different test cases for the evaluation of the class-based, object-based and
spatial restrictions are enumerated.

The other important achievement of this work is to test an existing permission repository
for correctness. Because it is most important for a complex access control system to ensure
appropriate and error-free enforcement of declared permissions, the detection of different kinds
of inconsistencies have been introduced. One kind of inconsistency results from unreachable
permissions. Here, the declared positive or negative permission cannot be enforced. Another
kind of inconsistency is that reachable permissions declare contrary rights: One permission
represents a positive and the other a negative permission. The third kind of inconsistency
is incompleteness, which characterizes the error that not all possible access requests result
in an authorization decision of deny or permit. Based on the capabilities of the XACML
standard, the detection of these kinds of inconsistencies have been investigated under the
following assumptions: No knowledge about the possible requests is available and perfect
knowledge about subjects, operations and resources is available. The first case results in an
approximation of incorrectness. The result is a classification for two given permissions, which
is either assured, likely or impossible for the tested kind of incorrectness. For the second
case, where all possible requests are known, the detection outputs the cause for each kind of
inconsistency and can therefore be used for correction.

In order to apply the developed model to the given service-oriented infrastructure, two
different Enforcement Services have been developed: One for the Web Feature Service and one
for the Web Map Service. Both Enforcement Services have been implemented according to the
mediator pattern. This requires that the Enforcement Services mirror the operations of the
facaded WFS and WMS in order to guarantee interoperability. For deriving authorization de-
cisions according to the introduced model, the prototype of a geospatial Authorization Service
according to the GeoXACML extension of the XACML standard, has also be implemented.

6.2 Recommendation to the World of (Geospatial) Science

Different approaches to build up a global infrastructure for geodata exist. The Global Spatial
Data Infrastructure (GSDI) [GSDI 2004] is the attempt to make geodata interoperable. Dif-
ferent international and national attempts in such direction exist, such as the INfrastructure
for SPatial InfoRmation in Europe (INSPPIRE) [European Commission] on the European
level. All have in common to provide interoperable access to geodata.

The service-oriented approach provides interoperability by deploying Web Services that
allow access to geodata in an interoperable way. This infrastructure has very strong potential
to overcome the challenges of data integration, because it allows decoupling of the local data

6.3 Outlook 189

formats and data models as they are used by the data providers and an interoperable data
structure and model, required for combined use.

Even the service-oriented federation of distributed geodata is a promissing architecture,
it requires the implementation of security to become accepted. However, this service-oriented
infrastructure requires access control, as it is one building block of the security, in order to
allow data provides to make their protected data available. The foundation of access control,
as introduced in this work is seen as the first building block to extend the service-oriented
infrastructure for geodata in the required way. Access control on the information object level
enables important kinds of geodata protection.

In such respect, this work is understood to cover the basic principles in order to apply ac-
cess control to a service-oriented infrastructure that provides access to geospatial information
objects. It is the hope of the author that this work makes the geospatial science aware that it
is important to standardize access control for the service-oriented infrastructure of geodata,
as it is one security building block. The author also hopes that this work triggers activities
in this field.

6.3 Outlook

The aspect of this section is to highlight possible issues for further research. The highlighted
aspects have been identified during preparation of this work, but have not been considered in
more detail.

6.3.1 The ‘’Not Authorized‘’ Response and the Adversary Issue

The main purpose of an access control system is to enforce access restrictions as declared.
For a web-based access control as deployed today, restrictions are associated with an internal
structure of the web server. In such a system, a user can typically request files that are located
in a sub-tree of the restricted path. The access control does not verify the information objects,
contained in the files. For the access control model as introduced in this work, the declaration
of a ‘’fine-grained‘’ or information-based access control is possible. Compared to the typical
approach, it means that the access depends on the content of a file. Therefore, it is more
likely that a user may not have the appropriate permission(s) for all resource objects, fetched
by the request. In such a case, the entire request can be denied and the user receives the ‘’not
authorized‘’ information.

For the access control on web servers, it is typically clear what permission is missing.
This can be derived from the directory path, contained in the request. The user is typically
informed by the ‘’not authorized‘’ page that insufficient permissions exist. But, what infor-
mation is to be returned for the fine-grained access control? The ‘’not authorized‘’ message
is not very helpful for the user, because it is impossible to derive the reason. In order to find
the missing permission(s), more information must be returned to the user. The problem with
that is that exploiting internal access control information can be used by a possible adversary
in order to gain unallowed access.

This results in some sort of rhetorical question: How much information can the access
control system return to a user with insufficient permissions? Does the system have any

190 6. Conclusion and Outlook

trustworthy information about the user upon which the system can determine a trusted
user or must expect an adversary? If the system can trust the user, how much internal
information about existing permissions can the system return, in order to help the user and
not unveil confidential information? One possible approach can be based on a Public Key
Infrastructure to identify the user and differentiate between a trusted and untrusted user;
the possible adversary. Another approach can possibly rely on modeling social relationships
between users, as introduced in [Galla 2004]. If the access control system can verify that a
user with sufficient permissions manifests that the current user can be trusted, more intimate
access control information can be exploited. If such a trust relationship cannot be verified,
the standard ‘’not authorized‘’ message can be returned.

This research topic focuses on the approach to build up trust relationships between users
that can be used to derive, how much information is returned to the user in case that insuf-
ficient permissions are present.

Another field of research, as it is related to the topic of unveiling access control information,
can focus on the problem of exploiting internal information about the cause of the denial can
be used by smart adversaries as illustrated in the following example. If denial information,
such as ‘’you are missing permissions to see the oil pipelines in the area of Iran‘’ is returned,
the adversary can unveil the path of the pipeline by sending ‘’smart‘’ requests without having
the explicit permission: Knowing, that all requests for pipelines will be denied if a pipeline is
comprised in the response, the requests can be modified in such a way that they cluster the
space according to the QuadTree [Finkel et. al. 1974] approach. After appropriate clustering,
the adversary gets the restricted information, even though not having adequate (explicit)
permissions.

���
���

1

��
��

0

��
��
��

2

���
���
���

3

��
��02

�
�03

�01
��00
��
��12

��
��13

��11
��10

��
��

32

��
��

33

��
��31

��
��30
��
��

22

�
�

23

�
�21

��
��20

Figure 6.1: Unveiling of restricted information without permission by smart clustering of
space

Figure 6.1 illustrates this approach: The first request covers the four large areas (0, 1,
2, 3), where a pipeline is within area zero. This results in one denied an three permitted
requests, as illustrated on the left sub-figure. In the next step, the area for the denial is
clustered and requests are issued for the areas 01, 02, 03, 04, . . . 30, 31, 32, 33. This results
in permitted and denial requests as illustrated on the right sub-figure: The requests for the

6.3 Outlook 191

areas 30, 31, 32 and 33 are permitted and for the area 01, 02, 03, 04, 10, 11, 12, 13, 20, 21,
22, 23 are denied. This clustering can be continued, until the unveiled path of the pipeline
shows the desired detail.

The research for this aspect can probably focus on request pattern recognition. A sophis-
ticated system is challenged to analyse the requests, issued by one subject if obeying to a
particular pattern. Two possible questions can be identified:

• How can an adversary pattern be found, constructed and adopted that it allows to
separate adversary requests from legitimate requests?

• If a particular ‘’adversary‘’ pattern can be determined, what conclusion can an access
control system derive in order to control the information that is returned to the potential
adversary and handling further requests?

6.3.2 The Handling of Requests with Insufficient Permissions

The introduced access control model allows to restrict the access to geospatial information
objects, based on different aspects: class-based, object-based and spatial restrictions. For such
a model, a global access control strategy must define if a request with insufficient permissions
is completely denied or if it is modified in such a way that the user receives the information
objects, for which permissions are present.

The case, where the request is completely denied is the simplest case. However, for the
introduced information object-based access control, it is not always suitable. For example, a
spatial permission can restrict the access to an area, where the boundary is described by a
linear ring. Due to limitations of available services, the user can only request information for
a rectangular box. Now, the situation can appear that the user does not have any interest in
receiving a map for the area, where the user does not have appropriate permission. But, due
to the limitations of the service, the user cannot define the exact area of interest in such a
way that it represents the interest and obeys to the existing permissions.

Figure 6.2 illustrates the problem: Let’s assume that a user has permissions to receive
maps for the sovereign area of Bavaria but not for Baden-Württemberg. Because the used
software allows only the request of rectangular boxes, the user must also request a map for
Baden-Württemberg if getting close to the border line. But, because the permission for
Baden-Württemberg is missing, the entire request is denied. This limitation is not acceptable
and results in the question, under which circumstances the request can/must be modified,
according to the user’s permissions. If it is essential for the user to receive maps, close to
the border line it is required that the service response is modified according to the user’s
permissions.

A technical solution to this problem is provided by XACML, called Obligations. An obli-
gation can be described as an optional command that must be carried out by the Enforcement
Service. It is added to an authorization decision result, generated by the Authorization Ser-
vice. The command(s) of the obligation must either be applied to the actual service request
or to the response. For GML (or XML) encoded service responses, an obligation can contain
an Extensible Stylesheet Language (XSL) script that filters the service response, based on
the permissions of the subject. For binary image maps, as they are returned by the WMS,

192 6. Conclusion and Outlook

Bavaria

unmodified request permitted

modified request permitted

unmodified request denied

 Baden-

Württemberg

Figure 6.2: Software limitations for requesting a map for a restricted areas

image postprocessing must take place in order to modify the service response according to
the user’s permissions. In this case, it can be envisioned that obligations either describe a
set of image processing commands or contain a ’blank’ image that is to be overlayed to the
actual service map as illustrated in figure 6.3.

Figure 6.3: Applying an obligation image to the WMS map, eliminating the parts of the map
for which the user does not have appropriate permissions

The focus for additional research is to identify situations, under which such a modification
is required, essential or suitable and how they can be declared, using a particular access
control declaration language. It can also be envisioned that a programming language can
be developed that allows the generic definition of how to create obligation, what they must
ensure, etc.

6.3 Outlook 193

6.3.3 Permission Management and the Development of Service Orchestra-
tions

The service-based infrastructure provides interoperable access to heterogenous and distributed
geodata. As such, the services can be used by application developers to build more complex
solutions. Hereby, it is the intension of the developer that a particular application solves a
given problem. In order to achieve that, the application requires particular access to services
and information objects. If the application interacts with services where the resources are
protected, applicable permissions must exist. In this context of developing and using such
applications, basically two different questions arrive:

1. A user of the application likes to fulfill a particular task, which requires designated
access to a particular set of resource objects. Which permissions are required in order
to complete the task?

2. A user has a particular set of permissions. Which applications and resources can be
accessed, using particular operations?

The first question refers to permission management, where a user has a particular job
function. According to that job function, access roles can be defined which hold a particu-
lar set of permissions. Given a particular application that can be used by users, having a
particular role, which permissions must associated to the role, that the user can do the job?

The second question refers to the inverse: If a user has a particular role, which applications
can be used and which services and information objects can be accessed? It is adequate for
the given user, is it to little or to much? If the user has to little permissions, important
tasks can not be performed. If the user has to many permissions, possible misuse can not be
excluded.

The author envisions the possible fields of research in defining mechanisms that allow to
answer both questions. Then, additional research can possibly focus on the evaluation of the
appropriate set of permissions for a particular job assignment.

6.3.4 Context-based Permissions

For the development of service-based applications, the OGC has emphasized three possible
chaining types in their document about service infrastructure [OGC 2002-112]: transparent,
translucent and opaque chaining. Each chaining model has implications for the declaration
of permissions, as introduced in more detail in the following sub-sections.

Transparent Chaining

Transparent chaining, as illustrated in figure 6.4 can be described in such a way that a user
enquires appropriate services from a service broker (UDDI1 Registry in figure 6.4). The user
evaluates the description of the services and identifies the appropriate usage. Such a service
chaining is typically used by an application developer, finding applicable services.

1Universal Description, Discovery and Integration

194 6. Conclusion and Outlook

Client

UDDI

Registry

search service / search result

Enforcement

Service

Invoke Service / Result

Web Service 2

Request Input

Enforcement

Service

Web Service 1

User

Figure 6.4: Transparent chaining of protected services

For the transparent service chaining as for the individual service use, the user’s authen-
tication assertions can be used to declare possible permissions. The author does not see the
need for any additional research, because the introduced access control model provides the
essential capabilities.

Translucent Chaining

Translucent chaining, as illustrated in figure 6.5 can be described in such a way that a Work-
flow Service exists that knows what to do. It knows the required services, their sequence and
how to invoke them. It further can interpret the response of a previous service to eventually
build the request for another service.

In this chaining scenario, the user’s actions are limited to start and stop the Workflow
Service. This will start, resp. interrupt the execution of the underlying services. In order to
determine if an interruption is required, the user receives the processing states of each invoked
service. For example, this monitoring capability is beneficiary if a service is invoked recursively
and the user must judge for convergence. According to access control, one important peace
of state information is if a request to a service was denied. In such a case, the processing of
the remaining services can probably be interrupted.

For such a service chaining, where the Workflow Service invokes the underlying services,
which authentication assertions can be used? The authentication assertions of the user, of
the service or both?

In order to answer that question, the author sees two different possibilities: (i) Because
the user receives state information from each underlying service, the declared permissions
can be based on the subject authentication assertions. (ii) The Workflow Service invokes
the underlying services and is therefore also known to those services. The declaration of
permissions can also be based on the Workflow Service authentication assertions.

The author envisions additional research, focusing on these issues in more detail. The
result of that research might possibly result in an extension to existing standards, such as the
Web Services Flow Language (WSFL) [IBM 2001].

6.3 Outlook 195

Client

Workflow

Service

Invoke chain / Chain result

Enforcement

Service

Invoke Service / Result

St
at

us

Web Service 2

Request Input

Enforcement

Service

Web Service 1

User

Figure 6.5: Translucent chaining of protected services

Opaque Chaining

Opaque chaining eliminates the user’s awareness, which services are being executed, the se-
quence and what the intermediate processing states are. In addition, the user has no aware-
ness about the requests and responses, exchanged between the Aggregate Service and the
aggregated services. The Aggregate Service has the capability to handle ‘’everything‘’ in an
autonomous way. It acts like a software agent on behalf of the user.

Client

Aggregate

Service

Invoke chain / Chain result

Enforcement

Service

Invoke Service / Result

Web Service 2

Request Input

Enforcement

Service

Web Service 1

User

Figure 6.6: Opaque chaining of protected services

For this type of service chaining, the subject’s authentication assertions can not be used
to model the permissions for the aggregated services. This is because the user is not known
to the aggregated services. However, associating the permissions of the aggregated service to
the authentication assertions of the Aggregate Service has the impact that different users of
the Aggregate Service have the same permissions on the aggregated services. This can not
be practical and the author therefore envisions that context-based permissions are required.
A context-based permission can possibly declare that the Aggregate Service has particular
permissions, if executed by a particular user. The author sees a second argument for the

196 6. Conclusion and Outlook

declaration of context specific permissions instead of using the subject’s or Aggregate Service’s
authentication assertions: It is possible that the Aggregate Service might require additional
permissions that the user does not have. This, in order to complete a particular sub-task that
is required. For example, let’s take an application that allows the user to request a map for a
given address. The user might therefore have the permission to request maps, but might not
have permissions for the required geocoding step that converts the address to the bounding
box, required for requesting the map. But, the Aggregate Service must have the permission
to invoke a service that returns a bounding box for a given address.

Using context-based permissions allows to declare the restriction that the geocoding ser-
vice can only be invoked, if the Aggregate Service is used by a particular subject. The
Aggregate Service itself and the user itself can not use the geocoding service.

The author envisions that additional research can focus on a model that allows to declare
and enforce access restrictions, based on the context-based permissions.

6.3.5 Dynamic Negotiation of Authentication Information under Consid-
eration of Privacy

Another field of research can be seen with dynamic evaluation of permissions, based on
attribute assertions. For such an infrastructure, the Authorization Service requests assertions
about the subject from an Authentication Service, as implemented in the Cardea system.
Here, the Authorization Service requests attribute assertions from the Authentication Service
without control and awareness of the user.

In order to protect the privacy of the user, particular attribute assertions might not be
released to a specific Authorization Service. This requires that the user can configure access
restrictions for her/his profile at the Authentication Service as it is being used to answer
dynamic assertion requests. For example, the user configures that credit card information is
never released if not manually accepted. Or, that the home phone number is only released if
the work and mobile phone number do not provide the required permissions.

In this field of research, social relationships as introduced in [Galla 2004] can be used to
model social relationships between subjects, upon which the release of attribute assertions is
reasoned. For example, the user configures the release of assertions in such a way that a par-
ticular Authorization Service can request assertions if a friend also trusts that Authorization
Service. This requires to model the social relationships between the subjects and the trusting
relationship to particular Authorization Services.

A baseline for starting the research in the field of handling privacy issues can be found in
[Wörndl 2003]. Here, the negotiation of user profile attributes takes place under the aspect
of compliance to privacy. Further research can adopt the introduced mechanism according to
the usage requirements for dynamic exchange of attribute assertions in the service-oriented
infrastructure for accessing distributed and heterogenous geodata.

Appendix A

Notation

A.1 Nomenclature

2RO Powerset of available resource objects

6 Operator that defines the subordinate relation: e.g.: A 6 B: A is subordinate
to B⋃
Union∨
Logical OR∧
Intersection∧
Logical AND

CL Set of classifications for the approximate detection of contrary spatial restric-
tions

CLs Subset of classifications (CL∫ ⊆ CL)

L(reg.-expr.) Language of the regular expression reg.-expr.

L(str.) Language that contains of one word: {str.}

P Set of permissions, encoded as Policy constructs

PA Set of applicable policies, based on matching the SOR tuple

PS Set of permissions, encoded as PolicySet constructs

R Set of permissions, encoded as Rule constructs

RA Set of applicable rules, based on matching the SOR tuple

RE Set of enforceable rules

RA Set of resource attributes

198 A. Notation

RO Total set of protected resource objects, representing the maximum resource
content

RT Resource content template

SOR Set of all possible request tuples

V Tuple of values, used for comparison

−→o Vector of outcomes from enforceable rules where the sequence of the entries is
according to the sequence of the rules

−→sm Spatial method vector

−→smI Instance of a spatial method vector

× Cartesian product

Max6 Function that returns the top most superordinate classification from a set of
sub/superordinate classifications

ROS Subset of the protected resource objects (ROS ⊆ RO)

C Superscript C denotes expressions, related to a class-based restriction

O Superscript O denotes expressions, related to a object-based restriction

S Superscript S denotes expressions, related to a spatial restriction

B(G) Boundary of the geometry G

C Condition element of a rule construct

c Operation create that can be applied to a resource object

C1, C2, . . . Example conditions, named C1, C2, etc.

CC Condition for declaring a class-based restriction

CO Condition, expressing a matching condition of non-spatial characteristics of
objects, resp. features

CS Condition, restricting the matching on spatial characteristics of objects, resp.
features

cl A single classification

CL(SC) A classification function that returns the classification of the spatial condition
SC

CMR Condition matching element of a rule R

CRS Coordinate Reference System

d Operation delete that can be applied to a resource object

A.1 Nomenclature 199

DAC Discretionary Access Control

dim(G) Dimension of the geometry G

DOM Document Object Model

DRM Digital Rights Management

DTD Document Type Definition

E(G) Exterior of the geometry G

ERi The effect of the rule Ri

EPSG European Petroleum Survey Group

EPSG:31494 EPSG code for Gauss-Krüger projection, zone 4

EPSG:4326 EPSG code for WGS84 projection

GP Permission geometry

GR Resource geometry

GIS Geographic Information System

GML Geography Markup Language

GPS Global Positioning System

GWS Geo Web Service

I(G) Interior of the geometry G

ICR1,R2 Incorrect pair of rules R1 and R2 that encode class-based restrictions, where
the effect of R1 is different from the effect of R2

IOR1,R2 Incorrect pair of rules R1 and R2 that encode object-based restrictions, where
the effect of R1 is different from the effect of R2

ISO International Organization for Standardization

JTS Java Topology Suite

LAT Latitude; measuring northward and southward of the Equator

LON Longitude; measuring eastward and westward the prime meridian Greenwich

m Operation map that can be applied to a resource object

MAC Mandatory Access Control

MatchO Boolean match function for the operation element of a permission and the
request

200 A. Notation

MatchR Boolean match function for the resource element of a permission and the re-
quest

MatchS Boolean match function for the subject element of a permission and the request

MatchXR Boolean function for testing if a given resource content contains particular
objects

O Operation element of the request tuple

o Outcome of a rule

OASIS Organization for the Advancement of Structured Information Standards

OGC Open GIS Consortium, Inc. (recently changed to Open Geospatial Consor-
tium, Inc. (OGC))

OMR Operation matching element of a rule construct

OMPS Operation matching element of a PolicySet PS

OMP Operation matching element of a Policy P

OMR Operation matching element of a rule R

P1, P2, . . . Example policies, named P1, P2, etc.

PA Applicable policy, based on matching the SOR tuple

PCj jth Policy (Pj) that defines an all-quantifier matching

Pj jth Policy

P+ Positive permission

P- Negative permission

PDP Policy Decision Point

PEP Policy Enforcement Point

PS1, PS2, . . . Example policy set constructs, named Ps1, PS2, etc.

PSCi ith PolicySet (PSi) that defines an all-quantifier matching

PSi ith PolicySet

R Resource element of the request tuple

r Operation read that can be applied to a resource object

R1, R2, . . . Example rules, named R1, R2, etc.

RA Applicable rule, based on matching the SOR tuple

RCk kth Rule (Rk) that defines an all-quantifier matching

A.1 Nomenclature 201

Rk kth Rule

RBAC Role Based Access Control

RMR Resource matching element of a rule construct

RMPS Resource matching element of a PolicySet PS

RMP Resource matching element of a Policy P

RMR Resource matching element of a rule R

RuleC Rule, encoding the class-based restriction

RuleO Rule, encoding an object-based restrictions

RuleS Rule, encoding a spatial restriction

S Subject element of the request tuple

SC Spatial condition to determine contrary spatial permissions

SMR Subject matching element of a rule construct

SMPS Subject matching element of a PolicySet PS

SMP Subject matching element of a Policy P

SMR Subject matching element of a rule R

SORPS Subject-Operation-Resource matching tuple of a PolicySet PS

SORP Subject-Operation-Resource matching tuple of a Policy P

SORR Subject-Operation-Resource matching tuple of a Rule R

SOR+
PS Subject-Operation-Resource tuples, matched by the PolicySet PS

SOR-
PS Subject-Operation-Resource tuples, not matched by the PolicySet PS

SOR+
P Subject-Operation-Resource tuples, matched by the Policy P

SOR-
P Subject-Operation-Resource tuples, not matched by the Policy P

SOR+
R Subject-Operation-Resource tuples, matched by the Rule R

SRS Spatial Reference System; synonym for CRS

SVG Scalable Vector Graphics

TCF Topological condition function, such as Disjoint, Touches, Crosses, Within,
Overlaps, Intersects or Equals

UML Unified Modeling Language

URI Uniform Resource Identifier

202 A. Notation

URL Uniform Resource Locator

URN Uniform Resource Name

w Operation write that can be applied to a resource object

WFS Web Feature Service

WGS84 World Geodetic Standard 1984

WMS Web Map Service

XACML eXtensible Access Control Markup Language

XF Xpath node-set function

XMPS Resource content matching element of a PolicySet PS

XMP Resource content matching element of a Policy P

XMC
R Xpath expression of a Rule for matching resource content objects that represent

a class, resp. a GML feature type

XMC Xpath expression of a Condition for matching resource content objects that
represent a class, resp. a GML feature type

XMC Xpath expression of a Condition

XMO
C Xpath expression of a Condition for matching objects, resp. GML features

according to their non-spatial characteristics

XMS
C Xpath expression of a Condition for matching objects, resp. GML features

according to their non-spatial characteristics

A.2 Font Types

Building The type writer font refers to a class of an object-oriented data model, it’s prop-
erties and methods.

GetFeature The sans serif family font denotes to constructs such as operations on resource
objects, subjects and XML elements. For example, if the operation read is meant, it is
put in sans serif font.

read the slanted shape font denotes value expressions as they are associated to constructs,
class properties, etc. For example, the value read is put in slanted shape font and not
in sans serif family font.

Citation The italic shape font denotes citations as they come from other document sources.

SET The calligraphic letters denote the use of a set. For example, RO represents the set of
resource content objects.

A.3 XML Spy Diagram Notation 203

A.3 XML Spy Diagram Notation

Figure A.1 illustrates the notation of the XML Spy editor as it is used throughout this work
for the graphical representation of XML schemas or parts of an XML schema.

Figure A.1: Conventions for diagrams, taken with Altova XML Spy (http://www.xmlspy.com)

204 A. Notation

Appendix B

The City Model

The City Model is the example used throughout this work. This chapter provides a map that
shows the geometry and location of the used geospatial resource objects. Section B.2 provides
the GML application schema that defines the GML markup of the underlying object-oriented
model and the geometry of the spatial information objects. Section B.3 provides the GML
encoding of the City Model as a GML feature collection.

B.1 Map of the City Model

Y

X

(0,0)

5

5

Street B

St
re

et
 A

Street C

St
re

et
 F

Street D

 Stre

et
E
Building A

Building B

Intersection A

Intersection B

Intersection C

Intersection D

Intersection E

Figure B.1: The City Model map

206 B. The City Model

B.2 City Model Application Schema

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <xs:schema targetNamespace=”http://www.in.tum.de/am”
3 xmlns=”http://www.w3.org/2001/XMLSchema”
4 xmlns:am=”http://www.in.tum.de/am”
5 xmlns:gml=”http://www.opengis.net/gml”
6 xmlns:xs=”http://www.w3.org/2001/XMLSchema”
7 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
8 elementFormDefault=”qualified”>
9 <xs:import namespace=”http://www.opengis.net/gml” schemaLocation=”feature.xsd”/>

10 <xs:import namespace=”http://www.w3.org/1999/xlink” schemaLocation=”xlinks.xsd”/>
11 <!−− −−>
12 <xs:element name=”CityModel” type=”am:CityModelType” substitutionGroup=”gml: FeatureCollection”/>
13 <xs:element name=”Street” type=”am:StreetType” substitutionGroup=”gml: Feature”/>
14 <xs:element name=”Intersection” type=”am:IntersectionType” substitutionGroup=”gml: Feature”/>
15 <xs:element name=”Building” type=”am:BuildingType” substitutionGroup=”gml: Feature”/>
16 <xs:complexType name=”CityModelType”>
17 <xs:complexContent>
18 <xs:extension base=”gml:AbstractFeatureCollectionType”/>
19 </xs:complexContent>
20 </xs:complexType>
21 <xs:complexType name=”StreetType”>
22 <xs:complexContent>
23 <xs:extension base=”gml:AbstractFeatureType”>
24 <xs:sequence minOccurs=”0”>
25 <xs:element name=”Name”/>
26 <xs:element ref=”gml:LineString”/>
27 </xs:sequence>
28 </xs:extension>
29 < /xs:complexContent>
30 </xs:complexType>
31 <xs:complexType name=”IntersectionType”>
32 <xs:complexContent>
33 <xs:extension base=”gml:AbstractFeatureType”>
34 <xs:sequence minOccurs=”0”>
35 <xs:element name=”Name”/>
36 <xs:element ref=”gml:Point”/>
37 </xs:sequence>
38 </xs:extension>
39 </xs:complexContent>
40 </xs:complexType>
41 <xs:complexType name=”BuildingType”>
42 <xs:complexContent>
43 <xs:extension base=”gml:AbstractFeatureType”>
44 <xs:sequence minOccurs=”0”>
45 <xs:element name=”Address”/>
46 <xs:element name=”Shape” type=”gml:PolygonType”/>
47 </xs:sequence>
48 </xs:extension>
49 </xs:complexContent>
50 </xs:complexType>
51 </xs:schema>

B.3 City Model GML Document 207

B.3 City Model GML Document

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <CityModel xmlns=”http://www.in.tum.de/am” xmlns:xlink=”http://www.w3.org/1999/xlink”
3 xmlns:gml=”http://www.opengis.net/gml” xmlns:am=”http://www.in.tum.de/am”
4 xsi:schemaLocation=”http://http://www.in.tum.de/am CityModel.xsd”
5 xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance” fid=”CityModel”>
6 <gml:boundedBy>
7 <gml:Box gid=”box1” srsName=”foo”>
8 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
9 <gml:coord><gml:X>4</gml:X><gml:Y>4</gml:Y></gml:coord>

10 </gml:Box>
11 </gml:boundedBy>
12 <gml:featureMember>
13 <Intersection fid=”I1”>
14 <Name>Intersection A</Name>
15 <gml:Point srsName=”foo”>
16 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
17 </gml:Point>
18 </Intersection>
19 </gml:featureMember>
20 <gml:featureMember>
21 <Intersection fid=”I2”>
22 <Name>Intersection B</Name>
23 <gml:Point srsName=”foo”>
24 <gml:coord><gml:X>0</gml:X><gml:Y>4</gml:Y></gml:coord>
25 </gml:Point>
26 </Intersection>
27 </gml:featureMember>
28 <gml:featureMember>
29 <Intersection fid=”I3”>
30 <Name>Intersection C</Name>
31 <gml:Point srsName=”foo”>
32 <gml:coord><gml:X>2</gml:X><gml:Y>0</gml:Y></gml:coord>
33 </gml:Point>
34 </Intersection>
35 </gml:featureMember>
36 <gml:featureMember>
37 <Intersection fid=”I4”>
38 <Name>Intersection D</Name>
39 <gml:Point srsName=”foo”>
40 <gml:coord><gml:X>2</gml:X><gml:Y>4</gml:Y></gml:coord>
41 </gml:Point>
42 </Intersection>
43 </gml:featureMember>
44 <gml:featureMember>
45 <Intersection fid=”I5”>
46 <Name>Intersection E</Name>
47 <gml:Point srsName=”foo”>
48 <gml:coord><gml:X>4</gml:X><gml:Y>2</gml:Y></gml:coord>
49 </gml:Point>
50 </Intersection>
51 </gml:featureMember>
52 <gml:featureMember>
53 <Building xsi:type=”BuildingType” fid=”BuildingA”>
54 <Address>Street A</Address>
55 <Shape srsName=”foo”>
56 <gml:outerBoundaryIs>
57 <gml:LinearRing>
58 <gml:coord><gml:X>−1</gml:X><gml:Y>2</gml:Y></gml:coord>
59 <gml:coord><gml:X>0</gml:X><gml:Y>2</gml:Y></gml:coord>
60 <gml:coord><gml:X>0</gml:X><gml:Y>3</gml:Y></gml:coord>
61 <gml:coord><gml:X>−1</gml:X><gml:Y>3</gml:Y></gml:coord>
62 <gml:coord><gml:X>−1</gml:X><gml:Y>2</gml:Y></gml:coord>
63 </gml:LinearRing>
64 </gml:outerBoundaryIs>

208 B. The City Model

65 </Shape>
66 </Building>
67 </gml:featureMember>
68 <gml:featureMember>
69 <Building xsi:type=”BuildingType” fid=”BuildingB”>
70 <Address>Street D</Address>
71 <Shape srsName=”foo”>
72 <gml:outerBoundaryIs>
73 <gml:LinearRing>
74 <gml:coord><gml:X>5</gml:X><gml:Y>4</gml:Y></gml:coord>
75 <gml:coord><gml:X>6</gml:X><gml:Y>4</gml:Y></gml:coord>
76 <gml:coord><gml:X>6</gml:X><gml:Y>5</gml:Y></gml:coord>
77 <gml:coord><gml:X>5</gml:X><gml:Y>5</gml:Y></gml:coord>
78 <gml:coord><gml:X>5</gml:X><gml:Y>4</gml:Y></gml:coord>
79 </gml:LinearRing>
80 </gml:outerBoundaryIs>
81 </Shape>
82 </Building>
83 </gml:featureMember>
84 <gml:featureMember>
85 <Street fid=”S1”>
86 <Name>Street A</Name>
87 <gml:LineString>
88 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
89 <gml:coord><gml:X>0</gml:X><gml:Y>4</gml:Y></gml:coord>
90 </gml:LineString>
91 </Street>
92 </gml:featureMember>
93 <gml:featureMember>
94 <Street fid=”S2”>
95 <Name>Street B</Name>
96 <gml:LineString>
97 <gml:coord><gml:X>0</gml:X><gml:Y>4</gml:Y></gml:coord>
98 <gml:coord><gml:X>2</gml:X><gml:Y>4</gml:Y></gml:coord>
99 </gml:LineString>

100 </Street>
101 </gml:featureMember>
102 <gml:featureMember>
103 <Street fid=”S3”>
104 <Name>Street C</Name>
105 <gml:LineString>
106 <gml:coord><gml:X>0</gml:X><gml:Y>0</gml:Y></gml:coord>
107 <gml:coord><gml:X>2</gml:X><gml:Y>0</gml:Y></gml:coord>
108 </gml:LineString>
109 </Street>
110 </gml:featureMember>
111 <gml:featureMember>
112 <Street fid=”S4”>
113 <Name>Street D</Name>
114 <gml:LineString>
115 <gml:coord><gml:X>2</gml:X><gml:Y>4</gml:Y></gml:coord>
116 <gml:coord><gml:X>4</gml:X><gml:Y>2</gml:Y></gml:coord>
117 </gml:LineString>
118 </Street>
119 </gml:featureMember>
120 <gml:featureMember>
121 <Street fid=”S5”>
122 <Name>Street E</Name>
123 <gml:LineString>
124 <gml:coord><gml:X>2</gml:X><gml:Y>0</gml:Y></gml:coord>
125 <gml:coord><gml:X>4</gml:X><gml:Y>2</gml:Y></gml:coord>
126 </gml:LineString>
127 </Street>
128 </gml:featureMember>
129 </CityModel>

Bibliography

[Akker et. al. 2001] Ty van den Akker, Quinn O. Snell, Mark J. Clement: The YGuard Access
Control Model: Set-Based Access Control, ACM 1-58113-350-2/01/0005

[AAP 2000] Association of American Publishers, Inc.: Digital Rights Management for
Ebooks: Publisher Requirements, AAP 2000

[Bhatti et. al.] Rafae Bhatti, James B.D. Joshi, Elisa Bertino, Arif Ghafoo: Access Control
in Dynamic XML-based Web-Services with X-RBAC

[Berliner Senatsverwaltung 2002] Berliner Senatsverwaltung: IT-Sicherheitsstandards
(gemäßIT-Sicherheitsrichtlinie) Senatsverwaltung für Inneres, Ressortübergreifendes
It-Management, Version 3.3, Stand: 27.06.02

[Bertino et. al.] Elisa Bertino, Silvana Castano, Elena Ferrari, Marco Mesiti: Controlled Ac-
cess and Dissemination of XML Documents

[Bishr 1999] Yaser A. Bishr, University of Münster, Institute for Geoinformatics: A Global
Unique Persistent Object ID for Geospatial Information Sharing, in Lecture Notes in
Computer Science no. 1580, Interoperating Geographic Information Systems, Second
International Conference INTEROP’99, Zurich, Switzerland, pages 55-64

[Boström 2002] Erik Boström: Redefined Access Control in a Distributed Environment

[Britannica] Britannica Concise Encyclopedia, http://www.britannica.com/ebc/article?
eu=390739& query=database& =gen1

[Burghardt et. al. 2003] Markus Burghardt, Svenja Hagenhoff: Sicherheitsaspekte bei der
Nutzung von Web Services, Georg-August-Universität Göttingen, Arbeitsbericht Nr.
23/2003

[Chen 2004] Willy Chen: Sicherheitsarchitektur einer XACML-basierten Zugriffskontrolle für
Web Service, Diplomarbeit an der Technischen Universität München, 10.08.2004

[Cohn et. al.] A. G. Cohn, N. M. Gotts, Z. Cui, D. A. Randell, B. Bennett, J.M. Gooday:
Exploiting Temporal Continuity in Qualitative Spatial Calculi

[Comer 2000] Douglas E. Comer: Internetworking with TCP/IP Volume 1: Principles, Pro-
tocols, and Architectures, Prentice Hall, 2000

[ContentGuard 2004] Content Guard Holdings Inc.: eXtensible rights Markup Language
(XrML), 20 November 2001, http://www.xrml.org/get XrML.asp

http://www.britannica.com/ebc/article?eu=390739&query=database&=gen1
http://www.britannica.com/ebc/article?eu=390739&query=database&=gen1
http://www.xrml.org/get_XrML.asp

210 BIBLIOGRAPHY

[Cuppens et. al.] Frédéric Cuppens, Alexandre Miège: Modeling Contexts in the Or-BAC
Model

[Coetzee et. al.] M. Coetzee, Technikon Witwatersrand, J.H.P. Eloff, University of Pretoria:
Virtual Enterprise Access Control Requirements

[Clementini 1993] Clementini, Eliseo, Di Felice, P., van Oostrom, P.: A Small Set of Formal
Topological Relationships Suitable for End-User Interaction, in D. Abel and B. C. Ooi
(Ed.), Advances in Spatial Databases Third International Symposium. SSD 93. LNCS
692. Pp. 277-295. Springer-Verlag. Singapore (1993)

[Damiani et. al. 2001] Ernesto Damiani, Sabrina de Capitani Di Vimercati, Stefano Para-
boschi, Pierangela Samarati: Fine Grained Access Control for SOAP E-Services

[Damiani et. al. 2002] Ernesto Damiani, Sabrina de Capitani Di Vimercati, Stefano Para-
boschi, Pierangela Samarati: A Fine-Grained Access Control System for XML Docu-
ments, Data: 2002

[Dastjerdi et. al. 1995] Ahmad Baraani-Dastjerdi, Reihaneh Safavi-Naini, Josef Perprzyk,
Janusz R. Getta: A Model of Content-based Authorization in Object-Oriented
Databaseds based on Object Views

[Donaubauer 2004] Andreas Donaubauer: Interoperable Nutzung verteilter Geodatenbanken
mittels standardisierter Geo Web Services, Dissertation, Technische Universität München

[Eckert 2001] Claudia Eckert: IT-Sicherheit, Konzept - Verfahren - Protokolle, Oldenburg
Verlag München, Wien

[Egenhofer et. al.] Max J. Egenhofer, Reginald G. Golledge: Spatial And Temporal Reasoning
In Geographic Information Systems

[EPSG 2004] European Petroleum Survey Group: EPSG Geodesy Parameters V 6.5, 13 Jan-
uary 04, http://www.epsg.org

[Internet2] N.N.: Shibboleth Introduction , http://shibboleth.internet2.edu/shib-intro.html

[Erdos et. al. 2002] Marlena Erdos, Scott Cantor: Shibboleth-Architecture DRAFT v05, May
2, 2002

[European Commission] European Commission: INfrastructure for SPatial InfoRmation in
Europe, Homepage, http://inspire.jrc.it/home.html

[Finkel et. al. 1974] Raphael A. Finkel, Jon Louis Bentley, Quad Trees: A Data Structure for
Retrieval on Composite Keys, 1974

[Galla 2004] Michael Galla: Social Relationship Management in Internet-based Communica-
tion and Shared Information Spaces, Dissertation, Technische Universität München

[Guttman 1984] Antonin Guttman, R-TREES: A Dynamic Index Structure For Spatial
Searching, 1984

[GSDI 2004] Global Spatial Data Infrastructure Association: Homepage,
http://www.gsdi.org/default.asp

http://www.epsg.org
http://shibboleth.internet2.edu/shib-intro.html
http://inspire.jrc.it/home.html
http://www.gsdi.org/default.asp

BIBLIOGRAPHY 211

[Hada et. al. 2000] Satoshi Hada and Michiharu Kudo: XML Access Control Language: Pro-
visional Authorization for XML Documents, www.trl.ibm.com/projects/xml/xacl/xacl-
spec.html

[IBM 2001] IBM: Web Services Flow Language (WSFL 1.0), May 2001, http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[IBM et. al. 2002] IBM: XML Access Control Language: Provisional Authorization for XML
Documents, October 16, 2000

[IEEE 1990] N.N.: Institute of Electrical and Electronics Engineers. IEEE Standard Com-
puter Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York,
NY, 1990

[IETF 1997] R. Moats: AT& T, RFC 2141, May 1997,
http://community.roxen.com/developers/idocs/rfc/rfc2141.html

[ISO 1992] ISO: SQL 2-Standard (ISO 9075 - 1992)

[ISO] ISO, SQL/MM Standard (ISO 13249)

[Johnston et.al. 1998] William Johnston, Srilekha Mudumbai, Mary Thompson: Authoriza-
tion and Attribute Certificates for a Widely Distributed Access Control IEEE 7th Inter-
national Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises - WETICE ’98

[Kraft 2002] Reiner Kraft: Designing a Distributed Access Control Processor for Network
Services on the Web, ACM 1-58113-632-3/02/0011

[Kwok 2002] Sai Ho Kwok: digital Rights Management for the Online Music Business, ACM
1073-0516/01/0300-0034

[Lepro 2003] Rebekah Lepro: NASA Advanced Supercomputing (NAS) Division, Cardea:
Dynamic Access Control in Distributed Systems, November 2003

[Liu et. al. 2003] Qiong Liu, Reihaneh Sfavi-Naini, Nichholas Paul Sheppard: Digital Rights
Management for Content Distribution, Australian Computer Society, Inc. 2003

[Lorch et. al. 2003] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, Sumit Shah:
First Experiences Using XACML for Access Control in Distributed Systems, ACM 1-
58113-777-X/03/0010

[IDC 2003] Steve McClure: Oracle’s Solution for Heteroge-
neous Data Integration, White Paper, August 2003,
http://www.oracle.com/technology/products/dataint/pdf/idc integration wp.pdf

[Microsoft 2004] Microsoft Corp.: Architecture of Windows Media Rights Manager, May
2004, http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx

[Miller 2000] Paul Miller: Interoperability, What is it and why should I want it?, June 2000,
http://www.ariadne.ac.uk/issue24/interoperability

file:www.trl.ibm.com/projects/xml/xacl/xacl-spec.html
file:www.trl.ibm.com/projects/xml/xacl/xacl-spec.html
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://community.roxen.com/developers/idocs/rfc/rfc2141.html
http://www.oracle.com/technology/products/dataint/pdf/idc_integration_wp.pdf
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://www.ariadne.ac.uk/issue24/interoperability

212 BIBLIOGRAPHY

[Murata et al. 2003] Makoto Murata, Akihiko Tozawa, Michiharu Kudo: XML Access Con-
trol Using Static Analysis, ACM 1-58113-738-9/03/0010

[Neumann et. al. 2003] Gustaf Neumann, Mak Strembeck: An Approach to Engineer and
Enforce Context Constraints in an RBAC Environment

[OASIS 2004a] OASIS: http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml

[OASIS 2003] OASIS: eXtensible Access Control Markup Language (XACML), Version 1.1,
Date: 24 July 2003

[OASIS 2004b] OASIS: Security Assertion Markup Language (SAML) V1.1,
http://www.oasis-open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-
xsd.zip

[OASIS 2004c] OASIS homepage http://www.oasis-open.org

[OASIS 2004d] OASIS: XACML Profile for Role Based Access Control (RBAC), Committee
Draft 01, 13 February 2004 Organization for the Advancement of Structured Information
Standards (OASIS) homepage, http://www.oasis-open.org/who/

[OASIS 2004e] OASIS: Web Services Security 2, UsernameToken Profile 1.0 3, OASIS Stan-
dard 200401, March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0.pdf

[OASIS 2004f] OASIS: Web Services Security: 2, SOAP Message Security 1.0 3
(WS-Security 2004) 4, OASIS Standard 200401, March 2004, http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[OASIS 2004g] OASIS: Web Services Security 2, X.509 Certificate Token Profile 3, OASIS
Standard 200401, March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0.pdf

[OGC 2004] Open GIS Inc. homepage, http://www.opengis.org

[OGC 2000-028] Open GIS Consortium Inc.: Web Map Service Implementation Specification,
Version: 1.0.0, Date: 2000-04-19, http://www.opengeospatial.org/specs/?page=specs

[OGC 2001-068r3] Open GIS Consortium Inc.: Web Map Service Im-
plementation Specification, Version: 1.1.1, Date: 2002-01-16,
http://www.opengeospatial.org/specs/?page=specs

[OGC 2002-058] Open GIS Consortium Inc.: Web Feature Service Im-
plementation Specification, Version: 1.0.0, Date: 19-September-2002,
http://www.opengeospatial.org/specs/?page=specs

[OGC 2002-069] Open GIS Consortium Inc.: OpenGIS Geography Markup Language
(GML) Implementation Specification, Version 2.1.2, Date: 17 September 2002,
http://www.opengeospatial.org/specs/?page=specs

[OGC 1999-049] Open GIS Consortium Inc.: OpenGIS Simple Features
Specification For SQL, Revision 1.1, Release Date: May 5, 1999,
http://www.opengeospatial.org/specs/?page=specs

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip
http://www.oasis-open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip
http://www.oasis-open.org
http://www.oasis-open.org/who/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.opengis.org
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs

BIBLIOGRAPHY 213

[OGC 1999-100r1] Open GIS Consortium Inc.: The OpenGIS Abstract Specification
Topic 0: Abstract Specification Overview, Version 4, Date: 23 June 1999,
http://www.opengeospatial.org/specs/?page=specs

[OGC 2001-101] Open GIS Consortium Inc.: The OpenGIS Abstract Specification Topic
1: Feature Geometry (ISO 19107 Spatial Schema), Version 5, Date: 10 May 2001,
http://www.opengeospatial.org/specs/?page=specs

[OGC 1999-105r2] Open GIS Consortium Inc.: The OpenGIS Abstract
Specification Topic 5: Features, Version 4, Date: 24 March 1999,
http://www.opengeospatial.org/specs/?page=specs

[OGC 1999-110] Open GIS Consortium Inc.: The OpenGIS Abstract Speci-
fication Topic 10: Feature Collections, Version 4, Date: 7 April 1999,
http://www.opengeospatial.org/specs/?page=specs

[OGC 2002-112] Open GIS Consortium Inc.: The OpenGIS Abstract Specification
Topic 12: The OpenGIS Service Architecture, Version 4.3, Date: January 2002,
http://www.opengeospatial.org/specs/?page=specs

[OGC 2003-010r9] Open GIS Consortium Inc.: Recommended XML encoding of
coordinate reference system definitions, Version: 2.1.0, Date: 2003-10-16,
http://www.opengeospatial.org/specs/?page=specs

[OGC 02-059] Open GIS Consortium Inc.: Filter Encoding Implementation Specification,
Version 1.0.0, Date: 17-MAY-2001, http://www.opengeospatial.org/specs/?page=specs

[OGC 02-087r3] Open GIS Consortium Inc.: Catalog Services Specification, Version 1.1.1,
Date: 2002-12-13, http://www.opengeospatial.org/specs/?page=specs

[Kenn Gardeks] Kenn Gardels: The Open GIS Approach to Distributed Geo-
data and Geoprocessing, http://www.ncgia.ucsb.edu/conf/SANTA FE CD-
ROM/sf papers/gardels kenn/ogismodl.html

[Park et. al.] Joon S. Park and Ravi Sandhu, George Mason University, Gail-Joon Ahn, Uni-
versity of North Carolina at Charlotte: Role-Based Access Control on the Web

[Richards 1979] I. A. Richards: http://bradley.bradley.edu/˜ell/iarichar.html

[Schlichter 2000] Johann Schlichter: Verteiltes Problemlösen, Vorlesung WS2000/2001

[SecureWeb 2001] SecureWeb: Protecting Web Applications, 2001,
http://elitesecureweb.com/dta/wthreats/sol1.html

[SUN 2003] SUN: XACML implementation version 1.1, 2003-11-07,
http://sunxacml.sourceforge.net, http://sourceforge.net/project/showfiles.php?
group id=73884&package id=74038&release id=196336

[VIVID 2003] VIVID Solutions: Java Topology Suite implementation version 1.4, November
4, 2003 , http://www.vividsolutions.com/jts/jtshome.htm

[W3C 2004] World Wide Web Consortium (W3C): Homepage, http://www.w3c.org

http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.opengeospatial.org/specs/?page=specs
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/gardels_kenn/ogismodl.html
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/gardels_kenn/ogismodl.html
http://bradley.bradley.edu/~ell/iarichar.html
http://elitesecureweb.com/dta/wthreats/sol1.html
http://sunxacml.sourceforge.net
http://sourceforge.net/project/showfiles.php?group_id=73884&package_id=74038&release_id=196336
http://sourceforge.net/project/showfiles.php?group_id=73884&package_id=74038&release_id=196336
http://www.vividsolutions.com/jts/jtshome.htm
http://www.w3c.org

214 BIBLIOGRAPHY

[W3C 2001a] W3C: Web Services Description Language (WSDL) 1.1, W3C Note 15 March
2001, http://www.w3.org/TR/wsdl

[W3C 2001b] W3C: XML Base W3C Recommendation 27 June 2001,
http://www.w3.org/TR/xmlbase/

[W3C 2001c] W3C: XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001 ,
http://www.w3.org/TR/xmlschema-0/

[W3C 2001d] W3C: XML Schema Part 1: Structures, W3C Recommendation, 2 May 2001 ,
http://www.w3.org/TR/xmlschema-1/

[W3C 2001e] W3C: XML Schema Part 2: Datatypes, W3C Recommendation, 2 May 2001 ,
http://www.w3.org/TR/xmlschema-2/

[W3C 2002a] W3C: XML Encryption Syntax and Processing, W3C Proposed Recommenda-
tion 03 October 2002, http://www.w3.org/TR/2002/PR-xmlenc-core-20021003/

[W3C 2002b] W3C: XML-Signature Syntax and Processing, W3C Recommendation 12
February 2002, http://www.w3.org/TR/xmldsig-core/

[W3C 2003a] W3C: SOAP, Version 1.2, Date: 24 June 2003

[W3C 1999] W3C: XML Path Language (Xpath), Version 1.0, Date: 16 November 1999

[W3C 2003b] W3C: XQuery 1.0: An XML Query Language, W3C Working Draft 12 Novem-
ber 2003

[Wörndl 2003] Wolfgang Wörndl: Privatheit bei dezentraler Verwaltung von Benutzerpro-
filen, Dissertation, Fakultt für Informatik, Technische Universität München

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2002/PR-xmlenc-core-20021003/
http://www.w3.org/TR/xmldsig-core/

	Zusammenfassung
	Abstract
	Acknowledgement
	Introduction and Motivation
	Interoperable Use of Distributed and Heterogenous Geodata
	Geodata and Geospatial Information Object
	Protected and Distributed Geospatial Information Objects
	A Motivating Example
	The Scientific Method of this Dissertation

	Basic Concepts
	XML, XML Schema and Xpath
	Extensible Markup Language (XML)
	XML Schema
	Xpath

	Geodata
	Geospatial Information Object
	Geometry
	Testing Topological Relations between Geometries

	The Geography Markup Language (GML)
	Encoding of Geospatial Information Objects and Geometry
	Encoding of an Application Specific Data Model
	GML and Interoperability

	Interoperable Use of Distributed and Heterogenous Geodata
	The Open GIS Consortium and their Interoperability Specifications
	Definition of Interoperability
	The Web Map Service (WMS) Implementation Specification
	The Web Feature Service (WFS) Implementation Specification
	Conclusion on Interoperability and Implications to Access Control

	Introduction to Access Control
	Used Terminology
	Different Strategies for Managing Access Rights
	The Basic Access Control System
	Introduction to Role Based Access Control
	Introduction to Rule Based Access Control
	Enforcement of Declared Permissions
	Finding Applicable Policies and Rules
	Deriving an Authorization Decision
	Illustrating the Decision Process
	Different Strategies for the Declaration of Access Restrictions

	Introduction to Distributed Access Control
	Standardized Language for Assertions
	Standardized Permission Language
	Standardized Communication Between Components

	Access Control Requirements and Related Standards and Systems
	Access Control Requirements
	Enforce Restrictions on the Resources, Independent from the Service
	Class- and Object-Based Requirements
	Spatial Requirements
	Representational Requirements
	Temporal Requirements
	Communication Security Requirements

	Framing the Problem Space and Identifying Infrastructure Constraints
	Constraints from the Distributed Aspect

	Standards for Distributed Access Control
	Security Access Control Markup Language (SAML)
	XML Access Control Language (XACL)
	eXtensible Access Control Markup Language (XACML)
	Digital Rights Management (DRM)
	EXtensible Rights Markup Language (XrML)

	Systems, Implementing Distributed Access Control
	Shibboleth
	Cardea

	Conclusion of Useability and Implications for this Work

	Declaration and Enforcement of Access Restrictions
	Declaration of Restrictions
	The XACML Request Tuple
	Class-Based Restrictions
	Object-Based Restrictions
	Spatial Restrictions
	Complex Spatial Restrictions
	Declaration of General/Exceptional Restrictions

	Enforcement of Restrictions
	Enforcement of Class-Based Restrictions
	Enforcement of Object-Based Restrictions
	Enforcement of Spatial Restrictions

	Visualization of Access Restrictions
	Visualization of the Permission Hierarchy
	Visualization of Spatial Restrictions
	Visualization of Combined Spatial Restrictions
	Remarks to the Visualization

	Approximate Detection of Inconsistent Permissions
	The Essential Test Conditions
	Approximate Detection of Unreachable Class-Based Permissions
	An Illustrating Example of Unreachable Permissions
	Approximate Detection of Complete Class-Based Permissions
	Approximate Detection of Contrary Class-Based Permissions
	Approximate Detection of Unreachable Object-Based Permissions
	Approximate Detection of Complete Object-Based Permissions
	Approximate Detection of Contrary Object-Based Permissions
	Approximate Detection of Unreachable Spatial Permissions
	Approximate Detection of Incomplete Spatial Permissions
	Approximate Detection of Contrary Spatial Permissions

	Exact Detection of Inconsistent Permissions
	Exact Detection of Unreachable Permissions
	Exact Detection of Contrary Permissions
	Exact Detection for Complete Permissions

	Recommending a Structured Declaration of Permissions
	Implications, using One Authorization Service
	The Coordinate Reference System
	Recommended Matching of PolicySet, Policy and Rule
	An Illustrating Example, obeying the Recommend Structure

	Evaluation and System Design
	Architecture
	GeoXACML, the Geospatial Extension to XACML
	Extending the XACML Data Types
	Extending the XACML Functions

	Declaration of Permissions, using GeoXACML Encoding
	The Target Element
	The Declaration of Class-Based Restrictions
	The Declaration of Object-Based Restrictions
	The Declaration of Spatial Restrictions

	Enforcement of Declared Permissions
	The Authorization Decision Request
	An Enforcement Service for the Web Feature Service
	An Enforcement Service for the Web Map Service

	Implementation and Evaluation of a Geospatial Authorization Service
	Implementation of the SpatialPDP Main Class
	Implementation of the GeoXACML Attribute Values
	Implementation of the SpatialSelectorModule
	Implementation of the GeoXACML Rule Combining Algorithms
	Implementation of the GeoXACML Spatial Functions

	Evaluation of the Implemented System
	Evaluation of Class-Based Restrictions
	Evaluation of Object-Based Restrictions
	Evaluation of Spatial Restrictions
	Evaluation of the Spatial Method Within
	Evaluation of the Spatial Method Touches
	Evaluation of the Complex Spatial Restriction

	Conclusion and Outlook
	Conclusion
	Recommendation to the World of (Geospatial) Science
	Outlook
	The `'Not Authorized`' Response and the Adversary Issue
	The Handling of Requests with Insufficient Permissions
	Permission Management and the Development of Service Orchestrations
	Context-based Permissions
	Dynamic Negotiation of Authentication Information under Consideration of Privacy

	Notation
	Nomenclature
	Font Types
	XML Spy Diagram Notation

	The City Model
	Map of the City Model
	City Model Application Schema
	City Model GML Document

	Bibliography

