
INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

HMT: Modeling Interactive and Adaptive

Database-driven Hypermedia Applications

Dipl. Inform. Peter Zoller

Institut für Informatik
der Technischen Universität München

HMT: Modeling Interactive and Adaptive
Database-driven Hypermedia Applications

Dipl.-Inform. Univ. Peter Zoller

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. P.P. Spies

Prüfer der Dissertation: 1. Univ.-Prof. R. Bayer,

 Ph.D. / University of Illinois, Urbana

 2. Univ.-Prof. Dr. G. Specht

 Technische Universität Ilmenau

Die Dissertation wurde am 30.11.2000 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 25.4.2001 angenommen.

To my parents, Christa and Otto Zoller,

and Manuela.

Thank you for your support, patience and faith.

Kurzfassung

Angesichts der stetig wachsenden Größe und Anzahl von Anwendungen im World
Wide Web spielt der Aspekt der Datenbankunterstützung für solche Systeme eine
immer größer werdende Rolle. Zwar wurden die technischen Problemstellungen bei der
Kombination von www und Datenbanken in den letzten Jahren weitgehend gelöst, es
fehlt jedoch noch immer eine umfassende Modellierungstechnik zur Beschreibung von
Anwendungen dieser Art. Etablierte Techniken und Methoden wie das Entity-
Relationship-Modell oder die Object Modeling Technique bieten keine Unterstützung
für typische Hypermedia-Strukturen wie z.B. Hyperlinks oder guided-tours, neuere
Ansätze wie z.B. RMM oder OOHDM decken nicht alle relevanten Aspekte der
Anwendungsentwicklung ab.

Die vorliegende Arbeit präsentiert die Hypermedia Modeling Technique, eine um-
fassende Methodik zur Modellierung datenbankgestützter Hypermedia Anwendungen.
Der hier beschriebene Ansatz besteht aus einer Reihe von einzelnen Schritten wie z.B.
dem ER-Design der Anwendungsdomäne, dem konzeptuellen Hypermedia Design, dem
Design der Zugriffskontrolle oder dem temporalen Design, und behandelt dabei auch
bisher unberücksichtigte Aspekte. Durch die strikte Trennung des HMT-Modells vom
tatsächlich verwendeten Hypermediasystem kann die Hypermedia Modeling Technique
nicht nur für Anwendungen im www, sondern auch für Anwendungen mit anderen
Zielformaten wie z.B. XML oder PDF verwendet werden.

Zur Abbildung des HMT Modells auf eine geeignete Datenstruktur wird ein Metadaten-
Repository entwickelt. Dieses Repository speichert die gesamte HMT Spezifikation
einer Anwendung innerhalb des Datenbanksystems und garantiert dadurch maximale
Integrität, Konsistenz und Wartbarkeit der Anwendung. Der HMT Ansatz wurde durch
die prototypische Implementierung eines entsprechenden Case-Tools verifiziert,
welches auf java servlets, JDBC und einem relationalen Datenbanksystem basiert.

Abstract

As applications in the World Wide Web are growing steadily regarding both size and
functionality, database support plays a more and more important role. The technical
questions of integrating databases and the WWW have been discussed and answered
within the last few years, but the area of design methodologies still lacks a
comprehensive framework for modeling these kinds of applications. Established
modeling methodologies like ER or OMT cannot support hypermedia concepts like
hyperlinks or higher level navigational structures like Guided Tours; new hypermedia
modeling methodologies like RMM or OOHDM do not cover important aspects like
personalization or temporal design.

This work presents the Hypermedia Modeling Technique (HMT), which has been
developed in order to provide a comprehensive framework for modeling database-
driven hypermedia applications. It consists of several design steps like ER design of the
application domain, conceptual hypermedia design, authorization design
(personalization) or temporal design. Due to the strict separation of HMT model and
hypermedia system, HMT is not bound to the creation of WWW applications, but can
also be used for other hypermedia platforms like XML or PDF.

For mapping HMT schemas to a computable format, a metadata repository has been
developed. This repository allows storing the HMT specification of an application
completely within the database system, thus ensuring integrity, consistency and easy
maintenance of the application. The HMT approach has been verified by implementing
a prototype CASE-tool. It is based on java servlets, JDBC and a relational database
system.

Table of Contents 1

CHAPTER 1 INTRODUCTION... 5

1.1 MOTIVATION ... 5

1.2 OBJECTIVES... 7

1.3 OUTLINE.. 7

CHAPTER 2 MODELING HYPERMEDIA APPLICATIONS .. 9

2.1 HYPERTEXT AND HYPERMEDIA ... 9

2.1.1. Hypertext – the Dexter Model ... 10

2.1.2. Hypermedia – the Amsterdam Model .. 11

2.2 BASIC HYPERMEDIA DESIGN PROCESS.. 13

2.3 SELECTED MODELS AND METHODOLOGIES... 15

2.3.1. HDM ... 15

2.3.2. RMM ... 16

2.3.3. ARANEUS ... 18

2.3.4. HDBM ... 22

2.4 DEFICIENCIES AND OPEN ISSUES ... 24

2.4.1. Interactive Interfaces .. 24

2.4.2. Authorization... 24

2.4.3. Personalization ... 25

2.4.4. Temporal Design... 25

2.5 SUMMARY ... 26

CHAPTER 3 DATABASE-DRIVEN HYPERMEDIA APPLICATIONS IN THE WWW......................... 27

3.1 ARCHITECTURES.. 27

3.1.1. Connection on Server Side .. 28

3.1.2. Connection on Client Side... 32

3.2 PAGE GENERATION .. 34

3.2.1. Online generation (dynamic page generation).. 34

3.2.2. Offline generation (materialization of HTML pages).. 35

3.3 AUTHORIZATION ... 36

3.3.1. Pure web server authorization .. 36

3.3.2. Pure DBMS authorization... 38

3.3.3. Hybrid approaches.. 39

3.3.4. Middleware ... 39

3.4 COMMERCIAL PRODUCTS .. 40

3.4.1. Database vendors.. 41

3.4.2. Third party tools.. 43

3.5 SUMMARY ... 45

CHAPTER 4 THE HYPERMEDIA MODELING TECHNIQUE (HMT).. 47

4.1 DESIGN PROCESS AND OVERVIEW... 47

4.2 ER DESIGN.. 49

2

4.3 CONCEPTUAL HYPERMEDIA DESIGN ... 51

4.3.1. Basic Domain Primitives... 51

4.3.2. Basic Access Primitives... 57

4.3.3. Specialized ER Documents.. 62

4.3.4. Summary.. 73

4.4 AUTHORIZATION DESIGN .. 74

4.4.1. Role Based Access Control ... 75

4.4.2. RBAC in HMT ... 77

4.4.3. Summary.. 81

4.5 LOGICAL HYPERMEDIA DESIGN .. 82

4.5.1. Order and labels of elements .. 82

4.5.2. Meta types ... 83

4.5.3. Special features ... 85

4.5.4. Temporal design.. 89

4.6 LAYOUT DESIGN.. 94

4.7 SUMMARY ... 95

CHAPTER 5 THE HMT META SCHEMA .. 97

5.1 SPECIFICATION OF THE HMT META MODEL... 98

5.1.1. Overview ... 98

5.1.2. Domain primitives... 101

5.1.3. Access primitives... 105

5.1.4. Layout specification .. 109

5.1.5. Users and Roles... 110

5.1.6. Temporal specifications .. 110

5.2 DOCUMENT GENERATION .. 111

5.2.1. General document types.. 112

5.2.2. Input document types... 114

5.2.3. Query document types ... 115

5.2.4. Detail document types ... 116

5.2.5. Result document types ... 117

5.3 AUTOMATIC QUERY GENERATION ... 118

5.3.1. Query generation for input document types .. 118

5.3.2. Query generation for query document types ... 119

5.4 SUMMARY ... 120

CHAPTER 6 THE WEBCON PROTOTYPE ... 123

6.1 ARCHITECTURE ... 123

6.2 IMPLEMENTATION ... 125

6.2.1. Configuration .. 125

6.2.2. Authentication and Authorization ... 126

6.2.3. Efficient Page Generation... 127

6.2.4. Administration... 129

6.2.5. Supported HMT Functionality .. 131

6.3 OPEN IMPLEMENTATION ISSUES .. 132

Table of Contents 3

6.4 SUMMARY ... 133

CHAPTER 7 CONCLUSION AND FUTURE WORK... 135

7.1 CONCLUSION ... 135

7.2 FUTURE WORK .. 137

REFERENCES.. 139

APPENDIX A LIST OF DEFINITIONS .. 147

APPENDIX B LIST OF FIGURES ... 149

APPENDIX C LIST OF TABLES... 151

Introduction 5

CHAPTER 1

INTRODUCTION

A steadily growing interest in hypertext and hypermedia applications can be observed in
recent years. Especially the rapid growth and acceptance of the World Wide Web has begun
to turn this area of information technology into an aspect of every day’s life. Current statistics
estimate the number of web sites to exceed 73 Million1 with more than 370 Million users
worldwide2. What started as a distributed collection of mainly scientific information has
emerged to a global marketplace with increasing economic importance.

Since the size of most web sites has been growing steadily, too, the shortcomings of web
technology regarding the handling of large information collections have become evident. This
refers to problems concerning overview and navigation in huge web sites, consistency of
structure (dangling link problem) and content (outdated information), and costly maintenance
of the application. In order to solve these problems, the integration of database management
systems has been proposed and carried out successfully. Meanwhile every database vendor
offers components and tools for connecting his database system to the World Wide Web.

But while the technical challenges of integrating World Wide Web and database systems have
been solved already, the design process for the corresponding applications still lacks a
comprehensive modeling methodology. A lot of applications are still created manually using
programming languages or HTML extensions, at most supported by advanced editors or
programming wizards. The following section will describe the importance of a structured
design process for database-driven hypermedia applications and motivate our work.

1.1 Motivation

Modeling methodologies have proven to be useful and successful in a variety of IT areas, for
example in object-oriented programming (Unified Modeling Language, UML) or relational
database systems (Entity-Relationship Model, ER). Their simple and intuitive data models
and the availability of corresponding CASE-tools are the fundamentals of their success. Both
application development and maintenance benefit from the advantage of having a clear, well-
defined syntax and semantics together with the possibility of automatic code generation by
the use of CASE-tools.

1 Source: www.glreach.com
2 Source: www.isc.org

6 Chapter 1

But existing modeling methodologies cannot be used for hypermedia applications, because
they do not support hypermedia-specific elements like hyperlinks or complex access
structures like Guided Tours.
As a consequence, a number of hypermedia design methodologies have been developed and
proposed during the last decade, for example the Hypertext Design Model (HDM) [GPS93],
the Relationship Management Methodology (RMM) [IKK98] or the Object-Oriented
Hypermedia Design Model (OOHDM) [SRB96]. However, none of those has become a
broadly accepted standard. One reason for this might be the fact that they all concentrate on
specific aspects, but do not provide a comprehensive framework meeting all requirements of
today’s hypermedia applications. Typically unsupported aspects are:

• Interactive user interfaces
In addition to interfaces for “passive” information presentation, a lot of applications also
require interactive user interfaces. One example are search interfaces for directly querying
the underlying data source. This approach guarantees higher performance and more exact
query results than ordinary full text search on HTML pages. Another example are
interfaces for manipulating the underlying data source. This is an important aspect for
applications requiring distributed or mobile maintenance.

• Flexible hypermedia formats
The very short life cycles of standards and techniques in the WWW demand great
flexibility regarding the hypermedia target format of an application. This refers not only to
the integration of new language extensions or versions, but also to the possibility of
switching between completely different hypermedia formats with only minimal efforts. As
an example, a hypermedia product catalogue for the World Wide Web might also be
created as a PDF presentation that can be distributed on cdrom. If structure, navigation
and layout of a hypermedia application are strictly separated, this migration can be
achieved at limited costs.

• Access control
More and more hypermedia applications contain not only information for the public, but
also internal data that should be accessed only by selected users. Up to now, this aspect is
usually handled on a physical level by the corresponding web server. Besides differences
among the various web servers available, the main disadvantage of that approach is the
distribution of application aspects among several components, which increases
maintenance complexity and error probability. Integrating the aspect of access control into
the central design and maintenance of an application would clearly improve this situation.

• Personalized information presentation
Personalization of hypermedia information systems will be a central issue for a variety of
future applications. This ranges from distance learning (with different presentations for
different skills and interests) over intranet information systems (tailored to the needs of
different departments) to e-commerce applications (providing individual user interfaces).
Without support by the application design and maintenance process, personalization can
hardly be achieved at reasonable costs.

Introduction 7

• Temporal design
Multimedia elements like graphics, sound or small video sequences become more and
more popular as transmission rates in the internet are increased steadily. However, the
synchronization and maintenance of these elements becomes rather labor intensive for
large and complex applications. Although current web standards do not address the issue
of temporal relations so far, a comprehensive hypermedia modeling methodology should
provide support for the temporal design of the application.

Up to now, these aspects are not covered by existing modeling methodologies and
corresponding CASE-tools, but have to be addressed manually using additional systems and
components. For example, user authentication is usually still handled by the web server,
whereas authorization is often done by the DBMS. This leads to costly development and
maintenance of such applications with the risk of redundancies, inconsistencies and
unintended side effects. A modeling methodology addressing these issues would improve
development and maintenance of hypermedia applications significantly.

1.2 Objectives

This thesis will analyze the drawbacks and deficiencies of current hypermedia modeling
methodologies and develop a new, comprehensive framework solving these problems. The
Hypermedia Modeling Technique (HMT) is intended to support all important steps
concerning the design of database-driven hypermedia applications. This includes not only the
classical areas of information clustering and navigational design, but also new features like
temporal design or personalization. The entire specification of complex hypermedia
applications should be covered by this methodology without exception. The corresponding
design steps, data models and mapping rules will be specified in detail.

The approach should be verified by the implementation of a prototype HMT CASE-tool
allowing the specification and generation of database-driven web applications. Prerequisite
for this tool is the development of a logical representation for the HMT schema that is created
during the application design process. Based on this logical representation, the CASE-tool
should generate the corresponding web pages. Important implementation objectives for the
CASE-tool are flexibility regarding platform and database system and the development of
techniques for optimizing the page generation process.

1.3 Outline

This thesis is organized as follows. Chapter 2 gives an introduction into current hypermedia
modeling starting with a description of the Dexter Hypertext Reference Model and the
Amsterdam Hypermedia Model. After presenting current hypermedia models and
methodologies, the open issues and deficiencies of these approaches are identified.

8 Chapter 1

Chapter 3 discusses technical issues regarding the integration of databases and the WWW.
Besides the basic system architecture, possible approaches for page generation and user
authorization are examined in detail. At the end, a short survey on commercial products is
given.
Chapter 4 introduces the Hypermedia Modeling Technique (HMT). After an overview of the
HMT design process, the core steps conceptual hypermedia design, authorization design and
logical design and their data models are presented and discussed in detail.
A computable representation for HMT schemas is developed in Chapter 5. The HMT meta
schema is used for storing all information about an application within a database repository.
Besides the meta schema itself, the corresponding page and query generation process is
specified.
Chapter 6 describes the prototype of a HMT CASE-tool. It focuses on the system architecture,
specific implementation aspects like authorization or page generation, and identifies open
issues.
This thesis ends with conclusions and an outlook on future work in Chapter 7.

Modeling Hypermedia Applications 9

CHAPTER 2

MODELING HYPERMEDIA APPLICATIONS

The use of software development models and methodologies is common in a variety of IT
areas today. Two well-known examples are the Entity Relationship model (ER) for database
design and the Unified Modeling Language (UML) for the design of object-oriented
applications. Development models and methodologies help to build an abstract model of the
application during the analysis and design phase, which can be used as a basis for both
specification and implementation. This abstraction provides several advantages like rapid
prototyping, reusability, distributed development or high extensibility.

The traditional life cycle model for software development [Boe76] consists of five subsequent
phases with no or only few iterations between them: analysis, design, implementation, test
and operation. While this linear approach is suitable for most traditional applications, the
hypermedia design process needs significantly more iterations. The intensive use of
multimedia elements and the central aspect of user interface design require a development
team with a variety of distinct skills and abilities, which have to be integrated steadily.
Together with the importance of rapid prototyping, this leads to a number of iterations in the
design process of hypermedia applications. Additionally, new design goals gain more and
more importance for hypermedia applications. One example is personalization of the
application, which is subject to current research especially in the area of WWW information
systems.
Several hypermedia design methodologies have been proposed especially during the last
years, but so far no de-facto standard can be identified. These methodologies show
considerable differences regarding number, order and content of their design steps, making it
hard to describe a general life cycle model.

This chapter gives an overview on current hypermedia modeling techniques. The first section
discusses the terms hypertext and hypermedia and their reference models. Afterwards, section
2.2 presents a very general specification of the typical hypermedia design process, and section
2.3 describes several design methodologies. Section 2.4 identifies open issues regarding
hypermedia design methodologies, and section 2.5 ends this chapter with a short summary.

2.1 Hypertext and Hypermedia

The distinction between hypertext and hypermedia in literature is not always clear. Sometimes
hypermedia is considered to be simply hypertext plus multimedia elements, and sometimes
these expressions are even used as synonyms. Strictly speaking both interpretations are

10 Chapter 2

incorrect. The following sections will give a clear specification for the terms hypertext and
hypermedia and show their differences.

2.1.1. Hypertext – the Dexter Model

While written information is usually of sequential nature, the idea of hypertext is to allow
non-sequential access for related portions of information. For this purpose, the information is
divided into smaller units (called nodes), and relations between these units are represented by
references (called links). A graphical user interface displays the information and allows
activating these links, which usually originate and end at certain parts of a node (called
anchor). This could be some keywords, sentences or images. A complete document can be
regarded as a graph consisting of nodes and links.

In order to provide a standard hypertext terminology and to capture the important abstractions
of typical hypertext systems, the Dexter Hypertext Reference Model has been published by
Halasz and Schwartz in 1994 [HS94]. It consists of three layers named run-time layer, storage
layer and within-component layer, the main focus is on the storage layer. Figure 2-1 shows
the architecture of the Dexter Model with its three layers in an actual hypertext system.

Figure 2-1: architecture of the Dexter Reference Model

The within-component layer is concerned with the structure and contents of the components
of the hypertext network. The Dexter Model does not make any assumptions about these
components; they may consist of data with arbitrary types.

The storage layer contains all information about links and anchors. The unit of addressing is a
component, which can be an atom, a link or a composite entity. Atomic components typically
correspond to nodes in a given hypertext system, composite components build a directed
acyclic graph (DAG) and can be used to create tree structured documents. Each component
has a unique identifier (UID) that is assumed to be uniquely assigned across the entire

link

Component 17

Component 41

Component 08

Link 22

41
08

This is
some
text …

run-time layer storage layer
within-component

layer

Modeling Hypermedia Applications 11

universe of discourse. Components can either be referenced using this UID, or indirectly
using component specifications (for example “all components containing the string project”).
Links can be unidirectional or bi-directional, and reference either a component (span-to-node
link) or an element within a component (span-to-span link). Since the link mechanism should
not depend on the internal structure of a component (which is left to the within-component
layer), the Dexter Model uses some kind of indirect addressing entity called anchor. An
anchor consists of an anchor id and an anchor value, which could be regarded an offset
within the component. The storage layer does not need to interpret the anchor value, it only
uses the anchor id.

The run-time layer is responsible for the interaction with the user. The components and links
of the storage layer are instantiated for the specific user, and a session entity is used to keep
track of the user’s actions. If the user leaves the hypertext system, the instantiated components
are cleaned from the user specific cache and perhaps written back to the storage layer if
changed by the user.

2.1.2. Hypermedia – the Amsterdam Model

At first sight, hypermedia simply seems to be a combination of hypertext and multimedia
elements. Multimedia provides a variety of different presentation facilities, hypertext offers a
convenient way of accessing the information in a content-based manner. But a closer
examination shows that some hypertext concepts do not work very well with more complex,
often time-based multimedia elements. Considering, for example, a short video sequence,
how could we manage to provide a hyperlink pointing to different targets depending on the
point of time within the video? And what happens when the user activates that link, does the
video stop or continue? How can several time-based components be synchronized? These
considerations show clearly that true hypermedia systems cannot only rely on hypertext
concepts, but need additional support for the complex temporal relationships between
hypermedia components.

The Amsterdam Hypermedia Model [HBR94] has been proposed as an extension to the
Dexter Model adding multimedia and synchronization concepts.
Synchronization is provided for composite components on a coarse-grained and a fine-grained
level. Coarse-grained synchronization is indicated by an offset symbol (see Figure 2-2) and
specifies constraints between a composite component and its children, for example the
relative starting time. Fine-grained synchronization allows specifying constraints between the
children within a composite component, for example a synchronized termination of two
elements, by using so called synchronization arcs (sync arcs).

Figure 2-2 shows a small sample scenario containing three composite components and six
atomic components. The composite component labeled comp_A consists of another composite
component (comp_B) and one atomic component (labeled text), which includes a hyperlink
pointing to component comp_C. Comp_B consists of two audio tracks and a video sequence,

12 Chapter 2

and the corresponding synchronization arc specifies that the second audio track should be
started in time so that it terminates together with the video sequence.

Figure 2-2: sample temporal specification using the Amsterdam Model

A second extension to the Dexter Model is the introduction of link context, which consists of
a source context and a destination context. The source context is the part of the hypermedia
application that is affected by the activation of a hyperlink. When the link operation is
initiated, the source context can either be replaced by the destination context or be retained. In
the second case, the author or the user may choose to continue or stop the source context
presentation if it is a time-based component.

The third extension are so called channels, which are high-level presentation attributes. The
Dexter model already allows defining presentation attributes, but these are only local (on the
component level). The channels of the Amsterdam Model can be used to define application-
wide presentation characteristics like font style and size, sound volume, scaling factors or
preferred language.

As a summary, the Dexter Hypertext Reference Model and the Amsterdam Hypermedia
Model provide an abstract framework for the development and comparison of hypertext and
hypermedia models. Because they have been developed to cover all relevant theoretical
concepts of hypertext and hypermedia systems regardless of technical limitations, currently
no modeling methodology supports all their features. For this reason, we will simply speak of
hypermedia systems from now on if there is no need to distinguish between hypertext and
hypermedia applications.
One thing the Dexter and Amsterdam Model do not describe is the general modeling process
itself, that means the sequence of design steps needed to develop an application. This aspect
will be discussed in the following section.

comp_C

audio1

audio2

video

text

comp_B

comp_A

start-offset anchor synchronization arc link

Modeling Hypermedia Applications 13

2.2 Basic Hypermedia Design Process

Although there have been proposed several hypertext and hypermedia modeling
methodologies mainly during the last decade, some kind of standardized modeling process
has not emerged yet. Existing modeling techniques differ significantly regarding both number
and content of their design steps, which makes it hard to identify a clear, universal structure.
What they do have in common is some kind of meta structure describing a course sequence of
design steps that are related to the traditional software life cycle [Boe76].

Requirements Analysis

This first phase identifies the requirements of the application regarding different aspects. As
in every software development cycle, the application domain has to be specified by close
investigation of the customer’s business, and the layout of the user interface has to be
developed.
A very important aspect for hypermedia applications is the identification and modeling of the
target audience the system is developed for [Tro98]. Especially commercial applications can
only be successful if tailored exactly to the user group identified as potential customers.

Conceptual Hypermedia Design

The conceptual hypermedia design covers the aspects of information clustering and
navigation within the hypermedia application.
Information clustering is the process of grouping the information into meaningful units, often
called nodes or documents. Several common guidelines are available for this design step. For
example, it is considered to be important that conceptually equal elements are also presented
in an equal manner [GMP95]. Additionally, a document should contain as much related
information as possible, but it should be short enough to be displayed entirely on the screen
without the user having to scroll the presentation.
The navigational design is responsible for the development of a user friendly, intuitive way of
browsing through the application. A set of standard access patterns can be found in the related
literature [IKK98] that covers the requirements of most applications: Index, Guided Tour and
Indexed Guided Tour.

Figure 2-3: standard navigational patterns

Node D

Node A

Node B Node C Node D

Node A

Node B Node C Node D

Node A

Node B Node C

Index Guided Tour Indexed Guided Tour

14 Chapter 2

An Index is a reference to a set of entities (nodes) where each entity can be accessed directly.
In contrast to this, a Guided Tour provides only direct access to the first entity of a set, but
each entity provides links to the next and perhaps previous element. In a cyclic Guided Tour,
the last element points back to the first entity. An Indexed Guided Tour combines these two
concepts. Figure 2-3 shows a graphical description of these three basic navigational patterns.
Similar to information clustering, also the navigational design should be consistent in a way
that equal structures should be accessed by equal navigational patterns.

Implementation

The implementation step covers a variety of aspects, which are usually divided into several
design steps in an actual methodology.

If a CASE-tool is used, the conceptual hypermedia schema is mapped to a logical
representation that can be stored on the computer. In most cases, this mapping is not a task
that has to be accomplished by the user, but is automatically handled by the CASE-tool. The
data format for representing a conceptual hypermedia schema can be chosen freely, but in
general two approaches exist: a specification language with a corresponding parser or a meta
data repository. A lot of systems use the first alternative, but especially for database-driven
applications the second approach might provide a number of advantages as described in
Chapter 5.
Another typical step is the specification of additional information not contained in the
conceptual hypermedia model. This refers to both functionality and layout. For example, a
context-sensitive help system might require the specification of individual man pages, or a
document displaying a list of items might be assigned a maximum number of elements being
presented. Considering layout aspects, typical additional specifications are font properties or
window and image sizes.
When using a CASE-tool, the application will be generated automatically. One approach is to
generate and store the application initiated by the administrator (offline generation). As an
alternative, the application can also be created dynamically at runtime when a user requests
the corresponding information (online generation).

Evaluation

At the end of the design process, the hypermedia application has to be evaluated. Besides
correctness and consistency, aspects like acceptance of the user interface, technical limitations
regarding the execution of the application, or reusability play an important role in the
evaluation of hypermedia applications [GMP95].

After this coarse and abstract description of the typical hypermedia design process, the
following section discusses some actual modeling methodologies in detail.

Modeling Hypermedia Applications 15

2.3 Selected Models and Methodologies

A number of hypermedia modeling methodologies have been proposed and described,
sometimes accompanied by prototype CASE-tools and reference applications. They usually
provide a step-by-step description of the hypermedia design process, the corresponding data
model(s) and additional design guidelines or mapping rules. Well-known examples are HDM
[GPS93], OOHDM [SRB96], RMM [IKK98], WSDM [Tro98] and the ARANEUS design
methodology [AMM98]. The newly proposed HDBM [Som00] is an extension to the RMM
design process especially developed for database-driven applications.

Additionally, there are some research projects with a slightly different focus providing
variations of these methodologies. Projects like STRUDEL [FFK+97], TSIMMIS [CGH+94]
or SIMS [ACH+93] address the topic of integrating heterogeneous data sources into
hypermedia applications. This is typically done by providing wrappers for each data source,
which give a unified view on the information. A central mediator is used for distributing the
queries on the different sources and integrating the corresponding results. Since these projects
do not provide significant improvements regarding the aspect of hypermedia design, we will
focus on the design methodologies mentioned in the first paragraph. The following sections
will give a short introduction into HDM, RMM, ARANEUS and HDBM.

2.3.1. HDM

Presented in 1993, the Hypertext Design Model (HDM) builds the basis of various other
design methodologies like RMM or OOHDM. It consists of five design concepts: Entities and
entity types, components, perspectives, units, and links.

Figure 2-4: sample HDM schema

Entities and entity types correspond to the elements with the same names known from the ER
model. In contrast to ER entities, HDM entities consist of complex hierarchical substructures
(components) and are related to other entities by application links instead of relationships.

TTM-Line Mistral ITEX

Component: description

Component: data Component: abstract

data.german data.english abstract.german abstract.english

unit unit unit unit

16 Chapter 2

Components are abstract elements always related to a certain entity. They consist of a set of
atomic elements called units. These units can be considered as hypertext nodes consisting of
an identifier and a body, which contains the actual information.
Links in HDM are separated into structural and application-links. Structural links relate
different components of an entity, whereas application-links reference other entities related to
the current entity.
Perspectives allow presenting the content of an entity in different ways. This can be achieved
by providing separate units in every component for each perspective. If a certain perspective
is chosen, the components (and thus the entity) will be presented by the corresponding unit.

Figure 2-4 shows a sample HDM schema for the presentation of research projects. Each
project entity (for example TTM-Line) contains a description component with two links
referencing a data component (containing for example title, begin, end and manager of the
project) and an abstract component (containing a textual description of the project goals). For
two possible perspectives German and English, each component contains the corresponding
unit that will be used to display the content for the perspective selected.

2.3.2. RMM

The Relationship Management Methodology (RMM) [IKK97a, IKK98] is one of the best-
known hypermedia modeling techniques. Based on the Hypertext Design Model (HDM) and
the Entity Relationship Model (ER), it provides a comprehensive data model and a seven-step
design methodology that is defined as follows:

1. Requirements analysis: The designer begins with determining the information domain, the

application functionality, the expected users and how the application will be used.

2. ER diagram: The information structure of the application is modeled based on the familiar

principles of ER design.

3. Application diagram top-down: This step involves a top-down specification of the

application diagram, that means the designer specifies a global view of the final
application. This view contains only the names and descriptions of the application’s top-
level presentation units plus the basic hyperlinks between them. The corresponding design
primitive is shown in Figure 2-5.

4. M-Slice design: The presentation units from the top-down application diagram are now

decomposed into smaller units called m-slices (the “m” in “m-slice” is derived from the
Russian Matreyshka dolls symbolyzing the nested nature of RMM). These m-slices are
used for grouping attributes of a given entity into meaningful units, and relations between
different m-slices are modeled with special access structs. This design step is the main part
of the RMM design process and will be discussed more detailed later.

Modeling Hypermedia Applications 17

5. Application diagram bottom-up: By combining the m-slices created in the previous design
step, the designer generates an application diagram in a bottom-up fashion and compares
this to the top-down version of step 3. Mismatches are corrected by iterative application of
the design steps 3 to 5.

6. User interface design: After having completed the m-slice and application diagram design,

the user interface is created using arbitrary tools.

7. Implementation: Finally, the designer implements the application either manually or by

using CASE-tools.

 Figure 2-5: basic RMM design primitives

The Relationship Management Data Model (RMDM) consists of ER domain primitives,
special RMDM domain primitives and a set of access primitives as shown in Figure 2-5. The
ER domain primitives are entities, attributes, 1:1 and 1:N relationships; M:N relationships are
mapped to two 1:N relationships.
An additional RMDM domain primitive is the m-slice, which is the central element of the
Relationship Management Methodology. M-slices are used to group attributes of a given
entity into meaningful units. Each m-slice has a unique identifier, a related entity type (called
owner entity), and might contain attributes or other m-slices with the same owner entity.

Page Title

Application Diagram
Design

Contents

ER Design

Screen

Entity Relationship

M-Slice Design

Owner entity

UID

Attribute

Index

M-slice

Attribute

Hyperlink Index with
m-slice anchor

Indexed Guided
tour with m-slice

anchor

Guided
Tour

Guided tour
with m-slice

anchor

Indexed
Guided Tour

18 Chapter 2

Access primitives are used to define the navigation between the m-slices of an application.
Available in RMM are link, index, Guided Tour and indexed Guided Tour. A description of
these access structs can be found in section 2.2.

A sample RMM schema specifying a project overview m-slice is shown in Figure 2-6. The
sample ER scenario consists of the two entity types projects and employees and a relationship
type works_in. The project_overview m-slice has the owner entity projects and contains the
attributes title, abstract, begin, end and image. The set of employees working in that project is
determined using the works_in relationship type and an index with the anchor m-slice name.
This anchor m-slice simply displays the name of the employee and a hyperlink pointing to the
employee’s homepage.

Figure 2-6: RMM sample schema

A more detailed description and examples of the RMM slice design process can be found in
[IKK97a, IKK98], the description of the prototype CASE-tool RMCase is available at [DI95].

2.3.3. ARANEUS

The ARANEUS web design methodology [AMM97, AMM98] focuses on the creation and
maintenance of database-driven web applications. It is based on HDM, RMM and OOHDM,
and offers a design process (see Figure 2-7) consisting of two main tasks: database design and
hypertext design. Each of these two tasks is divided into a conceptual and a logical design
step.

Title

Abstract

Begin

Image End

projects

Index

works_in

employees

name

project_overview

employees

homepage

Modeling Hypermedia Applications 19

The first step is the design of a conceptual database schema describing the application
domain. For this purpose, the well-known Entity-Relationship model is used. Based on this
schema, the logical and physical database design is performed according to standard rules and
techniques [BCN93, EN94]. In parallel to the logical database design, the hypertext design is
performed. Similar to RMM, the ARANEUS hypertext design is based on the ER schema
developed during the conceptual database design step, but here it is divided into three
different levels: hypertext conceptual design, hypertext logical design and presentation
design.

Figure 2-7: the ARANEUS design process

The conceptual design level abstracts the typical hypertext features like nodes and navigation,
and defines how entities are to be aggregated. The corresponding data model used for this
design step is called Navigation Conceptual Model (NCM) and is based on the RMM data
model described in the previous subsection. We will discuss the NCM more detailed later.
The logical level is committed to the World Wide Web and describes how pages of the web
site are organized. It ignores all physical aspects of these pages and concentrates on features
like grouping relevant information and organizing their structure (for example (nested) list or
flat page). For this purpose, the hypertext conceptual schema is mapped to a logical
presentation based on the ARANEUS Data Model (ADM). Entities and aggregations are
translated into so called page-schemes; directed relationships are mapped to links.
The presentation design step deals with all aspects regarding the layout of the web
application. The ARANEUS design methodology does not investigate that topic further, but
assumes that the output of this design step is an HTML page template.

1. Database Conceptual Design (ER)

2. Hypertext Conceptual Design (NCM)

3. Database Logical Design (Relational) 4. Hypertext Logical Design (ADM)

5. Presentation Design (HTML)

6. Hypertext to DB Mapping and
Page Generation (PENELOPE)

20 Chapter 2

Finally, the Hypertext to DB Mapping and Page Generation step generates the HTML pages
from the database content. In order to fulfill this task, the mapping between hypertext and
database has to be accomplished first by generating database views containing all information
necessary for a specific page. After that, the PENELOPE language is used to generate the
HTML pages either online or offline (more information on the generation of web pages is
given in section 3.2).

After this short overview, we will take a closer look at the Navigation Conceptual Model
(NCM) of ARANEUS. A NCM schema is derived from the ER schema of the application
domain and is built from six design constructs: Macroentities, Union Nodes, Aggregation
Nodes, Directed Relationships, Symmetric Relationships and Aggregation Links. Their
corresponding graphical representations are shown in Figure 2-8.

Figure 2-8: basic NCM design primitives

Macroentities are used to represent independent hypertext objects. They are derived either
from ER entities or from views over entities and relationships, and their name is usually
identical to the name of the corresponding entity. Since views are allowed, the attributes of a
macroentity might be multivalued. Union nodes are used to model types representing the
union of different macroentities. These union nodes are typically obtained when mapping ER
hierarchies or modeling navigations involving different macroentities.
Directed relationships are usually derived from ER relationships and describe navigations
between macroentities. Symmetric relationships are considered to be composed of two
asymmetric directed relationships. Aggregations occur as the counterparts of ER hierarchies
or can be explicitly introduced in order to organize the hypertext information. Aggregation
links are used to describe what macroentities are used to form an aggregation node. Partial
aggregations can be defined by attaching labels to the links that are associated with predicates
on the instances of the destination node.

Figure 2-9 shows the NCM specification of a small application based on a sample ER
scenario including the entities research project, manager, scientist and the relationship
project_staff. The aggregation node Department acts as the entry point to the hypertext
application and provides links to the Project macroentity and another aggregation node called
Staff. The Staff node is built from the Scientist and Manager macroentities, and the set of

Name
A

A1
An

U

Name

Name

Name
Macroentity
(with simple and
complex attributes)

Union Node

Aggregation Node

Directed
Relationship

Aggregation Link

Symmetric
Relationship

Modeling Hypermedia Applications 21

people working in a certain project is specified by the Project_staff relationship referencing a
union node built from Scientist and Manager.

Figure 2-9: sample NCM schema

In the hypertext logical design step, NCM schemas are mapped to ADM schemas. The
available design constructs of an ADM schema are shown in Figure 2-10. The page schema is
the fundamental design primitive that represents a set of web pages with common structure
and features. A special case is the unique page schema, which has only one instance, that
means no other page has the same structure. The contents of a page schema are defined by the
attributes they contain. Besides text attributes and image attributes, also link attributes can be
used. Links are modeled as pairs of anchors and references, where the reference is the URL
of the destination page and the anchor is a simple text or image element.
Similar to the NCM schemas, ADM schemas also offer a heterogeneous union type.
Additionally, Lists can be used to represent (ordered) collections of tuples originating from
multivalued attributes. Closely related to these lists are the so-called form types, which
represent HTML forms. Such HTML forms are interpreted as a virtual list of tuples and can
be used, for example, to restrict long lists.

Figure 2-10: basic ADM design primitives

Department

Staff Project

Manager

Scientist
U Project_staff

Name

Name

U

ListName

A1

An
…

Unique
Page-Schema

A

B

Anchor

Reference

Page-Schema

Heterogeneous
Union

List

Form
(with attributes A1
.. Submit)

Text Attribute

Image Attribute

Link Attribute FormName

A1
Submit

22 Chapter 2

When mapping of NCM schemas to ADM schemas, the following rules apply: Macroentities
are mapped to page-schemas, directed relationships are mapped to links between page-
schemas, and aggregation nodes are mapped to unique page-schemas. Unions are mapped to
their corresponding ADM primitive and relationships are translated into links between page-
schemas.
These ADM schemas are used in the final design step for generating the HTML application
by use of the PENELOPE language. Information about this language and a more detailed
description of the ARANEUS design methodology together with several example schemas
can be found in [AMM98].

2.3.4. HDBM

The Hypermedia Database Methodology (HDBM) [Som00] is based on well known
conceptual and logical data models from the area of database and hypermedia systems. It
offers a modeling process designed especially for database-driven hypermedia applications by
using a slightly modified version of RMM for the hypermedia design step and the traditional
design process for relational database systems. Figure 2-11 gives an overview of the basic
HDBM design process.

Figure 2-11: HDBM design process

Analysis of requirements and user modeling

Relational Design

Mapping to the meta schema

Internal DB Design

ER-Design

Navigational
Design

Slice Design

Application Design

Requirements Analysis

Conceptual Design

Logical DB Design

Logical Hypertext-Design

Physical Design

Modeling Hypermedia Applications 23

The first step in the HDBM design process is the requirements analysis, followed by the
conceptual design step, which can be divided into two parts. The first part is the specification
of an ER schema of the application domain that will be used to create a relational database in
a later design step. This ER schema is the basis for the second part of the conceptual design
step, which consists of slice design, navigational design, and application design. The
application design provides a global view of the hypertext structure on the level of HTML
pages and corresponds to the application diagrams of RMM, slice design and navigational
design correspond to the m-slice design step of RMM.

The logical DB design step transfers the ER schema of step 2 into a relational database
schema using known mapping rules. During the logical hypertext design step, the layout of
the application is defined and, together with the conceptual hypertext schema, mapped to a
relational representation, which is called the HDBM meta schema. Finally, the physical
design step deals with all aspects of database administration and tuning, often also called
physical database design.

For the HDBM conceptual design, three additional elements are added to the set of design
primitives of RMM: presentation unit, head slice, and external index.

• Head slices are used to handle the HTML generation for SQL queries that are not known
at design time (ad-hoc queries). In order to be able to produce sensible HTML output for
these queries, a default slice has to be specified for each entity, because there might be
several slices available for a certain entity. This default slice is called head slice and will
be used for the presentation of entities resulting from adhoc queries.

• The second extension to the slice primitive is the presentation unit. In RMM, m-slices
might be nested and there is no distinction between top-level and lower-level m-slices. If
the application has to be materialized, the top-level m-slices have to be identified. In order
to avoid the costly computation of the relevant m-slices, the corresponding elements are
modeled as presentation units during the conceptual design phase.

• The third extension refers to the RMM access primitives. The external index allows
referencing a set of related entities by providing a link to a new page that contains the list
of these entities. With the ordinary index of RMM (now called internal index), the
referenced entities are always displayed directly on the current page.

Figure 2-12: new HDBM design primitives

Owner entity

UID

Owner entity

UID

Owner entity

UID

M-Slice Presentation Unit Head Slice

Index
extern

External Index

24 Chapter 2

The original m-slice primitive and the three new design primitives of HDBM are shown in
Figure 2-12. For a sample HDBM diagram, the m-slice primitives of Figure 2-6 have to be
replaced with presentation unit primitives.

2.4 Deficiencies and Open Issues

Independent of the individual advantages and disadvantages of each approach described in the
previous sections, there are some essential aspects that are not covered by any of these
methodologies. This refers to interactive user interfaces for querying and updating the
underlying data source, personalization of the application, authorization aspects or the
specification of temporal relations and dependencies. The following sections will discuss
these open issues and point out why they are important for a variety of hypermedia
applications. This will show the motivation for the introduction of the Hypermedia Modeling
Technique (HMT) in Chapter 4.

2.4.1. Interactive Interfaces

Current modeling methodologies focus only on the aspect of passive information presentation,
but ignore the need for (inter)active interfaces for querying or updating the application’s data
source. Especially the growing number of World Wide Web applications contains a
significant amount of systems requiring more than just pages for passive information
presentation. Examples are the online information systems built by FORWISS [Ab00, Ttm00]
or the web site of the Deutsche Bahn AG [DB00], which offer multiple search interfaces.
Most hypermedia document formats like HTML or XML are not suited for efficient
searching; querying the information source would be the better alternative, especially if a
database system is used to store the information.
Another important aspect especially of WWW applications is the availability of interfaces for
maintaining the underlying data source. This provides not only the advantage of needing only
one interface for both retrieval and maintenance, but offers also the possibility of distributed,
mobile administration of the system.
Of course not all hypermedia platforms support these interactive interfaces, but the
hypermedia modeling methodologies should provide appropriate concepts for handling these
aspects.

2.4.2. Authorization

Before hypermedia applications provide interfaces for manipulating the underlying data
source, a solid authorization concept is necessary in order to protect the system’s information
from unauthorized access. Since no modeling methodology supports user authorization so far,
this task has to be accomplished separately. For example, database-driven web applications
might be protected by using the authorization features from the web server or the DBMS as

Modeling Hypermedia Applications 25

described in section 3.3. But this approach does not only increase the efforts needed for
creation and maintenance of such a system, but also embodies the danger of inconsistencies
and errors, which often are hard to detect.
Integrating the authorization design for an application into the modeling methodology eases
the development and maintenance of such systems and provides a central, consistent
administration environment.

2.4.3. Personalization

As soon as hypermedia applications are developed for a large and heterogeneous audience,
the aspect of application personalization becomes an important issue. For example, a lot of
search engines in the web meanwhile offer personalization components where the user can
customize basic search and presentation options. In many other places, the users are not even
aware of the fact that personalization is used. As an example, a large internet bookstore
collects information about a user’s preferences when ordering books. The next time this user
visits the store, automatically books of the corresponding genre are offered on the starting
page. Besides www information systems and stores, also other hypermedia applications might
benefit from personalization. Typical examples are hypermedia presentations on large fairs
where the user might choose between different languages or levels of knowledge like layman,
advanced or expert.

Two different forms of personalization are distinguished [MG+87]: Information filtering and
document adaptation.
Information filtering describes the process of selecting the appropriate information for a user
from a pool of data sources. This can happen by correlation between the content of an object
and the user’s preferences (cognitive filtering), by analyzing the likes of other people with
similar tastes (social filtering), or by using cost factors like network bandwidth (economic
filtering). In other words, information filtering restricts the set of documents presented to the
user.
In contrast to this, content adaptation tailors the content of a document to the interests and
knowledge of the requesting user, for example due to cultural or geographical background.
For this purpose, the information has to be available in a highly structured representation.

Since hypermedia modeling techniques are used to design documents and the access paths
between them, information filtering is not relevant at this level. However, content adaptation
within a document is an aspect that could be addressed during the hypermedia design process,
but no existing modeling methodology covers this issue so far.

2.4.4. Temporal Design

Considering the definition of hypermedia from section 2.1.2, it becomes evident that every
true hypermedia design methodology has to support some kind of temporal design. Although
the area of temporal relations and temporal design has been subject to research for some time

26 Chapter 2

[All83, RJM+93, SDK96, Jou97], this aspect is still not covered by current hypermedia
modeling methodologies. The main reason for this situation could be the fact that most of the
modeling techniques developed lately are focused on the World Wide Web. Since this
platform does not support temporal specifications yet, there has been no need to care for this
aspect so far. But considering the rapid changes of standards and techniques in the World
Wide Web together with the increasing use of hypermedia elements for www applications, the
capability of modeling temporal aspects might be an essential feature of future www design
methodologies.

2.5 Summary

This chapter introduced the basic concepts and techniques for modeling hypermedia
applications. At the beginning, the differences between hypertext and hypermedia have been
identified by describing the Dexter Hypertext Reference Model and the Amsterdam
Hypermedia Model. The essential result of this comparison was the finding that hypermedia is
more than simply hypertext plus multimedia.

The next section provided a coarse description of the general modeling process more or less
common to all existing hypermedia design methodologies. The basic steps are requirements
analysis, conceptual hypermedia design, implementation and evaluation. Depending on the
actual methodology used, the implementation step is usually divided into several other design
steps like logical hypermedia design or layout design.

Afterwards, some important and interesting hypermedia modeling methodologies have been
discussed in detail. Among others, the Hypertext Design Model (HDM) and the Relationship
Management Methodology (RMM) have been described as both early and important
approaches in that area.

The chapter ended with a precise identification of deficiencies and open issues regarding
hypermedia design methodologies. Currently no approach in that area covers aspects like
interactive user interfaces, authorization, personalization or temporal design. The relevance
and importance of these concepts for hypermedia modeling methodologies has been described
as a motivation for the development of the Hypermedia Modeling Technique (HMT).

Before introducing the HMT in Chapter 4, we will first discuss some basic architectural issues
regarding the integration of databases and the World Wide Web in the following chapter.

Database-driven Hypermedia Applications in the WWW 27

CHAPTER 3

DATABASE-DRIVEN HYPERMEDIA

APPLICATIONS IN THE WWW

With the rapid growth and acceptance of the World Wide Web, the size of most websites has
grown significantly. The traditional approach of storing a website as a collection of HTML
pages in the local file system becomes more and more insufficient, because it offers no
support for managing large information systems and leads to a number of problems like
dangling links (links with an invalid URL), work intensive and error prone updates,
inconsistencies regarding layout and structure, and outdated or redundant information.
Having been designed to support efficient storage, integrity, consistency and easy
maintenance of large information sources, database systems can solve these problems for
most web applications. This refers not only to the public WWW, but also to intranets of
companies and organizations where often database systems have already been used for years.
Also extranets and B2B portals (non public www areas for business partners) are a typical
application scenario for the usage of databases connected to the World Wide Web.

This chapter investigates various aspects concerning the connection of databases and the
WWW. Different architectures are presented and compared, the page generation techniques
are discussed, the access control concepts of both technologies are examined, and a short
survey on commercial products in this area is presented.

3.1 Architectures

The connection of databases and the web can be classified according to several characteristics
and different points of view. One approach is to classify the applications according to
conceptual characteristics like type of access (read/write), security level, user identification or
session management [Loe98]. Another possibility is to investigate the basic technical aspects
like the connection type (connection on server-side or client-side), the document specification
technique (HTML templates, binaries, scripts) or the document generation technique (on the
fly or materialized HTML views) [Zol96].
We consider the first type of classifications (the conceptual characteristics) to be higher-level
classifications, because they depend on technical characteristics. For example, session
management or user identification of an application is probably different depending on
whether a client-side connection or a server-side connection is used. We therefore distinguish

28 Chapter 3

the various approaches of connecting databases to the World Wide Web primarily according
to the connection type.

3.1.1. Connection on Server Side

The traditional approach of connecting databases to the web is the server-side connection. The
web server handles all the communication with the database system and converts information
from the database into HTML pages. The client (the web browser) only communicates with
the web server; it has no direct connection to the database system. This approach is used in
most database-driven web applications, for example the three online information systems
developed at FORWISS [Ab00, Mli00, Ttm00] or the online timetable of the Deutsche Bahn
AG [DB00]. The main advantages of this technique are:

• No special requirements on client-side
Arbitrary web browsers can be used to access the database, because only standard HTTP
is used for communication. This is a very important aspect especially for applications
aiming at maximum availability.

• Easier development, maintenance and optimization
The application has to be developed only for one platform and does not have to care about
the various possible client platforms or browser versions. This eases development and
maintenance, and allows optimizing the application according to the local situation.

• Seamless integration into security frameworks (firewalls)
Firewalls are used in most companies and organizations in order to protect the local
network from foreign intrusion and attacks. Usually these firewalls are configured very
restrictive and often allow only HTTP and a few other protocols to pass. Databases
connected on server side can be integrated in such environments without problems. A
client-side connection with a proprietary communication protocol would either require to
change the security configuration to a lower level or to use a host outside the secured
network for this application.

• Standard access statistics
Analyzing the web server log files is important for improving a web site’s structure and
contents according to the users’ preferences and behavior. If databases are connected on
server side, the web server’s access statistics also contain all database requests. Client side
connections bypass the web server and the corresponding user requests were either lost or
had to be logged and analyzed separately.

But concentrating all communication and application logic on server-side has also some
disadvantages:

• Server becomes bottleneck
The server has to handle requests for both static HTML pages and dynamic pages
generated from database contents. Especially the latter can be complex and time
consuming requests slowing down the server. A distributed architecture with multiple web

Database-driven Hypermedia Applications in the WWW 29

and application servers should be used for high traffic websites with server-side database
connection.

• Costly session and transaction management
Due to the stateless nature of the HTTP protocol, sessions and transactions across more
than one HTML page require the implementation of a complete session and transaction
manager on server side. If the client were connected directly to the database system using
a stateful protocol, the session and transaction management would be handled by the dbms
itself.

• No information processing on client side
The server side approach restricts the implementation of the user interface to the
capabilities of HTML and perhaps JavaScript. One drawback of this technique is the lack
of possibilities to check the user’s input before it is sent to the server. Errors or missing
information are not detected at once but can only be reported with the next HTML page
after the user has submitted his data. It is also not possible to offer context sensitive
menus where the options of one menu depend on the user’s selection in another one.

From a technical point of view, four different interfaces for connecting a database to the web
on server-side can be distinguished: The Common Gateway Interface (CGI), proprietary web
server APIs, scripting language extensions or the java servlet API. Each approach has its
specific advantages and disadvantages that will be discussed in the following subsections.

3.1.1.1 The Common Gateway Interface (CGI)

The common gateway interface (CGI) [CGI00] is a standard interface implemented by every
web server. It was the first interface that allowed to execute programs on the server and to
produce dynamic HTML pages (opposed to static HTML pages read from the file system).
Every time a request is received, the CGI program is started, the operations are carried out,
the HTML code is produced, and the program exits. All early applications and still a lot of
current implementations use this interface, because it is standardized, flexible and easy to use.

Figure 3-1: CGI based connection

web browser web server

DB server
CGI-

programm

data-
base

static
HTML
pages

Client Server

HTTP

30 Chapter 3

The only condition for a program used with the CGI interface is that the program has to
produce HTML code on the standard output, which is then transferred to the client. There are
no restrictions regarding the language, any programming or scripting language can be used to
write CGI programs. Very popular are shell scripts, perl or the c programming language.
Figure 3-1 shows the architecture of a CGI based connection.

The main advantage of CGI is that it is a standardized interface, easy to use and very flexible
regarding the programming languages used. Additionally, by running the CGI program as a
separate process, the web server is not affected by errors or malfunctions of the program. But
this feature is at the same time the main disadvantage of the CGI approach: the CGI program
has to be started and the connection to the database has to be opened for each request, which
is very inefficient. One solution for this problem is the use of an application server holding
one or more connections to the database permanently open. The CGI program is then only
used to pass the necessary parameters to the application server. Another possibility is to use
FastCGI [Op96], an extension to the CGI standard where the CGI program is not terminated
after having served the request, but remains activated in order to answer the next query.

3.1.1.2 Proprietary web server APIs

An alternative to the CGI approach is the use of proprietary application programming
interfaces (APIs) offered by most web servers, for example NSAPI [Net00] or ISAPI
[Mic00]. These interfaces allow write and link extensions to the web server, which are
executed within the server process. Figure 3-2 shows the architecture of such a connection.

Figure 3-2: web server API connection

The advantages of this approach are a better performance because of less communication and
process management overhead, and the possibility of directly accessing and modifying web
server functions. The main disadvantages are higher implementation efforts (the code has to
be thread-save), possible side effects on the server (for example crashes because of errors and
malfunctions), and the commitment to a specific server and platform (whereas CGI programs
are at least web server independent).

web browser web server

DB server

data-
base

static
HTML
pages

Client Server

HTTP

server
extension

Database-driven Hypermedia Applications in the WWW 31

3.1.1.3 Scripting language extensions

This classification covers a rather huge and heterogeneous group of non-standard interfaces
often supplied by third party vendors. Examples are modules allowing the execution of perl
[WCO00] or php [RG00] scripts, the Microsoft active server pages (asp) extension [ASP00],
the cold fusion toolkit with its cold fusion markup language (CFML) [DM00], or the OMNIS
gateway used by former version of the WebCon toolkit [Zol96, ZS98, SZ99]. These
extensions are connected to the web server either by CGI or a proprietary server API. They
offer some kind of higher level programming interface to the user, often an HTML extension.
The following example is a small template for the OMNIS gateway:

<HEAD>

<TITLE>sample template</TITLE>

</HEAD>

<BODY>

<H1>List of Projects</H1>

<!-- OMNIS BT -->

<!-- OMNIS SQL select Title, Begin, End from Projects -->

 <P>

Project &(table[0]) (from &(table[1]) to &(table[2]))

</P>

<!-- /OMNIS -->

<!--OMNIS CT -->

</BODY>

The standard HTML code is simply passed on by the gateway, only the instructions beginning
with <!-- OMNIS … are interpreted and executed. In this example, a transaction is initialized
(OMNIS BT) and the title and duration of each project in the database are retrieved and
displayed (this happens within the <!-- OMNIS SQL … --> … <!-- /OMNIS -> loop, the
&(table[x]) variables correspond to the current tuple’s attributes). At the end, the transaction
is committed (OMNIS CT).

One advantage of using scripting languages is the fact that these languages (mostly HTML
extensions like WebCon and ColdFusion) are easier to use than traditional programming
languages and do not have to be compiled. Additionally, the risk of causing server
malfunctions is much lower compared to the API approach. The main disadvantages are the
proprietary nature of this approach, the reduced functionality of these scripting languages
compared to traditional programming languages, and the lower performance compared to
compiled code.

3.1.1.4 Java servlet API

The java servlet API is an interface combining most advantages of the other three approaches
discussed so far. Servlets are java programs running on server side (opposed to applets, see
section 3.1.2) using sun’s servlet API [Goo99]. A lot of web servers directly support this API,

32 Chapter 3

for example apache, lotus domino, Netscape enterprise server, or IBM internet connection
server. Most other web servers can be extended by servlet engines available for various
platforms and vendors, for example WAICoolRunner, JRun, or ServletExec. Depending on
the web server and the servlet engine, the servlets can either be executed within the server
process or within a separate servlet server.

Figure 3-3: servlet API connection

The java servlet API is a standardized interface similar to CGI, but avoids the problem of
starting a new process for each request, because servlets are only initialized once. This
happens either at web server startup or when the first request is received. Additionally, this
approach has the advantage of allowing to use a full featured programming language similar
to the server API approach, but avoids the drawback of risking server stability, because
servlets are not compiled into the web server. In contrast to scripting language extensions,
servlets are not bound to a specific platform or web server, because they use the java
programming language and the standardized servlet API.
The main disadvantage of the servlet approach is the lower performance of interpreted code
(java) compared to compiled programs.

3.1.2. Connection on Client Side

Connecting a database to the World Wide Web on client side means that the web browser
communicates with the database system directly and not by contacting the web server. For
this purpose, the browser has to be extended by an additional application component. This
concept shows several advantages originating mainly from avoiding the stateless http
protocol:

web browser web server

DB server

data-
base

static
HTML
pages

Client Server

HTTP

servlet
engine

servlets

Database-driven Hypermedia Applications in the WWW 33

• Easy transaction and session management
Arbitrary protocols may be used to connect the browser to the database system, for
example the proprietary protocol of the database vendor. These protocols are usually
stateful and offer already an integrated session and transaction management.

• Information processing on client side
The browser extension allows performing information processing on the client. This can
be useful for checking whether the user’s input matches a given specification, for example
a valid email address or upper case letters only. It can also be helpful for executing costly
(in terms of time) calculations which otherwise had to be done on server side.

• Server load reduction
Establishing a direct connection between browser and database clearly reduces the web
server load, because now the web server only handles requests for static HTML
documents and does not have to execute expensive database queries.

On the other hand, shifting application logic to the client side causes new problems:

• Higher development costs
In order to achieve a high degree of availability, the application has to be implemented
and tested for various browser types, browser versions and platforms. Even if standardized
techniques (java) are used, the behavior of the application may differ significantly on
client side due to bugs and incomplete implementations of standards.

• Proprietary solutions
Not using HTTP as the transmission protocol often leads to proprietary solutions. On the
one hand, this results in huge migration efforts in case of changing the database system
used. On the other hand, existing security concepts (like firewalls) have to be adapted in
order to treat the new protocol type properly.

• Lower acceptance
The acceptance of a client side solution is clearly lower than that of a server side
connection. The reasons are additional efforts for installing the browser extensions or
performance and security objections, because this approach requires some foreign code to
be executed on the user’s host.

Two techniques for connecting databases to the web on client side are known: Plug-ins and
java applets. Plug-ins are extensions which are compiled and linked to the browser using a
browser specific API, for example ActiveX from Microsoft. Because these extensions are
platform and browser specific and have to be installed on client side, this approach is not very
common.
Java applets are small java programs, which are sent from the web server to the browser
where they are executed. The special security concept of the java programming language (the
sandbox model, see for example [Ber99]) ensures that applets are unable to address any
resources on client side like hard disk or floppy, unless the applet is trusted. Trusted applets
are either signed or come from a trusted source, for example the local hard disk. In order to be
really platform independent, the applet has to use a pure java driver for connecting to the

34 Chapter 3

database system. For this purpose, most database vendors provide a driver conforming to the
Java Database Connectivity Standard (JDBC) [Dic97].

Figure 3-4 shows the architecture of a client based connection using applets.

Figure 3-4: client side connection using applets

Applets have the advantage that they do not have to be installed on client side and are browser
and platform independent. The disadvantages are higher download times for the HTML pages
containing the applets, higher development costs compared to ordinary HTML pages and
possible execution errors due to incomplete support of standards by the web browsers.

3.2 Page generation

In addition to the connection type discussed in the previous section, the HTML page
generation technique is also a classifying feature of database-driven web applications. When
talking about page generation techniques, we do not refer to the programming language and
environment used to create the application, but distinguish whether the HTML pages are
created at runtime (online) or materialized (offline). Since this distinction refers to the
generation of HTML pages, it is only valid for server side database connections.

3.2.1. Online generation (dynamic page generation)

Online generation of HTML pages means to create the documents at runtime when the user
sends a request. The application has to contact the database server, execute the corresponding
queries, receive the results and convert these into HTML documents. The main advantages of
this approach are:

• The dynamically created HTML pages always show the latest information from the
database. Therefore, this technique is especially suited for applications where the database

web browser web server

DB server data-
base

HTML
page

containing
applet

Client Server

HTTP
applet

applet

JDBC

Database-driven Hypermedia Applications in the WWW 35

contents change frequently and where it is important for the users to get up to date
information. Typical applications are online brokers, auctions or ticket booking centers.

• Online generation of HTML pages also allows offering structured query interfaces
directly querying the database instead of executing unstructured full text search on HTML
pages. This provides the user with more powerful search interfaces and more efficient
query execution especially for large-scale information systems.

• Personalization becomes a more and more important aspect of modern web sites. HTML
pages can only be adapted to the user’s preferences if they are created at runtime.
Materializing all variations of every HTML page of an application is impossible.

• The administration of applications using this technique is very simple, because changes to
the database become automatically visible in the web pages at once; the documents do not
have to be updated explicitly.

The most important disadvantage of online generation of HTML pages is the lower
performance compared to the delivery of static HTML pages, because the database has to be
queried for each document requested. However, the performance can be improved
significantly by using internal caches for the tuples requested most, the page structure or even
for whole HTML pages.

3.2.2. Offline generation (materialization of HTML pages)

Creating HTML pages from database contents and storing the whole pages is called offline
generation or materialization of HTML pages. The pages can either be stored in the file
system so that they are directly accessible by the web server, or in the database system as a
binary large object (blob). From a database-centric point of view, this technique could also be
regarded as some kind of page cache. The main benefits of this solution are:

• Higher performance
The online generation of HTML pages requires a certain amount of database queries for
retrieving the application data and algorithms converting the results into HTML pages.
Fetching the whole page in one piece needs only one access, which is clearly more
efficient. If the page is stored in the local file system, the web server even doesn’t have to
contact the DBMS.

• More independence from the database system
Materialized pages are completely independent from the database system. This can be
very useful if the database system is offline for some time, for example because the
database schema is changed. Another advantage is the ability to store and distribute the
application, for example on cdrom, without having to include the database system.

• Higher database security
The users only address static HTML pages instead of a database gateway. This excludes
the possibility of an attack on the database system from the web. Especially the CGI
interface is known for providing some risks if the corresponding programs are not
implemented carefully.

36 Chapter 3

Besides the lack of support for personalization and advanced search concepts (see 3.2.1), the
main disadvantage of this approach is the complex and costly administration of the
materialized pages. Small changes in the application data may require the re-generation of
numerous pages. As an example, changing the name of a person must not only lead to a new
generation of the person’s page, but also to a reconstruction of all pages referencing this
person, because the corresponding links could contain the person’s name. This could be
project pages where this person is listed as a participating scientist, department overviews, or
bibliographic references.
Always generating the whole application whenever the data source has been changed is a very
inefficient solution, especially for large scale web sites. Only generating the pages affected by
the change in the data source is the better approach, but requires an efficient algorithm for the
detection of the dependencies among the generated pages as proposed in [Som00].

3.3 Authorization

When combining databases and the World Wide Web, the selection of the appropriate
authorization concept is another classifying feature of database-driven Web applications. Both
database systems and web servers have developed their own access control standards and
concepts, which are tailored to the specific requirements and technical possibilities of the
corresponding area of operation.
If a client side connection of the DBMS is used, only the authorization mechanism of the
database system can be used if the application does not implement its own security concept.
Server side approaches have several options for choosing an appropriate authorization
concept, which will be discussed in the following subsections.

3.3.1. Pure web server authorization

Web server authorization strategies have been designed for securing sets of HTML pages
lying in the local file system. Their application granularity are whole directories, single files
cannot be secured separately.
Access control can be applied on two levels: domain level and user level. On the domain
level, a group of hosts can be specified which are allowed to access the corresponding HTML
directories. For example, the specification *.tu-muenchen.de accepts requests from all hosts
and subdomains within the tu-muenchen domain. By providing only hostnames or IP
addresses instead of domains, access can even be restricted to single hosts. For example, an
access restriction of a directory looks like this (when using an apache web server):

<DIRECTORY /home/proj/www/internals>

 <LIMIT GET POST>

 option deny,allow

 allow from *.tu-muenchen.de

 </LIMIT>

</DIRECTORY>

Database-driven Hypermedia Applications in the WWW 37

The second level of application is the user level. Web servers allow specifying a list of users
who are granted access to a specific directory. For this purpose, the web server does not use
the login name specified in the http protocol, because this information can easily be
manipulated. The corresponding user account has to be created on the web server first, that
means the login and the (encrypted) password are stored in a configuration file. If a user tries
to access a restricted area, he is prompted for login and password, which is then compared to
the entries in the configuration file. For an apache web server, such an access restriction can
be specified as follows:

<DIRECTORY /home/proj/www/internals>

 <LIMIT GET POST>

 require user bayer, sommer, zoller

 </LIMIT>

</DIRECTORY>

Database-driven web applications can use this technique for controlling access to their HTML
pages. For HTML pages materialized in the file system (see section 3.2.2), this is the only
solution available.
For online generation of web pages, this technique can only be used if the web server directly
accesses the local file system in order to generate dynamic HTML pages. In this case, the
corresponding file (for example, an extended HTML page or a CGI binary) can be placed
within the source tree of the web server and secured with one of the strategies described
before. This technique can be used with every CGI and API approach and with most scripting
solutions, if the scripts are directly called by the web server and can be stored within its
source tree. Authorization happens only within the web server source tree. For connecting the
DBMS, a fixed login is used independent of the requesting client.
Figure 3-5 illustrates the architecture of an application with pure web server authorization for
a CGI based connection.

Figure 3-5: pure web server authorization for a CGI based solution

data-
base

web browser web server

web server authorization

CGI-
gateway

Client Server

user login

static
HTML
pages

fixed login

38 Chapter 3

If such a CGI connection is used, this approach has the big disadvantage that only access to
the whole application can be restricted unless different CGI binaries in different directories
are used. While this may not be a big problem for small applications, it is real drawback for
large and complex information systems.
For API and scripting solutions, this approach integrates seamlessly into the security concept
used for static HTML pages, but offers only limited functionality (access restrictions on
directory level, no different levels of authorization like read/update/write).

3.3.2. Pure DBMS authorization

Instead of using the web server’s authorization techniques, a database-driven web application
may also leave it to the DBMS to permit or restrict access to the system. When choosing this
approach, a database account has to be created for all users who are granted access. The
application has to provide a web page where the user can specify login and password, which
are then used by the database gateway for connecting the DBMS. Figure 3-6 shows the
architecture of an application using pure DBMS authorization.

Figure 3-6: application using pure DBMS authorization

The advantage of this solution is the more powerful and flexible authorization concept of the
DBMS compared to that of a web server. Access can be granted for single tables instead of
whole directories of HTML pages, and different levels of access (for example read only,
update or delete) can be used. Additionally, this approach is independent of the connection
technique used (CGI, Servlets,).
The main disadvantages arise from the stateless nature of the HTTP protocol. Since the user is
not permanently connected to the web server, he had to authenticate himself for every new
HTML page requested. To avoid this unacceptable behavior, the application has to implement
a complete session management where some unique ID, which is assigned upon the first
request, identifies the user. This can be achieved, for example, by using cookies [Net99] or
parameters exchanged with each HTML page. If web server authorization would be used
instead, web browser and web server handled this issue automatically.

data-
base

web browser web server

DBMS authorization

Client Server

static
HTML
pages

user login

input form
for login and
password

Database-driven Hypermedia Applications in the WWW 39

Another drawback is the fact that also an error management has to be implemented by the
application, because authorization errors from the DBMS have to be processed and mapped to
HTML error responses. And last but not least, the database administrator has to care for
authorization issues of the web application, which should be the task of the web administrator.

As a summary, this approach offers a more powerful and flexible authorization concept than
pure web server authorization, but requires significantly more efforts for implementing and
maintaining a web application due to the stateless nature of the HTTP protocol.

3.3.3. Hybrid approaches

Hybrid approaches combine web server authorization and DBMS authorization. This is
typically done by offering a central static HTML page from which dynamically created pages
can be reached. If access to this central HTML page is restricted by the web server on user
level, each client accessing this page has to provide username and password. This information
can then be passed to the gateway to be used for database login as shown in Figure 3-7.

Figure 3-7: application using both web server and DBMS authorization

The advantages of this approach are the easy to use authentication and authorization
mechanisms of the web server combined with the higher security level of the more powerful
DBMS authorization concept. The major disadvantage lies in the redundant storage and
administration of the user accounts for both the web server and the database system, which
can lead to inconsistencies and runtime errors.

3.3.4. Middleware

As an alternative to the previous approaches, a middleware can be used to handle
authorization issues. This separates authorization aspects both from the user interface (the
web server) and the application data (the DBMS) and allows developing an individual
authorization strategy tailored to the current application.

data-
base

web browser web server

DBMS authorization

Client Server

static
HTML
pages

user login user login

web server authorization

40 Chapter 3

In contrast to pure web server authorization, more sophisticated access strategies can be used,
but unlike pure DBMS authorization, user maintenance doesn’t have to be handled by the
DBMS administrator. Compared to hybrid approaches, this solution avoids the redundant
storage and maintenance of user accounts. The architecture of an application using
middleware for authorization purposes can be seen in Figure 3-8.

Figure 3-8: architecture of an application using middleware for authorization

As we will see in section 4.4, handling authorization issues by a middleware can be a very
advantageous concept especially suited for supporting features like personalization or role
based access control, which could not be implemented with reasonable efforts when using one
of the other approaches.

The disadvantages of this technique are the higher implementation efforts, because a complete
user and session management has to be implemented. But compared to pure DBMS
authorization, user and administrator benefit from additional features like role based access
control or personalization.

3.4 Commercial Products

A large variety of commercial products and freeware solutions for connecting databases to the
web is available today. Besides products especially developed for that purpose, a number of
already existing tools and languages has been extended for offering database access from the
web, mostly using standardized interfaces like ODBC and JDBC. The majority of these tools
cannot be classified according to the characteristics mentioned in this chapter, because they
are programming languages that can be used to implement different concepts depending on
the current problem and implementation.
We therefore discuss only products and tools explicitly developed to support the connection
of databases to the World Wide Web. Two large groups can be distinguished, which are
described in the following subsections: tools from database vendors and third party solutions.

data-
base

web browser web server

middleware
authorization

Client Server

static
HTML
pages

user login or
fixed login

input form
for login and
password

middleware

Database-driven Hypermedia Applications in the WWW 41

3.4.1. Database vendors

In addition to the numerous third party solutions for connecting databases to the web, each
database vendor meanwhile offers its own web package. This mostly contains not only the
connection component, but also often a proprietary web server and an integrated development
environment (IDE). Access to the database system is usually handled by an application server
using the vendor specific communication protocol or the java database connectivity (JDBC).
After a short survey on the web components of Sybase, Informix and IBM, we will take a
closer look on the web solution of Oracle.

PowerBuilder [Syb00] from Sybase and the Web DataBlade Module [Inf00] from Informix
are development platforms that can be used together with arbitrary web servers, because they
support the CGI interface. However, server specific connection modules using NSAPI, ISAPI
or the apache interface are provided and recommended in order to increase system
performance. The Web Sphere [IBM00] development platform of IBM provides a proprietary
web server, which is based on the freely available apache web server [Apa00]. This product is
used to connect DB2 databases to the web, other web servers are not supported directly. All
vendors offer additional application servers for tasks like electronic payment, load balancing
or integration of other systems using standard interfaces like CORBA or XML.

The Internet Application Server of Oracle [Ora00a] is an environment for creating multi-tier
internet applications using the Oracle8 DBMS. Its architecture is divided into 5 categories as
shown in Figure 3-9.

Figure 3-9: architecture of the Oracle Internet Application Server

The communication with the client is handled by the Oracle HTTP server, which is an
extended apache web server. Several techniques for creating HTML pages can be used: the
jserv module (mod_jserv) allows executing java servlets by using the apache jserv servlet

Oracle Internet Application Server

Oracle HTTP
Server

(apache)

Presentation
Services

Business Logic
Services

Data
Management

Sevices

mod_jserv

mod_perl

mod_plsql

mod_ssl

Oracle Portal

Apache jserv

Oracle JSP

Oracle PSP

perl

Forms Services

EJB

Stored
Procedures

CORBA

XML

Oracle8i
Cache

Client DBMS

42 Chapter 3

engine, the perl module (mod_perl) provides support for the perl programming language, and
the PL/SQL module (mod_plsql) calls stored procedures on an Oracle8i engine. These can be
either PL/SQL stored procedures (PSP) or java stored procedures (JSP). The SSL module
(mod_ssl) provides standard HTTPS support enabling secure connections between client and
server by using an encryption mechanism over a Secure Sockets Layer (SSL). Besides perl,
PSP, JSP and servlets, the Oracle Portal is an additional presentation interface for connecting
to the higher level Oracle portal services, which allow integrating other sources and
applications. The Business Logic Services provide interfaces for using enterprise java beans
(EJB), CORBA services or XML data exchange, while the Data Management Services
provide special caching functionality. Additionally, the Oracle Internet Application Server
contains a number of development kits (for example the Portal Developer’s Kit) not shown in
Figure 3-9.

While all the modules and services discussed so far support a server side connection of
Oracle8 databases, the Forms Services [Ora00b] allow client side connections using java
applets. These java applets connect to the Forms Server consisting of the Forms Listener,
Runtime Engine and the optional Forms CGI. The Forms Listener handles the communication
with the applet and maintains a pool of Runtime Engines, which connect to the DBMS and
execute the client’s queries. The Forms CGI allows load balancing by maintaining a “server
farm”, that means a pool of middle tier machines each running an Oracle Web Server and a
Forms Server as shown in Figure 3-10. If a client requests an applet (1), the load balancing
server determines the machine with the least load (2) and sends an HTML page back to the
client (3) that retrieves the applet from the corresponding server (4,5) (that with the least
load). The rest of the communication (6-9) will happen between the client and this machine
only.

Figure 3-10: load-balancing scenario

Client

Browser Applet

Server
Farm

Forms CGI

Balancer
Server

Web Server Forms
Runtime
Engine

Forms
Listener

Balancer
Client

Balancing
Server

1

2

3
4 5 6

7

8

9
DBMS

Database-driven Hypermedia Applications in the WWW 43

3.4.2. Third party tools

During the last years, the family of products for web database integration has grown steadily
and reached a size that makes it hard to keep an overview. Especially the availability of
standardized database interfaces like ODBC (Open DataBase Connectivity) and JDBC (Java
DataBase Connectivity) has promoted the development of numerous tools, languages and
development environments.

Traditional programming languages like C++ or perl and new languages like java or php can
be used for accessing databases either by using their native or some standardized interface
like ODBC and JDBC. These languages help to build individual applications with a variety of
different connection architectures like CGI, servlets or proprietary web server API. Although
very flexible, we consider these languages to be rather low level programming interfaces than
web database integration tools.

The major part of the integration tools available today is the group of HTML extensions,
which offer what is often called dynamic HTML (DHTML). These products provide a set of
proprietary tags that are used together with standard HTML, the corresponding files are called
HTML templates. Instead of requesting these templates directly from the web server, they are
processed by a parser that reads the proprietary tags, executes the corresponding commands
(for example querying the DBMS) and substitutes the tags with standard HTML. Often
integrated development environments of different functionality are part of these commercial
products.
Besides a large variety of less known products like WebBase [Exp00], ODBiC [Odb00] or
HotSQL [Chi00], the most prominent examples of this technique are Microsoft’s active server
pages (ASP) [ASP00] with the FrontPage development environment, and Allaire’s Cold
Fusion platform [All99]. As an example, we will discuss the latter in more detail.

An application built with ColdFusion relies on five components as shown in Figure 3-11:
ColdFusion Studio, ColdFusion application pages, ColdFusion server, ColdFusion
administrator, and external ODBC data sources.

Figure 3-11: architecture of an application built with ColdFusion

client
(browser)

web
server

ColdFusion
server

CGI, ISAPI, NSAPI HTTP

application
pages

(CFML)

static
HTML
pages

DBMS
ODBC

ColdFusion
Studio

ColdFusion
Administrator

44 Chapter 3

The ColdFusion application pages are HTML templates and can be considered as the
functional parts of the application. Besides ordinary HTML and other standard client side
elements (for example java script), these application pages contain proprietary tags from the
ColdFusion Markup Language (CFML). This language provides more than 70 tags and 200
functions for database interaction, variable declaration, conditional expressions and other
program structures. The following sample template retrieves the names of all employees from
the database table emp and displays them within an HTML table:

<HTML>

<HEAD>

<TITLE>Employee list</TITLE>

</HEAD>

<BODY>

<H1>List of employees<H1>

<CFQUERY NAME=”EmpList” DATASOURCE=”intranetdb”>

 SELECT FirstName, LastName FROM emp

</CFQUERY>

<TABLE>

<CFOUTPUT QUERY=”EmpList”>

 <TR><TD>#FirstName#</TD><TD>#LastName#</TD></TR>

</CFOUTPUT>

</TABLE>

</BODY>

</HTML>

Each tag of the ColdFusion Markup Language begins with CF. The database query is defined
between the <CFQUERY> and </CFQUERY> tags, and the results of the query are displayed
in the corresponding <CFOUTPUT> … </CFOUTPUT> section. This output section is called
in a loop as often as result tuples are available.

The ColdFusion server listens for requests from the web server, reads and executes the
corresponding application pages. It can be configured by the ColdFusion Administrator
regarding available data sources, debugging, application security, general server settings,
server clustering, page execution scheduling or directory mapping.
ColdFusion Studio is the development environment allowing visual development, interactive
debugging, and dynamic page previews for application pages. Additionally, it provides
support for project management and source control.

Besides this huge group of HTML extensions, a smaller class of commercial products are
large scale integration environments like NetDynamics [Sun00] from Sun Microsystems or
Total-e-Server (former Saphire/Web) [Blu00] from Bluestone Inc., which offer a set of
interfaces and services for integrating applications at enterprise level. The functionality of

Database-driven Hypermedia Applications in the WWW 45

these tools can be compared to the complex development environments of database vendors
as described in section 3.4.1.

3.5 Summary

This chapter discussed various aspects regarding the web database integration. First, we
described the different architectures used for connecting databases to the World Wide Web.
The common approach is to create a server side connection using either the standardized
Common Gateway Interface (CGI), a proprietary web server API (for example NSAPI), a
scripting language extension for the web server, or the java servlet API. The main advantages
of a server side connection are the absence of any browser restrictions, lower development
efforts and centralized maintenance of the application. Client side connections can be realized
by using browser plugins or java applets, which have the advantage of offering a more
powerful user interface and the ability of information processing on the client.

Another classifying feature of web database connections is the page generation technique. If
online generation (dynamic generation) of HTML pages is used, the documents are created at
runtime when a user request is received. This guarantees up to date information and easy
maintenance, and allows direct searching within the database and personalization of web
pages. Materialization of hypermedia views (offline generation) creates the documents and
stores them as HTML files in the web server’s file system. This increases performance and
security concerning the DBMS, and allows copying the application (for example on cdrom).

The third section of this chapter investigated various authorization concepts for a web
database integration. Pure web server authorization is easy to use but provides only limited
functionality, whereas pure DBMS authorization suffers from the stateless nature of the
HTTP protocol and thus requires additional implementation efforts. Combining both concepts
leads to higher maintenance efforts and might cause inconsistencies. Using middleware to
handle authorization also requires additional implementation efforts, but enables advanced
features like personalization or individual access control concepts.

Finally, we gave a short survey on commercial products for web database integration. One
group of products are application development environments offered by the database vendors.
As an example, the Oracle8 Internet Application Server has been described. As an alternative,
numerous third party tools are available, which are mostly based on HTML language
extensions. From this group of products, ColdFusion from Allaire has been presented as an
example.

Switching back from the technical aspects of database-driven web applications to the design
of general hypermedia applications, the next chapter will introduce the Hypermedia Modeling
Technique (HMT).

The Hypermedia Modeling Technique (HMT) 47

CHAPTER 4

THE HYPERMEDIA MODELING TECHNIQUE

(HMT)

The Hypermedia Modeling Technique (HMT) has been developed in order to provide a solid,
intuitive and flexible methodology for database-driven hypermedia design. It is partly based
on concepts from the Relationship Management Methodology (RMM, see section 2.3.2), but
avoids the major drawbacks of RMM and offers several improvements, extensions and
completely new modeling concepts.
HMT is the first modeling technique covering information presentation, query interfaces, data
manipulation interfaces, authorization design, personalization and temporal design altogether.
Additionally, HMT is not bound to a specific hypermedia platform; it can be used to design
applications in various hypermedia formats like, for example, HTML [Htm00], XML
[Xml00] WML [Ris00] or PDF [AS00].
The following sections describe in detail the different design steps of HMT. In order to
provide expressive examples in a familiar environment, we will use a sample www
application for illustration purposes.

4.1 Design Process and Overview

The HMT design process consists of a sequence of 6 steps, where each step corresponds to a
different abstraction level of design specification. In practice, several iterations of the whole
process or of parts of it are necessary in order to create and maintain a hypermedia
application. This iterative approach can only succeed if the different design steps form a
clearly separated hierarchy where the different layers can be accessed directly and changes to
later steps do not influence earlier ones. For example, it must be possible to change the
presentation of an element without having to change the structure or definition of the
document containing this object. But, of course, changes to one design step are often
influencing the following ones.

The HMT design process (see Figure 4-1) is divided into six different steps:

Step 1: Requirements analysis

This is always the first task that has to be accomplished when designing IT-systems.
Requirements analysis covers aspects like the definition of the application domain,
identification of the intended users, and specification of the system’s functionality and usage.

48 Chapter 4

Although an interesting and important aspect, this topic is not discussed within this work.
Numerous publications can give further information on this issue, for example [Wei82,
KK92].

Step 2: ER Design

After the application domain has been specified by the requirements analysis, an ER schema
has to be built reflecting its objects and relationships, for example projects, employees and
employee_works_in_project. Since HMT relies only on the basic ER model as described by
Chen [Che76], any extended ER model like, for example, [SSW80, TYF86, Teo94] can also
be used for this design step.
If a hypermedia application has to be built upon an already existing database, these first two
steps in the HMT design process are omitted.

Step 3: Conceptual Hypermedia Design

The core hypermedia application design starts with the
conceptual hypermedia design of the application,
based on the ER schema developed in the previous
step. Aspects like information clustering within the
documents (which attributes in which document) and
navigation (which links in which documents) are
addressed within this design step.

Step 4: Authorization Design

Access restrictions are specified during the
authorization design phase using RBAC-techniques
(Role Based Access Control, see for example [LS97,
SCF+96]). Based upon the conceptual hypermedia
schema built during the previous design step, access to
certain parts of the application can be limited by
specifying roles required for viewing these
components. For example, access to private
information about projects like internal project reports
or implementation details might be restricted to users
with the roles project_partner or project_leader. If
applied on components of documents (instead of whole
documents), personalized hypermedia applications can
be created.

Step 5: Logical Hypermedia Design

During the logical design phase, additional properties concerning the logical representation of
a document’s content are defined. This mainly refers to the following aspects:

• The sequence of elements within the document
Each document can be described as a sequence of elements, where each element can be
assigned a unique position.

Figure 4-1: the HMT design process

Requirements Analysis

ER-Design

Conceptual Hypermedia Design
� Information Clustering
� Navigational Design

Authorization Design

Layout Design

Logical Hypermedia Design
� Order of Elements
� Labels and Descriptions
� Meta Types
� Temporal Design

The Hypermedia Modeling Technique (HMT) 49

• The temporal order of elements within the document
Each element of a document can have a temporal specification including the absolute time
of visibility (duration), the point of time it starts being visible, or one or more
synchronizing elements.

• The labels or descriptions of the elements
It is often not sufficient to just display the contents of an attribute; some kind of label has
to be attached describing the information displayed.

• The meta types of the attributes
Attribute values or input forms for attributes can be displayed in various ways, for
example as plain text, popup menus or button lists. HMT knows various sets of meta types
depending on both the database type of the attribute and the kind of document used.

Step 6: Layout Design

Finally, all aspects regarding the layout of the later presentation are covered by the layout
design step. This step heavily depends on the hypermedia system used for building a
presentation, although certain aspects are common to most systems: The presentation layout
can be described by defining a background color or image, font type (plus size and color),
standard headers and footers, or default resolution, sound volume, or frame rate.

The following sections will take a closer look at the design steps 2 through 6.

4.2 ER Design

After having finished the requirements analysis (step 1 of the HMT design process), an ER
schema of the application domain has to be created. Since HMT relies only on the basic ER
model as described by Chen [Che76], any extended ER model like, for example, [SSW80,
TYF86, Teo94] can also be used for this design step. The formal specification of the ER
model we use is based on [Tha91] and [Vos91].

A basic ER schema contains two types of elements: entities and relationships. Entity Types
represent sets of real world objects like employees, departments or projects. A single object is
called an entity and can be regarded as an instance of an entity type. Each entity type
provides a set of attributes, which are used to store the values of the entities, for example
name or title. A subset of these attributes is used as a unique identifier (called key) to
distinguish the different entities.

Definition 4.1 (entity type):

An entity type is a pair e = (ATTRe, KEYe) with e being the name of the entity type,
ATTRe being the set of attributes and KEYe ⊆ ATTRe being the key of the entity type.

Relationship types are used to model the interdependencies between two or more entity
types, for example employee_works_in_department or employee_participates_in_project..
Instances of a relationship type are referred to as relationships. Similar to entity types,

50 Chapter 4

relationship types can have a set of attributes carrying the objects information, for example
salary. In HMT, relationship types are considered to be without direction.

Definition 4.2 (relationship type):

Let E be a set of entity types, then a relationship type is a pair r = (ENTr, ATTRr) with r
being the name of the relationship type, ENTr ⊆ E being a multiset of entity types with
| ENTr | ≥ 2, and ATTRr being a (possibly empty) set of attributes.

Since this basic formal description of an ER schema is sufficient for describing the next steps
of the HMT design process, we do not investigate on advanced issues like arity and
cardinality of relationships or features of entity keys. Therefore an entity-relationship schema
can be defined as follows:

Definition 4.3 (entity relationship schema):

An entity-relationship schema is a pair s=(E,R), where E is a set of entity types and R
is a set of relationship types.

Figure 4-2 shows the ER schema of a small sample scenario, which will be used throughout
the remainder of this chapter. We use the standard ER notation [Che76] with rectangles for
entity types, ellipses for attributes, an rhombs for relationship types. The cardinality of a
relationship is specified next to the corresponding entity types.

Figure 4-2: ER schema of the sample scenario

The sample scenario contains information about research projects, scientists working in these
projects, departments, funding organizations and categories classifying the projects, for
example multimedia, electronics or agriculture. Each project can have an arbitrary number
(n:m relationships) of funding organizations, participating scientists and relevant categories.
A scientist works for only one department, but a department can have an arbitrary number of
scientists (n:1 relationship). This scenario is a simplified part of the ER schema of the online
information system abayfor-online [Ab00], which has been built using a former version of
HMT.

project

scientist

category

department

participates in

fits

works in

M

N

N 1

funded by organization M N N M

abstract end title begin image

first_name

last_name

name

name address

name

The Hypermedia Modeling Technique (HMT) 51

Having developed an ER schema of the application domain, the next step in the HMT design
process is to create a conceptual hypermedia schema.

4.3 Conceptual Hypermedia Design

The HMT conceptual design of a hypermedia application focuses on two aspects:

Information Clustering is the process of grouping various portions of information into one
place. Although the hypermedia application to be developed is based on an ER schema, not
all attributes of an entity type necessarily have to be presented together on one page. Some
attributes (for example numeric keys or private information) may even have to be hidden from
the user. The HMT primitives dealing with information clustering are called domain
primitives.

Navigational Design determines the access structures which are used to navigate through the
application by following the corresponding hyperlinks. Mostly these hyperlinks are based on
relationship types from the ER schema. For example, a project document can contain
hyperlinks pointing to the participating scientists, which have been calculated using the
participates_in relationship type. In some cases, however, hyperlinks may also originate from
the structure of the hypermedia application, for example if the information about projects is
too long to fit in one document and therefore is distributed between several documents which
are connected by links. In HMT, so called access primitives support the navigational design.

Together, information clustering and navigational design build the HMT conceptual
hypermedia design step. The result of this design step is a (conceptual) HMT schema, which
consists of a set of documents together with various substructures and a set of access
relationships describing the navigational structures between the documents.

Documents are the central element of the HMT domain primitives, which will be described in
the following subsection, access structures are discussed in section 4.3.2.

4.3.1. Basic Domain Primitives

For information clustering, HMT offers a set of so called domain primitives (see Figure 4-3).
The unit of presentation in HMT is a document, which can be defined using the HMT
document type. A document type is identified by a UID (unique identifier, often a
meaningful string like “project_overview”) and can be regarded as the frame of a
presentation. The graphical representation of a document type is a rectangle with a folded
edge, the document type’s UID is located at the bottom of the symbol. Two different main
classes of document types can be distinguished:

52 Chapter 4

Document types which are related to a certain entity type or relationship type are called ER
document types, the corresponding entity type or relationship type is called the document
type’s base ER type. Each ER document type has exactly one base ER type. For example, an
ER document type named project_overview with base ER type projects can be defined. It will
be used to generate project documents presenting an overview of a given project containing
its title, abstract and the contact person. In other words, ER document types can be considered
as templates providing the description for the generation of a set of documents based on the
ER type’s entity or relationship.

Assigning more than one base ER type to a document is not allowed, because this has no clear
semantics: What would it mean if a document would have two base ER types projects and
scientists and set of attributes from both ER types; which scientist entities had to be combined
with which project entities? If all scientists of a given project are to be identified, this can be
managed using the HMT access struct primitive (see section 4.3.2). Thus each ER document
presents exactly one entity or relationship from its base ER type. We deliberately allow to use
both entity types and relationship types at this point, because the lack of a precise rule for
deciding whether to use a relationship type or an entity type for modeling a given object of
the application domain is known to be one of the weak points of the ER model:

“The major problem in the entity-relationship approach is that one person’s
entity is another person’s relationship” [Cod90].

In addition to these ER documents presenting information contained in the ER schema, there
is also a need for documents presenting some general information not coming from the
application domain. For example, there could be some kind of options document allowing the
user to choose a language and other preferences, or a help document presenting information
on how to use the hypermedia system. These kinds of documents can be specified using
general documents types. Since they do not rely on ER types, each general document type
specifies exactly one general document, that means the terms general document type and
general document could be used simultaneously. However, in order to be as precise and
consistent as possible, we will continue to use the term general document type when talking
about the HMT conceptual design primitive, and the term general document when talking
about the instance of a general document type. When simply talking about document types,
both ER document types and general document types are meant.

Each document type can contain a set of arbitrary, unspecified contents called adds. These
adds can be considered as black boxes, their contents are not interpreted by HMT at any time.
Adds may be used, for example, to define a standard disclaimer with copyright and
webmaster address, which is included as a footer at the end of each document. Adds may also
be used to insert additional layout information into the document (for example a piece of
HTML code), but doing this is not recommended, because then the document is bound to be
used on a specific hypermedia platform and the advantages of a clear distinction between
conceptual, logical and layout design are lost. The graphical representation of an add is a
rhomb with a unique identifier inside.

The Hypermedia Modeling Technique (HMT) 53

Figure 4-3: basic domain primitives

In contrast to general document types, ER document types may additionally contain a
(possibly empty) set of attributes of the corresponding base entity type. The ER documents
will then present the values of these attributes. For example, the project_overview ER
document type contains the attributes title, abstract, and image as shown in Figure 4-7.

In all document types, the document type’s elements (that means adds, attributes or access
primitives) can be grouped into so-called element-groupings. These groupings are
represented by a trapezoid and have a unique identifier (UID). Similar to document types,
they can be divided into ER element-groupings with and general element-groupings
without a related entity or relationship type. For example, the address of a scientist may be
modeled as an element-grouping with UID scientist_address containing the attributes street,
city, zip-code, and country. Since element-groupings are treated as individual components,
they may be used by different document types or even other element-groupings, if these are of
the same kind (i.e. have the same or no base ER type). This allows building nested element-
grouping structures, whereas document types cannot be nested. Figure 4-4 shows a sample
scientist_info document type which is modeled both with (variant 1) and without (variant 2)
the use of an element-grouping.

Figure 4-4: HMT document type modeled with and without the use of element-groupings

Attribute Add

General
document type

Attribute Additional
Content

ER-type

UID

ER-type

UID UID UID

ER document
type

General
element grouping

ER element
grouping

scientist

scientist_info

age

name

street

Variant 1 Variant 2

city
street

zip-code

address

address

scientist

scientist_info

scientist

city

zip-code

country

age

name

country

54 Chapter 4

Although document types and element-groupings embody similar concepts, their distinction is
essential for the expressive power and high consistency of HMT.

• First, element-groupings can be used to define information units that can be reused by
other document types or element-groupings. This kind of normalization enforces
consistency throughout the application by avoiding redundancies, saves time when
developing the application and eases maintenance. In our sample scenario, the scientist
element-grouping address containing the attributes street, city, zip-code and country can
be subsequently used by different document types like the scientists home document type,
the projects document type (for the list of participating scientists) or the departments
document type (for the list of employees). A change to this element grouping would
automatically affect all document types (or element-groupings) it belongs to.

• Second, another important advantage of building a document type from multiple element-
groupings is the ability to create adaptive documents with this technique. As we will see in
section 4.4, roles can be assigned to element-groupings, for example the role manager or
bookkeeper. The document type for the entity type projects can then be built consisting of
several element-groupings with different roles assigned to them, for example a financial
details element-grouping or an internals element-grouping. Depending on the role of the
user requesting such a document, different contents will be displayed, although only one
document type for projects has to be defined.

• Finally, element-groupings are necessary for several other HMT primitives like links or
certain access structures as described in the next subsections. Additionally, there are also
some special features like the background color of a document or the number of items
displayed when using a search interface (see query and result documents, section 4.3.3),
which apply to documents but cannot be assigned to element-groupings.

Figure 4-5: type hierarchy of the basic domain primitives

general
element-grouping

general
document type

ER element-grouping ER document type

add

attribute

ER type

element-grouping document type

The Hypermedia Modeling Technique (HMT) 55

As a short summary, Figure 4-5 shows the OMT [RBP+91] schema of the type hierarchy of
the HMT domain primitives and their dependencies, virtual primitives (that means primitives
only used for specification purposes) are drawn with a dotted line.

Element-groupings and document types may contain an arbitrary number of adds. In contrast
to element-groupings, document types cannot be nested. As a specialization of document
types and element-groupings, ER document types and general document types together with
ER element-groupings and general element-groupings have been introduced. Each ER
document type or element-grouping references exactly one ER type and may contain
attributes of this ER type.

Formally, the basic domain primitives of HMT are defined as follows:

General element groupings are defined as recursive structures with a unique identifier and an
arbitrary number of adds:

Definition 4.4 (general element-grouping):

Let ADDS be the set of HMT adds for a given application and uid be a unique identifier,
then the set of general element groupings GRgeneral is defined as follows:
1) g=(uid, ADDSg , ∅) ∈ GRgeneral with ADDSg ⊆ (ADDS ∪ ∅)
2) g=(uid, ADDSg , SUBg) ∈ GRgeneral with ADDSg ⊆ (ADDS ∪ ∅) and

 SUBg ⊆ (GRgeneral / g)

ER element-groupings are similar to general element-groupings, but additionally reference an
ER type and a (possibly empty) set of attributes of this ER type:

Definition 4.5 (ER element-grouping):

Let ADDS be the set of HMT adds for a given application, uid a unique identifier and
e ∈ E ∪ R an ER type, then the set of ER element groupings GRER is defined as
follows:
1) g=(uid, ADDSg , e, ATTRg,∅) ∈ GRER with ADDSg ⊆ (ADDS ∪ ∅) and

ATTRg ⊆ (ATTRe ∪ ∅)
2) g=(uid, ADDSg , e, ATTRg , SUBg) ∈ GRER with ADDSg ⊆ (ADDS ∪ ∅),

ATTRg ⊆ (ATTRe ∪ ∅) and SUBg ⊆ (GRER / g)
e is called the base ER type of the element-grouping, and GRe denotes the set of ER
element-groupings with base ER type e.

If we do not need to distinguish between ER element-groupings and general element-
groupings, we simply speak of element-groupings:

Definition 4.6 (element-grouping):

The set of element-groupings is defined as GR := GRgeneral ∪ GRER.

As specified before, no grouping can directly be referenced as one of its own subgroupings,
but we additionally have to ensure that no cycles appear in a nested grouping structure,

56 Chapter 4

because this would prevent the page generation algorithm (see Figure 5-12) from terminating.
We therefore introduce the relation subgrouping:

Definition 4.7 (subgrouping relation):

The relation subgrouping is defined as { (s,g) | s,g ∈ GR , s ≠g and s ∈ SUBg } and
reads s is subgrouping of g. subgrouping+ denotes the transitive closure of
subgrouping,and SUB+(g) denotes the set of transitive subgroupings of g:
SUB+(g) := { s ∈ GR | (s, g) ∈ subgrouping+ }

For consistent HMT schemas, the transitive closure subgrouping+ has to be irreflexive, that
means ∀ g ∈ GR: g ∉ SUB+(g).

Now document types can be defined. General HMT document types consist of a unique
identifier, a set of adds and a set of general element-groupings:

Definition 4.8 (general document type):

Let ADDS be the set of HMT adds for a given application and uid be a unique identifier,
then a general document type is a tuple d = (uid, ADDSd, GRPd) with
ADDSg ⊆ (ADDS ∪ ∅) and GRPd ⊆ (GRgeneral ∪ ∅) } being a set of general element-
groupings.
DOCgeneral denotes the set of general document types of a given application.

ER document types additionally include an ER type and a (possibly empty) set of attributes of
this ER type:

Definition 4.9 (ER document type):

Let ADDS be the set of HMT adds for a given application, uid a unique identifier and
e ∈ E ∪ R an ER type, then an ER document type is a tuple
d=(uid, ADDSd , e, ATTRd, GRPd) with ADDSg ⊆ (ADDS ∪ ∅), ATTRd ⊆ (ATTRe ∪ ∅)
and GRPd ⊆ (GRER ∪ ∅) } being a set of ER element-groupings. DOCER denotes the set
of ER document types of a given application, e is called the base ER type of
document d. DOCe denotes the set of ER document types with base ER type e.

Speaking of document types, we mean both ER and general document types:

Definition 4.10 (document type) :

The set of document types is defined as DOC := DOCgeneral ∪ DOCER.

The relation subgrouping can be extended on document types:

Definition 4.11 (extended subgrouping relation):

The relation subgrouping(p) is defined as { (s, p) | s ∈ GR , p ∈ GR ∪ DOC,
s ≠p and s ∈ SUBp } and reads s is subgrouping of p. subgrouping+ denotes the
transitive closure of subgrouping, and SUB+(p) denotes the set of transitive
subgroupings of p:
SUB+(p) := { s ∈ GR | (s, p) ∈ subgrouping+ }

The Hypermedia Modeling Technique (HMT) 57

The basic domain primitives described in this subsection can be used for grouping adds and
attributes into hypermedia documents, but additional concepts are needed for creating
navigational structures (hyperlinks) between the different entity types or the world outside.
The next section introduces the basic access primitives provided for that purpose.

4.3.2. Basic Access Primitives

In order to reference information from other
entity types than the base ER-type and from
outside the application domain, a document
type or element-grouping can contain access
primitives like structural and navigational links
or access structures as shown in Figure 4-6.

Links in HMT originate from an anchor which
can be an add, attribute or element-grouping
and point to a target element, which is either a
document type or an element-grouping within
a document type. This corresponds to span-to-
node and span-to-span links as defined in the
Dexter Hypertext Reference Model [HS94].
For example, in a project overview document
type, the attribute title can be defined as the
anchor of a hyperlink. The target of this
hyperlink could be either another document type containing, for example, an abstract and
other information about the current project, or a certain element within this document type.

To give a more precise definition, HMT distinguishes two types of links: navigational links
and structural links. The difference lies in the set of anchors and targets allowed for each
kind of link:

• Navigational links may originate from any kind of element-grouping and are pointing to
general document types, general element-groupings or external sources. For example, any
document type may contain a navigational link pointing back to some kind of starting
document (in most cases modeled as a general document). Navigational links are
represented by a simple arrow.

• Structural links can only originate from ER element-groupings and lead again to ER
document types or elements having the same base ER type. In other words, structural links
are pointing to a different presentation of the same structure, that means they remain
within a given structure (which is either an entity or a relationship). For example, a project
overview document type may contain a structural link pointing to another project
document type where more information on the current project is given. The design
primitive for structural links is an arrow with a dotted line.

Figure 4-6: basic access primitives

navigational
link

structural
link

<REF>
internal
access struct

<REF> external
access struct

<REF> access struct with
relationship
grouping

58 Chapter 4

For the remainder of this work, we simply speak of HMT links when referring both to
structural and navigational links.

While HMT links are hypermedia constructs that do not depend on the application data,
access structs are used for showing the interdependencies between the entities and
relationships of the application domain. Access structs have a source document type or
element-grouping and reference a (possibly empty) set of entities of another ER type. For
example, a project overview document type may contain an access struct referencing the
scientists working in that project (relationship participates_in). There are three ways of
specifying the subset of the set of all possible targets (labeled “<REF>” in Figure 4-6):

• Relationship reference
By using the name of a relationship type, the access structure references all entities of the
target entity type, which are related to the current entity by this relationship type. The
project-employee example mentioned before is such a relationship reference. Both the
source and the target document type of a relationship reference must be ER document
types, and their base ER types have to correspond to the entity types the relationship
references. If the relationship itself has attributes, an additional relationship element-
grouping (drawn with a dotted line in Figure 4-6) can be attached to the access structure.
The contents of this additional element-grouping will be displayed together with the target
element-grouping or document type.

• Conditional reference
Similar to relationship references, a conditional reference specifies a subset of the set of
all entities of the target entity type. Instead of using a relationship type, a condition can be
used for specifying the desired entities. Interpreting entity types and relationship types as
relations and attributes as columns of the relational model described by Codd [Cod90],
this condition may be specified using the extended theta select operator on the target ER
type or the extended (theta) join operator on both ER types involved (see Definition 4.14).
A conditional reference can be used together with a relational reference: For example, an
access struct from departments to scientists can be defined using the relationship reference
works_in and a condition age>40, specifying all employees of a certain department which
are older than 40 years. This type of reference is called a conditional relationship
reference.

• Total reference
A total reference simply addresses all entities of the corresponding target entity type and
is labeled with *. In our sample scenario, a possible access struct with a total reference
could be a list of departments reachable from the starting document. While the target for
such a total reference has to be an ER document type, the source can be any kind of
document type.

Each access struct has a document type or element-grouping attached to the target ER type,
specifying how (that means using which attributes, links or access structs) the referenced
entities or relationships have to be presented. If a document type is provided, the referenced
set of target entities or relationships will be presented within a new document and only a link

The Hypermedia Modeling Technique (HMT) 59

pointing to this document is inserted into the current document. This is called an external
access struct. If an element-grouping is attached to the target ER type, then the referenced
entities or relationships will be included right inside the current document, which is called an
internal access struct.

Although the distinction between internal and external access structs might also be considered
to belong to the logical design step, we see it as a matter of conceptual hypermedia design,
because a decision for either of the two possibilities requires to select the right domain
primitive (document type or element-grouping) as the target of the access struct. On the
logical level, the conceptual HMT model should not be changed, so the decision has to be
made during the conceptual design step.

A sample HMT diagram for the projects overview document together with its corresponding
HTML representation can be seen in Figure 4-7. We’d like to stress that the HTML pages
shown in the screenshots are the result of a complete HMT modeling process including
logical and layout design, so not all information used to create these HTML pages can be
found in the conceptual schemas presented. For example, the order and the labels of the
attributes will be specified during the logical design step and thus cannot be found in the
corresponding conceptual schemas. Nevertheless, we find it necessary to give some hints on
how the resulting documents of the sample conceptual HMT schemas may look like.

Figure 4-7: HMT schema of the project overview document type

The project overview document type is an ER document type with base ER type project,
consisting of three attributes (image, title, abstract) and an access struct on the entity type
scientist. This access struct uses a relationship reference (the particicpates_in relationship)
and the info element-grouping as the target of the access struct, which causes the information
about participating scientists to be displayed right inside the project overview document

project

project_overview

abstract

title

image

participates in scientist

info

last_name

homepage

scientist

first_name

60 Chapter 4

(internal access struct). The scientists_info element-grouping contains two attributes, one of
which (last_name) is used as the anchor of a structural link pointing to the homepage
document of the corresponding scientist.

Formally, the basic access primitives of HMT are defined as follows:

A navigational link originates from an anchor (which can be an element-grouping, add or
attribute) inside a document type or element-grouping, and points to either an external source
or a general document type within the application:

Definition 4.12 (navigational link):

Let EXT be a set of external hypermedia presentations and ε be the empty element-
grouping, then a navigational link is a tuple lnav = (s, ga , dt , gt), with s ∈ DOC ∪ GR
being the source of the link, dt ∈ DOCgeneral ∪ EXT being the target, and
gt ∈ SUB+(dt) ∪ ε being a subgrouping of dt called target grouping.
If s is an ER document type or ER element-grouping with base ER type e, then
ga ∈ SUB+(s) ∪ ATTRs ∪ ADDS, otherwise ga ∈ SUB+(s) ∪ ADDS. Ga is called the
anchor of the link.
LINKnav denotes the set of navigational links.

If the target grouping gt is not the empty element-grouping, then l is called a span-to-span
link, otherwise span-to-node link [HS94]. Of course there can only be a target grouping if the
target is a general document type with at least one element-grouping, so links to external
sources are always span-to-node links.

Structural links are similar to navigational links, but can only be applied to ER documents and
ER element groupings:

Definition 4.13 (structural link):

Let ε be the empty element-grouping, then a structural link is a tuple
lstruct = (s, ga , dt , gt), with s ∈ DOCER ∪ GRER being the source,
ga ∈ SUB+(s) ∪ ADDS ∪ ATTRs being the anchor, dt ∈ DOCER being the target, and
gt ∈ SUB+(dt) ∪ ε being a subgrouping of dt called target grouping. LINKstruct denotes
the set of structural links.

Structural links are also called span-to-span or span-to-node links depending on the target
grouping used. The set of HMT links is defined as the union of LINKstruct and LINKnav.

While structural links always lead to different presentations of the same entity or relationship
and navigational links only point to general documents, access structs allow to reference
entities or relationships of other ER types than the base type of the current document type or
element-grouping. Three types of references are possible: relationship reference, total
reference and conditional reference. Before defining an access struct, first a valid condition
has to be specified:

The Hypermedia Modeling Technique (HMT) 61

Definition 4.14 (valid condition):

Let u, v ∈ E be entity types, then a valid condition θ(u,v) is any condition expressed in
an extended theta-select operator or an extended theta-join operator of the relational
model ([Cod90]), where relations are to be substituted by u and v and columns are to be
substituted by ATTRu ∪ ATTRv. Theta stands for any of the following comparators:
1) equality
2) inequality
3) less than
4) less than or equal to
5) greater than
6) greater than or equal to
7) greatest less than
8) greatest less than or equal to
9) least greater than
10) least greater than or equal to

Now that we have specified valid conditions for one or two entity types, an access struct can
be defined. Access structs originate from a source (a document type or element-grouping) and
reference a subset of the set of entities or relationships of another ER type (called target). The
actual subset of the set of target entities or relationships is specified by the reference of the
access struct, which can be a relationship reference, a conditional reference, a conditional
relationship reference or a total reference.

Definition 4.15 (access struct):

Let u, v ∈ E be entity types and Θ(u,v) the set of valid conditions for u and v, then an
access struct is a tuple s = (d1 , d2 , r), with d1 ∈ DOCu ∪ GRu, d2 ∈ DOCv ∪ GRv, and
r ∈ (Θ(u,v) × R) ∪ Θ(u,v) ∪ R ∪ {*}.
D1 and d2 are called source and target of access struct s, r is called the reference of the
access struct. We speak of a relationship reference if r ∈ R, a conditional reference if
r ∈ Θ(u,v), a conditional relationship reference if r ∈ (Θ(u,v) × R), and a total
reference if r = {*}. ACS denotes the set of access structs.

Of course, relationship references can only be used if the source of the access struct is an ER
document type or an ER element-grouping.

Depending on whether a document type or an element-grouping is used for the target of an
access struct, we distinguish two types of access structs:

Definition 4.16 (internal and external access struct):

Let s = (d1 , d2 , r) be an access struct and v be the base ER type of d2, then s is called an
internal access struct if the target d2 ∈ GRv is an element-grouping. If d2 ∈ DOCv is a
document type, then s is called an external access struct.

In addition to the basic domain and access primitives described so far, the following
subsection discusses extended HMT primitives for modeling applications with advanced
functionality.

62 Chapter 4

4.3.3. Specialized ER Documents

Experiences with several database-driven online information systems have shown that the
pure presentation of data as specified in section 4.3.1 is only one aspect of such systems.
There are often additional requirements like, for example, querying or manipulating the
underlying data source, which is not covered by the basic domain primitives described so far.
A solution to this problem is the introduction of so called specialized ER documents. These
specialized ER documents improve the expressive power of HMT and allow to model not
only passive presentation documents, but also query forms for searching the data source,
documents for presenting the query results, and web interfaces for manipulating the
underlying data source. Together with these specialized documents, the basic access structs
are extended and specified more precisely. The concept of distinguishing between documents
and element-groupings as described in the previous sections is retained without exception.

When analyzing the typical process of querying an online information system, three steps can
be identified:

• First, the query is specified by filling in some forms being part of what we call a query
document.

• Second, the query is evaluated and the results are displayed as a list of items, called the
result document.

• The list of items on the result document usually contains a structural link for each result
item pointing to a more detailed description, which is called the detail document.

The document type primitive described in section 4.3.1 corresponds to the third step of the
query process. To distinguish this kind of document type from others, we will refer to it as a
detail document type from now on (and the element-grouping will be called details element-
grouping).
In addition to the three document types described before, often also means for manipulating
and populating the underlying data source are required. For this purpose, we introduce the
concept of input documents.

Before going into detail, we extend the basic specification of document types and element-
groupings given in the previous section in order to allow specialized versions: A specialized
ER element-grouping is an ER element-grouping with a class c ∈ {query, result, detail,
input).

Definition 4.17 (specialized ER element grouping):

Let C = {query, result, detail, input) be the set of ER document classes,then a
specialized ER element grouping is a tuple (g, classg) with g ∈ GRER and classg ∈ C.

Similarly, a specialized ER document type is an ER document type with a class c ∈ {query,
result, detail, input):

The Hypermedia Modeling Technique (HMT) 63

Definition 4.18 (specialized ER document type):

Let C = {query, result, detail, input) be the set of ER document classes, then a
specialized ER document type is a tuple (d, classd) with d ∈ DOCER and classg ∈ C.

The following sections will present in detail the different classes of document types together
with their specific access primitives.

4.3.3.1 Query Document Types

Query document types represent documents containing input forms for
querying the underlying database. Similar to detail document types, we
distinguish between document types and element-groupings. Both may
consist of attributes, adds, navigational links, internal access structs, or
query element-groupings. Query document types are distinguished
from detail document types by a question mark in the upper left corner
of the document symbol. (see Figure 4-8). Query element-groupings
can also be marked that way, but since query document types are only
allowed to reference query element-groupings, the question mark in
query element-groupings may be omitted if the context is clear.

Similar to general document types, a query document type has only one instance (the type
itself can be regarded as an instance). For example, a query document type for the projects
entity type of our sample scenario does not depend on the project entities (like the project
overview document type does), but only on the ER type itself. Thus it is legal to use the
expressions query document and query document type synonymously.

An attribute attached to a query document type or element-grouping means that some kind of
input form will be provided where the user can restrict this attribute for searching. For
example, a query document type named project_search could contain the attributes title and
abstract, which would result in a query document containing one input form for the title and
one for the abstract. Any entry made by the user will be matched against the corresponding
values of all entities inside the database.
The kind of input form used (this could be, for example, a popup menu or a simple input line)
is not specified at this point, but will be determined during the logical design step of HMT
(see section 4.5.2). If several attributes are used in a query document type, it is left to the
application to decide whether restrictions on different attributes are combined using the
logical and or the logical or operator. It is suggested that the application offers a possibility
for the user to take this decision himself, for example by providing a small popup menu after
each input field allowing to choose between and and or.

By using access structs, input forms from related entity types can be included that allow
defining complex search interfaces. Since there has to be a semantic relationship between two
entity types if they are to be used for defining an ingenious access struct, only relationship
references are allowed to be used for that purpose. For example, a document type for querying
research projects may include an access struct on scientists using the participates_in

Figure 4-8 : query
document type

?

ER type

UID

64 Chapter 4

relationship. By this way, an input form for the scientist’s name can be provided allowing to
search for projects a certain scientist is working in. The scientist element-grouping used could
in turn include another access struct to a third entity type (for example departments) so that
there would also be a possibility to search for projects depending on the department the
participating scientists belong to. This allows using transitive relationships as well.
Regarding internal and external access structs, it makes no sense to offer a query document
with a hyperlink pointing to another query document, if the restrictions on the second
document should be combined with those of the first input form. A better solution is to
include this second input form right into the first query document, because this is much easier
for the user to handle. For this reason, only internal access structs are allowed for query
document types.

Adds and navigational links have the same functionality as described for the basic domain and
access primitives. Using structural links in query documents is not possible, because unlike
detail documents, query documents do not represent single entities.

Submitting the query form can be interpreted as navigation from the
query document to a new document containing the query results. Each
query document contains such a virtual link (called form submitter)
pointing to a result document type (see next subsection) containing the
query results. To distinguish from ordinary links, these form
submitters are represented by an arrow with two lines as shown in
Figure 4-9.

Figure 4-10: HMT schema of a project search document

Figure 4-10 shows a HMT schema for a simple project search document type and the
corresponding HTML document. The base ER type of the search document type is the project

Figure 4-9: form submitter
primitive

project

search

abstract

Title ?

project_list

participates in

project

organization

org_info

scientist

sci_info

name

last_name

funded by

?

?

The Hypermedia Modeling Technique (HMT) 65

entity type, and it contains the attributes title and abstract. In addition to this, two access
structs are defined: using the funded_by relationship and the org_info query element-grouping
as its target, the name of a funding organization can be used for restricting the set of projects.
The participates_in relationship with its target element-grouping sci_info allows searching for
projects a certain scientist is working for. The target of the form submitter is the result
document type project_list, which will be described in the next subsection.

The following formal specification is based upon the basic specification of sections 4.3.1,
4.3.2, and 4.3.3, and addresses only those issues that have been modified or introduced during
this subsection.

Query document types and query element-groupings are defined as follows:

Definition 4.19 (query document type):

Let q = (d, classd) be a specialized ER document and e ∈ E ∪ R an ER type, then
DOCquery = { q | classd = query } denotes the set of query document types, and
 denotes the set of query document types with base ER type e.

Definition 4.20 (query element-grouping):

Let q = (g, classg) be a specialized ER element-grouping and e ∈ E ∪ R an ER type,
then GRquery = { q | classq = query } denotes the set of query element-groupings and
 denotes the set of query element-groupings with base ER type e.

If access structs are used in query document types, they have to be internal, because the
semantics of submitting a form related to the current query document type by an external
access struct is not clear and would confuse the users. The reference type of a query access
struct must also not be a total reference, because then there would be no relationship between
the target and the current ER type at all, making the inclusion of a query form from the target
ER type completely useless. Conditional references may be used if dependencies or
correlations between two entity types have not been modeled as a relationship type.

Definition 4.21 (query access struct):

Let ACS be the set of access structs, then the set of query access structs is defined as
ACSquery = {s = (d1, d2, r) ∈ S | r ≠ {*}, d1 ∈ DOCquery ∪ GRquery and d2 ∈ GRquery }.

A query form submitter is used to specify a result document displaying the query results. It
consists of a query document type or query element grouping (the source) and a result
document (the target):

Definition 4.22 (query form submitter):

Let DOCresult be the set of result document types, then a query form submitter is a
tuple u = (d1, d2), with d1 ∈ GRquery ∪ DOCquery being the source and d2 ∈ DOCresult
being the target. SBMquery denotes the set of query form submitters.

The following subsection discusses the result document type used for displaying the results of
query documents.

query
eGR

query
eDOC

66 Chapter 4

4.3.3.2 Result Document Types

Result document types are used to display a set of entities of a given
ER type. The result document type primitive is represented by a
document symbol with three lines in the upper left corner (see Figure
4-11) and inherits all elements of the basic document type described
in section 4.3.1, which are groupings, adds, attributes, links and
access structs. But while the detail document type uses its
specification to display one entity of an ER type, a result document
type applies its specification on each entity of the set of entities to be
displayed. For example, a result document type for the project entity
type could contain the attributes title and start, which would lead to a
document containing a list of projects where each item would be displayed with its title and
date of initialization. The information about which entities have to be displayed is specified
by the access struct or the query document that is referencing the result document.

Figure 4-12: HMT schema of a project result document

Figure 4-12 shows a sample project result document type and the corresponding HMT
schema. The result document type is named project_list and contains one attribute (title) and
an access struct on the entity type organization. The target of the access struct is the element-
grouping org_info (indicating that this is an internal access struct), which includes only the
name of the funding organization. The title attribute of the project is used as the source of a
structural link pointing to the project_overview detail document type showing further
information on the corresponding item. The screenshot on the right side shows the list of
projects, where the title is shown in the second column and the name of the funding
organization is listed in the third column. The first column of the table containing a number
for each item is created automatically and is not specified during conceptual hypermedia
design, but is one of the features the HMT logical design step deals with.

Figure 4-11: result document
primitive

ER type

UID

project

project_list

title

T
organization

org_info

name

project

project
overview

funded by

The Hypermedia Modeling Technique (HMT) 67

For a result document type, the number of items to be displayed cannot be estimated when
designing the application; it depends, for example, on the search phrases entered by the user.
In some cases, there may be result sets containing hundreds or thousands of items to be
displayed, which leads to extremely large documents. One solution for this problem is to
divide the list of entities among several linked documents. In HMT, the maximum number of
elements for a single result document can be specified during the logical hypermedia design
phase. This improves readability and avoids large documents with long download times, but
still overloads the user with perhaps hundreds of results. A more sophisticated search
interface enables the user to interactively refine his query if the result set is too large.

In HMT, this can be achieved by allowing a result document type to contain one query
element-grouping. This query element-grouping can be used to refine the current query until
the result set has reached a reasonable size. In order to display the results of the refined query,
a result document has to be specified by using the submitter primitive. Of course the target of
the submitter may also be the same document type.
Unlike the result element-groupings of a result document, this query element-grouping is only
displayed once, not for each element of the result set.

Figure 4-13: result document with query refinement capabilities

Figure 4-13 shows the extended project_list result document type, now containing a query
element-grouping named refine for refining the query. This query element-grouping contains
an internal access struct on the category entity type using the fits relationship. This allows
selecting only those projects fitting a certain category. If the query element-grouping is used,
the refined list of projects is displayed by the use of the result document type named
project_list2.

It is not required that the query element-grouping in the result document is identical to the one
used in the initial query document. You could, for example, start searching for projects using

project

project_list

title

organization

org_info

name

project

project
overview

refine

project

?
project_list2

category

cat_info

name
?

funded by

fits

68 Chapter 4

a simple keyword search, and afterwards refining your query with a more advanced search
covering scientists, departments or categories.

Formally, result element-groupings and result document types are defined as follows:

Definition 4.23 (result document type):

Let q = (d, classd) be a specialized ER document and e ∈ E ∪ R an ER type, then
DOCresult = { q | classd = result } denotes the set of result document types, and
 denotes the set of result document types with base ER type e.

Definition 4.24 (result element-grouping):

Let q = (g, classg) be a specialized ER element-grouping and e ∈ E ∪ R an ER type,
then GRresult = { q | classq = result } denotes the set of result element-groupings and
 denotes the set of result element-groupings with base ER type e.

In addition to result element-groupings, also query element-groupings may be included by
result documents in order to provide query refinement capabilities. Of course an included
query element-grouping must have the same base ER type as the including result document or
element-grouping.

With the introduction of specialized document types, the definition of structural links has to
be changed. Each ER document type presenting one or more entities might be the source of a
structural link (i.e. result, detail and input document types), and each document type
presenting exactly one entity may be the target of a structural link (i.e. detail and input
document types):

Definition 4.25 (exact definition of a structural link):

Let ε be the empty element-grouping and DOCinput be the set of input document types,
then a structural link is a tuple lstruct = (s, ga , dt , gt), with
s ∈ (DOCER / DOCquery) ∪ (GRER / GRquery) being the source,
ga ∈ SUB+(s) ∪ ADDS ∪ ATTRs being the anchor, dt ∈ (DOCdetail ∪ DOCinput) being
the target, and gt ∈ SUB+(dt) ∪ ε being a subgrouping of dt called target grouping.

4.3.3.3 Detail Document Types

Detail document types and detail element-groupings are almost identical to the basic domain
and access primitives as described in section 4.3.1. A detail document represents one entity of
its base ER type using attributes, adds, groupings, links and access structs. In contrast to the
other kinds of document types, detail document types can use four different kinds of access
structs: Table of Contents (TOC) Guided Tour, Guided Table of Contents and Slide
Show. The corresponding HMT design primitives are labeled with a T (for TOCs), G (for
Guided Tours), GT (for Guided TOCs) and S (for Slide Shows) in the anchor triangle of the
access struct symbol (see Figure 4-14).

result
eGR

result
eDOC

The Hypermedia Modeling Technique (HMT) 69

project

project
overview

abstract

title

image

participates in scientist

Info

last_name

Homepage

scientist

first_name

T

These access structs differ in the way they offer access to the information referenced:

• A TOC provides a list consisting of the entities referenced. The contents of this
description are defined by the result element-grouping (in case of internal TOCs) or the
result document type (in case of external TOCs) that is attached to the access structure.
Usually, a description for a TOC will contain only few attributes and one structural link
pointing to a detailed presentation of the entity. In our sample scenario, the presentation of
a TOC on research projects could be defined as an element-grouping containing the title
and a hyperlink pointing to the project’s overview document.

• A Guided Tour does not display a list of all relevant entities, but shows one single entity
of the set together with links pointing to the next or maybe the previous entity. The
presentation of each entity referenced by the Guided Tour is defined by the document
attached to it. Additional information like the order of the tour elements or the buttons
used for selecting the next or previous tour entity will be specified during the logical and
layout design step of HMT.

• Combining these two concepts leads to a Guided Table of Contents (GT) with both direct
access to all items referenced and a Guided Tour.

• Slide Shows are similar to Guided Tours, except for the fact that they automatically
display the referenced entities one after the other instead of waiting for the user to select
the next or previous item. The information about the overall length of a Slide Show or the
time used to display each entity referenced are specified during the temporal design step
(see section 4.5.4).

Figure 4-14: HMT schema of the project overview document

Similar to the distinction between internal and external access structs, the specification of the
type of the access struct (TOC, Guided Tour, Guided TOC or Slide Show) could be regarded

70 Chapter 4

as a matter of logical rather than conceptual hypermedia design. But again, the need to specify
either an element-grouping or a document type as the target of the access struct depending on
its type requires this decision to be made during conceptual hypermedia design.

Figure 4-14 shows the modified version of the HMT schema for the project_overview
document type. Besides the attributes image, title and abstract, this document type contains
an internal TOC on the scientists entity type using the participates_in relationship in order to
specify the set of employees working for that project. The target of the TOC is the info
element-grouping, which consists of the attributes first_name and last_name, the latter of
which is used as the source of a structural link pointing to the scientist’s homepage.

The basic formal specifications of sections 4.3.1 and 4.3.2 can be extended as follows:

Definition 4.26 (detail document type):

Let q = (d, classd) be a specialized ER document and e ∈ E ∪ R an ER type, then
DOCdetail = { q | classd = detail } denotes the set of detail document types, and
 denotes the set of detail document types with base ER type e.

Definition 4.27 (detail element-grouping):

Let q = (g, classg) be a specialized ER element-grouping and e ∈ E ∪ R an ER type,
then GRdetail = { q | classq = detail } denotes the set of detail element-groupings and
 denotes the set of detail element-groupings with base ER type e.

Access structs for detail document types or detail element-groupings carry additional
information about their type of access struct: Guided Tour (G), TOC (T), Guided TOC (GT)
and Slide Show (S):

Definition 4.28 (detail access struct):

Let ACS be the set of access structs, then the set of detail access structs is defined as
ACSdetail = { (s, types) | s = (d1, d2, r) ∈ ACS, d1 , d2 ∈ (DOCdetail ∪ GRdetail), type(s) ∈
{T, G, GT, S) }. If types is a TOC or a Guided TOC, then the target of the access struct
has to be an element-grouping, otherwise it has to be a document type.

Query, result and detail document types are used for modeling advanced information retrieval
interfaces of hypermedia applications. In the following section, we introduce the input
document type, which can be used for manipulating the application’s data source.

4.3.3.4 Input document types

Input document types are used to provide an interface for manipulating the underlying data
source by either updating existing entries or creating new ones. Their corresponding primitive
is a document type with an arrow pointing into a barrel in the upper left corner (see Figure
4-15). Similar to query document types, input document types may contain adds, attributes,
links, internal access structs, element-groupings and form submitters.

For each attribute contained in an input document, an input form of a certain type will be
provided where the user can enter a value or change an already existing one. A detailed

detail
eGR

detail
eDOC

The Hypermedia Modeling Technique (HMT) 71

description of how the type of the input form is specified and what types are available is
provided in section 4.5. Attributes not contained in the input document will be assigned a
default value, which can be specified during the logical design phase. If no default value is
specified there, the attribute will be assigned a NULL value.

Internal access structs in input documents allow the user to relate
entities of other entity types to the entity that is currently created or
updated. In database terms, foreign keys are defined by using these
internal access structs. For example, an input document type for the
project entity type could contain an access struct on categories that
allows specifying the categories relevant for the current project entity.
In this example, a relationship reference has been used for the access
struct. In order to also be able to specify dependencies between entities
where no relationship type has been defined in the ER schema,
conditional references may also be used for input access structs,
whereas total references do not provide useful semantics in that case.

Input documents can be referenced by both navigational and structural links. In the first case,
the input document is used for creating a new entry for the given base ER type, because no
information about a certain entity is available. For example, a general document type named
administration acts as the central document for administration purposes and includes
navigational links on input documents for projects, scientists and departments, which allows
inserting new entries into the database.

In contrast to this, a structural link leading to an input document causes the values of the
current entity to be displayed for manipulation. For example, the result document type for
projects shown in Figure 4-12 could contain a structural link pointing to a project input
document type instead of the project overview document type. If one entity on the project
result document is selected by the user, the corresponding input document is presented.

Finally, a form submitter is used to initiate the storage process. It points to a detail document
type providing some kind of feedback to the user. For example, some characteristic attributes
of the saved entity can be presented again together with an acknowledgement that this entry
has been saved successfully. Form submitters can be assigned to both input documents and
input element-groupings, but a specific input document must only contain one submitter. If
more submitters are specified, only the top-most is considered as valid, the others are ignored.

Figure 4-16 shows a sample HMT schema of a project input document type named
project_input. It contains the attributes title, abstract, begin, end and image, plus internal
access structs on scientists, categories and funding_organizations, each using a relationship
reference. The submitter target is the input_conf detail document type, which presents a
confirmation to the user containing the title of the project saved.

Figure 4-15: input document
primitive

ER type

UID

72 Chapter 4

Figure 4-16: HMT schema for a project input document

Formally, input document types are specified as follows:
Definition 4.29 (input document type):

Let q = (d, classd) be a specialized ER document and e ∈ E ∪ R an ER type, then
DOCinput = { q | classd = input } denotes the set of input document types, and
 denotes the set of input document types with base ER type e.

Definition 4.30 (input element-grouping):

Let q = (g, classg) be a specialized ER element-grouping and e ∈ E ∪ R an ER type,
then GRinput = { q | classq = input } denotes the set of input element-groupings and
 denotes the set of input element-groupings with base ER type e.

Each input document has a form submitter pointing to a detail document type:

Definition 4.31 (input form submitter):

An input form submitter is a tuple u = (d1, d2), with d1 ∈ GRinput ∪ DOCinput being the
source and d2 ∈ DOCdetail being the target. SBMinput denotes the set of input form
submitters.

Input access structs are used to relate entities of different ER types to the current entity. Only
relationship references or conditional references are allowed, and the access struct must be
internal:

project

title

abstract

project_input

end

begin

image

funded by

fits

scientist

sci_ref

last_name

organization

org_ref

category

participates in

cat_ref

name

name
project

conf_text1

title

conf_text2

input_conf

input
eGR

input
eDOC

The Hypermedia Modeling Technique (HMT) 73

Definition 4.32 (input access struct):

Let ACS be the set of access structs, then the set of input access structs is defined as
ACSinput = {s = (d1, d2, r) ∈ S | r ≠ {*}, d1 ∈ DOCinput ∪ GRinput and d2 ∈ GRinput }.

4.3.4. Summary

In this section, the conceptual hypermedia model of HMT has been described and formally
specified. The HMT conceptual design step is based on the ER schema of the application
domain developed during the second HMT design step (ER design). Figure 4-17 shows a
summary of the HMT conceptual design primitives.

Document types, element-groupings, adds and attributes have been introduced as the basic
domain primitives. ER document types are assigned a base ER type from the ER schema of

Figure 4-17: HMT conceptual design primitives

ER type

UID

ER type

UID

UID
UID

attribute

add

general document and
element-grouping

query document and
element-grouping

result document and
element-grouping

detail document and
element-grouping

input document and
element-grouping

attribute of an ER type

additional content

HMT domain primitives HMT access primitives

ER type

UID

?

ER type

UID

?

ER type

UID

ER type

UID

ER type

UID

ER type

UID

<REF>
internal
access struct

structural
link

navigational
link

<REF>
external
access struct

<REF>
access struct with
relationship grouping

form submitter

74 Chapter 4

the application domain allowing them to contain attributes from this ER type. General
documents lack this ER type and therefore can only contain adds or element-groupings.
In order to include information from related entity types and allow navigation within the
application, a set of basic access primitives like structural links, navigational links and access
structs with relationship references, conditional references or total references have been
defined. Extending the basic ER document type, the introduction of query documents, result
documents, detail documents and input documents allows to model not only passive
documents for information presentation, but also interactive documents for querying or
updating the underlying data source. For each of these specialized documents, the relevant
sets of domain and access primitives have been described in detail.

As a result of this design step, a conceptual HMT schema can be defined as follows:

Definition 4.33 (conceptual HMT schema):

A conceptual HMT schema is a tuple h = (s,DOC,GR,ADDS,ACS,LINK,SBM) with s
being an ER schema, DOC being a set of document types, and GR being a set of
element-groupings, ADDS being a set of adds, ACS being a set of access structs, LINK
being a set of links, and SBM being a set of form submitters.

4.4 Authorization Design

Considering today’s most popular hypermedia system world wide web, applications to a great
extent do not only contain public information, but also data intended to be visible only for
certain users or groups. This could be, for example, internal information about a certain
project, which should only be accessible for project partners, or some special services
available only for customers or registered users. To this day, access control in WWW
applications is usually handled on the physical layer, namely by the web server, which implies
several disadvantages:
Access restrictions have to be specified separate from the hypermedia design process, and are
influenced by the architecture of the CASE-tool used: If the pages are materialized in the file
system, then their location has to be chosen according to the desired access restrictions (which
are defined at directory level by the web server). If the pages are to be generated dynamically,
only the entire application can be controlled by restricting the gateway, or the application has
to implement its own access control mechanism.
Standard web server authentication and authorization only apply to files within the document
directory tree of the web server, thus only whole documents (except for inline images) can be
protected, a finer granularity cannot be specified. Additionally, changes to restriction policies
require reorganizations in the file system. On the other hand, moving files can influence
access restrictions. These considerations lead to the conclusion that access control should be a
matter of hypermedia application design. In HMT, the authorization design step deals with all
aspects of access restriction.

Besides traditional access control techniques like discretionary access control (DAC) or
mandatory access control (MAC), role based access control (RBAC) [SCF+96] has been

The Hypermedia Modeling Technique (HMT) 75

discussed as a promising alternative in recent years. Moreover, it has been shown that RBAC
can be used to simulate both DAC and MAC [NO96,San96,SM98]. The following sections
describe the basic principles of Role Based Access Control and how HMT uses this
technique.

4.4.1. Role Based Access Control

Originally, the concept of role has been examined in sociology, where it is defined as the set
of duties and rights associated with a position, which is assigned to a person occupying this
position [TB79]. This concept has been adapted to the area of computer science with the
consistent notion of role as

“... a job or function within the organization that describes the authority and
responsibility conferred on a user assigned to the role.” [SCF+96].

This very intuitive approach has been motivated by the fact, that in most organizations and
institutions access restrictions are based upon the role of a user and not upon the user himself.
Roles are created for the different job functions in an organization and the users are assigned
one or more roles depending on their responsibilities. This simplifies the task of administering
access control policies for several reasons:

• For a given position, only one rule needs to be specified independent of how many users
occupy this position.

• If users change positions, access restrictions do not have to be redefined.

• RBAC is policy neutral: additional security principles like separation of duties or role
cardinality can easily be specified by declaring conflicting roles or limitations of the
number of users assigned to a given role.

Roles can be grouped to form hierarchies, where superior roles (senior roles) inherit all the
access rights of their inferiors. There is no general rule how these hierarchies are to be built,
but [Mof98] identifies three approaches: An isa role hierarchy based on generalization, an
activity role hierarchy based on aggregation, and a supervision role hierarchy based on the
organizational hierarchy.
Each role is assigned a set of permissions and a set of users. Although a user can have more
than one role, it may be necessary to restrict the number of roles at a given point of time. For
example, the personalization of a document might depend on the user’s role, and therefore
only one role must be assigned to a user for the personalization algorithm to work properly.
This can be achieved by introducing the concept of user sessions and assigning the roles
currently activated to the user’s session.
Constraints can be defined for permission assignment, role-to-session assignment or role
hierarchies. For example, there might be a mutual exclusion for certain pairs of roles activated
at the same time like manager and administrator. Figure 4-18 shows the basic RBAC model
as defined in [SCF+96].

76 Chapter 4

Figure 4-18: RBAC96 Model

Other advanced concepts like the scope of roles, separation of duties or activation and
deactivation of roles have been subject to research [NO93,LS97,GB98,Mof98], but do not or
only marginally influence the authorization design step of HMT. The reason is that this design
step only deals with the assignment of roles to HMT documents or element-groupings, it is
independent of role administration issues. Therefore we do not discuss such issues further.

Since all roles of a user are assumed to be activated automatically during every session, the
HMT authorization design step does not need the session concept shown in Figure 4-18. For

Figure 4-19: The HMT RBAC model

Users

Roles
Per-

missions

Admin
Per-

missions

Sessions

…
Constraints

Adminis-
trative
Roles

User
Assignment

Role
Hierarchy

Permission
Assignment

Administrative
User

Assignment

Administrative
Role

Hierarchy

Administrative
Permission
Assignment

user roles

Roles Per-
missions

User
Assignment

Permission
Assignment

Admin
Per-

missions

Adminis-
trative
Roles

Administrative
User

Assignment

Administrative
Permission
Assignment

Users

The Hypermedia Modeling Technique (HMT) 77

our purpose, a simplified, basic RBAC concept with flat and situation-insensitive roles is
absolutely sufficient. Figure 4-19 shows the basic RBAC model as used by HMT. The
introduction of advanced concepts like separation of duties, role cardinality, or role
hierarchies is possible, but not required for full functionality. It is left to the administration
tool to support these features or not, the authorization design step itself is not affected by such
considerations.

4.4.2. RBAC in HMT

RBAC in HMT can be applied on two different levels: document level and element-grouping
level. The differences between the two levels of application are discussed in the following
subsections. There is, however, no difference between restricting a general document
type/element-grouping or an ER document type/element-grouping.

Consequently, HMT authorization diagrams contain all kinds of documents and element-
groupings, but ignore other conceptual design primitives like links or attributes. This
improves readability and maintainability of HMT authorization diagrams. If single elements
like adds or links are to be restricted, they have to be placed inside an element-grouping first.
The close relation of HMT authorization diagrams to HMT conceptual schemas is the main
reason for placing the authorization design step before logical design and layout design,
although it could also have been specified as the last HMT design step. Organizing the HMT
design process this way, each design step only relies on the previous one and extends the
corresponding diagrams, there is no step switching back to a more simple view of the
application.

Access restrictions are represented by a rectangle containing a key
symbol and the name of the role that is allowed to access the
document type or element-grouping (see Figure 4-20). The access
restriction primitive is placed inside the document or element-
grouping primitive. If no restriction is specified, the document type or
element-grouping is accessible by every user.

This strategy is different from many other systems like file systems or database management
systems, where only the owner and users mentioned explicitly are allowed to access the
information. Typical hypermedia systems are designed to be open to the public (like the
World Wide Web) or are accessible only in places where the possible users are already
authorized (like fairs or intranets). This means that access restrictions in hypermedia
applications usually concern only a smaller part of the whole application, and therefore the
default behavior of HMT documents and element-groupings is to be open to the public unless
restricted explicitly.

Formally, a HMT authorization schema can be defined as follows:

Figure 4-20: access restriction
primitive

<role>

78 Chapter 4

Definition 4.34 (HMT authorization schema):

Let L be a set of roles, then a HMT authorization schema is a set
A ⊆ L × (DOC ∪ GR), with DOC being the set of document types and GR being the set
of element-groupings.

For the remainder of this section, we use a modified version of our sample scenario. The
project entity now contains a number of new attributes and relationships like overall funding,
estimated future expenses, annotations of the management, or internal reports as shown in
Figure 4-21.

4.4.2.1 RBAC for documents: traditional access control

Traditional access control as, for example, in the World Wide Web is managed by assigning
roles to document types in HMT. If a user requests such a restricted document, he must have
the appropriate role in order to receive the document, otherwise some kind of access denied
message will be given.

Figure 4-22 shows a modified version of the sample HMT conceptual schema for the project
overview document from Figure 4-14 and the corresponding authorization diagram. The
project overview document now contains an additional structural link leading to the project
input document from Figure 4-16, which allows changing the current project’s properties.

Of course only special users, for example the administrator, should be allowed to change the
project’s properties. Therefore access to the input document is restricted as shown in the
authorization diagram on the right side of Figure 4-22.

Figure 4-21: modified sample scenario

project

scientist

category

department

participates_in

fits

works in

M

N

N 1

funded by organisation M N N M

reports

annotations

contains

has

1 1

M

M

Abstract End Title

funding

Begin Image

future
expenses

URL

The Hypermedia Modeling Technique (HMT) 79

Although an access restriction on a document restricts the entire document together with all
included element-groupings, this restriction is not explicitly inherited to the related element-
groupings. On the one hand, this is not necessary because a denial of access to a document
automatically prevents all related element-groupings from being displayed in that context
(implicit inheritance). On the other hand, explicit inheritance of access restrictions to included
element-groupings could cause side effects, because an element-grouping may be used by
multiple documents, some of which may have no or different restrictions.

4.4.2.2 RBAC for element-groupings: adaptive documents

Assigning roles to documents can be used for traditional access control with document
granularity, but restricting access to single element-groupings has a completely different
effect. If an element-grouping is assigned a role, only the users with the appropriate
permission will see this element-grouping, the other users will be presented only the
remaining unrestricted parts of the document (and those restricted parts the user has
permission for).

This technique of role based access control on element-grouping level can be used to build
personalized documents depending on the users role(s). Thus, often only one document has to
be designed containing all possible pieces of information, where just different roles have to be
assigned to the corresponding element-groupings.

Figure 4-23 shows the adaptive version of the projects overview document, where the
information is divided into three element-groupings according to its level of security. The
basic_info element-grouping contains the information that is available for the public. This
refers to the project title, begin and end, the abstract and the project logo (image). The
internal element-grouping contains information about the funding and future expenses, which

Figure 4-22: Access restriction on document level

project

project
overview

abstract

title

image
participates in

scientist

Info

last_name

Homepage

scientist

first_name

T

edit

project

project_input
project

project_input

project

project
overview

admin

80 Chapter 4

should only be accessible for project partners. The annotations element-grouping contains
private remarks of the project management.

The corresponding HMT authorization diagram plus screenshots of the adaptive document
from the manager’s and an ordinary user’s point of view can be found in Figure 4-24.

Using access restrictions on the element-grouping level for securing critical information is not
the only application for personalized hypermedia presentations. Considering systems for
educational purposes or distance learning, another possible area of application is the creation
of documents for users with different levels of skills or knowledge. Roles like beginner,
advanced or expert could be provided which may be chosen freely by the user when entering
the hypermedia system. Also intranet information systems might benefit from this technique
by allowing to create adaptive documents containing information tailored to the employee’s
tasks and interests.

Figure 4-23: modified project overview document type

project

project_overview

basic
info

internal

anno-
tations

project

basic-info

Abstract

participates in End

Begin

Image

Title funded_by

fits

T
T

T

scientist

sci_ref

last_name

organization

org_ref

name

category

cat_ref

name

has

project

Funding

future
expenses

reports

rep_ref

Title

T

internal

contains

project

annotation

anno_ref

Title

T

anno-
tations

The Hypermedia Modeling Technique (HMT) 81

4.4.3. Summary

In this section, we have described the concept of role based access control (RBAC) and some
advanced features like role hierarchies or separation of duties. We have defined the concepts
required for the authorization design step of HMT and have presented the basic RBAC model
used.

RBAC can be applied on two levels in HMT: First, restricting access to whole document
types equals the traditional access control mechanism in www applications. Only users with
the appropriate permissions can access restricted documents. Second, access restrictions on
element-grouping level allow to model adaptive documents, where unrestricted elements are
visible to all users, but restricted ones are only presented to the users with the appropriate
rights. The usage of adaptive document types eases the generation and administration of
hypermedia applications, because only one document type has to be defined in order to serve
as a template for a variety of presentations for different types of users.

Figure 4-24: adaptive version of the project overview document

project

project
overview

project

basic info

project

internal

partner

manager

project

annotations

manager

internal
grouping

annotation
grouping

project overview document for an
ordinary user

project overview document for
managers

82 Chapter 4

4.5 Logical Hypermedia Design

Until now, we have designed information clusters, navigational structures and access
restrictions with the Hypermedia Modeling Technique. But we still need further information
before the application can be built: The elements of every document type and element-
grouping have to be ordered for presentation, and most of them should be assigned some kind
of label describing their contents. These contents can be displayed in many different ways
depending on the type of the document, for example as a popup menu in query documents or
as an email link in detail documents. Additionally, true hypermedia applications consider
temporal aspects and might want to order a document’s elements in a timely manner. And last
but not least, some kinds of document types need some specific information like, for example,
the number of entries displayed on a single result document. All this information is specified
during what we call the Logical Hypermedia Design step in HMT.

A logical HMT diagram consists of a document type or element-grouping containing a list of
all its elements using the following format:

<position><label><element><additional information>

The different fields of this specification will be described in the following subsections.
Special features like the number of entries on a result document are specified after the element
list. For the temporal design, a separate box drawn with a dotted line is attached to the
document type or element-grouping containing the temporal specification as described in
section 4.5.4.

4.5.1. Order and labels of elements

Independent of how the elements of a document type or element-grouping are presented, they
can be assigned some kind of order in which they are to appear. This order determines an
element’s position compared to the other elements, but does not specify a precise location
within the application window, because this would require a decision for a certain hypermedia
system in order to use the appropriate syntax and techniques. By deferring this decision to the
layout design step, the logical hypermedia design of HMT is still completely independent of
the hypermedia system used. The scope of an element’s position is always limited to the
containing document or element-grouping that means it’s a relative position. This allows
reusing element-groupings instead of defining identical ones with different absolute element
positions.

Considering attributes like phone_number or relationship references like
participates_in_project, it is obvious that often the pure contents of elements are not self-
describing. This means that labels have to be attached to the elements describing the
semantics of the values displayed. For example, on the projects overview document of our
sample scenario, the list of participating scientists is labeled “participating scientists”,
because otherwise the semantics of the names listed there would not be clear to the user.

The Hypermedia Modeling Technique (HMT) 83

Of course each attribute has a name usually
describing its content, but very often abbreviations
are used or the name is not expressive enough for the
users. In addition to this, not only attributes or access
structs, but also entire element-groupings might
require some hints regarding their semantics. For
example, a personal homepage may contain an
element-grouping containing the business address
(street, number, city, zip-code, phone etc.) and an
element-grouping containing the private address
(again street, number, city, zip-code, phone etc).
Assigning a unique label to each attribute (“street
(private)”, “street (office)” and so on) is not
satisfactory, assigning a label to each element-
grouping (“private address”, “business address”) is
the better solution.

Figure 4-25 shows the logical HMT diagram of the (non-adaptive) project overview document
of our sample scenario (without the meta types, see next section for information on that
issue). The first attribute image has no label, because the project’s logo does not have to be
described.

But labels are not just used for describing the contents of attributes or internal access structs.
If external access structures have been defined during the conceptual hypermedia design, the
labels will be used as the link text for the hyperlinks pointing to the corresponding documents.
In any case, a label’s scope is limited to the containing document type or element-grouping,
because the corresponding element may be used by different documents or element-groupings
requiring different labels.

4.5.2. Meta types

Until now, we have defined which attributes are to be displayed by a document or element-
grouping and have specified their labels and position, but we have not described how the
contents of these attributes are to be presented. In a project overview document, for example,
the content of the URL attribute could be displayed as plain text or as a hyperlink pointing to
the location specified by its content. In a project query document, the attribute title could get a
simple input line or a popup menu containing the titles of all projects for selection.

In HMT, meta types are used to specify the presentation of attributes. Similar to the
specification of an element’s position, meta types are independent of the hypermedia system
used, because they do not define real code for the presentation. This again is deferred to the
layout design step.

Figure 4-25: Logical HMT diagram of the project
overview document type

2. Title

5. Participating
 scientists

3. Abstract

project

1.

project_overview

Participates_in

abstract

T

title

image

4. Project server URL

84 Chapter 4

For each attribute, a set of possible meta types is available depending on both logical
representation of the attribute inside the database (the database type) and the type of
document this attribute belongs to. As we have seen in the example described above, different
meta types are necessary for different kinds of document types, for example a meta type URL
for detail documents and a meta type popup for query documents. Concerning the attributes’
database type, we distinguish five types:

• DB_CHAR for any kind of character-based types like Char, Char(*), String and so on

• DB_NUMERIC for any kind of numeric types like Integer, Short, Byte, Float and so on

• DB_DATE for any kind of date or time types

• DB_BOOL for boolean types

• DB_BLOB for BLOBs

The following tables describe the standard HMT meta types depending on the document type
and the attribute’s database type (also referred to as db type).

Meta types for query document types:

Meta type Representation Available for
DB types

Char Textual input line DB_CHAR
Numeric Numeric input line with three buttons for selecting the

comparison operator (´=´,´<=´,´>=´).
DB_NUMERIC

Popup Popup menu consisting of all values of the attribute in the
underlying data source

any type

Multi Popup menu allowing multiple selections and two buttons
for choosing their logical connection are displayed

any type

Buttons A list of radio buttons consisting of all values of the
attribute in the underlying data source

any type

Bool Three radio buttons labeled yes, no and don´t care . DB_BOOL
Datetime Numeric date input fields (year, month, day, hour ...) DB_DATE

Meta types for result and detail document types:

Meta type Representation Available for
DB types

Plain Plain text (not formatted). Any type
Email Email link with attribute’s content used for anchor and target. DB_CHAR
Url Hyperlink with the attribute’s content as anchor and target. DB_CHAR
Bool Yes or no depending on the attribute’s value DB_BOOL
Date String representing the date/time value DB_DATE
Image The content of the corresponding attribute is interpreted as an

image and presented within the current document.
DB_BLOB

Download A link is provided the selection of which transfers the
attribute’s content to the user as raw data.

DB_BLOB

The Hypermedia Modeling Technique (HMT) 85

Meta types for input document types:

Meta type Representation Available for
DB types

Numeric Numeric input line. DB_NUMERIC
Auto_num Nothing. Used for automatic sequence generation. DB_NUMERIC
Text Textual input line. DB_CHAR
Textarea Textarea (input field with several lines) DB_CHAR
Datetime Numeric date input input fields DB_DATE
Current_date The current date DB_DATE
Popup Popup menu containing all current values of this attribute

in the underlying data source.
Any type

Bool Three radio buttons (TRUE, FALSE and DON’T CARE). DB_BOOL
File File upload form. DB_BLOB

Figure 4-26 shows the completed logical specification of the project overview document type
now containing the meta type for each attribute.

4.5.3. Special features

In addition to the aspects already discussed, there are some other issues belonging to the
logical design step which only apply to specific kinds of document types or to specific
elements like submitters or links. The following subsections will present these special features
sorted according to the kind of document type.

Figure 4-26: logical HMT diagramm of the project overview document type

2. Title

5. Participating
 scientists

3. Abstract

project

1.

project_overview

Participates_in

abstract

T

title

image

4. Project server URL

meta type image

meta type plain

meta type plain

meta type URL

86 Chapter 4

4.5.3.1 Query document types

Usually, labels of attributes in documents are only used to explain the semantics of the
information displayed like project title or participating scientists.
In query document types, labels can have an additional meaning: if two or more different
attributes have identical labels, then only one common input field will be displayed. If the
user specifies a restriction on that field, this restriction will be matched with all attributes
having this identical label using the or operator for combination.
For example, the projects query document type named search from Figure 4-10 contains the
attributes title and abstract. If both have the identical label keywords, then the user will see
only one input field labeled keywords. If he specifies a search string in this input field, all
entries will be selected where either the title or the abstract of the project (or both) contain this
search string.
This kind of unstructured search (on various attributes) is typical for a lot of hypermedia
information systems especially in the World Wide Web, and most users are familiar with it
because of experiences with common search engines [Alt, Lyc00, Yah00]. Using identical
labels to provide an interface for this kind of unstructured search on structured information is
a useful feature of HMT query document types.

4.5.3.2 Result document types

In result documents, there should always
be a limit for the number of items
displayed on a single page, because the
user’s queries are not predictable and the
corresponding result sets can grow very
large. To avoid frustrating users with long
download times and information overload,
splitting the result set into several
documents connected with hyperlinks is a
common technique, which can easily be
combined with query refinement strategies.
Figure 4-27 shows the logical specification
of the project result document type of
Figure 4-13.
The variable entities_per_page is defined
after the logical specification of the result
document type’s elements and is set to 15
in our example. If more than entities_per_page entries are found, links on the result document
pointing to the next or previous page are generated automatically. The specification of these
links (they could be, for example, textual hyperlinks or images) is done during the layout
design step of HMT.
Numbering the items in a result document often helps the user to keep an overview when
result sets grow very large. The boolean variable entities_are_numbered indicates whether
results are numbered or not.

Figure 4-27: logical HMT diagram of a project result document type

1. Title

2. Funded by

project

project_overview

funded_by
T

title meta type plain

3. Refine the
query refine

?

entities_per_page: 15

entities_are_numbered: yes

The Hypermedia Modeling Technique (HMT) 87

4.5.3.3 Input document types

For input documents, it is necessary to have some additional logical features in order to be
able to specify powerful, flexible and user-friendly data manipulation interfaces. Often it is
required that a certain attribute has to be assigned a value if the user did not specify one
himself. In HMT, this can be done by defining a default value for a given attribute. This
default value is specified after the attribute’s meta type. In a similar fashion, it is also possible
to define a default value for access structs.

In some cases, however, it may be necessary to specify a default value for an attribute or
access struct without allowing the user to change or even see this selection. This can be
achieved by not specifying a label for this attribute. Each attribute without label is not
displayed, but will be assigned the default value specified or NULL if no default value is
defined. A typical example for this is the numeric primary key of an entity type, which shall
be created automatically for new entries by assigning it the auto_num meta type. This key
does not need to be visible to the user, but has to be calculated for every new entry.

Figure 4-28: Logical HMT schema of a project input document

Figure 4-28 shows the logical specification of a modified version of the projects input
document from Figure 4-16. In contrast to the original example, we now assume that the
project entity has a numeric key (the attribute proj_key) and an additional contact attribute.

project

project_input

9. Funded by

funded_by

2. Title title meta type plain

3. Begin begin meta type datetime

4. End end meta type datetime

5. Abstract abstract meta type textarea

6. Image image meta type file

10. Category
fits

8. Participating
scientists participates_in

1. proj_key meta type auto-num

7. Contact contact meta type plain default “info@forwiss.de“

10. Save

88 Chapter 4

4.5.3.4 Links and form submitters

The link primitive as described until now allows navigating to a different HMT document or
some kind of external hypermedia presentation. If selected by the user, the target of this link
replaces the source document. In a similar way, the usage of a form submitter causes the
original document to disappear and the target document is displayed instead.
In some cases, however, it might be desirable to invoke an additional presentation unit for the
target of a link or form submitter and to keep the original document visible. A typical
example for such a behavior is the world wide web, where often the selection of a hyperlink
causes a new browser window to appear, leaving the original document still available for the
user.

HMT allows specifying the target of a link or form submitter by providing a context string in
the logical HMT schema as shown in Figure 4-29. The default value for the context is main,
which references the initial presentation unit. Each new context string specifies exactly one
presentation unit, which can be referenced by any other link or form submitter.

Figure 4-29: logical HMT schema with submitter context

project

project_input

9. Funded by

funded_by

2. Title title meta type plain

3. Begin begin meta type datetime

4. End end meta type datetime

5. Abstract abstract meta type textarea

6. Image image meta type file

10. Category
fits

8. Participating
scientists participates_in

1. proj_key meta type auto-num

7. Contact contact meta type plain default “info@forwiss.de“

10. Save context window2

The Hypermedia Modeling Technique (HMT) 89

4.5.4. Temporal design

The temporal specification of a hypermedia presentation is an important aspect that should be
supported by hypermedia modeling methodologies. Not only the duration or sequential
execution of the presentation’s elements, but also various kinds of interdependencies between
the different elements have to be specified
Former approaches were often based on scripting languages, for example Lingo [MMD].
Although very powerful, these approaches are rather inflexible concerning changes within the
presentation, and interdependencies between different elements are often not obvious from the
coded specification. Besides, programming skills are required which restricts the number of
users for such a methodology.
Another classical approach is to use a timeline and to specify absolute positions for each
element. This very intuitive technique is rather inflexible regarding changes (all dates
“behind” the changed one have to be recalculated), and elements with infinite duration cannot
be modeled with this approach, because all dates are absolute points of time.

Newer concepts therefore do not rely on exact points of time, but allow specifying temporal
relationships between the different elements of hypermedia applications. Based on the work
of Allen [All83], several approaches for modeling temporal relations have been proposed
[Jou97, Hos97, Yu97, RJM+93, SDK96].
The temporal design concept of HMT is based on these works and has been tailored to the
special features of its conceptual model. HMT allows specifying the time each design
primitive of a document or grouping is active (that means visible). The scope of a temporal
specification is always the surrounding HMT element-grouping or document, which eases the
task of synchronizing complex parts of a presentation.

Section 4.5.4.1 introduces the temporal design primitives, section 4.5.4.2 describes the
specification of temporal relations between the elements, and section 4.5.4.3 shows the
temporal specification of a modified version of our sample scenario. A summary is given in
section 4.5.4.4.

4.5.4.1 Temporal Design Primitives

In order to specify aspects of time, the conceptual HMT design primitives are extended by
some temporal design primitives. Each document or element-grouping defines its own local
presentation, which is specified within a dashed box attached to the document or element-
grouping.
Within this dashed box, the start of a presentation is marked with a special symbol, which is
connected to the first element of the presentation.
Each element is represented by a rectangle containing the element’s name. The length of the
rectangle is primarily determined by the length of its name and is no indicator for the
element’s absolute duration. However, relations between elements are to some extent
symbolized by the relative position of the elements against each other (for example “element
a includes element b”, see next section).

90 Chapter 4

Figure 4-30: temporal design primitives

If the absolute duration of an element has to be specified, the corresponding period of time T
is written above the rectangle. Two cases have to be differentiated:

• If timeless elements like text or images are concerned, the effect is trivial. These elements
are simply displayed for the specified period of time and then vanish.

• Time-based components like audio or video elements already have a predefined duration
TP. If they are assigned a certain time of duration TS, (specified duration) these elements
are either cut off if TP > TS or restarted if TP < TS.

Special kinds of element are Slide Shows, because for them a temporal specification is
mandatory. Three different approaches are possible:

• If an overall duration T is specified, the period of time t used to present a single element
of the Slide Show is calculated as t = T/n, where n is the number of elements of the Slide
Show. This ensures that a given presentation doesn’t have to be changed if the number of
elements of the Slide Show changes. For example, a company’s homepage may consist of
a welcome audio track and a Slide Show where the main products are shown, and the
Slide Show has to finish together with the audio track. If new products are added to the
Slide Show, the synchronization of the two elements doesn’t have to be changed.

• Alternatively, it is also possible to specify the period of time T used for a single element
of the Slide Show by using the expression n*T. In this case, changes to the number of
elements of a Slide Show influence the overall duration and thus have effects on the
synchronization with other elements.

• If all elements of the Slide Show are time-based (like video or audio), then no explicit
specification of T is necessary, because each element has its own duration.

Since each element of a document or grouping has its own temporal representation, also links
and access structures can be temporarily restricted and synchronized with other elements, for
example video clips or audio tracks.

4.5.4.2 Temporal Relations

For interval-based approaches, Allen [All83] has identified 13 characteristic relations, which
can be reduced to 7 if the inverse relations are derived by swapping the corresponding
elements. HMT adopts and extends these relations:

Start of the presentation

<T>

n*<T>
<name>

<name>

Temporal specification of the HMT design primitive
name, T specifies the duration

Temporal specification of the HMT slide show
primitive name, T specifies the duration for each slide

The Hypermedia Modeling Technique (HMT) 91

First, a new relation synchronizes is introduced which is especially suited for time-based
elements like video or Slide Shows. Second, a simple arrow denotes a delayed sequential
execution of two or more elements, whereas an arrow originating from a bullet is used for
specifying parallel execution. The element where the arrows originate from are called
synchronizing elements, the arrows’ targets are the synchronized elements. Third, the equals
relation is left out, because it can be replaced by a combination of the starts and the finishes
relation.

Figure 4-31shows an overview of the temporal relations used in HMT.

For a detailed description of the temporal relations in HMT, we use the following definition:

Definition 4.35 (duration of an element):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements, and
x ∈ H, then T(x) denotes the overall duration of x (either explicitly specified or
implicitly defined in case of time-based elements), start(x) and end(x) define the
starting point and the end point of x.

We like to stress that start(x) and end(x) are abstract measures and are only used to define the
semantics of the temporal relations, they are not part of the temporal model of HMT.

Figure 4-31: temporal relations in HMT

Deferred sequential execution,
T > 0 specifies the delay ("a before b")

a b
<T>

Parallel execution, synchronized beginning
("a starts b")

Parallel execution, synchronized termination, time-
based bs are cut off or restarted ("a finishes b")

a

b

<T> Parallel execution, overlapping
T specifies overlapping interval("a overlaps b")

a b Immediate sequential execution ("a meets b")

a

b

a

b

b

Parallel execution, inclusion
T1,2 specifies delay ("a includes b")

a<T1> <T2>

Parallel execution, synchronized termination, time-
based bs are slowed or accelerated ("a synchronizes b")

a

b

92 Chapter 4

The relation a meets b defines an immediate sequential execution, where b is started after a
has finished. Prerequisite for this relation is that a is either a time based element (thus having
a predefined duration), or explicitly restricted by specifying T(a).

Definition 4.36 (temporal relation meets):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements, then the
temporal relation a meets b is defined as { (a,b) | a, b ∈ H and start(b) := end(a) }.

Similar to the previous case, in relation a before b the element b is started after a has
finished. Instead of an immediate execution, the start of b is delayed by T. Element a must
have a finite duration T(a).

Definition 4.37 (temporal relation before):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements and T > 0
be a period of time, then the temporal relation a before b is defined as { (a,b) | a, b ∈ H
and start(b) := end(a) + T }.

In the following relation, the elements a and b are started simultaneously and are executed in
parallel. The starting point is determined by element a.

Definition 4.38 (temporal relation starts):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements, then the
temporal relation a starts b is defined as { (a,b) | a, b ∈ H and start(b) := start(a) }.

The relation a finishes b synchronizes two elements a and b in the way that the end of a
causes b to terminate. Prerequisite for this case is that a has a finite duration (either specified
or predefined by time-based elements).

Definition 4.39 (temporal relation finishes):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements, then the
temporal relation a finishes b is defined as { (a,b) | a, b ∈ H and end(b) := end(a) }.

While the synchronization of timeless elements b is trivial, time-based elements have to be
treated differently: If b has been started by some other element and would normally end
before a has finished, then b has to be restarted in order to bridge the gap until a terminates.
Constraint 4.1:

Let a, b ∈ H be HMT elements and a finishes b, then the presentation of b has to be
restarted if T(b) < T(a) – (start(b) – start(a)).

On the other hand, if b would normally end after a has finished, b has to be stopped:
Constraint 4.2:

Let a, b ∈ H be HMT elements and a finishes b, then the presentation of b has to be
stopped if T(b) > T(a) – (start(b) – start(a)).

The Hypermedia Modeling Technique (HMT) 93

For timeless elements, the relation a synchronizes b has the same effect as a finishes b. But if
b is a time-based element and has been initiated by some other element x, then b is slowed or
accelerated to match the period of time needed for synchronization with a:

Definition 4.40 (temporal relation synchronizes):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements, then the
temporal relation a synchronizes b is defined as
{ (a,b) | a, b ∈ H and T(b) := T(a) – (start(b) – start(a)) }.

For example, as Slide Show b has been initiated by a third element x and has to be
synchronized with an audio track a in the way that the Slide Show is only run once and
finishes together with a. The speed of the Slide Show b is automatically adapted to match the
necessary period of time.
Of course, the same effect could be reached by defining the times Ti for all relevant elements
and then calculating T(b) manually, but with that approach every change to a previous
element would require a recalculation of T(b) and possibly following elements.

The relation a overlaps b describes a partially parallel execution of a and b, where T specifies
the overlapping interval. Element a must have a finite duration T(a).

Definition 4.41 (temporal relation overlaps):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements and T > 0
be a period of time, then the temporal relation a overlaps b is defined as
{ (a,b) | a, b ∈ H and start(b) := end(a) – T }.

In the following relation a includes b, the elements a and b are executed in parallel, and a
starts before and ends after b. Element b must have a finite duration, and element a may be
infinite unless T2 is specified.

Definition 4.42 (temporal relation includes):

Let H = GR ∪ ADDS ∪ ATTR ∪ ACC ∪ LINKS be the set of HMT elements and
T1, T2 > 0 be periods of time, then the temporal relation a includes b is defined as
{ (a,b) | a, b ∈ H and start(b) := start(a) + T1 , end(b) := end(a) – T2 }.

4.5.4.3 Sample Application

We use a modified version of the project overview document as an example for the HMT
temporal design step. We want to design a project overview document where first a short
audio track is played, for example naming the project title with some background music.
While the audio track is being played, a Slide Show displaying the names and portraits of all
participating scientists should be shown. Two seconds after this short “intro”, the ordinary
project overview document with all its attributes and access structs shall be presented.

Figure 4-32 shows the conceptual schema of this extended project overview document
together with its temporal specification.

94 Chapter 4

Figure 4-32: temporal specification of the project overview document

4.5.4.4 Summary

In this subsection we have presented the HMT temporal design step. Consistent with the other
HMT design steps, a graphical interface is provided for the specification of time related
issues.

Each element of a document type can be assigned its own temporal specification, which is
relative to the surrounding element-grouping or document type. This counts for attributes and
adds as well as for links or access structs. Each element can be assigned a duration defining
how long the element will be displayed. In order to synchronize the various elements of a
document type, HMT offers seven temporal relations covering both sequential and parallel
presentation. The temporal specification of a document or element-grouping is attached to its
conceptual HMT schema.

4.6 Layout Design

This final step in the process of defining a hypermedia application is the one supported least
by most methodologies, because layout design is hard to formalize and cannot be captured in
its entirety. It depends to a great extent on the actual hypermedia platform and its tools and
programming languages.

scientist

project

title

project_overview

abstract

image

participates in

last_name

scientist
first_name

S

Welcome
audio

portrait

image

T
participates in

info

organization

org_ref

name

funded_by

T

welcome_audio

participates_in (S)

title

image

abstract

participates_in (T)

funded_by

2s

last_name

The Hypermedia Modeling Technique (HMT) 95

Because of the lack of a general formal specification for layout design, HMT does not provide
explicit support for this aspect, but leaves this task to the designer of a HMT CASE-tool. A
prototype of such a CASE-tool is described in Chapter 6. There are, however, some issues
regarding general or technical aspects of layout design that can be mentioned.

• Each document may be assigned a title, a background image or a background color, basic
font properties and colors for text and links.

• Global headers and footers containing general formatting instructions can be useful.

• The layout of the presentation of an attribute’s content is defined by specifying the
mapping of its meta type to the corresponding hypermedia system (for example
WWW/HTML).

If more advanced layout specifications are needed, arbitrary layout instructions can be
inserted into a document by using adds as described in the conceptual hypermedia design
step. However, by choosing this option, the code of these adds will be platform dependent and
therefore has to be changed if the underlying hypermedia system changes.

4.7 Summary

The Hypermedia Modeling Technique (HMT) has been developed for designing interactive
and adaptive, database-driven hypermedia applications. It consists of six design steps:
requirements analysis, ER design, conceptual hypermedia design, authorization design,
logical design and layout design.

Requirements analysis covers aspects like the definition of the application domain,
identification of the intended users, and specification of the system’s functionality and usage.
Numerous publications can give further information on this issue, for example [Wei82,
KK92].

After the application domain has been specified, an ER schema has to be built reflecting
objects and relationships from the real world application domain. HMT relies on the basic ER
model as described by Chen [Che76]. If a hypermedia application has to be built upon an
already existing database, these first two steps in the HMT design process are omitted.

The core hypermedia application design starts with the conceptual hypermedia design of the
application, based on the ER schema developed in the previous step. Aspects like information
clustering and navigation are addressed within this design step.

Access restrictions are specified during the authorization design phase using role based access
control Based upon the conceptual hypermedia schema, access to certain parts of the
application can be limited by specifying roles required for viewing these components. This

96 Chapter 4

can be done on document level or on element-grouping level: The first equals the traditional
access control mechanism in the world wide web, the second leads to adaptive documents.

During the logical design phase, additional properties concerning the logical representation of
a document’s content are defined. This covers the order and labels of a document’s elements,
the meta types of the attributes, some document specific features like the number of items on
result documents, and the temporal design of a document or element-grouping.

Finally, all aspects regarding the layout of the later presentation are covered by the layout
design step. Since this step heavily depends on the hypermedia system used, HMT does not
specify an interface for this task, but leaves this to the HMT CASE-tool used. A prototype of
such a tool will be described in Chapter 6.

The HMT Meta Schema 97

CHAPTER 5

THE HMT META SCHEMA

One motivation for the creation of modeling methodologies like HMT is to provide an
intuitive and consistent graphical notation for the specification of applications. This allows to
present concepts and ideas at a very early stage of the design process and in a way
understandable also for people with only little information technology experience. At the
same time, it is a precise specification of the application, which can be used by the expert
implementing the system.

A second important motivation for the development of modeling methodologies is the ability
to provide a set of development tools, which allow building and maintaining these graphical
application schemas in electronic form instead of drawing them manually on a sheet of paper.
One prominent example for such a tool is Rational Rose [Ro00] from Rational Software
Corporation, which is used for building and maintaining UML diagrams.
On demand, these tools can automatically produce portions of code needed for the
implementation of the application. In order to accomplish this task, the information contained
within the graphical schemas has to be converted into a format suitable for further processing
by the development tools. This is usually either some kind of (database) repository or a
specification language, both of which have advantages and disadvantages:

• Specification languages provide the schema information in a human readable way and can
easily be modified with any text editor, but require their own compiler and lack a
standardized interface. Queries on the schema (for example “List all documents being
targets of navigational links”) are not possible unless an algorithm for extracting this
information from the specification files is implemented.

• Database repositories store the information in a set of meta tables, which cannot easily be
maintained without the corresponding administration tool, but offer a standardized and
well known interface (e.g. SQL) together with all the benefits of a DBMS (e.g. the ACID
principles or logical data independence). The application schema can directly be queried
using SQL, which even allows executing complex operations on the meta schema without
using the administration tool. Moreover, many of the integrity constraints needed in order
to guarantee schema consistency could automatically be assured by the DBMS if the meta
schema is specified accordingly.

Since HMT has been developed for designing database-driven hypermedia systems, a DBMS
is already provided by the application. Storing both application data and hypermedia
presentation within a DBMS enhances consistency and integrity of the whole application.
Together with the advantage of having a standardized interface for storing, maintaining and

98 Chapter 5

retrieving repository data, these considerations lead to the decision to map HMT schemas to a
set of meta tables.
A detailed specification of the HMT meta model and the mapping of HMT design primitives
is presented in section 5.1. Section 5.2 describes the algorithms needed for generating
applications based on HMT meta schemas, and section 5.3 discusses the query generation
process for HMT input and query documents. The chapter ends with a short summary in
section 5.4.

5.1 Specification of the HMT meta model

During the HMT design process, it is useful to clearly separate the different design steps from
each other in order to foster a structured, well defined and powerful hypermedia design. The
HMT meta schema that stores information from all steps of the HMT design process has to
accomplish a different task: The creation of a complete hypermedia document should
consume as little time as possible, that means requests to the repository should be minimized.

Therefore, the HMT meta schema does not separate information according to design steps,
but tries to group all information relevant for the creation of a document into as few entity
types as possible. Since the size of the HMT meta schema is independent of the size of the
application database and can usually be neglected, we decided to not normalize the meta
schema, because this would reduce readability and require more repository requests in order
to create an application.
For example, there exists only one entity type for all kinds of document types (general, query,
result, detail and input) in our HMT meta schema. This means that some special attributes of
the documents meta table (for example itemsPerDocument) are not used for all but one
document type (in this case, the result document type). Although normalization could avoid
these effects, maintenance and use of such a normalized HMT meta schema would be much
more complicated and reduce the performance of the application.

For the remainder of this chapter, we will use the term meta table when talking about an
entity type of the HMT meta schema. This helps to distinguish clearly between entity types of
the application domain (for example projects) and entity types of the meta schema (for
example documents).

5.1.1. Overview

The core HMT meta schema consists of 14 meta tables and about 40 relationship types storing
all information of a HMT schema from the conceptual hypermedia design down to the layout
design. Each conceptual design primitive is assigned its own meta table, and additional meta
tables are provided for users, roles, temporal specifications and layout design. The meta tables
provided for layout design purposes address only the basic requirements and are not bound to
a specific hypermedia platform. For example, the layout of an attribute’s content is stored

The HMT Meta Schema 99

within the elementFormats meta table, and it is up to the administrator to decide whether its
content should be coded, for example, in HTML or XML format.

The meta schema described in this chapter can be considered as the minimal meta schema
required, actual HMT implementations might use additional attributes or meta tables if
necessary. As we will see in Chapter 6, especially additional meta tables addressing aspects of
layout design or administration may be introduced by an implementation.

Figure 5-1: overview of the core HMT meta schema

documents

metaTypes

groupings

attributes

submitters

adds

links

accessStructs

roles

users

guidedTourSpec

d_include_g
g_include_g

m n n m

u_have_r
n

m

accessibleBy visibleFor

n

n m

m

a_have_m

m

m

m

n

n

m

anchor_g anchor_add

anchor_attr

m

n m

l_source_d

n

l_source_g

n

n

m

d_contain_at

a_source_d a_source_g

a_target_d a_target_g

l_target_g l_target_d

m

m

n

n

a_have_t

sub_source_d

sub_target_d

sub_source_g
m

n

n

layout

d_have_l

m

temporalSpec

g_have_t d_have_t

d_contain_ad g_contain_ad

g_contain_at

100 Chapter 5

Figure 5-1 shows the ER diagram of the core HMT meta schema. In order to improve
readability of this and all following ER diagrams, we only specified relationship cardinalities
explicitly if they are different from 1.

Documents and groupings are the central meta tables, accompanied by attributes, adds,
access structs, links or submitters. The meta tables users and roles and the corresponding
relationship types carry the information that has been generated during the authorization
design step, temporalSpec contains the temporal specification of the document type or
element-grouping. Not shown in this diagram is the elementFormats meta table, which
contains information from the layout design step. Since this meta table is referenced by most
other meta tables of the HMT meta schema, the diagram would be too complex and hard to
read if it had been included in Figure 5-1. For the same reason, the target relationships for
links are only connected to the documents and groupings meta tables, although any other
element can also be the target of a link.

Each meta table has a numeric primary key and an identifier string (ID-string) to be used by
an administration tool. The identifier string has deliberately not been chosen as the primary
key, because this allows changing an entity’s ID-string without generating a new entity and
having to update all references accordingly. The following subsections describe the most
important HMT meta tables in detail, separated into tables for HMT domain primitives
(section 5.1.2), access primitives (section 5.1.3), layout (section 5.1.4), users/roles (section
5.1.5) and temporal specifications (section 5.1.6).

Figure 5-2: sample scenario for the mapping of HMT schemas to HMT meta tables

In order to be consistent throughout this subsection, we will use a graphical ER schema for
each meta table presented, even if sometimes this ER schema is rather simple and might also

project

project_overview

abstract
title

image
participates_in scientist

first_name

T

footer

funding

proj_internal

future
expenses

last_name

scientist

footer

scientist_homepage

sci_info

first_name
last_name

 image

 room

 phone

proj_internal

partners

The HMT Meta Schema 101

be replaced by a simple table. The mapping of HMT schemas to HMT meta tables will
additionally be explained using the sample scenario specified in Figure 5-2. According to the
standard approach for transforming ER schemas into relational schemas, m:n relationships
will be mapped to separate tables.
The sample scenario contains a modified version of the project_overview document type
described in Figure 4-14. Besides the freely accessible title, image and abstract attributes and
the footer add, this document type also contains the proj_internal element-grouping, which is
only visible for users with role partner. The internal access struct on scientists creates a list of
all project members, where the last_name of each scientist acts as the anchor of a structural
link pointing to the corresponding scientist_homepage.

5.1.2. Domain primitives

As specified in section 4.3.1, HMT offers four basic domain primitives: document types,
element-groupings, attributes and adds. Each of them gets its own meta table in the HMT
repository, which will be described in the following subsections.

5.1.2.1 Document types

The two central meta tables of the HMT meta schema are documents and groupings, which
store information about all kinds of HMT document types and element-groupings.

Figure 5-3: ER schema of the documents meta table

Each HMT document type is represented by one entity of the documents meta table. This
table contains the name of the document type’s base ER type (baseERType) or NULL if it is a
general document. It also includes the type of the document (docType), which can be general,
query, result, detail and input. Additional attributes are the official title (for example project
overview, can be used to label the presentation window) and some meta information about the
document (metaData) in an arbitrary format.
The attributes itemsPerDocument, itemsAreNumbered, prev and next are only valid for result
document types. The first two specify the distribution of large result sets over several
documents, prev and next provide means for navigating between the result documents, for
example arrow buttons or some text for the automatic generation of the corresponding
hyperlinks.

itemsAreNumbered itemsPerDocument prev next

documents
key

ID

baseERType

title

docType

metaData

102 Chapter 5

There are several relationship types between the documents meta table and other meta tables
containing further information as described in Figure 5-4: Each document type has a certain
layout, which includes information about the background color or background image of the
document and general font specifications. A document type also references an entity of the
temporalSpec meta table containing the temporal specification of a document type. This meta
table will be is described in detail in section 5.1.6.

The main contents of a document are defined by the relationships with the adds, attributes
and groupings meta tables. Each referenced entity of these meta tables has a position, label
and a certain elementFormat within the referencing document type. The position in this
context is not an exact specification of coordinates, but some kind of sequence number. When
creating a hypermedia application from HMT schemas, the elements of a document type (for
example attributes, links or element-groupings) will be sorted according to their position.
The elementFormat meta table contains layout information that is specified for the actual
hypermedia system used, it will be described later in section 5.1.4. In order to be able to reuse
adds and element-groupings, the information about position, label and elementFormat is
stored within the corresponding relationship. Access restrictions on document types are
specified by assigning an arbitrary number of roles, which are exclusively allowed to view
this document. If no roles are assigned, the document will be freely available.

Figure 5-4: basic relationship types for the documents meta table

The mapping of the two detail document types project_overview and scientist_home to the
documents meta table is shown in Table 5-1. Due to space limitations for the page format, we
skipped the presentation of the attributes itemsPerDocument, itemsAreNumbered, prev and
next. The mapping of the relationships with attributes, adds, element-groupings and roles will
be specified in the corresponding subsections describing these meta tables.

documents

accessibleBy

roles attributes

groupings

adds

layout

have_l

contain_at

contain_ad

include

n

n

m

m

m

n

n

n

label position

elementFormats

label position temporalSpec have_t

The HMT Meta Schema 103

documents meta table

ID key docType baseERType Title metaData layout

project_overview d17 detail Project Project information author=zoller

institution=FORWISS

3

scientist_homepage d21 detail Scientist Homepage 3

Table 5-1: mapping the sample scenario to the documents meta table

5.1.2.2 Element-groupings

A HMT element-grouping is represented by an entity of the groupings meta table. Besides the
key and the ID, this meta table contains information about the base ER type and the type of
the element-grouping (i.e. general, query, result, detail and input).
In contrast to HMT document types, element-groupings are only parts of hypermedia
documents and therefore do not need document-specific information like the document title or
describing meta data.

Figure 5-5: specification of the groupings meta table

The groupings meta table is involved in several relationships, which are similar to those of the
documents meta table: an element-grouping may contain attributes of the corresponding base
ER type, adds and other element-groupings, and may also be assigned an arbitrary number of
roles and one temporal specification.

Table 5-2 shows the mapping of the sci_info and proj_internal element-groupings from the
sample scenario and the connection of the latter to the containing document type using the
document_has_grouping table.

groupings

visibleFor

roles

attributes

groupings

adds

contain_at

contain_ad

include
m

m

m

n

n

n

key

ID baseERType

groupType

n

label position

elementFormats

label position
temporalSpec

has

104 Chapter 5

groupings meta table document_has_grouping meta table

ID key GroupType baseERType document grouping

proj_internal g3 Detail Project d17 g3

sci_info g9 Result Scientist

Table 5-2: mapping the sample scenario to the groupings meta table

5.1.2.3 Attributes and adds

ER document types and element-groupings may contain some or all attributes of their
corresponding base ER type. Each attribute selected to be displayed in a document or
element-grouping is represented by an entity of the attributes meta table. It contains
information about the name of the selected attribute (attr), the label and position within the
containing document type or element-grouping, the elementFormat (the layout specification)
and the meta type of the attribute (relationship with metaTypes). Meta types indicate how the
content of a certain attribute has to be presented, for example as a popup menu, button list or
simply plain text (see section 4.5.2).

Figure 5-6: specification of the attributes and adds meta tables

Adds can be used by all document types or element-groupings and have only one content
attribute (besides the standard ID and key attributes) for storing any kind of information. The
content of such an add is not processed by the system, it can be regarded as some kind of
black box. In the sample scenario, an add is used for storing a global footer that will be
displayed on each document type.
The elementFormats entity referenced by an attributes entity specifies presentation issues for
that attribute as described in section 4.6. The specification of the adds and attributes meta
tables together with their basic relationships is shown in Figure 5-6, the mapping of the
scientists attributes the sample scenario can be seen in Table 5-3.

attributes

key

ID

label position attr

metaTypes elementFormats have_m

have_e

n

n
adds

have_a

n

key

ID

content

The HMT Meta Schema 105

attributes meta table

ID key attr posi-
tion

label metaType element
Format

grouping document

first_name a13 first_name 1 plainText 3 g9

last_name a14 last_name 2 plainText 3 g9

image a15 image 1 image 1 d21

first_name a16 first_name 2 First Name: plainText 5 d21

last_name a17 last_name 3 Last Name: plainText 5 d21

phone a18 phone 4 Telephone: plainText 5 d21

room a19 room 5 Room Number: plainText 5 d21

Table 5-3: mapping the sample scenario to the attributes meta table

5.1.3. Access primitives

Similar to the domain primitives, the HMT access primitives are mapped to a set of meta
tables, one for structural and navigational links, one for all kinds of access structs, and one for
query and input submitters. The following subsections describe these meta tables and the
mapping of the sample scenario.

5.1.3.1 Links

In the HMT meta schema, there is no distinction between structural and navigational links,
because HMT documents are not separated according to their type (e.g. general or query),
which would be prerequisite for distinguishing the two types of links.

A HMT link always originates from a document type (sourceDoc) or an element-grouping
(sourceGroup). Within this document type or element-grouping, a certain element (for
example an attribute or another element-grouping) is specified as the anchor_element of the
link. It is necessary to specify both the anchor and the containing source document type or
element-grouping, because the element which is used as the anchor could be reused in other
document types or element-groupings without being the anchor of a link there.
The target of a link can be an external presentation (attribute destURL) or a HMT document
type (relationship type destDoc), which may be extended by the specification of a certain
element-grouping within this target document type (relationship type destGroup). The first
corresponds to span-to-node links, the latter to span-to-span links as described in the Dexter
Hypertext Reference Model [HS94].

The context of the link allows specifying the presentation unit (the window), which will
present the target of the link. If nothing is specified, the target of the link will replace the
source document the link originates from. The attribute elementFormat references the layout
used to display the link.

106 Chapter 5

Figure 5-7: specification of the links meta table

The structural link from the sample scenario is mapped to the links meta table as follows:

links meta table

ID key context destURL element
Format

anchor source
Doc

source
Group

dest
Doc

dest
Group

info-home-
link

l3 window2 7 a14 g9 d21

Table 5-4: mapping the sample scenario to the links meta table

5.1.3.2 Access structs

Access structs are used to reference a set of entities of a certain entity type. This can either be
done by specifying a relationship reference, a conditional reference (see section 4.3.2) or a
total reference. While relationship references obviously can only be used if both the source
(relationship sourceDoc or sourceGroup) and the target (relationship destDoc or destGroup)
are ER document types or ER element-groupings, conditional or total references may
originate also from general document types or general element-groupings.

The attribute relationshipRef contains information about the relationship reference (for
example, the name of the relationship type or the SQL query for retrieving the referenced
entities); the attribute conditionalRef is used for conditional and total references. For
conditional references, this attribute contains the condition as a valid SQL expression (see
section 4.3.2); total references are represented by a special token (for example “*”). The

links

key

ID context

elementFormats have
n n

destURL

documents groupings

anchor destDoc

destGroup

anchor_element
sourceDoc

sourceGroup

n n n n

The HMT Meta Schema 107

attributes label, position and elementFormat are already known from the other meta tables.
The order of presentation of the referenced entities is specified by orderBy.

Figure 5-8: specification of the accessStructs meta table

The type attribute defines the type of the access struct, which can be TOC, Guided Tour or
Guided TOC. If a Guided TOC or a Guided Tour is used, the meta table guidedTourSpec
contains some further information.

We chose a separate meta table in order to enable the administrator to define the details of
such a tour only once and reference it whenever needed. For example, if a standard Guided
Tour on employees is defined, it can be used for access structs coming from projects,
departments or any other entity type related to employees.
The guidedTourSpec meta table references three element-groupings previous, next and back
which are used for navigational purposes. The previous and next groupings are used as
hyperlinks pointing to the previous and next element of the Guided Tour, the back grouping
allows returning to the document that offered the Guided Tour. By using element-groupings
for the links instead of plain text, arbitrary navigational aids can be designed for Guided
Tours and Guided TOCs.

Similar to the HMT link primitive, the context attribute allows specifying the presentation unit
(the window), which is used to display the contents of external access structs. An example for
the mapping of an access struct to the corresponding meta table can be seen in Table 5-5. Due
to space limitations, we do not show the elementFormats, conditionalRef, and context
attributes.

accessStructs

key

ID

label

elementFormats

have_e

groupings

documents

guidedTourSpec

n

n

position

type

relationshipRef

conditionalRef

destDoc

sourceDoc

destGroup

sourceGroup

previous

next

back

have_g

n n n n

n
n n

orderBy

context

108 Chapter 5

accessStructs meta table

ID key label posi-
tion

type orderBy Relation-
shipRef

source
Doc

source
Group

dest
Doc

dest
Group

sci-
list

x4 Participating
Scientists:

6 TOC last_name participates-
in

d17 g9

Table 5-5: mapping the sample scenario to the accessStructs meta table

5.1.3.3 Form submitters

Form submitters are used in query and input document types in order to send the user’s data
to the server. A submitter always consists of a source document type (relationship sourceDoc)
or source element-grouping (relationship sourceGroup) and a destination document type
(destDoc).

Figure 5-9: specification of the submitters meta table

Since the HMT meta schema does store the different types of documents (query, result, detail,
input and general) in its meta tables, it is left to the implementation to ensure that the
destination of a form submitter for query documents is always a result document type and the
destination for submitters for input documents is always a detail document type.
The attribute orderBy is used to specify the order in which the elements are presented within a
result document, submit and reset are used to label the submit and reset buttons of the query
or input document. The attribute context and the relationship type elementFormat have the
same meaning as described in the previous sections. Since the sample scenario does not
contain submitters, the mapping to the submitters meta table is omitted here.

key

ID

elementFormats

have

documents

submitters

orderBy submit

reset

context

groupings sourceGroup

sourceDoc

destDoc

n n

n n

The HMT Meta Schema 109

5.1.4. Layout specification

As described in the previous sections, the meta tables representing the HMT design primitives
all reference an entity of the elementFormats meta table. This entity (together with the
implementation of the meta types for the HMT attributes) contains all information necessary
to present any HMT element on a specific hypermedia platform. By changing the code of
these elementFormats, an existing HMT schema can easily be ported to a different
hypermedia platform without having to change the structure on the conceptual or logical
level.

Besides the primary key, this elementFormat meta table consists of only one attribute
containing the format specification. Within this format specification, some special tokens can
be used:

[**CONTENT**]
[**LABEL**]
[**RESULT_NUMBER**]
[**TOTAL**]

The first of these tokens represents the content of the element this format has been assigned
to. For example, an elementFormat table_element could be defined for www applications as

<TR><TD> [**CONTENT**] </TD></TR>

which presents the element’s content within the cell of an HTML table. If an attribute is
assigned this format, the string [**CONTENT**] will be replaced by the attribute’s value. If
the element is an element-grouping, the whole content of the element-grouping will be put
inside this HTML table cell. In a similar way, the expression [**LABEL**] can be used to
place the label of the element, for example

<TR><TD> [**LABEL**] </TD><TD> [**CONTENT**] </TD></TR>

defines a table row with the first cell containing the label and the second one presenting the
contents of the element. Only available for result document types are the two expressions
[**RESULT_NUMBER**] and [**TOTAL**], the first of which represents the sequence
number of a given result entity and the second of which represents the overall number of
entities found. For example, a typical format for presentation of a query result is:

<TR><TD> [**RESULT_NUMBER**] </TD><TD> [**CONTENT**] </TD></TR>

Usually, the labels of attributes in result documents are undefined or ignored, because the
meaning of the attribute’s contents is mostly displayed as the heading of the corresponding
table column of the document. The total number of entities for a result document is often
displayed at the bottom of the result document in order to give the user a hint of how many
items are still available.

110 Chapter 5

5.1.5. Users and Roles

As described in section 4.4.2, HMT uses a simplified RBAC model without role hierarchies.
The roles meta table stores the rolename and description of a role, and allows assigning roles
to users (relationship type hasRole). The relationship types accessibleBy and visibleFor are
used to assign roles to document types and element-groupings.

Figure 5-10: specification of the roles and users meta tables

Besides the primary key, users have a login, a (possibly empty) password, and information
about their last access to the system (attribute lastAccess), which can be used for statistical
purposes or security precautions (e.g. ask the user to login again if a certain period of time has
passed since his last access).

Table 5-6 shows the mapping of the sample scenario to the role and visibleFor meta tables.

roles meta table visibleFor meta table

rolename key description role grouping

partners r1 all project partners r1 g3

Table 5-6: mapping the sample scenario to the role and visible_for meta tables

5.1.6. Temporal specifications

The temporal specification of a document type or element-grouping is stored within the
temporalSpec meta table and seven relationship types representing the seven temporal
relations. The temporalSpec meta table contains an entry for each element of a document type
or element-grouping, which is identified by the key of the corresponding document type
(docKey) or element-grouping (groupKey) and its position within. Each element may have a
finite duration, and one element per document type or element-grouping is specified to be the

password rolename

users have
n

groupings documents

roles

lastAccess description key

login

key

accessibleBy visibleFor

m

m

m

n

n

The HMT Meta Schema 111

start of the presentation. The seven temporal relations of HMT (see section 4.5.4.2) are
directly mapped to the relationship types meets, before, starts, finishes, synchronizes, overlaps
and includes. The relationship type before has an attribute storing the delay between the first
and the second element, the relationship type overlaps stores additional information about the
overlapping interval (overlapTime). The includes relationship type has two attributes T1 and
T2 for the specification of the time intervals before and after the parallel execution of the two
elements involved.

An alternative approach for storing the temporal specification of a document type or element-
grouping would be to introduce temporal relationship types directly connecting the various
meta tables for the HMT elements, for example attributes and links. Although this approach
could avoid the redundant storage of the element’s position within the containing document
type or element-grouping, it has a major disadvantage:
A large number of relationship types would be necessary to completely support the temporal
capabilities of HMT. Each kind of element (attributes, adds, links, access structs, submitters
and element-groupings) needs seven relationship types itself plus seven relationship types
with each of the other elements, which leads to 252 relationship types. This increases the
complexity of the corresponding CASE-tools significantly and reduces the performance of an
implementation following this approach.
For this reason, we have decided to store the temporal specification of document types or
element-groupings in a separate meta table as shown in Figure 5-11.

Figure 5-11: specification of the temporalSpec meta table

5.2 Document generation

The information stored within the HMT repository can be used by a CASE-tool in order to
create the corresponding hypermedia application. This can happen both at runtime (online
generation) and at a specific point of time (offline generation). In both cases, the algorithm for
creating the hypermedia documents is identical except for the URL generation procedure,
which has to create dynamic URLs in the first case and static URLs in the second case.

position

temporalSpec
meets

duration docKey

groupKey start

before

starts synchronizes

includes

overlaps

finishes
delay

overlapTime

T1

T2

112 Chapter 5

In general, the generation algorithm can be divided into four parts:

• checking the user’s authorization

• querying the HMT repository

• creating the appropriate SQL queries

• accessing the application database and generating the hypermedia document

First, the HMT repository has to be queried in order to get information about access
restrictions on the document or element-grouping requested by the user. If the user is granted
access, the second step of the generation algorithm determines the structure of the requested
document or element-grouping. This refers to the contents (for example attributes or adds),
the navigational design (links, submitters and access structs), the layout specification (for
example headers, footers or elementFormats) and the temporal design. Third, the
corresponding SQL queries for retrieving the specified data have to be generated. In the last
step, these queries are executed in order to retrieve the application data from the database and
the document is created accordingly.

The following subsections describe the document generation algorithms for each type of
HMT document in detail.

5.2.1. General document types

General document types or element-groupings are not bound to a certain base ER type, so
they cannot contain attributes. Nevertheless, the third step of the document generation
algorithm (querying the application database) cannot be ignored, because general documents
might have internal access structs with a total reference addressing data from the application
database.

After user authorization, the layout information, header and footer of the current document
type are retrieved from the repository. This is the only step which does not apply for the
generation of element-groupings, because these are only parts of hypermedia documents and
therefore do not have this kind of information. Since header and footer of a general document
type are general element-groupings, the generation algorithm is applied recursively.

Next, all adds, element-groupings, links and access structs of this document type together
with the corresponding elementFormats are retrieved and sorted according to their position.
The content of an add is simply displayed without further processing using the corresponding
elementFormat as described in section 5.1.4. Links in general documents are always
navigational links and may be internal or external. For external links, the link target (which is
a URL string) can directly be used to create a hyperlink. The target URL of internal links has
to be computed from the target document type and perhaps the target element-grouping
specified.

The HMT Meta Schema 113

Figure 5-12: page generation algorithm for general document types

Access structs in general document types may be internal or external: External access structs
are simply mapped to a hyperlink with the access struct’s label as the anchor and the specified
result document type as its target. As an additional parameter, the link has to provide either
the identifier of the access struct used, or all information needed to create the corresponding
SQL query when creating the target document. While the first approach is easier to
implement, the second one leads to a better performance, because the repository has not to be
queried again for generating the SQL query retrieving the relevant entities to be displayed on
the target document. For internal access structs, the set of referenced entities has to be

Start

Determine layout,
header, footer

yes

Is it
an access

struct?

Retrieve elements
ordered by position

Get first element

Is it
an add?

Is it a
grouping?

Is it
a link?

next
element

available?

Error

internal?

Get next element

Get first
element

Create temporal
code

next
element

available?
Finished

Start algorithm on target
grouping recursively

no

Retrieve
referenced entities

yes no

Create link

yes

Create link to
target document

no

no

Display contents

no

yes

yes

Is it a
document?

yes

no

Get first
entity

next
entity

available? Get next entity

Start algorithm on
grouping recursively

yes

no
yes

no

Temp.
specification

available?

no

Get next
element

yes

yes no

Access
allowed?

Access
allowed?

Display permission
denied message Finished

yes

yes

no

no

114 Chapter 5

calculated and displayed at once. In both cases, the algorithm generating the hypermedia
output consists of two steps: First, the keys of the referenced entities have to be calculated
according to the reference type of the access struct. Total references address all entities of a
given entity type, whereas conditional references result in a SQL query where the condition is
used as the selection operation. The third type of reference, relationship reference, is not
allowed for general document types or general element-groupings. In the second step, the
target document or element grouping of the access struct is used to generate the presentation
for each of these entities, that means the generation algorithm is called recursively.

Finally, the temporal specification of the document or element-grouping has to be created.
After the starting element has been identified, the times of presentation of all other elements
are calculated and specified in the language of the hypermedia system used. Figure 5-12
shows the complete generation algorithm for general document types and element-groupings.

5.2.2. Input document types

One major difference between input document types and general document types is that input
document types are assigned a base ER type. In addition to the elements already described in
the previous section, they are allowed to contain a subset of the set of all attributes of their
base ER type. For each attribute of this subset, some kind of input field is generated where the
user can enter his data. If the input document is used for an update operation (that means it
has been referenced from a result or detail document type), the attribute values of the current
entity are used as default values for the corresponding input fields. In a similar way,
previously specified values for any access structs are used as preselected default values in the
corresponding input form.

Additionally, input document types or element-groupings have a form submitter, which is
used to initiate the storage process and to reference a detail document to be displayed
afterwards. The storage process has to insert a complete entity into the corresponding
database table, no matter which subset of the set of attributes has been presented on the input
document. This means that a value has to be provided for each attribute independent of
whether it has been included in the input document or not. For attributes not included in the
input document, this will be either a null value or a default value the administrator has
specified as described in section 4.5.3.3.
Another difference can be found in the treatment of access structs. Input document types are
not allowed to have external access structs, because an input form is always limited to one
document. If an input form would be divided into several parts on different documents, HMT
had to provide its own transaction management and a HMT implementation (and its usage)
would be much more complicated. Therefore, distributed input forms are currently not
supported, but considered to be an aspect of future research.
While internal access structs in general documents reference a set of related entities of the
target entity type, access structs in input documents offer all entities from the target entity
type for selection. This means that an internal access struct does not allow to insert an entity
into the target ER type, but to relate an already existing entity from the target ER type to the

The HMT Meta Schema 115

current entity of the document’s base ER type. This is typically done by assigning the meta
type popup to one of the attributes of the target element-grouping. For example, an input
document type for employees might contain an internal access struct on departments with a
target element-grouping consisting of the attribute name (of the department) with meta type
popup. On such an input document, a new employee entity can be defined and the
corresponding department can be chosen from the popup menu, but the access struct can’t be
used to insert a new department entity into the database. For that purpose, a departments input
document had to be created.

Figure 5-13: specific aspects of the input document generation algorithm

Since most parts of the document generation algorithm for input document types can be found
exactly identical in the algorithm for general document types described in the previous
section, Figure 5-13 only shows the components that are specific for input documents.

5.2.3. Query document types

Query documents are created using the same algorithm as for input documents, but there are
some small differences: First, query documents are never related to a certain entity like input
documents can be (for update operations). Thus, we do not have to differentiate the operation

…

Is it
an int. access

struct?

Get first element

Is it
a link?

Get next element

no

yes

Is it
an attribute?

Is it a
submitter?

no

no

yes

yes

…

…

Get meta type and display
input field with current
entity’s value as default

Create submitter
button

next
element

available? …

Start algorithm on target
grouping recursively and

select the referenced entities
as default values

Update
operation?

yes

no Start algorithm on target
grouping recursively

Update
operation?

yes

no Get meta type and display
input field

116 Chapter 5

mode for attributes and access structs. Second, the semantics of internal access structs is
slightly different. An internal access struct on input documents offers all entities available
from the target ER type for selection. An access struct on query documents only offers the
(distinct) set of entitles of the target ER type which are referenced by entities from the current
base ER type. This constraint is obviously useful and necessary, because the selection of any
other entity of the target ER type not contained in the set of referenced entities would produce
no query results. To avoid user frustration, these impossible combinations of entities should
not be offered for selection.
Third, it is left to the implementation to decide whether additional input fields are offered for
each attribute where the user can select how to combine multiple search expressions, for
example with a logical and or a logical or operation, or if one of those is selected to be the
default operation. And last but not least, the submitter of a query document type always
references a result document type as its target instead of a detail document type. This is
necessary because an input document type always addresses (stores) one entity, whereas a
query document will often lead to a set of results to be displayed.
Since most differences between query and input documents concern semantics and not the
generation algorithm, we refer to Figure 5-13 for a graphical specification of the query
document generation algorithm.

5.2.4. Detail document types

The document generation algorithm for detail document types extends the algorithm for
general document types by adding the option attributes to the list of elements of a document.

Figure 5-14: specific aspects of the detail document generation algorithm

Is it
an access

struct?

Get first element

…

Is it
a link?

Get next element

no

yes

Is it
an attribute?

no

yes

…

…

…

Get meta type and
display input field

next
element

available? …

Is it
internal?

The HMT Meta Schema 117

The content of an attribute is displayed by using its meta type as specified in section 4.5.2.
Figure 5-14 shows the modified section of the detail document generation algorithm.

5.2.5. Result document types

The algorithm for the generation of result documents is different from the other algorithms
described so far.

The most significant difference lies in the fact that result documents are the only HMT
documents presenting more than one entity of their base ER type. This means that the
specification of a result document type or element-grouping is applied on every entity to be
displayed. The only exception to that rule is the (optional) query element-grouping used to
refine the query which is only displayed once and not for each entity.

Figure 5-15: specification of the result document generation algorithm

Start

Determine layout,
header, footer and
maximum number

of entites

Max. of
entities

reached?

Get list of entities

Get first entity

Get next entity

yes

Is it a
document?

yes

no

Access
allowed?

Access
allowed?

Display permission
denied message

Finished

yes

yes

no

no

Create
previous/next links

Execute detail element-
grouping generation

algorithm on current entity

Next entity
available?

yes no

no Query
grouping
specified?

Execute query element-
grouping generation

algorithm

yes

no

118 Chapter 5

Since there may be specified a maximum number of entities per document, the algorithm has
to limit the presentation of entities accordingly and provide links for addressing the
documents containing the previous or next portion of results.

Figure 5-15 shows the document generation algorithm for result documents. To keep the
diagram simple and readable, the action ´execute detail element-grouping generation
algorithm on current entity´ hides the complete detail document generation algorithm (see
Figure 5-12 and Figure 5-14).

5.3 Automatic query generation

The previous two sections introduced the HMT meta tables and specified the algorithms for
the creation of hypermedia documents based on the HMT repository. The SQL queries
retrieving the information from the meta tables are generated straightforwardly and don’t have
to be discussed explicitly, and the same holds for the queries retrieving information about a
certain entity, which has to be displayed on a details document. Even the generation of the
SQL query retrieving a set of entities referenced by an access struct on a details document is
trivial and needs no further investigation. But the more complex, interactive query and input
document types show a variety of aspects suggesting a closer examination of the query
generation process.

5.3.1. Query generation for input document types

Input document types may require more than one SQL query in order to store all the
information specified by a user. The process of generating the appropriate insert or update
statements can be divided into two parts:

First, an entity of the base ER type has to be stored. For this purpose, a SQL query is created
where all attributes that appeared in the query document are assigned the corresponding
values entered by the user. The remaining attributes are either assigned NULL or a default
value specified by the administrator (see section 4.5.3.3).

Definition 5.1 (interpretation of attributes in input document types):

Let d ∈ be an input document type with base ER type e, dom(a1) be the
domain and def(a1) be the default value of a given attribute a1 ∈ ATTRe and
fieldValue(a2) be the value of the input field for an attribute a2 ∈ ATTRd, then the
function v: ATTRe � dom(a) assigning each attribute of e a value is defined as

�
eAa∈







∈∧∉
∈

=
otherwiseNULL

adomadefATTRaifadef

ATTRaifafieldValue

av d

d

)()()(

)(

)(

input
eDOC

The HMT Meta Schema 119

Second, one insert or update query has to be created for each access struct in order to store the
connections defined by the user on the input document. This is the common way of specifying
relationships in a RDBMS: Depending on the cardinality of the relationship type, either the
current entity (for n:1 relationship types), an entity of the target ER type (for 1:n relationship
types) or entities of a third ER type (for m:n relationship types) have to be updated or inserted
accordingly. In order to preserve consistency of the data source, all queries have to be
executed within one transaction.

5.3.2. Query generation for query document types

The algorithm for the automatic generation of SQL queries from query documents is more
complicated than the algorithm for input documents, because query documents may have
nested access structs and additional features like multi-attribute input forms (see section
4.5.3.1). Moreover, query document types have to produce a single SQL query calculating the
result set if the results are to be displayed in a certain order, whereas input documents may
generate a number of separate requests.

The evaluation of a query document d generates a SQL statement applying the following
rules:

The SQL query generated from a HMT query document d with base ER type ed contains
always a projection on the key attribute(s). This is the only projection needed, because the
query is only used to identify the set of relevant entities. The presentation of these entities is
handled by the corresponding result document type, which generates its own SQL statement.

Definition 5.2 (general form of SQL queries resulting from query document types):

Let d ∈ be a query document type with base ER type ed and key1 .. keyn be
the key attributes of ed, then the generated SQL query has the general form

Attributes of the base ER type having distinct labels lead to a selection operation on these
attributes with the values of their corresponding input fields. It is left to the implementation to
decide whether the operator Θ is replaced by a logical and or a logical or. Attributes with
empty input fields are ignored.

Definition 5.3 (interpretation of attributes with distinct labels in query document types):

If a query document type d contains attributes with distinct labels, the generated SQL
query is extended as follows:

Multiple attributes having identical labels lead to a set of selection operations on these
attributes, each with the value specified in the shared input field. Again, the selection of the

query
eDOC

)(),(,...,1 dkeykeyd eedquery
n

π=

NULLafieldValueand

orandATTRawitheedE

i

didafieldValueaafieldValuead nn

≠

∈Θ∈= =ΘΘ=

)(

},{,)(),()(...)(1 11
σ

whereedEedquery dkeykeyd n
)),((),(1,...,1

π=

120 Chapter 5

connecting operator is left to the implementation of a HMT system, so θ can either be a union
or an intersection. All attributes of a shared input field are ignored if the corresponding field
is empty.

Definition 5.4 (interpretation of attributes with identical labels in query document
types):

If a query document type d contains attributes with identical labels, the generated SQL
query extends the specification of Definition 5.3 by adding the expression E2:

Access structs are mapped to joins with the target ER type. The query generation algorithm is
executed recursively on the target element-grouping specified:

Definition 5.5 (interpretation of access structs in query document types):

If a query document type d contains access structs, the generated SQL query extends the
specification of Definition 5.4 in the following way:

where t1 .. tn are the target documents or element-groupings of the access structs s1..sn of
document d.

5.4 Summary

This chapter has presented the HMT meta schema, which is used for storing HMT application
schemas.

Section 5.1 introduced the basic meta schema of about 14 meta tables and more than 40
relationship types, which can be considered as a basis for the implementation of a HMT
CASE-tool. Additional meta tables or extensions of existing HMT meta tables can (and
probably will) be made by actual CASE-tool implementations in order to provide more user
friendly and powerful interfaces for administration and presentation.
However, the basic HMT meta schema described here is capable of representing any
application designed with HMT as introduced in chapter 4, including all features like access
restrictions, query refinement, temporal design or adaptive documents.

Afterwards, section 5.2 discussed the document generation algorithms for the five kinds of
document types (general, query, result, detail and insert). We presented in detail how
hypermedia documents are created using the HMT meta schema. Although the five document
generation algorithms show similar structures, some essential differences could be identified.
Especially the result document type with its query refinement capabilities requires an
individual solution.

NULLvafieldValuevandATTRawitheedE ididvavad n
≠=∈= =ΘΘ=),()(),(...2 1

σ

whereedEedEedquery ddkeykeyd n
)),(),((),(21,...,1

θπ=

)),(...),(),(),((

),(

11 121,..., nn tdntdddkeykey

d

eetqueryeetqueryedEedE

edquery

���� θθθθπ
=

The HMT Meta Schema 121

Finally, a special aspect considering the two interactive document types (query and input
document type) has been discussed. The information gathered by documents of this kind
needs to be converted into a SQL query, which is either querying or updating the underlying
database. The corresponding query generation algorithms have been described in section 5.3.

The following chapter will describe the implementation of a prototype HMT CASE-tool for
the Hypermedia Modeling Technique based on the meta schema presented in this chapter.

122 Chapter 5

The WebCon Prototype 123

CHAPTER 6

THE WEBCON PROTOTYPE

The best way of verifying a design methodology is the successful development of a
corresponding CASE-tool. Based on the experiences from several online projects [Ab00,
Mli00, Ttm00] using earlier versions of a repository-based design tool, the WebCon toolkit
has been completely re-implemented in order to support the design of web applications with
HMT.

One of the main objectives for this project was to achieve maximum flexibility regarding
platform, database vendor and web server by using standardized interfaces and techniques.
Although these standard interfaces often have a lower performance compared to proprietary
interfaces, this disadvantage can usually be neglected because mostly response times and
transmission rates of the web build the bottleneck of such applications. The initial WebCon
version described in this chapter focuses on the generation of WWW applications, but can
easily be extended in order to support different hypermedia formats.

Section 6.1 will present the architecture of the system, followed by a detailed description of
the actual implementation with its features in section 6.2. After a discussion of open issues in
section 6.3, the chapter ends with a short summary in section 6.4.

6.1 Architecture

One of the major drawbacks of the first versions of WebCon [ZS98, SZ99] was its
dependency of platform and database system. The CGI binary for the gateway was written in
C for the Solaris platform and the only database system supported was TransBase [Tra00]. A
quick installation of the corresponding information systems on other platforms, for example
in order to provide a standalone version for fairs or symposiums on a PC, could not be
managed.

In order to avoid these problems, the current version of WebCon is designed to be completely
independent from platform, web server and database system. The tool is implemented in pure
java using the standard java servlet API. Servlets are server-side java programs that are called
by the web server. Since each web server either supports servlets directly or at least can be
extended by so-called servlet-engines, arbitrary web servers can be used with WebCon. In our
test environment, we used the Apache web server and the JServ servlet engine.

124 Chapter 6

For accessing the DBMS, we use the Java Database Connectivity (JDBC) [Dic97] interface.
This guarantees maximum flexibility regarding the database system, because practically all
database vendors meanwhile offer JDBC drivers for their products.

The WebCon toolkit consists of two major parts: the administration component and the page
generation component. The administration component is used for designing a HMT schema of
the application and mapping it to the HMT repository. It analyzes the data dictionary of the
database in order to get information about the tables, attributes, primary and foreign keys. The
page generation component queries the WebCon repository for the structure of the pages and
retrieves the corresponding application data. Figure 6-1 shows a graphical description of the
WebCon architecture.

Figure 6-1: architecture of the WebCon toolkit

The current version of WebCon offers online page generation, that means the HTML pages
are generated at the moment the user sends his request. Later versions might additionally
support offline generation with an algorithm similar to that described in [Som00]. However,
result documents always have to be generated dynamically, because their contents can only be
determined at runtime after the user has specified his query. In order to optimize the page
generation process, caching strategies have been developed, which will be described later in
section 6.2.3.

Due to the statelessness of the HTTP protocol, a session management has to be implemented.
The maintenance of a session status is necessary for a variety of situations, for example when

DBMS

application
data

WebCon
repository

data
dictionary

WebCon
administration

component
(servlet)

WebCon page
generation
component
(servlets)

web server

servlet engine

user administrator

HTTP HTTP

JDBC

The WebCon Prototype 125

splitting long query results into several connected pages that can be browsed by the user.
Since cookies are not defined by a standard and are often not accepted by users, we decided to
use a page based session management, that means all necessary information is kept within the
HTML page and sent to the server at each request. In general, this refers only to two or three
variables and therefore does not noticeably reduce response and transmission times of the
system.

The following section discusses some implementation details concerning functionality, the
HMT repository, authorization, the application generation process and system administration
with the WebCon toolkit.

6.2 Implementation

The WebCon prototype has been implemented on a Sun Ultra1 workstation using Java
Development Kit version 1.2, the Apache 1.3.12 web server, JDBC and the TransBase v4.3.3
relational database system. Other DBMS like Adabas, MySQL and PostgreSQL have also
been tested [See00]. The GNU revision control system (RCS) has been used to guarantee
efficient and secure multi-user development.
The WebCon repository is mapped to a relational representation consisting of totally 26
tables. These tables correspond directly to the meta tables described in section 5.1 and do not
need to be listed explicitly. The following sections will discuss some interesting
implementation aspects of WebCon in detail and specify the HMT functionality supported by
our prototype.

6.2.1. Configuration

Various parameters of the WebCon tool can be defined in a configuration file that is read at
system startup. It contains the following information:

WebCon configuration file

JDBC_DatabaseURL=jdbc:transbase://sunwibas13.forwiss.de:4340/hmt

JDBC_User=tbadmin

JDBC_Passwd=admin

Schema_Cache=enabled

Session_Timeout=5

The first parameter specifies the JDBC database URL for connecting to the DBMS including
the port number, and the values of JDBC_User and JDBC_Passwd are used for database
login. This account must have at least read access for the tables of the application domain and
additionally write access for all tables that are to be updated by HMT input documents. The
Schema_Cache parameter allows switching the schema cache on and off, and the maximum

126 Chapter 6

idle time before automatically closing a user session is defined by the Session_Timeout
parameter (in minutes).

6.2.2. Authentication and Authorization

Both authentication and authorization are handled by the WebCon system and not by the web
server or the DBMS. This provides maximum flexibility and independence from third party
systems as described in section 3.3.4. The WebCon prototype uses a fixed account for
connecting to the database, which is specified in the WebCon configuration file (see previous
section).

User authentication is needed when the user requests a protected document for the first time.
In this case, an authentication document is created instead of the requested page. This
authentication document is a special kind of general document, which can be specified by the
administrator just like ordinary general document types. The only condition for authentication
document types is that they must include an add containing the special token [**Authform**].
This token will be replaced at runtime by two input fields for login and password of the user
and a submit button for sending the data.

After having entered a valid login/password pair, the user gets assigned a unique identifier
(UID) that will be transmitted for each request of the current session. All roles assigned to the
user get activated and the originally requested document is now retrieved if at least one of the
user’s roles has access permissions. Otherwise, an error message will be sent. Subsequent
requests for restricted documents do not require another user authentication, because now the
user has a UID that is valid for the whole session.

The length of a session is determined by the specification of a maximum idle time interval in
the configuration file, that means the maximum period of time after his last request. If the user
exceeds that time limit, the session is automatically closed, the user’s UID becomes invalid
and another request for a protected document requires a new user authentication. Since
multiple authentication documents can be designed, the administrator can use different
authentication documents within one application.

In contrast to documents, element-groupings with access restrictions do never lead to user
authentication. If the user does not have the appropriate permissions or even no UID for the
current session at all, the restricted element-groupings will not be displayed (adaptive
documents, see section 4.4.2.2).
This implies that the administrator of a WebCon application has to ensure that before
accessing an adaptive document, the user has to be lead to at least one restricted document in
order to activate user authentication. Alternatively, the adaptive document itself might also be
restricted, but then inconsistencies between the roles allowed to access the whole document
and the roles used for document adaptation might occur.

The WebCon Prototype 127

6.2.3. Efficient Page Generation

The generation of the HTML pages in WebCon follows the algorithms presented in section
5.2. After the user’s authorization has been confirmed, the different elements and access
structures of the requested document are identified and mapped to SQL queries retrieving the
application data from the database system. The resulting HTML page is sent back to the user.

Crucial for the performance of the page generation process are the SQL queries to the
database system. They can be divided into two groups:

• The schema queries are used to retrieve information about the structure of the HTML page
from the WebCon repository. For this purpose, the meta tables for every domain and
access primitive have to be queried, which leads to currently at least eight SQL queries for
every detail document (one for layout, header, footer, attributes, adds, element-groupings,
links, access structs and perhaps Guided Tour).

• The data queries are generated dynamically from the results of the schema queries and
retrieve the actual data from the database. At least one query is needed for detail
documents in order to get the information about the current entity, and each contained
element-grouping or access struct requires another query.

The WebCon prototype uses two optimization strategies to improve the performance of the
page generation process. First, the number of data queries is minimized by storing the current
entity in an entity-cache during the page generation process. Thus, repeated requests for
attributes of the current entity can be answered without database access. This is an advantage
especially for highly structured documents containing several element-groupings, because
otherwise each subsequent element grouping resulted in a recursive call of the page
generation process with one additional data query. After the page generation algorithm has
finished, the corresponding entity is removed from the entity-cache. This guarantees that
always the latest information from the database is presented and changes to the data source
become visible immediately without having to clean the application cache manually.

Of course keeping the entity in the entity-cache would improve the overall performance for
subsequent requests, but this is only suited for applications with a rather static data source. In
that case, however, an offline generation of HTML pages would show the best performance
under the same circumstances. Additionally, applications with a large data source would
require a very large cache size and efficient replacement policies in order to improve system
performance significantly.

The second and even more efficient optimization strategy reduces the amount of schema
queries by storing the structure of a document within a so-called schema-cache. The schema-
cache is not emptied after the page generation process has finished, thus subsequent calls for
the same document type require no schema queries at all. Since the HMT schema of an
application is completely independent of the size of the application database and usually
much smaller, the required schema-cache size is limited. Only if the HMT schema of the
application is changed, the schema-cache has to be emptied. But since the schema of an

128 Chapter 6

application is usually not altered as often as the data source itself, this approach provides a
reasonable compromise between high performance and simple administration.

Figure 6-2: caching strategies of the WebCon toolkit

Figure 6-2 shows the use of the entity-cache and the schema-cache. The page generation
process first retrieves the current entity from the application database (step 1 and 2) and stores
it in the entity-cache (step 3). Afterwards, the structure of the requested page is loaded from
the schema-cache (step 4 and 5). If the corresponding document type is used for the first time,
its structure is read from the WebCon repository and stored in the schema-cache (step 4a).
The page generation process now begins to build the page sending all requests for information
about the current entity to the entity-cache (step 6). After having finished the creation of the
page, the entity is removed from the entity-cache (step 7).
If several page requests are received at the same time, multiple page generation processes are
started. While each of these processes has its own entity-cache (for the current entity), they all
share the same schema-cache.

Initial tests of the WebCon prototype have been performed using a copy of the abayfor-online
[Ab00] database, which currently contains about 540 research projects and 780 scientists. The
sample screenshots of Figure 6-3 show a project overview document containing some
information about the mistral research project. Besides the title, image, abstract and other
information, a Guided Tour on participating scientists is offered with the button at the top of
the page. The second browser window shows the presentation of one of the participating
scientists in that Guided Tour. The buttons labeled previous and next are used for navigating
within the Guided Tour, the back button is a link leading back to the calling page (in this case
the mistral project overview).

entity-
cache

entity-
cache

DBMS

application data WebCon repository

page generation process

schema-
cache 1

3

2
4 5

6

7

4a

entity-
cache

The WebCon Prototype 129

Figure 6-3: sample screenshot of two HTML pages generated by WebCon

6.2.4. Administration

The WebCon administration component is used for mapping conceptual HMT schemas to the
WebCon repository. The current version is a HTML-based tool allowing administration of all
steps of the HMT design process using an ordinary web browser.

130 Chapter 6

The administration tool consists of two frames as shown in Figure 6-4. The frame on the left
side of the screen allows selecting the HMT design step. In the screenshot, the conceptual
HMT design of a detail document has been selected. The frame on the right side usually
provides a linked list of pages for specifying the relevant information. In our example, the
page for selecting a detail document for further administration is shown, and the link labeled
[Basics] at the top of the right window leads to a set of pages allowing the specification of
related adds, element-groupings, links or access structs.

Figure 6-4: screenshot of the WebCon administration tool

Developing the administration tool as a browser-based component provides the advantage of
mobile administration of the whole WebCon application without the need of a direct
connection to the server (for example with telnet or ssh). Since no java applets are used, the
administration tool is not affected by browser incompatibilities concerning java and the small
page sizes even allow using low bandwidth internet connections.

The WebCon Prototype 131

6.2.5. Supported HMT Functionality

The WebCon prototype concentrates on the development of WWW applications using the
Hypermedia Modeling Technique. Since the techniques and standards of the World Wide
Web (HTML, DHTML, Java Applets) do not provide means for any kind of temporal
specification, the WebCon prototype does not support the HMT temporal design step. In
contrast to other limitations of the current WebCon prototype, this deficiency cannot be
solved unless standards and techniques for the temporal design of WWW applications are
available.

HMT Functionality Description Prototype Support

General documents Section 4.3.1 yes

Input documents Section 4.3.3.4 no

Query documents Section 4.3.3.1 no

Result documents Section 4.3.3.2 yes

Result documents special features
(query refinement, result set distribution)

Section 4.5.3.2 no

Detail documents Section 4.3.3.3 yes

Element-groupings Section 4.3.1 yes

Links (structural and navigational) Section 4.3.2 yes

Access struct TOC Section 4.3.2 yes

Access struct Guided Tour Section 4.3.2 yes

Access struct Guided TOC Section 4.3.2 no

Access Struct Slide Show Section 4.3.2 no

Submitter Section 4.3.2 no

Authorization (document level) Section 4.4.2.1 yes

Authorization (grouping level) Section 4.4.2.2 yes

Temporal design Section 4.5.4 -

Layout design Section 4.6 yes

Table 6-1: HMT functionality of the WebCon prototype

Concerning the HMT document types, only the three most important ones are supported by
the current prototype: general document types, result document types and detail document
types. Input and query document types will be included into the next version of WebCon. The
functionality of result document types is limited to the basic presentation features; query
refinement and distributed result sets cannot be used yet. All other HMT design primitives

132 Chapter 6

like element-groupings, attributes, adds, links and access structs are supported by the current
version. This refers also to specific elements like access structs with conditional reference or
Guided Tours.
Support for users and roles is available and allows both specifying access restrictions for
whole documents and defining adaptive contents. A session management component ensures
that the user only has to identify himself once and not for every request.
Table 6-1 shows a summary of the HMT functionality and its coverage by the current
WebCon toolkit. The label “yes” identifies already supported features, “no” marks future
components and “-“ denotes issues that cannot be addressed with current WWW techniques.

6.3 Open Implementation Issues

The current implementation of WebCon is the first prototype of a HMT CASE-tool. It has
helped to identify weak points in the early versions of the HMT meta schema and supported
the development of a consistent and efficient relational representation for HMT schemas.
Besides improvements regarding efficiency and maintainability of the source code, future
versions of WebCon will also provide support for additional HMT functionality not covered
so far. The following paragraphs identify the primary development goals for the next versions
of WebCon.

Query and insert document types

The main target of the WebCon future development efforts is the support for HMT query and
input document types. Right now, only general, result and detail document types can be
generated. Query and input document types can rely on an existing basic document
framework, which contains components for every HMT design primitive, for authorization
aspects, layout, meta schema access and structural caching. The result document type has to
be extended in order to be able to handle distributed result sets and query refinement as
described in section 4.3.3.2.

Graphical administration interface

The current, browser-based administration tool is very useful for mobile maintenance of an
application and for quick administration by experienced users. It is currently being extended
to support the entire HMT functionality including user and role administration.
For inexperienced users or very large applications, however, a graphical HMT development
interface would be the best solution. It should offer a toolbox with all HMT design primitives
and an editor with drag-and-drop functionality for designing conceptual HMT schemas. The
other design steps of HMT would be presented as different views on the conceptual schema.
In order to be as platform independent as the page generation components of WebCon, the
graphical HMT development interface should be implemented completely in java, too.

Version management

Especially for large-scale applications with several administrators, the aspect of version
management becomes an important issue. It must be possible to restore earlier versions of the

The WebCon Prototype 133

application in case of errors or misconfiguration. Since all information about the application is
stored within the database system, traditional version management systems like RCS or CVS
cannot be used with WebCon.
The solution for this problem is the introduction of an additional version attribute in all HMT
meta tables. This version attribute has to become part of the primary key thus allowing the
storage of several versions of an entry. The CASE-tool then has to provide a possibility to
save the current configuration under a certain version number and to restore an older version.
If the page generation component is extended to use a specified version of the meta schema
configuration, an existing application can stay online when the administrator generates a new
version. After having tested this new configuration, the public application can easily be
switched by specifying the new version number.

Performance analysis

After having finished the first prototype with full HMT support, a detailed performance
analysis has to be made, which refers to several aspects. The code of the page generation
component has to be optimized regarding the usage of objects, methods or variables. The
schema-cache has to be analyzed in order to identify a measure for the ideal cache size
dependent from the size of the HMT meta schema, the physical memory of the host and the
replacement strategy used. Other factors influencing the overall performance of the system are
the servlet engine used (meanwhile various servlet engines like JRun, JServ or ServletExec
are available) and its configuration regarding servlet loading or usage of threads.

Offline page generation

In addition to the online page generation of the current WebCon CASE-tool, future versions
should also support offline page generation. This can be useful for optimizing the
performance of large applications with rather static data source or for creating offline versions
of the application, for example on cdrom.
Therefore, the WebCon toolkit has to be extended by a static-page-generation-component
mapping the URLs of dynamic pages to static references. This component should also contain
algorithms for incremental administration, because otherwise the whole application has to be
re-generated every time the structure or the contents of the application change. An algorithm
describing the incremental maintenance of hypertext views has been described in [Som00].

6.4 Summary

This chapter has described the first prototype of a HMT CASE-tool called WebCon. We first
discussed the system architecture, which is a server side concept using an arbitrary web
server, java servlets and JDBC for the database connection. User authentication, authorization
and session management are handled by the WebCon CASE-tool. This architecture provides
maximum flexibility regarding web server, platform and database system.

The second subsection presented a description of the most important implementation aspects
regarding the WebCon prototype. After a short view on the system configuration, the aspect

134 Chapter 6

of user authentication has been discussed. For that purpose, a special kind of general
document can be defined that assigns each user a unique session-id. In HMT, authorization
can be used for both access restriction and adaptive documents.
The page generation component uses special caching strategies: the entity-cache and the
schema-cache. While the entity-cache is used for minimizing the requests to the data source,
the schema-cache reduces calls to the HMT repository.
The browser-based administration component of WebCon allows maintaining the entire
application using an ordinary web browser, thus supporting mobile administration.
Finally, the HMT functionality supported by the current version of WebCon has been
specified exactly.

The last subsection has identified the primary future development goals of WebCon, which
are support for query and insert document types, a graphical design interface, version
management, performance analysis and offline page generation.

As a summary, Figure 6-5 gives an overview of all current and some future components of the
WebCon CASE-tool. Already existing components are drawn with a gray background, future
packages have a white background.

Figure 6-5: overview of the WebCon components

Page Generation Online

General
Documents

WebCon CASE-tool

Input
Documents

Query
Documents

Result
Documents

Detail
Documents

Authentication and Authorization

Schema-Cache

Entity-Cache

Administration

Users and Roles

Browser-based Interface

Graphical Design Interface

Version Management

Page Generation Offline

Conclusion and Future Work 135

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

After hypertext and hypermedia systems have become widely available and accepted, the
aspect of database support for these kinds of applications is paid more and more attention to.
While modeling methodologies are known in most traditional areas of software development
like database design or object-oriented design, the area of database-driven hypermedia
applications still lacks a comprehensive design framework covering all relevant issues. The
main deficiencies of existing modeling approaches concern the following aspects:

• Support for interactive user interfaces
In addition to interfaces for “passive” information presentation, a lot of applications
require also interactive user interfaces. Examples are search interfaces for directly
querying the data source or input interfaces for manipulating the application data.

• Flexible hypermedia formats
The very short life cycles of standards and techniques in the WWW demand great
flexibility regarding the hypermedia target format of an application. This refers not only to
the integration of new language extensions or versions, but also to the possibility of
switching between completely different hypermedia formats with only minimal efforts.

• Access control
More and more hypermedia applications contain not only information for the public, but
also internal data that should be accessed only by selected users. Not supporting this
aspect in the modeling methodology used increases maintenance complexity and error
probability of the application

• Personalized information presentation
Personalization of hypermedia information systems will be a central issue for a variety of
future applications. Without support by the application design and maintenance process,
personalization can hardly be achieved at reasonable costs.

• Temporal design
Multimedia elements like graphics, sound or small video sequences become more and
more popular as transmission rates in the internet are increased steadily. Although current
web standards do not address the issue of temporal relations so far, a comprehensive
hypermedia modeling methodology should already provide support for the temporal
design of the application.

136 Chapter 7

The Hypermedia Modeling Technique (HMT) has been developed to close this gap. Based on
well-known approaches like the Entity-Relationship model (ER) or the Relationship
Management Methodology (RMM), HMT offers a six-step design methodology for the
development of database-driven hypermedia applications. It is the first hypermedia design
framework to address all aspects relevant for typical applications in that area.

The first step in the HMT design process is the requirements analysis. It covers aspects like
the definition of the application domain, identification of the intended users, and specification
of the system’s functionality and usage. The second design step involves the creation of an
ER schema of the application domain, which has been identified during requirements
analysis. For that purpose, HMT relies on the basic ER model and needs no special
extensions. If the hypermedia application has to be built upon an already existing database,
these first two design steps can be omitted.

The core hypermedia design starts with the third design step, which is called conceptual
hypermedia design. HMT offers a set of design primitives for specifying the contents of
hypermedia documents (referred to as information clustering) and the navigation paths
between them (referred to as navigational design). Five kinds of document types can be used
for information clustering:

• General document types contain no information from the application database, but might
include links or access structures leading to other documents. They are typically used to
model entry points for the application (homepage, starting page).

• Result and detail document types are used for presenting database contents. While result
documents display a list of entities (for example, the results of a query), detail documents
show exactly one entity.

• Query document types allow specifying complex search interfaces for the underlying
database. These search interfaces can cover several entity types and require no explicit
query specification.

• Input document types help to build interfaces for inserting data into the database.

Access primitives like links, submitters or access structs are used to model navigational paths
between related portions of information.

The conceptual hypermedia schema is used as the basis for the fourth design step, which is
the authorization design. HMT uses role-based access control for that purpose and allows
access restrictions on two different levels. If whole document types are restricted, the
corresponding documents can only be viewed by users having the required role. If parts of
document types are restricted, the users will see only those parts of the document they have
access permissions for. Using this technique, adaptive documents can be designed very easily.

The logical hypermedia design is the fifth step of the HMT design process. It addresses
aspects like the order and labels of the elements within a document, the meta types of the

Conclusion and Future Work 137

attributes and the temporal design of the application. A set of seven temporal relations has
been introduced for specifying the dependencies between the elements of a document type
concerning time.

The last step in the design process is the layout design step. It addresses all aspects regarding
the layout of the application (for example background image, text color or font) and depends
heavily on the actual hypermedia platform used. Thus it is impossible to specify a general
model for this design step. HMT leaves it up to an actual CASE-tool to provide support for
this design step and a certain hypermedia platform. Since only the last step in the HMT design
process depends on an actual hypermedia platform, applications designed with HMT can
easily be created for a variety of different hypermedia formats like HTML, XML or PDF.

For the implementation of a HMT CASE-tool, HMT schemas have to be mapped to a
computable format. For that purpose, we have introduced a relational HMT repository that
resides in the DBMS containing the application data. The schema of this repository (called
HMT meta schema) consists of 14 meta tables and more than 40 relationship types storing all
information arising from the HMT design process. This repository can be considered as the
minimum meta schema needed for mapping HMT schemas, actual implementations might
provide additional meta tables and relationship types.

The HMT approach has been verified by the implementation of a prototype CASE-tool for the
generation of World Wide Web applications. It is based on java servlet technology and JDBC
database access in order to be as independent from platform and database system as possible.
The prototype consists of a full-featured page generator for the creation of result and detail
documents and a browser-based administration component for maintaining the HMT
repository. Additional components addressing currently missing HMT functionality have been
identified and will be part of future developments.

7.2 Future Work

Extensions and new developments in the near future will concern mainly the WebCon
implementation. As already identified in the previous chapter, efforts in the areas of input and
query pages, the graphical design interface or performance tuning are the most important
tasks. Other extensions concern the generation of different hypermedia formats like XML or
PDF, the support for analyzing access rates and user behavior, and the materialization of
HMT pages.
A very difficult aspect will be the integration of (a subset of) the HMT temporal design
functionality into the WebCon toolkit, because the World Wide Web offers no standard
supporting that issue so far. For some specific elements like simple HMT Slide Shows, a
component for the automatic generation of animated gif images or java applets could be
integrated into WebCon. However, supporting the entire functionality of the HMT temporal
design step will be the greatest challenge for future CASE-tools.

138 Chapter 7

Regarding the Hypermedia Modeling Technique itself, several topics for future research can
be identified:

• Support for extended ER models
The current version of HMT relies on the basic ER model as described by Chen. Future
versions might be extended to support advanced concepts like isa-hierarchies or complex
attributes. While some concepts require only additional mapping rules (for example
complex attributes), others will lead to the introduction of new or extended design
primitives (for example isa-hierarchies).

• Non ER-based design of the application domain
The HMT design process might be extended to support other techniques than ER for the
second design step. For example, the application domain might as well be specified using
the Unified Modeling Language (UML). For primitive UML schemas, most of the HMT
conceptual design primitives could remain unchanged or require only little modifications,
and the remaining design steps (four to six) would not be affected by that extension.

• Specification of advanced presentation characteristics
The Amsterdam Hypermedia Model provides the abstract channel-concept for the
presentation of hypermedia contents. Each channel can be assigned a number of
parameters specifying default presentation characteristics for the current media type, for
example sound volume, frame rate or scaling factors for graphics. The Hypermedia
Modeling Technique might be extended to support a similar concept for the specification
of advanced hypermedia presentation characteristics.

• Support for distributed databases
Currently HMT supports the design of hypermedia applications based on a single DBMS.
Little modifications like, for example, the use of database-specific prefixes for entities or
attributes could allow the creation of applications using distributed data sources. The
corresponding extensions to the HMT meta schema are trivial, but performance
considerations will have to get a higher priority for CASE-tool implementations.

References 139

REFERENCES

[Ab00] abayfor-online: the information system of the association of bavarian research
cooperations.
URL: http://www.abayfor.de/

[ACH+93] Arens, Y., Chee, C., Hsu, C., Knoblock, C.: “Retrieving and Integrating Data
from Multiple Information Sources”. In International Journal of Cooperative
Information Systems (IJCIS), 2(2), pp. 127-158, 1993

[All83] Allen, J.F.: “Maintaining Knowledge about temporal intervals”. In
Communications of the ACM 1983/26, Vol. 11, pp. 832-843

[All99] Allaire Corporation: “ColdFusion 4.5 White Paper”. White paper, 1999
URL:
http://www.allaire.com/Documents/Objects/WhitePaper/CF45WhitePaper.doc

[Alt00] Alta Vista ™ search engine
URL: http://www.altavista.com

[AMM97] Atzeni, P., Mecca, G., Merialdo, P.: “To Weave the Web”. In Proceedings of the
23rd International Conference on Very Large Databases (VLDB’97),
Athens,1997, pp. 206-215

[AMM98] Atzeni, P., Mecca, G., Merialdo, P.: “Design and Maintenance of Data-Intensive
Web Sites”. In Proceedings of the International Conference on Extending
Database Technology (EDBT), Valencia, 1998, pp. 436-450

[Apa00] Apache web server
URL: http://www.apache.org/

[AS00] Adobe Systems: “PDF Reference (Second Edition)”. Addison-Wesley
Publishing Company, 2000

[ASP00] Microsoft “Active Server pages Tutorial”.
URL : http://msdn.microsoft.com/workshop/server/asp/asptutorial.asp

[BCN93] Batini, C., Ceri, S., Navathe, S.B.: “Conceptual Database Design: an Entity-
Relationship Approach”. Benjamin and Cummings Publ. Co., Menlo Park, 1993

[Ber99] Berg, C.: “Advanced Java 2 Development for Enterprise Applications (Second
Edition)”. Prentice Hall, New Jersey, 1999

140

[Blu00] Bluestone Software Inc.: “Bluestone Software Total-e-Server White Paper”.
White paper, 2000
URL: http://www.bluestone.com/downloads/pdf/Total-e-Server_WP_Final.pdf

[Boe76] Boehm, B.: “Software engineering”. In IEEE Transactions on Computers 25, pp.
1226-1241, 1976

[CGH+94] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., Widom, J.: “The TSIMMIS project: Integration of heterogeneous
information sources”. In Proceedings of the 10th Meeting of the Information
Processing Society of Japan (IPSJ), Tokyo, 1994

[CGI00] The World Wide Web Consortium (w3c): “CGI”
URL: http://www.w3c.org/CGI/

[Che76] Chen, P.S.: “The Entity-relationship Model – Towards a Unified View of Data”.
In ACM TODS, Vol. 1, No. 1, 1976.

[Chi00] Chimera Software: HotSQL 1.3
URL: http://www.chimerasoft.com/hotsql/

[Cod90] Codd, E.F.: “The relational model for database management : version2”.
Addison-Wesley Publishing Company, Inc., 1990

[DB00] Deutsche Bahn AG: Online Fahrplanauskunft.
URL: http://www.bahn.hafas.de

[DI95] Diaz, A., Isakowitz, T.: “RMCase: Computer-Aided Support for Hypermedia
Design and Development”. In Proceedings of the 1995 International Workshop
on Hypermedia Design (IWHD’95), 1995

[Dic97] Dicken, H.: “JDBC Internet-Datenbank-Anbindung mit Java”. Thomson
Publishers, Bonn, 1997

[DM00] Danesh, A., Motlagh, K.A.: “Mastering ColdFusion 4.5”. Sybex, 2000

[EN94] El Masri, R.A., Navathe, S.B.: “Fundamentals of Database Systems”. Benjamin
and Cummings Publ. Co., Menlo Park, second edition, 1994

[Exp00] ExperTelligence Inc.: WebBase
URL: http://www.webbase.com/

References 141

[FFK+97] Fernandez, M., Fiorescu, D., Kang, J., Levy, A., Suciu, D.: “STRUDEL: A Web-
site Management System”. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’97), Tucson, Arizona, 1997

[GB98] Gavrila, S.I., Barkley, J.F.: “Formal Specification for Role Based Access Control
User/Role and Role/Role Relationship Management”. In Proceedings of the 3rd
ACM Workshop on Role-based Access Control, Fairfax, VA, 1998, pp. 81-90

[GMP95] Garzotto, F., Mainetti, L., Paolini, P.: “Hypermedia Design, Analysis, and
Evaluation Issues”. In Communications of the ACM Special Issue, 38(8), pp. 74-
86, 1995

[Goo99] Goodwill, J.: “Developing Java Servlets”. SamsPublishing, 1999

[GPS93] Garzotto, F., Paolini, P., Schwabe, D.: “HDM- A Model-based Approach to
Hypermedia Design”. In ACM Transactions on Information Systems, 11, 1
(1993), pp. 1-26.

[GPS93] Garzotto, F., Paolini, P., Schwabe, D.: “A Model-Based Approach to Hypertext
Application Design”. In ACM Transactions on on Information Systems, 11(1),
pp. 1-26, 1993

[HBR94] Hardman, L., Bulterman, D.C.A., Rossum, G.: “The Amsterdam Hypermedia
Model”. In Communications of the ACM, 1994/2, Vol.37, pp. 50-62

[Hos97] Hoschka, P.: “Synchronized Multimedia Integration Language”.
http://www.w3.org/TR/WD-smil-971109

[HS94] Halasz, F., Schwartz, M.: “The Dexter Hypertext Reference Model”. In
Communications of the ACM, Feb. 1994, Vol. 37, No. 2, pp. 30-39

[Htm00] The World Wide Web Consortium (w3c): “HTML”
URL: http://www.w3c.org/MarkUp/

[IBM00] IBM: Web Sphere Application Server
URL: http://www-4.ibm.com/software/info/websphere/

[IKK97a] Isakowitz, T., Kamis, A., Koufaris, M.: “Extending the capabilities of RMM:
Russian Dolls and Hypertext”. In Proceedings of the 30th Annual Hawaii
International Conference on System Sciences, 1997.

[IKK97b] Isakowitz, T., Kamis, A., Koufaris, M.: “Reconciling Top-Down and Bottom-Up
Design Approaches in RMM”. In Proceedings of the Workshop on Information
Technologies and Systems (WITS97), Atlanta, GA, Dec. 1997.

142

[IKK98] Isakowitz, T., Kamis, A., Koufaris, M.: “The Extended RMM Methodology for

Web Publishing“. Working paper IS-98-18, available at
http://rmm-java.stern.nyu.edu/rmm/papers/RMM-Extended.pdf

[Inf00] Informix Corporation: “Creating Web-Enabled Database Applications Using the
Informix Web Datablade Module”. White paper, 2000
URL: http://www.informix.com/informix/whitepapers/createweb_wp.pdf

[ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P.: “RMM: A Methodology for the
Design of Structured Hypermedia Applications”. In Communications of the
ACM, 38(8), pp. 34-44.

[Jou97] Jourdan, M., et al.: “Authoring Environment for Interactive Multimedia
Documents”. OPERA project, INRIA Rhone-Alpes, Montbonnot, France
http://opera.inrialpes.fr/OPERA

[KK92] Kendall, K.E., Kendall, J.E.: “Systems Analysis and Design”. Prentice-Hall,
New Jersey, 1992.

[Loe98] Loeser, H.: “Techniken für Web-basierte Datenbankanwendungen:
Anforderungen, Ansätze, Architekturen“. Informatik Forschung und
Entwicklung, 13(4), pp.196-216, 1998

[LS97] Lupu, E., Sloman, M.: “Reconciling Role Based Management and Role Based
Access Control”. In Proceedings of the 2nd ACM RBAC Workshop, Fairfax, VA,
USA, Nov. 1997, pp. 135-141

[Lyc00] Lycos ™ search engine
URL: http://www.lycos.com

[MG+87] Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., Cohen, M.D.:
“Intelligent Information-Sharing Systems”. In Communications of the ACM, Vol.
30 (5), pp. 390-402, 1987

[Mic00] Microsoft: “ISAPI Programming, Microsoft Interactive Developer”.
URL: http://www.microsoft.com/Mind/0197/ISAPI.htm

[Mli00] M-Line: Materialwissenschaftliches Online Informationssystem.
URL: http://www.format.mwn.de

[MMD] Macromedia: Director 4.0 User’s Guide.

References 143

[Mof98] Moffet, J.D.: “Control Principles and Role Hierarchies”. In Proceedings of the
3rd ACM Workshop on Role-based Access, Fairfax, VA, 1998, pp. 63-69

[Net00] Netscape: “Netscape API Functions”.
URL: http://home.netscape.com/servers/index.html

[Net99] Netscape Support Documentation: “Persistent Client State – HTTP Cookies”.
URL: http://www.netscape.com/newsref/std/cookie_spec.html

[NO93] Nyanchama, M., Osborn, S.: “Role-Based Secutity, Object Oriented Databases &
Separation of Duty”. In ACM SIGMOD Record, Vol. 22, No. 4, December 1993

[NO96] Nyanchama, M., Osborn, S.: “Modeling mandatory access control in role-based
security systems”. In Database Security VIII: Status and Prospects, Chapman-
Hall, 1996

[Odb00] Open Database Internet Connector
URL: http://www.iodbc.com

[Op96] Open Market: “FastCGI: A High-Performance Web Server Interface”. Technical
white paper, 1996
URL: http://fastserv.name.net/whitepapers/gcgi-whitepaper.shtml

[Ora00a] Oracle Corporation: “Oracle Internet Application Server 8i (Oracle iAS)”.
Technical white paper, June 2000
URL: http://technet.oracle.com/products/ias/pdf/ias_technical_WP.pdf

[Ora00b] Oracle Corporation: “An Overview of iAs Forms Services Architecture”.
Technical white paper, June 2000
URL: http://technet.oracle.com/products/forms/pdf/275632.pdf

[Per00] Pervasive Software Inc.: “Tango Enterprise White Paper”. White paper, 2000
URL: http://www.pervasive.com/documentation/docs/w_tango.doc

[RBP+91] Rumbaugh, J., Blaha, J., Premerlani, W., Eddy, F., Lorensen, W.:
“Objectoriented Modeling and Design”. Prentice-Hall, New Jersey, 1991

[RG00] Ratschiller, T., Gerken, T.: “Web Application Development with PHP 4.0“. New
Riders Publishing, 2000

[Ris00] Rischpater, R.: “Wireless Web Development”. Apress, 2000

144

[RJM+93] Rossum, G., Jansen, J., Mullender, K.S., Bulterman, D.: “A Presentation for
Portable Hypermedia Documents”. In Proceedings of the ACM Multimedia ´93,
pp.183-188

[Ro00] Rational Software Corporation: “Rational Rose – a Rational Suite product”.
URL: http://www.rational.com/products/rose/index.jtmpl

[San96] Sandhu, R.S.:”Role hierarchies and constraints for lattice-based access controls”.
In Proceedings of the Fourth European Symposium on Research in Computer
Security, Springer-Verlag, Rome, Italy, 1996

[SCF+96] Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: “Role-Based Access
Control Models”. In IEEE Computer, 29(2), Feb. 1996, pp. 38-47

[SDK96] Song, J., Kim, M.Y., Ramalingam, G.: “Interactive Authoring of Multimedia
Documents”. Research Report RC 20369, T.J. Watson Research Center, IBM
Research Division Yorktown Heights, NY

[See00] Seehafer, R.: “Dynamische Generierung von Webseiten aus HMT-Modellen”.
Diploma thesis, Technical University of Munich, 2000

[SM98] Sandhu, R., Munawer, Q.: “How to do Discretionary Access Control using
Roles”. In Proceedings of the 3rd ACM Workshop on Role-based Access Control,
Fairfax, VA, 1998, pp. 47-54

[Som00] Sommer, U.: “Integriertes Management großer Web-Sites auf der Basis
datenbankbasierter Modellierungskonzepte“. PhD thesis, Technical University of
Munich, 2000

[SRB96] Schwabe, D., Rossi, G., Barbosa, S.: “Systematic Hypermedia Design with
OOHDM”. In Proceedings of the ACM International Conference on Hypertext
(Hypertext 96), Washington, Mar. 1996.

[SSW80] Scheuermann, P., Scheffner, G., Weber, H.: “Abstraction Capabilities and
Invariant Properties Modeling within the Entity-Relationship Approach”. In
Entity-Relationship Approach to Systems Analysis and Design, Elseveier,
Amsterdam, 1980, pp. 121-140.

[Sun00] Sun Microsystems Inc.: “NetDynamics Application Server5.0”. White paper,
2000
URL: http://www.netdynamics.com/products/nd50_wp.pdf

References 145

[Syb00] Sybase: “PowerBuilder 7.0 – The bridge from client/server to Web and
distributed applications”. White paper, 2000
URL: http://www.sybase.com/content/1002992/pb7ds.pdf

[SZ99] Sommer, U., Zoller, P.: “WebCon: Design and Modeling of Database Driven
Hypertext Applications”. In Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences, 1999.

[TB79] Thomas, E., Biddle, B.: “The Nature and History of Role Theory”. In Role
Theory: Concepts and Research, Krieger Publishing, 1979

[Teo94] Teorey, T.J.: “Database Modeling & Design”. Morgan Kaufmann Publishers,
Inc., San Francisco, 1994.

[Tha91] Thalheim, B.: “Foundations of Entity-Relationship Modeling“. In Annals of
Mathematics and Artificial Intelligence, 1991

[Tra00] TransAction Software GmbH: “TransBase Relational Database System Version
5.11 – System and Installation Guide”. Munich, 2000

[Tro98] De Troyer, O.: “Designing Well-Structured Websites: Lessons to be learned
from Database Schema Methodology”. In Proceedings of the 17th International
Conference on Conceptual Modeling (ER’98), Singapore, 1998

[Ttm00] TTM-Line: Traffic and Transport Management Online.
URL: http://ttmline.forwiss.tu-muenchen.de

[TYF86] Teorey, T.J., Yang, D., Fry, J.P.: “A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model”. In ACM Computing
Surveys 18,2 8June 1986, pp. 197-222.

[Vos91] Vossen, G.: “Data Models, Database Languages and Database Management
Systems”. Addison-Wesley Publishers, 1991

[WCO00] Wall, L., Christiansen, T., Orwant, J.: “Programming Perl (3rd edition)”.
O’Reilly & Associates, 2000

[Wei82] Weinberg, G.M.: “Rethinking Systems Analysis and Design”. Little Brown and
Company, Inc., Boston, 1982

[Xml00] The World Wide Web Consortium (w3c): “XML”
URL: http://www.w3c.org/XML/

146

[Yah00] Yahoo ™ search engine
URL: http://www.yahoo.com

[Yu97] Yu, J.: “A simple, intuitive hypermedia synchronization model and its realization
in browser/java environment”. Technical Note 1997-027, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, October 1997

[Zol00] Zoller, P.: “HMT: Modeling interactive, adaptive Hypermedia Applications”. To
appear in : Siau, K., Rossi, M. (editors): Modelling Methodologies for the next
Millenium, Idea Group Publishing, autumn 2000

[Zol96] Zoller, P.: “Anbindung von Datenbanksystemen an das World Wide Web”.
Diplomarbeit, Technical University of Munich, 1996

[ZS98] Zoller, P., Sommer, U.: “WebCon: A Toolkit for an Automatic, Data Dictionary
Based Connection of Databases to the WWW”. In Proceedings of the 1998 ACM
Symposium on Applied Computing, Atlanta, 1998, pp. 706-711

List of Definitions 147

APPENDIX A LIST OF DEFINITIONS

Definition 4.1 (entity type): ..49
Definition 4.2 (relationship type):...50
Definition 4.3 (entity relationship schema): ...50
Definition 4.4 (general element-grouping): ..55
Definition 4.5 (ER element-grouping):...55
Definition 4.6 (element-grouping): ...55
Definition 4.7 (subgrouping relation): ..56
Definition 4.8 (general document type): ...56
Definition 4.9 (ER document type):..56
Definition 4.10 (document type) :...56
Definition 4.11 (extended subgrouping relation):...56
Definition 4.12 (navigational link): ..60
Definition 4.13 (structural link): ...60
Definition 4.14 (valid condition): ...61
Definition 4.15 (access struct): ...61
Definition 4.16 (internal and external access struct): ...61
Definition 4.17 (specialized ER element grouping): ..62
Definition 4.18 (specialized ER document type):...63
Definition 4.19 (query document type):..65
Definition 4.20 (query element-grouping):...65
Definition 4.21 (query access struct): ...65
Definition 4.22 (query form submitter): ...65
Definition 4.23 (result document type):..68
Definition 4.24 (result element-grouping): ...68
Definition 4.25 (exact definition of a structural link): ..68
Definition 4.26 (detail document type):..70
Definition 4.27 (detail element-grouping): ...70
Definition 4.28 (detail access struct): ...70
Definition 4.30 (input element-grouping):..72
Definition 4.31 (input form submitter): ..72
Definition 4.32 (input access struct): ..73
Definition 4.33 (conceptual HMT schema): ...74
Definition 4.34 (HMT authorization schema): ...78
Definition 4.35 (duration of an element): ...91
Definition 4.36 (temporal relation meets):..92
Definition 4.37 (temporal relation before):...92
Definition 4.38 (temporal relation starts): ..92
Definition 4.39 (temporal relation finishes):...92
Definition 4.40 (temporal relation synchronizes): ..93
Definition 4.41 (temporal relation overlaps): ...93
Definition 4.42 (temporal relation includes):..93

148 Appendix A

Definition 5.1 (interpretation of attributes in input document types):118
Definition 5.2 (general form of SQL queries resulting from query document types):119
Definition 5.3 (interpretation of attributes with distinct labels in query document types):119
Definition 5.4 (interpretation of attributes with identical labels in query document types): ..120
Definition 5.5 (interpretation of access structs in query document types):120

List of Figures 149

APPENDIX B LIST OF FIGURES

Figure 2-1: architecture of the Dexter Reference Model ..10
Figure 2-2: sample temporal specification using the Amsterdam Model12
Figure 2-3: standard navigational patterns..13
Figure 2-4: sample HDM schema...15
 Figure 2-5: basic RMM design primitives ...17
Figure 2-6: RMM sample schema...18
Figure 2-7: the ARANEUS design process ..19
Figure 2-8: basic NCM design primitives...20
Figure 2-9: sample NCM schema ...21
Figure 2-10: basic ADM design primitives ..21
Figure 2-11: HDBM design process ...22
Figure 2-12: new HDBM design primitives ...23
Figure 3-1: CGI based connection ..29
Figure 3-2: web server API connection ..30
Figure 3-3: servlet API connection ...32
Figure 3-4: client side connection using applets...34
Figure 3-5: pure web server authorization for a CGI based solution..37
Figure 3-6: application using pure DBMS authorization..38
Figure 3-7: application using both web server and DBMS authorization39
Figure 3-8: architecture of an application using middleware for authorization........................40
Figure 3-9: architecture of the Oracle Internet Application Server ..41
Figure 3-10: load-balancing scenario..42
Figure 3-11: architecture of an application built with ColdFusion...43
Figure 4-1: the HMT design process ..48
Figure 4-2: ER schema of the sample scenario...50
Figure 4-3: basic domain primitives ...53
Figure 4-4: HMT document type modeled with and without the use of element-groupings....53
Figure 4-5: type hierarchy of the basic domain primitives ...54
Figure 4-6: basic access primitives ...57
Figure 4-7: HMT schema of the project overview document type...59
Figure 4-8 : query document type..63
Figure 4-9: form submitter primitive ..64
Figure 4-10: HMT schema of a project search document...64
Figure 4-11: result document primitive ..66
Figure 4-12: HMT schema of a project result document..66
Figure 4-13: result document with query refinement capabilities ..67
Figure 4-14: HMT schema of the project overview document...69
Figure 4-15: input document primitive ...71
Figure 4-16: HMT schema for a project input document ...72
Figure 4-17: HMT conceptual design primitives..73
Figure 4-18: RBAC96 Model ...76

150 Appendix B

Figure 4-19: The HMT RBAC model...76
Figure 4-20: access restriction primitive...77
Figure 4-21: modified sample scenario...78
Figure 4-22: Access restriction on document level...79
Figure 4-23: modified project overview document type...80
Figure 4-24: adaptive version of the project overview document ..81
Figure 4-25: Logical HMT diagram of the project overview document type...........................83
Figure 4-26: logical HMT diagramm of the project overview document type.........................85
Figure 4-27: logical HMT diagram of a project result document type86
Figure 4-28: Logical HMT schema of a project input document ...87
Figure 4-29: logical HMT schema with submitter context...88
Figure 4-30: temporal design primitives...90
Figure 4-31: temporal relations in HMT...91
Figure 4-32: temporal specification of the project overview document94
Figure 5-1: overview of the core HMT meta schema...99
Figure 5-2: sample scenario for the mapping of HMT schemas to HMT meta tables............100
Figure 5-3: ER schema of the documents meta table ...101
Figure 5-4: basic relationship types for the documents meta table...102
Figure 5-5: specification of the groupings meta table ..103
Figure 5-6: specification of the attributes and adds meta tables ...104
Figure 5-7: specification of the links meta table...106
Figure 5-8: specification of the accessStructs meta table ...107
Figure 5-9: specification of the submitters meta table..108
Figure 5-10: specification of the roles and users meta tables ...110
Figure 5-11: specification of the temporalSpec meta table ..111
Figure 5-12: page generation algorithm for general document types113
Figure 5-13: specific aspects of the input document generation algorithm115
Figure 5-14: specific aspects of the detail document generation algorithm116
Figure 5-15: specification of the result document generation algorithm................................117
Figure 6-1: architecture of the WebCon toolkit..124
Figure 6-2: caching strategies of the WebCon toolkit ..128
Figure 6-3: sample screenshot of two HTML pages generated by WebCon..........................129
Figure 6-4: screenshot of the WebCon administration tool ..130
Figure 6-5: overview of the WebCon components ...134

List of Tables 151

APPENDIX C LIST OF TABLES

Table 5-1: mapping the sample scenario to the documents meta table...................................103
Table 5-2: mapping the sample scenario to the groupings meta table....................................104
Table 5-3: mapping the sample scenario to the attributes meta table105
Table 5-4: mapping the sample scenario to the links meta table ...106
Table 5-5: mapping the sample scenario to the accessStructs meta table...............................108
Table 5-6: mapping the sample scenario to the role and visible_for meta tables110
Table 6-1: HMT functionality of the WebCon prototype...131

