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Abstract

Multidimensional access methods are considered to be a promising approach for
providing acceptable performance to analysis-centric applications. However, despite
the large body of research work in this field, the commercial support for multidimen-
sional indexes is still very weak. The reason for this discrepancy is threefold: first,
no standard multidimensional index like the B-Tree for one-dimensional data has
emerged so far. Second, integrating a new access method into a database system
kernel is usually a complex and expensive task. Third, current query optimizers
still have problems in dealing with multidimensional data making it difficult to use
multidimensional indexes efficiently.

In this thesis, we address the above mentioned deficiencies and promote the
universal B-Tree (UB-Tree) as a premier candidate for a general-purpose, multidi-
mensional index.

In an extensive theoretical and experimental comparison with R*-Trees we show
that the UB-Tree can compete with other approaches in multidimensional indexing.
The UB-Tree outperforms the R*-Tree not only w.r. to query performance but also
considering the important properties of maintenance performance, index size and
others.

Addressing the kernel integration, we reveal another big advantage of UB-Trees:
relying on the standard B-Tree as underlying structure the integration effort is re-
duced significantly. We further present optimizations of the basic algorithms, like
the reduction of post-filtering, for range query processing, which have large impact
in practice. To improve the support of query optimizers for multidimensional access
methods, we propose a new type of multidimensional histograms based on UB-Tree
concepts. At the same time, we point out general limitations of multidimensional
synopses.

Finally, we introduce the concept of weighted dimensions, which allows for tuning
of the UB-Tree to application specific preferences among the dimensions. This makes
the UB-Tree viable to a broader range of applications. The concept also leads to an
improved range query processing for standard composite key indexes.
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Part I

Multidimensional access methods

Like a building, a thesis requires a solid foundation. In the first
part of this work, we give an overview on the state-of-the art of
multidimensional indexing and the relevant application domains.
In addition, we introduce the basic terminology used throughout the
thesis and we propose a comparison framework for index structures.
Based on this framework, we present a comparison of R*-Trees and
UB-Trees.

1





Chapter 1

Introduction

In the last two decades, emerging applications, like data warehousing, data mining,
or geographic information systems, have brought up new requirements for database
management systems (DBMSs). The basic query pattern has shifted from one-
dimensional point queries (e.g., money transfer between two bank accounts) to mul-
tidimensional range queries (e.g., average sales of goods in Munich in December
2001). This change in the query paradigm is caused by the transition from trans-
actional processing in on-line transactional processing (OLTP) systems to the more
human-centered analytical processing common in the modern applications. Multi-
dimensional range queries result from the various multidimensional modelling ap-
proaches, which are used in on-line analytic processing (OLAP) and many other
application domains to allow for more intuitive formulation of queries by the user.
The efficient support for such query patterns is a crucial aspect of today’s DBMSs.

1.1 Multidimensional data is everywhere

Handling multidimensional data is an inherent problem of relational database man-
agement systems (RDBMSs). In the relational model [Cod70], each relation defines
a multidimensional space given by the domains of the attributes. Each tuple repre-
sents a point in the multidimensional space. More general, each non-empty subset of
the attributes of a relation defines a multidimensional space where the points have
associated information represented by the other attributes. This analogy between
relations and multidimensional space has long been neglected in literature.

Only with the move from transaction oriented applications, classified as OLTP
applications, to more analysis centric applications the multidimensional model has
attracted more attention. In OLAP applications the data model is typically multidi-
mensional, representing the complex processes of the business world. In contrast to
the simple bookkeeping operations in OLTP applications, OLAP applications have
to support complex analysis queries including multiple attributes (features, param-
eters, dimensions, etc.) simultaneously. For example, for analyzing sales data, the
date of the sale, the location of the sales (e.g., in which shops), and the type of
product sold are of interest.

3
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With the increasing importance of analytical queries, handling of multidimen-
sional data becomes a crucial issue for DBMSs. Such queries commonly restrict
multiple attributes of one relation and result in completely different access patterns
as the typical point searches of OLTP applications. Consequently, index structures
developed for OLTP applications do not provide the best performance for the new
query types. New solutions are therefore necessary to cope with the new require-
ments.

Typical application domains

As mentioned before, due to the correspondence between relations and multidi-
mensional space, all DBMS applications can be regarded to be multidimensional.
A typical example for a simple scenario is the modelling of a n−m-relationship.
Such relationships are represented by a separate table containing foreign keys to
the two base tables. Joining the two base tables in combination with a restriction
on both sides will lead to a multidimensional query on the n−m-relationship ta-
ble. Subsequently, we want to focus on applications that are characterized by the
multidimensional nature of their queries.

The first applications to be considered multidimensional, were applications han-
dling spatial data. Ranging from geographic information systems (GIS) to modern
location-based applications for mobile devices, such applications have to handle at
least two-dimensional data. For example, in a mobile tourist information systems
the user wants to get information about the attractions nearby the current loca-
tion. The first developments in multidimensional indexing where motivated by this
application domain.

Data warehouses (DW) are typical examples of OLAP applications: the so-
called fact data is recorded in the context of multiple dimensions. Analytical queries
usually restrict one or more of the specified dimensions, e.g., total sales of notebooks
in a specific area, resulting in multidimensional restrictions on the fact data.

In data-mining, as an extension to data warehousing, a multidimensional mod-
elling approach is also often applied in cluster analysis (in contrast to the logical
approach based on association rules). In both application domains the cube analogy
is often used at the user-interface level.

Handling XML data has been an increasingly important topic in recent years.
Depending on the mapping of XML to relations the handling of queries on XML
data also becomes a multidimensional problem requiring multidimensional indexing
for efficient retrieval of documents.

1.1.1 State of the art

Despite the large research work on multidimensional access methods in the last
years (see Chapter 3 for details) the support for such access methods in commercial
DBMSs is still very poor.

B-Trees [BM72, Com79] are still the de-facto standard of index structures. Only
a few systems have included multidimensional indexes, usually for handling spa-
tial data. For example, Oracle and Informix Universal Server (now IBM) provide
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strongly limited implementations of R-Trees in their extensions for spatial data.
An engineering approach to multidimensional indexing is to use several one-

dimensional access methods and combine them in query processing. This so-called
index intersection has the advantage that it is very flexible w.r. to the support of
different attributes, but lacks the advantage of clustering the data w.r. to multiple
dimensions.

The weak support of multidimensional access methods in DBMSs today results
in our opinion from three problems: first, the kernel integration of new index struc-
tures is usually a very costly task, as the new functionality has to be coupled with
essential database services like locking, logging, recovery, etc. Second, many pro-
posed multidimensional indexes have been designed having special scenarios in mind,
i.e., they do not support a wide range of applications. The database vendors, how-
ever, are looking for universal methods that can be applied to many applications.
Third, current query optimization models do not explicitly carry over to multi-
dimensional data and access methods. The main problem for today’s cost-based
optimizers is to get reliable estimates for cardinalities and cost of multidimensional
operators/predicates. Even though various models/approaches exist for some multi-
dimensional access methods, no general applicable, i.e., reliable, estimation method
for multidimensional data exists.

1.1.2 The optimal multidimensional access method

In the previous section we have pointed out the deficiencies of state-of-the-art access
methods. In order to evaluate our work, we have to set up the requirements for
the optimal multidimensional index. The following list presents a rather informal
description of important aspects of an access method. The requirements will be put
in more concrete terms throughout this thesis.

• Universality :
In order to allow for a wide range of applications the index structure has to be
flexible w.r. to the support of various data types, e.g., the support for point
objects as well as for extended objects (e.g., polygons, line segments, spheres,
etc.).

• Multi-user support :
For today’s applications an efficient handling of concurrent operations is manda-
tory.

• Symmetry w.r. to all dimensions:
All indexed dimensions should have the same weight/importance. That means,
no dimension should be preferred in query processing unless explicitly wanted
by the user. Consequently, access methods that allow for individual weighting
of dimensions provide the highest flexibility.

• Easy integration:
The cost-benefit ratio of the integration of new methods is an important factor
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for commercial DBMS vendors. The easier a new index can be integrated into
the existing system, the higher the probability of the integration. Both, the
complexity of the new algorithms and the combination with the existing system
play an important role for the ease of the integration.

• Dynamism:
The dynamic nature of many applications also causes frequent changes to the
underlying database. Therefore, the performance of a multidimensional ac-
cess method should be independent of the update behavior of the application,
i.e., the frequency, the number, and the order of insert, delete, and update
operations.

• Worst case guarantees:
With increasing data sizes, the predictability of response times becomes a
significant issue. Access methods that provide worst case guarantees for each
operation, allow for such predictions and make query optimization easier.

• Low space complexity :
In times of tumbling hard disk prices, space requirements are no longer a
limiting factor. Still, the less extra space an index structure requires the
better, as the index size is an important influence factor for the performance.

1.2 Objective

As discussed above, despite their important role in providing sufficient performance
for today’s DBMS applications, multidimensional access methods are not widely
available in commercial systems. The reasons for this fact are on the one hand
the high cost of integrating index structures into a DBMS kernel and on the other
hand the narrow usability of many multidimensional index structures. A standard
multidimensional access method, like the B-Tree for one-dimensional data, is still
missing.

This work demonstrates that the UB-Tree (universal B-Tree)[Bay97] overcomes
the mentioned limitations of previous approaches. We show its high potential as a
general-purpose multidimensional data structure as it combines flexibility, function-
ality, and efficiency with technology that is easy to integrate into existing systems.
More precisely, we

• evaluate the UB-Tree w.r. to the requirements of a general purpose access
method mentioned in the previous section,

• discuss all issues of integrating the UB-Tree into a DMBS kernel and provide
experiences from the first integration into a commercial system, and

• present optimizations of the basic UB-Tree concepts and advanced concepts
allowing for higher efficiency and usability.
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We evaluate the UB-Tree based on a detailed comparison with R*-Trees. The
comparison covers the relevant properties of an access method and thus allows for
a reliable conclusion on the usability of the two prominent multidimensional access
methods.

We cover in detail the kernel integration of UB-Trees, addressing the design and
implementation of the basic algorithms as well as advanced topics like optimizer
extension (focussing on the important issue of cardinality estimation).

Furthermore, we introduce optimizations and enhancements of the UB-Tree,
which have great impact in practice. On the one hand, we optimize the range
query performance by reducing post-filtering, achieving performance improvements
for most applications. On the other hand, we introduce the concept of weighted di-
mensions, allowing for prioritizing some dimensions according to their importance.
This also leads to improved processing of multidimensional range queries with stan-
dard B-Trees.

1.3 Structure of the thesis

What follows is a more detailed overview of the structure of the thesis combined
with a few guidelines for the reader.

The thesis is divided into three parts: the first one introduces multidimensional
access methods in general preparing the ground for the more detailed discussions
in the later parts. The second part then covers the integration of the UB-Tree
into a DBMS kernel and various optimizations. The last part introduces advanced
multidimensional indexing concepts.

In Part I, after the general introduction, we define the basic terminology used
throughout the thesis in Chapter 2. The reader familiar with the basic concepts in
the indexing area finds a summary of the used terms and symbols in Section 2.6.
We briefly discuss general related work in Chapter 3; specific related work to the
discussed aspects is presented in the corresponding chapter notes. Chapter 4 intro-
duces the running examples used for illustration throughout the thesis. The in-depth
comparison of UB-Trees and R*-Trees in Chapter 5 concludes the first part.

Part II covers the integration and optimization of UB-Trees. Chapter 6 sum-
marizes our experiences of integrating the UB-Tree into a DBMS kernel. Within
this chapter some implementation details of the UB-Tree and its algorithms are de-
scribed. Chapter 7 discusses the linearization of query boxes and its application for
optimizing the range query algorithm. Further, we elaborate on the approximation
of Z-regions by minimum bounding boxes in Chapter 8. The important issue of
optimizer extension for UB-Trees covered in Chapter 9 completes the middle part.

Part III deals with advanced concepts of multidimensional indexing. We are
presenting an enhancement of UB-Trees to allow for arbitrary weighting of indexed
dimensions in Chapter 10. In Chapter 11 we show how composite key B-Trees
can support multidimensional queries more efficiently by an improved range query
algorithm. We summarize our contribution and point out directions of future work
and at the end of this thesis.
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Chapter 2

Foundations and terminology

In this chapter we introduce the basic terminology used throughout this thesis. We
try to stay conform with [Mar99], however, in some cases we have to modify the
definitions slightly for our purposes, but without changing the intuitive meaning.

We focus on indexing for relational database management systems (RDBMSs),
even though our methods apply also to DBMSs in general. Therefore, we expect the
reader to be familiar with the basic terminology of relational systems. In RDBMSs,
data is organized in a set of relations or tables. Each relation consists of tuples,
often referred to as rows, which are composed of multiple attributes or columns. A
given relation has a fixed arity, i.e., a fixed number of attributes.

Our approach to multidimensional indexing considers tuples to be points in mul-
tidimensional space. The coordinates of the point are given by the attributes of the
tuple. We refer to the attributes as dimensions. Often, we are only interested in a
subset of the attributes of a relation R for our theoretical considerations. We then
partition R into a set of qualifying attributes or index attributes, i.e., the attributes
that specify the coordinates in the multidimensional space, and a set of quantifying
attributes or information attributes, i.e., attributes that provide additional informa-
tion. If nothing else is specified, we speak of qualifying attributes when we use the
term attributes.

2.1 General notation

This section introduces the general notational conventions used in this thesis. If
nothing else is specified, we use the standard terminology established in computer
science.

Sets and Strings

Let S = {s1, s2, ..., sn} be an arbitrary set. |S| denotes the cardinality or size
of S. Analogously, for a string T , |T | denotes the length of T . Given a string
T = t1t2 . . . tl of length l, T1...m denotes the prefix of length m ≤ l of T , i.e.,
T1...m = t1 . . . tm.

9
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Matrices

Let M be an (m,n)-matrix, i.e., M =




m11 . . . m1n
...

. . .
...

mm1 . . . mmn


.

We sometimes write Mij for element mij of M.

Decimal Numbers

We use the European/German convention of representing floating point numbers:
the comma ’,’ is the decimal delimiter whereas the period ’.’ is the thousands
separator.

Bitstrings

Let B denote the domain of all bit strings, i.e., B = [0|1]∗. For a bit string
b = bl−1bl−2 . . . b0 ∈ B, of length |b| = l, bl−1 denotes the most significant bit. More
precisely, the bit bi, 0 ≤ i ≤ |b| − 1 has the decimal value 2i. Consequently, the

whole bit string b has the decimal value
∑|b|−1

i=0 bi ∗ 2i. We use b...k to denote the
prefix of bit string b up to the bit position k, i.e., b...k = bl−1bl−2 . . . bk; consequently,
b...k has length |b...k| = l − k. bk...m denotes the substring of b from position k to m,
i.e., bk...m = bkbk−1 . . . bm.

2.2 Multidimensional domain, relation, tuple

Let D be a domain, i.e., a finite set of values, with a total ordering <D. minD and
maxD denote the minimal and the maximal value of the domain. If the meaning is
clear from the context, we write < instead of <D. For each domain D there exists
an order-preserving bit representation, i.e., each element a of the domain can be
expressed by a bit string al−1 . . . a0 of length l1 and the lexicographic order on the
bit strings adheres to the natural order <D of the domain.

Definition 2.1 (<-neighbor)
For any domain D with ordering relation <D two values a, b ∈ D are <-neighbors,
iff a < b ∧ �c ∈ D with a < c < b.

Definition 2.2 (Order-preserving bit representation)
For each domain D a mapping β to bit strings can be defined: β : D → B. We
call β(a) the bit representation of a ∈ D. The bit representation β is order
preserving iff

∀a1, a2 ∈ D : a1 ≤D a2 ⇔ β(a1) ≤B β(a2)

Let R be a relation with n attributes A1, ..., An of domains D1, ..., Dn. Without
loss of generality, let A1, ..., Ad (d ≤ n) be the index attributes of R and Ad+1, ..., An

be the information attributes of R. R is a set of tuples t = (t1, ..., tn), where ti ∈ Di;

1Leading 0 bits are used to fill up all bitstrings of the elements of one domain to the same
length.
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|R| is the cardinality of R. We write t.Ai synonymously for ti for a given tuple t. RI

denotes the projection of R w.r. to the index attributes, i.e., RI = {(t1, ..., td)|∃s ∈
R : s1 = t1 ∧ ... ∧ sd = td}.

Definition 2.3 (Multidimensional domain, dimensionality)

The multidimensional domain Ω of a relation R is the cross product of the d
domains of the indexing (qualifying) attributes, i.e., Ω = D1 × . . .× Dd. We say Ω
and R are of dimensionality d.

We call Ω also the base space or the universe of R, as RI is a subset of Ω, i.e.,
RI ⊆ Ω. The cardinality or volume of Ω is the product of the cardinalities of the
domains.

Definition 2.4 (Volume of Ω)

The volume vol(Ω) of the multidimensional domain Ω is given by the product of
the sizes of the d domains, i.e., vol(Ω) =

∏d
i=1 |Di|.

Sparsity of a data set

For the analysis of data sets, we are often interested in how dense the universe
is populated for a given relation. We therefore have to distinguish between the
cardinality and the volume of a relation.

Definition 2.5 (Volume of a relation)

The volume vol(R) of relation R with universe Ω, is the volume of Ω, i.e., vol(R) =
vol(Ω).

With this definition we now can define the sparsity of a relation that describes
how densely populated the multidimensional universe is.

Definition 2.6 (Sparsity of a relation)

Given a relation R of the multidimensional domain Ω, the sparsity ξ of R is ξ(R) =

1− |R|
vol(Ω)

. |R|
vol(Ω)

is called the density of R.

Example 2.1: Volume, Density, and Sparsity

Let R be a three-dimensional relation with a base domain D (i.e., Ω =
D×D×D) with |D| = 23. Consequently, vol(Ω) = vol(R) = 23∗23∗23 =
29 = 512. The following table shows the density and sparsity of R
depending on the number of tuples in R. It is important to note that in
real world applications data sets are usually very sparse ( ξ � 99%; see
Chapter 4 for real world examples).

�
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Table 2.1: Density and sparsity depending on the size of R

|R| Density Sparsity
0 0 1

128 0,25 0,75
256 0,5 0,5
384 0,75 0,25
512 1 0

Order of the multidimensional domain

It is sometimes necessary to have an order in the multidimensional space. In the
following we define a partial order on the points in multidimensional space based on
the total order in the individual domains.

Definition 2.7 (�-order of Ω)
For the multidimensional domain Ω we define the partial order � as follows:

∀x, y ∈ Ω : x � y ⇔ ∀i, 1 ≤ i ≤ d : xi ≤ yi

∀x, y ∈ Ω : x � y ⇔ ∀i, 1 ≤ i ≤ d : xi < yi

Definition 2.8 (�-neighbors)
Two points x, y ∈ Ω with x � y are �-neighbors iff ∃i, 1 ≤ i ≤ d such that
∀j, 1 ≤ j ≤ d, j �= i : xj = yj and xi, yi are <-neighbors.

2.3 Queries, result sets, and selectivity

In the following, we define the terminology dealing with queries on a relation. We
limit our examination to restriction queries, i.e., queries that only select a subset of
one table without considering projections.

Definition 2.9 (Query, result set)
A restriction query is a predicate ρ(t) on the tuples t of a relation R. All tuples
satisfying ρ are called the result set, i.e., RS(ρ,R) = {t ∈ R|ρ(t)}.

The query predicate ρ defines a subspace Q ⊆ Ω of the universe, with Q = {t ∈
Ω|ρ(t)}. Thus, the result set of a query can be also specified as RS(ρ,R) = Q ∩ R.
For notational convenience, we often write Q(R) instead of RS(ρ,R) and speak of
query Q on relation R, wherever the meaning is clear from the context.

Definition 2.10 (Selectivity of a query)
The selectivity sel of a query Q on a relation R is defined as the fraction of the
result set size over the size of R, i.e., sel(Q,R) = |Q(R)|

|R| .

The term selectivity often causes confusion when it is used informally: a very
selective query, i.e., a query with a small result set, has a small selectivity according
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to our definition. We will therefore often speak about small, i.e., very selective, and
large queries, i.e., only somewhat selective. In order to distinguish the two aspects
of a query, we also define the term volume of a query.

Definition 2.11 (Volume of a query)

The volume vol(Q) of a query Q is the volume of the multidimensional space defined
by the query.

For dense or uniformly distributed data sets, there is a strong correlation between
the volume and the selectivity of a query. For sparse data sets the relationship of the
two aspects strongly depends on the data distribution and with that on the location
of the query box.

In this work we concentrate on a special type of queries, namely multidimensional
range queries. Multidimensional range queries are characterized by an interval re-
striction on each attribute. Let R be a relation with d attributes A1, ..., Ad with
corresponding domains D1, ...,Dd, respectively.

Definition 2.12 (Multidimensional range query)

A multidimensional range query RQ on relation R is specified by the predicate ρ(t) =
l1 ≤ t.A1 ≤ h1 ∧ l2 ≤ t.A2 ≤ h2 ∧ ... ∧ ld ≤ t.Ad ≤ hd. In general, ρ is specified by a
multidimensional interval [[l, h]] = [l1, h1]× ...× [ld, hd] and we write RQ = [[l, h]].

We often refer to RQ as query box, because [[l, h]] specifies an iso-oriented query
window or box on Ω. The volume of a multidimensional range query RQ = [[l, h]] is
the given by vol(RQ) =

∏d
i=1(hi − li + 1). hi − li + 1 denotes the number of values

in the interval [hi, li]; the length can be determined for each interval of a domain D
as we are only considering finite domains with a fixed ordering.

Multidimensional range queries are of great importance as they can be used to
specify various interesting query types:

• Exact match queries or point queries PQ restrict all dimensions to a point,
i.e., PQ = [[x, x]]

• Partial match queries PM restrict some dimensions to a point while the other
dimensions are not restricted, i.e., PM = [[l, h]] where li = hi or li = minDi

and hi = maxDi

More complex query shapes are usually handled by a range query corresponding
to the minimal bounding box (MBB) of the shape combined with appropriate post-
filtering with the exact predicate given by the shape. Another way of specifying
such complex queries is to use a union of range queries, i.e., using a decomposition
of the complex query shape.
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2.4 Physical organization of data: clustering and

access methods

For the discussion of access methods it is also necessary to consider the physical
organization of relations on secondary storage. Figure 2.1 shows the typical archi-
tecture of a hard disk drive. One drive consists of a stack of spinning disks, each
of which consists of groups of blocks forming one track. A block is the smallest
addressable unit of transfer for secondary storage, with block sizes varying between
512 bytes and a few KBs.

Figure 2.1: Physical structure of a hard disk

To read one block, the read/write-head (R/W-head) has to be positioned over
the track of the block and reads it when it passes underneath the R/W-head.

We distinguish two different accesses types which result in different access times:

1. random access

2. sequential access

Each block access consists of two components: on the one hand the I/O part for
fetching the block from secondary storage and on the other hand a CPU part for
post-processing the fetched block. Correspondingly, the total access time for a block
t is subdivided into the time tI/O for I/O and the time tCPU for CPU processing. In
the following, we concentrate on the I/O time, as it is still the dominating factor in
today’s computer systems.

For a random access, the R/W-head is positioned to the correct track resulting
in positioning time tπ. This time covers the track positioning and the latency until
the block is rotated underneath the R/W-head. Once the R/W-head is positioned,
it takes tτ to transfer the block into main memory. Hence, trand=tπ + tτ . Once the
R/W-head is positioned on one track, the subsequent blocks can be read sequentially
only causing tseq = tτ . The typical specifications of today’s hard drives [IBM01]
with data rates between 36,6 MB/sec and 52,8 MB/sec, resulting in tτ ≈ 1

50
ms,
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and average seek times tπ between 3,4 ms and 8 ms identify the positioning of the
R/W-head as the dominating part of the access time.

To balance the vast difference between tπ and tτ , today’s operating and database
systems map a constant number of subsequent blocks to a (database) page. Page
sizes between 2KB and 256KB are typical in modern systems.

As tuples are usually smaller than a page, multiple tuples are stored on one page
by the DBMS, i.e., a page can be regarded as a container for tuples.

Definition 2.13 (Page, page content, and page utilization )
A page P is a container for a set (or multiset) T of tuples, the content of P . P
has a fixed capacity CP , i.e., 0 ≤ |T | ≤ CP . The page utilization U of page P

is defined as U = |T |
CP .

Whenever the meaning is clear from the context, we use P to denote both aspects
of a page: the content of the page or the container itself.

2.4.1 Clustering

As for most applications the I/O cost is still the limiting factor, the organization
of the data on secondary storage has great influence on the overall processing time.
Clustering is an important concept to significantly reduce the I/O component by
reducing the number of disk accesses. The goal of clustering is to store data that is
likely to be processed together physically close together on secondary storage, i.e.,
on the same page, if possible and thereby to reduce the number of I/O necessary to
retrieve the wanted data.

The following definition is taken from [Mar99].

Definition 2.14 (Tuple clustering, page clustering)
Tuple clustering stores tuples of one or several relations on one page, if the tuples
are likely to be used together to create the result set of a query. If the tuples do not
fit on one page, the tuples have to be stored on several pages. Normally new pages
are physically placed on secondary storage in insertion order. Page clustering in
addition to tuple clustering also maintains physical clustering between pages.

Example 2.2: Clustering

To illustrate the concept of clustering we use the domain of integers
N0. The standard ordering < will define the ’closeness’ criteria for the
clustering. Figure 2.2 shows the three clustering types for the integer set
{1,3,4,5,7,8,9} stored on three pages.

Now, consider a query that asks for all values between 3 and 7, i.e., the
range [3, 7]. If the data is not clustered (Figure 2.2(a)) all three pages
have to be accessed. With clustering, however, only 2 pages have to
fetched from disk (Figure 2.2(b), Figure 2.2(c)). The advantage of page
clustering (Figure 2.2(c)) is that the two pages are stored consecutively
on disk such that sequential access is possible, i.e., only one expensive
positioning of the R/W-head is required.
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(a) No clustering (b) tuple clustering

(c) page clustering

Figure 2.2: Clustering of integers

�

2.4.2 Access methods

An access method or index is a way to organize data on secondary storage. For each
relation R or, more general, for each set of data there exists one clustering access
method that defines the physical organization on the storage device. In addition,
multiple non-clustering access methods can be defined on R. Depending on the
index, different ways of accessing the data are available. Unfortunately, there exists a
somewhat confusing terminology about index structures in the database community.
We clarify the meaning of terms used throughout this work below.

According to [GR93], we can distinguish between non-associative and associative
addressed file organization. The simplest non-associative data organization is the
sequential file, where the tuples are stored in insertion order or entry sequenced.
This organization only allows for unqualified access to the data, as the entire file
has to be read to answer a query. This is called full table scan (FTS) or short scan.
More sophisticated access is provided for associative data structures, where the data
is organized according to the key or address of the tuples. The term key has two
interpretations in the database world: first, it refers to the logical key of a relation,
i.e., the set of attributes that uniquely identifies a tuple. Secondly, it is used in the
meaning of a search key for data structures. Throughout this thesis, key is always
used in the meaning of a search key.

Definition 2.15 (Address of a tuple)
Let A be the domain of addresses. The address function α : Ω→ A maps each tuple
t of a relation R with base space Ω to an address α(t).

Often, we just write α in short for α(t). For example, B-Trees use one attribute
of the tuple or a concatenation of multiple attribute values as the key of the tuples;
R*-Trees use the minimum bounding boxes (cf. Section 5.2.1) as address of the
tuples. The ambiguous meaning of the term key often leads to confusing naming
practice: a primary index often refers to a clustering index with the logical key of
the relation as address. Secondary indexes usually are non-clustering indexes. If
the key of the index is a concatenation of several attributes of the relation, one
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speaks of a compound or composite key. In this thesis, we just distinguish between
clustering and non-clustering indexes. While a clustering access method specifies
the organization of the data on secondary storage, i.e., direct access to the data is
provided, non-clustering indexes only allow for indirect access via tuples references.

Current DBMSs support three major classes of access methods:

• Hash indexes : the data is partitioned into an array of buckets and a hash
function on the key of tuples is used to identify the corresponding bucket.
Hash indexes efficiently provide direct access to tuples, but do not support
range queries.

• Tree-based indexes : B-Trees [BM72] and its variants are by far the most used
index structures in DBMSs. R-Trees are used in some systems for the or-
ganization of multidimensional, extended objects. The TransBase RDBMS
[TAS01] supports UB-Trees for handling multidimensional point data.

• Bitmap indexes : non-clustering method using a special representation of the
tuple references, allowing for efficient evaluation of multi-attribute restrictions
[OG95, OQ97].

In Chapter 3 we discuss multidimensional index structures in more detail.

2.5 Clustering of hierarchies

Hierarchies play an important role in various application domains. They are used to
provide a semantic structure to data, e.g., a geographical classification of customers
in a data warehouse. As the hierarchies cover the application semantics they are
used frequently by users to specify the restrictions on the data as well as the level
of aggregation. The restrictions on the hierarchies usually result in point or range
restrictions2 on some hierarchy levels [Sar97]. The problem that arises is that these
restrictions on upper hierarchy levels lead to a large set of point restrictions on the
lowest level, i.e., the level with the most detailed information. This situation is
depicted in Figure 2.3(a): restricting the level ’Product Group’ to the value ’VCR’
leads to the set of ids {5, 8, 21} and not to the interval [5, 21], as the item with
id 11 does not belong to the specified product group. For most access methods it
would be more efficient to process one range restriction instead of a set of point
restrictions. The resulting question is how to map a point/range restriction on a
higher hierarchy level to a range restriction on the lowest level? To this end, we have
proposed a clustering scheme for hierarchies in [MRB99]. New keys for the elements
on the lowest level are generated which reflect the hierarchy semantics, i.e., keys
which adhere to the partial order defined by the hierarchy levels. These so-called
(compound) surrogates guarantee that the keys of all elements in a sub-tree of the
hierarchy lie within a closed interval (cf. Figure 2.3(b)) such that a key of an element

2Range restrictions on hierarchy levels are only meaningful if an order on the elements of the
hierarchy level is defined.
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(a) Non-clustered hierarchy

(b) Clustered hierarchy

Figure 2.3: Example of hierarchy clustering
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not lying in the subtree is not within the interval. In our example, the restriction
to the product group ’VCR’ now leads to the interval [48, 50]; the item with id 11
is mapped to the surrogate 33 that does not violate the interval. We refer to this
technique as hierarchy clustering (HC) from now on.

2.6 Terminology in a nutshell

In the following table we list all important terms and symbols defined in the previous
section and which are used throughout the thesis with this meaning.

Table 2.2: Terms and symbols
Concept Symbol

One-dimensional domain D
minimal/maximal value of a domain minD/minD

Dimensionality d
Multidimensional domain Ω
Multidimensional range query Q = [[min,max]]
Result set of query Q on relation R Q(R)
Selectivity of a query Q on relation R sel(Q,R)
Volume of a space S vol(S)
Sparsity ξ
Length of (bit)string l
Cardinality of a set S |S|
Address of a tuple t α(t)
Page capacity C
Page utilization U
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Chapter 3

Related work

This chapter provides a brief overview of work related to this thesis. We have
decided to discuss specific work related to the issues covered in this dissertation in
extra sections for each chapter. We hope to facilitate the reading as related work is
discussed directly in the context of our approaches.

In general, the related work covers the whole area of query processing and mul-
tidimensional access methods.

3.1 Query processing in relational DBMSs

The access to the base tables is a crucial aspect in query processing, because it influ-
ences the overall processing strategy. A concise survey of query processing techniques
can be found in [Gra93]; [Cha98] provides an overview of query optimization.

One fundamental rule in query processing says that restrictions should be per-
formed as soon as possible, in best case already on the base tables. How efficient
such restrictions can be evaluated depends on the organization of data on secondary
storage and on the functionality of the access method.

Without indexing, all data has to be scanned in order to evaluate a restriction.
While this way of access requires high overhead for small queries, it is still used
frequently in modern systems as the combination of page clustering and increasing
disk performance compensates much of the theoretical drawback. A widely used
rule of thumb states that a full table scan performs better as soon as more than 10%
of the data has to be retrieved.

The B-Tree [BM72] and its variants (B+-Tree, B*-Tree; cf. [Knu98], [Com79])
are by far the most used tree-based index structures in database systems. We will
use the term B-Tree to refer to the B+-Tree within this thesis. Clustering B-Trees
store the tuples directly in the leaf nodes whereas non-clustering B-Trees only store
references to the tuples. B-Trees allow for point and range queries and guarantee
a worst-case storage utilization of 50%. For efficient support of multi-attribute
restrictions, multiple single-attribute, non-clustering B-Trees are commonly used.
In this approach, which is often named inverted file, retrieval time is favored over
maintenance time and storage complexity. Hash indexes [FNPS79, Lit80] are a
good alternative for point queries, but they do not support range query access.
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Bitmap indexes [OG95, OQ97, CI98] are a non-clustering access method using a
special representation of the tuple values and references. Single bitmaps store the
information whether an attribute has a specific value or not. This scheme allows for
efficient evaluation of multi-attribute restrictions just using bit operations but lacks
the advantage of clustering. For range queries on bitmap indexes various advanced
encodings have been proposed [WB98].

With the numerous ways of indexing a table, finding the best organization be-
comes a further optimization issue. The problem of index selection is an important
task of physical database design, which in addition covers topics like partitioning
or replication of data. Index selection is often discussed for special application do-
mains, e.g., OLAP [GHRU97, Sar97], and more generally in tools of commercial
DBMSs [CN97, CN98a, CN98b].

3.2 Multidimensional access methods

As mentioned in the introduction, there exists a large body of work in the area
of multidimensional access methods. [GG98] provides an excellent overview of the
field. Data structures are classified according to the supported data types into
point access methods (PAMs) and spatial access methods (SAMs). In the following
we assume the organization of data volumes that do not fit into main memory.
Therefore, we restrict our discussion to secondary storage structures. Main memory
data structures require different design as I/O is no longer the limiting factor [LC86a,
LC86b, BMK99]. With increasing buffer sizes in today’s systems, the work on cache-
conscious index implementation has recently attracted new attention [GL01, KCK01,
BMR01].

3.2.1 Point access methods

The characteristics of point data, i.e., having no extension in the multidimensional
space, allows for special optimized indexing compared to the handling of extended
objects.

PAMs can be categorized into three classes with the following prominent exam-
ples (for details we refer to [GG98]).

• Hashing: grid files [NHS84], EXCELL [Tam82], two-level grid file [Hin85], twin
grid file [HSW88], and multidimensional hashing [Fal86, Fal88]

• Tree-based structures: K-D-B-Tree [Rob81], LSD-Tree [HSW89], Buddy Tree
[SK90], BANG File [Fre87], hB-Tree [LS90]

• One-dimensional mappings: combination of space filling curves and one-dimensional
index structures. [Sag94] provides a survey on space filling curves; the zkd-B-
Tree [OM84] and the linear clustering method of [Jag90] are examples.
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3.2.2 Spatial access methods

[RSV01] includes a very recent overview on SAMs. The majority of access methods
can further be categorized according to the internal organization into space-driven
and data-driven structures. Space-driven structures use a fixed partitioning of the
complete space to organize the tuples, whereas data-driven structures adapt the
partitioning according to the real data distribution. A further classification of SAMs
is done according to the way extended objects are handled [GG98].

• Transformation: One way of handling extended objects is to transform them
into a one-dimensional representation and use any PAM for indexing. Besides
the objects the queries have to be transformed as well.

– Dual Space: extended objects are mapped to points in higher-dimensional
space, the dual space or parameter space [Ore90]. There are different
mappings, e.g., endpoint, midpoint, that lead to different query shapes
and data distributions in dual space [FMB00, FSR87].

– Decomposition: Instead of mapping extended objects to higher-dimensional
points, space-filling curves are used to approximate the object. Gener-
ally, the object is described by a set of one-dimensional intervals [OM84,
Ore89a, Ore89b, Gae95]. This approach overcomes the problem of high
dimensionality of the previous method, but introduces redundancy.

• Overlapping Regions : the concept of overlapping regions allows for non-redundant
storage of extended objects. Usually, the complex object is approximated by
a simpler shape, e.g., a minimum bounding box. The R-Tree [Gut84] and the
R*-Tree [BKSS90] are the most prominent representatives of this approach.
Data structures using multiple layers are a special variant of overlapping re-
gions trying to reduce the effects of large objects (e.g., multi-layer grid file
[SW88]).

• Clipping : Overlapping regions lead to problems of unpredictable query per-
formance, because multiple paths in the index may have to be traversed. To
prevent this, clipping-based schemes partition the objects storing them in dis-
joint buckets at the cost of introducing redundancy (e.g., R+-Tree [SRF87],
CELL-Tree [Gün89]).

3.2.3 Data structures for high-dimensional spaces

An even more complex task is the indexing for high-dimensional data. [WSB98] has
introduced the infamous curse of dimensionality that states that clustering becomes
meaningless for high-dimensional spaces due to the lack of useful distance metrics.
This observation has led to new approaches for high-dimensional spaces, mostly try-
ing to combine dimensionality reduction schemes with traditional multidimensional
indexing [CM00, CM99a, BBK98].
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3.3 Previous work in the MISTRAL project

This dissertation is based on the work done in the MISTRAL (Multidimensional
Indexes for Storage and for the Relational Algebra) project at the Bavarian Re-
search Center for Knowledge-Based Systems (FORWISS) [MIS].

The cornerstone of the MISTRAL project is the publication of the basic concepts
of the universal B-Tree (UB-Tree) [Bay96, Bay97]. Based on this work, the UB-
Tree has been intensively studied and enhanced throughout the MISTRAL project.
[Mar99] provides an in-depth theoretical analysis of the UB-Tree as well as a first
practical evaluation based on a prototype implementation. [MZB99] introduces the
Tetris-algorithm for processing of queries with sort operations and [FMB99] extends
the important range query algorithm to non-rectangular query shapes. [RMF+00]
describes the integration of the UB-Tree into the kernel of a commercial DBMS,
which was the objective of the MDA project funded by the European Commis-
sion. [RMF+01] presents the results of applying the UB-Tree to the data warehouse
application of GfK (cf. Section 4.3). In the follow-up project EDITH [EDI], the
integration of hierarchical clustering into a DBMS kernel as well as the development
of special query processing algorithms for such cases is currently carried out.



Chapter 4

Running examples

Throughout this thesis we will use a real-world data warehouse application to il-
lustrate the theoretical concepts. The data warehouse application will also provide
the framework for performance measurements and comparisons. Even though we
concentrate on data warehouse applications in this thesis, the results also apply to
other application domains like geographic information systems, archiving systems,
and much more. To support this, we use additional real-world data sets for some of
our analyses. Table 4.1 lists the data sets used throughout this work.

Table 4.1: Real world data sets

Name Dimen- Comment
sionality

GEO 2 2-dimensional, GIS data
CENSUS5D 5 real-word data from the US census bureau
GFK3D 3 real-world market research data warehouse;

HC encoded; see Section 4.3 for details
GFK11D 11 real-world market research data warehouse;

see Section 4.3 for details

As Table 4.1 shows, we use data sets of different dimensionality to also cover the
influence of the dimensionality on the index structure. In the following sections we
briefly introduce the used applications and data sets.

4.1 The GEO data set

The geographical data set (GEO) consists of GPS coordinates of interesting points
in the city of Lodz in Poland. It is a subset of a local utility (i.e., water, heating,
electricity etc.) provider data warehouse. The distribution of the 2-dimensional
point data is depicted in Figure 4.1.

GEO consists of ≈ 370.000 tuples (á 100 bytes); the sparsity of GEO is very
high: ξ(GEO) > 99, 9999%.
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Figure 4.1: Data distribution of the GEO data set

4.2 The census data set

The census data from the US Census Bureau [USC] is taken from the Current
Population Survey (CPS) data source. From this survey we have taken the Person
Data Files of the March Questionnaire Supplement, which are also used in other
publications (e.g., [DGR01]). From the data of the years 1994 - 2000 we extract the
5-dimensional data set CENSUS5D. Table 4.2 shows all attributes and the size of
the corresponding domains of the selected data set.

Table 4.2: Census data attributes

Name Domain size Comment

SEX 2 sex of person
CTZSHP 5 citizenship of person
EDU 17 educational attainment
HOURS 88 hours usually worked at main job
AGE 91 age of person

CENSUS5D contains 59K tuples (á 100 bytes). Due to the smaller universe
compared to GEO, the sparsity is somewhat smaller: ξ(CENSUS5D) = 99, 64%.

4.3 The GfK non-food panel data warehouse

The ”Gesellschaft für Konsumforschung” (GfK) is the largest market research insti-
tute in Germany and among the top ten world wide. As running example we use a
subset of the non-food panel data warehouse. This GfK data warehouse tracks the
sales of non-food goods (e.g., refrigerators, TVs, etc.) according to three dimensions:
Time, Product, and Segment. The Segment dimension describes the point of sales,
i.e., the shops from which the sales data is collected. The goal of the warehouse is to
provide in-depth analysis (like market share, best-sellers, trends etc.) of the market.

The products are hierarchically classified according to sectors, categories, and
product groups. The lowest granularity in the time dimension for this example is
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the two-month period (time required to get a representative sample of the market),
classified according to four-month periods and years. For the Segment dimension
multiple hierarchies (e.g., turn-over classes, organizational classifications) exist, but
the most important one is the geographical classification of the shops according to
countries, regions, and micro markets. Figure 4.2 shows the abstract star schema of
the GfK data warehouse (GfKDW).

Figure 4.2: GfK DW Star schema

The used snapshot of GfKDW stores around 43 million fact records (approx. 4
GB) associated with 24 two-month periods, 10.500 shops, and more than 490.000
products.

This abstract star schema can be modelled differently for the relational imple-
mentation: on the one hand we can use a combination of all 11 hierarchy fields to
index the fact table, allowing for restrictions on arbitrary hierarchy levels. On
the other hand, we can use the hierarchy clustering approach HC to generate
semantic keys for each dimension, also allowing for arbitrary hierarchy restric-
tions. Both resulting universes are very large, leading to very sparse data set:
ξ(GfKDW)� 99, 9999%.

4.3.1 Flat-schema: GfK11D

If we want to support arbitrary hierarchy restrictions directly on the fact table, we
have to include all hierarchical attributes in the fact table. This corresponds to a
completely denormalized modelling of the star schema (actually it is no longer a star
then).
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4.3.2 HC-schema: GfK3D

We exploit the semantics of the hierarchies to improve query performance by ap-
plying hierarchical clustering (HC) (see Section 2.5) to the GfK data warehouse.
With HC, point restrictions to any hierarchy level always lead to more preferable
range restrictions on the lowest level, i.e., on the fact table. All access methods on
the fact table benefit from HC as a range query is more efficient to handle than
a set of point queries. The hierarchies of the GfKDW are encoded with HC (cf.
Section 2.5) leading to following domain sizes: |Product| = 229, |Segment| = 224,
and |Time| = 25. This results in a very large universe of size 258. A detailed data
distribution analysis for this data set is provided in Appendix A.

4.3.3 Queries on GfKDW

For GfKDW, like for most OLAP applications, the dimension hierarchies provide
the key navigation paths for interactive OLAP, allowing for meaningful query for-
mulation via drill-down, roll-up, or slice-and-dice operations [CD97]. For example,
a typical query to determine the best selling laptop in the last period in Germany
would restrict the Time dimension on the two-month level, the Segment dimension
on the country level, and the Product dimension on the product group level.

The GfK has defined a set of reports and ad-hoc queries on its DW. Each report
falls into one of three groups: hitlists, running reports, segmentation reports (or
feature splits). Hitlists provide several measures for the items within one product
group or category, and sort the items by one of the reported measures. Hitlists are
a ranking of items with respect to one measure in a single period (cf. Figure 4.3).

Figure 4.3: Segmentation hitlist example

Running reports differ from hitlists in that, instead of different measures in the
columns of the report, the columns show the same measure in different periods.
Their rows can be grouped according to product features. Segmentation reports,
like hitlists, show different measures for one period, but their rows are groupings
according to features like in running reports. An example segmentation report is
shown in Figure 4.4.
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Figure 4.4: Segmentation report example

The three report types so far make up 90% of the analyses delivered by GfK
to their clients. Besides these fixed reports, GfK is moving more and more to ad-
hoc analysis. Ad-hoc analysis differs from ’static’ reports in the way that usually
a set of subsequent drill operations is executed, which have the same context. For
example, a user starts a session with asking the total sales for a specific segment
in a given country and in a given two month period. A drill-down to a region or
a product category provides more detailed information. Finally, the user wants to
compare the numbers with the previous period. As consequence, ad-hoc analysis
usually generates drilling patterns where the restrictions on one dimension change
(e.g., going down the hierarchy or switching to the sibling) while the restrictions on
the other dimensions do not change. However, as user behavior is not predictable,
sometimes so-called random queries are placed, which are used to navigate to a
completely different ’location’ in the cube [Sap01].
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Chapter 5

Where is the general-purpose,
multidimensional index?

After covering all preliminaries in the previous chapters, we now turn to the first
objective of this thesis: the question about the general-purpose, multidimensional
access method. The research community has answered the increasing need for mul-
tidimensional indexing with a huge variety of new data structures (cf. Chapter 3).
Among those data structures the R-Tree family is by far the most prominent one,
but no real standard, like the B-Tree for one-dimensional data, has been established
so far. This stems from the fact that many data structures have been designed
having special applications in mind, not fulfilling all requirements we set up in the
introduction. Besides finding out which data structures come close to a universal
multidimensional index, the question arises, which one of the large set of indexes to
choose for a certain purpose.

Comparing different data structures has always been a major task on the way
of developing new indexing methods. However, most of these comparisons have not
followed a certain methodology for comparing data structures, but only have concen-
trated on query performance figures on different data distributions. For an efficient
usage in real-world systems, however, much more criteria than just the query perfor-
mance of an index are of importance. For instance, multi-user support is essential
and in many systems, even in data warehouses, insertion or load performance cannot
be neglected. Furthermore, the comparison should not only be based on experimen-
tal results, but should also contain a theoretical analysis to support the experimental
findings. As consequence, a comprehensive and comprehensible comparison of data
structures is necessary to assess the overall performance of index structures.

This chapter presents a comparison of R*-Trees and UB-Trees using a compari-
son framework for index structures that fulfills the above mentioned requirements.
We include various criteria, like query performance, maintenance performance, and
index size, into our model and consider objective metrics for the I/O performance
as well as for the CPU performance.

The contribution is two-fold: first, we present a framework for comparing dif-
ferent index structures according to all aspects relevant in practice using objective
metrics. Second, we present a thorough comparison of two multidimensional access
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methods, namely the UB-Tree and the R*-Tree. In this comparison we do not only
include query performance, but according to our comparison framework also mainte-
nance performance, and index size. The comparison results show that the UB-Tree
outperforms the R*-Tree with respect to index size, query and maintenance per-
formance. Our results are not only based on experiments, we support them by a
theoretical analysis of both index structures.

The chapter is organized as follows. After presenting the comparison framework
in Section 5.1, Section 5.2 introduces the basic concepts of UB-Trees and R*-Trees.
In Section 5.3 we present the results of the theoretical and experimental evaluation.

5.1 A comparison framework for multidimensional

access methods

In order to get an objective comparison of index structures, we present a framework
taking all relevant properties into account. Based on the results w.r. to the indi-
vidual characteristics, one is then able to generate an overall rating, weighting the
properties according to the needs of the application.

5.1.1 Comparison criteria

Even though query performance is undoubtedly the dominating criteria, other prop-
erties of index structures are also important for real-world applications (e.g., inser-
tion performance). These properties have to be considered if one wants to assess
the overall quality of an index structure. For this reason we include the following
properties into our comparison framework:

• index size,

• maintenance performance,

• query performance,

• dimensionality,

• flexibility regarding supported data types, and

• multi-user support

The index size, maintenance performance, and query performance are data de-
pendent properties and we will discuss them in more detail in the following subsec-
tions. Dimensionality, multi-user support, and flexibility, however, are more quali-
tative properties of an index structure. Even though most multidimensional access
methods have no limit on the dimensionality in theory, there are usually limitations
in practice due to the ’curse of dimensionality’. Some data structures have been de-
signed only for multidimensional point data whereas others are especially developed
for handling extended objects. Multi-user support is extremely important in real-
world applications. As consequence, only index structures with appropriate locking
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and logging mechanisms can be considered to have practical relevance. Efficient
multi-user support is often much more important than query performance. We will
now discuss in more detail the rest of the proposed criteria.

5.1.1.1 Size of the index

In times of decreasing hard disk prices, space requirements of an index are often
considered not to be an important factor any more. However, if we are thinking
about databases on tertiary storage, e.g., a product catalog distributed on CD-
ROM or DVD-ROM, space consumption is again an important factor. In addition,
the index size directly influences the performance of all operations on the index (e.g.,
an index with twice the amount of occupied disk space will take twice the I/O to
return all data). We will distinguish between the size of the index part and the size
of the data part of the index structure. On the one hand, the size of the data part
is of major importance as the more disk pages are required to store the data the
more disk I/O is usually necessary for retrieving the data. On the other hand, the
size of the index part influences to which extent the index part can be cached by
the DBMS. The lesser index nodes are cached the more disk I/O on the index is
required.

5.1.1.2 Maintenance performance

In most application scenarios, even in many data warehouses, data is not static.
As consequence, the maintenance performance, i.e., the time for insertion, deletion,
and update, should also be considered for the overall performance of the index. One
has to distinguish two types of maintenance patterns: random and bulk operations.
Random operations typically result from interactive user requests and therefore have
to be as efficient as queries. Bulk operations are usually triggered by batch jobs,
which are expected to take longer. As the maintenance windows are getting smaller
and smaller due to the increasing requirements on the availability of the systems,
efficient processing of batch operations is also needed. Bulk operations do not only
comprise insertion (e.g., periodical loading of new data into a DW), but also deletion
(e.g., deletion of old periods after archiving). Updates of the index attributes are
regarded as a combination of deletion and insertion. Updates of non-indexed, fixed-
length attributes are comparable with queries, with the only difference that the
accessed pages also have to be written back to secondary storage.

5.1.1.3 Query performance

As mentioned previously, query performance is the key aspect of an index structure.
We consider two types of queries: multidimensional range queries and multidimen-
sional point queries (as a special case of the former). The query performance of a
multidimensional access method is basically influenced by two factors:

• the index size and

• the clustering technique of the index.
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With a good clustering strategy, I/O is reduced significantly as data that is likely
to be accessed together is placed close together on secondary storage. The goal
is to find a clustering method that works fine for a given query profile and that
is robust against different data distributions. If no knowledge is known about the
query profile, i.e., all queries have the same probability, a symmetrical data struc-
ture is more flexible with respect to arbitrary restrictions in multiple dimensions.
The chosen clustering scheme usually has direct impact on the index size. Up to
now, multidimensional range queries define the most important query pattern on
multidimensional data. However, with new query types arising from novel applica-
tions, e.g., nearest neighbor queries [RKV95] or skyline queries [BKS01], it becomes
interesting to also compare the support of data structures for such operations, in
the future.

5.1.2 Comparison metrics

After defining the properties, we specify how we are going to compare the access
methods according to them.

The index size is best measured in number of pages S occupied by the index. We
will refer to the number of index pages as SIndex and to the number of data pages
as SData, i.e., S = SIndex +SData. Further, we include the average page utilization U
(see Definition 2.13) as a metric. UIndex denotes the average page utilization of the
index nodes, while UData denotes the average page utilization of the data nodes.

Two factors influence the maintenance and query performance: I/O cost and
CPU cost . With the increased main-memory buffers of today’s systems, the CPU
cost of database operations has been identified to be increasingly important for the
overall system performance [BMK99, GL01], so that it should be included in the
comparison. Obviously, execution times are no appropriate metric for comparing
the performance, as too many unknown factors (e.g., the quality of implementation)
influence this metric. Consequently, we use the number of page accesses P as the
metric for the I/O cost and the number of key comparisons K for the CPU cost of
an operation. In case of tree-based data structures, K basically is proportional to
the number of nodes that have to be evaluated during an operation1. As different
index structures use different representations of keys it is necessary to normalize
the cost for a key comparison (e.g., on average one R*-Tree key comparison is more
than twice as expensive as a key comparison for UB-Trees; cf. Section 5.4).

Table 5.1 lists the defined criteria and corresponding metrics of our framework.

5.2 Basic concepts of R*-Trees and UB-Trees

To answer the question about the universal multidimensional index, one would need
to compare all proposed access methods, but this is an almost impossible task.

1For non-tree indexes, like bitmap indexes, K should reflect the CPU cost of the dominating
operations, like the intersection of bitmaps.
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Table 5.1: Overview of the used metrics

Criteria Metric

Index size index part SIndex
data part SData
height h

Page Utilization index part UIndex

data part UData

Performance I/O cost P
CPU cost K

Therefore, we have chosen to restrict our comparison of the UB-Tree to the tough-
est competitor, the R*-Tree. The R*-Tree (or the R-Tree family in general) is
widely accepted in academia and industry. It is not restricted to specific application
domains and provides good performance for low dimensionality.

In the following, we briefly introduce the basic concepts of the two index struc-
tures concentrating on the properties we use for our theoretical and experimental
analysis.

5.2.1 Basic concepts of R*-Trees

The R*-Tree [BKSS90], like the standard R-Tree [Gut84], uses the concept of over-
lapping regions to store objects in a single bucket/region. The objects are described
by their d-dimensional minimum bounding box (MBB), often also called bounding
rectangle. With this concept, the R*-Tree can handle point data as well as extended
objects. An R*-Tree corresponds to a hierarchy of nested MBBs, each MBB cor-
responding to a node of the tree. The MBBs of all descendants of a parent node
are contained in the corresponding MBB of the parent. MBBs on the same level of
the tree are allowed to overlap. Like for the B-Tree, each node of the R*-Tree is
mapped to one disk page and the R*-Tree is height balanced, i.e., each path from
the root to a leaf has the same length. The standard R-Tree has problems to adapt
to various data distributions. As consequence, the R*-Tree provides an improved
insertion algorithm to overcome this deficit. The concept of forced reinsertion is
used to achieve a better space partitioning. Instead of splitting a node as soon as
it overflows, a certain number of tuples is removed from the node and is re-inserted
into the tree. The forced reinsertion can be regarded as a kind of periodic reorga-
nization of the tree. In addition, the splitting algorithm has been improved with
respect to minimizing the overlap between MBBs and improving the space utiliza-
tion of the nodes. However, reducing the overlap and increasing the node utilization
are contrary goals. As consequence, a lower average page utilization as for B-Trees
is achieved. [BKSS90] suggest 30% for the reinsertion factor and a minimal page
utilization guarantee of 40%. Figure 5.1 shows a space partitioning for an R*-Tree
and the corresponding tree.
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(a) Space partitioning of a
2-dimensional R*-Tree

(b) R*-Tree structure

Figure 5.1: Bounding boxes and corresponding R*-Tree

Optimization for point data

The R*-Tree can be easily optimized for handling only multidimensional point
data like we plan to do for our comparisons. Instead of storing a complete MBB for
a data point one just stores the point on the data pages, eliminating the overhead
of MBBs completely. On the index level, however, one still requires MBBs.

Basic operations

The basic operations of the R*-Tree follow a similar principle as for B-Trees: for
each node it is tested, which path to follow according to which MBBs are intersected
by the query MBB. Due to the concept of overlapping MBBs, however, multiple
paths of the R*-Tree may have to be traversed in order to find the correct leaf node.
This significantly influences the query performance (in worst case all nodes of the
tree may have to be evaluated). In best case, however, only the root node has to
be evaluated. This happens when the query falls into a part of the universe that is
not populated (often referred to as dead space) and therefore may not be covered by
one of the top level MBBs. The range query processing is similar to the point query
method: starting from the root, all nodes are traversed whose MBBs are intersected
by the query rectangle.

Bulk loading

As noted above, the insertion phase is critical for the R*-Tree performance. The
insertion algorithms directly influence the page utilization as well as the overlap
between MBBs. For huge data sets, the random insertion algorithm of R*-Trees is
too expensive and does not result in optimal trees. As consequence, different meth-
ods for bulk-loading/packing R-Trees have been proposed. The two most prominent
packing algorithms are the Hilbert curve based algorithm from [KF93] and the STR
approach from [LEL97]. Both methods create the R-Tree in a bottom-up manner
and require the input data to be sorted either according to the Hilbert-value or ac-
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cording to one coordinate of the rectangles. For all these approaches, the clustering
strategy is given by the order of the data generated by the algorithms. However, this
clustering is not maintained by the R*-Tree, and the question arises how the quality
of the clustering behaves after successive random inserts on a packed/bulk-loaded
R*-Tree. More recent approaches use buffering techniques for bulk operations on
R*-Trees [dBSW97, AHVV99].

5.2.2 Basic concepts of UB-Trees

We just give a short introduction to UB-Trees here, details are presented in Chap-
ter 6. The basic idea of the UB-Tree [Bay97] is to use a space-filling curve to
map a multidimensional universe to one-dimensional space. Using the Z-curve for
preserving multidimensional clustering it is a variant of the zkd-B-Tree [OM84].

A Z-address α = Z(x) is the ordinal number of the key attributes of a tuple x
on the Z-curve, which can be efficiently computed by bit-interleaving. A standard
B-Tree is used to index the tuples taking the Z-addresses of the tuples as keys.
The fundamental innovation of UB-Trees is the concept of Z-regions to create a
disjunctive partitioning of the multidimensional space. This allows for very efficient
processing of multidimensional range queries. A Z-region [α, β] is the space covered
by an interval on the Z-curve and is defined by two Z-addresses α and β. Each
Z-region maps exactly onto one page on secondary storage, i.e., to one leaf page of
the B-Tree.

(a) (b) (c) (d)

Figure 5.2: Z-curve and Z-regions

Figure 5.2(b) shows the ordinal numbers of the two-dimensional tuples on the
Z-curve (Figure 5.2(a)). Figure 5.2(d) shows a Z-region partitioning created by
the point distribution (points are represented by their Z-addresses) shown in Fig-
ure 5.2(c) assuming a page capacity of 2 points: we get the 5 Z-regions [0,3], [4,20],
[21,35], [36,47], and [48,63].

Basic operations

The processing of basic operations, i.e., insertion, deletion, update, and point
query, of the UB-Tree are analogous to the basic operations of the B-Tree. For
each tuple the corresponding Z-address is computed, and with the resulting value
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the underlying B-Tree is accessed. Thus, all basic operations require only cost
proportional to the height of the tree, i.e., O(logSData). The only modification to
the standard B-Tree algorithms necessary is the adaptation of the splitting algorithm
to achieve a good, i.e., as rectangular as possible, Z-region partitioning.

Range query processing

Based on the Z-region partitioning of the data, the range query algorithm com-
putes the minimal Z-region cover of the query box, i.e., the set of all Z-regions that
properly intersect the query box. The algorithm does not require any I/O of data
pages for its computation and has a linear complexity with respect to the length of
the Z-address (see Chapter 6 for details).

Bulk loading

Bulk loading for UB-Trees is similar as for B-Trees. The data to be inserted is
sorted according the the Z-address of the tuples. Then, the pages are filled up-to
the desired space utilization and written to disk. [FKM+00] proposes an improved
method for the case where data is to be bulk inserted into an already filled UB-Tree.

5.3 Comparison environment and general results

In the following sections we present our theoretical analysis and will support our
findings with experimental results. We will concentrate on the comparison of the
index size, the maintenance, and the query performance. The obtained results
also give hints regarding the robustness of UB-Trees and R*-Trees with respect to
increasing dimensionality. However, we restrict our analysis to up-to 11 dimensions
as [WSB98] shows that in high dimensional cases a simple sequential scan on average
outperforms any clustering multidimensional access method. We will briefly address
the other comparison criteria below.

5.3.1 Supported data

Both data structures support any data type with a total ordering. While the UB-
Tree only handles multidimensional point data, the concept of MBBs allows R*-Trees
for also handling extended objects. However, in combination with the dual-space
approach, it is possible to handle extended objects represented by MBBs efficiently
with the UB-Tree as well (cf. [FMB00]).

5.3.2 Multi-user support

As UB-Trees rely on the proven technique of B-Trees, efficient algorithms for locking
and logging already exist. Recently, various concurrency control algorithms have
been proposed for R-Trees [NK94, KB95, CM99b] or for the more general GIST
framework [KMH97]. Even though these concepts also apply to R*-Trees, the con-
cept of reinsertion severely reduces the degree of concurrency that can be achieved.
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We consider the number of data pages that have to be locked for an insertion to be
the critical factor for the degree of concurrency - the more pages have to be locked
the lesser the degree of concurrency. For the UB-Tree only one data page has to be
locked in any case. The same holds in the best case for the R*-Tree, but the number
of locked pages increases in case of reinsertion. In worst case, all re-inserted tuples
lead to new page accesses and consequently to additional required page locks. For
example, in the GfK3D application, with a page capacity of 25 tuples and a rein-
sertion degree of 30%, this leads to an lock overhead of up to 8 pages per insertion.
Our results show (cf. Section 5.5) that on average the insertion of one tuple requires
more than 4 data page I/O for R*-Trees with reinsertion.

5.3.3 Comparison environment

For our comparisons we use the real-world data sets described in the previous chap-
ter. With respect to the indexes, we use the following implementations of the two
data structures:

• UB-Tree (UB): integrated in the TransBase DBMS [TAS01]

• R*-Tree (RST): optimized for multidimensional point data (based on the orig-
inal implementation used in [BKSS90])

In order to investigate the various tuning possibilities for R*-Trees, we use differ-
ent configurations (see Table 5.2) in our experiments. We are varying the minimum
guaranteed page utilization and the reinsertion percentage, resulting in the following
naming scheme for R*-Tree instances: RST <min page utilization> <reinsertion
percentage>.

Table 5.2: R*-Tree configurations

Name Description

RST 40 30 optimal R*-Tree configuration
according to [BKSS90]

RST 50 0 corresponds to the standard
settings of a UB-Tree

RST 50 30 same page utilization guarantees
as a UB-Tree but using improved
insertion strategy, i.e.,
reinsertion degree of 30%

5.4 Index size analysis

As we have mentioned before, the index size is a crucial factor for the performance
of an index structure. The larger the index, the higher the cost of index operations.
The more data pages, the more page accesses are required during query processing.
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We usually restrict our comparison of query performance to data page accesses as
it is usually safe to assume that the relevant index part is cached during query
processing. However, if the index part gets larger and less index pages can be
cached, the overhead for accessing index pages increases, as well.

In the following we do not consider compression, neither of data pages nor of
index pages. To the best of our knowledge, none of the two data structures gains sig-
nificant advantage w.r. to index size from one of the various compression techniques
proposed by other researchers (e.g., [BU77, GRS98]).

5.4.1 Size of the data part

Both data structures store only the tuples and no additional information on the data
pages. The UB-Tree omits storing the Z-values along with the tuples on the data
pages, as they can be efficiently computed from the tuples via bit-interleaving (cf.
Section 6.1.2). Likewise, the point-data optimized R*-Tree does not need to store
MBBs for points. Consequently, one expects no differences in the number of data
pages SData.

As our experimental results show in Section 5.4.3, this expectation is valid for
bulk loaded R*-Trees and UB-Trees. But after random-insertion, especially for non-
uniform data, the R*-Tree achieves a significantly lower page utilization compared
to the UB-Tree. The resulting R*-Trees require more space and more page accesses
in query processing, as we will see later.

5.4.2 Size of the index part

The size of the index part depends on three factors: the fan-out of the index part,
the average page utilization of the index, and the number of data pages. Let B
denote the size of an index page in bytes and AUB , ARST the address/key size in
bytes of the UB-Tree and the R*-Tree, respectively. The size of an index entry E
is, assuming a four byte reference to the child node, E = A{UB|RST} + 4. Thus, the
maximum fan-out F of the index part is F = �B

E
�. The difference in the fan-out

for UB-Trees and R*-Trees is a result of different key sizes. The R*-Tree stores
complete bounding boxes as keys, i.e., two values per dimension. As consequence
R*-Tree keys require two times the space of the Z-values indexed by the UB-Tree:

ARST = 2 ∗ AUB ⇒ ERST = (2 ∗ AUB + 4) =

2 ∗ AUB + 4

AUB + 4
∗ EUB ≈ 2 ∗ EUB

For instance, assuming 4 bytes for each dimension, ERST = 1, 67 ∗ EUB for 2
dimensions and ERST = 1, 90 ∗ EUB for 10 dimensions. Hence, the fan-out FUB of
UB-Trees is roughly twice the fan-out FRST of R*-Trees: FUB ≈ 2 ∗ FRST .

The difference in fan-out has immediate influence on the height of the index and
thus on the number of index nodes. Let SData be the number of data pages; the
index height h can be calculated from the fan-out F and the average page utilization
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UIndex of the index nodes:

h =
⌈
logF∗UIndex

(SData)
⌉

Given the index height h, the number of index nodes SIndex is computed as:

SIndex =
h−1∑
i=1

⌈
SData

(F ∗ UIndex)i

⌉

Example 5.1: Index size simulation

Assuming the same number of data pages SData and the same average
page utilization UIndex for UB-Trees and R*-Trees, which is actually
a best case scenario for R*-Trees (cf. Section 5.4.3), Table 5.3 shows
the difference in index height and the number of index nodes for a six
dimensional data set (tuple size is 100B) with B=2KB, EUB=28B, and
UIndex=67%. The R*-Tree requires more than twice as many index pages
and is often one level higher than the UB-Tree.

Table 5.3: Simulation of index sizes

# Tuples hUB SUBIndex hRST SRSTIndex

10.000 2 15 3 34
100.000 3 139 3 314
500.000 3 687 4 1565

1000.000 3 1372 4 3127
5.000.000 4 6856 4 15627

10.000.000 4 13709 5 31253
50.000.000 4 68533 5 156253

100.000.000 5 137065 5 312502

�

The theoretical analysis of the size of the index part already gives an indication
that the R*-Tree will exhibit worse query performance than the UB-Tree due to the
following two reasons:

1. Less caching efficiency: as the index part is larger, lesser index nodes can be
cached leading to more I/O during query processing.

2. Higher CPU overhead: the higher the tree the more index nodes have to be
evaluated during query processing. This directly leads to higher CPU cost.
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5.4.3 Experimental results

For the experimental evaluation, we use bulk loaded instances of our test data sets.
To capture the influence of different insertion techniques we also consider data sets
created by random insertion into the mass-loaded instances. Table 5.4 presents the
results of the experiments.

Table 5.4: Index sizes for the different data sets
Data set Number Type of Index h SIndex SData UIndex UData

of tuples insertion

GEO 300000 BL UB 4 184 20000 90% 80%
RST 4 286 21430 72% 74%

GEO 371436 BL+ 70K UB 4 276 23997 80% 83%
RST 40 30 4 328 25159 72% 78%
RST 50 0 4 368 25817 65% 76%
RST 50 30 4 331 25122 72% 78%

CENSUS5D 50000 BL UB 3 23 2381 96% 81%
RST 4 72 2501 77% 77%

CENSUS5D 59341 BL + 9K UB 3 29 2823 90% 81%
RST 40 30 4 121 3349 65% 68%
RST 50 0 4 106 3216 65% 71%
RST 50 30 4 106 3214 65% 71%

GfK3D 13771716 BL UB 4 6643 598771 92% 80%
RST 5 10068 573823 79% 80%

GfK3D 19771716 BL+ 6M UB 5 9021 813056 83% 85%
RST 40 30 5 27531 1089998 60% 59%
RST 50 0 5 21885 997781 66% 66%
RST 50 30 5 21842 997440 66% 66%

GfK11D 13771716 BL UB 5 15101 860733 95% 81%
RST 6 53798 860734 78% 81%

GfK11D 19771716 BL+6M UB 5 21807 1213968 91% 81%
RST 40 30 7 132987 1559350 53% 63%
RST 50 0 7 111544 1447600 63% 68%
RST 50 30 7 111808 1450853 60% 68%

Our experimental results strongly support our theoretical analysis. For packed,
bulk-loaded indexes both index structures show the same size. The R*-Tree some-
times even requires less data pages despite the same page utilization, as the UB-Tree
implementation in the DBMS kernel requires more overhead (larger page header)
which leads to a lower page capacity. The index part of the R*-Tree, however, is
significantly larger (more than a factor of 3). The difference in the index page uti-
lization, which stems from the fact that we can not control the page utilization of the
index pages in the case of bulk loading for the integrated UB-Tree, is only a minor
factor. The differences are the effect of the larger index entries for the R*-Tree.

As soon as additional data is randomly inserted, the R*-Tree is not capable of
maintaining the packing achieved by the bulk loading. The index page and the data
page utilization are declining. In contrast, the UB-Tree is growing much slower,
keeping a page utilization of around 80%. Especially the difference in the index size
is growing. Requiring more than 5 times more index pages than the UB-Tree, the
R*-Tree will benefit much lesser from caching. Also, the resulting R*-Trees are in
two cases higher than the UB-Trees; for GfK11D there is even a height difference of
two!



5.5. INSERTION PERFORMANCE ANALYSIS 43

5.5 Insertion performance analysis

To assess the insertion performance of the two data structures, we analyze the
following insertion scenarios:

• creation of the index by random insertion or random insertion into a bulk
loaded index

• creation of the index by bulk loading

5.5.1 Random insertion

For random insertion, the performance differences between R*-Trees and UB-Trees
stem from the reinsertions performed by the R*-Tree. Re-insertions cause additional
CPU and I/O cost for each insertion.

5.5.1.1 CPU Performance

Inserting a tuple into a tree of height h requires h − 1 index node accesses. For
each of these accesses the keys of the node have to be compared against the search
key in order to identify the paths, which have to be traversed down further. As the
UB-Tree stores the keys in Z-order, binary search can be applied, and therefore the
number of key comparisons K is log2 FUB per node, i.e., KUB = (hUB −1)∗ log2 FUB

for an insertion that does not cause a page split. For the R*-Tree, however, each
key entry of an index node has to be evaluated, as no order on the keys is defined,
resulting in KRST = (hRST − 1) ∗ FRST . Even though FRST =

FUB
2

, the R*-Tree
requires over 10 times more key comparisons per accessed index node as the UB-Tree
for realistic fan-outs.
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Figure 5.3: Ratio of key comparisons per node

Figure 5.3 shows the ratio of the key comparisons of a UB-Tree and an R*-Tree
for one index node depending on the number of index entries on the node. The
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best case for the R*-Tree (dashed graph) reflects the fact that the R*-Tree has half
the fan-out of the UB-Tree (assuming same page utilization as for the UB-Tree).
However, to get a realistic comparison, we have to consider that a key comparison
for the R*-Tree is on average more than twice as expensive as a comparison for the
UB-Tree (the intersection of two MBBs has to be tested). Assuming that an R*-Tree
comparison corresponds to two UB-Tree comparisons, leads to the realistic ratio for
the key comparisons depicted by the solid graph. It is important to mention that
this CPU cost analysis applies for all search operations on the index.

In case of page overflows, we have to consider the overhead of page splitting,
which may propagate up to the root. Assuming that copying key entries comes with
the same cost as key comparisons, the worst case insertion performance (an actual
growing of the tree) for UB-Trees is:

KUB = (hUB − 1) ∗ log2 FUB︸ ︷︷ ︸
insertion

+ (hUB − 1) ∗ FUB

2︸ ︷︷ ︸
split overhead: copying 1

2
of the tuples

At the same time, R*-Trees apply reinsertion to improve the organization of the
tree, i.e., to reduce the overlap between the MBBs. Accordingly, the R*-Tree with
reinsertion factor r requires

KRST =


 1︸︷︷︸

insertion

+ r ∗ FRST︸ ︷︷ ︸
reinsertion


 ∗ (hRST − 1) ∗ FRST

in best case, i.e., a page split is prevented due to reinsertion. If n page splits caused
by the reinsertion propagate up the tree one requires

KRST = (1 + r ∗ FRST ) ∗ (hRST − 1) ∗ FRST

+

(
(hRST − 1) ∗ FRST

2

)
∗ n.

The actual worst case for the R*-Tree occurs if all reinsertions cause an overflow of
the corresponding data pages.

5.5.1.2 I/O Performance

For the I/O analysis of insertion we concentrate on the number of data page ac-
cesses2. Without reinsertion, a single insertion generally causes two I/O operations
(one read + one write) in best case, and one additional I/O in case of an overflow.
The total number of I/O operations required to insert n tuples for the UB-Tree
is therefore 2 ∗ n + ∆SData, where ∆SData is the number of pages created by the
insertion. An R*-Tree has to expand r ∗ FRST ∗ URST

Index paths in case of reinsertion
with a reinsertion factor of r, leading to additional I/O. Even without reinsertion,

2With today’s main memory the complete index part, i.e., everything besides the leaf nodes, is
usually cached.
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the R*-Tree requires more I/O due to overlapping regions. Table 5.5 shows the rein-
sertion overhead for the data sets. The number of performed (perf.) I/O operations
is included as well as the number of required (req.) I/O operations assuming no
reinsertion and no overlapping regions.

Table 5.5: Overhead of Re-Insertion per insertion

Data Index perf. I/O req. I/O Overhead
Factor

GEO RST 40 30 6,15 2,07 2,96
[average over RST 50 0 4,97 2,08 2,38
70K insertions] RST 50 30 6,24 2,07 3,01
CENSUS5D RST 40 30 4,92 2,09 2,35
[average over RST 50 0 3,61 2,08 1,74
9K insertions] RST 50 30 4,65 2,08 2,24
GfK3D 14M RST 40 30 5,32 2,08 2,55
[average over RST 50 0 3,57 2,07 1,73
1M insertions] RST 50 30 4,70 2,07 2,27
GfK3D 18M RST 40 30 5,97 2,08 2,87
[average over RST 50 0 7,66 2,07 3,71
1M insertions] RST 50 30 7,12 2,07 3,45
GfK11D 14M RST 40 30 15,34 2,12 7,25
[average over RST 50 0 7,62 2,10 3,63
1M insertions] RST 50 30 9,95 2,10 4,74
GfK11D 18M RST 40 30 62,75 2,12 29,66
[average over RST 50 0 11,52 2,10 5,49
1M insertions] RST 50 30 10,36 2,10 4,94

The amortized cost analysis results in more than 4 page accesses per inserted
tuple for R*-Trees with reinsertion, while without reinsertion and without overlap-
ping regions the amortized cost of random insertion is very close to the optimum
of 2 I/O operations per tuple. It is interesting to note, that the random insertion
performance deteriorates further, as more tuples are inserted, i.e., the larger the
R*-Tree gets. For example, inserting into the GFK11D data set with 18 million
tuples takes more than 5 times longer for the R*-Tree than for the UB-Tree (or any
other data structure without reinsertion), independent of the R*-Tree configuration.

Summarizing our results, we have to state that random insertion is a severe
performance bottleneck of R*-Trees, caused by the concepts of overlapping regions
and reinsertion. This makes R*-Trees almost unsuitable for ’dynamic’ applications.

5.5.2 Bulk loading

In order to handle the large volumes of data typical for today’s applications, methods
for efficient bulk operations are essential for any multidimensional access method.
Especially the initial creation of an index is important, but also bulk updates and
deletions are becoming more and more important. If one wants to compare different
bulk loading algorithms one has to focus on two issues: the cost for the creation
and the quality of the resulting index. With respect to the creation cost it has been
shown (e.g., in [AHVV99]) that creating good trees requires at least the same cost
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as external sorting. The algorithms for R*-Trees as well as for UB-Trees mentioned
in Section 5.2.1 and Section 5.2.2 are optimal in this sense with one exception: the
STR algorithm recursively sorts the data set d times causing higher costs.

The UB-Tree bulk loading algorithms naturally achieve the same clustering as
repeated insertions but can guarantee the target page utilization. The known bulk
loading algorithms for R*-Trees mainly differ in the quality of the created index,
depending on the clustering technique used in the algorithm. In order to investigate
the influence of bulk insertion on the query performance we use two approaches:

• a variation of the Hilbert-packing algorithm [KF93] using the Z-curve instead
of the Hilbert-curve for the ordering of the MBBs

• STR - sorted tile recursive [LEL97]

We just present the results of Z-packing here, as we have not observed significant
differences in the resulting organization, neither with respect to index size nor to
query performance. Moreover, we can state that Z-packing leads to ’better’ trees for
very skewed data distributions like in our example data sets (this is also mentioned
in [LEL97]).

The problem of these packing algorithms is that the chosen clustering scheme
is not maintained by the R*-Tree itself. This leads to a fast degeneration of the
clustering in the presence of further insertions. The sizes of the different trees have
already been presented in Table 5.4: the bulk loaded trees have nearly the same
number of data pages, but the different fan-out in the index pages result in large
differences for the number of index pages. The results also show the degeneration
of the bulk loaded R*-Tree after additional random inserts: while initially the bulk-
loaded R*-Tree was up to 5% smaller than the UB-Tree, it is up to 25% larger after
random insertion.

5.6 Query performance

The theoretical analysis of query performance is a complex problem as it strongly
depends on the data distribution. Cost models for uniform data distribution exist
but are not applicable to realistic data sets. There are various approaches [FK94,
FSR87, TS96] to analyze the performance of R-Trees and its variants, addressing
the problem of overlapping regions. However, all use simplifying assumptions or
require detailed information about the data distribution.

As the theoretical analysis is still an open research issue (closely related to the
problem of cardinality estimation covered in Chapter 9), we rely on experimental
evaluation of the two indexes. To get a somewhat reliable result, we try to cover
a large range of data characteristics with our test data sets, including different
dimensionality and data distribution.
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5.6.1 Point query analysis

We start with the analysis of point queries as these are easier to tackle than range
queries, at least for the UB-Tree.

For the UB-Tree the picture is quite clear: one point query requires KUB =
hUB ∗ log2 FUB key comparisons and P = hUB page accesses (hUB − 1 index pages
and one data page) for a single point query in best=average=worst case3.

For the R*-Tree, however, there is a huge difference between best, average, and
worst case. In the best case, R*-Trees require only one index page lookup, i.e.,
P = 1, and KRST = FRST key comparisons. In this case, the query has been placed
in the empty part of the universe, which the R*-Tree can detect efficiently if no
MBB in the root node covers the search point. In some cases, R*-Trees have the
same performance as UB-Trees, i.e., exactly one path has to be traversed from the
root to a leaf page. The concept of overlapping MBBs, however, causes a drastic
degeneration of the performance for point queries in worst case. Instead of following
only one path, multiple paths have to be traversed. In worst case, all paths have to
be followed; as the degree of overlap depends on the data distribution no theoretical
analysis can be given.

In our experiment, we just consider the number of data page accesses. The
results in Table 5.6 clearly show that the R*-Tree has to read much more data pages
than the UB-Tree, which requires just 1 data page access.

Table 5.6: Data page accesses for point queries on the R*-Tree

Data Set Index # Queries min(P) avg (P) max (P) total P
GEO RST 40 30 1000 1 2,838 8 2838

RST 50 0 1000 1 3,117 7 3117
RST 50 30 1000 1 2,875 7 2875

CENSUS5D RST 40 30 1000 2 5,642 11 5642
RST 50 0 1000 2 5,584 10 5584
RST 50 30 1000 2 5,584 10 5584

GfK3D RST 40 30 1000 2 5 10 5043
RST 50 0 1000 2 5 9 5027
RST 50 30 1000 2 5 10 5042

GfK11D RST 40 30 1000 1 7,397 35 7397
RST 50 0 1000 1 8,248 59 8248
RST 50 30 1000 1 7,791 45 7791

The results indicate that the point query performance of R*-Trees deteriorates
with increasing dimensionality.

5.6.2 Range query analysis

For the range query performance, we expect a large difference between the perfor-
mance on bulk-loaded and on ’random’ (i.e., random inserts into bulk-loaded trees)
R*-Trees. We, therefore, treat the two cases separately. Also, the performance de-
pends on the size, i.e., volume, and the location of the query box. Consequently,

3We assume unique keys, i.e., there are no duplicates in the index.
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we classify queries in different volume categories and from each category the queries
are randomly chosen, i.e., they have random location and shape.

How to read a box-plot

We use box-plots to visualize the performance results. Instead of showing indi-
vidual results of a query suite, box-plots summarize the observations (see Figure 5.4
for an example).

Figure 5.4: Example box-plot

For a set of queries, a box-plot depicts the range between the minimum and the
maximum number of data page accesses within the query suite as a bar. To get a
better understanding of the distribution of the query results, the plot shows also the
range of page accesses between the 1. and the 3. quartile according to the required
I/O, i.e., excluding the 25% slowest and fasted queries, as a box (the width of the
box has no meaning, it just eases the presentation). The corresponding values are
also presented; the values of the 1. and 3. quartile are framed.

Range queries on the GEO data set

For the GEO data set, the bulk loaded indexes show only minor differences
in the performance such that we focus on the complete data set after additional
random inserts. The following figures show the box plots for three query classes:
first, queries with result sets smaller than 1000 tuples (Figure 5.5); second, queries
returning between 1001 and 10.000 tuples (Figure 5.6); third, queries with more
than 10.000 tuples (Figure 5.7). The results show that, independent of the query
size, all indexes almost show the same performance. It is interesting to note that
even for small results the UB-Tree can compete with the R*-Tree for this data set,
despite the problem of handling dead space (see Figure 5.5)4.

4For the small queries on the GEO data set, the minimum and the 1. quartile are equal, i.e.,
we have many queries returning 0 tuples (>25%).
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Figure 5.5: GEO [random]: small result set (< 1000 tuples; 697 queries)

Figure 5.6: GEO [random]: medium result set (1000-10.000 tuples; 505
queries)

Figure 5.7: GEO [random]: large result set (>10.000 tuples; 343 queries)
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Range queries on CENSUS5D

For the CENSUS5D data set, we observe the same behavior as for the GEO
data set: while the bulk loaded indexes show the same performance, the R*-Tree
performance deteriorates with additional random insertion. Figure 5.8, Figure 5.9,
and Figure 5.10 show the performance for the bulk loaded indexes. Here, the R*-Tree
shows the better performance for small result sets, where it benefits from reducing
the dead space. For larger queries the UB-Tree has a small advantage.

Figure 5.8: CENSUS5D [bulk loaded]: small result set (< 1000 tuples; 440
queries)

Figure 5.9: CENSUS5D [bulk loaded]: medium result set (1000-10.000 tu-
ples; 453 queries)
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Figure 5.10: CENSUS5D [bulk loaded]: large result set (>10.000 tuples; 107
queries )

The picture changes drastically after random insertions: the UB-Tree now clearly
outperforms the R*-Tree in all configurations (Figure 5.11, Figure 5.12, and Fig-
ure 5.13). It is interesting to note that the the two R*-Tree configurations with the
higher guaranteed minimal page utilization perform better than the one with the
lower minimal page utilization.

Figure 5.11: CENSUS5D [random]: small result set (< 1000 tuples; 440
queries)
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Figure 5.12: CENSUS5D [random]: medium result set (1000-10.000 tuples;
453 queries)

Figure 5.13: CENSUS5D [random]: large result set (>10.000 tuples; 107
queries)
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Range queries on GfK3D and GfK11D

For the measurements on the GfK data warehouse we use 604 queries from a
typical segmentation report. The queries restrict a specific product group in the
Product dimension, a two-month period in the Time dimension, and a country in
the Segment dimension. For these queries, we do not distinguish among different
result set sizes as the maximal selectivity for all these queries is already below 0,5%.

Figure 5.14 shows the performance of the bulk loaded indexes for GfK3D. Again,
there is no major difference as both indexes cluster the data according to the Z-curve.
Still, the R*-Tree can benefit slightly from the smaller size.

Figure 5.14: GfK3D [bulk loaded]: range query performance

For the data warehouse, the random insertion of new tuples has a different effect
than for the other two applications. We add fact data of new time periods, i.e., the
data is inserted in not yet occupied space. Consequently, the organization of the
R*-Tree is not changed for the old data, leading to the same performance for the
queries. However, if we run queries targeting the new data, i.e., changing the Time
restriction to the new period, the R*-Tree shows poor performance as the random
insertion leads to poor clustering of the new data (see Figure 5.15). For such queries,
the UB-Tree requires almost half of the page accesses of the R*-Tree.

The same behavior can be observed for GfK11D in Figure 5.16 and Figure 5.17.
For the bulk loaded index, the R*-Tree even has a small advantage over the UB-
Tree corresponding from the efficient handling of ’dead space’ queries. After random
insertion, however, the picture changes drastically: as in the other measurements,
the UB-Tree is now the clear winner. The GfK results show the same behavior as
for CENSUS5D: the ’optimal’ R*-Tree configuration suggested by [BKSS90], i.e.,
RST 40 30, has the worst range query performance of all three R*-Tree configura-
tions. This is an indication that a larger page utilization is more beneficial for the
range query performance than an optimized MBB layout.
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Figure 5.15: GfK3D [random]: range query performance

Figure 5.16: GfK11D [bulk loaded]: range query performance

Figure 5.17: GfK11D [random]: range query performance
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5.7 Chapter notes and related work

In this chapter, we have addressed the first objective of this work, the search for a
general-purpose, multidimensional index structure. Before different data structures
can be evaluated, we require a solid framework that allows for a fair comparison. To
this end, we define a framework that does not only consider query performance but
also takes important practical issues like space consumption or multi-user behavior
into account.

We present the results of a detailed theoretical and experimental comparison of
R*-Trees and UB-Trees, which we regard as the most promising candidates out of
the vast set of proposed multidimensional indexes.

More specifically, we can state that R*-Trees are in general significantly larger
(i.e., occupy more disk pages) than UB-Trees. This directly leads to higher mainte-
nance costs, which are even further increased by the concept of reinsertions. More
than two times higher maintenance costs go hand in hand with reduced concurrency,
making the R*-Tree inapplicable for dynamic applications.

Regarding query performance, the UB-Tree outperforms the R*-Tree for point
and range queries. Only so-called ’dead-space’ queries, i.e., queries into the empty
part of the universe, are usually processed faster by the R*-Tree than by the UB-
Tree. The difference in query performance is not only the result of the differences
in the index size, but is also based on the superior clustering achieved by the Z-
curve. The clustering of the UB-Tree proves to be more robust against various data
distributions and increasing dimensionality.

The results of this comparison show that the UB-Tree comes much closer to the
notion of a general access method for multidimensional point data than the R*-
Tree. It combines efficient query processing with modest space requirements and
reasonable maintenance performance. Furthermore, the underlying B-Tree technol-
ogy provides the required concurrency control methods and significantly eases the
integration into existing systems as we will show in the next part of this thesis.

Related Work

Comparison of data structures is an inherent part of the proposal of any new ac-
cess method. Therefore, a large body of work about comparing indexes is available.
[GG98] provides an excellent overview on most of the important multidimensional
access methods and contains some qualitative performance results. However, most
publications only consider the query performance and not the whole range of impor-
tant criteria for indexes. The first publication to provide a more general comparison
framework is [KSSS90]. It does not only consider the index size and the insertion
performance, but also takes various data distributions and real world data into ac-
count. Still, this work lacks in including the CPU cost into the comparison. [ZMR96]
describe general guidelines for the comparisons of data structures.

There are also many contributions towards an analytical evaluation of different
data structures. Especially the range query performance of R-Trees and its variants
has been the focus of [TS96, FSR87]. The general problem of the analytical models
is to find a way to capture non-uniform and correlated data, in order to derive
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models suitable to address real-world data distributions. A promising approach is
the concept of ’fractal dimensions’ by [FK94].

Comparison to other data structures In [Jür99] Bitmap indexes and R*-
Trees are investigated w.r. to their usability in data warehouses. Furthermore, an
extension of the R-Tree, the R∗

a-Tree has been proposed to speed up aggregations
queries. The comparison of the various data structures is based on simulation using
a cost model and shows that the R∗

a-Tree outperforms the standard R*-Tree for
aggregation queries. An additional result of this work is that Bitmap indexes out-
perform tree-based data structures for higher (i.e., d ≥ 4) dimensions. However, the
comparison only covers non-clustering indexes such that results can not be applied
to compare clustering indexes and Bitmap indexes.



Part II

Integration and optimization of
UB-Trees

As shown in the first part, the UB-Tree comes very close to the
notion of a general-purpose multidimensional access method w.r.
to performance and flexibility. In this part, we discuss the under-
lying concepts of the UB-Tree in more detail. We demonstrate the
facile integration into a DMBS kernel and discuss optimizations
increasing the functionality and efficiency.

57





Chapter 6

Integration of the UB-Tree into a
DBMS kernel

Integrating a new access method into a DBMS kernel is usually a very costly task.
Besides integrating the algorithms of the new access method itself, much effort
has to be spent to provide locking and logging mechanisms for full transactional
functionality in multi-user environments. In comparison to other multidimensional
access methods, the UB-Tree has the advantage to be based on the standard B-Tree,
which is already available in almost all DBMSs. Consequently, one can rely on the
existing implementations, including proven locking and logging protocols developed
for B-Trees. Thus, the integration effort reduces to the integration of the UB-Tree
specific algorithms and the corresponding modification of the query processor. We
will highlight some of the implementation details of the UB-Tree algorithms and the
key issues to be solved during an integration.

6.1 The UB-Tree: Advanced concepts

In Section 5.2.2, we introduced the UB-Tree as the extension of the standard B-Tree
to multiple dimensions. It uses the space-filling Z-curve to achieve a linearization of
the multidimensional universe. The linear space is then indexed by a standard B-
Tree. A UB-Tree can be regarded as a special version of the B-Tree with computed
keys, using the linearization of the Z-curve as key function. We now introduce the
UB-Tree more formally.

6.1.1 Z-regions

As mentioned earlier, the concept of Z-regions is fundamental for the UB-Tree.
Let Ω be the d-dimensional universe with domains D1, . . . ,Dd having the same

length l for their binary representation1, i.e., Ω = D1× . . .×Dd. Let Z ⊂ N0 be the
domain of all Z-values for Ω, i.e., |Z| = |Ω|.

1We use the restriction only for the ease of illustration. The address calculation can be easily
extended to varying domains with different lengths.
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Definition 6.1 (Z-value, Z-address)
For x ∈ Ω and the binary representation of each attribute xi = xil−1

xil−2
. . . xi0 we

define the Z-value (or Z-address) Z(x) : Ω �→ Z as

Z(x) =
l−1∑
j=0

d∑
i=1

xij · 2j·d+i−1

Without proof we state that Z(x) is a bijective function with the inverse function
Z−1 : Z �→ Ω as:

Z−1(α) = x = (x1, . . . , xd) with xi =
l−1∑
j=0

αj·d+i−1 · 2j

For a Z-value z ∈ Z, zd denotes the bit-representation of dimension d. For a bit
zi of a Z-value z ∈ Z, dim(z, i) returns the dimension the bit i corresponds to; we
sometimes just write dim(i).

We use three different representations of Z-values:

1. Integer value, denoting the position on the Z-curve

2. Bit-String, representing the integer value

3. Step-Representation: by combining all bits of the same step to one integer
value one gets a compressed ”binary” representation. The step denotes the
position of the bit beginning with the highest-valued bit in each dimension.
For better readability the integers representing one step are delimited by ’.’.

Example 6.1: Z-value representation

Let D = {x|0 ≤ x ≤ 7}, and Ω = D×D. Consequently, the length of the
binary representation is l = 3. For x = (0, 1) ∈ Ω, Z(x) = 2 = 000010 =
0.0.2; for y = (3, 2) ∈ Ω, Z(y) = 13 = 001101 = 0.3.1.

�

Based on the concept of Z-values we now can define Z-regions.

Definition 6.2 (Z-region )
A Z-region [α, β] is the space covered by the interval on the Z-curve defined by the
two Z-addresses α and β, i.e., [α, β] = {x ∈ Ω|α ≤ Z(x) ≤ β}.

Given Definition 6.2, we can treat a Z-region either as a one-dimensional interval
of Z-values or a shape in multidimensional space representing the space covered by
the Z-curve. Consequently, we can use Z-regions to define a complete partitioning
of the multidimensional universe.
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Definition 6.3 (Z-region partitioning )
A set of Z-regions R = {R1, . . . , Rn} is called Z-region partitioning of Ω, iff

1. ∀i, j : Ri ∩Rj = ∅

2.
n⋃
i=1

Ri = Ω

For a Z-region partitioning R either the start address αi or the end address βi
of the Z-region Ri is determined by the previous Z-region or the following Z-region
in Z-order resp. (see Example 6.2). Therefore, we only use the end address for
the unique identification of a Z-region and call βi the Z-region address (or short
address) of Z-region Ri.

For completeness, we state the connection theorem for Z-regions, the proof can
be found in [Mar99]:

Lemma 6.1 (connection of Z-regions)
Any Z-region consists of at most two spatially disconnected sets of points and such
Z-regions exist.

Lemma 6.1 holds for all universes Ω, independent of the dimensionality d of Ω.
For the definition of the UB-Tree we finally have to specify the mapping between

Z-regions and physical pages.

Definition 6.4 (Z-regions and pages)
A page P corresponds to a Z-region R (denoted by P ↔ R), iff P contains exactly
those tuples belonging to R, i.e., P ⊆ R.

Definition 6.5 (UB-Tree )
A UB-Tree is any variant of a B-Tree with Z(x) as address function.

Definition 6.5 directly leads to the following important properties of UB-Trees:

• each page of the underlying B-Tree specifies an interval on Z and thus de-
fines/corresponds to a Z-region of the UB-Tree. We will therefore use the
terms Z-region and page synonymously.

• all pages of the B-Tree consequently constitute a Z-region partitioning of the
universe.

Example 6.2: UB-Tree concepts

Figure 6.1 illustrates the various concepts of the UB-Tree. Figure 6.1(a)
shows the B-Tree with the Z-values as addresses. This UB-Tree par-
titions the universe Ω into six Z-regions, namely R1 = [0, 8], R2 =
[9, 17], R3 = [18, 28], R4 = [29, 39], R5 = [40, 51], and R6 = [52, 63].
Figure 6.1(b) shows the corresponding Z-region partitioning of the two-
dimensional universe.

�
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(a) B-Tree with Z-values (b) Z-region Parti-
tioning

Figure 6.1: The UB-Tree: Example B-Tree and resulting Z-region partition-
ing

6.1.2 Z-Ordering and bit-interleaving

An important issue of UB-Trees is the representation and the computation of the
addresses, i.e., the Z-values of the tuples. Z-values are efficiently computed by bit-
interleaving [OM84, TH81]. In order to apply bit-interleaving, however, we require
an order-preserving binary representation of the attribute values. With respect
to implementation, Z-values are represented as variable length2 bitstrings, i.e., a
sequence of bits.

Bit-interleaving and data type transformation

To compute the ordinal number of a tuple on the Z-curve, bit-interleaving is
applied. That is, all the bits of the binary representations of the index attributes
are interleaved in an arbitrary, but fixed, order (see Figure 6.2).

Figure 6.2: Z-value computation based on bit-interleaving

In order to compute correct Z-values, bit-interleaving requires the bit represen-
tations of the index attributes to adhere to the natural order on the corresponding

2For a given UB-Tree instance the length is fixed.
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domains. For unsigned integers, for example, the given binary representation suf-
fices. For signed integers, however, a transformation function is needed to take care
of the sign bit, which causes negative integers to be greater than positive integers
with respect to the bit-lexicographic order on the binary representation. Conse-
quently, for each data type to be supported by UB-Trees, an appropriate transfor-
mation function has to be specified. The transformation functions can also be used
for allowing for more powerful semantics, e.g., SOUNDEX codes or case insensitive
search on strings. If possible, it is useful to normalize attributes to unsigned integers
starting with 0 as one step of the transformation, as this allows for a much better
space partitioning with shorter Z-values. One example for normalization for complex
data types is the hierarchy encoding presented in Section 2.5. Other possibilities
for normalization include hashing or more complex non-linear methods. Note that
complex normalization may lead to significant performance overhead, which are no
longer neglectable. In such cases, it may be worthwhile to store the index keys
together with the tuples on the leaf pages in order to reduce the CPU cost. Our
standard normalization techniques just require a few microseconds of CPU time,
and therefore do not affect the address calculation performance.

6.1.3 Basic functionality: insertion, deletion, update, and
point search

The basic operations on UB-Trees are directly mapped to the underlying B-Tree. To
perform an insertion, deletion, or update the Z-value for the corresponding tuple is
computed in the first step. This Z-value is then used as the address in the operations
on the B-Tree. The same holds for point queries. As consequence, the performance
guarantees for B-Trees also apply to the basic operations of UB-Trees. Only with
respect to page splitting, the UB-Tree algorithm differs from the standard B-Tree
algorithm. The calculation of the page separator is adapted to achieve a better space
partitioning, i.e., creating rectangular regions whenever possible. This influences the
range query performance by reducing the number of regions overlapped by a range
query. This can be achieved by choosing the shortest Z-value (i.e., the Z-value that
has as many trailing zero bits as possible) between the two middle tuples s and t as
new separator, instead of s, t, or another Z-value in the middle of the page. This
modification adds no complexity to the split cost as it is done in O(l) bit operations,
where l is the length of the Z-value in bits, and the worst case page utilization of
50% is still guaranteed [Mar99]. The advantage of this split strategy is twofold:
first, better range query performance on average. Secondly, shorter separators lead
to a more compact index part of the UB-Tree, a phenomenon also exploited in
Prefix-B-Trees [BU77].

A further improvement of the space partitioning is achieved by relaxing the
minimum page-filling guarantee. The ε-Split algorithm looks for the shortest Z-value
in the range of ε% around the middle of the page. This reduces the minimum page
utilization to (50− ε)% but leads to a better space partitioning, i.e., to a reduction
of fringes. Figure 6.3 illustrates the improved space partitioning: Figure 6.3(a)
shows a 2-dimensional partitioning resulting from the standard split algorithm. In
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(a) w/o ε-Split (b) with ε-Split
(ε=14%)

(c) ”ideal split”

Figure 6.3: Space partitioning and split strategy for a 2-dimensional uni-
verse

Figure 6.3(b), the ε-Split leads to more rectangular regions, which are closer to the
ideal case depicted in Figure 6.3(c).

Figure 6.4(a) and Figure 6.4(b) picture the influence of the ε-Split for a larger
database.

(a) standard split (b) with ε-Split
(ε =14%)

Figure 6.4: Effect of ε-Split for a larger database

The benefit of the optimized space partitioning caused by ε-splitting is an im-
proved query performance as the number of fringes is reduced, thus leading to less
pages unnecessarily intersected by a query box (details of the range query algorithm
are covered in the next section).

The optimal choice of ε is a tradeoff between storage utilization and quality
of space partitioning: the higher ε, the better the space partitioning, and as conse-
quence the range query performance, but the lower the worst-case storage guarantee.
Figure 6.5 shows the results of 6-dimensional range queries with varying volume and
location on a 6-dimensional UB-Tree for growing ε. The empirical results show
that already a small ε (around 5%) leads to significant improvement of the space
partitioning. For ε > 15% no further improvements in the space partitioning are
observed. It is important to note that the ε-Split has the same complexity as the
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regular split algorithm.

Figure 6.5: Trade-off between reduced page utilization and improved query
performance

6.2 The UB-Tree range query algorithm

The goal of processing multidimensional range queries is to minimize the required
I/O. As consequence, the UB-Tree should only retrieve Z-regions, i.e., pages from
secondary storage, that may contain result tuples. This results in retrieving only
those pages corresponding to those Z-regions, which are properly intersected by the
query box. Due to the mapping of the multidimensional space to Z-values, a query
box in multidimensional space partitions into a set of intervals on the Z-curve, called
Z-intervals. Figure 6.6 shows such a decomposition for a query box.

Due to the nature of the Z-curve, the decomposition may lead to a large set
of intervals, many of which may be located in the same Z-region. This will cause
multiple accesses to the same page or additional overhead to prevent these accesses.
For processing the range query, however, it is sufficient to determine the intersected
Z-regions, if the Z-regions are post-filtered with the query predicate after retrieval.

Following this idea, the resulting iterative range query algorithm works as follows.
Let the multidimensional range restriction be specified by a query box QB with a
starting corner and an ending corner, which are given by the two tuples ql and
qh (Z(ql) ≤ Z(qh)), respectively. In a first step, the algorithm computes the Z-
values for ql and qh, then the region containing ql is located3. The range query
algorithm then iteratively determines all the regions intersected by the query box

3The tuples ql and qh do not have to exist in the UB-Tree. It is sufficient to locate the Z-region,
which contains ql.
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Figure 6.6: Linearization of a query box

by calculating the Z-value for the next intersection point of the Z-curve with the
query box based on the currently processed region/page. This is continued until a
region with a region address larger or equal than Z(qh) is retrieved. The algorithm
is given as pseudo-code in Figure 6.7 and is visualized in Figure 6.8.

Status UBTree Range Query(Tuple ql, Tuple qh) {
Z-value start=Z(ql);
Z-value end = Z(qh);
Z-value cur = start;
//continue as long as we are in the query box

while (1) {
//getting the address of the region containing cur

cur = getRegionSeparator(cur);
//post-filtering of the tuples in the region

postFilterPage(GetPage(cur), ql, qh);
//stop once we cover the whole query box

if ( cur >= end) break;
//calculation of next region

cur = getNextJumpIn(&cur, ql, qh);
}

}
Figure 6.7: The UB-Tree range query algorithm

Figure 6.8 illustrates the algorithm with a small example. In the first step (see
Figure 6.8(a)), region R that contains ql is located and post-filtered. Using the
region address a of R the next intersection point is calculated. This results in Z-
address b = a + 1 belonging to Z-region S. The end address c of S, however, is
not contained in the query box (cf. Figure 6.8(b)). The algorithm calculates d of
Z-region U as next point on the Z-curve to be inside the query box, and continues
with processing of U . The four Z-regions T1, ..., T4, which lie between S and U are
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skipped. After processing U the algorithm terminates as the end address e is larger
than the upper end qh of the query box.

(a) Jump within query box (b) Jump into query box

Figure 6.8: Range query processing

All these steps are performed in O(l) bit operations where l is the length of the
Z-value. The separator computation and the loading of the page is performed by
one B-Tree access. After post-filtering all matching tuples of the fetched page, the
tuples are already returned to the caller allowing for pipelining by the DBMS.

6.2.1 Calculating the next intersection point

Calculating the ’next intersection point’ (also called ’next-jump-in’ (NJI )) of the
query box with the Z-curve is the crucial part of the UB-Tree range query algorithm.
In the following we will show that this step only requires bit operations on Z-values
and no I/O or B-Tree search is necessary. Starting point for this algorithm is the
region address cur of the current region. The task is to find the next intersection
point of the Z-Curve with the query box Q. This next-jump-in nji is the minimal
Z-value larger than the current region address and which is inside Q, i.e., nji =
min{y ∈ Z|y > cur ∧ Z−1(y) ∈ Q}.

We describe a version of the algorithm that is not optimized for the Z-curve, but
works for more general cases as we will discuss in Chapter 10. Let the query box Q
be specified by the two Z-addresses min and max. The current address cur is not in
Q, i.e., Z−1(cur) /∈ Q, and cur < max, if cur > max then the query box is already
completely processed.

For the explanation of the algorithm we need to introduce the notion of a viola-
tion: a violation is a bit position v in a Z-address z ∈ Q that causes z′ to violate Q,
i.e., z′ /∈ Q, if z′ is created from z by changing the bit at position v, and possibly bits
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at positions smaller than v. A formal definition of violations is given in Chapter 7,
Definition 7.2.

Analyzing cur

We start with comparing cur bitwise with min and max and obtain the following
information:

• the highest bit position v in cur that is part of a violation of Q

• for each dimension i: bit position gtMini, which specifies from which bit
position on curi is greater than mini; gtMini = −1 if curi ≤ mini

• for each dimension i: bit position ltMaxi, which specifies from which bit
position on curi is smaller than maxi; ltMaxi = −1 if curi ≥ maxi

• bit position z larger than v that can be safely set to 1 without violating the
query box:

z = min{x ≥ v|cur′x = 0 ∧ ltMaxdim(x) > x}
If no such position z can be found, the assumption cur < max is violated.

Manipulation of cur

With this information we can manipulate cur to get the next-jump-in. As nji >
cur has to hold, we first have to find a bit in cur that we can set to 1. With bit
position z we already have found the correct bit: it guarantees the smallest possible
enlargement of cur. At the same time, no bits at positions larger than z will be
changed, i.e., the prefix of length |cur| − z + 1 is the same for cur and nji. With
setting curz = 1 we may jump too far, i.e., we get an address that is larger than
the actual next-jump-in and we have not corrected all query box violations, yet.
Consequently, the bits at positions smaller than z have to be changed. This is done
for each dimension independently: if the dimension i is already guaranteed to exceed
the minimum based on the value of the prefix, i.e., if gtMini > z, then all bits of
this dimension at positions smaller than z can be set to 0. Otherwise, the dimension
is set to the minimum of the query box. Formally, nji is specified as

∀i > z : njii = curi ∧
njiz = 1 ∧

∀i < z : njii =

{
0, if gtMindim(i) > z
mini, else

Example 6.3: Next-Jump-In algorithm

We use a two-dimensional, 8 × 8 universe for our illustration of the al-
gorithm, i.e., Ω = D× D, with D = {x|0 ≤ x ≤ 7}.
We consider the query box Q = [[min,max]] with min = 0.2.3 = 001011
and max = 3.0.2 = 110010 (see Figure 6.9).
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Figure 6.9: Query box Q with three NJI examples

• 1. Example: cur1 = 0.3.0 = 001100
The comparison of cur1 with min and max results in:
gtMin1 = 2 and gtMin2 = −1, and a violation of the minimum in
dimension 2: v = 1, z = 1
Applying the manipulation routine results in nji1 = 001110 = 0.3.2

• 2. Example: cur2 = 1.2.3 = 011011
The comparison with min and max results in:
gtMin1 = 4 and gtMin2 = −1; there is a maximum violation in
dimension 1: v = 0, z = 5
Applying the manipulation routine results in nji2 = 100001 = 2.0.1

• 3. Example: cur3 = 3.0.1 = 110001
The comparison with min and max results in:
gtMin1 = 4 and gtMin2 = 5; there is a maximum violation in
dimension 1: v = 0, z = 1
Applying the manipulation routine results in nji3 = 110010 = 3.0.2

�
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6.2.2 Implementation and complexity

We do not present the complete NJI algorithm in pseudo-code as the basic procedure
should be clear from the description above. There is just a minor modification
necessary for NJI in order to work with the range query algorithm of Figure 6.7.
For the NJI we assume that cur /∈ Q, but in the range query algorithm this is
not checked. Following variation of NJI guarantees a correct processing: we first
increment cur by one, i.e., we create cur′ = cur+1. We then perform the comparison
of cur′ with min and max to derive the required information. If the comparison
shows that cur′ ∈ Q then we have already found the next-jump-in, i.e., nji = cur′,
otherwise we perform the required manipulation.

For the complexity of the algorithm it is important to note that no I/O operations
are required, but just bit operations on Z-addresses. For a Z-address length of l, the
NJI algorithm requires:

3 ∗ l︸︷︷︸
comparison of cur and min

+ 3 ∗ l︸︷︷︸
comparison of cur and max

+ l︸︷︷︸
manipulation of cur

= 7 ∗ l

in worst case. Often the comparison can be terminated earlier, i.e., as soon as
gtMini, ltMaxi, and v are determined.

6.2.3 Proof of correctness

To prove the correctness of the next-jump-in (NJI) algorithm we have to show the
following things:

1. nji ∈ Q

2. ∀α : cur ≤ α < nji : α /∈ Q; we assume without loss of generality that cur /∈ Q
holds.

1. holds due to construction of nji: all bits that violate the query box are either
set to 0 or to the corresponding value of the minimum thereby guaranteeing
that the minimum in each dimension is not violated.

2. Assume ∃α : cur < α < nji with α ∈ Q
∀i > z : curi = njii ⇒ ∀i > z : αi = curi
α < nji⇔ ∃q : αq = 0 ∧ njiq = 1

We distinguish two cases for q:

(a) q < z : njiq = 1
NJI-Algo⇐⇒ njidim(q) = mindim(q)

⇒ αdim(q) < mindim(q) → contradiction to α ∈ Q

(b) q = z : α > cur ⇔ ∃p < z : αp = 1 ∧ curp = 0
z is minimal save bit ⇒ αdim(p) > maxdim(p) → contradiction to α ∈ Q

�
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6.3 Advanced query algorithms

During the MISTRAL project, various other query algorithms have been developed
for the UB-Tree. Very relevant in practice is the extension of the basic range query
algorithm to handle multiple query boxes at the same time [FMB99]. Handling
multiple query boxes simultaneously allows for avoiding accessing overlapped regions
(i.e., pages) multiple times, and thus reduces processing time in comparison to
sequential processing significantly. Processing of multiple query boxes is for example
required for handling query predicates with conjunctions (e.g., OR terms in the
where clause).

For sorted processing of a query box, the Tetris algorithm [MZB99] avoids costly
external sorting for large results sets by utilizing the partitioning created by the
UB-Tree in a kind of sweepline-fashion. In [ZMB01] the same concept is used in the
TempTris algorithm to create a UB-Tree efficiently out of an already sorted stream
of tuples. Both algorithms and their applications are described and investigated in
detail in [Zir02].

Nearest neighbor (NN) queries play an increasingly important role in new appli-
cations. In [Mar99] two NN-algorithms are proposed for UB-Trees.

6.4 The integration project

In the ESPRIT project MDA funded by the European Commission the UB-Tree
has been integrated into the commercial DBMS TransBase of TransAction Soft-
ware GmbH, Munich. TransBase is a full-scale, client-server architecture, relational
database system, which conforms to the SQL-92 standard.

The most important prerequisite for the integration is the existence of a cluster-
ing B-Tree. With that, the integration reduces to the following tasks:

• Extension of Data Definition Language (DDL)

• Extension of query optimizer and query processor

• Integration of UB-Tree algorithms

Figure 6.10 shows the changes of the individual database kernel modules required
by the UB-Tree integration. The shaded boxes mark the modifications in the single
modules, where darker shading signals the more complex modifications.

DDL extension

The goal of the integration is to be as transparent to the user as possible. With
respect to the query language this is not a problem as the UB-Tree is treated as
any other access method of the DBMS. Obviously, the DDL has to be enhanced to
allow for the creation of UB-Trees. For this purpose, various DDL statements, e.g.,
CREATE TABLE or CREATE INDEX, are extended. To handle the new index
structure, minor additions to the system catalog are required. Most importantly,
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Figure 6.10: Overview of kernel modifications required for UB-Tree integra-
tion



6.5. PERFORMANCE EVALUATION 73

information for the transformation functions of the indexed attributes has to be
stored.

Query optimizer and processor extension

For getting the greatest benefits out of the new index, the adaption of the query
optimizer and the query processor is of greatest importance. We deal with the
optimizer issues specifically in Chapter 9. The query processor has to be changed in
order to support the query algorithms of the UB-Tree. It depends on the architecture
of the target DBMS whether these issues are solved on the level of the access method
or in the query processor.

UB-Tree algorithms

Finally, the UB-Tree algorithms have to be integrated with the existing B-Tree
functionality. Depending on the extensibility of the existing B-Tree, this task re-
quires only minor changes to existing code.

6.5 Performance evaluation of the integrated UB-

Tree

In this section we present a brief performance evaluation of the integrated UB-Tree
based on the GfK3D data set.

6.5.1 Benchmark environment

The measurements are conducted on a Sun Ultra 10 (Solaris 2.6) with one 440 MHz
UltraSPARC-II processor and 512 MB of main memory. We use the TransBase
HyperCube DBMS for our comparisons of the standard access methods of TransBase
with the kernel integrated UB-Tree.

6.5.2 Data warehouse schema and queries

We use the hierarchical encoded data warehouse schema of GfK, i.e., the GfK3D
instance (see Section 4.3). Figure 6.11 shows the DDL statement for the star schema.
The foreign key relationship between the fact table and the dimension tables is
implemented via the artificial keys generated by HC (Section 2.5).

In order to have a realistic scenario for our case study, we measure the following
operations on the GfK DW:

• Reporting: processing of segmentation reports with following restrictions:

– Product group series (PG): restriction to a two-month period, one coun-
try, and one product group (604 queries)

– 4-Month period series (M4P): same as PG series, but just restricting a
four-month period instead of a two-month period (12 queries)
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CREATE TABLE TIME (

TIME CS INTEGER NULL,

YEAR ID NUMERIC NOT NULL,

MONTH4 PERIOD ID NUMERIC NOT NULL,

MONTH2 PERIOD ID NUMERIC NOT NULL

)

KEY IS YEAR ID,MONTH4 PERIOD ID,MONTH2 PERIOD ID;

CREATE TABLE SEGMENT (

SEGMENT CS INTEGER NULL,

COUNTRY ID NUMERIC NOT NULL,

REGION ID NUMERIC NOT NULL,

MICROMARKET ID NUMERIC NOT NULL,

OUTLET KEY NUMERIC NOT NULL

)

KEY IS COUNTRY ID,REGION ID,MICROMARKET ID,OUTLET KEY;

CREATE TABLE PRODUCT(

PRODUCT CS INTEGER NULL,

SECTOR ID NUMERIC NOT NULL,

CATEGORY ID NUMERIC NOT NULL,

PRODUCTGROUP ID NUMERIC NOT NULL,

ITEM ID NUMERIC NOT NULL

)

KEY IS SECTOR ID,CATEGORY ID,PRODUCTGROUP ID,ITEM ID;

CREATE TABLE FACT (

PRODUCT CS INTEGER NOT NULL,

SEGMENT CS INTEGER NOT NULL,

TIME CS INTEGER NOT NULL,

PD PRICE INTEGER NOT NULL,

PD PACKAGE PRICE INTEGER NOT NULL,

PD SALES INTEGER NOT NULL,

PD STOCK OLD INTEGER NOT NULL,

PD STOCK NEW INTEGER NOT NULL,

PD PURCHASE INTEGER NOT NULL,

PD TURNOVER INTEGER NOT NULL,

PD PROJECTION FACTOR INTEGER NOT NULL,

PD DISTRIBUTION FACTOR INTEGER NOT NULL,

PD UNIT FACTOR INTEGER NOT NULL

)

HCKEY IS PRODUCT CS, SEGMENT CS, TIME CS;

Figure 6.11: Create Statements for DW Schema
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– Category series (CAT): restriction to a two-month period, one country,
and one category (30 queries)

– All products (ALL): restriction to a two-month period, no restriction in
the Product dimension but looping over different countries in the Segment
dimension (16 queries)

• Maintenance: deletion and insertion of the data for a complete time period

Figure 6.12 shows a typical example query on the DW schema.

SELECT sum(PD SALES)

FROM FACT, TIME, SEGMENT, PRODUCT

WHERE TIME.MONTH4 PERIOD ID = 199801120 AND

SEGMENT.REGION ID = 3203 AND

PRODUCT.SECTOR ID = 162 AND

FACT.TIME CS = TIME.TIME CS AND

FACT.SEGMENT CS = SEGMENT.SEGMENT CS AND

FACT.PRODUCT CS = PRODUCT.PRODUCT CS;

Figure 6.12: Example Query

6.5.3 Compared access methods

We compare the following different access methods:

• PTS: a composite B-Tree with the key order (Product, Time, Segment)

• TPS: a composite B-Tree with the key order (Time, Product, Segment)

• UB: a UB-Tree on the attributes Product, Time, Segment

• MULT: a fact table indexed by three secondary indexes on the attributes
Product, Time, Segment

Composite B-Trees require to choose one specific order of the index attributes
resulting in a difficult key order decision problem. For the GfK fact table we in-
vestigate two different attribute orderings: the order (Time, Product, Segment) is
investigated since all operations restrict the Time dimension and often the Product
dimension. The order (Product, Time, Segment) is a promising alternative as the
restriction the Product dimension is often very strong (the restriction to a prod-
uct group is highly selective: in all cases below 2% with a median of 0,05%). In
contrast to that, the UB-Tree does not require an attribute order as all dimensions
are treated symmetrically. Due to its multidimensional nature, a UB-Tree on three
dimensions Time, Product, Segment allows for utilizing the restrictions on all di-
mensions. The same holds for multiple secondary indexes on the three dimensions,
but as secondary indexes are non-clustering, the materialization of the result tuples
is expected to require more page accesses than for the UB-Tree.



76 CHAPTER 6. UB-TREE INTEGRATION

Table 6.1: Index sizes in number of 2KB pages

UB PTS TPS MULT

Data pages 1863822 1510707 1513909 2041329
Index pages 20676 22499 22513 434308
Total 1884498 1533206 1536422 2475637

6.5.4 Index sizes and maintenance performance

Table 6.1 contains the index sizes for the fact table containing ≈ 43 million tuples.
There is no major difference in the number of data pages for PTS and TPS,

whereas the UB-Tree is about 20% larger. This stems from the fact that the tuple
compression on data pages for all TransBase tables is not yet done for the UB-Tree.
MULT requires more data pages as it has to include extra space for tuple references
needed for the secondary indexes. The index parts for UB, PTS, and TPS have
almost the same size, whereas MULT requires more index pages, as there are three
independent secondary indexes. With respect to the index size we can state that a
UB-Tree with compression on the data pages does not require more space than a
traditional composite B-Tree, but less than secondary indexes on the dimensions.

In order to evaluate the maintenance performance, we delete all fact data for a
given two-month period and reinsert it into the fact table. We use the bulk-loading
facility of the DBMS for these tasks. Note that the tuples to be inserted are sorted
according to the Time dimension, as only the data of one time period is spooled in.
Table 6.2 shows the execution times of maintenance operations for 2146779 tuples
for the indexes.

Table 6.2: Time [in sec] for maintenance operations for 2146779 tuples

Operation Time: UB Time: PTS Time: TPS Time: MULT
Delete 148 945 161 1607
Bulk Insertion 561 785 336 2350

The results for the clustering indexes are not surprising: UB and TPS are able
to identify the tuples to be deleted very fast, whereas PTS needs to scan through all
data pages. With respect to loading, TPS has the benefit that one complete time
interval is inserted; for UB and PTS the time period leads to multiple intervals in the
key order and thus leads to higher loading costs. As expected for a secondary index,
MULT takes much longer for the maintenance operations as more indexes have to be
updated. This is a fundamental problem of secondary indexes - it is often suggested
to first drop the indexes, delete the data, and then create the indexes again, if a
large portion of the data has to be deleted or inserted.

6.5.5 Reporting performance

Regarding the reporting performance, our first observation is that the MULT can
neither compete with the composite indexes nor with the UB-Tree for the reporting
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series. Figure 6.13 shows the results of 20 PG queries, which demonstrate the poor
performance of MULT; even for queries with small result sets it takes much more
time than for the other indexes. As a consequence, we exclude the MULT from
further measurements and take a closer look at the other indexes.

Figure 6.13: Response time [in sec] for the PG series with MULT

For the other indexes the complete PG results are given in Figure 6.14.

Figure 6.14: Response time [in sec] for the PG series

The composite B-Tree TPS is favored by point restriction in the first and the
high selectivity on the second index attribute. In contrast, the composite PTS can
only utilize the restriction on the Product dimension and, therefore, has to read
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more pages. Even though the clustering according to the Z-curve of the UB-Tree is
not optimal for this query set, the UB-Tree outperform PTS and is close to TPS, as
it can utilize the restrictions in all dimensions.

When we relax the restriction on the Product dimension in the CAT series (i.e.,
a restriction only down to the category level), both composite B-Trees loose the
advantage, as a larger and larger interval on the indexes has to be processed (see
Figure 6.15).

Figure 6.15: Response time for CAT series

For the ALL series, where the Product dimension is not restricted, the UB-
Tree clearly outperforms TPS and PTS, as it can benefit more and more from the
restrictions on the other dimensions (see Figure 6.16). PTS has to perform a full
table scan, whereas TPS has to read all data for a complete two-month period.

The same holds for the M4P series shown in Figure 6.17. TPS no longer can
benefit from the point restriction on the first attribute and thus can also not utilize
the restriction in the Product dimension. PTS still has the strong restriction on
the first attribute, but the UB-Tree uses all restrictions and thus shows the best
performance.

The results of the reporting queries show that the UB-Tree outperforms the
traditional index methods. It can compete with optimal clustering composite B-
Trees and at the same time provides the flexibility for varying query patterns.
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Figure 6.16: Response time for ALL series

Figure 6.17: Response time for M4P series
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6.6 Chapter notes and related work

Integration - is it worth the effort?

Multidimensional access methods are not widely supported by commercial database
management systems despite their performance impacts in various application do-
mains. This is mostly due to the fact that a kernel integration of these sophisticated
data structures is considered to be a very costly and complex task. With the in-
tegration project we have shown that this is not the case for the UB-Tree, as it
heavily relies on the well-known B-Tree, reducing the complexity of the additional
algorithms to a minimum.

The performance gains show that the integration is worth the effort: the kernel
integrated UB-Tree provides significantly better performance than traditional access
methods in various application domains. The big advantage of the kernel integration
in comparison with other approaches is the tight coupling with the query optimizer.
As we do not rely on any TransBase specific features for the UB-Tree algorithms, we
expect the same integration effort for other database systems as well, as long as they
provide clustering B-Trees on computed keys. Summarizing our experiences, UB-
Trees smoothly integrate into the indexing engine and extend the B-Tree concept
in order to handle multiple dimensions symmetrically. They are extremely useful
for both clustering tables as well as covering secondary indexes (secondary indexes
that contain all attributes required by a given query) to speed up multidimensional
range queries.

Related work

Integrating new index methods into a database kernel is often regarded as a
too costly task. On the other side, database vendors have recognized the need
for more flexible, powerful indexing methods, often tailored to specific application
domains. As consequence, most vendors have extended their standard B-Trees and
provide interfaces that allow the users to include their own functions for the index
key computation. Some systems even allow the user to implement their own index
structures in external modules. We will now point out the deficiencies of these
approaches.

Function-based B-Trees For standard B-Trees the key of the index consists
of a subset of the attributes of the underlying table. A more general idea is to use
a function to compute the key values for the tuples. We will refer to this type of B-
Trees as function-based B-Trees or short BF-Trees. For example, a standard B-Tree
is a special instance of the BF-Tree where F is the projection of the key attributes
from the tuple. B-Trees storing SOUNDEX codes or case-insensitive keys are other
well-known examples. BF-Trees were motivated by the need to support indexing on
user-defined types in object-relational systems. Commercial implementations are
provided for example by function-based indexes in Oracle8i [ORA99], the high level
indexing framework of IBM DB2 [CCF+99], or as indexes on computed columns in



6.6. CHAPTER NOTES AND RELATED WORK 81

MS SQL Server 2000 [MS000]. However, BF-Trees do not allow for the integration
of new query algorithms, like the UB-Tree range query algorithm. Therefore, im-
plementing the UB-Tree as a BF-Tree with the Z-value as function will not lead to
the expected performance.

Extended index interfaces Some commercial database management systems
provide even more enhanced indexing interfaces, which allow for implementation of
arbitrary index structures by the user in external modules (e.g., Extensible Indexing
API by Oracle [ORA99], Informix Datablade API [Inf99]). Analogous to the GiST
framework (see next paragraph), the user has to provide a set of functions/operators
that are used by the database server to access the index. The index itself can be
either stored inside the database (e.g., as an IOT in Oracle) or in external files.
The problem of these index interfaces is threefold: performance of the index, op-
timizer support, and locking and recovery. The performance problem of extended
index interfaces has two aspects: first, only non-clustered indexes are supported.
Index structures, whose performance is achieved by appropriate clustering, like the
UB-Tree that clusters according to multiple dimensions, can therefore not be im-
plemented via these interfaces. In addition, as the DBMS internal modules cannot
be used, efficient page and tuple handling has to be implemented. This leads to
significant coding effort for the index implementation. The coupling of the external
index with the query optimizer is achieved by providing cost functions for the index
operations. However, to our knowledge, there is no way to add rules to guide the
optimizer with heuristics, which is very important to achieve optimal query plans.
Another significant drawback of these ’add-on’ approaches is the handling of locking
and recovery. The external indexes are not tightly coupled with the DMBS locking
and recovery services. As consequence, the index implementation has to take care
of recovery issues itself [BSSJ99], and the lock granularity is often the complete
index itself. Taking all these aspects into account, in case of the UB-Tree the kernel
integration is much more favorable than an implementation as an external index.

The General Search Tree The General Search Tree(GiST) approach [HNP95]
provides a single framework for any tree-based index structure. The GiST framework
provides the basic functionality for trees, e.g., insertion, deletion, splitting, search,
etc. The individual semantics of the index are provided by the user with a key class,
which implements six key functions the basic functions rely on. As consequence,
the user has only to change a small part of the code to implement various index
methods (e.g., B-Trees, R-Trees). In general, the UB-Tree fits perfectly into the
GiST framework, but efficient implementation would require more user control for
the search algorithm and page splitting. The major drawback of the original GiST
approach is the fixed query functionality - the user cannot adapt the search algo-
rithm to the specific indexing technique, which in many application scenarios will
lead to significant performance problems. The extension of [Aok98b] gives the user
the control of the tree traversal during search and should suffice for an efficient range
query implementation. Putting all together, with the extended GiST framework the
benefits described in [Kor99] apply also for a UB-Tree implementation.
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Chapter 7

Complete linearization of query
boxes

As described in Section 6.2, a multidimensional query box decomposes into a set of
intervals on the Z-curve. Instead of computing all of these intervals, the range query
(RQ) algorithm works on the granularity of Z-regions. However, for some purposes
it would be quite handy to have the complete linearization of the query box. One
example is to optimize the RQ algorithm by saving post-filtering of pages that are
completely contained in the query box. This becomes more frequent the larger the
query boxes get, like the one depicted in Figure 7.1.

Figure 7.1: Visualization of a large query box

For computing the end of a Z-interval (the beginning is calculated by the NJI-
algorithm), one has to find the last point inside the interval for a given point inside
the interval. We call this end point the next-jump-out as from this point one is
jumping out of the query box if one follows the Z-curve further. Formally, the
problem can be specified as follows.

83
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Definition 7.1 (Next-Jump-Out)
Let Q be the query box and cur be the Z-value of a point in the box, i.e., Z−1(cur) ∈
Q. The ’next-jump-out’ njo is the Z-value of the end point of the interval inside Q
starting with cur, i.e.,

njo = NJO(cur) = min{y ∈ Z|y ≥ cur ∧ Z−1(y) ∈ Q ∧ Z−1(y + 1) /∈ Q}.

7.1 The next-jump-out algorithm (NJO)

In the following we assume that the input to the next-jump-out algorithm is a point
inside the query box1. Such, the first step of the algorithm is to identify bits in the
current Z-value, which on change cause either that one dimension falls below the
minimum of the query box or that one dimension exceeds the maximum of the query
box. Then, in a second step, the Z-address is manipulated to fulfill the condition for
the next-jump-out. In the next subsection we describe the details of the algorithm
and provide a proof of correctness for the algorithm.

7.1.1 The NJO Algorithm

A naive solution to the NJO problem would be to start with the current Z-value cur
and increment it by one until the resulting Z-address is outside the query box Q;
the next-jump-out is then the current value minus one. This algorithm is definitely
correct but is very inefficient as it requires n increments and n tests if the Z-address
is in Q for a Z-interval of length n. In the following we present an algorithm for
NJO, which has complexity O(l) for Z-addresses of length l. The basic idea is to find
the smallest Z-address that is larger than the current address and which is outside
Q. Decrementing this value by 1 leads us to the real NJO.

We first introduce the notion of violations. To this end, we have to enhance our
notation for bit strings. Given a bit b, b̄ denotes the negated value of b, i.e., b̄ = ¬ b

Definition 7.2 (Violation)
Given a Z-address z and a query box Q with Z−1(z) ∈ Q. A violation of z with
respect to Q is a bit position i, 0 ≤ i ≤ |z| that causes z to violate Q, i.e.,
Z−1(z) /∈ Q if the bit at position i, and possibly bits with positions smaller than
i, is changed. Formally, for z = zl−1zl−2 . . . z0 position i is a violation, iff Z−1(z′) =
Z−1(zl−1 . . . zi+1z̄iz

′
i−1 . . . z

′
0) /∈ Q, with z′j ∈ {0, 1}, 0 ≤ j ≤ i− 1.

We distinguish two kinds of violations: MIN-violations and MAX-violations.
MIN-violations cause the current Z-address to fall below the minimum of the query
box in one dimension, whereas MAX-violations cause to exceed the maximum of the
query box in one dimension. We call the violation with the lowest bit position of a
Z-value z, i.e., the bit position with the lowest bit value, the smallest violation of z
with respect to a query box Q.

1If the input point is not in the query box, the NJI algorithm has to be called before the NJO
algorithm to guarantee a correct input.
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Example 7.1: Violations

In the following, we will use a two-dimensional, 8 × 8 universe for our
illustrations of the algorithm, i.e., Ω = D× D, with D = {x|0 ≤ x ≤ 7}.
Given the query box Q = [[min,max]] with min = 001001 and max =
101100 and the current Z-address cur = 001100. We show which ad-
dresses cur′ result from the various violations.

For the given configuration we have a MIN-violation at position 3, be-
cause if we set cur3 = 0, then cur′2 = 000 < min2 = 010. Another
MIN-violation can be found at bit position 2, as setting cur2 = 0 leads
to cur′1 = 000 < min1 = 001.

A MAX-violation is located at position 5, as with cur5 = 1 and cur1 = 1,
cur′′2 = 111 > max2 = 110. And finally, we have a MAX-violation at
bit position 0. Setting cur0 = 1 achieves cur′′1 = 011 > max1 = 010.

This example shows that it is sometimes necessary to change more than
two bits to achieve a violation.

Figure 7.2 gives a graphical illustration of MIN-violations and MAX-
violations for two other query boxes.

(a) MIN-violations (b) MAX-violations

Figure 7.2: Violations of a query box

�
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7.1.1.1 Finding violations

For determining violations, it suffices to treat all dimensions individually, as only
bits of a Z-value corresponding to the same dimension may cause a violation of the
query box in this dimension.

To find all violations it is necessary to completely scan through the current
address cur and the two addresses min and max that specify the query box. In
the algorithm we scan through the addresses bit per bit beginning with the bit
at the highest position by two for-loops. The first loop increments the dimension
while the second one loops over all bits in the dimension. For every bit of the
address the algorithm compares now the current bit from cur with the current
bits from min and max. If it is possible to achieve a violation by inverting the
current bit then this position will be marked. Figure 7.3 shows the pseudo-algorithm
for finding all possible violations. For the following manipulation algorithm we
require the violations to be returned in ascending order. For the algorithms we use
a mapping between a bit of the binary representation of a dimension value and the
corresponding bit in the Z-address. The function bp(i,j) returns the bit position
p in the Z-value of bit j of dimension i; dim(p) returns the dimension d bit position
p belongs to. maxpos(i) denotes the maximum bit position for dimension i. In
the following, we represent bit positions as integers. For the algorithm we further
require one list to store the found violations as well as two variables to store violation
candidates. Violation candidates are necessary to identify violations that require the
change of more than one bit in the current Z-value. We use the following intuitive
operations on a list L of type LIST:

• append(L,a) appends an element a at the end of the list

• isempty(L) checks whether the list is empty or not

• pop(L) returns the first element in the list and deletes it

• sort(L) sorts the list in ascending order

For illustration purposes, the presented pseudo-code for finding violations loops
over the dimensions sequentially. This causes multiple passes over the Z-addresses.
In a real implementation, it suffices to pass through the Z-addresses once, looking
at all dimensions simultaneously.
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LIST FindViolations(Z-value min, Z-value max, Z-value cur) {

LIST violations={};
int min cand, max cand;
int p,i,j;
int curbit, minbit, maxbit;
bool minfinished, maxfinished;

//for each dimension check for violations

for(i=1; i<=d;i++) {
//initialize lists

min cand=-1; max cand=-1;
minfinished=false; maxfinished=false;

//loop over all bits of the dimension, beginning with the highest valued one

for(j=maxpos(i); j>=0; j--) {
p=bp(i,j);
curbit=curp;
minbit=minp;
maxbit=maxp;
//looking for MIN violations

if(!minfinished) {
if(curbit==minbit && minbit==1 && min cand==-1)

//found MIN-violation in p

append(violations,p);
else if(curbit==1 && minbit==0 && min cand==-1)

//found a MIN-violation candidate

min cand=p;
else if(minbit==1 && min cand >= 0)
{ //the candidate is really a violation

append(violations,min cand);
minfinished=true;

}
}
//looking for MAX violations

if(!maxfinished) {
if(curbit==maxbit && maxbit==0 && max cand==-1)

//found a MAX-violation in p

append(violations,p);
else if(curbit==0 && maxbit==1 && max cand==-1)

//found a MAX-violation candidate

max cand=p;
else if(maxbit==0 && max cand>=0)
{ //the candidate is really a violation

append(violations,max cand);
maxfinished=true;

}
}

}
}
sort(violations);
return violations;

}

Figure 7.3: Finding Violations (FV) Algorithm
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7.1.1.2 Manipulating current Z-value based on violations

With the algorithm described in the previous section we identify bits that cause a
violation of the query box if they are changed. However, we still have to make sure
that the other conditions for the NJO hold, namely that the new address is larger
than the current address and that there is no smaller address which is also outside
the query box.

First, we consider the special case in which no violation for the Z-address cur
with respect to query box Q = [[min,max]] was found. If for each dimension one
can not get below the minimum or can not exceed the maximum then Q covers
the complete universe, i.e., min and max correspond to the minimal resp. maximal
Z-address. Consequently, the next-jump-out njo is the maximal Z-address, i.e.,
njo = max.

Now let us consider the cases where we have found violations in cur. We are
starting with the smallest violation found for cur. The manipulation of cur depends
on the type of the violation. We first look at the case of a MAX-violation because
using this violation already leads to a Z-value cur′ > cur.

MAX-violation

Let us assume a MAX-violation v in dimension i of Z-address cur to be the
smallest violation with respect to query box Q = [[min,max]]. The next-jump-
out njo is obtained by decrementing the Z-value cur′ by one, which is gained by
manipulating cur as follows. First set the dimension i to the value maxi + 1 thus
causing the violation of Q. To get the smallest Z-value set all bits of other dimensions
at positions smaller than v to zero. Consequently, njo = cur′ − 1, with

cur′i = maxi + 1
cur′kj = curkj ∀j, k with k �= i ∧ j > v
cur′kj = 0 ∀j, k with k �= i ∧ j < v

Example 7.2: MAX-violation

Let min = 0.1.0 = 000100, max = 3.0.3 = 110011, and cur = 0.3.3 =
001111 (cf. Figure 7.4). There is a max-violation in dimension 1 at
position 4. Setting the bits of dimension 1 to max1 + 1 leads to cur′ =
011110 = 1.3.2. Setting the bits of dimension 2 at positions smaller than
4 to 0 results in cur′′ = 010100 = 1.1.0; decrementing cur′′ by 1 gets the
correct njo = 010011 = 1.0.3.

�

MIN-violation

In case that the smallest violation v is a MIN-violation the manipulation of the
Z-address cur gets a bit more complex. The problem is that if we set curv = 0 in
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Figure 7.4: MAX-violation

order to achieve the violation then the generated Z-value is smaller than cur. Thus,
we have to find another bit position p, whose value can be set to 1 and which is
larger than v. Furthermore, we have to check if p is from the same dimension as
v. Because the MIN-violation disappears if we set a bit of the same dimension at a
higher position. Consequently, there are two conditions to achieve a MIN-violation:
first, there is a larger position in cur with value 0, so that it can be set, and second,
the dimension of this position is different to the dimension in which the smallest
violation was found.

For the algorithm we therefore have to check four constellations.

Case 1: In this case, there exists a bit position pos in cur that has the value
0 and does not belong to the same dimension as v, i.e., ∃pos : pos > v ∧ curpos =
0 ∧ dim(v) �= dim(pos). The next-jump-out njo is then achieved by setting the
bit at position pos to 1 and setting all bits at smaller positions to 0 and finally
decrementing this value by 1. Formally, let pos = min{p|p > v ∧ curp = 0}, if

dim(v) �= dim(pos)

⇓

njo = cur′ − 1, with cur′j =




curj, if j > pos
1, if j = pos
0, if j < pos

Note: obtaining njo in this case can be optimized by just setting all bits at positions
smaller than pos to 1 (pos has already the value 0).
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Example 7.3: MIN-violation: Constellation 1

Let min = 0.2.3 = 001011, max = 3.0.2 = 110010, and cur = 0.3.2 =
001110 (cf. Figure 7.5). cur has a min-violation at position 1, i.e., in di-
mension 2. As the next zero bit of cur at position 4 belongs to dimension
1, we can safely set that bit resulting in cur′ = 011110 = 1.3.2. We then
set all bits at positions smaller than 4 to 0 getting cur′′ = 010000 = 1.0.0
and with the final decrement leading to njo = 001111 = 0.3.3.

Figure 7.5: MIN-violation: Constellation 1

�

Case 2: In this constellation, there is also a bit position pos which is larger
than v and has the value 0, but this time it corresponds to the same dimension
as v, i.e., ∃pos : pos > v ∧ curpos = 0 ∧ dim(v) = dim(pos). Setting this bit
will cause the MIN-violation v to be ineffective. However, if there is another MIN-
violation w with w > v ∧ dim(w) �= dim(pos), we can use this violation instead of
v and handle it as described in the first case. Formally, the second condition for
pos = min{p|p > v ∧ curp = 0} to be used for the manipulation is

∃w, v < w < pos with w is MIN-violation ∧ dim(w) �= dim(pos)

⇓

njoj =




curj, if j > pos
0, if j = pos
1, if j < pos
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Example 7.4: MIN-violation: Constellation 2

Let min = cur = 0.3.0 = 001100 and max = 3.0.2 = 110010 (cf.
Figure 7.6). The min-violation of cur exists at position 2 belonging to
dimension 1. As the next zero bit at position 4 also belongs to dimension
1 this bit can not be set to 1 without further checking as this may
cause the min-violation to disappear. As there is also a min-violation in
dimension 2 at position 3, the situation corresponds to the one in the
first case. Consequently, the njo = 001111 = 0.3.3 with cur′ = 011100 =
1.3.0 and cur′′ = 010000 = 1.0.0 as intermediate steps.

Figure 7.6: MIN-violation: Constellation 2

�
Case 3: If cases 1 and 2 do not apply, i.e., pos is from another dimension than v
and there is no other MIN-violation in between, then pos cannot be used for the
manipulation. Unless pos is at the same time a MAX-violation, which we then can
use directly. So, with pos = min{p|p > v ∧ curp = 0}, if

dim(pos) = dim(v) ∧
�w, v < w < pos with w is MIN-violation ∧

pos is MAX-violation

⇓

njo = cur′ − 1, with
cur′i = maxi + 1, i = dim(pos)

cur′kj = curkj ∀j, k with k �= i ∧ j > pos
cur′kj = 0 ∀j, k with k �= i ∧ j < pos
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Example 7.5: MIN-violation: Constellation 3

Let min = 0.2.1 = 001001, max = 2.1.2 = 100110, and cur = 0.2.3 =
001011 (cf. Figure 7.7). There is a MIN-violation of dimension 1 at
position 0, but the next zero bit at position 2 also belongs to dimension
1 and there is no MIN-violation in dimension 2. Still, dimension 1 has
a MAX-violation at this position that we process as follows: we set
cur1 = max1 + 1 (cur′ = 001111 = 0.3.3) and all bits of dimension
2 at positions smaller than 2 to zero (cur′′ = 001101 = 0.3.1); finally
decrementing this value by one achieves njo = 001100 = 0.3.0.

Figure 7.7: MIN-violation: Constellation 3

�
Case 4: If none of the cases 1-3 applies for position pos, we continue with the next
larger position that has the value 0. However, we might end up with finding no bit
with value 0, which corresponds to a MAX-violation or which we safely can set for
a MIN-violation. In this situation, the NJO corresponds to the maximal Z-address,
as we are not able to find a manipulation in cur that violates Q and at the same
time generates a Z-address larger than cur.

∀pos, pos > v ∧ curpos = 0 : dim(pos) = dim(v) ∧
pos �= MAX-violation ∧

�w, v < w < pos : w is MIN-violation

⇓

njo = max
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Example 7.6: MIN-violation: Constellation 4

Let min = 1.2.3 = 011011, max = 3.3.3 = 111111, and cur = 3.2.3 =
111011 (cf. Figure 7.8) . For this constellation we have min-violations
of dimension 1 at positions 0 and 4 and a min-violation of dimension
2 at position 5. Starting with the violation at position 0 the next bit
which can be set is at position 2. As it belongs also to dimension 1 and
there is no min-violation of the other dimension in-between and there
are no max-violations in this case, this bit cannot be set. As it is the
only zero-bit in cur, we are not able to find a bit to set. Hence, the
next-jump-out has to be the maximum address.

Figure 7.8: MIN-violation: Constellation 4

�

Figure 7.9 shows the complete algorithm getNJO for manipulating the current
Z-address in pseudo-code. Besides the query box specification min and max and the
current Z-value cur, the algorithm uses the output of the FV-algorithm, the list of
violations sorted in ascending order, as input. As described above, the algorithm
starts with the smallest violation and passes backward through the Z-address to find
the bits to be manipulated.
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Z-value getNJO(Z-value min, Z-value max, Z-value cur, LIST violations) {

//Assumption: list of violations is sorted in order of ascending bit positions

Z-value njo, tmp;
Integer i,j,dimv,v,c;
Boolean vbetween=FALSE;

if(isempty(violations))
//the query box covers the complete universe

return max;
else {

while(!isempty(violations)) {
v=pop(violations);
dimv=dim(v);
if(cur[v]==0) { //v is MAX-violation

tmpdim = maxdim + 1;
for(i=MAXPOS;i>=0;i--) {

if(i > v && dim(i) != dimv)
tmp[i]=cur[i];

if(i < v && dim(i) != dimv)
tmp[i]=0;

}
return (tmp-1);

}
else { // v is MIN-violation

if(!isempty(violations)) c=pop(violations);
else c=v;
for(i=v+1;i <= MAXPOS;i++) {

if(cur[i] == 0) {
if(dimv != dim(i) || vbetween) {

for(j=MAXPOS;j >= 0;j--) {
if(j >= i) njo[j]=cur[j];
else njo[j]=1;

}
return njo;

}
//the zero-bit is also MAX-violation handle this case

else if(c == i) {
push(violations,i);
break;

}
}
else if(i == c && dimv != dim(i)) {

vbetween=TRUE;
if(!isempty(violations)) c=pop(violations);

}
}

//if there no zero bit that can be safely set then NJO=max

if(i>MAXPOS) return max;
}

}
}

}
Figure 7.9: Manipulation algorithm of NJO
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7.1.2 Proof of correctness

In this section, we provide the formal proof of the correctness of the above described
algorithm.

Given a query box Q defined by the two Z-addresses min and max and a current
address cur ∈ Q, we show that the resulting Z-value njo is really the next-jump-out
of Q. According to Definition 7.1 we have to show the following:

1. njo ∈ Q ∧ (njo + 1) /∈ Q

2. ∀x, cur ≤ x ≤ njo : x ∈ Q

It is equivalent to show

1. njo′ = (njo + 1) /∈ Q

2. ∀x, cur ≤ x < njo′ : x ∈ Q

We use this transformation of the goals of the proof, as the algorithm always
generates njo′ as an intermediate step.

The proof is based on the structure of cur, i.e., on the nature of the violations
found in the current address. In the following, v denotes the smallest violation found
in cur.

Assume there is an address α between cur and njo′ that is not inside Q, i.e.,
∃α ∈ Z with cur ≤ α < njo′ ∧ α /∈ Q. We will show that such an α can not exist.

Let m be the smallest violation in cur and z be the highest manipulated bit of
cur leading to njo. Consequently, ∀j > z : curj = njo′j .

α /∈ Q ⇒ ∃i : αi > maxi ∨mini < αi

⇒ ∃ violation v in cur with z ≤ v ≤ m ∧ dim(v) = i

cur ≤ α < njo′ ⇒ ∀j > z : αj = curj

⇒ v ≤ z

In the following, we examine the following four possibilities:

1. m is MAX-violation, v is MIN-violation

2. m is MAX-violation, v is MAX-violation

3. m is MIN-violation, v is MIN-violation

4. m is MIN-violation, v is MAX-violation

1. Case: m is MAX-violation, v is MIN-violation

m is MAX-violation ⇒ m = z

⇒ v = z

→ contradiction to m is MAX-violation and v is MIN-violation
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2. Case: m is MAX-violation, v is MAX-violation

m is MAX-violation ⇒ m = z = v

∀j < z : njo′j = 0 ∧ dim(j) �= dim(z) ∧
njo′dim(z) = maxdim(z) + 1 ⇒ α ≥ njo′

→ contradiction to α < njo′

3. Case: m is MIN-violation, v is MIN-violation

v is MIN-violation ⇒ ∃ bit b : z ≤ b < v ∧ curb = 0, αb = 1

∧dim(b) �= dim(v)

dim(b) �= dim(m)
MIN-Case1 (see Pg. 89)⇒ z = b

∀i<z: njo′i=0⇒ α ≥ njo′

→ contradiction to α < njo′

dim(b) = dim(m) ⇒ dim(v) �= dim(m)

MIN-Case 2 (see Pg. 90)
=⇒ z = b

∀i<z: njo′i=0⇒ α ≥ njo′

→ contradiction to α < njo′

4. Case: m is MIN-violation, v is MAX-violation

In this case m = z, as:

dim(m) �= dim(v)
MIN-Case 2 (see Pg. 90)

=⇒ z = m

dim(m) = dim(v)
MIN-Case 3 (see Pg. 91)

=⇒ z = m

z = m ∧ dim(m) �= dim(v) ⇒ njo′z = 1 ∧ ∀j < z : njo′j = 0

⇒ α ≥ njo′

→ contradiction to α < njo′

z = m ∧ dim(m) = dim(v) ⇒ α ≥ njo′ analogous to 2. Case

→ contradiction to α < njo′

�
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7.1.3 Performance analysis

For a brief comparison of the complexity of the NJO-algorithm, we concentrate
on the number of required bit operations. We assume that reading and writing a
bit, as well as, comparing two bits comes with the same cost, e.g., for comparing
two bits we require three operations: reading both bits (two operations) and one
operation for comparing them. Let l be the length of the Z-address. We show that
the NJO-algorithm has a complexity of O(l) bit operations.

Finding violations

As described in Section 7.1.1.1, for finding all violations we have to scan through
the three addresses min, max, and cur causing 3 ∗ l operations for reading all bits.
In addition, we require 2∗ l operations for comparing the bits of min and cur on the
one hand, and max and cur on the other hand. Thus, we find all violations with
5 ∗ l bit operations in worst case.

Manipulating the current address

After finding the violations, we now have to look at the cost of manipulating the
current Z-value in order to get the correct next-jump-out. For analyzing the cost
for this step we consider the algorithm given in Figure 7.9. In the case of a MAX-
violation we require a read and write operation for each bit in the Z-address. With a
smart implementation this contains already the cost for the subsequent decrement.
When we are handling a MIN-violation the situation is a bit more complex. First,
we may have to read all bits before getting to the bit which is the starting point
of the manipulation. Secondly, we either have to set all bits or we have to go to
the MAX-violation case. In total, the manipulation of the address may cost up
to 3 ∗ l bit operations: starting with a MIN-violation that is finally handled by a
MAX-violation.

7.2 Linearization of a query box

Given the NJO-algorithm, we can completely linearize a query box without looking
at the data first. A query box Q defined by two tuples ql and qh with Z(ql) ≤ Z(qh)
is composed by a set of Z-intervals [nji0, njo0], . . . , [njij, njoj], . . . , [njin, njon], where
nji0 = Z(ql), njoj = NJO(njij), and njij+1 = NJI(njoj).

The problem of the linearization of query boxes is the huge number of inter-
vals possibly generated. The number of intervals may vary between 1 and |Ω|

2
2.

Figure 7.10 shows examples of query boxes and their linearization. The number
of intervals does not only depend on the size of the query box but rather on the
location of the box as Figure 7.10(a) and Figure 7.10(b) illustrate.

2 |Ω|
2 is the theoretical upper bound given by the maximal number of partitions ofZ into intervals:

the worst case is achieved assuming intervals of length 1, every second Z-value being part of the
query box.
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(a) Best case: 1 Z-
interval for query box

(b) Same query box: 10
intervals due to different

position

(c) Bad case: 16 Z-
intervals

Figure 7.10: Linearization of query boxes

7.3 Reducing post filtering

This section presents a practical application of the NJO-algorithm leading to im-
proved range query processing w.r. to CPU cost. For each Z-region/page retrieved
by the range query algorithm, all tuples on the page have to be post-filtered with
the search predicate. If the query predicate contains only index attributes, post-
filtering can be saved for pages completely contained in the query box and therefore
the whole range query processing can be optimized. If the query also restricts non-
index attributes at least the post-filtering w.r. to the index attributes can be saved.

The idea is to compute for each next-jump-in nji also the next-jump-out njo.
With this information and the address of the next Z-region, given by the following
page separator sep, we can decide upon the post-filtering of pages. Figure 7.11
depicts the three constellations of Z-regions/pages and intervals of the query box.

(a) (b)

(c)

Figure 7.11: Optimizing post-filtering
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Figure 7.11(a) illustrates the situation in which post-filtering can be reduced: s1

denotes the Z-region containing the beginning of the current Z-interval [nji, njo].
The separator s2 of the following page is smaller than the end of the interval njo.
This means that all tuples on the page identified by s2 are inside the query box
and the post-filtering of those tuples can be omitted. Skipping the post-filtering
is continued for all subsequent pages with si ≤ njo. For the first page with sn >
njo post-filtering has to be applied again. This corresponds to the case shown in
Figure 7.11(b), where njo < s2 and therefore requiring page s2 to be post-filtered.
If njo is even smaller than the separator s1 of the current page (see Figure 7.11(c))
then the RQ continues like in the original version. Such, in all cases, the range
query algorithm continues with computing the next-jump-in with the separator of
the current page, i.e., the pages retrieved last. Figure 7.12 shows the pseudo-code for
the optimized range query algorithm. getNextRegionSeparator(cur) retrieves the
next region separator larger than cur from the index part. As usually the current
path through the index is cached, this operation does not cause additional I/O.

rangeQuery(Tuple ql, Tuple qh) {
Z-value start = Z(ql);
Z-value cur = start;
Z-value njo = getNextJumpOut(cur,start,end);
Z-value end = Z(qh);
Z-value sep;
Page page = { };
while (1)
{

cur = getRegionSeparator(cur);
page = getPage(cur);
postFilterPage(page, ql, qh);
sep = getNextRegionSeparator(cur);
while(sep <= njo) // next page is completely inside the query box

{
page = getPage(sep);
output(page);
sep = getNextRegionSeparator(sep);

}
if(njo > cur) // next page is partly inside the query box

{
page=getPage(sep);
postFilterPage(page, ql, qh);
cur = sep;

}
if ( cur >= end ) break; // termination: query box completely covered

// compute next-jump-in

cur = getNextJumpIn(cur, start, end);
njo = getNextJumpOut(cur, start, end);

}
}

Figure 7.12: Optimized RQ algorithm

The optimized RQ algorithm saves significant CPU cost for the range query
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processing by reducing the number of tuples that need to be post-filtered. In worst
case, i.e., if no Z-regions are completely contained in the query box, the optimized
version requires additional CPU for computing the njo for each nji.

7.4 Chapter notes

In this chapter we have introduced the ’inverse’ function to the NJI-algorithm, the
next-jump-out (NJO) algorithm computing the last Z-value of a Z-interval of a query
box given any point inside the interval. This allows for computing all Z-intervals of a
query box without looking at the data first. Describing a query in form of a list of Z-
intervals is very interesting for various issues of query optimization, e.g., cardinality
estimation. The major problem with the complete linearization of query boxes is
the very large number of Z-intervals possibly created. The number of intervals does
not only depend on the number of dimensions or the size of the query box but more
crucially on the location of the query box. This large set of intervals causes on the
one hand a large storage overhead and on the other hand leads to an increase in the
CPU cost. Consequently, the complete linearization is only practical if the number
of intervals is bounded (e.g., by enlarging the query box).

We have sketched one important application of the NJO algorithm, namely the
optimization of the RQ-algorithm by reducing post-filtering of pages. For this ap-
plication, the additional CPU cost is bound by the number of loaded pages and the
expected savings of CPU cost are significant.

Related work

To the best of our knowledge, this is the first and only discussion of the NJO-
algorithm, i.e., the complete linearization of a query box.



Chapter 8

Approximation of Z-regions and
its applications

In Section 6.1 we introduce the Z-regions as a key concept of the UB-Tree query
algorithms. Z-regions allow for having two views on the same thing: a Z-region
is on the one side a one-dimensional interval on the Z-curve and on the other side
represents a sub-space of the multidimensional universe covered by the Z-curve in the
specified interval. Even though it is easy to specify a Z-region as an interval on the
Z-curve, it is difficult to specify the exact extent of the Z-region in multidimensional
space, due to the nature of the Z-curve. For some problems, it would be beneficial
to have an easier description of the spatial extent of a Z-region, e.g., for computing
the distance of a point to a Z-region or the border of a Z-region.

In this section we introduce how to approximate a Z-region by a minimum bound-
ing box (MBB) and show how such an approach can be used for various advanced
applications on UB-Trees, especially in cases where a distance to a Z-region has to
be computed.

8.1 Computing the MBB for a Z-region

The spatial extent of Z-regions is defined by the image of the Z-curve in the given in-
terval, leading to a complex shape (Figure 8.1 shows the shape of the 2-dimensional
Z-region [9,17]). This makes it difficult to derive some interesting properties of the
spatial object, e.g., minimum and maximum extent in every dimension, etc. As it
is common technique in GIS (geographic information systems) and other applica-
tions handling extended objects [GG98], we propose to approximate a Z-region by
a minimum bounding box (MBB).

An MBB B is a hyper-rectangle, i.e., it is iso-oriented and can be specified by
an interval in each dimension. Consequently, an MBB can be specified like a query
box (see Definition 2.12) by a multidimensional interval B = [[a, b]].

For computing the MBB B of a Z-region R, we have to determine the minimum
and maximum values covered by R in each dimension. Let mini(R) and maxi(R)
denote the minimum resp. maximum value of dimension i covered by R.
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Figure 8.1: Spatial extent of Z-regions [9,17] and [52,63] and the correspond-
ing MBBs

Definition 8.1 (MBB of a Z-region)
A minimum bounding box B = MBB(R) = [[a, b]] is called the MBB of Z-region R
iff:

∀i, 1 ≤ i ≤ d : ai = mini(R) ∧ bi = maxi(R)

Given this definition, the question remains how to compute mini(R) and maxi(R).
To this end, we regard a Z-region R as an interval, i.e., R = [α, β]. Figure 8.2 shows
the algorithm for computing the MBB of a Z-region, requiring only a complete scan
through the two Z-addresses α and β. The basic idea behind this algorithm is to
check which minimal and maximal bit values may occur for a Z-address cur with
α ≤ cur ≤ β. For each bit position p in cur the possible value of curp depends on
the prefixes of α, β, and cur:

∀p with l − 1 ≥ p ≥ 0 : α...p ≤ cur...p ≤ β...p

If we now want to construct the minimal (resp. maximal) value for a dimension i,
we have to consider the influence of the other dimensions on the prefix. To get the
minimal (resp. maximal) value, we assume the optimal case that all other dimensions
have the maximal (resp. minimal) possible value in the prefix. If the modified prefix
exceeds α (resp. is below β) the value at the current bit position can be set to 0
(resp. 1), otherwise it gets the corresponding value of α (resp. β). Example 8.1
illustrates the algorithm for one Z-region.
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Example 8.1: Z-region approximation

Consider the Z-region R=[α, β]=[9,17]=[001001, 010001] of Figure 8.1
(dimension 1 is oriented vertically; dimension 2 is oriented horizontally).

The MBB [[a, b]] = [

(
a1

a2

)
,

(
b1

b2

)
] = [

(
a12a11a10

a22a21a20

)
,

(
b12b11b10

b22b21b20

)
]

of R is computed as follows.

a and b are constructed iteratively by processing α and β starting with
the most significant bits. The bits that have not been determined yet
are denoted by ′∗′s. As described above, in each step two temporary
prefixes min-tmp and max-tmp are constructed and compared to α and
β. Comparing min-tmp to α yields the minimum of the MBB, while
comparing max-tmp to β yields the maximum.

1. Step: handling dimension 1
The first step is trivial, no comparison is actually needed.
min-tmp = α5 = 0⇒ a1 = 0 ∗ ∗
max-tmp = β5 = 0⇒ b1 = 0 ∗ ∗

2. Step: handling dimension 2
To get min-tmp we take the value of the maximum of the MBB for
dimension 1, i.e., b1 and the value for the minimum for dimension 2.
Analogously, we create max-tmp. The last bit is always taken from α
resp. β.
min-tmp = b12α4 = 00; min-tmp = α...4 ⇒ a2 = 0 ∗ ∗
max-tmp = a12β4 = 01; max-tmp = β...4 ⇒ b2 = 1 ∗ ∗

3. Step: handling dimension 1
As soon as the temporary prefix is larger than α (resp. smaller than
β) we can stop the computation for the corresponding dimension and
fill-up the remaining bits of a and b with 1s resp. 0s.
min-tmp = a12b22α3 = 011; min-tmp > α...3 ⇒ a1 = 000
max-tmp = b12a22β3 = 000; max-tmp < β...3 ⇒ b1 = 011

4. Step: handling dimension 2
min-tmp = b12a22b11α2 = 0010; min-tmp = α...2 ⇒ a2 = 00∗
max-tmp = a12b21a11β2 = 0100; max-tmp = β...2 ⇒ b2 = 10∗

5. Step: handling dimension 2
min-tmp = b12a22b11a21b10α0 = 001010; min-tmp > α⇒ a2 = 000
max-tmp = a12b22a11b21a10β0 = 010000; max-tmp < β ⇒ b2 = 101

=⇒MBB(R)=[

(
0
0

)
,

(
3
5

)
]

�
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For the computation we have to introduce the prefix function pre(a, s) that
returns the first s bits of the bit representation of a. If s = 0, the result of pre(a, s)
is an empty bit string and we extent the comparison function on bit strings to such
a case by defining two empty bit strings to be equal. For the algorithm we have to
define one more function dim replace that sets the bits of one specific dimension i
in a Z-address α according to another Z-address β. More formally,

dim replace : Z × Z × N0 → Z
γ = dim replace(α, β, i) with γp =

{
βp, if dim(γ, p) = i
αp, else

1: ZMBB(α,β, zmin, zmax) {
2: int i;
3: Z-value min tmp;
4: Z-value max tmp;
5:
6: for(i=l-1;i=0;i--) {
7: min tmp=dim replace(zmax,zmin,dim(α,i));
8: max tmp=dim replace(zmin,zmax,dim(α,i));
9:
10: if(pre(min tmp,l-1-i) > pre(α,l-1-i))
11: zmini = 0;
12: else
13: zmini = αi;
14:
15: if(pre(max tmp,l-1-i) < pre(β,l-1-i))
16: zmaxi = 1;
17: else
18: zmaxi = βi;
19: }
20: }

Figure 8.2: Computing the MBB for a Z-region

The result of the ZMBB-algorithm are two Z-values zmin and zmax containing
the minimum resp. maximum values covered by the region in each dimension. In
order to get the final MBB we have to extract individual dimension values from
those Z-values, that is, the results is the bounding box B = [[min,max]] with
mini = zmini and maxi = zmaxi.

Complexity of computing the MBB

For computing the MBB of a Z-region we need to compare l times the prefixes of
α, β, and cur. More precisely, we need 2

∑l−1
i=0 i = 2 (l−1)∗l

2
= l2 − l bit comparisons

and in addition 2 ∗ l write operations to create the result.
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8.2 Quality of MBB approximation

As with any approximation, the question arises about the quality of the MBB ap-
proximation of Z-regions. For the Z-regions in a UB-Tree we expect good estimation
by MBBs as the splitting algorithm of the UB-Tree (cf. Section 6.1.3) tries to create
as rectangular Z-regions as possible. A frequent method for measuring the quality
of an approximation is to compare the volumes of the original and the approximate
object. As we are working with discrete domains, the volume of a Z-region is given
by the length of the corresponding Z-interval.

Definition 8.2 (Volume of a Z-region)
The volume vol(R) of a Z-region R = [α, β] is given by the length of the interval
[α, β], i.e., vol(R) = β − α + 1.

Analogously, we define the volume of the MBB of a Z-region as follows.

Definition 8.3 (Volume of an MBB)
The volume vol(B) of a d-dimensional MBB B = [[a, b]] is the product of the lengths
of the d intervals [ai, bi], i.e., vol(B) =

∏d
i=1(bi − ai + 1).

Definition 8.4 (Approximation quality)
The quality of the approximation of a Z-region R by the corresponding MBB B(R)

is κ(R) = vol(R)
vol(B(R))

.

Table 8.1 provides the quality of the approximation for some of our test data
sets.

Table 8.1: Approximation quality for 1 MBB

Data Set min(κ) avg(κ) max(κ)

GEO 67% 82% 100%
CENSUS5D 50% 71% 100%
GfK3D 58% 75% 100%

8.3 Optimization issues

The quality of the approximation can be improved by using more MBBs to approx-
imate one Z-region. This can be achieved by partitioning the Z-regions into a set
of disjoint regions. This is especially beneficial for so-called jump regions, which
decompose in (at most) two disjoint sets of points. Those jump regions are rare,
but lead to large, imprecise MBBs (cf. Z-region [9,17] in Figure 8.1). Generally, the
best way to split Z-regions is to use the UB-Tree split algorithm which already tries
to create rectangular Z-regions. Table 8.2 shows the approximation quality for the
approximation with 2 and 4 bounding boxes.

The results show a drastic improvement of the quality compared to just using
one MBB for a Z-region. With an average quality κ > 90% for 2 MBBs resp.
κ = 98% for 4 MBBs one achieves a reliable approximation with a limited overhead
for handling more MBBs.
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Table 8.2: Approximation quality for multiple MBBs

Data Set # MBBs min(κ) avg(κ) max(κ)

GEO 2 83% 93% 100%
GEO 4 92% 98% 100%
CENSUS5D 2 77% 91% 100%
CENSUS5D 4 89% 98% 100%
GfK3D 2 78% 90% 100%
GfK3D 4 90% 98% 100%

8.4 Chapter notes and related work

In this chapter we have introduced an algorithm for computing the minimum bound-
ing box for a Z-region. This gives the possibility to transfer extended objects in the
linear space, i.e., intervals on the Z-curve, back to objects in the multidimensional
space. The MBB is not the exact description of the object but an approximation
that is much easier to describe. Our experimental results show that a small num-
ber of MBBS leads already to a very good quality of the approximation. Thus, this
approach is very useful for problems where the exact Z-region is not required, for ex-
ample, for visualization, approximate query processing, analysis of data distribution
and much more.

Advanced Nearest Neighbor Search on UB-Trees Nearest Neighbor (NN)
search and its derivatives (k-NN, approximate NN, etc.) have become very impor-
tant in various application areas in recent years [RKV95]. In [Mar99, Str00] two NN
algorithms for UB-Trees are proposed and analyzed. One of the key issues in these
algorithms is the computation of the distance from a point to the Z-region boundaries
in order to detect the next Z-region to be processed. The MBB-approximation will
drastically simplify the distance computation but with the disadvantage that it is
only an estimation. Still, this approach could be viable for approximate NN-Search
on UB-Trees.

Tetris-Algorithm In the Tetris algorithm there are two places where the MBB
approximation may help. First, in the computation of the next event point and
secondly to determine all Z-regions behind the sweep line. These tests require the
maximal extension of a region for a given dimension, which is naturally provided by
the MBB of the Z-region.

Related work

The problem of approximating a Z-region with a (set of) MBBs can be regarded
to be the inverse problem of approximating extended objects by a set of intervals
on space-filling curves [Gae95, GG98].



Chapter 9

Query optimization in the
presence of UB-Trees

As already pointed out in Chapter 6, when we are integrating a new data structure
into a DBMS kernel, we also have to guarantee that it can effectively be used by
the query optimizer.

In this chapter, we discuss how the availability of UB-Trees affects modern opti-
mizers. We address the issue of new execution possibilities given by the new access
method and dilate on the important topic of cardinality estimation, which is essential
for cost-based optimization.

9.1 Introduction to query optimization

In modern DBMSs, query processing is generally divided into six steps [Gra93]:

1. Parsing

2. Query Validation

3. View Resolution

4. Optimization

5. Plan Compilation

6. Query Execution

After a query is issued to the DBMS, it is syntactically checked and parsed
into an internal form (Step1). In Steps 2 and 3, the query is semantically checked
(validated) against the meta data (catalog) and, if necessary, view definitions and
subqueries are resolved. Often some rule-based transformation (sometimes called
query rewrite) is already applied in Step 3. This only includes optimizations that
are independent of later cost-based decisions, i.e., optimizations that guarantee to
always produce better query plans. Optimizations, like decisions on access paths
or join-orders, that depend heavily on the data distribution of the base tables are
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usually left to the cost-based optimizer. Query rewrites that are applied in this phase
usually consist of safe relational algebra transformations such as pushing restrictions
and projections down as far as possible.

In the subsequent optimization step, an optimized query evaluation plan (QEP)
is generated. This requires the mapping of logical operators to physical operators,
i.e., concrete implementations of logical operators (e.g., hash-join implementation of
an equi-join). Using cost estimations the optimizer chooses the best QEP from all
possible ones. This QEP is then translated/compiled into an execution ready form
and finally executed in the query engine.

The optimization phase itself can be further divided into plan generation and
cost estimation [Cha98].

Plan generation

The plan generator enumerates potential QEPs for a given logical plan. For
each generated plan the optimizer then estimates the cost and chooses the best one
for execution. Typically, the two steps are interleaved as the results of the cost
estimation help to reduce the search space, i.e., the number of plans which have to
be considered by the plan generator. Integrating a new index structure may also
introduce new operators that have to be taken into account.

Cost estimation

In order to choose the best (or, to be more precise, a reasonably efficient) plan
the optimizer needs to estimate the cost of each plan produced by the plan generator.
To this end, the cost of each operator in the plan has to be guessed. In modern
optimizer models, the cost of an operator is usually determined by the size of its
input, i.e., by the number of tuples processed by the operator. Consequently, the
optimizer requires reliable cardinality estimates for all outputs of operators at each
level of the plan. The same holds for the access operators of base tables: the
I/O cost is estimated by a cardinality estimation for the predicate on the base
table multiplied by an individual factor, reflecting the I/O overhead, for each access
method. The cardinality estimation on the base table is usually done independently
of the available index structures to prevent biased cost estimates.

In the next section, we discuss the changes to the optimizer triggered by the
UB-Tree integration.

9.2 Rewrite rules for UB-Trees

Considering the integration of UB-Trees, the question arises, if there are scenarios
in which a UB-Tree access is always favorable compared to all other available meth-
ods? Envisioning the vast number of possible execution plans for one query, it is
hard to identify situations where one specific plan/operator always outperforms all
alternatives. To answer the question if such a situation exists for the UB-Tree, we
have to look at the cost of the various index operations again.
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Point queries

For point queries we can guarantee constant cost (one data page access) inde-
pendent of the data distribution under the assumption that the index key is unique.
If there are duplicates, even point queries may lead to multiple data page accesses,
depending on the number of duplicates and the data distribution. Still, it is rel-
atively safe to assume that duplicates do not cause a major problem. So, given a
point query, is the UB-Tree always the best choice? No, as it depends on the query
and on the alternatives. For example, assume a second, non-clustering index, with
the same key that also covers all projection attributes required by the query. It may
be cheaper to use that one, because if this non-clustering index does not include all
attributes of the base table it is usually smaller and thus cheaper to access.

There is one safe rewrite rule for access methods in general that is already used
in systems. Informally, applied to the UB-Tree is states: if the query restricts all
index keys to a point and if the UB-Tree is the only index that covers all required
attributes then use the UB-Tree.

Range queries

For range queries no prediction on the access cost can be made without looking at
the data or reliable statistics. Without a cost estimation it is therefore not possible
to judge which access method yields the lowest cost. Even if there are no other
indexes, it is not safe to use the UB-Tree. Recalling the rule of thumb stating that
a full table scan outperforms any index if more than 10% of the data has to be
fetched, even a full table scan may be the better choice for range queries. Thus, the
decision on the access method should be left to the cost-based optimizer.

We conclude that the general rules for access methods suffice, and that we have
not identified special transformations for the UB-Tree that can be safely applied in
the rewrite phase.

9.3 Plan generation for UB-Trees

Supporting the UB-Tree as multidimensional access method not only provides a new
access path but also gives room for new execution plans. In the following we briefly
describe new execution plan variants that should be considered by the optimizer:

• Star join optimization

• Z-order join for Equi-Joins

• Combination of range query and sorting

• Optimization for multiple query boxes

• Reduction of post-filtering
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It is important to note, that we discuss new potential execution plans here. The
decision if a new execution variant is actually better than others should still be done
by the cost estimation.

Star Joins with UB-Trees

Star join optimization plays an important role for data warehousing applications.
Much work has been done in the past to optimize star-join queries leading to various
hash-based [Sun96] or index-based [OQ97] approaches and combinations of them
[ZDNS98].

As for bitmap indexes, the idea of index-based star joins can also be used for
UB-Trees or any multidimensional access method in general: instead of joining the
complete fact table with the dimension tables, a multidimensional range query on
the fact table is used to reduce the size of the largest join partner before applying
any other star join technique on the result. Star join queries usually include local
restrictions on the participating dimension tables. The UB-Tree allows for utilizing
these local restrictions to reduce the size of the fact table before joining it with
the dimension tables. To this end, a plan has to be generated that maps the local
restrictions to restrictions on the dimension keys, then combines these restrictions
to one or more multidimensional queries on the fact table. Such a plan is especially
advantageous if the resulting set of multidimensional queries on the fact table is
small. The goal of this step is to reduce the fact table before the costly joins with
the dimension tables for which the optimizer may choose any available method.

Z-order join

The Z-order of UB-Trees can be utilized in processing of equi-joins. If all par-
ticipating tables have a UB-Tree on the join attributes and the bit-interleaving is in
the same order, then the join can be computed by just merging the corresponding
Z-values, utilizing the underlying order of UB-Trees.

Multiple query boxes

As we have mentioned in Section 6.3, the UB-Tree also handles a set of mul-
tidimensional query boxes very well. Yet, if the number of query boxes gets very
large, the overhead of handling all these boxes may become intolerably high. For
such cases, it may be more beneficial to use one or more larger query boxes that
cover the set of query boxes in combination with appropriate post filtering. There
are two ways to generate the covering query boxes: first, one can use an algorithm
to find a good cover given the complete set of original query boxes. This approach,
however, requires dynamic optimization, i.e., optimization at query execution, as
it needs the complete set of query boxes, which are unlikely to be specified in the
original query itself but are generated by the evaluation of some other predicates.
Secondly, one has to change the generation of the original query box set. Like in
the star-join case mentioned above, the query box set is usually the result of the
evaluation of local predicates on the dimensions. Such predicates lead in general to
a set of ranges on the dimension keys. The multidimensional query boxes are the
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result of the cross-product of all these key ranges. Consequently, a large set of query
boxes is created if the local predicates generate many key ranges/intervals on the
dimensions. If the optimizer can detect statically that a given dimension predicate
may lead to many intervals it may reduce it for the query box generation in combi-
nation with a subsequent post-filtering. For example, reducing the predicate ”every
second day in 2002” on the time dimension to ”all days in 2002” (resulting in just
one range) reduces the number of query boxes by the factor 182.

Combination of sorting and range queries

Sorting plays an important role in query processing. Either because it is re-
quested by the user or because it is required or useful for subsequent internal oper-
ators (e.g., sort-merge join, grouping, duplicate elimination). The Tetris-Algorithm
for the UB-Tree [MZB99] enables the combination of sorting and range query pro-
cessing leading to new alternatives to be considered by the plan generator. In
combination with the TempTris-Algorithm [ZMB01], the Tetris-Algorithm can be
used to organize large intermediate results as UB-Trees. This allows for efficient
multidimensional access to intermediate results if needed.

Reduction of post-filtering

If a query restricts both, key and non-key attributes, usually a postfiltering
step for the non-key predicates is required. The range query algorithm of the UB-
Tree can easily be extended to combine these two steps: instead of just using the
query box specification in the postFilterPage function (cf. Figure 7.12), we can
additionally check the non-key predicates. This procedure corresponds to the two-
phase processing in many spatial indexes, where we distinguish between a filter
step and a refinement step [RSV01]. This optimization is especially beneficial for
clustering UB-Trees because in this case the non-key attributes are basically at hand.

9.4 Cardinality estimation

As we have stated before, the crucial issue of cost-based optimization is to get good
estimates for the cardinalities of operator outputs. The query optimizer needs this
information for two reasons:

1. Estimation of costs: the result set size can be seen as an estimate for the costs
of producing the result

2. Decision on the order of operators: decision of join orders and others

For the further discussion it is necessary to clarify the two terms cardinality and
selectivity. Cardinality refers to the size of a set of tuples, either the input or output
of an operator. As defined in Section 2.3, selectivity refers to the restrictiveness of a
query/perdicate, i.e., the ratio of the output over the input of a restriction operator.
The techniques described below all estimate the cardinality of the result of a query
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and not directly the selectivity. Still, the selectivity can be easily derived from the
cardinality estimate and the cardinality of the complete table.

In this section, we present a new histogram-based estimation technique for mul-
tidimensional data relying on UB-Tree techniques. We also point out the limits of
histogram-based estimation and suggest a new quality metric for multidimensional
histograms.

9.4.1 State of the art estimation techniques

Before directly going to the description of the new estimation techniques, we give a
brief overview on the state of the art of cardinality estimation. We are concentrating
on histogram-based techniques here and discuss other methods in Section 9.5.

Histograms are a synopsis of the data distribution that partition the attribute
domain into a set of buckets. In general, data is assumed to be uniformly distributed
within a bucket and the distribution of the buckets approximates the real data
distribution. Each bucket b stores the description which subset of the domain is
covered and the frequency freqb specifying the number of tuples within this subspace.
The so-called uniformity assumption provides the foundation for histogram-based
estimation: it states that the data is uniformly distributed within a bucket. Thus,
given a query Q and a histogram with n buckets b1, . . . , bn, the cardinality of Q is
estimated as:

|Q|est =
n∑
i=1

(
freqbi ∗ vol(Q ∩ bi)

vol(bi)

)

with Q ∩ bi specifying the intersection of Q with bucket bi.

The precision of a histogram depends largely on the number of buckets in the
histogram: the more buckets the better the approximation of the real data dis-
tribution. On the other hand, more buckets lead to higher space consumption and
estimation cost as more buckets need to be stored and processed. In modern DBMSs
the number of buckets is usually configurable. Commonly, 2KB (≈ 512 buckets) are
used per attribute.

The uniformity assumption for buckets is the limiting factor for the usage of
histograms as it may lead to useless estimations in very sparse universes as we
discuss in Section 9.4.3.

9.4.1.1 One dimensional histograms

One dimensional histograms are used to approximate the data distribution in one
attribute/dimension. Two simple histogram types are depicted in Figure 9.1.

Figure 9.1(a) shows a equi-width histogram where the complete data space is di-
vided into n buckets of the same length. The equi-depth histogram (Figure 9.1(b)),
in contrast, divides the data space into buckets that have the same frequency. Con-
sequently, dense data areas are covered by many small buckets whereas sparse areas
are covered by few large buckets. In general, equi-depth histograms are preferred
over equi-width histograms as they adapt better to ragged data distributions.
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(a) Equi-width histogram

(b) Equi-depth histogram

Figure 9.1: Equi-width and Equi-depth histograms
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Over the time, these simple histograms have been tuned and enhanced, e.g.,
V-Optimal histograms [IP95], to provide faster and better estimations.

9.4.1.2 Multidimensional histograms

One dimensional synopses cover one attribute at a time. If one wants to approximate
the joint data distribution of multiple attributes, one-dimensional histograms do not
suffice, unless the attributes are completely independent from each other. If this
independence assumption holds, the overall selectivity of query of a conjunction of
local predicates σAi

on attribute Ai is the product of the individual selectivities, i.e.,

sel(σA1 ∧ . . . ∧ σAd
) = sel(σA1) ∗ . . . ∗ sel(σAd

).

The problem of this approach lies in the fact that the independence assumption
usually does not hold in practice. Consequently, the estimation based on the above
formula may lead to high error rates for data distributions with correlations.

Recognizing this issue, researches recently have come up with various multidi-
mensional histograms explicitly capturing the joint data distribution of attributes.
[GG01] provides an excellent overview on the latest developments. The problem
of multidimensional histograms is comparable to the one of multidimensional in-
dexes: finding a good bucketization, i.e., partitioning of the multidimensional do-
main into buckets, to approximate the real data distribution as exactly as possible.
The approaches range from simple multidimensional equi-depth histograms [MD88]
to histograms allowing for overlapping buckets [GKTD00]. The generation and
maintenance of multidimensional histograms is quite expensive and their predic-
tion precision deteriorates with growing universe size (see Section 9.4.3 for details).
Recent work tries to optimize the histograms by exploiting knowledge about the
independence and correlation of attributes to reduce the dimensionality [DGR01].

9.4.1.3 Index-based cardinality estimation

Using histograms for cardinality estimation has a significant drawback: histograms
are static. A histogram always reflects the data distribution at the time of histogram
creation. Usually, it is too expensive to update histograms dynamically. As conse-
quence, the precision of histograms deteriorates with the number of insert, delete,
and update operations executed on the underlying table. Thus, it is necessary to
periodically gather the statistics from scratch to achieve tolerable error rates. Such
a refresh of the histogram is usually done in the maintenance period of the database
but still requires a significant amount of time.

To get more accurate and actual statistics, various approaches exist to use indexes
as a replacement/add-on to histograms. Indexes are often used in combination with
sampling and probing [Ant92], but the index can also be regarded as an equi-depth
histogram itself [Aok98a]. The technique of using indexes for estimation is already
available in commercial DBMSs, e.g., Oracle [AZ96]. An additional advantage of
indexes in comparison to histograms is the non-fixed resolution. If necessary, the
resolution of the estimation can be improved by traversing deeper levels of the tree.
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A problem of index-based cardinality estimation is the danger of biased decisions,
if the estimates stemming from indexes are compared to the ones from standard
histograms.

9.4.1.4 Estimation error metrics

For the experimental evaluation of histograms we will use standard metrics as used
in previous work. The goal is to measure the estimation error of the correct result
set size s = |Q| and the estimated size sest = |Q|est of a query Q. The most common
used metric is the (absolute) relative error defined as follows1:

Erel =
|sest − s|
max(1, s)

For a set of queries we use the median of Erel of the individual queries.

9.4.2 Cardinality estimation with UB-Tree techniques: Z-
Histograms

We have discussed above that the problems of multidimensional histograms are
closely related to the issues in multidimensional indexes. With the UB-Tree we have
an efficient method for handling multidimensional data at hand. So why not use this
technology also for cardinality estimation? Instead of working with multidimensional
histograms, we use the combination of dimension-reduction by the Z-curve and one-
dimensional histograms. Or to be more precise, we use Z as the base space of
the histograms. Each bucket b is then defined by a Z-interval and consequently
represents a Z-region. Figure 9.2 shows an equi-depth and an equi-width histogram
for a non-uniform data distribution.
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(a) Equi-depth histogram
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(b) Equi-width histogram

Figure 9.2: Equi-depth and equi-width histogram on Z-values

1It is necessary to use the term max(1, s) in the denominator in order to allow for empty queries,
i.e., queries that have no result.
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In our experiments, we have observed that equi-depth histograms usually perform
better than equi-width histograms. Thus, we will only report the results for our
measurements with equi-depth histograms in the subsequent sections.

Optimizing Z-Histograms
As the buckets of Z-histograms cover the complete space the problem of covering

’dead space’ arises. For equi-depth histograms, however, the dead space covered by
a bucket can easily be reduced by using the Z-values of the first and the last tuple
falling into the bucket as bucket boundaries. This idea of reducing dead space is
currently also applied to reduce the dead space indexed by the UB-Tree (see [Fen02]
for details).

9.4.2.1 Estimation based on linearization of query boxes

We discuss the estimation using the linearization of query boxes only briefly as
this approach has severe practical limitations with respect to the runtime of the
estimation (details can be found in [Tic99]).

The idea is to linearize the query Q into a set of m Z-intervals Z = {z1, . . . , zm}.
For each interval we compute the overlap with the buckets of the Z-histogram and
estimate the contribution per bucket with the product of the frequency and the
percentage of the overlap.

|Q|sel =
m∑
j=0

n∑
i=0

(
freqbi ∗ vol(zj ∩ bi)

vol(bi)

)

The quality of this method is very good, generating error rates below 1% on vari-
ous artificial data distributions. However, the price for this accuracy is intolerable
high: the estimation took between 6 and 100 times longer than the execution of the
query itself. The reason for this drastic difference is the large number of intervals a
query box may correspond to (cf. Section 7.2). We tried various ways of reducing
the number of intervals by approximating the query box, i.e., trading accuracy for
estimation cost. While we were able to reduce the execution time to a tolerable
level, we could achieve reasonable estimation results only for up-to three dimensions
and mid-size queries (> 0,25 % selectivity).

9.4.2.2 Estimation based on MBB-approximation of Z-regions

Instead of linearizing the query box and therefore working in one-dimensional space,
we now approximate each bucket by the corresponding MBB (see Chapter 8 for
details) and work in the multidimensional universe to estimate the cardinality. To
this end, we compute for each bucket b of our Z-histogram the MBB B(b) and check
whether it intersects the query Q. We can use the standard estimation formula, i.e.,

|Q|sel =
n∑
i

(
freqbi ∗ vol(Q ∩B(bi))

vol(B(bi))

)
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This estimation is by far faster than the estimation based on the linearization
of the query box, as at most n buckets have to be tested against Q. The accuracy
of this technique is good, matching the ones of other multidimensional histograms.
Table 9.1 shows the estimation error for a set of queries on the example data sets. We
classify the query sets into four groups according to the selectivity of the queries.
The histogram size, i.e., the number of buckets, was chosen to be approximately
2KB. We show the median relative estimation error Erel for each group and the
standard deviation.

Table 9.1: Estimation results

Data Set # buckets Query median Erel stdv(Erel)
selectivity

GEO 300 <0,1% 200% 5167%
GEO 300 0,1% - 1% 21% 25%
GEO 300 1% - 10% 6% 7%
GEO 300 > 10% 2% 2%

CENSUS5D 600 <0,1% 678% 6599%
CENSUS5D 600 0,1% - 1% 78% 91%
CENSUS5D 600 1% - 10% 11% 22%
CENSUS5D 600 > 10% 7% 4%

The results of Table 9.1 show the Z-Histograms work very well for queries with a
selectivity of more than 1%. For smaller queries the estimation error becomes larger,
getting especially high for queries with a selectivity < 0,1%. But even this high errors
are tolerable in practice, as the overall estimated cardinality still represents a small
result, providing a reliable hint for the optimizer (e.g., it does not matter if the
optimizer calculates with 500 tuples instead of 1 tuple, i.e., Erel ≈ 500%).

For the GfK data sets, however, the estimations become completely unreliable,
returning a cardinality of 0 for all queries. In the next section we discuss this, in
our opinion, general problem of histograms with sparse universes in more detail.
In the meantime we conclude that the estimation based on MBB-approximation of
Z-regions works well if the underlying histogram is reliable.

9.4.3 When histogram based cardinality estimation fails

Now, we want to discuss the limits of histogram based cardinality estimation. As
we have pointed out in the discussion above, the uniformity assumption for buckets
is the key concept of histogram based estimation. We investigate under which cir-
cumstances this assumption does not hold and hence the histogram estimation will
lead to intolerable errors. In the literature, the infamous ”curse of dimensionality”
is often stated as key reason for this problem. We evaluate this more precisely and
come to the conclusion that it should be better called ”curse of sparse universes”.
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Curse of dimensionality

The term ”curse of dimensionality” usually refers to the problem of distance
metrics in high-dimensional data spaces [WSB98]. With increasing dimensionality
the number of direct neighbors for a given point increases linearly and in general
the number of points within a given distance around the search point increases ex-
ponentially. As consequence, standard distance metrics become almost meaningless
in those spaces. The consequences for multidimensional access methods are quite
obvious: the clustering of those index structures deteriorates with increasing dimen-
sionality.

The question that arises is, how does the dimensionality affect the quality of
histograms? As introduced earlier, histograms are a synopsis or summary of the
(populated) universe Ω. Each bucket covers a certain part of Ω and within the
bucket the data is assumed to be uniformly distributed. Again, lets have a look at
the estimation formula for a query Q:

|Q|est =
n∑
i

(
freqbi ∗ vol(Q ∩ bi)

vol(bi)

)

Analyzing when this formula leads to |Q|est ≈ 0 results in:

|Q|est −→ 0 if ∀bi : freqbi ∗ vol(Q ∩ bi)

vol(bi)
−→ 0.

This can only be the case if the intersection of the query with the bucket is much
much smaller than the bucket itself, i.e., if vol(Q∩bi)

vol(bi)
−→ 0, as in general freqbi > 0

holds for all bi.
We will discuss the influence factors that may lead to this effect. As we will

see, the problem exists for large and very sparse universes as they are typical for
real-world applications.

1. Observation: Size of universe has more influence than dimensionality

The size of the d-dimensional universe Ω = D1 × . . . × Dd is |Ω| =
∏d

i=1 |Di|.
Assuming the same domain D with size s = |D| for all dimensions then |Ω| = sd.
Table 9.2 illustrates the different influence of the domain size and the dimensionality
on the universe size. For example, the two-dimensional universe based on the integer
domain (231) is larger than the 6-dimensional universe based on a domain of size
1024. Hence, there is definitely a ”curse of dimensionality” as each added dimension
also expands the universe, but a more important influence factor on the performance
of histograms is the resulting universe size.

2. Observation: Universes are very sparse

To our surprise, the sparsity of real-world data universes is often underestimated
in the literature. For example, [Col96] calls 80% sparsity typical for OLAP applica-
tions, a value also mentioned by other publications [NNT00]. In our own experiments
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Table 9.2: Universe size: dimensionality vs. domain size
s d |Ω|

1024 2 1048576
1024 4 1,09951E+12
1024 6 1,15292E+18
1024 8 1,20893E+24
231 2 4,61169E+18
231 4 2,12676E+37
231 6 9,80797E+55
231 8 4,52313E+74

with various real-world data sets (cf. Chapter 4), however, we have observed an oc-
cupation less than 1%, i.e., a sparsity significantly higher than 99%, to be typical.
Example 9.1 presents the sparsity of the 3-dimensional GfK data set.

Example 9.1: Sparsity

We will use our 3-dimensional GfK data warehouse to illustrate the prob-
lem of large universes. As we have described in Chapter 4, the universe
of GfK is very sparse. With a product domain of size 229, a segment
domain of 224, and a time domain of 25, the complete universe covers 258

points. With a data volume of approx. 43 (≈ 2, 5 ∗ 224) million tuples
the sparsity is larger than 99,99999998%, i.e., less than 0,00000002% of
the universe is populated.

�

In our opinion, the very sparse universes in real applications stem from the
huge difference between the sizes of the actual domain and the nominal domain of
dimensions. Even though the actual domain, i.e., the existing values of the attribute,
is usually small (e.g., 500.000 products for GfK) the nominal domain is usually much
larger (e.g., integer domain without constraints in GfK for the Product dimension;
the same holds for the TPC-H [TPC99] benchmark: for the ORDER table a sparsity
of 25% is specified leading to a similar sparsity for the LINEITEM table as for
GfK). This is due to the fact that mostly artificial keys, which often also carry some
semantics, are used causing a wide spread of the keys leading to a large nominal
domain.

It is important to note in this context, that the sparsity heavily depends on the
type of data. Raster data, like X-Rays, CT, or MRI data, is a typical example of
dense multidimensional data with a sparsity close or equal to 0.

3. Observation: Data is widely spread resulting in sparse buckets

The difference between nominal and actual domain alone is not the key problem
of histograms. If the data would reside in few data clusters, which have relatively
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small distance from each other, histograms would be able to approximate this data
distribution very accurately. However, many real-world examples show that a huge
difference between actual and nominal domain is often the result of widely spread
data in the attribute. In combination with other dimensions this leads to a large
number of clusters in the multidimensional universe. If the number of clusters
exceeds the number of buckets available for approximating the data distribution,
multiple data clusters have to be covered by one bucket. Depending on the number
of clusters in one bucket and the distance between these clusters the area covered by a
bucket may get very large. Consequently, the sparsity of buckets (see Definition 9.1)
may get very high.

4. Observation: Queries are tiny

User queries usually focus on some data cluster, e.g., an analyst will not ask
for the sales from 1970 to 2000 if she knows that the data starts only in 1990.
Consequently, queries commonly have at most the size of a data cluster.

Putting all observations together, we can state that histograms have problems if

• the universe is sparse and

• there are more data clusters than buckets and

• queries are much smaller than buckets, i.e., vol(Q∩bi)
vol(bi)

−→ 0 .

This is for example the case for the GfK application and other real-world appli-
cations we have examined. Consequently, the question arises how to determine if a
histogram will provide reliable estimates or not. As this depends largely on the data
distribution to be approximated, one either needs a thorough data analysis before
histogram creation or a way to measure the quality of a histogram after creation.

A quality measure for histograms

We suggest to use the sparsity of buckets to measure the quality of a histogram.

Definition 9.1 (Sparsity of buckets)

The sparsity ξ of a bucket b is ξ(b) = 1− freqb

vol(b)
.

During or after histogram creation, the sparsity criteria can be either used to
judge the quality of the histogram or for further optimization of the histogram. In
the first case, a histogram is less reliable the larger the average sparsity of all buckets.
To be more precise, only estimates for queries using solely buckets with acceptable
sparsity will provide reliable results2. Including buckets with high sparsity into the
estimation will significantly increase the error rate. On the other side, the sparsity
of the buckets can be used for histogram optimization as they indicate where the

2It is not scope of this thesis to conduct a quantitative analysis in order to determine a boundary
for acceptable sparsity.
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approximation has to be improved. Improving the synopsis usually only works by
introducing new buckets to get a finer approximation of the data set. The sparsity
of the buckets helps to identify areas of the histogram where extra buckets should
be spent.

9.5 Chapter notes and related work

In this chapter we have discussed changes of the query optimizer which are required
to efficiently support UB-Trees. We have identified two issues: first, the generation
of execution plans that take UB-Trees into account. Secondly, an exact and reliable
cardinality estimation for predicates on multidimensional data is essential for cost-
based optimization.

The modular design of modern optimizers allows for easy integration of new
access methods: the plan generator includes new operators and access methods in
the creation of potential plans, which are evaluated by the cost estimator. Getting
exact and reliable cost estimation for the new index structure is the key issue of the
integration. It is important to note that this is not a special issue of the UB-Tree
integration, but holds for supporting multidimensional access methods in general.

Modern DBMSs use histogram-based or sampling techniques for cardinality es-
timation, but the estimation of joint data distribution over multiple attributes is
still an open problem. We have proposed Z-Histograms, a new multidimensional
histogram technique, combining the Z-curve with one-dimensional histograms. We
have examined two ways of approximating the cardinality of a query: first, lin-
earizing the query into a set of intervals. Secondly, transforming the buckets of the
histogram, i.e., the Z-regions defined by the bucket, into MBBs using the algorithm
of Chapter 8. While the first approach provides excellent precision it leads to in-
tolerable estimation time. The latter approach combines tolerable overhead with
usable error rates, comparable to other multidimensional histograms.

Finally, we have pointed out the limitations of histograms in general: the unifor-
mity assumption for buckets. We have shown that this assumption does not hold for
sparse universes with scattered data leading to sparse buckets. In such cases, his-
tograms will significantly underestimate the real cardinality, resulting in unreliable
cardinality estimations.

This deficit of histograms, which also holds for other estimation techniques like
sampling, has lead to further developments. For example, STHoles [BCG01] is a
work-load aware histogram, trying to improve the precision of histograms in the
area of interest of the user, i.e., in the subspace defined by the queries. Such
approaches have problems with varying interest, i.e., wide spread queries, and with
the estimation of queries falling outside the current focus of the histogram.

A similar approach is LEO, the learning optimizer of IBM DB2 [SLMK01]. The
DBMS detects errors in the estimation and stores adjustments resulting from the
actual query execution to be used in future optimizations. This corresponds to
building-up a histogram for the executed queries and has the same benefits and
draw-backs of the previous approach: exact estimates for similar queries but high
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error rates for ’outlier’ queries. In addition, the precision of the approach also
depends on the overhead allowed for storing the adjustments.

Related work

The field of query optimization covers a large body of work such we only highlight
contributions important for our work.

Cardinality Estimation Cardinality estimation has a long tradition in query
optimization [SAC+79]. Lately, it has received new attention in the context of
approximate query processing [GG01], which is considered to be the promising ap-
proach to handle the increasing data volumes of today’s applications.

[PIHS96] and [Poo97] provide a detailed overview of various histograms and es-
timation algorithms. [Rit99] evaluates histograms for the usage with raster data.
[DGR01] proposes the usage of dependency models to improve the precision of his-
tograms in high-dimensional spaces. [Aok98a, Aok99] discuss the usage of indexes
as histograms. Besides histograms, wavelets [CGRS00] and sampling are commonly
used for cardinality estimation.

Query processing with HC in EDITH Query processing in the presence
of UB-Trees is currently investigated in the EDITH project [EDI]. The focus in
this project is not set on the UB-Tree itself, but on hierarchical clustered data.
The hierarchy semantics encoded in the artificial keys (surrogates; see Section 2.5)
allows for new processing techniques of typical OLAP queries. For example, pre-
grouping on surrogates significantly improves the overall response time. The work in
EDITH relies on a multidimensional organized, more specifically a UB-Tree indexed,
fact table to provide efficient access to the base data. The goal of HC is to map
restrictions on dimension hierarchies to range restrictions on the fact table. Still,
depending on the predicates, a query may map to a large set of intervals in one
dimension, leading to a large set of query boxes on the fact table. At that point,
the optimizations introduced in this chapter, i.e., the star-join processing and the
handling of multiple query boxes, play an important role.



Part III

Advanced concepts in
multidimensional

indexing

In the last part of this thesis we will enhance the basic concepts
of the UB-Tree, going one step further towards a universal index.
We discuss a modified address calculation scheme in order to allow
for arbitrary weighting of dimensions. A side-effect of the results is
an improved range query processing for standard B-Trees, making it
also more suitable for multidimensional indexing. We briefly point
out open issues and interesting future work before we conclude our
work.
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Chapter 10

Weighted dimensions

As we have already discussed in the first part, clustering is a key concept for pro-
viding efficient access to data. Access methods provide a wide range of different
clustering schemes. A large set of index structures cluster the data according to
some sort order of the tuples, e.g., the Z-order for UB-Trees. Other access methods
use a combination of various heuristics, making it difficult to express the cluster-
ing criteria formally, e.g., the clustering of R*-Trees. The quality of a clustering
scheme can only be measured w.r. to a given query set. An important property of a
multidimensional clustering scheme is the symmetry of the clustering. Informally, a
clustering scheme is symmetric if no index attribute is preferred w.r. to query perfor-
mance. For example, UB-Trees and R*-Trees are considered to be symmetric index
structures whereas a composite B-Tree is asymmetric, favoring the first attribute of
the key.

Symmetric treatment of all index attributes is desired if no knowledge about
preferences in the restrictions to the index attributes is available. However, if pref-
erences on the attributes exist then one wants to exploit them for improving the
clustering. In this chapter we introduce the new concept of weighted dimensions,
enhancing the clustering scheme of UB-Trees to allow for asymmetric handling of
attributes. Our evaluation shows that the weighted UB-Tree provides better perfor-
mance for graded/weighted multidimensional range restrictions than the standard
UB-Tree.

10.1 The concept of weighted dimensions

Before we talk about the concept of weighted dimensions, we have to specify the
goal more precisely. The goal is to adapt the clustering of the UB-Tree to the
preferences specified in a set of queries. Typically, not all dimensions have the
same importance, i.e., there are attributes that are either more frequently restricted
than others (e.g., the Time dimension is almost always restricted in data warehouse
queries) or that impose stronger restrictions on the table. A symmetrical index,
like the UB-Tree, cannot provide the best clustering for such graded queries. For
example, a composite B-Tree will always perform better than a UB-Tree if only
the first attribute is restricted. At the same time, unsymmetrical indexes lack the
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flexibility of supporting changing access patterns. We will discuss these issues later
and will first show how changing the address calculation of UB-Trees from bit-
interleaving to bit-permutations leads to weighted dimensions, allowing for better
performance for graded queries.

10.1.1 An enhanced address calculation concept for UB-
Trees

Let Ω be the multidimensional domain of d dimensions D1, . . . ,Dd. In the following,
we are only interested in the binary representations of the domain values. For ease
of illustration, we assume the same length l for the binary representations for all
dimensions. Consequently, we can express a point x = (x1, . . . , xd) ∈ Ω by a (d,l)-
(binary) matrix

X =




x10 . . . x1l−1

...
. . .

...
xd0 . . . xdl−1




specifying the binary representation of the point. This presentation is chosen, as
xij denotes the (j − 1)th bit1 of dimension i.

For describing arbitrary bit permutations of a tuple x to a bit string b with
|b| = d ∗ l we introduce a (l,d)-permutation matrix P. The element Pij specifies to
which bit bk the (i−1)th bit of dimension j maps to (denoted by xji−1

�→ bk). Instead
of storing the position k in the element Pij, we store the value of bk, i.e., Pij = 2k ⇔
xji−1

�→ bk. With this introduction, we can formally define the permutation matrix
as follows.

Definition 10.1 (permutation matrix)
P denotes the set of all permutation matrices. A permutation matrix P ∈ P for
d dimensions D1, . . . ,Dd is a (l, d)-matrix with

• ∀i, j, k, l with i �= k or j �= l : Pij �= Pkl
• ∀Pij : Pij = 2k with 0 ≤ k ≤ d ∗ l − 1

With these preliminaries, we now can define the address calculation based on
bit permutation properly. Multiplying the ith row of X with the ith column of the
permutation matrix will result in the contribution of dimension i to the address
value. Formally, we have to sum up the values along the diagonal of the result of
the matrix multiplication of X and P.

Definition 10.2 (address calculation based on bit permutation)
The address calculation based on a bit permutation P ∈ P is defined as:

α : Ω×P �→ N0

α(x,P) = αP(x) =
d∑
i=1

(XP)ii

1j − 1 stems from the fact that we start counting bits at 0, but dimensions at 1.
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To allow for dimensions with different lengths, i.e., different |Di|, one extends
the matrices X and P to (d,max(|Di|)) and (max(|Di|), d) respectively. The bits
not used by the corresponding dimension are filled with 0 bits.

Example 10.1: Bit permutation

Bit-interleaving of 3 dimensions with l = 2, i.e., 2 bits in binary rep-
resentation, starting with the first dimension, i.e., dimension 1 pro-
vides the highest bit in the address, results in the permutation matrix

PZ =

(
22 21 20

25 24 23

)
.

For a composite key in the order of the dimensions, we get the permu-

tation matrix PC =

(
24 22 20

25 23 21

)
.

Given the points

x1 =


 2

2
3


 −→ X1 =


 0 1

0 1
1 1


 and

x2 =


 3

1
3


 −→ X2 =


 1 1

1 0
1 1


 ,

we get the following addresses:

αPZ
(x1) = 0 ∗ 22 + 1 ∗ 25 + 0 ∗ 21 + 1 ∗ 24 + 1 ∗ 20 + 1 ∗ 23 = 57

αPZ
(x2) = 1 ∗ 22 + 1 ∗ 25 + 1 ∗ 21 + 0 ∗ 24 + 1 ∗ 20 + 1 ∗ 23 = 47

αPC
(x1) = 0 ∗ 22 + 1 ∗ 25 + 1 ∗ 21 + 0 ∗ 24 + 1 ∗ 20 + 1 ∗ 23 = 51

αPC
(x2) = 1 ∗ 22 + 1 ∗ 25 + 1 ∗ 21 + 1 ∗ 24 + 1 ∗ 20 + 0 ∗ 23 = 55

This example shows the influence of the bit-permutation on the address
order and with that on the clustering: αPZ

(x1) > αPZ
(x2) but αPC

(x1) <
αPC

(x2).

�

The goal of the address calculation is to provide a mapping of the d-dimensional
space to 1-dimensional space that preserves spatial proximity as good as possible.
In the following, we restrict our analysis to dimension-order preserving address func-
tions, i.e., bit permutations that preserve the bit order within each dimension.

Definition 10.3 (dimension-order preserving address calculation)
An address calculation αP : Ω × P �→ N0 is called dimension-order preserving, iff
∀i, j, 1 ≤ i ≤ (l − 1) : Pij < P(i+1)j
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We use A to denote the set of all dimension-order preserving address calculation
functions. As each α ∈ A preserves the bit order in each dimension, we omit the
indices for the bit positions in the future, e.g., instead of al−1al−2bl−1 . . . a0 we write
aab . . . a.

Without formal proof, we state the following lemma.

Lemma 10.1
For each address calculation α ∈ A, the inverse function α−1 is a space filling
function defining a monotonic ordering on Ω.

The previous example already introduced the permutation matrices PZ and PC

for the Z-order and the C-order resp. for a special case. We can now provide the
general definition for both classes of address functions.

Definition 10.4 (C-address)
An address calculation C ∈ C = {αP ∈ A|∀i, j : P(i+1)j = 2 ∗Pij} is called compos-
ite address or short C-address.

Corresponding to this definition, the binary representation of the composite lex-
icographic order of two dimensions a and b, each of length 3, would be either aaabbb
or bbbaaa.

Definition 10.5 (Z-address)
An address calculation Z ∈ Z = {αP ∈ A|∀i, j : P(i+1)j = 2d ∗ Pij} is called Z-
address.

Analogously to the C-address, the binary representation of a two-dimensional
Z-address with length 3 is either ababab or bababa.



10.1. THE CONCEPT OF WEIGHTED DIMENSIONS 129

Example 10.2: Curves of bit permutations

In this example, we show 10 out of 20 possible permutations for a two-
dimensional 8x8 universe, i.e., of length 3. Figure 10.1 shows 10 per-
mutations; the other 10 result from switching dimensions a and b. In
the graphics, the origin is in the upper left corner and dimension a is
oriented vertically and dimension b horizontally.

(a) aaabbb (b) abbaab (c) ababab (d) aabbab

(e) baaabb (f) baabab (g) abaabb (h) babaab

(i) bbaaab (j) aababb

Figure 10.1: Permutations of an 8x8 universe

�

10.1.2 Query processing for weighted dimensions

With the new address calculation scheme we can express different weighting of di-
mensions. Besides the clustering scheme, we also require efficient query processing
algorithms for it. It is obvious that there is no difference for point access compared
to the standard UB-Tree algorithm.



130 CHAPTER 10. WEIGHTED DIMENSIONS

For the range query processing it is not clear that the NJI (see Section 6.2.1)
and NJO (see Section 7.1) algorithms also apply to weighted dimensions. Analyz-
ing the two algorithms more closely one observes that the key requirement is the
monotonicity of the addresses, i.e., ∀x, y ∈ Ω : x � y ⇒ α(x) < α(y). According
to Lemma 10.1, this holds for the set A of dimension-order preserving address cal-
culations. Consequently, the NJI and NJO algorithm can also be used for weighted
dimensions. The modification required is to enhance the function that returns for a
given bit position of the address the corresponding dimension, i.e.,

dim : A× N→ N0

dimα(p) = i if ∃k : Pki = 2p

We write dim(p) for dimα(p) if α is clear from the context.

10.1.3 Specification and notation of weighting

While an address calculation α ∈ A is uniquely specified by the permutation matrix
P , this way of defining the weighting is neither very readable nor convenient to
specify for the user. An alternative is to specify the binary representation but this
leads to a long bit string for high dimensionality and large domains. We therefore
need an easier way of specifying the bit permutation.

We concentrate on bit permutations that are combinations of C-order and Z-
order. Thus, we use the following simplified notation (in BNF), which also allows
to specify any complex permutations:

<indexSpec> ::= <indexName : word><weightingSpec>

<weightingSpec> ::= (<weighting> {, <weighting>}∗)
<weighting> ::= C|Z(<attrSpec> {, <attrSpec>}∗)
<attrSpec> ::= <attrName : word> {(<bits : integer>)}

The total permutation can be expressed by a concatenation of the two weight-
ing schemes: C and Z. C denotes composite order of the specified attributes and
Z denotes bit-interleaving of the attribute contributions. The number of bits con-
tributed by an attribute is specified in brackets after the attribute name. If no
number is specified, all (still available) bits are contributed. The order of the at-
tribute names in the <weighting> clause specifies the composite order or the order
of the bit-interleaving, resp.

Example 10.3: Weighting notation

This example introduces the weighting notation.

UB(Z(A,B)) specifies a standard two-dimensional UB-Tree, i.e., the bit-
permutation ababab . . . ab.

UB(C(A,B)) specifies a standard composite B-Tree, i.e., the bit-permutation
a . . . ab . . . b.
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UB(C(A(5), B(7)), Z(A,B)) denotes the permutation
aaaaa︸ ︷︷ ︸

5

bbbbbbb︸ ︷︷ ︸
7

abab . . .︸ ︷︷ ︸
remaining bits

, i.e., the prefix consists of a composite order

of 5 A bits followed by 7 B bits; after that the remaining bits are bit-
interleaved starting with A.

�

10.2 Weighting and space partitioning

Up to now, we have only introduced a general addressing scheme based on bit-
permutations. In this section, we discuss the relationship between the bit-permutation
and the achieved weighting of dimensions, i.e., the influence of the ordering on the
space partitioning/clustering.

To talk about the space partitioning of a weighted UB-Tree more formally, we
define analogously to Definition 6.2, Definition 6.3, and Definition 6.5 the following.

Definition 10.6 (α-region)

An α-region [x, y] is the space covered by the curve specified by the address calculation
α ∈ A, i.e., [x, y] = {z ∈ Ω|α(x) ≤ z ≤ α(y)}.

In Lemma 6.1 we have stated the important connection property of Z-regions,
i.e., the property that a Z-region partitions into at most two spatially disconnected
sets of points, independently of the dimensionality of the space. We show below
that this important property also holds for α-regions.

Definition 10.7 (spatial connection)

We call two subspaces Q,P ∈ Ω spatially connected if there exists a pair of points
x ∈ Q and y ∈ P that only differ in one dimension i and xi and yi are <-neighbors.

Theorem 10.1 (connection theorem for α-regions)

Any α-region consists of at most two spatially disconnected sets of points.

The proof of Theorem 10.1 is analogous to the proof for the Z-region connection
provided in [Mar99].

Proof 10.1 (connection theorem)

For the proof of the theorem we consider the region R = [x, z]. If R consists of dis-
connected sets of points, we can express R by a set of n α-intervals, each representing
a set of connected points, i.e., R = [x, z] = [x, y1] ∪ [y1 + 1, y2] ∪ . . . ∪ [yn−1 + 1, z].

We now assume that R = [x, z] consists of three (pairwise) disconnected sets
corresponding to the intervals [xs, xe], [ys, ye], and [zs, ze], with xs = x, ys = xe +
1, zs = ye + 1, and ze = z.



132 CHAPTER 10. WEIGHTED DIMENSIONS

ys = xe + 1 ⇒ ∃k with xe...(k+1) = ys...(k+1), x
e
k = 0, ysk = 1,

xe(k−1)...0 = 1 . . . 1, ys(k−1)...0 = 0 . . . 0

analogously

zs = ye + 1 ⇒ ∃l with ye...(l+1) = zs...(l+1), y
e
l = 0, zsl = 1,

ye(l−1)...0 = 1 . . . 1, zs(l−1)...0 = 0 . . . 0

We distinguish two cases:

1. Case: ys...(k+1) = zs...(k+1), i.e., ys and zs have the same prefix up to bit

position (k + 1)
As ys < zs ⇒ ∃ bit position p < k with ysp = 0 and zsp = 1.
Let i be the dimension corresponding to bit position p, i.e., i = dimα(p).
Now, we decrement dimension i of point t = (t1, . . . , td) = α−1(zs) by one, i.e.,
t′ = (t1, . . . , ti−1, ti − 1, ti+1, . . . , td). Consequently, t and t′ are spatially connected
according to Definition 10.7.

α(t′) < α(t) = zs (monotonicity of α) and

α(t′) ≥ ys (the decrement resets no bit in zs

at a position larger than p)

⇒ α(t′) ∈ [ys, ye]

−→ contradiction to [ys, ye], [zs, ze] are spatially disconnected

2. Case: ys...(k+1) �= zs...(k+1)

ys...(k+1) �= zs...(k+1) ⇒ zs...(k+1) > ys...(k+1) as z
s > ys

⇒ ye > ys...(k+1)1 . . . 1

⇒ ∀v with v...(k) = ys...(k+1)1 : v ∈ [ys, ye]

Now, we increment dimension i = dimα(k) of point t = (t1, . . . , td) = α−1(xe) by
one, i.e., t′ = (t1, . . . , ti−1, ti + 1, ti+1, . . . , td). Consequently, t and t′ are spatially
connected according to Definition 10.7.

α(t′) > α(t) = xe (monotonicity of α) and

α(t′)...k = ys...(k+1)1

⇒ α(t′) ∈ [ys, ye]

−→ contradiction to [xs, xe], [ys, ye] are spatially disconnected

�
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Definition 10.8 (α-region partitioning)
An α-region partitioning of the universe Ω is a set of α-regions A for which holds:

1. ∀α1, α2 ∈ A,α1 �= α2 : α1 ∩ α2 = ∅
2.

⋃
α∈A

α = Ω

As two subsequent regions of a partitioning meet at the end and start of the
intervals, i.e., ∀α1 = [x1, y1], α2 = [x2, y2] ∈ A with y1 < x2 ∧ �α = [a, b] with
y1 < a < x2 : x2 = y1 + 1. We can therefore use either the start or the end values to
uniquely identify a region and we call y the (region) address of an α-region [x, y].

Definition 10.9 (weighted UB-Tree)
A weighted UB-Tree is any B-Tree using α ∈ A as address function.

As for the standard UB-Tree, the pagination of the index defines the space
partitioning of a weighted UB-Tree.

If we want to talk about the influence of the weighting on the space partitioning,
we need some way of characterizing the space partitioning. The problem is that
the space partitioning depends on the data distribution making it hard/impossible
to capture this formally without making too restrictive assumptions about the data
distribution.

There are various factors that influence the space partitioning:

1. Address calculation, i.e., the ordering of the tuples

2. Data size, i.e., the number of tuples

3. Data distribution

4. Page capacity

5. Order of insertion

Starting from the unrealistic assumption of uniform data distribution we will
characterize the influence of the first two parameters. The data distribution basically
distorts the effects of the first two: the more non-uniform the data distribution the
less influence have the other parameters. Further, we assume the same page capacity
and neglect the influence of the insertion order as this is hard to control in practice
(except for bulk loading etc.).

10.2.1 Symmetry, clustering, and continuity of an ordering

The address calculation defined in this chapter maps the multidimensional domain
bijectively to one-dimensional domain. This dimensionality reduction causes some
loss of information, namely the neighborhood relationship of points. In the multi-
dimensional universe the distance to each direct neighbor in every dimension is 1.
Depending on the ordering of the address calculation this may increase significantly
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in the one dimensional domain. The concept of the average neighbor distance allows
for specifying this behavior more precisely.

Definition 10.10 (average neighbor distance of a point)
The average neighbor distance for a point x ∈ Ω for an address calculation α with
respect to dimension i is:

ndαi (x) =




α((x1,...,(xi+1),...,xd))−α((x1,...,xi,...,xd)), xi=min
Di

α((x1,...,(xi+1),...,xd))−α((x1,...,(xi−1),...,xd))
2

, minDi<xi<max
Di

α((x1,...,(xi),...,xd))−α((x1,...,(xi−1),...,xd)), xi=max
Di

To get a measure of the neighborhood preservation for one domain we use the
cumulated neighbor distance.

Definition 10.11 (cumulated neighbor distance for one dimension)
The cumulated neighbor distance for dimension i with respect to address calculation
α is

ndα(i) =
∑
x∈Ω

ndi(x)

If the used address calculation is clear from the context, we write nd for ndα.
Without formal proof we state that for a given address calculation all dimensions
have different weights.

Lemma 10.2
For all α ∈ A:

∀i, j, 1 ≤ i, j ≤ d, i �= j : ndα(i) �= ndα(j)

Still, we can define a measure of the symmetry of an address function. An address
function is called symmetric, if all dimensions have almost the same cumulated
neighbor distance. For the following definition we use the standard deviation (stdv)
of a set of values.

Definition 10.12 (degree of symmetry of an address calculation)
The symmetry of an address calculation α : Ω→ N0 is calculated as:

symmetry(α) = −stdv({nd(i)|1 ≤ i ≤ d})

As the next example shows, there are bit permutations that are more symmetric
than bit interleaving, i.e., the Z-order. However, we will show in the following
sections, that the Z-curve has the best scalability behavior, making it more suitable
for dynamic applications.
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Example 10.4: Symmetry and clustering

Lets again consider a two-dimensional 8x8 universe, allowing for 20 per-
mutations.

Table 10.1 presents the cumulated neighbor distance and the symmetry
for all 20 permutations.

Table 10.1: Symmetry of all 20 permutations

Pattern nd(a) nd(b) Symmetry

aaabbb 512 64 -316,78
aababb 448 96 -248,9
aabbab 416 112 -214,96
aabbba 400 128 -192,33
abaabb 384 160 -158,39
ababab 352 176 -124,45
ababba 336 192 -101,82
abbaab 320 208 -79,2
abbaba 304 224 -56,57
abbbaa 288 256 -22,63
baaabb 256 288 -22,63
baabab 224 304 -56,57
baabba 208 320 -79,2
babaab 192 336 -101,82
bababa 176 352 -124,45
babbaa 160 384 -158,39
bbaaab 128 400 -192,33
bbaaba 112 416 -214,96
bbabaa 96 448 -248,9
bbbaaa 64 512 -316,78

�

Neighbor distance and weight of a dimension

It is still open how we can express the weight of a dimension, reflecting that higher
weight means more preference. In our context, preference means better clustering.
Recalling Definition 2.14, clustering means to place tuples that one is interested in
close together. Translating this to the ordering function, this means, that points
that have the same value in one dimension should be close together, independently
of the values of the other dimensions. Using the neighbor distance as a metric leads
to counter-intuitive results: the permutation aaabbb clearly favors dimension a, but
the neighbors in a are farther away than in dimension b, i.e., nd(a) > nd(b) (see
Table 10.1). The problem of the neighbor distance is that it does not capture the
semantics of clustering: points with the same value xi in dimension i but different
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values in the other dimensions are not considered to be neighbors of point x w.r. to
dimension i.

To get a better grip on the relationship of the ordering and the clustering we
therefore define the clustering degree as follows. We thereby take into account that
all points in the multidimensional space that have the same value in one dimension
should be close together in one-dimensional space, if we want to cluster according
to this dimension.

Definition 10.13 (clustering degree of a dimension)
The clustering degree of an address calculation α ∈ A with respect to dimension
i is the average length of the interval to which all multidimensional points with the
same value in dimension i are mapped to, i.e.,

cdαi =
1

|Di| ∗
maxDi∑
j=minDi

(max{α(x)|xi = j} −min{α(x)|xi = j}+ 1)

With this definition, we can state the subsequent lemma.

Lemma 10.3 (Weight of a dimension)
A dimension i has more weight than dimension j in the address calculation α if
dimension i has a smaller clustering degree, i.e., cdαi < cdαj .

Example 10.5: Weighting and clustering

For our standard two-dimensional 8x8 example, Table 10.2 depicts the
clustering degree for all 20 permutations.

�

10.2.2 Resolution: significant address prefix

So far, we have considered the complete address, i.e., we have assumed the highest
possible resolution of one point. In an index, multiple tuples are stored on one page.
Each page corresponds to one α-region and consequently stores tuples within one
interval.

Assuming a partitioning of the universe into P pages, one minimally needs l =
&log2 P ' bits for uniquely addressing all pages, i.e., regions. Thus we focus on the
significant header of length l of the region address, called the prefix. For perfect
uniform data distribution the significant prefix has exactly length l, getting longer
and longer for more non-uniform data distributions.

As the pages constitute the smallest addressable unit on secondary storage we can
limit our weighting analysis to the prefix of the address. Each bit in the prefix causes
a split in the middle of the corresponding dimension. Each further bit recursively
causes further splits.
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Table 10.2: Clustering degree of different permutations

Pattern cda cdb

aaabbb 9,14 65,14
aababb 13,71 60,57
aabbab 16,00 58,29
aabbba 17,14 57,14
abaabb 22,86 51,43
ababab 25,14 49,14
ababba 26,29 48,00
abbaab 29,71 44,57
abbaba 30,86 43,43
abbbaa 33,14 41,14
baaabb 41,14 33,14
baabab 43,43 30,86
baabba 44,57 29,71
babaab 48,00 26,29
bababa 49,14 25,14
babbaa 51,43 22,86
bbaaab 57,14 17,14
bbaaba 58,29 16,00
bbabaa 60,57 13,71
bbbaaa 65,14 9,14

Definition 10.14 (Contribution)
Given an address calculation α ∈ A. The contribution of dimension i, contrib(i),
to the prefix of length l, is the number of bits in the prefix belonging to dimension i.
A contribution of contrib(i) leads to 2contrib(i) divisions/splits in dimension i.

The finer a dimension is split, the more precisely a range restriction in the query
can be approximated and the less regions have to be accessed. The number of bits
per dimension in the prefix is therefore an important metric.

The relative weighting of two dimensions i and j is expressed by the fraction of
the divisions in each dimension, i.e., by 2contrib(i)

2contrib(j) .

Example 10.6: Space partitioning for weighted addresses

With this example, we illustrate the influence of the address calculation
on the space partitioning. Consider a two-dimensional 8x8 universe. We
consider two address functions:

• Z-curve: ababab

• C-curve: aaabbb

Assuming a page capacity of four, we require 16 pages to store the com-
plete universe. For 16 pages, a prefix of log2 16 = 4 bits of the address
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suffices to identify the pages. Table 10.3 presents the contribution and
resolution of the two dimensions for both curves.

Table 10.3: Contribution

Curve contrib(a) contrib(b)

Z 2 2
C 3 1

Figure 10.2 shows the space partitioning of the Z-curve (Figure 10.2(a))
and the C-curve (Figure 10.2(b)).

(a) Z-curve (b) C-curve

Figure 10.2: Space partitioning of different bit permutations

�

For analyzing the role of the bit order in the prefix, we need one more concept.
Without formalization, we introduce the notion of jumps of a space-filling curve. A
jump is a position on the curve where it is not continuous. Jumps on a space-filling
curve defined by a bit permutation are caused by changes in the binary contribution,
i.e., between bits of different dimensions. The lower the bit position, the more but
smaller jumps are introduced. Figure 10.3 illustrates this for the Z-curve.

The contribution is the key influence factor for the weight of a dimension. Still,
the ordering may further improve the weighting for one dimension. Non-uniform
data distributions lead to irregular space partitioning causing varying prefix lengths
of the regions. For such cases, one can further optimize the partitioning for one
dimension in such a way that it is less influenced by the position of the query box in
that dimension. Placing the bits of one dimension at the end of the prefix prevents
larger jumps in this dimension (cf. permutations aab∗, aba∗, baa∗ in Figure 10.1).
However, this optimization is only useful if there is no change in the prefix length,
i.e., the data volume and the data distribution is static.
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Figure 10.3: Relationship between bit pattern and jumps/discontinuity of a
space-filling curve

10.2.3 Scalability and robustness

With the concepts of contributions and jumps we can now define exactly the weight-
ing of the dimensions for a given/targeted data base size. As we do not only consider
static databases we have to cope with growing data sizes, i.e., with increasing prefix
lengths. If the prefix grows, the contribution of the dimension changes according
to the bit pattern of the permutation. To maintain the relative weighting of di-
mensions with growing prefixes, the postfix has to contribute iteratively one bit
from each dimension. This means, in the postfix the remaining bits of all dimen-
sions are bit-interleaved. The following example illustrates the behavior of different
permutations.

Example 10.7: Scalability

Figure 10.4 illustrates the change of the relative weighting for four in-
dexes on a two-dimensional 210 × 210 universe:

• W1(Z(a,b)): Standard UB-Tree starting interleaving with dimen-
sion a

• W2(C(a,b)): Standard composite B-Tree with order a, b

• W3(C(b(4),a(10)),C(b)): four bits of b, followed by all a bits and
then the remaining six bits of b

• W4(C(b(4),a(4)),Z(a,b)): 4 bits of b, followed by 4 bits of a, then
interleaving the remaining bits of both dimensions starting with a

Now consider the following four indexes with a weighting of a : b = 4 : 1.

1. V1(C(a(3),b(1)),Z(a,b)): robust weighting due to interleaving after
target prefix

2. V2(C(b(1),a(10)),C(b)): optimization of a for target size

3. V3(C(b(1),a(3)),Z(a,b)): as V1 but with different prefix order

4. V4(C(a(3),b(1)),Z(b,a)): as V1 but with different interleaving in
the postfix
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Figure 10.4: Change of weighting with growing database size

Figure 10.5: Scalability of Weighting

Figure 10.5 shows the behavior of those indexes for growing database size.
The first observation is that the targeted weighting cannot be achieved
for databases smaller than 24 pages, as we require at least 3 bits from
a and 1 bit from b for the relative weighting of 4:1. For larger prefixes,
the indexes with bit-interleaved postfix are able to maintain the target
weighting (at least every second bit). Index V2 has been optimized for
a fixed database size and consequently favors dimension a with growing
prefix until all a bits are exhausted. From that point on the weight of
dimension b increases to eventually reach a 1:1 weighting.

�
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10.3 Weighted dimensions in practice

Finally, we present some performance results of different weighting schemes for our
GfK3D (see Section 4.3) data set, for one year , i.e., ≈ 14 million tuples. With a
page capacity of 59 tuples and an average page utilization of 75% this results in a
total of P = 312394 pages. Thus, we have a minimal prefix of length l = &log2 P ' =
19. Table 10.4 provides the detailed break-down of the key length of the three
dimensions Product (Pr), Segment (Se), and Time (Ti); the dimension keys are HC
keys, resulting from encoding of the dimension hierarchies.

Table 10.4: Address length analysis for GfK3D

Dimension Hierarchy level Fan-out Bit Bit
length (level) length (total)

Time Year 4 2
4 Month Period 3 2 5
2 Month Period 2 1

Product Sector 14 4
Category 9 4

ProductGroup 83 7
29

Item 15601 14
Segment Country 16 4

Region 19 5
Micromarket 6 3

24

Outlet 2202 12

Query and weighting specification

Before we present the chosen weighting of the dimensions, we have to take one
more look on the queries we are going to measure. We use the following query sets
representing roll-ups in the Product dimension:

• Product-Group (PG) series: total sales of one product group in a two-months
period for a specific country (604 queries)

• Category (CAT) series: total sales of one category in a two-months period for
a specific country (30 queries)

• All products (ALL) series: total sales in a two-months period for a specific
country, i.e., no restriction in the Product dimension (16 queries)

Summarizing the query specification, we observe that the Time dimension is
always restricted on the lowest hierarchy level, the Segment dimension is always
restricted on the highest hierarchy level, and the restriction in the Product dimension
varies.

Optimizing the weighting of the UB-Tree for this special workload, we derive the
following prefix contributions:

• Time: 5 bits covering the complete dimension
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• Segment: 4 bits; sufficient to cover the first hierarchy level

• Product: 10 bits, covering the first two hierarchy levels and parts of the
Product-Group level

We compare four indexes to evaluate the influence of weighting:

• UB: standard UB-Tree, i.e, UB(Z(Ti,Pr,Se))

• W1: weighted UB-Tree using bit-interleaving in the prefix and in the postfix,
i.e., W1(Z(Se(4),Pr(10),Ti(5)),Z(Se,Pr))

• W2: same weighting as W1, but composite order in the prefix to optimize
further for dimension P, i.e., W2(C(Se(4),Ti(5),Pr(29)),C(Se))

• W3: same weighting as W1, but dimension order in the prefix according to the
weighting, i.e., W3(C(Pr(2), T i(1), Se(1)), . . . , C(Pr(2), T i(1), Se(1))︸ ︷︷ ︸

5 times

,Z(Pr,Se))

Product-Group series

Figure 10.6 presents a zoom into the 300 smallest queries of the PG series. The
results clearly reveal the effects of weighting: the weighted indexes W1, W2, and
W3 perform better than UB due to their weighting. Especially for small result sets
the effect is tremendous: W2 needs more than 25 times less page access than UB.
As the size of the result set grows, this major difference vanishes.

Figure 10.6: Results of PG series

There is also a big difference between W1, W2 and W3 that have the same
dimension weighting. This is an effect of the optimization of the prefix order in
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W2 allowing for more continuity w.r. to dimension P . Consequently, W2 is less
susceptible to the location of the query boxes (assuming that queries with similar
result set size have similar sized query boxes, but definitely different locations). For
the same reason W1 performs better than W3 : in the weighting of W1 the bits for
the Product dimension are more to the end of the prefix than in W3 and thus W1
is more robust w.r. to the query box location.

Figure 10.7 summarizes the relative performance of UB, W1, W2, and W3. The
first group of pillars shows the overall performance for all 604 queries of this bench-
mark in number of page accesses, relative to the standard UB-Tree UB. The other
two groups only consider the first 300, resp. 150 queries with the smallest result-sets,
where the weighted UB-Trees impressively demonstrate their ability to efficiently
approximate small query boxes.

Figure 10.7: Relative performance of weighted UB-Trees

Category and all products series

Finally, we will have a look on the two other GfK benchmark series, that are
not especially favored by this weighting (the restriction in the Product dimension
is reduced), in order to get a feeling on how robust a specific weighting is in a
real-world application.

Figure 10.8 shows the relative performance of the four UB-Trees for both query
sets. As expected, the advantage of the weighted UB-Trees diminishes the weaker
the restriction in the Product dimension gets. Still, the weighted UB-Trees do not
perform worse than the standard UB-Tree as they all contain the restricted bits in
the other dimensions.

Obviously, the standard UB-Tree will be favored if the preferences shift further
towards the Segment dimension. Queries with stronger restrictions, i.e., restrictions
to lower hierarchy levels, in the Segment dimension will be processed faster by the
standard UB-Tree. This is depicted in Figure 10.9 that shows the results of 5 drill-
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Figure 10.8: Results of CAT and ALL series

down queries to one outlet in the Segment dimension, for one 2-month period and
no restriction in the Product dimension. While W1 and W3 only show a modest
difference compared to UB (smaller than a factor of 5), the performance of W2
degenerates heavily as only the restriction on the Time dimension and the restriction
on the first level in the Segment dimension can be utilized.

Figure 10.9: Results of drill-down queries to one outlet
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10.4 Chapter notes and related work

In this chapter we have introduced an enhanced address calculation scheme for UB-
Trees that allows for arbitrary weighting of dimensions. By extending the address
calculation from the concept of bit-interleaving to (dimension order preserving) bit-
permutation we are able to specify different weighting of dimensions.

We have evaluated the influence of the bit order in the address on the weighting.
As expected, a dimension has more weight, the more bits it contributes to the
significant prefix of the address. For static database one can further optimize the
clustering for one dimension with specific ordering of the prefix bits. However, in
dynamic scenarios, which are more common, the goal is to find a robust weighting
that is stable with growing database size.

Our benchmarks with the GfK3D data set have confirmed that for graded queries
an appropriate weighting of the dimensions can significantly improve the query per-
formance. Especially small queries are improved by factors of 5 and higher.

Still, defining the best weighting for a given application is a non-trivial problem.
For the GfK example it is relatively easy as the hierarchy specification provides
a good guideline, but this can not be expected for general applications. Further,
many users will not be able to specify the weighting of the dimensions as a bit
permutation. Therefore, there is the need for a extension of the standard interface,
i.e., SQL, that allows for naturally specifying the wanted weighting. Or, as it is
done already for index-selection [CN97, CN98b], the decision is left completely to
the DBMS, just taking a target workload as input for which the dimension weighting
has to be optimized.

Related work

To the best of our knowledge, this is the first work to address the issues of
weighted dimensions for indexing. All multidimensional access methods we are aware
of either support pure symmetrical handling of dimensions or one specific, non-
controllable weighting. With composite B-Trees one can only specify a very strict
weighting of attributes.
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Chapter 11

The Skipper technique: Processing
multi-attribute restrictions on
composite indexes

As discussed in the previous chapter, with the concept of weighted dimension we can
also specify a composite key order for UB-Trees. The difference between a standard
B-Tree with composite key and a correspondingly weighted UB-Tree is the way
range queries are processed. The question that we want to address in this chapter
is, whether the UB-Tree range query processing works better than the standard
range query processing for composite keys.

For our description of the algorithms, we assume a B-Tree with the following
operations:

• t=search(index, k): positions to the first tuple t ≥ k in key order and returns
it, i.e., it performs a point search on index

• getnext(index): positions to the next tuple from the current position

11.1 The standard range query algorithm on com-

posite keys

Figure 11.1 shows the standard query algorithm (Standard) for handling a multi-
attribute restriction with composite key indexes [GR93]: the lower limit ql of the
multidimensional interval is used to search for the first tuple in the composite key
index, that satisfies the query condition. Then all consecutive tuples in composite
key order up to the tuple qh are retrieved. If tuple a satisfies the overall query
condition a ∈ [[ql, qh]], it is returned to the caller for further processing.

Lemma 11.1
The standard algorithm requires a scan over an interval on the composite key values
that is defined by the common prefix of ql and qh and the first non-identical compo-
nent of ql and qh, i.e., formally, for k ≤ d and qli = qhi for all i < k, the composite

147
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1: KEY a, ql, qh;
2: a = search(composite-index,ql);
3: while (a <= qh) {
4: if(a in [[ql,qh]]) {
5: output(a);
6: }
7: a = getnext(composite-index);
8: }

Figure 11.1: Standard algorithm for range queries on composite keys

key interval [ql1 ◦ . . . ◦ qlk ◦ . . . ◦ qld , ql1 ◦ . . . ◦ qlk−1 ◦ qhk . . . ◦ qhd] is retrieved and
examined by the algorithm.

Proof 11.1

The Lemma follows directly from the while-loop of the standard algorithm in Fig-
ure 11.1 and the definition of the composite ordering.

11.2 The Skipper technique for multi-attribute

restrictions

We now introduce the Skipper technique or index skipping, based on the same prin-
ciple as the UB-Tree range query algorithm. We map the restriction in form of
a multidimensional interval to a set of one-dimensional intervals in composite key
order. This is achieved by using the index as shortcut each time when the standard
composite key query algorithm investigates a key value not belonging to the result
set. Figure 11.2 shows the Skipper technique in the else-part of the algorithm (lines
9-15).

1: KEY a, s;
2: a = search(composite-index,ql);
3: // a = min {x | x in composite-index && x >= ql }
4: while (a <= qh) {
5: if (a in [[ql, qh]]) {
6: output(a);
7: a = getnext(composite-index, a);
8: }
9: else { // Skipper

10: s = nextJumpIn(a, ql, qh);
11: // s = min {b | b >= a && b in [[ql,qh]]} || s = EOF
12: if (!EOF)
13: a = search(composite-index, s);
14: // a = min {a |a in composite-index && a >= s}
15: }
16: }

Figure 11.2: Skipper algorithm
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As we have pointed out before, skipping means to subdivide the interval [ql1 ◦
. . . ◦ qlk ◦ . . . ◦ qld , ql1 ◦ . . . ◦ qlk−1 ◦ qhk . . . ◦ qhd] into a union of subintervals
[l1, u1], . . . , [lm, um] that represent the smallest cover of the query box [[ql, qh]]. This
is achieved dynamically by calculating the next lower sub-interval limit li+1, after
the previous sub-interval upper bound ui has been exceeded in line 13. Note that
the algorithm in Figure 11.2 does not need to store the intervals, thus the variables
li and ui do not occur in the code. The variable s in the code stores li for the current
interval. The next lower bound li+1 is calculated from the current value a, which is
larger than ui (the upper bound of the current interval) when the Skipper-part of
the algorithm in Figure 11.2 is entered. Then s = li+1 is calculated as the minimal
composite key value larger than a, and contained in the multidimensional interval
[[ql, qh]]. The nextJumpIn-algorithm for this computation is shown in Figure 11.3.

1: KEY nextJumpIn(KEY a, KEY ql, KEY qh) {
2: int j, i = 1;
3:
4: while( (a[i] >= ql[i]) && (a[i] <= qh[i]) ) i++;
5: for(j = i-1; j >= 1 ; j--) {
6: if(a[j] < qh[j]) break;
7: }
8: if ( j == 0) //we have reached the end of the query box

9: return EOF;
10: for(i = 1; i <= j; i++) s[i] = a [i];
11: s[j]++;
12: for(i = j+1; i <= d; i++) s[i] = ql[i];
13: return s;
14: }

Figure 11.3: nextJumpIn algorithm: Computing the next lower interval
boundary s for [[ql, qh]] and current position a

The while-loop in line 4 determines the first attribute in the composite key that
is beyond the upper bound. Starting from this position, the for-loop in lines 5 - 7
finds the last attribute in the prefix examined so far, for which the value can still
be advanced within the interval. Once this position has been found, nextJumpIn
determines the lower bound of the next interval as follows: all values of the attributes
in front of the current position are unchanged (line 10), the value of the attribute at
the current position is incremented, i.e., set to the next value in domain order (line
11), and all other attributes are reset to the lower bound of the intervals (line 12).
The nextJumpIn algorithm returns EOF if there is no more tuple to return, i.e., if
we call nextJumpIn with tuple a with qh < a. In an optimized implementation, the
O(d) attribute checks can be undertaken on the fly while checking a ∈ [[ql, qh]], since
this requires the same comparisons. Then this linear algorithm for the computation
of s has a complexity of O(d) attribute copy operations. Thus the CPU overhead
compared to the standard algorithm is merely the d assignments, which only take
place once for each interval skip. We call this Skipper technique or index skipping
because it navigates through the composite key index and skips key ranges that
cannot be part of the result set.
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Example 11.1: Index skipping

Let us assume a market research company that tracks the sales of stores
in several countries for products in two product categories on a daily
basis. The main table of that application is a relation R(YEAR, COUN-
TRY, MONTH, CATEGORY, DAY, SHOP, ITEM, SALES) with a
composite key index on the attributes YEAR, COUNTRY, MONTH,
and CATEGORY and some other attributes in the given order (this is
actually a simplified schema of GfK). The upper part of Figure 11.4
shows a part of the sequential or paginated disk layout of the relation R
for the composite key order <YEAR◦COUNTRY◦MONTH◦CATEGORY◦...,
which stores all data for the year 1999 (in our example the company
tracked sales data for Hungary and Germany in 1999 for the product
categories ”Brown Goods” and ”White Goods”.

Figure 11.4: Comparison of Skipper and Standard

The lower part of Figure 11.4 shows four queries and the range that both
Skipper and Standard retrieve from disk for answering the queries. A
restriction to year 1999 in Germany is a restriction of the prefix of the
composite key (Figure 11.4(a)), thus both Skipper and Standard retrieve
the same range of disk pages from secondary storage. The additional
restriction on CATEGORY to ”Brown Goods” in Figure 11.4(b) cannot
be utilized by the standard algorithm. If the sales of ”Brown Goods”
and ”White goods” in ”Germany” in 1999 are roughly the same, then
Skipper retrieves 50% less data than Standard for this query and can
thus be expected to be around 50% faster than the standard algorithm.
Figure 11.4(c) shows a query, where the last restricted attribute of the
composite key is restricted to a range to get all sales for Germany in
the first quarter of 1999. In this case, the multi-attribute query again
transforms into a single interval on the composite key and is therefore
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handled identically with Skipper and Standard. In Figure 11.4(d), the
COUNTRY attribute, the second leading attribute, is not restricted by
the query. Thus the standard algorithm can neither utilize the range
restriction on the first quarter of 1999 nor the restriction to ”White
Goods”. If we assume the same amount of data stored for each category
in each country on each day, Skipper would only access one eighth of the
disk pages that Standard accesses to answer the query.

�

Example 11.1 is intended to give an intuitive understanding of the Skipper algo-
rithm. It is misleading because of two factors, though.

First, the disk page order is usually not identical to the composite key order.
The page clustering is only available for static databases that have been created by
mass loading and have not been updated after creation. With clustering indexes,
one can expect tuple clustering, i.e., the tuples are clustered on the disk pages with
respect to the composite key order, but not between the pages.

Second, the figure suggests that each key range stores the same number of val-
ues, since all lines for ”Brown Goods” and ”White Goods” have the same length.
This is not true for practical data sets. However, both the page clustering and the
uniformity assumption can be safely dropped without changing the basic picture.
First, Standard benefits more from page clustering than Skipper, since the standard
algorithm will read at least the pages that skipper reads as well. Second, if the data
distribution is not uniform, then the number of accessed useful data pages varies de-
pending on the query. This results in an even better relative performance of Skipper
for result sets created by queries with restrictions into a more sparsely populated
part of the database. In general, the Skipper relates response time to result set size
more closely than the standard algorithm does.

11.3 Pre-computation of intervals

Like for the UB-Tree range query algorithm, we are able to pre-compute the intervals
in which a multidimensional query box on a composite key decomposes to.

1: KEY nextJumpOut(KEY a, KEY ql, KEY qh) {
2: int i=d, j = 1;
3:
4: while( (ql[i] == MIN[i]) && (qh[i] == MAX[i] && i > 1) ) i--;
5: for(j = 1; j < i ; j++) s[j]=a[j];
6: for(j = i; i <= d; j++) s[j] = qh[i];
7: return s;
8: }

Figure 11.5: nextJumpOut algorithm: computing the next upper interval
boundary s for [[ql, qh]] and current position a
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The nextJumpOut can be optimized as the computation in the while-loop has
only to be performed once for a given query box. Using nextJumpIn of Figure 11.3
and nextJumpOut of Figure 11.5, the composite key interval set {[l1, u1], . . . , [ln, un]}
corresponding to the multidimensional restriction [[ql, qh]] can be constructed as
shown in Figure 11.6.

l1 = ql;
ui = nextJumpOut(li, ql, qh); //i=1, ...,n

li+1 = nextJumpIn(ui + 1, ql, qh); //i=2, ...,n-1

Figure 11.6: Computing the interval set [l1, u1], ..., [ln, un] for [[ql, qh]] with
nextJumpIn and nextJumpOut

Pre-computation of the interval set allows for a middleware approach, since a
query rewriting mechanism on top of a DBMS may form a multi-attribute restric-
tion into the union of subqueries, each of which fully specifies the composite key.
However, this approach has several disadvantages over the dynamic approach of Sec-
tion 11.2, similar to the ones we have discussed in the context of the nextJumpOut
algorithm for the UB-Tree (cf. Section 7.1).

First, pre-computation will generate a fairly long query statement, since each
interval results in a sub-query specifying a restriction that has at least the length
of the original restriction. For n intervals, the size of the rewritten query statement
will be at least n times the size of the original query statement. This may cause
problems in practice, since the query string length of a DBMS is usually limited.

Second, many DBMS optimizers have problems to optimize queries with long
query statements consisting of restrictions which result in unions of disjoint intervals
on the same table. During our measurements, we experienced on several commercial
DBMSs that the optimizer preferred a full table scan over multi-interval index access
on the B-Tree, although the multi-attribute index access would have resulted in far
better query response time.

Third, depending on the query and data distribution, some or even many in-
tervals generated by the middleware approach may not occur during the execution
of the dynamic Skipper algorithm. While the middleware approach generates all
possible composite key intervals for a query box, the dynamic Skipper algorithm
adapts to the actual data distribution. The search function after the nextJumpIn
calculation in the Skipper part of Figure 11.3 may move the current tuple over some
intervals that would be created by the middleware approach. Thus intervals not
containing any data are dynamically skipped.
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11.4 Integration aspects of Skipper

This section briefly discusses some implementation aspects of the Skipper algorithm.

11.4.1 Integration into a DBMS kernel

As shown in Figure 11.1 and Figure 11.2, the extension of the standard algorithm of
processing composite keys to the Skipper technique is straightforward. Especially
the possibility of combining the nextJumpIn computation with the post-filtering
significantly reduces the overhead of Skipper. A further optimization is to perform
the nextJumpIn only once per accessed page, instead of computing the skips each
time a tuple outside the query box is found. In the first step, all tuples of a loaded
page are post-filtered like in the standard algorithm. If the last tuple on the page
is inside the query box, Skipper continues with processing the next page. If the last
tuple is outside the query box, Skipper continues with the nextJumpIn computed
from this tuple. Thus the small overhead of nextJumpIn occurs only once per page
and at the same time multiple jumps to the same page are avoided.

11.4.2 Prototype implementation of the Skipper algorithm

For our performance measurements we have implemented the Skipper algorithm on
top of a commercial DBMS. Given a query box Q = [[ql, qh]] of multidimensional
restrictions, corresponding to the SQL-query in Figure 11.7, the prototype imple-
mentation works as follows.

SELECT A1 ,..., Ad

FROM R
WHERE A1 BETWEEN ql1 AND qh1

AND ... AND
Ad BETWEEN qld AND qhd

Figure 11.7: Original query

We open a cursor with the SQL query given in Figure 11.8, which besides re-
turning the result tuples of Q also retrieves the tuples we need to identify skips, i.e.,
tuples that are not in the query box.

SELECT A1 ,..., Ad

FROM R
WHERE (A1>ql1)
OR (A1=ql1 AND A2>=ql2)
OR ... OR ...
OR (A1=ql1 AND A2=ql2 AND ... AND Ad>=qld)

Figure 11.8: Skipper query

The disjunction of the d predicates handles all possible violations of the original
query box (see Example 11.2). To detect the possibility of skipping, we have to
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post-filter all tuples returned by the cursor and as soon as we find a tuple violating
Q, we start skipping. With the result of nextJumpIn for this tuple we generate a
new query corresponding to the next interval and continue the processing with a new
cursor for this statement. This implementation causes significant overhead to the
Skipper processing in terms of CPU (post-filtering is done twice) and I/O (multiple
page accesses cannot be prevented). However, it suffices to show the benefits of the
Skipper technique w.r. to I/O cost.

Example 11.2: Cursor implementation of Skipper

Let R be a relation with the three-dimensional base space Ω = D3,
D = {1, 2, 3, 4}, and the key order A1, A2, A3. Now consider the query
box Q = [(2, 2, 2), (3, 3, 3)].

The first cursor has the following predicate:

A1 > 2 OR
(A1 = 2 AND A2 ≥ 2) OR
(A1 = 2 AND A2 = 2 AND A3 ≥ 2) OR

The behavior of Skipper now depends on the data; we now show how
Skipper acts in case of different tuple streams returned by the cursor.
We just consider the first tuple t returned that is NOT part of the query
box, i.e., t /∈ Q.

1. Case: t = (2, 2, 4) is caught by the third predicate; leads to new
cursor with ql = (2, 3, 2)

2. Case: t = (2, 3, 1) is caught by the second predicate; leads to new
cursor with ql = (2, 3, 2)

3. Case: t = (2, 3, 4) is caught by the second predicate; leads to new
cursor with ql = (3, 2, 2)

4. Case: t = (3, 1, 1) is caught by the first predicate; leads to new
cursor with ql = (3, 2, 2)

�

11.5 Analysis of Skipper

In this section, we first present a CPU cost and I/O cost analysis in comparison to
the standard range query processing on composite keys. Then we discuss in what
scenarios Skipper even reaches the performance of multidimensional access methods.

11.5.1 Skipper and standard composite key processing

11.5.1.1 I/O and CPU analysis

Given the description of the Skipper technique and its optimization in the section
above, we conclude that Skipper requires in worst case the same number of data
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page accesses as the standard algorithm. Skipper never accesses data pages that
are not accessed by the standard algorithm. With respect to CPU performance,
we have to analyze the CPU overhead of skipping. The worst case for Skipper
occurs when it accesses the same number of pages as the standard algorithm and
at the same time all pages are reached via a skip. More precisely, there is one
skip per page leading to the first tuple of the following page. Thus, Skipper has
to perform one nextJumpIn computation for each accessed page. Combined with
comparison operation of the post-filtering, however, this computation does not cause
any overhead. Consequently, the Skipper technique never performs worse than the
standard composite key query algorithm for B-Trees. On the other hand, the benefits
of Skipper are significant: each page access saved by Skipper not only improves I/O
performance but also reduces the CPU cost by saving post-filtering for all tuples on
the skipped page.

11.5.1.2 When skipping gains

Now that we know that Skipper never performs worse than the standard algorithm,
the question is when does Skipper gain substantially? As with multidimensional
problems in general, no general answer can be given to this question as the per-
formance of Skipper is strongly influenced by the nature of the multi-attribute re-
striction and the data distribution. However, we are presenting some heuristics that
indicate when Skipper performs especially good. As usually assumed in the litera-
ture, indexes on composite keys are useful only for answering queries that restrict
a prefix of the composite key to single values. Assuming a composite key A1 ◦ A2,
queries that either restrict A1 or A1 ◦A2 can be answered efficiently with this index,
but not queries that only restrict A2. However, this is only true, if many different
values of A1 are stored in the database. The picture changes, however, if the number
of distinct values of the lead attribute A1 is small. Let us use |ΠA(R)| to denote the
number of distinct values of attribute A in relation R. Analogously, |ΠA1◦...◦Ak

(R)|
denotes the number of distinct values of the attribute combination A1, . . . , Ak in R,
and |R| the number of records in R. Let A1, . . . , Ad be the composite key of relation
R that is stored on P pages with a page capacity C. Skipper performs better than
the standard algorithm in terms of I/O if there is a high probability that pages can
be skipped. The probability is higher when the intervals specified by prefixes of the
composite key are larger than a disk page. Therefore, the Skipper technique has a
positive effect for all key prefixes A1, . . . , Ak that satisfy the condition:

|R|
|ΠA1◦...◦Ak

(R)| ≥ C

For other prefixes, the benefit of Skipper depends on the data distribution and
individual queries, but in any case Skipper will always be as good as the standard
algorithm.
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11.5.2 Skipper and multidimensional indexing

As we have mentioned earlier, Skipper corresponds to the UB-Tree range query
algorithm specialized for the composite key orders. So from the algorithmic view
there is no difference between a UB-Tree and a standard B-Tree using the Skipper
technique. The data structures differ only in the clustering of the tuples. Thus, the
performance strongly depends on the queries as we will examine in the next section.

11.6 Performance comparison

To validate our theoretical evaluation we conduct various performance comparisons
with the GfK11D data set. Figure 11.6 shows the DDL statement for the used table.

Create table "GfK11D"(
YEAR ID integer,
MONTH4 PERIOD ID integer,
MONTH2 PERIOD ID integer,
COUNTRY ID integer,
REGION ID integer,
MICROMARKET ID integer,
OUTLET KEY integer,
SECTOR ID integer,
CATEGORY ID integer,
PRODUCTGROUP ID integer,
ITEM ID numeric(30,0),
PD PRICE integer,
PD SALES integer,
PD TURNOVER integer

) key is SECTOR ID, YEAR ID, COUNTRY ID, CATEGORY ID,
MONTH4 PERIOD ID, REGION ID, PRODUCTGROUP ID,
MONTH2 PERIOD ID, MICROMARKET ID, ITEM ID, OUTLET KEY;

Figure 11.9: DDL statement for GfK11D fact table

The created fact table with the 43 million records has the size of 3011283 pages
of 2KB each, i.e., about 5.7 GB.

11.6.1 Comparing Skipper to standard composite key pro-
cessing

We first show the performance of the Skipper algorithm in comparison to the stan-
dard B-Tree algorithm. Using real queries from GFKDW we evaluate the influence
of the prefix length resulting from the query predicates on the performance of the
two techniques. The following queries restrict the hierarchy levels of the

• Product dimension down to the product group level to a point; the ITEM ID
is not restricted
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• Segment dimension down to the region level to a point; MICROMARKET ID
and OUTLET KEY are not restricted

• Time dimension:

– Down to the MONTH2 PERIOD level to a point (QS1), resulting in a
prefix length of 8

– Down to the MONTH4 PERIOD level to a point (QS2), resulting in a
prefix length of 7

– Down to the YEAR level to a point (QS3), resulting in a prefix length of
4

– Not at all (QS4), resulting in a prefix length of 1

The query suites QS1 - QS4 contain all 461 possible combinations of the various
restrictions on the key attributes.

QS1 (Figure 11.10) already demonstrates that for skipping the number of page
I/Os, and correspondingly the response time, is proportional to the result set size.
On average, the I/Os are reduced by a factor of 7 and a maximal reduction factor
of 190 is achieved. In contrast to that, the standard algorithm is rather insensitive
to result set size (it is actually sensitive to the leading attribute restriction instead).

Figure 11.10: QS1: Restriction to Month2-Period level (prefix length = 8)

The behavior is similar for QS2, where the length of the restricted prefix is
reduced from 8 (QS1) to 7 attributes (QS2). The number of skips does not increase,
as still one interval (now covering two 2-months periods) has to be processed on the
MONTH2-PERIOD level.

When reducing the restriction in the Time dimension further in QS3 (resulting
in a prefix of length 4), Skipper can skip more and more intervals. For such queries,



158 CHAPTER 11. THE SKIPPER TECHNIQUE

Figure 11.11: QS3: Restriction to Year level (prefix length = 4)

index skipping clearly outperforms the standard algorithm, requiring only 1
19

of page
accesses on average and down to 1

465
I/O pages for some queries (see Figure 11.11).

This trend continues for queries with no restriction on the Time dimension at
all (cf. Figure 11.12), i.e., reducing the length of the specified prefix to 1. On
average, index skipping requires about 1

600
page access (with a maximum speedup

factor of more than 10.000) of the standard query processing. For QS4 the standard
algorithm is already outperformed by a full table scan (FTS). A FTS has to read all
of the 3.011.283 pages but can benefit from sequential access, reducing the number
of random I/Os by the prefetching factor. At the same time, FTS significantly
increases the CPU cost as each tuple has to be post-filtered.

Figure 11.12: QS4: No restriction on Time dimension (prefix length=1)
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Finally, we take a closer look to the influence of the number of skips on the speed-
up of Skipper. Figure 11.13 shows the speed-up of Skipper compared to the standard
algorithm for all queries: the horizontal axis is sorted by number of skips and then
by the result set size; the y-axis has logarithmic scale. As shown theoretically, if no
skips are performed, index skipping has the same I/O as the standard algorithm. As
soon as skipping takes place, significant I/O savings are observed (up to a factor of
10.000!). This also shows that the CPU overhead of index skipping can be neglected

Figure 11.13: Relationship between number of skips and speed-up

for these practical scenarios: the significant savings (in the range of several thousand
pages) in I/O cost were achieved by less than 150 skips, comparable in cost to only
few page accesses.

11.6.2 Comparing Skipper to other access methods

After comparing Skipper to the standard composite key processing in the previous
section we now analyze how Skipper performs compared to other access methods
suitable for multi-attribute restrictions. To this end we compare Skipper to:

• standard algorithm

• multiple single-attribute indexes (MULT) in combination with index intersec-
tion: In our case we use secondary B-Trees; the tuple identifier lists of the
single indexes are filtered by sorting and merging and thus it is guaranteed
that each page is only accessed once.

• the UB-Tree (UB)

• the R*-Tree (RST)
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For this measurement we use a subset of GfK11D containing 8,4 million records.
All data structures have been bulk-loaded with appropriate methods resulting in
comparable sizes. For the query workload, we adapted the query sets QS1, QS2,
QS3, and QS4 for the smaller database size by ignoring queries that produce empty
result sets. We analyze the behavior of the access methods depending on the length
of the restricted key prefix. Figure 11.14 shows the results for the various index
structures for QS1, i.e., queries with long restricted prefixes, as a box-plot.

Figure 11.14: Comparison of various access methods for QS1 (long prefix
restriction)

For QS1, the long prefix restriction leads to very selective queries, i.e., queries
with small result sets. Skipper and the Standard algorithm benefit from the long
key prefix restriction and both almost match the performance of the two multidi-
mensional index structures. Only the non-clustering MULT scheme cannot compete
with the other access methods. This access method has to retrieve much more pages,
as tuples that are accessed together are not stored together.

The picture changes if we have no restriction on the prefix, i.e., if there is no
restriction on the first attribute of the composite key. In this situation, Standard
deteriorates into a full table scan leading to the worst performance. The performance
of Skipper depends on the number and the position of the other key restrictions. If
the non-restricted prefix is very long, Skipper will also turn into a full scan of the
index and thus behave like the standard algorithm (first query in Figure 11.15). If the
non-restricted prefix is short, Skipper performs better than the standard technique
and, depending on the restriction, even reaches the performance of multidimensional
indexes (second query in Figure 11.15) or will be outperformed by these (third query
in Figure 11.15).

Finally, for short prefix restrictions (e.g., just the first two attributes of the
composite key), and no further restrictions to key attributes, Skipper and Standard
even outperform the multidimensional access methods (cf. Figure 11.16). In such
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Figure 11.15: Non-prefix restriction

Figure 11.16: Short prefix restriction
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cases, the clustering of the composite index is optimal, as a complete range of pages
can be read sequentially.

11.7 Chapter notes and related work

In this chapter we have presented Skipper, an efficient technique to process multi-
attribute restrictions on composite keys. Composite key indexes are heavily used in
database applications as they are often the only way to get clustered access to data.
However, the standard query processing algorithms only utilize restrictions on a fully
specified prefix of the key, leading to poor performance when other query patterns
arise. Skipper overcomes those deficiencies, making composite key indexes much
more valuable. In this work, we have described the Skipper technique in detail and
have compared it to the standard algorithm, both, analytically and experimentally.
We have shown that Skipper is a true winner over the standard algorithm: Skipper
never performs worse than the standard algorithm and potentially outperforms it
by multiple orders of magnitude. The benefit of Skipper depends largely on the
data distribution and the query profiles. Our measurements on a real world data
warehouse have shown average speed-ups in the range of 100 - 600 and maximum
speed-ups of up to 10.000. The resulting impact on query processing is significant:
for many queries for which optimizers favor a costly full-table scan over a composite
key index access by now, Skipper will provide a far more efficient solution, leading to
efficient query processing and less resource consumption. Comparisons with multiple
single-attribute indexes and multidimensional indexes have shown that Skipper is
a strong competitor in this field. For favorable key orders, i.e., good clustering,
Skipper can match the performance of multidimensional indexes. Still, it lacks the
flexibility and robustness of those access methods as it depends on the chosen key
order. The most important advantage of Skipper is that it is a true optimization
of the standard algorithms that almost comes for free: Skipper requires only minor
modifications of existing implementations. Thus, existing DBMSs can be easily
extended to handle multi-attribute restrictions more efficiently.

Related work

B-Trees [BM72, Com79] are the de facto indexing structure for large data sets.
Using composite keys, or even multiple indexes on one table to speed up query pro-
cessing has been discussed in many places [GHRU97, OQ97, Sar97]. Range query
processing on composite B-Trees is traditionally handled by the standard algorithm
[GR93] as described in Section 11.1. The problem resulting from the necessity of
a leading prefix restriction on the composite key is identified in various publica-
tions, e.g., [GHRU97, Ram98, SKS97]. However, to the best of our knowledge,
[LJBY95] is the first and only work to introduce an advanced processing technique
for multi-attribute restrictions on a composite key B-tree. The basic idea of Skipper
is sketched but detailed algorithmic descriptions as well as a detailed analysis are
missing.



Chapter 12

Summary

In our research work presented in this thesis, we address the complex problem of
multidimensional indexing. Driven by the observation that despite a large body of
research work the support in commercial systems is still weak, we raise the question
of what is necessary to overcome this deficit. In the search for a solution, we have
assessed if the universal B-Tree (UB-Tree) lives up to its name and may become a
standard for multidimensional indexing, like the B-Tree for one-dimensional cases.
Before we come to our conclusions, we briefly summarize our contributions.

As starting point, we define a comparison framework for access methods. In
addition to the important aspect of query performance, we include properties that
are important in practical applications as well, comprising for example space com-
plexity, multi-user support, and flexibility. Based on this framework we carry out a
comprehensive comparison of R*-Trees and UB-Trees.

In the second part of this thesis, we deal with the integration of the UB-Tree
into a DBMS kernel. We present the basic algorithms, particularly an optimization
of the range query algorithm with the crucial computation of the next-jump-in and
next-jump-out points. Further, we cover the essential integration with the query
optimizer, focussing on the central problem of cardinality estimation. We propose
a new multidimensional histogram, the Z − Histogram, based on the concept of
UB-Trees and point out the limitation of histogram-based estimation techniques.

Finally, we generalize the address calculation scheme of UB-Trees to allow for
arbitrary weighting of dimensions. We analyze how the address calculation scheme
influences the clustering of the data, and so specifies the preferences among dimen-
sions. We elaborate further on the special case of composite keys, leading to an
advanced range query processing algorithm for standard B-Trees.

All of our findings are backed by theoretical analysis and experimental evaluation
on real-world data sets.

12.1 Conclusion

For the evaluation of our findings, we recall the requirements for a general-purpose,
multidimensional index stated in the introduction: universality, multi-user support,
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symmetry w.r. to all dimensions, easy integration, dynamic behavior, worst case
guarantees, and low storage complexity.

The results of the comparison of UB-Trees and R*-Trees clearly indicate that
the UB-Tree outperforms the R*-Tree with respect to most criteria. It requires less
space and provides better performance for the majority of queries. The most impor-
tant disadvantage of R*-Trees is their inefficient behavior in dynamic environments,
making it unsuitable for a wide range of applications. One advantage of the R*-Tree
is the flexibility with respect to different data types: the concept of MBBs allows
for handling of extended objects. For the UB-Tree various methods for supporting
extended objects (e.g., for example the dual-space approach or approximation with
intervals) are currently investigated, with promising initial results [Fen02].

Our experiences with the kernel integration of UB-Trees demonstrate another
essential advantage: relying on the standard B-Tree as basic data structure reduces
the complexity of the required extensions significantly. One can revert to proven
solutions for system critical issues like locking and recovery, and can concentrate
on the key algorithms. The coupling of the new access method with the query
optimizer, i.e., the generation of plans recognizing the new index and operators, is
facilitated by the modular design of modern optimizers. The problem to be solved
is the estimation of the costs of the new methods, i.e., the cardinality estimation
of the output of a query. As the cardinality depends on the data distribution no
general model can be provided: one will always find pathological cases in which the
model will not hold, i.e., produce estimation errors. Consequently, one has to rely
on approximations based on data synopses. Current techniques, like histograms or
sampling, work well for one-dimensional data, but often suffer from the curse of
sparse universes in case of multidimensional data. As it seems impossible to find
a general solution to the problem of getting a good cardinality estimation within a
tolerable time for arbitrary queries, recent approaches try to improve the estimation
for the current query focus. For most applications this will work well in practice.

Finally, the extension of the address calculation concept to weighted dimensions
allows for broader usability of the index. There is now the possibility to fine tune
the UB-Tree exactly for a given workload profile, making the construction of extra
indexes dispensable in many cases.

Putting all results together, we conclude that the UB-Tree really deserves its
name: it is closer to the notion of a universal, multidimensional index than any
proposed method so far. The UB-Tree combines efficient query processing on mul-
tidimensional data with low space complexity and high dynamism. The relatively
low effort of integration compared to other approaches makes it the prime candi-
date for a standard multidimensional index. The support for point data as well as
for extended objects and the possibility to specify preferences among the indexed
dimensions make the UB-Tree suitable for a wide range of applications.
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12.2 Future work

Concluding our work, we want to point out future research directions, as far as we
have not done it in the chapter notes, yet.

12.2.1 Approximate query processing with UB-Trees

With the ever increasing data volumes, query processing times are also increasing.
Especially for interactive applications this leads to intolerable response times. On
the other side, in many applications one does not really need the exact result at first,
but can work with an approximate answer. For example, in the GfK data warehouse
it sometimes is not necessary to know the total number of sales, say 1.043.000, but
it suffices to know that the sales are above 1.000.000. Query processing techniques
for such approximate answers have recently gained increasing attention. Evaluating
such techniques for UB-Trees is therefore an interesting problem, and the idea of
approximating the Z-regions with MBBs may be a good starting point for such
research.

12.2.2 Advanced query types

Much room for future research is in the area of advanced query algorithms. New ap-
plications cause new query patterns that can not always be mapped to multidimen-
sional range queries. Finding special algorithms for such problems for the UB-Tree
has high potential of significantly increasing the efficiency of the index structure.
One example are so-called Skyline queries [BKS01] that have gotten more attention
just recently. In [KRR02], we propose a general solution for online Skyline queries
that is based on nearest neighbor search, such that it can be implemented on-top of
any multidimensional index structure supporting nearest neighbor queries. It will
be interesting to see, if the Z-order of the UB-Tree can be exploited to find a even
more efficient solution to Skyline queries.

12.2.3 Variable encoding of dimensions

Until now we have considered fixed sized domains for the dimensions. While this
is a viable assumption, it may lead to problems in practical cases. As we have
argued in Chapter 9 in the context of histograms, there is often a large difference
between the size of the nominal and actual domain in real-world applications. The
GfK DW provides a good example: the Product key is represented by an integer
but only about 500.000 products are recorded. The length of the bit-representation
required for UB-Tree indexing, however, depends on the nominal domain making
it often much larger than actually required. On the other side, if one chooses a
too small nominal domain one runs into the problem of reorganization in the case
the domain overflows, i.e., if one wants to store more dimension members than the
domain size (enlarging the domain). This problem is especially important in the
context of hierarchy encoding as a fixed fan-out per hierarchy level has to be chosen.
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Consequently, updating the hierarchy (known as (slowly) changing dimensions in
the OLAP field) may cause expensive reorganization if a level overflows.

The open question is if one can find a flexible encoding for a domain that adapts
automatically to increasing domain size. One idea is to explicitly encode the length
of a dimension in the address, but it still has to be examined how this affects the
CPU cost of the operations.



Appendix A

Data distribution of GfK3D

Having the GfK DW schema in mind, we take a look at how the data provided by
GfK is distributed within the data cube. This will help to understand the various
performance measurements on this warehouse. The results of a thorough analysis
are presented in the form of diagrams where a vertical bar indicates the portion of
facts associated with a particular hierarchy element (e.g., a certain year). Elements
are suppressed if no fact records at all are associated with them.

A.1 Time dimension

Figure A.1, Figure A.2, and Figure A.3 show the data distribution in the Time
dimension. The distribution over two-month periods is as close as the data ever
comes to a uniform distribution for any attribute. The fact that the first two-
month period of Year 1996 and fifth and sixth two-month periods of Year 1998 (see
Figure A.3) are missing has an obvious effect on the higher levels in this dimension.

Figure A.1: Data distribution on Year level

167



168 APPENDIX A. DATA DISTRIBUTION OF GFK3D

Figure A.2: Data distribution on 4-Month-Period level

Figure A.3: Data distribution on 2-Month-Period level
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A.2 Product dimension

For the Product Dimension, the portion of fact records belonging to a specific prod-
uct group is depicted in Figure A.4. The individual values are of less interest than
the fact that, although the most predominant product groups account for up to 812
950 or 1,90% of the records, which is more than ten times the mean percentage
(0,16%), a restriction to a single product group will never yield more than roughly
two percent of the data volume. A worst-case selectivity of less than two percent
promises considerable effects of suitable indexing. Worst-case selectivity on the next
higher level of this hierarchy path, product categories, is a lot higher, yet still within
bounds for performance gains via indexing. Figure A.5 shows that portions can be
as high as approximately 18%, where the average is 3,57%. Grouping the first seven
categories as a single sector and assigning each of the last nine to a separate one are
the main reasons for the distribution over product sectors, as depicted in Figure A.6.

Figure A.4: Data distribution on Product Group level

Figure A.5: Data distribution on Category level
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Figure A.6: Data distribution on Sector level
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A.3 Segment dimension

Finally, we consider the Segment dimension. Figure A.7 illustrates the fact distri-
bution over countries. It just happens that GfK collects census data in Country 18,
thus this country dominates with respect to the number of fact records collected.
The same holds for the region level shown in Figure A.8: Country 18 is only assigned
one region, leading to a selectivity of more than 30% for a restriction on the region
level in worst case.

Figure A.7: Data distribution on Country level

Figure A.8: Data distribution on Region level
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Figure A.9: Data distribution on Micromarket level
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