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Abstract

This thesis addresses the problems of planning highly coordinated collision-free translational motions of

multiple objects (general polygons or polyhedra) and finding sequences of translations that allow for the

removal of one or more objects. These problems are known to be PSPACE-hard in general. Our main

focus is therefore on the design and analysis of adaptive algorithms that can cope with practically relevant

cases such as tightly interlaced placements. Exact and complete algorithms are important, for example in

the field of computer aided mechanical assembly planning: a valid plan for separating a given placement

of rigid non deformable objects (parts) can be reversed to assemble the individual components. Our

algorithms are exact and complete and can prove in practical cases that no separating motions exist.

We present our discussion within the uniform framework of the composite configuration space of

multiple translating objects. The general dimension of this space, which is proportional to the number of

parts, causes certain combinatorial problems that are treated in detail. First, we consider single simulta-

neous (’one-shot’) translations. For the special case of a single moving subset of parts, a polynomial time

algorithm was known before this work. However, it was not clear if the underlying principles could be

generalized to obtain a polynomial time algorithm for more than a single moving subset. We show that

the problem becomes NP-complete when two or more different directions of simultaneous translation

are allowed. We analyze in detail under which conditions translational one-shot separability is NP-hard,

and derive a new polynomial-time algorithm for separating placements of polygons in which no pair of

parts is separated. For general instances of one-shot separability, we propose heuristic reductions on a

high level of abstraction.

Translational one-shot separability is closely related to high-dimensional linear unboundedness test-

ing. We present a new efficient algorithm for linear unboundedness testing that consists of solving a

single homogeneous system of equations followed by a single linear feasibility test. It is shown that our

algorithm is optimal if optimal algorithms are used for these two main steps.

Efficient unboundedness testing is also one of the keys to practical algorithms for general trans-

lational separability. In the context of the latter problem, arbitrary sequences of translations may be

required to remove one or more parts. We propose opportunistic incremental algorithms that take ad-

vantage of the fact that for many practical instances, the set of feasible translations is quite constrained.

The salient features of our algorithms are exact implicit convex cell decomposition of the composite

configuration space, complete incremental expansion of a single connected component, and elimination
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of redundancies by cell defragmentation. We show that additional effective heuristic improvements can

be formulated on a high level of abstraction, which makes them relevant for a whole variety of problem

instances.

The presented algorithms have been implemented and tested on several planar and spatial examples

of differing complexity. Our experimental results confirm the practicality of the approach. Observed

running times are dominated by the discrete number of reachable critical placements which are usually

very limited in assembly planning applications. The algorithms are exact and complete. For several

examples with many degrees of freedom, it was possible to compute a complete proof that no separating

translations exist. Extensions of practical importance can be integrated directly into our implementation.

These include linear tolerance models, parameters that permit small bounded overlap, and methods to

identify features of parts that would have to be slightly modified to allow for overlap-free separation of

otherwise non separable placements.



Zusammenfassung

Die vorliegende Arbeit behandelt das Problem der Planung von koordinierten, translatorischen Bewe-

gungen mehrerer Objekte (allgemeine Polygone oder Polyeder) und das Problem, Translationsfolgen zu

finden, um ein oder mehrere Objekte von den ¨ubrigen zu entfernen. Es ist bekannt, dass diese Prob-

leme im allgemeinen PSPACE-hart sind. Wir konzentrieren uns daher auf Design und Analyse adaptiver

Algorithmen, die in praktisch relevanten F¨allen – wie etwa verschachtelte Anordnungen von Teilen –

erfolgreich eingesetzt werden k¨onnen. Exakte und vollst¨andige Algorithmen sind zum Beispiel in der

Montageplanung von besonderer Bedeutung: eine Bewegungsfolge, die eine gegebene Anordnung von

Teilen zerlegt, kann umgekehrt ausgef¨uhrt werden, um die Zielanordnung zu montieren. Die in dieser

Arbeit beschriebenen Algorithmen sind exakt und vollst¨andig und k¨onnen in praktischen Beispielen be-

weisen, dass keine Trennung durch Translation m¨oglich ist.

Dem Ansatz liegt als allgemeines Konzept der zusammengesetzte Konfigurationsraum (engl. ’com-

posite configuration space’) f¨ur Translationen mehrerer Objekte zugrunde. Die allgemeine Dimension

dieses Raums ist proportional zur Anzahl der Teile und verursacht daher gewisse kombinatorische Prob-

leme. Diese werden im Detail behandelt. Zun¨achst wird Zerlegbarkeit durch eine einzelne, unbegrenzte

simultane Translation (engl. ’one-shot translation’) untersucht. F¨ur den Spezialfall, dass sich alle bewe-

genden Teile nur mit einer einheitlichen Geschwindigkeit bewegen k¨onnen, war bereits ein polynomieller

Algorithmus bekannt. Es war allerdings nicht klar, ob die zugrundeliegenden Methoden verallgemeinert

werden können, um einen polynomiellen Algorithmus zu erhalten, der verschiedene Geschwindigkeiten

für verschiedene Teilmengen erlaubt. Hier wird gezeigt, dass die Problemstellung bereits dann NP-

vollständig wird, wenn man zwei (oder mehr) Richtungen f¨ur gekoppelte Translation zul¨asst. Wir unter-

suchen im Detail, unter welchen Umst¨anden das Problem der Zerlegbarkeit durch eine einzelne Transla-

tion NP-hart wird, und leiten einen polynomiellen Algorithmus f¨ur den Fall her, dass in der zu zerlegen-

den Anfangsstellung noch kein Polygonpaar getrennt ist. F¨ur den allgemeinen Fall der Zerlegung mit

einer einzelnen Translation werden Heuristiken auf hohem Abstraktionsniveau vorgeschlagen.

Zerlegbarkeit durch eine einzelne, gleichzeitige Translation steht in enger Verwandtschaft mit der

Fragestellung, ob der L¨osungsraum eines Systems hochdimensionaler linearer Ungleichungen unbe-

grenzt ist. Daf¨ur wird ein neuer effizienter Algorithmus vorgestellt. Dieser l¨ost das Problem in zwei

Teilschritten: zun¨achst wird ein aus dem Ungleichungssystem unmittelbar hervorgehendes homogenes

Gleichungssystem gel¨ost, worauf gegebenenfalls noch ein linearer Erf¨ullbarkeitstest auszuf¨uhren ist. Es
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wird gezeigt, dass der neue Algorithms optimal ist, wenn man f¨ur die beiden Teilprobleme optimale

Algorithmen einsetzt.

Der effiziente Unbegrenztheitstest ist eine der Grundvoraussetzungen f¨ur praktikable Algorithmen

zur Lösung allgemeiner translatorischer Trennbarkeitsprobleme. In diesem Zusammenhang lautet die

Fragestellung, ob man eine Anordnung von Teilen mit beliebigen Translationsfolgen zerlegen kann. Es

werden neue opportunistische Algorithmen vorgestellt, deren Erfolg darauf basiert, dass in vielen prak-

tischen Fällen der tats¨achlich verfügbare Bewegungsfreiraum stark eingeschr¨ankt ist. Die Hauptmerk-

male der Algorithmen sind implizite Zerlegung des hochdimensionalen Konfigurationsraums in kon-

vexe Zellen, vollst¨andige Berechnung von einer einzelnen erreichbaren Zusammenhangskomponente,

und Elimination von Redundanzen durch Zellerweiterung. Es wird gezeigt, dass zus¨atzliche Heuristiken

auf hohem Abstraktionsniveau f¨ur ganze Problemklassen anwendbar sind.

Die vorgestellten Algorithmen wurden implementiert und anhand einiger zwei- und dreidimension-

aler Beispiele verschiedener Schwierigkeit getestet. Die experimentellen Ergebnisse best¨atigen die Prak-

tikabilität des Ansatzes. Die beobachteten Laufzeiten h¨angen haupts¨achlich von der Anzahl der erreich-

baren kritischen Stellungen ab, welche in Montageplanungsanwendungen gew¨ohnlich stark eingeschr¨ankt

sind. Die Algorithmen sind exakt und vollst¨andig. In einigen Beispielen mit vielen Freiheitsgraden

war es m¨oglich, vollständig zu beweisen, dass eine Trennung durch Translationen nicht m¨oglich ist.

Praktisch relevante Erweiterungen k¨onnen direkt in die bestehende Implementierung eingebaut werden.

Diese umfassen zum Beispiel lineare Toleranzmodelle oder Parameter, um kleineÜberschneidungen zu

erlauben. Daneben kann eine erweiterte Implementierung kleine Design¨anderungen ausfindig machen,

die erforderlich sind, um ansonsten nicht zerlegbare Anordnungen auseinander nehmen zu k¨onnen.
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Chapter 1

Introduction

Research in the field of artificial intelligence has traditionally been concerned with designing and build-

ing systems that are capable of interacting with their environment in an ’intelligent’ way. Over the course

of time however, it has become increasingly clear that ’general human intelligence’ is hard to capture in

a computer. This problem is directly related to the difficulty of giving a precise formal definition for the

term ’intelligence’.

As a consequence, most of the recent research has focussed on ’intelligent’ algorithms and systems

for special tasks and in limited domains. Examples include game playing, vision, perception of speech,

computer aided design and layout, and robotics. The goal has been to outperform the human in these

and other tasks, and this has been partly achieved up to now. One of the most prominent examples is a

chess machine known asDeep Bluethat beat the chess world champion Kasparov in 1997. A second,

less renowned example is that of marker making in the apparel industry. Recent commercial programs,

using proper heuristics, are capable of finding layouts that consume slightly less fabric than those found

by human experts. Note that optimal layout is an NP-hard problem. (That is, according to the current

standards of knowledge in mathematics and computer science, it is very unlikely that all instances of the

problem can be solved within deterministic polynomial time.)

Despite the growing success and spectrum of specific applications, new basic techniques are be-

coming increasingly important. One relevant aspect for intelligent applications is reasoning about the

motions and interactions of geometric objects. Typical problems consist of planning collision-free mo-

tions or finding overlap-free placements of objects. Human capabilities in this domain span a wide range

of tasks and it seems difficult to formalize this variety with a uniform concept.

A remarkable observation is that humans are not only capable of finding a solution to a given motion

planning problem rapidly, but also of quickly recognizing that no feasible solution exists. It would seem

that recognizing infeasibility is more difficult than just finding proper motions. Establishing that a given

problem is infeasible requires a proof. For an example, consider the simple lock/bolt mechanism in

Fig. 1.1. The goal is to decide whether or not the bolt is removable. To explain why the bolt cannot be

removed, one would examine a series of critical intermediate configurations of the mechanism, and test

for removability of the bolt in each of them. The human is able to recognize that relatively fewcritical

1
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Lock

Bolt

Container

Figure 1.1: To determine whether or not the bolt can be removed, reachable placements of the lock must
be examined (example from [64]).

intermediate positions of the lock need to be tested to prove that the bolt is not removable. However,

the main problem with reproducing such an intuitive approach in an algorithm is the decision about

which relative placements are indeed the critical ones. A naive complete enumeration of all distinct

contact placements of parts quickly becomes rather costly at best and impossible even for slightly more

difficult cases than the above example. We are thus interested in methods for reducing the set of critical

relative placements of parts,while retaining completeness. To obtain a practical method, it is necessary to

recognize the essential contacts between parts. Conversely, however, it should be noted that our detection

of infeasibility would be in error if the set of examined contacts was too small.

In this work, we consider the problem ofexact reasoning about rigid virtual objects. That is, we

assume that an exact and complete representation of the objects and their positions is available. We

will base our discussion on linear boundary descriptions (polygons and polyhedra) because they are

commonly used and conceptually simple. We abstract away physical aspects such as mass and inertia

and assume that we can accurately handle all objects without introducing positional uncertainties. It

will become clear that such assumptions are acceptable for applications in geometric assembly planning

which will be the main target of this work. The restriction to translational motions is the key to our main

contribution: exact and complete incremental computation of high-dimensional configuration spaces.

In the context of virtual objects, geometric reasoning may be located within the discipline of com-

putational geometry. O’Rourke [49] defines the latter broadly as ’the study of algorithms for solving

geometric problems on a computer’. From the representation and complexity point of view, important

aspects of this field are strongly connected to the mathematical discipline of discrete and combinatorial

geometry [13].
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1.1 Applications and Complexity of Geometric Reasoning

In the following, we give a sample of two areas of practical application in which geometric reason-

ing plays an important role. In particular, we consider robot motion planning and assembly plan-

ning/separability, and summarize important theoretic results.

1.1.1 Robot Motion Planning

The automated planning of collision-free motions for a robot is an important step towards task-level

programming. Current industrial practice still consists of tedious teach-in which means that every single

step of a robot task has to be planned and programmed by a human. One important goal is therefore

to make robots smart enough to plan their motions themselves. Much of the research on robot motion

planning has focussed on planning in a virtual environment. A common assumption is that a complete

geometric model of the robot and its environment is available.

Robot motion planning problem (following [39]). Given a robotR at some initial position

ps and a finite collection of static impenetrable obstaclesO. The task is to plan motions that

will takeR from ps to some goal positionpg without colliding with parts of itself or any of

the obstacles. It is assumed that the geometry and location of the obstacles are completely

known.

Since this definition is quite general, it comprises apparently different tasks such as path planning

for autonomous robots, manipulator arm planning and planning for general kinematic chains. However,

one can use an abstraction that maps any robot to a point in a high-dimensional space, theconfiguration

space(or parameter space) of the robot [39]. The dimension of this space equals the number of degrees

of freedom of the particular robot. Both the obstaclesO in the robot’s environment and self-intersecting

configurations of the robot map to certain abstract obstacles (configuration obstacles) in the configuration

space. (Note that some robots, such as manipulator arms, are in fact in danger of self-intersections.) The-

oretically, all conceivable variants of the above motion planning problem reduce to finding a continuous

curve in a configuration space that avoids the (static) configuration obstacles.

Reif [56] first showed that in general, ’planning a free path for a robot made of an arbitrary number of

polyhedral bodies connected together at some joint vertices, among a finite set of polyhedral obstacles,

between any two given configurations, is a PSPACE-hard problem’. Schwartz and Sharir [60] were the

first to give an exact and complete algorithm that computes an exact and complete cell decomposition

of any general configuration space and can thus theoretically solve any robot motion planning problem.

However, the complexity of their algorithm is twice exponential with respect to the dimension. Later,

Canny [3] improved this result with an algorithm that computes a complete roadmap of the configuration

space. The time complexity of his algorithm is singly-exponential with respect to the dimension. Both

approaches reduce robot motion planning to a decision problem on the first order theory of the reals.
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They scale extremely badly to higher dimensions. Thus, neither of them has ever been implemented for

dimensions that exceed some very small constant.

Results from robot motion planning, especially the notion of configuration space, are important in

other geometric reasoning and planning domains as well. For a broad survey on robot motion planning

until 1991, including a comprehensive introduction to the configuration space concept, cf. Latombe’s

book [39].

Next, we introduce the assembly planning problem and its relation to robot motion planning which

constitutes the main motivation for this thesis.

1.1.2 Geometric Assembly Planning / Separability

Modern product design is usually supported by a computer (computer aided design, CAD). That is, geo-

metrical models are constructed to evaluate the appearance, physical properties and other aspects of the

final outcome at an early design stage by means of virtual prototypes. Interweaving design and assembly

planning can be extremely helpful to spot misfits, especially when different components are concurrently

constructed by different manufacturers. The most fundamental geometric assembly planning problem is

to determine if the individually designed CAD models can actually be assembled to the desired product.

Since the final placement of the parts is usually more constrained, it is often simpler to compute a

disassembly motion, that is, a motion for separating or removing parts from a given assembly. Under the

assumption of rigid (non-deformable) parts, a disassembly plan can be simply executed in reverse order

to obtain a valid assembly plan. Most geometric assembly planning approaches use this ’assembly-by-

disassembly’ approach.

Geometric assembly planning (separability) problem. (following [73])Given an initial

overlap-free placement of non-deformable rigid partsP1; : : : ; Pk, compute collision-free

motions that separate the parts. (The parts are considered to be separated if each of them

can be translated arbitrarily far from the remaining parts without causing intersections.) If

the parts are not separable, give a proof for infeasibility.

Wolter [73] showed that assembly planning is PSPACE-hard even when only translational motions

but no rotations are allowed. As a consequence, much research on geometric assembly planning has

focussed on various restricted versions of the problem. However, even several restricted subproblems

turned out to be NP-hard (cf. Section 1.2 and our new results in Chapter 2).

Assembly planning can be reduced to robot motion planning. The obvious formal difference between

the two problems is that in the case of robot motion planning, both an initial and a goal configuration

are given. In the assembly planning problem, we have an initial configuration, but the goal configuration

is not specified explicitly (the parts just have to be separate from each other). Wolter [73] showed that

by placing the parts in the points of ann-pointed star, one can always create a goal placement in which

every part is separate from all other parts. Another, more important difference is that assembly planning
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usually involves very small clearances between parts. In fact, most clearances will be zero because parts

usually have to fit tightly in their final placement. This observation substantiates that exact algorithms

are especially important here. In contrast to that, clearances in robot motion planning applications must

be sufficiently large to keep safety distances from obstacles.

Note our distinction betweenseparability(separableby motions) on the one hand, andseparation

(separatedby a straight line or plane). In computational and combinatorial geometry, separability is

sometimes used for our notion of separation. We use the notion of (movable) separability from [69, 49].

(Other authors use the term ’partitioning’ instead of separability.)

1.2 Related Work

Robot motion planning. Owing to the complexity of the general robot motion planning problem, ex-

act algorithms that are both complete and practical have been limited to low-dimensional configuration

spaces [52, 48]. However, many approximate, heuristic and randomized algorithms for higher dimen-

sions have been proposed over the years. The recent trend in robotics goes towards heuristic methods to

solve problems in quite impressive realistic scenarios (cf. [21] for a survey). However, these methods

are still not complete and cannot prove infeasibility of planning tasks.

Containment, layout and compaction.Basic concepts from robot motion planning have been applied

in other domains, such as automated layout. For example, in the apparel industry, the problem of auto-

mated marker making is to place a set of polygons (patterns) within a limited area (of cloth) so that the

total waste between the shapes is minimized. Several problems in this context have been shown to be

NP-hard. For an overview of containment and layout problems, cf. [10]. Another layout application,

compaction, is closely related to motion planning for multiple moving objects. In this context, Li [40]

derives linear constraints for pairs of polygons and applies linear optimization to ’squeeze out the extra

free spaces in an existing layout to produce a shorter layout and hence a tighter packing of the polygons’.

Li applies some of the basic techniques that are also used in our work, but his work aims at local com-

paction and is therefore not complete.

Mechanism analysis. Joskowicz and Sacks [29, 58] use configuration space composition to analyze

the operation of mechanical mechanisms. They consider devices that are composed of linkages (parts

linked by permanent joints) and fixed-axes mechanisms (sets of parts that move along fixed spatial axes).

Mechanism analysis ensures the desired functional behavior of the device as a whole. Some of the basic

principles (such as composition of pairwise configuration spaces) are similar to ours. However, other

aspects that are important for applications in the assembly planning domain are not relevant for mecha-

nism analysis. These include the dynamic selection of pairwise constraints and unboundedness testing

(the latter being one of the keys for identifying removability). In [29], the required pairwise constraints

are identified only once, at the beginning, for example by intersecting envelopes for motions along the
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fixed axes. In contrast, in an assembly planning application, interacting pairs may change during the

removal motions.

Separability and assembly planning.Toussaint [69] surveys earlier methods for separating sets in two

and three dimensions. For recent surveys on assembly planning, cf. [12, 22]. Geometric assembly

planning is studied in [71]. An application of separability in medicine is described in [30]. Agarwal,

de Berg, Halperin and Sharir [1] consider sequences of translations for separating polyhedra. There, the

set of allowed motion directions is assumed to be given in advance. In [65], the concept of blocking

graphs is introduced. This concept allows for deciding whether there is asubassemblyS of a given

assembly, such thatS is removable bya single translation. The output of the corresponding algorithm

consists ofS and a translational directionv for removingS, if there is such a subassemblyS. This

computation is possible in polynomial time, even though the number of removable subassemblies is

exponential in general. The algorithm computes a valid subassembly and a removal direction if there

is such a subassembly, but avoids enumerating the entire set of possible subassemblies. This simple

approach allows for several extensions (see e.g. [37]), but inherently requires that allmovingparts

perform the same motion. Wilson et al. [72] describe extensions of the basic techniques. Guibas and

Halperin et al. [18] considerinfinitesimaltranslations and rotations for partitioning three-dimensional

sets. Such infinitesimal motions can indicate directions for removing parts in a single step. However,

it cannot be guaranteed that the corresponding extended motion will be collision-free. Pollack, Sharir

and Sifrony [52] describe a near-optimal method for separating two polygons translating in the plane.

Their analysis is based on computing the boundary of a connected component in a two-dimensional

arrangement. This connected component represents the set of placements that are reachable by the

moving polygon. A generalization of their techniques to the case of multiple moving polygons would

have to compute the boundary of a connected component in ad-arrangement. An example in [6] provides

anexponential lower boundfor the number of translations necessary to separate objects (see also [49]).

This lower bound already holds for a restricted class of polygons in the plane. Interestingly, in special

cases our technique allows for establishing infeasibility in polynomial time, even if the boundary of the

set of reachable placements has exponential complexity. One of the few exact and complete algorithms

that is theoretically capable of finding sequences of translations to separate polygons is described in

[23]. However, that approach is limited to sequences of very small constant length, and its practicality is

doubtful (no experimental evaluation has been given).

1.3 Contribution and Thesis Overview

Previous research on exact and complete algorithms in the fields of motion planning and assembly plan-

ning reveals a gap; on the one hand, there are general theoretical algorithms that are capable of solving

any geometric motion planning problem in an exact and complete way [60, 3]. Unfortunately, the un-

derlying mathematical techniques are impractical in higher dimensions and have not been implemented
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except for very simple settings with a very small constant for the dimension of the configuration space

[48]. On the other hand, exact and complete algorithms that are of practical value are limited to either

low-dimensional problems or subclasses of problems. [52] considers sequences of translations to sepa-

rate two simple polygons, [35] allows rotations, but restricts the moving parts to a single convex polygon.

[71] considers realistic assembly planning examples but restricts motions either to infinitesimal motions

or single translations of a single subset of parts. The local techniques proposed in [40, 30] for other

complex planning problems are exact or perform exact computations on a first-order approximation.

However, local approaches are not complete and cannot establish infeasibility.

Our work provides a first step towards algorithms for solving practically relevant instances of high-

dimensional separability problems in an exact and complete way. Of course, we cannot break worst-

case lower bounds. However, we believe that the incremental algorithms proposed in this thesis are an

important approach, since their actual computational complexity depends mainly on the complexity of

the specific problem instance and not on the worst-case complexity for the whole class. We focus on

the problem of translational assembly planning of polygonal and polyhedral parts. Parts can have any

topology and can only be assembled by a sequence of part translations, possibly simultaneous. The key

property is that contact relations between pairs of parts can be expressed as linear constraints and can be

represented as hyper-planes embedded in a higher dimensional space, called thecomposite configuration

space. This configuration space partitions into an arrangement of cells which can be searched for an

assembly path. We propose a general framework for translational assembly planning based on efficient

solution of linear constraints. Within this framework, we present new algorithms for three problems: (1)

efficient testing of linear unboundedness, (2)m-handed assembly, and (3) general translational assembly

planning.

Some of the results in this thesis appeared or have been accepted as conference and journal publi-

cations. In particular, [61] contains parts of Chapters 2 and 4. The basics of Chapter 3 are described in

[63, 64]. In [62], we focus on the applications of Chapter 4 described in Chapters 2 and 3.

The rest of this dissertation is organized as follows:

In Chapter 2, we discuss the problem of separating a given overlap-free placement of polygons or

polyhedra into two or more subsets by collision-free simultaneous one-shot translations. It is shown

that this problem is closely related to linear unboundedness testing. In this context, we present novel

algorithms and new NP-completeness results.

In Chapter 3, we consider arbitrary sequences of translations that allow for removing at least a single

part from the remaining parts without causing overlap between any two parts. Although general trans-

lational separability is known to be PSPACE-hard, many constrained instances of the problem are much

simpler to solve. We therefore propose a framework for exact composite configuration space computa-

tion and derive complete algorithms that are of practical value. Our goal is not to derive a collection

of intuitive special-case heuristics but to show that a uniform approach can be used to handle a variety
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of practical problem instances with different properties. To reduce a significant part of the exponen-

tial complexity of a composite configuration space, we use an implicit representation and introduce the

techniques ofconfiguration space expansionandD-node reduction.

In Chapter 4, we address the problem of testing for linear unboundedness. Linear unboundedness

testing consists of finding a direction in which the feasible region of a given set of linear constraints is

unbounded. For conjunctions of constraints, this region is the intersection ofd-dimensional half-spaces

forming a (possibly unbounded) convex polyhedron. We describe a new efficient unboundedness testing

algorithm that relies on solving linear equations and linear feasibility testing. The algorithm is shown to

be optimal when optimal algorithms are used for the two main steps. It has specific practical applications

in separability analysis (Chapters 2 and 3) and can also be of more general use. We also show that linear

unboundedness testing becomes NP-complete for very simple AND/OR constraint sets.

In Chapter 5, we discuss details that are important for a practical implementation of our methods in

the previous chapters. In particular, we consider (1) linear feasibility testing for cells in a composite con-

figuration space, (2) efficient data structures for marking visited cells, and (3) deriving linear constraints

for pairs of polygons and polyhedra.

In Chapter 6, we evaluate the practicality of our algorithms for efficient linear unboundedness testing,

for m-handed separability and for general translational separability. The chapter also summarizes results

and measured running times for unboundedness testing of randomly generated high-dimensional convex

cells, and for separability of a variety of two- and three-dimensional part placements.



Chapter 2

One-shot Translational Separability

In this chapter, we analyze the problem of separating a given overlap-free placement of polygons or

polyhedra into two or more subsets by collision-free simultaneous one-shot translations. We propose

novel algorithms and heuristics, and obtain new NP-completeness results.

We first provide a classification into different subproblems and types of one-shot translations, ac-

cording to the number of subsets that move with different velocities. We discuss in detail the case of

m-handed separability of polygons and show that it is related to linear unboundedness testing. In an

m-handed translation, parts must move simultaneously but each part may move with its own constant

velocity. We identify three classes of problem instances according to the initial relative part positions.

It will turn out that if all pairs of parts are separated in the initial placement, a collision-free infinitem-

handed translation can be computed with a simple linear-time algorithm. In contrast, if no pair of parts is

separated, the problem becomes more difficult but can still be solved efficiently. For this case, we present

the first deterministic polynomial-time algorithm. It is the third class with both initially separated and

non-separated pairs of parts that makesm-handed separability NP-hard. We propose powerful heuristics

and an algorithm based on the branch-and-bound paradigm to tackle these problem instances. We also

present the first proof for NP-completeness ofm-handed separability of polygons based on a reduction

from PARTITIONfor integers.

Thereafter, we considerc-handed separability. In this case, at mostc subsets of parts may translate

with different velocities, andc is regarded a small constant. We suggest that this problem can be reduced

to ac-handed assignment problem: the unknown velocities of the unknown moving subsets can be first

derived from an arrangement of hyperplanes in subassembly velocity space, a kind of configuration space

of constant dimension and therefore polynomial complexity. We prove that both velocity assignment and

c-handed separability are NP-complete problems forc = 2. This will be an important result, since

deterministic polynomial-time algorithms are known for the special casec = 1.

Although we will limit our discussion to polygons and polyhedra, the principles in this chapter also

apply to curved part shapes, as long as separating directions for pairs of parts can be computed.

9
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c-handedsingle-handed m-handed single-handed c-handed

Computation of velocities Assignment of velocities

One-shot separability

Figure 2.1: One-shot translational separability

2.1 Overview and Classification

We consider simultaneous infinite (’one-shot’) translations that allow for separating a given initial place-

ment of 2- or 3-dimensional parts into two or more subsets. Moving subsets may translate with dif-

ferent velocities, as long as these translations are performed simultaneously. The part motions have to

be collision-free, that is, they must allow for arbitrary extension without causing interferences between

parts at any point of time. We assume parts to be open sets, thus permitting touching or overlapping

boundaries.

Definition 1 (Simultaneous one-shot separating translation)Given an initial overlap-free placement

of 2- or 3-dimensional parts, a one-shot separating translation is an infinite simultaneous translation

of one or more parts. Each part may move with its own constant velocity (or rest), but parts must not

interfere (intersect in their interiors) and at least one pair of parts must move with distinct velocities. We

call such a one-shot translationm-handed if it involves at mostm different non-zero velocities.

Note that it is not required that the velocities be constant during the motion. However, their directions

must be fixed. For each pair of velocities, the ratio of their absolute values must not vary over time. Thus,

in practice, there are infinitely many ways to execute a specific one-shot translation. Disregarding time,

all equivalent ways to execute a one-shot translation are represented by a single ray in the composite

configuration space of all parts. We will therefore implicitly assume constant velocities. In this context,

a part velocity can always be uniquely specified by two placements of the part at two fixed points in time.

Since we assume that an initial placement is given, we may equivalently represent velocities as tuples

consisting of a placement and a certain point in time.

Following the assembly planning literature, we call a motionm-handed if it requiresm hands to

execute. This should not be taken too figuratively, however, since we ignore connectedness or stability

issues of parts moving with the same velocity. In our context, the termm-handed rather states that at

mostm different non-zero velocities are involved.

Note that a different interpretation concerning the number of hands can be found in the literature: in

[65, 72], the resting parts are assumed to require an additional hand. There, our single-handed separabil-

ity problem is called two-handed.
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In its most general form, the one-shot separability problem consists of finding an infinite separating

translation, if one exists. We define two subclasses depending on whether a set of velocities has to be

computed from scratch or is given in advance. (When candidate velocities are given, the remaining prob-

lem is to assign them to the different parts.) These subclasses will be divided further in turn, depending

on the number of hands. Fig. 2.1 gives an overview:

1. Computation of velocities.For each part, a velocity vector (possibly zero) must be computed.

(a) Single-handed separability. A single removable subset together with a direction vector

(normalized velocity vector) has to be computed. Schweikard and Wilson [65] present a

polynomial-time algorithm for this case. As a consequence, infeasibility for a single hand can

be proved in deterministic polynomial time, too. The algorithm is remarkable, since a naive

approach that successively tests all subsets of parts for removability would take exponential

time in the worst case.

(b) M-handed separability. In this case, each part is allowed to move with its own velocity, or

remain stationary. Since the worst case complexity of all known motion planning problems

is exponential in their degrees of freedom, one may expect this class to be NP-hard. We will

prove that this is true by a reduction from the well-knownPARTITIONproblem for integers.

Nevertheless, most practical instances are much simpler and we will present general and

powerful heuristics to tackle them.

(c) C-handed separability. Limiting the maximum number of independently moving subsets to

a constantc, we obtain thec-handed separability problem. In fact, the above single-handed

separability problem is contained in this class. The reason for yet featuring the single-handed

problem as a class of its own is that its computational complexity is unique. As we will see,

already two-handed separability is an NP-complete problem.

2. Assignment of velocities.Given a set of velocity vectors, the task is to assign them to the parts so

that the resulting one-shot translation is collision-free. An efficient algorithm for the single-handed

assignment problem has been presented in [1]. As it is the case forc-handed velocity computation,

we will show that the assignment problem becomes NP-hard forc = 2.

2.2 M-handed Separability of Polygons

Them-handed separability problem is stated as follows:

Definition 2 (M-handed separability) Given an initial, overlap-free placement of parts, find a single

simultaneous one-shot translation that allows for removing at least one part without collisions. Each

part may translate in a different direction with its own constant velocity, as long as these motions are

performed simultaneously.
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Figure 2.2: Initial placement of polygons and snapshot during one possible three-handed separating
translation.

In the following, we consider only the polygonal case. Differences and necessary extensions for

polyhedra will be discussed at the end of this section. Fig. 2.2 gives an illustrative example for the planar

case. It shows a given initial placement of polygonal parts on the left, and a snapshot during a valid three-

handed separating translation with one stationary subset and three subsets moving in different directions.

Note that this is only one possiblem-handed translation.

To approach them-handed separability problem, we first consider isolated pairs of parts. We then

combine the concepts derived from pairs to tackle the problem as a whole. It will finally turn out that in

general,m-handed separability is NP-complete, but there are two classes of problem instances that can

be identified easily and solved in linear and deterministic polynomial time, respectively. For the other

cases, we propose simple yet conceptually general and powerful heuristics, showing that many general

instances can be solved efficiently in practice.

2.2.1 Constraints for Pairs of Parts

Let P1; : : : ; Pk be polygons in a given initial placement which is, by definition, overlap-free. Since we

consider only translational motions, the position ofPi is given by a vectorpi = (xi; yi). We assumepi =

(0; 0) for the initial placement, sopi 6= (0; 0) describes the location of polygonPi after a translational

displacement.

No pair of polygons shall intersect during a valid separating motion. Initially, we consider isolated

pairs of polygons, because this case is well understood and provides a good basis for the following

concepts. The configuration space obstacleCO(Pi; Pj) of two polygons describes the set of relative

placements ofPi with respect toPj for which Pi andPj will overlap [39]. We regard all parts to be
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Figure 2.3: (a) Non-separated and (b) separated parts and their respective configuration spaces and fea-
sible directions (c,d)

open sets. Consequently, the complement ofinterior(CO(Pi; Pj)) represents relative placements of

polygonsPi andPj in which their interiors do not intersect.

For a pair of polygons(Pi; Pj) in their initial placement, where1 � i < j � k, we now consider the

setseparate(Pi; Pj) of one-shot translations separatingPi from Pj without collisions whenPj is fixed

(motions ofPi relative toPj). This set of translations is represented by a cone of rays emanating from

the origin (in the plane).

We distinguish whether the polygons are separated or not in their initial placement. In general, two

sets are said to beseparatedif there exists a hyperplaneax = b such that one set is entirely contained

in the half-spaceax � b while the other set is entirely contained in the (open) half-spaceax < b. For

example, the polygons Fig. 2.3.a are not separated, while those in Fig. 2.3.b are.

If Pi andPj are initially non-separated, the interior angle ofseparate(Pi; Pj) is at most�. This

is illustrated in Fig. 2.3.c which shows the configuration obstacle for the polygons in Fig. 2.3.a and

the cone of separating directions. For a non-separated pair of polygons, the cone is thus convex and
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can be represented by an intersection of two half-planes or, equivalently, as a conjunction of two linear

constraints

(a
(ij)
1 x � 0) ^ (a

(ij)
2 x � 0)

where the two-dimensional vectorx contains the coordinates ofPi relative toPj .

In contrast, ifPi andPj are initially separated, the interior angle of this cone of free directions is

greater than� (Fig. 2.3.d) and we need a disjunction of two linear constraints to represent this set:

(a
(ij)
1 x � 0) _ (a

(ij)
2 x � 0)

These combinations of inequalities form a succinct representation of possible relative placements for

the two polygons during a valid separating translation. To obtain the valid placements for all polygons,

we have to consider the constraints for all pairs of partssimultaneously.

The problems of computing Minkowski sums and configuration spaces for pairs of polygons have

been extensively studied in the literature [42, 33, 55]. Here, we used this concept mainly for illustration.

In practice, the constraints for a pair of polygons can be derived directly without the need of explicitly

computing the configuration space obstacle [70].

2.2.2 Embedding Pairwise Constraints

A simultaneous placementof all polygonsP1; : : : ; Pk is represented by a vector(x1; y1; : : : ; xk; yk) in

E2k. The origin in this space describes the initial placement. For example, the vector(1; 0; : : : ; 0) is

the placement, possibly overlapping, obtained by translating the first polygon along the positivex-axis

by one length unit.E2k will be called thecompositeor assembly configuration space, since it contains

simultaneous placements of all polygons.

A ray inE2k, emanating from the origin, represents simultaneous infinite translations of all polygons.

To obtain only the collision-free motions, we combine the constraints derived from all pairs of parts.

Therefore, it becomes necessary to transform the coordinates underlying the pairwise constraints to a

global reference frame.

Up to now, we assumed that for each pair of polygons one part was the fixed reference part while

the other part was allowed to translate. This amounts to representing the coordinates of the movable

polygon in a coordinate frame attached to the reference polygon. We now need a coordinate transform

from local (part-relative) to global (absolute) coordinates. In the case of translations, this is particularly

simple and consists of substitutingx = pi�pj in the two-dimensional constraints derived from the sets

separate(Pi; Pj).

Performing this substitution, we obtain four-dimensional linear constraints on the absolute polygon

positionspi andpj

C
(ij)
1 : a

(ij)
1 (pi � pj) � 0

C
(ij)
2 : a

(ij)
2 (pi � pj) � 0
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which are joined by a conjunction or disjunction as before. Each ray in the set described by these

constraints is a direction of simultaneous translation of bothPi andPj , during whichPi andPj will not

collide.

We embed these constraints in the high-dimensional assembly configuration space of all polygons by

simply regarding the inequalities as2k-dimensional inequalities with at most four non-zero coefficients.

Then, the constraints for all pairs of parts can be combined into a single expression of linear constraints

ONESHOT (P1; : : : ; Pk) �
^

(i;j)2N

(C
(ij)
1 ^ C

(ij)
2 ) ^

^
(k;l)2S

(C
(kl)
1 _ C

(kl)
2 ) (2.1)

whereN is the set of initially non-separated pairs andS is the set of initially separated pairs of polygons.

To re-emphasize, for the initially non-separated pairs, the set of separating directions is convex and is

represented by a conjunction of two half-space constraintsC
(ij)
1 ^C

(ij)
2 . For an initially separated pair, the

corresponding set is nonconvex and is split into a disjunction of two half-space constraintsC
(kl)
1 _C

(kl)
2 .

ONESHOT (P1; : : : ; Pk) filters those rays that represent feasible simultaneous one-shot transla-

tions starting at the given initial placement. This still includes the subspacesf(vx; vy; vx; vy; : : : ; vx; vy) j

(vx; vy) 2 E
2g, since it is always possible to move all parts with the same velocity without introducing

collisions. To exclude them, we add simple constraints

FIX(Pj) � (xj = 0 ^ yj = 0)

to fix the placement of a single arbitrary partPj . Now, a ray that emanates from the origin and satisfies all

constraints represents a valid one-shot translation. The question is therefore whether we can efficiently

compute such a ray.

The linear constraint expressionFIX(Pj) ^ ONESHOT (P1; : : : ; Pk) describes a union of con-

vex cones in high-dimensional space. This can be seen by transforming it into disjunctive normal form

(DNF). In the normal form, each clause is the intersection of a finite number of half-spaces whose bound-

ing hyperplanes contain the origin. A ray in this set indicates an unbounded direction. Since efficient

linear unboundedness testing and computation of a feasible ray is possible for convex sets (Chapter 4),

we could first transform the constraints into DNF and then process the clauses one after another. The

normal form expression may have an exponential number of clauses, each of them representing a convex

cell. However, many of the cells could be bounded due to the special structure of the constraints, and it is

therefore a natural question to ask for the minimum number of unbounded convex sets needed to describe

the set of separating directions of all polygons. The following lemma shows an exponential lower bound

for the worst case.

Lemma 1 The number of convex cones required to represent simultaneous one-shot translations ofk

polygons is at leastk! in the worst case.

Proof: Consider the given initial placement ofk squares in Fig. 2.4.a. Adjacent squares are separated by

at least the side-length length of a single square. There arek! distinct critical placements that correspond
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1 2 3 k

a a

Figure 2.4: Initial placement of squares.

to all permutations of the squares when stacked vertically with their vertical edges aligned. In each

such critical placement we assume that the vertical clearance between two adjacent squares equals at

least the side-length of one square. Each pair of critical placements corresponds to a pair of points

in configuration space that cannot directly see each other. This is because connecting any two critical

placements by a linear segment in configuration space would require at least one pair of squares to

change positions directly. We have to show that each critical placement is reachable from the initial

placement on a simultaneous one-shot translation without collisions. First note that for all pairs(i; j),

the relative motion of squarei with respect to squarej is clearly free of intersection: in the initial

placement, the parts have sufficient horizontal clearance and then, in the vertical arrangement, they have

sufficient vertical clearance. Now, since this is true for all pairs, linear interpolation between the initial

and the critical placement is possible without causing any interference.

To summarize, we have shown that there arek! unbounded directions that must be contained in dis-

tinct convex cells. 2

Lemma 1 shows that in general, it is impractical to compute the complete convex cone decomposition

of free configuration space if all parts are allowed to translate with different velocities. In contrast, when

all moving parts are required to move with the same velocity (single-handed separability), a complete

convex cone decomposition can be computed in polynomial time [65]. The obvious difference is that

the dimension of the underlying parameter space for single-handed separability is constant, whereas in

them-handed case, the dimension depends on the number of parts. (It is a well-known fact that the

complexity of linear arrangements grows exponentially with the dimension of the space. In Section 2.3

we will show that this is not the only fact that makes one-shot translational separability a hard problem.)

Note that although the example in the above proof exhibits a combinatorial configuration space, in

cases like this it is not necessary to compute a complete convex cone decomposition to find validm-

handed one-shot translations. This will become evident in the next subsection, where we derive general

conditions under whichm-handed separability can be solved efficiently, outline algorithms that exploit

such special properties, and mark out the class that contains the really hard problem instances.
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2.2.3 Subdivision and Efficient Algorithms

A) All pairs of parts are initially separated

For this case, there is no need to consider the constraints derived above. As shown in [11], any collection

of k star-shaped objects with disjoint interiors can be separated withk � 1 hands using simultaneous

one-shot translations. It follows that if all pairs of parts are separated in the initial placement, there is

always a validm-handed separating translation. Note that this is true for sets in any dimension. Parts

need not even be star-shaped, as long as all pairs of parts are initially separated. The same arguments

apply to assemblies consisting only of convex parts.

B) No pair of parts is initially separated

For planar assemblies in which no pair of parts is separated in the initial placement, a motion can be

computed in polynomial time. Fig. 2.5 shows an example that can be separated by a four-handed one-shot

translation. We briefly outline an efficient algorithm for this subclass: given only non-separated pairs, the

constraint expressionONESHOT (P1; : : : ; Pk) is a single conjunction of constraints and therefore the

set it describes is already convex. That is, the complete convex cone decomposition of the configuration

space consists of a single cell. Finding a ray in a convex cell or showing that no such ray exists can

be done efficiently (cf. Chapter 4). If no pair of parts is initially separated, them-handed separability

problem therefore reduces to testing a single convex cell for unboundedness. Tab. 2.1 summarizes the

algorithm.

C) General case: initially both separated and non-separated pairs of parts

In the general case with both separated and non-separated pairs of polygons, the constraints in the ex-

pressionONESHOT (P1; : : : ; Pk) are joined by several disjunctions, one per initially separated pair

of polygons. We would have to transform the constraints into disjunctive normal form to obtain convex

cells which could then be tested for unboundedness. However, this approach does not yield an efficient

algorithm, since there may be an exponential number of resulting clauses to test. In general, the problem

of m-handed separability of polygons is NP-complete. We will prove this further below. However, NP-

completeness states the worst-case complexity. In fact, for many NP-complete problems it is the case

that a large number of practical instances can be solved quite easily [8, 51]. This motivates heuristic

concepts, such as the ones to be described next; they allow for effective reduction of the computational

complexity of the naive approach.

2.2.4 Reduction Heuristics for the General Case

In our case, the combinatorial explosion of the constraint set when converting the constraint expression

ONESHOT (P1; : : : ; Pk) into DNF is caused by the disjunctions introduced by initially separated pairs

of polygons. So far, we derived the separating directions for each pair of polygons while ignoring all
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Figure 2.5: Initial placement with no separated pair of polygons.

Input: Overlap-free placement of pairwise non-separated polygonsP1; : : : ; Pk.

Output: An m-handed separating translationu = (x1; y1; : : : ; xk; yk) (unbounded direc-
tion) if the polygons can be separated withm hands orfailure otherwise.

1. Verify that all pairs of polygons are non-separated. Exit on failure.

2. For1 � i < j � k compute the (convex) setsseparate(Pi; Pj) and linear constraints to
describe them

(a
(ij)
1 (pi � pj) � 0) ^ (a

(ij)
2 (pi � pj) � 0)

3. Combine the constraints from all pairs into a single conjunction of constraints

ONESHOT (P1; : : : ; Pk) �
^

1�i<j�k

�
(a

(ij)
1 (pi � pj) � 0) ^ (a

(ij)
2 (pi � pj) � 0)

�

and run the unboundedness testing algorithm in Chapter 4 on the cell defined by

x1 = 0 ^ y1 = 0 ^ ONESHOT (P1; : : : ; Pk)

Return the result of the unboundedness test.

Table 2.1: Efficient algorithm for computing anm-handed separating motion of initially non-separated
polygons.
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other parts. This yields correct but often unnecessarily lax constraints. In many cases, the actually

possible relative directions for a pair of polygons can be reduced due to the presence of other parts.

This observation motivates an additional preprocessing step whose aim is to reduce the number of

pairs which require disjunctions of constraints and thus the number of necessary unboundedness tests for

finding anm-handed separating translation. In the following we describe a conceptually simple but very

general and effective method based on projecting the embedded constraints from initially non-separated

pairs of polygons into all pairwise configuration spaces. The following examples illustrate this concept:

� A pair of initially separated polygons might not be in danger to interact at all due to the presence

of other parts. Fig. 2.6.a illustrates this situation: partC restricts the separating directions ofA

andB so thatA andB cannot interact during a one-shot translation. In the embedded space, the

nonconvex pairwise constraints from(A;B) are fulfilled by all placements that fulfill the more

restrictive convex constraints from pairs(A;C) and (B;C). Therefore, the constraints derived

from (A;B) are redundant and could even be ignored altogether.

� A pair of initially separated polygons might be able to interact, but other parts restrict the possible

relative directions for the considered pair to a convex set. Fig. 2.6.b illustrates this situation:

although separated partsA andB can collide, their relative motion directions are restricted byC

to a single convex set. This set reflects the fact thatA must move out beforeB.

More generally, we can analyze the influence of the constraints from all initially non-separated pairs

of polygons. We combine these constraints to describe a single convex cellAx � 0. This cell which we

call thebase cellcan be projected into all pairwise configuration spaces. Each such projection is either

of the following: the entire plane, a single 2-dimensional convex cone, or simply the origin. In each

pairwise configuration space we use the projection to determine how the allowed motion directions for

the considered pair are further restricted by other parts. Specifically, separating directions for initially

separated pairs may be restricted to a convex set.

In Figs. 2.6.a–c, the base cells consists of the embedded constraints from(A;C) and(B;C). The

projectionsproj of these cells in the configuration space of(A;B) are shown in Fig. 2.6.a’–c’, re-

spectively. The figures also show the separating directionsseparate(A;B) derived directly from the

part geometries ofA andB. We consider the intersection of the projected base cellproj and the set

separate(A;B). In the first two cases (Figs. 2.6.a’,b’), this intersection is a single convex set of direc-

tions and can be described by two linear constraints. We may thus replace the initially derived disjunction

of constraints forseparate(A;B) by a conjunction of constraints. In the third case (Fig. 2.6.c’), how-

ever, the intersection decomposes into two convex sets. There, a disjunction of constraints will still be

necessary.

The projections of the base cell can be obtained using a simple algorithm that is inspired by the

more generalConvex Hull Methodproposed in [28]. Two observations are important here. First, the

base cell is a single convex cone in the composite configuration space. Thus its projection in a pairwise
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Figure 2.6: Three situations in which the motions of two separated partsA andB are restricted by a third
partC: (a)A andB can only move in one direction each and cannot collide in a single translation, so
their pairwise constraints are not needed; (b)A andB can collide, but their relative motion directions are
restricted byC to a convex set:A must move out beforeB; (c)C restricts the set of relative directions of
A andB but the set of allowed directions is nonconvex: the parts can be disassembled by simultaneously
movingA quickly andB slowly, or vice versa. (a’),(b’),(c’) show the projectionsproj of constraints from
fseparate(A;C); separate(B;C)g (base cell) into the configuration space of partsA;B (B fixed).

configuration space will be either the full plane, a single 2-dimensional convex cone, or consist only of

the origin. Second, the dimension of the projection space is two, a small constant. We can therefore

explicitly compute the vertices of the projection by a series of linear optimizations in different directions

in the plane, without the danger of being overstrained by an exponential number of them. A minor

problem is that in general the base cell is unbounded. We therefore intersect it with a unit box around

the origin and compute the projection of this intersection. Further details and an example are given in

Appendix A.2.

2.2.5 Heuristic Algorithm for the General Case

The heuristic preprocessing in the previous subsection aims at reducing the number of disjunctions in

the expressionONESHOT (P1; : : : ; Pk). In general, we will still be faced with disjunctions after this

preprocessing, and the constraints may still expand to an exponential number of convex cells.

A branch-and-bound approach may be used to cut down the number of necessary unboundedness

tests. The general branch-and-bound paradigm has also successfully been applied to other linear and

mixed integer programming applications [68]; we therefore only illustrate the principles in our applica-
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B1 2B
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E2E1
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5 6

Node Constraints Result

1 fA1; A2; C1; C2g (unbounded)

2 fA1; A2; C1; C2; B1g (unbounded)

3 fA1; A2; C1; C2; B1;D1g (bounded)

4 fA1; A2; C1; C2; B1;D2g (unbounded)

5 fA1; A2; C1; C2; B1;D2; E1g (bounded)

6 fA1; A2; C1; C2; B1;D2; E2g (unbounded)

Figure 2.7: Top: evaluation tree for an AND/OR constraint expression. Bounded nodes are shaded.
Bottom: cells tested for unboundedness at the nodes in the above tree.

tion, using a simple example. Suppose that we are given the expression

(A1 ^A2) ^ (B1 _B2) ^ (C1 ^ C2) ^ (D1 _D2) ^ (E1 _E2)

where each atom is a single homogeneous linear half-space constraint, that is, e.g.A1 � a1x � 0.

We test this expression for unboundedness by traversing a binary tree as shown on the top of Fig. 2.7.

Nodes in this tree represent conjunctions of constraints and can therefore be tested efficiently. Each child

node contains the constraints of its father plus a single additional constraint which is one alternative of a

specific disjunction. In the figure, each edge is labelled with the constraint added to the constraints of its

father node.

We traverse the tree in depth-first order, backtracking at bounded nodes, until we find an unbounded

leaf node. The table at the bottom of Fig. 2.7 exhibits the constraint sets corresponding to the nodes in the

tree, in the order they are visited, and the result of unboundedness testing for each node. The root node of

the tree contains the set of all constraints that are joined by conjunctions exclusively,fA1; A2; C1; C2g.

We assume that, in the example, this set yields an unbounded cell. We therefore add the first alternative

from the disjunction(B1 _ B2) to the constraints in the root node, thus forming node2. If testing this

node yields the result unbounded, we add another constraint from a different disjunction. In this example
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we assume this is so and choose the constraintD1. Let the resulting node3 be bounded, so we backtrack

to node2 and consider the second alternative there, which isD2. Having found the resulting node4

to be unbounded, we must analyze disjunction(E1 _ E2) and select the constraintE1 which leads to

the (bounded) node5. Backtracking over node4, we finally arrive at node6 which we assume to be

unbounded. Furthermore, node6 is a leaf node, since it contains all conjunctive constraints plus one

constraint from each disjunctive clause.

Based on this evaluation paradigm, and using the heuristic reductions described above in a prepro-

cessing step, we can now outline a heuristic algorithm form-handed one-shot separability of general

placements with both separated and non-separated pairs of polygons: first, we derive the constraints for

each pair of polygons, then classify the pairs as separated and non-separated, and construct the base

cell from the constraints of all non-separated pairs. We then successively project the base cell into all

pairwise configuration spaces. We compute new, possibly more restrictive constraints for each pair from

the 2-dimensional intersection of the projected base cell with the original separating directions of the

considered pair. After each step, constraints of separating directions which have become convex may be

included in the set of constraints forming the base cell. After this preprocessing, we finally apply the

branch-and-bound paradigm, using efficient unboundedness testing for convex constraint sets, to evaluate

the resulting constraint expression. Tab. 2.2 summarizes this heuristic algorithm for the general case.

The performance of the branch-and-bound approach depends on the order in which the different

disjunctive clauses are tested. Here, several additional heuristics may be applied to speed up practical

cases. For example, one may sort the pairs of parts which require a disjunction of constraints according

to their distances. Closer pairs may be expected to introduce more restrictive constraints and therefore

bound the cell earlier than pairs of parts which are further apart.
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Input: Overlap-free placement of polygonsP1; : : : ; Pk.

Output: Unbounded direction (m-handed separating translation)u if the polygons can be
separated withm hands orfailure otherwise.

1. For1 � i < j � k compute the setsseparate(Pi; Pj) and derive linear constraints

(a
(ij)
1 (pi � pj) � 0) Æ (a

(ij)
2 (pi � pj) � 0)

whereÆ = _ if the parts are initially separated andÆ = ^ if the parts are initially non-
separated.

2. Combine the constraints from the set of all non-separated pairs (denotedN ) into a single
expression

BASECELL(P1; : : : ; Pk) �
^

(i;j)2N

�
(a

(ij)
1 (pi � pj) � 0) ^ (a

(ij)
2 (pi � pj) � 0)

�

3. ProjectBASECELL(P1; : : : ; Pk) into the configuration spaces of all pairs(i; j) and in-
tersect the projections with the current pairwise feasible directionsseparate(Pi; Pj). If
the intersection is a convex subset of the current pairwise feasible directions, replace
separate(Pi; Pj) with this intersection and add constraints describing this intersection to
BASECELL(P1; : : : ; Pk). Repeat this step until no further reductions are possible.

4. Derive constraints from the reduced pairwise separating directions to form an expression

ONESHOTr(P1; : : : ; Pk) �
^

1�i<j�k

�
(a

(ij)
r1 (pi � pj) � 0) Æ (a

(ij)
r2 (pi � pj) � 0)

�

whereÆ = ^ for a convex set of reduced directions andÆ = _ for a concave set of reduced
directions.

5. Evaluate the expression

xj = 0 ^ yj = 0 ^ ONESHOTr(P1; : : : ; Pk)

using a branch-and-bound tree and testing the convex sets in the nodes of tree with the
efficient unboundedness test in Chapter 4. At the first unbounded leaf node found, stop and
return the computed unbounded direction.
If all leaf nodes are bounded, returnfailure.

Table 2.2: Heuristic algorithm for computing anm-handed separating motion of a general polygonal
assembly.
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Figure 2.8: Construction principle for reduction fromPARTITION.

2.2.6 M-handed Separability is NP-complete

We show that the general problem of finding anm-handed separating translation is NP-complete for

polygonal parts.

Lemma 2 M -handed translational separability of polygons is NP-hard.

Proof: By reduction fromPARTITIONfor integers, a well-known NP-hard problem [16]. For a given

set of integersA = fa1; : : : ; akg, we construct an assembly of polygons which can be separated by an

m-handed translation if and only if there is a subsetI � A, so that

X
i2I

i =
1

2

X
a2A

a

Fig. 2.8 shows the construction principle. Note that this figure exhibits only a rough sketch and that

parts are not dimensioned properly. There are two main functional units each consisting of several parts:

a frame and an internal deviceA. We first describe the frame. It consists of the partsB, R1; R2, T and

S. We assume that the basisB is fixed.R1 andR2 can only move to the left respectively right and act

similarly to a sliding roof. They are coupled by a transmissionT which ensures that either bothR1 and

R2 move or none. Moreover, we can calibrate the speed ratio forR1 andR2 by properly changing the

interconnection betweenR1 andT on the one side andR2 andT on the other side. The sliding roof has
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to open in order to remove any of the parts. However, there is an additional part inserted in the frame: the

separatorS. This part is connected toR1 andR2 in a way that causes it to move exactly in the vertical

direction upwards whenR1 andR2 move with their unique possible speed ratio.S thus partitions the

opening gap in the roof.

We are now to describe the heart of the construction, namely deviceA. For each integer numberaj

in the input set there is a stickAj with length proportional toaj. Each of them is inserted into a lift

Lj so that its relative motions with respect to the lift are constrained to the right horizontal direction.

Additionally, there is an empty liftL0. The lifts are triggered by hooks of different slope inR1 and can

move only vertically upwards with determined speedsv0 > v1 > v2 > v3 > : : : > vk. Thus all sticks

must move out of their associated lifts or else they would collide with at least one of the other lifts.

We calibrate the lifts so that the tips of the sticks simultaneously arrive at the level of the gaps in the

roof. This level is determined by the upper edge of the peg that joinsR2 with S. A short time before,R1

must have moved far enough to let the leftmost lift pass. The separator will move up with a calibrated

vertical velocity so that its bottom simultaneously arrives at one level together with the axes of all sticks.

At this point of time, the gap between the separatorS andR2 on the right side will have width equal

to half the sum of the lengths of all sticks. The gap between the rightmost lift andR1 will have the

same width a priori. Now all parts can escape without collisions if and only if the sticks are properly

placed into the two gaps, thus solving thePARTITIONproblem. If the givenPARTITIONproblem has a

solution, this can be achieved by proper selection of the horizontal velocity components for the sticks.

We now prove that the parts can in fact be dimensioned properly to achieve the described behavior.

A further important issue will be that the input size is not increased more than by a polynomial. The

reader, if not interested in the details, may want to skip the rest of the proof since it is rather technical.

To keep the discussion short, we give explicit values for the major coordinates. Thus, we meet the

requirements by a unique set of construction rules. Of course there are infinitely many other possibilities

for dimensioning the parts.

We begin with the sticks. A stickAi, representing an integerai, has lengthkai and width 1
2 . The

ends are slanted by angles of45
Æ as shown in Fig. 2.9.a. The lifts have unit width each, and so, for each

stick, its right tip is guaranteed to be right of the left tips of all other sticks. To escape, a stick must be

able to overtake all other sticks above it at any of their ends (shown by slanted and dashed critical lines

in Fig. 2.9.a). We place the axes of two adjacent sticksAi andAj with a vertical distance ofkamax +1,

whereamax is the maximum number in the input. This guarantees that no pair of sticks will collide

when simultaneously translating into any collision-free vertical alignment where all axes are at the same

level. We place the top edge ofL0 with the same vertical spacing below the axis ofA1. Now it can be

shown that no stick will collide withL0 when it is overtaken in vertical direction byL0. Choosing these

distances, the initial vertical distance between the axis ofLk and the top edge ofL0will be k(kamax+1).

The next critical element is the separatorS. We model it as a small right-angled triangle having two

sides of length2, respectively, and place it in the global coordinate frame as shown in Fig. 2.9.c. The
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Figure 2.9: Details of the construction: (a) pair of adjacent sticks and lifts, (b) stick and separator, (c)
holes in separator for pegs.
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horizontal clearance between the rightmost liftL0 and the lower left vertex ofS will be chosen to be

exactly
P

k =2, where
P

k = k
Pk

i=1 ai will in the following denote the sum of the lengths of all sticks.

Thus, the horizontal distance between the left end of sticki and the lower right vertex ofS will be, as

shown in Fig. 2.9.b, equal to�i = i+ 1
2 +

P
k =2 + 2. (The second and forth addends are the insertion

depth of a stick in its lift and the width ofS, respectively.) The horizontal distanceÆi between the right

end of the stick and the left lower triangle vertex is always smaller but positive and equals�i� kai� 2.

(We may assume that no stick is longer than
P

k =2.) Thus, giving the axis of sticki a vertical distance

of at least�i from the bottom side of the separator triangleS will allow stick i to overtake the separator

at any side. Note that it suffices to consider the topmost stick, since the vertical spacing between the axes

of adjacent sticks is greater than the horizontal distance of their left tips (which is1).

Now we consider the peg connectingR2 andS. (Fig. 2.9.c shows the corresponding cavity inS.)

The horizontal distance of the critical vertex of this peg from the right tip of sticki is bounded by�i.

(In fact, it is equal to�i � kai �
1
2
.) Since the critical vertex of the peg is above the bottom edge of

S, placing the sticks so that they can pass the separator asserts that they can also passR2. Furthermore,

sinceR2 moves horizontally, this critical vertex determines the level (y = 0) at which the axes of all

sticks and the bottom edge of the separator must arrive simultaneously. For the pegs in the separator, we

set

h1 =
1

2k +
P

k+7
; h2 =

1P
k+1

Sinceh1 < 1
10

, we can select� = 2
5

for the pegs and the cavities. From now on let us assume thatR1

andR2 move with the velocities (other velocities would be possible but the ratio of their absolute values

must be the same)

vR1 = �

 
k + (

P
k+7)=2

0

!
; vR2 =

 
(
P

k+1)=2

0

!

It can be shown that thenvS is uniquely determined to be

vS =

 
0

1

!

When the bottom ofS has arrived aty = 0, R2 will have moved
P

k =2 +
1
2

units to the right, thus

creating the desired gap.R1 will have moved much further to the left (the left gap is betweenL0 and

S), and we have to show thatvR1 suffices to getR1 out of the way of the leftmost lift. We therefore first

need to specify the vertical positions of the lifts and sticks.

We place the left tip of sticki at

xi = �(i+

P
k+3

2
)

yi = �(k +

P
k+7

2
)� (k � i)(kamax + 1)

and the top edge ofL0 at y0 = yi ji=0 andx0 2 [�2�
P

k =2;�1 �
P

k =2)]. This satisfies the vertical

spacing constraints on (1) adjacent sticks and (2) the sticks andS.
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Since the axes of all sticks and the top edge ofL0 must arrive aty = 0 simultaneously with the

bottom edge ofS, the velocity of lift i will be uniquely determined to be

vi =

 
0

�yi

!

NowR1 gets out of the way of the leftmost liftLk in time (and thus lets all lifts pass). We omit further

details to show this.

Based on the above parameters, it is not difficult to dimension the remaining elements and show

that indeed no pair of parts will collide during a valid partitioning motion. For constructing the pegs

in R1 which trigger the lifts, one may specify some small constant width and use the fact that the

relative velocity of lift i with respect toR1 must be equal tovi � vR1. Similar observations apply

to the pegs connectingR1, R2 andT . We omit further details but show that the whole construction can

be represented without increasing the input size by more than a polynomial function.

For an instanceA = fa1; : : : ; akg, the input size is
Pk

i=1 bi wherebi is the number of bits required

to representai. Thus, the input size is of the order
(k+bmax). After appropriate scaling, we needO(k)

integer numbers to represent the vertex coordinates of all parts, and each of them will be inO(kcamax)

wherec is a constant. We can represent these numbers in total spaceO(k log k+ kbmax). Thus, the total

increase in space is bounded by a polynomial function. 2

Theorem 1 M -handed translational separability of polygons is NP-complete.

Proof: It remains to show that the problem is in NP. The proof follows from the discussion in subsec-

tions 2.2.1 and 2.2.2. A non-deterministic polynomial-time algorithm first guesses a one-shot separating

translation and then verifies it by projecting it into the pairwise configuration spaces. All operations for

the latter step can be performed in deterministic polynomial time. 2

A closely related problem is findingfinite simultaneous translations that are collision-free just until

the polygons can be partitioned into two subsets by a straight line. Note that this definition of separability

is equivalent to our original definition using infinite translationsonly in the single-handed case: for more

than a single moving subset, there may be a finite collision-free translation that leads to a separated

placement but cannot be extended arbitrarily without collisions. To prove NP-hardness of separability

using finite translations we just have to modify a detail in the construction of our above proof: the pegs

that connectT with R1 respectivelyR2 must be made long enough to guarantee that these parts remain

non-separated at least until the sticks arrive at the level of the gaps in the roof.

The hardness results still hold when all parts are required to have a constant number of vertices. In

our reduction, partR1 requires�(k) vertices to model the hooks that push up the lifts. We can replace

R1 with k parts having a constant number of vertices each. Fig. 2.10 shows the corresponding section of

the assembly. All other parts in the proof already have a constant number of vertices.



2.2. M-HANDED SEPARABILITY OF POLYGONS 29

B

R1

Figure 2.10: Modeling a chain of hooks with parts having constant number of vertices.

Note that parts having a constant number of vertices are not necessarily parts of constant complexity.

In our view, the part complexity depends on the number of bits needed for a minimal representation of

the part. In the case of polygons, a minimal representation is a list of vertices. In the construction in the

proof, the space requirement for each vertex depends on the input size of a given instance ofPARTITION.

Thus the reduction does not generalize to parts of constant complexity.

We summarize the above arguments in the following

Theorem 2 The problem of finding a (possibly) finite collision-freem-handed translation that separates

a given placement of polygons, each having a constant number of vertices, is NP-complete.

Proof: The proof of NP-hardness follows from the above arguments. The problem is in NP since we

can guess a final placement and a straight line and then verify in deterministic polynomial-time that (1)

the line partitions the placement and (2) the simultaneous translations required to reach the placement

are collision-free. 2

2.2.7 Polyhedral Parts

The linear constraint framework in Sections 2.2.1–2.2.5 can be extended directly to the spatial case

by introducing az-coordinate for each part. However, the actual construction of the sets of directions

separating each pair of parts,separate(Pi; Pj) is more difficult than in the polygonal case. In [65],

pairwise separating directions are computed using a central projection from the origin onto the unit

sphere or two parallel planes (z = �1, z = 1). Our constraints can then be derived from a planar

arrangement since all bounding planes of the cones of directions must contain the origin.

In the polygonal case, we were able to develop efficient algorithms for assemblies with no initially

separated pairs of parts because the pairwise constraints for non-separated pairs were convex. However,

this does not hold for spatial pairs: the set of separating directions can partition into several convex

sets even for non-separated polyhedra (e.g. a part with several connected cavities that contain another

part, see Fig. 2.11). In principle, the heuristic preprocessing and the branch-and-bound algorithm can be

generalized to the polyhedral case. The evaluation tree of the constraint expression will becomen-ary,

since the separating directions for a pair of parts may require more than two convex sets to represent

them.
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Figure 2.11: A box in a cage: the parts are not separated but the set of separating directions is not convex.

An interesting general difference between polygonal and polyhedral assemblies is that, unlike as-

semblies of convex polygons, assemblies of convex polyhedra cannot always be assembled with a single

hand [66]. Therefore for polyhedral assemblies it is not sufficient that all pairs of parts be separated

in order to allow for single-handed separability. In contrast, as shown above,m-handed separability is

always possible for pairwise separated parts in any dimension.

Showing thatm-handed separability of polyhedra is in NP is not difficult after the above discus-

sion and works similarly to the polygonal case. To show NP-hardness, we perform the reduction from

PARTITIONto m-handed separability using the part shapes from the proof for the polygonal case. We

extrude the parts to obtain polyhedra and fix additional large top and bottom cover plates to one of the

parts. These covering plates will restrict all motions to a single plane, thus allowing the same reduction

as above. We therefore have

Theorem 3 M -handed translational separability of polyhedra is NP-complete.

2.3 C-handed Separability

Whilem-handed separability is NP-complete (Sections 2.2.6 and 2.2.7), single-handed separability is in

P [65]. In them-handed case, computing a separating translation amounts to analyzing an arrangement

of half-spaces in a space of general dimension. The complexity of arrangement computation is known

to depend exponentially on the dimension of the underlying space [13]. Now the natural question arises

whether one-shot separability is inP if one allows more than one but only a constant number of different

subset velocities, a problem in between the above extremes. We therefore define thec-handed separability

problem:

Definition 3 (C-handed separability) Given an overlap-free placement of parts, find a one-shot trans-

lation that allows for removing at least one part without collisions. At mostc subsets of parts may
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translate in different directions with different but constant velocities. Within a moving subset, parts must

not move relatively to each other.

Assuming a constant number of moving subassemblies, the dimension of the underlying parameter

space becomes constant, and an arrangement which partitions this space into a polynomial number of

critical cells can be computed in polynomial time.

2.3.1 Partitioning Subassembly Velocity Space

For polygonal parts, the spaceE2c, wherec is a constant, will be called thesubassembly velocity space.

A vector(w1x; w1y ; : : : ; wcx; wcy) in E2c states that the parts in thei-th subassembly move with velocity

(wix; wiy). (For polyhedral parts, these concepts can be extended directly.)

Note that the subassembly velocity vector does not contain any information about which part belongs

to which subassembly. Although we can partition any subassembly velocity space of constant dimension

into a polynomial number of critical cells by a direct extension of the concepts in [65], a hard problem

remains: we must assign the subassembly velocities within a given cell to the parts, so that collision-free

simultaneous translations result.

Formally, the velocity assignment problem is defined as follows:

Definition 4 (Velocity assignment) Given an overlap-free placement of parts and a set of velocity vec-

tors, assign the velocities to the parts so that during a one-shot translation with the respective velocities,

no pair of parts collides and at least two parts move relatively to each other.

Note that in general, velocity assignment subsumes the problem of direction assignment. When

velocity vectors can be assigned to parts, their directions are clear, but not vice versa. In the single-handed

case (c = 1), direction and velocity assignment are equivalent problems and can be solved efficiently:

assigning parts to the moving, respectively stationary subset of parts can be reduced to searching strong

components in a directed graph. This graph describes the invariable blocking relations between all parts

for all directions within a critical cell [1, 65]. We will show next that this approach cannot be generalized

to more than one moving subset.

2.3.2 Two-handed Separability is NP-complete

We prove that the problem of finding a two-handed separating translation is NP-hard. The result holds

even if the set of allowed translational velocities consists only of two given orthogonal velocities with

equal magnitude. As a direct consequence, we will obtain hardness results for the two-handed direction

and velocity assignment problems. In the case of polygonal parts, our proof requires fixing some of the

parts. This requirement will not be necessary for polyhedral parts, thus extending the general hardness

result from our discussion ofm-handed separability to the case of two-handed separability.

Lemma 3 Two-handed separability of polygons with fixture constraints is NP-hard.
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Proof: By reduction from 3-SAT [16]. For a logic expressionE in 3-CNF, we construct an assembly

consisting of polygons and several fixels (polygons constrained to remain stationary). Some parts will be

surrounded by fixels so that they can translate in a single direction, horizontally to the right or vertically

downwards. Others will be less constrained but can translate either to the right or downwards. It will be

possible to remove one or more parts with a single simultaneous one-shot translation if and only if there

is a satisfying truth assignment for the variables inE. Furthermore, the construction will require that if

one or more parts can be removed, their speeds have to be equal.

We now describe the details. Fig. 2.12.a shows the parts required to represent a variable and its

negation. Fixels are shown in black. EitherX or:X can move to the right but not both. IfX moves out,

the additional part moves down with the same rate and blocks:X. The shaded arrow heads in the figure

indicate the strips swept by the parts when moving out. Shaded arrow tails on the left indicate where

incoming parts can arrive if the corresponding variable part clears their way.

Next, we consider an OR gate with three inputs (Fig. 2.12.b). The logical state of the gate is regarded

true exactly if partO can move downwards to infinity. Therefore, it is necessary that at least one of the

three input parts moves downwards to infinity. In the case of stationaryI1, the gate must expel some

auxiliary parts to the right whileO moves out. Shaded arrows indicate strips swept by incoming or

possibly outgoing parts.

To connect the variables to the OR gates we need additional redirection mechanisms which allow

translation down a specific strip if and only if translation to the right along another horizontal trip is

possible. Fig. 2.12.c shows such a construction.O can translate down if and only ifI moves to the

right, andO cannot move faster thanI does. The arrow tail at the left side indicates that multiple such

elements can be connected to a single variable in case the variable is contained in several disjunctive

clauses. To connect the construction to an OR gate, we place it below the desired input part of the OR

gate. Note that output and input parts need to be aligned horizontally, but there can be a vertical clearance

between them: the input part of the OR gate will be able to move out if and only if the output part of

the transmission moves down. Moreover, the OR input part will not be able to move out faster than the

transmission output part since we consider infinite translations.

Three minor technical details: (1) the horizontal spacing between the inputs of the OR gate, as

shown in the figure, is not sufficient for placing the redirection mechanism below it. Either this spacing

must be properly enlarged or the input part of the transmission must be shortened. (2) Placing the

transmission below the left input of the OR gate requires slight modification of the transmission as

shown in Fig. 2.12.d. (3) Inputs of an OR gate that are not to be connected to a transmission have to be

blocked by an additional fixel.

Finally, we need an AND gate for representing the conjunction of the outputs from all OR gates.

This is shown in Fig. 2.12.e. The AND bar can move to the right if and only if all of the input parts

move downwards. Furthermore, its rate cannot exceed the minimum rate of the input parts. The figure

suggests that there is a latch at the right end of the AND bar. This role of this latch will become clear
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Figure 2.12: Basic elements (fixels shown black): (a) variable mechanism, (b) OR gate, (c) vertical to
horizontal redirection (L), (d) special vertical to horizontal redirection (L), (e) AND bar.
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from the global context of the construction which we describe now.

For illustration purposes, we use the example expression(A _B _ :C) ^ (:A _B _ C) ^ (:B _

C _:D). Fig. 2.13 shows the construction. There the mechanisms from Fig. 2.12 are illustrated only as

black box devices with arrows indicating their interfaces. Note that local details of spacing and scaling as

discussed above are neglected in the following. Instead, we focus on the major issues: if the expression

has a satisfying truth assignment, then there is an infinite two-handed removal translation during which no

pair of parts will collide. Conversely, if the expression cannot be made true by any variable assignment,

there is no collision-free one-shot removal translation (not even anm-handed one).

We first show that there is a cyclic dependency on the speeds which requires all moving parts to move

with the same rate: variable parts cannot move faster than the AND latch, which cannot move faster than

its input parts, which in turn cannot move faster than the output parts of the OR gates. This relation

on the speeds propagates through the OR input parts, the transmission output parts and the transmission

input parts back to the variable parts. Consequently, all moving parts must move with the same rate.

Moreover, no parts can move at all unless the AND bar moves, since it blocks all variables, which in turn

block all other parts. On the other hand, the AND bar can be moved if a satisfying truth assignment is

used to select the moving variable parts. In this case, the corresponding transmissions open, allowing for

the OR gates to unlock their output parts. The latter, when moving, clear the way for the AND inputs

which unlock the AND bar.

It remains to show that the parts can be placed such that during such a simultaneous translation, no

undesired collisions occur. Specifically, the crossings of horizontal and vertical paths must be observed.

We begin with the variable section, and place it at the lower right corner with small constant vertical

clearances between the boxes. Small constant horizontal displacements of adjacent variable boxes allow

for the auxiliary parts in the variable boxes to escape downwards, if necessary. Dashed horizontal rays

on the right indicate where the variable parts move out while dashed rays on the left indicate slim strips

blocked by the corresponding variables. We assume that in general the input expression consists ofn

disjunctions andk variables. Thusk = O(n) and the vertical dimension of the variable section, denoted

h in the figure, is inO(n).

For each disjunction, we establish a set of three transmissions on the rays emanating from the in-

volved variables or negated variables. The output parts of these triplets have to be aligned properly for

placing OR gates above them. Without loss of generality we may assume that within a triplet, each

transmission is to the right of the transmissions above it, thus avoiding collisions among parts from

the transmissions of a single triplet. To avoid collisions of horizontally moving parts with downward

moving parts from different transmissions, we set the distance between adjacent triplets tow > h with

w = O(n). This also applies to the horizontal spacing between the rightmost triplet and the variable

section, for the same reason.

We can now dimension the vertical clearanceH, as shown in the figure, between the OR section and

the assignment grid. We chooseH larger than the total width of the whole construction. Note that still
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H can be chosen such that it is inO(n2). The same clearance will be inserted between the AND bar

and the topmost OR gate. To be able to expel their auxiliary parts, adjacent OR gates need a constant

vertical displacement just like the variable boxes, and so the total height of the OR section is inO(n). Put

together, the overall height of the construction will be inO(n2). Since all moving parts must move with

the same rate, the horizontally moving auxiliary parts from the OR section will have passed before the

downwards coming input parts of the AND gate have arrived at their level. The same argument applies,

at the next lower level, to the horizontally moving input parts of the transmissions and the vertically

downward moving output parts from the OR gates.

To summarize, we have shown that no undesired collisions can occur, and parts can be removed to

infinity by a two-handed one-shot translation if and only if the given expression allows for a satisfying

truth assignment. The construction requires a total ofO(n) parts and fixels. All vertex coordinates are in

O(n2) which requireO(log n) storage (n > 1). The transformation therefore increases in the input size

only by a polynomial function, and can be computed in deterministic polynomial time. 2

Since it is a priori guaranteed that only two unique velocities are possible (up to scaling), we obtain

the following

Corollary 1 Two-handed direction/velocity assignment for polygons with fixture constraints is NP-hard.

The construction in the above proof bears a little resemblance to the one used in [50] showing that

translational mobility of polygons is NP-hard. However, there the allowed motions were restricted to

infinitesimal translations which makes the construction more predictable. Instead, we consider infinite

translations here, and therefore we need additional fixels. It is an open question, whether the same results

can be obtained for polygons without fixture constraints. An important difference from our construction

is that in [50], more than two directions of motion are required.

Lemma 4 C-handed translational separability of polygons (polyhedra) with or without fixture con-

straints is in NP.

Proof: A non-deterministic algorithm guesses a removal velocity vectoru 2 E2k (u 2 E3k) and verifies

that (a) the number of moving subassemblies does not exceedc, (b) the fixture constraints (if present)

are fulfilled and (c) the motion is collision-free. The latter can be done using the concepts discussed in

Section 2.2. 2

We therefore have the following result:

Theorem 4 Two-handed translational separability of polygons with fixture constraints is NP-complete.

The proof of NP-hardness can be generalized to polyhedral parts similarly to them-handed case in

Section 2.2.7. We excise all parts from a thin plate and add large bottom and top covering plates to the
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Figure 2.14: Connection of variable to OR gate (left) and independent crossing (right) for small finite
translations.

assembly which restrict all possible motions to the plane. We connect the covering plates to all the fixels.

Indeed, there is no need of explicit fixture constraints here, since the fixels can be modeled as features of

the bottom or top plate. Thus, in the case of polyhedral parts, the proved statement becomes stronger.

Similar to them-handed case, a variation of the problem is to findfinite simultaneous translations

that can be executed at least until a straight line (a plane) partitions the set of parts into two subsets. The

problem remains NP-hard. To prove this for polygons, three directions of motion (c = 3) are necessary,

while for polyhedra, the result can be shown to hold forc = 2.

Following is a sketch of the proofs. The basic idea is to prolongate the AND bar so that no straight

line (plane) can be put between it and any other part in the initial placement. We then add a tiny part that

can only move downwards out of the AND bar’s bounding box while the AND bar moves a very small

distance to the right. As soon as the tiny part has moved out, we have two separated subsets and can stop

moving. The problem is now to reduce 3-SAT to testing whether there is a small translational motion of

the AND bar to the right. This has been addressed in [50], but there, more than two directions of motion

were required.

We therefore use the construction from our above reduction and close the gaps between parts that

have to influence each other. That is, the AND input parts will now touch their associated OR output

parts, the OR input parts will be connected to the transmissions, and so forth. We replace the transmis-

sions by copies of the mechanism shown on the left of Fig. 2.14. The parts must be extended at the ends

left open in the figure to reach the parts they are logically connected with. We additionally need crossings

of vertical and horizontal lines that are independent for small translations (similar to those in [50]; cf.

right picture in Fig. 2.14). These must be placed where no transmissions (L’s) were necessary in the

proof for infinite translations. Note that they require an additional direction of motion to the lower right

for the central square. For polyhedral parts, we do not need this latter mechanism because we can model

the independent crossing by exploiting the third dimension. Now, in the final construction for a given

3-CNF expression, not even an infinite translation will be collision-free unless the satisfying variable

parts are selected to move.

We finally summarize the above discussion in the following
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Theorem 5 Two-handed separability of polyhedra is NP-complete for both finite and infinite transla-

tions.

Theorem 5 should be considered the most important result in this section. In particular, it shows that

it is very unlikely that the algorithm in [65] can be extended to a deterministic polynomial-time algorithm

if more than a single moving subassembly is allowed.



Chapter 3

General Translational Separability

We discuss the problem of general translational separability for given overlap-free placements of polyg-

onal or polyhedral parts. The class of considered motions comprises arbitrary sequences of translations

that allow for removing at least a single part from the remaining parts without causing overlap between

any parts. It is a known fact that even subclasses of this problem are PSPACE-hard. However, such

characterizations concern the worst case, and many instances of the problem are much simpler to solve.

We therefore propose a framework that is as general as possible but allows for specifying algorithms

that are of practical value. Our primary goal is to show that a uniform approach can be used to handle a

variety of problem instances with different properties and not to derive intuitive special-case heuristics.

Separability of tightly packed placements with many parts is of special practical importance. Such place-

ments typically arise in the assembly planning domain, but also in other applications. Although in recent

years, random planning schemes have been successfully applied to various other motion planning prob-

lems, there is generally small likelihood for success of a randomized approach when feasible motions are

very constrained. This is common in assembly applications where clearances between parts are small or

virtually non-existent. Furthermore, random planners can neither prove infeasibility nor determine that

the problem could be solved with small bounded overlap, and identify the inevitable collisions.

The algorithms presented in this chapter are capable of finding separating translations for several tens

of parts with or without clearances between them. They are exact and complete. That is, if no part can

be removed, infeasibility can be proved (theoretically always and in practice in many relevant cases). It

is possible to extend our concepts to find nearly overlap-free motions and identify the critical contacts

involved in the inevitable collisions, which may be of great importance in applications.

In general, the running times of our algorithms are dominated only by the complexity of the set of

translations that arefeasiblefor the particular problem instance. In other words, instances that permit

only straight-forward motions will be solved quickly while more complicated ones will take longer. The

algorithms have been implemented and tested with a variety of 2- and 3-dimensional examples; observed

running times are acceptable if the problems are not inherently combinatorial. Experimental results are

summarized in Chapter 6.

This chapter is organized as follows. In Section 3.1, we define the general translational separability

39
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problem and summarize known complexity results. In Section 3.2, we formalize the problem by extend-

ing the well-known configuration space concept to an arbitrary number of translating parts. We show

that we can combine the configuration spaces derived from pairs of parts into a ’composite’ configura-

tion space (c-space) for all parts. Valid and forbidden simultaneous placements of all parts correspond to

points in this space. We discuss various combinatorial problems resulting from the general dimension of

the composite configuration space. In Section 3.3, we summarize our basic algorithm from [64] which

is a first step towards deciding general translational separability in simple practical cases. To determine

whether parts are removable, it suffices to search a single connected component, namely the component

containing the initial placement. We derive an implicit convex cell decomposition as a discrete repre-

sentation of this space. Then, a sequence of valid cells connecting the initial cell to an unbounded cell

directly yields a feasible plan for removing one or more parts. We call this technique of incremental

search of an implicitly given representationconfiguration space expansion. In Section 3.4, we introduce

D-node reductionto significantly improve the decomposition obtained with our basic algorithm. We

show that the concept of reduced D-nodes can yield exponential speedup and discuss how it can be im-

plemented and integrated into our algorithm. In Section 3.5, we discuss remaining problems and outline

further straight-forward improvements. We show that practically important extensions such as allowing

for small bounded overlap between all or certain pairs of parts or identification of inevitable collisions

can be integrated directly.

Note that the concepts in this chapter are presented in a very general and basic framework to avoid

elementary assumptions that are application-specific rather than problem-specific. The main algorithmic

foundations are well-known techniques from computational geometry and linear optimization.

3.1 Problem Definition and Computational Complexity

The general translational separability problem is stated as follows:

Definition 5 (General translational separability) Given an overlap-free placement of polygonal or

polyhedral parts, decide whether one or more parts can be removed without collisions from the re-

maining set of parts by an arbitrary sequence of translations.

Note that we do not require an optimal solution, which could be a shortest sequence with respect to

some proper cost function. That is, we allow for executing any number of translations in a sequence, for

changing the subset of moving parts, and for parts simultaneously moving in different directions with

different velocities. General translational separability thus includes non-monotone sequences of motions,

in which one or more subsets of parts have to be brought in intermediate placements. We refer to the

above definition as thegeneral problem.

For an example, consider the wooden cube puzzle in Fig. 3.1.a that is composed of twelve pieces.

The exploded view in Fig. 3.1.b reveals the individual parts. Note that due to the tight packing, feasible



3.1. PROBLEM DEFINITION AND COMPUTATIONAL COMPLEXITY 41

2
1

4
5

6

7

8

10
9

12

11

3

(a) (b)

5

7

11
8

6

7
8 9

10

10
11

1

2

3 4

2

Figure 3.1: Top: (a) Wooden cube puzzle with twelve parts requiring a non-monotone assembly se-
quence. (b) Exploded view showing the individual parts. Bottom: complete disassembly sequence (parts
that move between two pictures in the sequence are referenced).
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Figure 3.2: Constructions in [49] for reducing (a),(b)PARTITIONand (c)Towers of Hanoito general
translational separability.

motions are very constrained. Fig. 3.1 also shows a complete non-monotone disassembly sequence. The

sequence is non-monotone because some parts must be brought into an intermediate position to allow for

the removal of other parts.

Computational Complexity

The above formulation of general translational separability is very permissive. Hence, it is not surprising

that this problem has been shown to be PSPACE-hard [73, 47]. Earlier complexity results are based on

particularly simple and intuitive constructions: NP-hardness can be easily proved by a reduction from

PARTITIONfor integers [6]. Let
P

be the sum of the input numbers. Fig. 3.2.a shows the construction

for the numbers1; 3; 3; 5; 6 that are represented by blocks of corresponding lengths (we use equivalent

figures from [49]). The black bolt can removed iff the blocks are tightly packed into the space on the left,

thus occupying two rows of length
P
=2 each. Fig. 3.2.b shows such a key placement. Now consider

using blocks for the numbers2; 2; 2; 6; 6 instead. The sum of their lengths is still the same as before,

but it will no longer be possible to remove the bolt because the new set cannot be partitioned. Note that

in these constructions, it is sufficient that a single part moves at each step. An exponential lower bound

on the number of moves in the solution has been derived using a construction that simulates the well-

knownTowers of Hanoiproblem [6]. Fig. 3.2.c shows the construction principle as depicted in [49]. It

is possible to violate the rules twice per column, but in general, the number of moves required to remove

the black bolt is exponential in the number of parts. These hardness results hold for very simple parts; in

both reductions, each polygon has a constant number of vertices, and all segments are either vertical or

horizontal.

Several simplifications of the general problem have been analyzed with respect to their worst-case

computational complexity. Limiting both the number of translations in the sequence and the number
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of moving subsets to a single one (single-handed one-shot separability) permits a polynomial-time al-

gorithm [65]. In Chapter 2, we showed that allowing more than a single moving subset will make the

problem NP-hard even in the case of one-shot translations. When an arbitrary number of translations is

allowed, it is NP-hard even to identify a subset of parts that can be removed by a sequence of single-

handed translations [34]. The result holds regardless of whether the subset of moving parts is required

to be connected (touching parts) or not. In [23], it is theoretically shown that limiting the number of

translations in the sequence to a small constant allows for a polynomial-time single-handed algorithm.

However, this algorithm is rather complex, has not been implemented and its practicality has not been

demonstrated.

Although our above general problem is hard in the worst case, many practical instances of it are

much simpler because their initial configuration is either very constrained or very unconstrained. In the

following, we will exploit this fact to derive exact yet practically applicable algorithms. For instance, in

the initial placement in Fig. 3.1.a, the parts are tightly packed, which limits the set of possible translations

considerably.

3.2 Composite Configuration Space

We extend the configuration space concept from pairs of parts to an arbitrary number of independently

translating parts. A first formal description is derived to explain inherent combinatorial problems and

motivate our approach in the next section.

Let P1; : : : ; Pk be an overlap-free placement of polygons. (The discussion in the entire chapter

equally applies to polyhedra, the necessary extensions being quite obvious or mentioned otherwise.) We

allow for all parts to translate independently, thus the position of each polygon is given by two parameters

pi = (xi; yi). We assumepi = (0; 0) for the initial placement, sopi 6= (0; 0) describes the location of

polygonPi after a translational displacement. In the motion planning literature,pi is commonly called

the reference point. Note that its relative position with respect toPi is completely arbitrary as long as it

does not change. A spaceEd of dimensiond = 2k describes simultaneous placements of all parts.Ed

will be called thecomposite (assembly) configuration space. A point (x1; y1; : : : ; xk; yk) in this space is

forbidden if two or more parts intersect in their interiors in the corresponding placement. In this work,

we generally assume that parts are open sets and allow for overlapping part boundaries. The origin inEd

represents the initial placement of all parts and is not forbidden.

To obtain a formal representation of the composite configuration space, we use a similar approach as

in the case of one-shot translations (cf. Chapter 2): first derive valid relative placements for independent

pairs of parts, and then embed and combine them in the composite configuration space. Thus, an exact

and completeconvex cell decompositionof the composite configuration space is made up of the con-

straints from all pairwise configuration spaces. We will explain this representation, inherent problems

and ways to address them in detail in the following.
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CO(P,Q)

Figure 3.3: Decomposition of a two-dimensional configuration space by an arrangement of straight lines.

In robotics and computational geometry it is well-known that the set of forbidden relative placements

of a polygonPi translating with respect to a fixed polygonPj , is also a polygon (possibly with holes):

the so-calledconfiguration obstacleCO(Pi; Pj) [39]. (Several algorithms have been proposed in the

literature to compute it, cf. Chapter 5.) In our case, only the interior ofCO(Pi; Pj) is actually forbid-

den, since parts are allowed to touch at their boundaries. Formally,CO(Pi; Pj) equals the Minkowski

difference ofPj andPi, that is

CO(Pi; Pj) = Pj 	 Pi = fpj � pi j pi 2 Pi;pj 2 Pjg

It is important to note that this set is 2-dimensional, because it describes forbidden positions of

Pi’s reference point in a coordinate frame centered atPj ’s reference point. We call the set of rela-

tive placements ofPi with respect toPj a pairwise configuration space. Since the free space around

CO(Pi; Pj) may have a complex shape, we decompose it into simpler convex pieces: the boundary

edges ofCO(Pi; Pj) define an arrangement of straight linesA(Pi; Pj) in the plane (Fig. 3.3).A(Pi; Pj)

decomposes the set of allowed placements ofPi with respect toPj (the complement of the interior of

CO(Pi; Pj)) into closed convex cells. The cells can be assumed being closed, since only the interior of

the configuration obstacle is forbidden.

To resolve the asymmetry in the above definition ofCO(Pi; Pj), we next derive a characterization

of feasible placements ofPi andPj in global coordinates of their reference points. We can embed

the straight lines from the arrangementA(Pi; Pj) in the composite configuration spaceEd where they

become hyperplanes: a straight line inA(Pi; Pj) is described by a linear equationaxij+byij = c, where

a; b andc are constants and(xij; yij) represents the position ofPi’s reference point with respect to a

frame rigidly attached toPj and centered atPj ’s reference point. Since both reference points(xi; yi)

and (xj ; yj) are described using global coordinates inEd, we have(xij ; yij) = (xi � xj ; yi � yj).

(cf. Chapter 2, Section 2.2.2 for a similar substitution.) The straight line equation thus becomes a

hyperplanea(xi � xj) + b(yi � yj) = c in the four-dimensional space of all placements ofPi andPj .



3.2. COMPOSITE CONFIGURATION SPACE 45

As a consequence, we can embed this hyperplane inEd by simply regarding the above four-dimensional

equation as ad-dimensional equation with at most four non-zero coefficients.

3.2.1 Global Complexity Problem

To obtain a complete description of the composite configuration space, we have to perform the above em-

bedding for all straight lines derived from all pairwise configuration obstacles. The resulting arrangement

Ad partitionsEd into closed convex cells of dimensions ranging from0 to d. These cells are regular,

that is, all points within a single cell are either allowed or forbidden. (This follows directly from the

regularity of the embedded 2-dimensional cells.) We can thus label a cell inAd as allowed or forbidden

by examining a single point inside. Finding the label for a cell is straight-forward: choose an arbitrary

pointp within the cell, project it into all pairwise configuration spaces and test whether the projections

are outside (or on the boundary of) the configuration space obstacles for each pair. The projection of

p = (x1; y1; : : : ; xk; yk) into the configuration space of a partPi with respect to another partPj is the

point (xi � xj; yi � yj). The cell in composite space is allowed if and only if no projection is inside the

interior of the corresponding pairwise configuration obstacle, which means that no pair of parts intersect

in their interiors in the placementp.

In principle, a graph representation ofAd could be used to make the adjacency relations amongst the

cells explicit [13]. Such a graph would represent the connectivity of the composite configuration space

in an exact and complete way. An exact and complete algorithm for general translational would search

this graph for a sequence of adjacent free cells that connects the initial cell to an unbounded cell. Finally,

a ray in an unbounded cell proves that one or more parts can be removed. However, a complete graph

representation ofAd has an exponential number of nodes, and it is not possible to precompute such a

graph even for a small number of simple parts.

Note that motion planning based onexact cell decompositionof configuration space has been pro-

posed in the literature for a variety of other configuration space and cell types (cf. [39] for a survey).

The most general approach [59] is based on a cylindrical algebraic decomposition known as theCollins

Decompositionand allows – at least in theory – for considering more general types of part motions,

including rotations. However, all these approaches suffer from an exponential dependence on the config-

uration space dimension and are practical only if the number of independently moving objects is small.

3.2.2 Local Complexity Problems

Besides the exponential number of cells in a convex decomposition of composite configuration space,

the general dimension causes other combinatorial obstacles.

It is well-known that the number of vertices of a single cell in an arrangement of hyperplanes can be

exponential in the dimension of the space (for instance, consider a unit hyper-box). This problem also

arises for cells in our special type of arrangements that are defined by embedded pairwise constraints, as

illustrated by the following example.
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Figure 3.4: Example for single convex configuration space cell with an exponential number of vertices.
Sample vertices (a)(�;�;�;�), (b) (�;+;+;�), (c) (+;+;+;+).

The polygons in Fig. 3.4.a cannot be separated, but the latch and the U-shaped parts can move

independently to the left or right. A single convex cell defined by the linear constraintsf0 � xA �

1; 0 � xB � xA � 1; 0 � xC � xB � 1; 0 � xD � xC � 1; yA = 0; yB = 0; yC = 0; yD = 0g

represents the subset of free composite configuration space that is reachable via translations. Note that

the constraints are bounded by hyperplanes derived from pairwise configuration spaces (The unnamed

container is fixed and we therefore eliminated its coordinates from the constraints.) In general, we can

placek U-shaped parts in the container (let the container be part0 and the latch be partk + 1). Then

the vertices of the configuration space cell correspond to certain critical placements, and their number

is exponential ink: a maximization of
Pk+1

i=1 ci(xi � xi�1) using a specific combination(c1; : : : ; ck+1),

ci 2 f�1;+1g, yields a unique vertex. Three corresponding critical placements are shown in Figs. 3.4.a–

c, labelled according to the signs of theci in the objective function of the maximization (signs indicate

relative placements of adjacent nested parts). This example shows that, in the worst case, the number

of vertices of a cell in a composite configuration space can be exponential in the number of parts. Note

that the result holds even though the sets of feasible relative placements for each pair of parts have only

dimension one.

Inherent Local Configuration Space Complexity

Computing vertices can be avoided by working with a linear constraint representation that always has

polynomial size. In the above example, we need only2(k+1) linear equalities and inequalities. However,

another local combinatorial problem can obviously not be solved: a configuration may be contained in

an exponential number of different cells, and this is independent of a particular convex decomposition.

Lemma 5 The optimal convex decomposition of an�-ball around a given configuration in a composite

translational configuration space ofk parts consists of
(2k) cells in the worst case.

Proof: We show that the configuration ofk boxes in Fig. 3.5.a must be contained in the intersection of

at least2k�1 convex configuration space cells. To prove this, we define2
k�1 critical placements obtained

by independently sliding each pair of adjacent boxes an infinitesimal distance along their horizontal or

vertical edge pairs in contact. Figs. 3.5.b,c show two such placements. We can label the critical place-
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Figure 3.5: (a) Configuration contained in an exponential number of convex configuration space cells.
(b),(c) Critical configurations that cannot be in the same convex cells.

ments with tuples of lengthk � 1: thei-th entry in a label will beh (respectivelyv) if boxesi andi+ 1

have been shifted along their horizontal (vertical) edge pair. Thus, the labels for the critical placements

in Figs. 3.5.b,c are(v; h; : : :) and(h; v; : : :), respectively. In general, two different critical placements

cannot be connected in composite configuration space by a straight line segment, because at least one

part would have to move around the vertex of another part; so they must be contained in different convex

configuration space cells. Since we shift boxes only an infinitesimal distance, all these cells must con-

tain the initial placement in Fig. 3.5.a which is therefore contained in the intersection of an exponential

number of cells. 2

For three-dimensional parts, the result can be extended. We use polyhedra, each of them being

composed of two cones that have been agglutinated together with their bases. The bases are regularn-

gons. In the initial placement, the parts will be stacked on top of each other with touching tips of adjacent

parts. We therefore have

Corollary 2 The optimal convex decomposition of an�-ball around a given configuration in a composite

translational configuration space ofk three-dimensional parts, each havingO(n) vertices, consists of


(nk) cells in the worst case.

Thus, an optimal local decomposition of the composite configuration space cannot be computed

within reasonable time in the general case. (Note that the problem of finding optimal convex decompo-

sitions is already NP-hard in two dimensions under certain circumstances [41].) Furthermore, it does not

seem to be possible in general to efficiently find a single non-trivial convex cell around a given config-

uration. In other words, the only thing we can compute efficiently in the general case is a cell that is

guaranteed to contain the current placement.

Lemma 6 The problem of finding a convex cell of dimension greater than zero that contains a given

configuration in free composite translational configuration space is NP-hard.
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Proof: Palmer [50] proves that testing for arbitrary infinitesimal translational motions, a closely related

problem, is NP-hard (by a reduction from 3-SAT). The construction principle is similar to our proof of

Lemma 3 in Chapter 2 (p. 31) but works without fixture constraints at the cost of requiring more than

two directions of motion. For a given 3-CNF expressionE, Palmer’s proof specifies a placement of

polygonal parts (without overlapping interiors) for which infinitesimal translation is possible if and only

if there is a satisfying truth assignment forE. Finding a convex configuration space cell that contains

further placements in addition to the given one would allow for an efficient test if translational motion is

possible by maximizations along an arbitrary base of the composite configuration space. This proves our

claim. 2

3.2.3 Towards a Practical Algorithm: C-space Expansion

We showed that the composite configuration space may locally decompose into an exponential number

of convex cells (Lemma 5). This inherent worst-case complexity cannot be circumvented by any convex

decomposition. The problem of locally finding a non-trivial cell turned out to be NP-hard (Lemma

6). In the light of these results and several related hardness results for convex decompositions in the

plane [41, 9], one must consider the problem of finding an optimal convex decomposition of composite

configuration space to be intractable. However, our experiments showed that in many relevant cases, we

can in fact obtain good decompositions.

The exponential overhead arising from direct global arrangement computation, as discussed in Sec-

tion 3.2.1, can be drastically reduced in most practical cases with a generic approach. In particular,

arrangement pre-computation can be avoided altogether byimplicit representationand incremental ex-

pansion.

The next three sections describe our methods to realize these two concepts. First, in Section 3.3

we describe basic data structures to ’unclutter’ the decomposition induced by an arrangementAd of

hyperplanes and to avoid computation of complete cell boundaries and non-reachable regions inEd. We

showed above that computing an explicit vertex-face representation is prohibitive even for single cells

in composite configuration space, because the number of vertices can be exponential in the number of

parts. An implicit linear constraint representation is therefore used instead. This representation allows

for efficient incremental expansion of a single connected component containing the initial placement.

Section 3.4 will then show how the number of computed cells can be reduced even further by dynamically

eliminating redundancies. This additional ’defragmentation’ replaces up to an exponential number of

cells by their convex union without the need to handle them explicitly. Finally, in section Section 3.5,

we present further heuristic strategies to improve on the methods in the preceding sections, point out

practically relevant extensions and state open problems for future research.



3.3. C-SPACE EXPANSION: FLOORGRAPHS AND D-GRAPH 49

CO(P,Q)

1

2

3

4

5

6

7

CO(P,Q)

(a) (b)

Figure 3.6: (a) Decomposition of free two-dimensional configuration space by arrangement of straight
lines, (b) decomposition into overlapping convex cells bounded by line segments and rays and superim-
posed floorgraph.

3.3 C-space Expansion: Floorgraphs and D-graph

Direct and global arrangement computation is not applicable if the dimension is not a small constant.

First, an arrangement of straight lines (and, as a consequence, the arrangement of embedded hyper-

planes) suffers from excessive cell fragmentation. Second, it is not necessary to compute the entire cell

decomposition ofEd. Free space may partition into several connected components, and when testing for

removability it suffices to compute only the component that contains the initial placement.

We therefore introduce two new data structures,floorgraphsandD-graphs. These will allow for an

implicit representation and efficient storage of free space and provide the basis for incremental compu-

tation of high-dimensional configuration spaces for translational motions.

3.3.1 Floorgraphs

Partitioning pairwise configuration spaces into cells using straight lines introduces excessive cell frag-

mentation. Since the underlying space has small constant dimension (2 in the case of polygons and 3 for

polyhedra), better approaches are possible. Convex decompositions in two and three dimensions have

been extensively studied in the literature (cf. [41, 5, 4, 7] for example). While finding optimal decompo-

sitions is NP-hard (e.g. for polygons with holes, polyhedra), near-optimal solutions can often be obtained

with simple and robust algorithms.

Fig. 3.6 shows an example of a configuration space decomposition for two partsP andQ by straight

lines and a better decomposition of the same space using line segments and rays. Note that the sec-

ond approach yields substantially fewer cells than the simple decomposition with straight lines. For

the moment, we disregard whether the decomposition is good with respect to the given placement and
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configuration space of all parts. We assume that the pairwise decompositions can be obtained in an

independent preprocessing step. (Our experiments show that this approach works well in many cases.)

For a pair of parts, we define afloorgraphas a compact representation of a convex decomposition of

free configuration space and its connectivity:

Definition 6 (Floorgraph) A floorgraph for a pair of parts(P;Q) is a graph whose nodes are closed

convex cells that cover all placements of the two parts in which their interiors do not intersect. Cells

are described by linear constraints on the coordinates of the reference points assigned to the parts. Two

nodes are connected by an undirected edge if their associated cells intersect.

A floorgraph for a pair of polygons(P;Q) can be obtained by decomposing the complement of the

setinterior(CO(P;Q)) into overlapping closed convex2-dimensional cells bounded by line segments

and rays. Note that in Fig. 3.6, cells overlap only at their boundaries. This is what is commonly called a

partitioning. In our case, we may allow a more general covering where cells overlap in their interiors as

well. (However, covering seems to have greater complexity than partitioning.) Floorgraph node cells are

represented by embedded linear equalities and inequalities in the absolute part positions(xP ; yP ) and

(xQ; yQ), that is, for two-dimensional parts, they have the general formax(xP �xQ)+ay(yP �yQ) � b.

The floorgraph for the decomposition in Fig. 3.6.b is superimposed in the picture. Here, the constraints

associated with node 5 arefxP �xQ � c; yP �yQ � dg, wherec andd are constants. Note that because

in general,CO(P;Q) = �CO(Q;P ), the orientation of the configuration obstacle does depend on the

part order (since it is computed in relative coordinates of the first part with respect to the second part) but

the floorgraph constraints donot (they are embedded, that is, given in absolute part positions).

The advantage of the floorgraph representation is that cells in the composite space of all parts are

bounded by surface patches rather than extended hyperplanes. (Although cells themselves are defined as

the intersection of half-spaces, each cell has its own set of them and is thus not unnecessarily partitioned

by hyperplanes of other cells.) As a consequence, free space is decomposed into considerably fewer cells

in comparison to a direct approach using extended hyperplanes.

For three-dimensional parts, the configuration obstacle of two polyhedra is a polyhedron [39] and

its complement can be described in a similar fashion as a union of convex cells in 3-space. In practice,

computing configuration obstacles and free cells in three dimensions can be a challenging task, especially

for nonconvex polyhedra with many vertices. We will discuss this issue in Section 5.1.

3.3.2 D-graph and Basic Incremental Algorithm

Floorgraphs are introduced to manage constraints from pairs of parts. To obtain a description of valid

placements in the composite configuration space of all parts, we combine the floorgraphs from all pairs

of parts into a new data structure, calledD-graph. A D-graph is an exact and compact representation

of cells and their adjacency relations in thed-dimensional composite configuration space. It is defined

implicitly via D-nodesandD-edges.
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Definition 7 (D-node) LetG1; : : : ; GD be floorgraphs for all pairs of parts(i; j), where1 � i < j � k

andD = k(k � 1)=2. A D-node is a tuple(n1; : : : ; nD) whennl is a node inGl for 1 � l � D.

Associated with each D-node is the set of all embedded pairwise linear constraints stemming from the

contained floorgraph nodes.

A D-node represents a convex cell of valid placements of all parts obtained by embedding and in-

tersecting floorgraph node cells from all pairs of parts. Note that most D-nodes represent empty cells,

as most combinations of nodes stemming from the pairwise floorgraphs yield infeasible constraint sets.

However, for a given valid placement of parts we can compute a D-node that contains this configura-

tion: we project the configuration to each pairwise configuration space and search the corresponding

floorgraphs for the cell (node) containing the projection.

The example in Fig. 3.7 illustrates D-node construction from floorgraphs for all pairs of parts. It

shows a configuration of three boxes (a), the generic floorgraph for a pair of boxes (b) and the principle for

constructing the D-node containing the given configuration (c). For clarity, the floorgraphs and pairwise

configuration spaces corresponding to the D-node entries are referenced by arrows in (c). For example,

the first entrye stems fromF loorgraph(A;B) and states that the relative position ofA with respect to

B is contained in celle. The set of embedded constraints for the complete D-node (e, s, w) is therefore

(a; : : : ; f are constants):

f xA � xB � a; yA � yB � b| {z }
e

, xA � xC � c; yA � yC � d| {z }
s

, xB � xC � e; yB � yC � f| {z }
w

g

We call two D-nodesneighborsif and only if their associated cells have non-empty intersection. To

find the neighbors of a D-node, we define asuccessor relationon D-nodes:

Definition 8 (Successor D-node, door cell, D-edge)A D-nodeS0 = (n01; : : : ; n
0
D) is called successor

of a non-empty D-nodeS = (n1; : : : ; nD) if and only if

1. ni andn0i are neighbors in floorgraphi,

2. nj = n0j for all j 6= i, and

3. the combined constraints from(S; n0i) define a non-empty cell, called door cell.

We say that a D-nodeS and its successorS0 are connected by a D-edge.

Basic Incremental Algorithm for General Translational Separability

A valid sequence of translations that allows for removing one or more parts can be found by searching

the implicitly given D-graph. We begin with constructing a D-node that contains the initial configuration

(part placement) and recursively explore successor D-nodes using a standard search algorithm, such

as depth-first search. For a given valid D-node, we generate all successor D-nodes by successively
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Figure 3.7: Example for D-node construction from pairwise floorgraphs.
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exchanging all its entries, one at each step, and verifying condition (3) in Definition 8 with a standard

linear feasibility test. Note that these steps avoid computing the complete boundaries of cells in high-

dimensional space: instead they only test feasibility ofdoor cells, that is, if the convex patches(S; n0i)

contribute to the boundary of the D-node cell. In [64] we have proved formally that all neighbors of a

feasible D-node can be reached via successor D-nodes, i.e. by switching floorgraph nodes one at a time.

During the search, visited D-nodes are stored to avoid visiting them more than once, and for retrieval

of a solution path after the search has terminated successfully. For the latter purpose, a handle to access

the predecessor D-node has to be stored together with each visited D-node. Efficient access to visited

D-nodes is important and discussed in Chapter 5.

Every new D-node cell is tested for unboundedness immediately after generation. Once an un-

bounded cell is found, the search stops and the algorithm can output a sequence of neighboring free

D-nodes that connects the initial cell to the unbounded cell. For this, we follow the pointers to the pre-

decessor D-nodes back to the initial D-node. Since neighboring cells have non-empty intersection, a

removal path for one or more parts (a continuous curve inEd) can then be ’threaded’ through them. In

the simplest case, we may choose a sequence of straight line segments supported by points anywhere in

the intersections of adjacent cells.

This basic algorithm is summarized in Tab. 3.1. It incorporates two principles: bounding cells by

surface patches and incremental computation. In most practical cases, only a very small portion of the

entire D-graph will actually have to be constructed. A fast and complete test for unboundedness is

important, since many cells have to be tested during the search. Note that all cells except the last will

be bounded. It is therefore important that the test can establish boundedness efficiently without missing

possible unbounded directions. We present such a test in Chapter 4 that is fast both for bounded and

unbounded cells. Problem specific heuristics may be included to guide and speed up the search (cf.

Section 3.5). Nevertheless, combining floorgraph nodes from all pairs of parts induces an unnecessary

fine cell decomposition. We will focus on this problem and approaches to defragment the decomposition

in Section 3.4.

3.3.3 Analysis

We first consider a global arrangementAd that is derived from extended hyperplanes, as described in

Section 3.2.1. The number of cells in this arrangement is a first, although very loose, upper bound on

the number of D-nodes visited during the search. For the moment, let us assume polyhedral parts. The

faces of each part can be decomposed into triangles. Letn be the maximum number of triangles in each

of thek parts. Thenn is a bound for the number of vertices of each part. To compute a configuration

obstacle (Minkowski-difference) of a pair of parts, it suffices to compute the Minkowski-differences

for pairs of triangles on faces. We thus obtainO(n2) inequalities for each pair of parts. The number

of such pairs isO(k2), so that the total number of half-spaces inAd is in O(k2n2). It is well-known

than an arrangement ofu hyperplanes ind dimensions has at mostO(ud) cells, including cells of lower
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Input: Overlap-free placement of polygons or polyhedraP1; : : : ; Pk.

Output: Sequence of adjacent free cells containing a path that separates the parts.

1. For1 � i < j � k

� ComputeF loorgraph(Pi; Pj).

� Find a floorgraph noden0ij that contains the initial placement ofPi andPj.

2. S0  (n01;2; : : : ; n
0
k�1;k) co: construct a D-node for the initial configuration.

3. L [S0] co: initialize a list of D-nodes.
V  fS0g co: initialize a set of visited D-nodes.

4. While notempty(L)

� S  removefirst(L)

� L0  [ ] co: initialize an empty temporary list of successors.

� For each nodenij in S

� For all neighborsn0ij of nij in F loorgraph(Pi; Pj)

� S0  S. Replacenij in S0 by n0ij.

� If S0 62 V andfeasible(S; n0ij) then

� SupplementS0 with a handle to accessS in V .

� V  S0 co: markS0 as visited.

� If unbounded(S0) then output the path fromS0 to S0 and stop.

� L0  append(L0; S0) co: append the new D-node toL0.

� L conc(L0; L) co: attach the new successors at the front ofL.

5. Outputinfeasible.

Table 3.1: Basic D-graph search algorithm using a depth-first strategy.
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dimension (see e.g. [13]). ThusAd has at mostO((kn)2d) cells. Here,d = 3k (polyhedral case).

Due to the PSPACE-hardness of our basic problem, it is clear that every worst-case upper bound

on the number of convex cells has to be exponential. However, using floorgraphs, the above bound can

be made independent ofn, the maximum number of triangles per part. In [64], we derive a bound that

depends on the maximum numberm of nodes in a single floorgraph. Note that usually,m is much

smaller thann.

Lemma 7 ([64]) The number of node expansions in the algorithm in Tab. 3.1 is bounded byO(k2dmd
),

wherem is the maximum number of nodes in a connected component of a floorgraph andk is the number

of parts.

Sincek andd are related, the above bound on the number of node expansions can be reduced further

(in the case of three-dimensional parts):

Lemma 8 ([64]) There is a constantd0 such that the number of node expansions in the algorithm in

Tab. 3.1 is bounded byO(kf(d)mg(d)
), wheref andg are functions withf(d) < d andg(d) < d for any

d larger thand0 .

3.4 C-space Expansion: Further Cell Defragmentation

The basic incremental configuration space expansion algorithm in the previous section improves over

global arrangement computation in two ways: first, by combining floorgraphs rather than composing an

arrangement full hyperplanes, it significantly unclutters the decomposition. Second, by implicit graph

representation and incremental computation instead of global graph computation, it expands only reach-

able configuration space regions and avoids computing complete cell boundaries.

However, combining constraints derived from all pairs of parts still generates an unnecessarily fine

decomposition. In this section, we will first illustrate by means of a simple example that unnecessary

constraints can cause exponential overhead. In particular, convex regions in free configuration space may

be artificially partitioned into an exponential number of fragment cells (individual D-nodes). We then

discuss ways to reduce this cell fragmentation by eliminating unnecessary constraints from the D-nodes.

3.4.1 Reduced D-nodes: Improved Decomposition

Consider the example in Fig. 3.8.a. It consists of a containerX with four separate slots, numbered 1

to 4, and four boxes, namedA, B, C andD. The floorgraphs for any of the four (box, container) pairs

are topologically equivalent to the container and consist of five cells each: four cells, labelled 1 to 4,

correspond to the slots, and a fifth cell connects them. We may assume that the floorgraphs for each pair

of boxes is equivalent to the floorgraph in Fig. 3.8.b and consists of a single component of four connected

cells.
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Figure 3.8: Example for D-node reduction: (a) placement of parts, (b) representative floorgraph for two
boxes(A;B).

X

CB DA
1 2 43

2

5

X

CB D

A

2 3 4

(a) (b)

1 2

5

X

C DB

A

2 43

A

B C D

X

42 3

5

1 2

5

1

X

CB D

A

2 3 4

(c) (d) (e)

Figure 3.9: (a) Graph representation of reduced D-node for the configuration in Fig. 3.8.a. (b)–(e) Graph
representations of reduced D-nodes whenA moves from left to right in cell5 of X.
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We form the D-node for the configuration in Fig. 3.8.a by identifying for each pair of parts the

floorgraph node that contains their relative placement:

(1AX ; 2BX ; 3CX ; 4DX ; 3AB ; 3AC ; 3AD; 3BC ; 2BD ; 2CD)

where, e.g.1AX denotes that the relative position of partA with respect toX is contained in cell1 in

F loorgraph(A;X).

The four boxes cannot interact during a single simultaneous translation, as long as they stay within

their current slots. However, even when all boxes are required to stay within different cells in the con-

tainer, the basic incremental algorithm in the previous section will generate and test an exponential num-

ber of D-nodes. (All vertical orderings of the boxes are contained in different D-nodes.) More precisely,

in the particular example, the basic algorithm expands D-nodes of the form

(1AX ; 2BX ; 3CX ; 4DX ;2AB ;2AC ;2AD;2BC ;2BD;2CD)

where2 corresponds to either node2 or 3 in the corresponding floorgraphs. This kind of combinatorics

is an artifact of the algorithm and is unnecessary since the union of all these D-node cells is a single

convex cell. Floorgraphs for all box pairs based on different decompositions, for example using verti-

cal rays, would solve the combinatorial problem for this example D-node. However, inferring suitable

decompositions of pairwise configuration spaces in advance is not possible without knowledge of the

part placement as a whole. Thus, we proceed differently and show that the partitioningin the composite

configuration spacecan be adapted dynamically during the search by discarding redundant constraints.

Since the boxes are well-separated by the container, the current configuration space cell can be de-

scribed by the reduced tuple

(1AX ; 2BX ; 3CX ; 4DX)

and this is independent of the pairwise box decompositions. Note that floorgraph nodes for all box

pairs have been eliminated. The corresponding set of constraints is sufficient to prevent all parts from

intersecting, because the boxes are well separated within different cells of the container. On the constraint

level, one may verify this by projecting the reduced set of constraints to all pairwise configuration spaces

of the eliminated pairs. The projections will not intersect the corresponding pairwise configuration space

obstacles. In our case, this reduction replaces an exponential number of cells by a single cell representing

their union. (Consider an extension of the above example tok boxes ink distinct slots of a similar

container.)

It can also be observed in most other examples that only a subset of all pairs of parts must be separated

by explicit constraints on their positions. However, the set of required constraints may change during the

search since a sequence of cells in configuration space is traversed and different pairs of parts can come

into proximity. These observations motivate the following
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Definition 9 (Reduced D-node)A reduced D-node is a D-node in which one or more constraints have

been eliminated safely. We say that a constraint can be eliminated safely from a (reduced) D-node if and

only if the set of remaining constraints allows only for placements in which no two parts intersect in their

interiors.

Safe elimination of a single constraint hyperplane extends the D-node cell into one of its neighbor-

ing cells. An entire floorgraph node can be removed from the D-node if all its constraints have been

eliminated safely. As a consequence, the D-node is augmented to one or more of its successors.

A good concept for representation and visualization of required floorgraph nodes is to interpret D-

nodes themselves as graphs:

Definition 10 (Graph representation of a (reduced) D-node)In the graph representation of a (reduced)

D-node, nodes correspond to parts in the assembly, and an edge between two parts is labeled with the

current floorgraph node (if required) of the two adjacent parts.

According to this definition, all D-nodes in the previous section were complete graphs (cliques).

Eliminating floorgraph nodes from a D-node tuple corresponds to deleting edges in the graph repre-

sentation. Note that edges in the graph representation of a D-node are undirected, since they represent

floorgraph constraints. The latter do not depend on the order of the parts because they are embedded in

the space of absolute part positions.

Fig. 3.9.a shows the graph of the reduced D-node that contains the configuration in Fig. 3.8.a. The

edges are labeled with the required floorgraph nodes. This D-node represents all possible configurations

in which all boxes stay within their current cells in the container. Edges between pairs of boxes are not

required, because the corresponding constraints could be eliminated safely.

Now assume that boxA has moved from cell1 into cell5 of the container (that is, on the intersection

of cells1 and5). The reduced D-node for this situation is shown in Fig. 3.9.b. In this context, constraints

for the pairAB are required, sinceB may rise up above the walls inX and interfere withA which is

now free to move to the right. (Recall that the cells in the figure only symbolize the real configuration

space cells; in particular, cell2 inX resembles the cell inCO(B;X) for a reference point onB’s bottom

edge.) Four reduced D-nodes are sufficient to cover all placements in whichA is in cell5 of the container

while all other boxes remain in their initial slots (Figs. 3.9.b–e). The figures show the reduced D-nodes

that cover an imaginary motion ofA from left to right within cell5 of the container. Note how edges are

dynamically added and deleted asA passes the respective vertical constraint between nodes2 and1 in

F loorgraph(A;B), thenF loorgraph(A;C) and finallyF loorgraph(A;D). In a generalization of this

example withk boxes, the number of reduced D-nodes that are required to cover all placements in which

A is in cell 5 of the container isO(k), whereas the number of non-reduced D-nodes would be
(2
k
).

The combinatorial overhead is caused by considering vertical orderings of boxes in adjacent container

slots.
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Graph type Represents Nodes Edges

Floorgraph Convex cell decomposition of pairwise
relative placements

Convex cells Convex cells

D-graph Implicit convex cell decomposition of
composite configuration space

D-nodes D-edges

D-node Required floorgraph nodes (constraints
on relative part positions for pairs)

Parts Floorgraph
nodes

Table 3.2: Types of graphs for incremental c-space computation.

Note that the constraints that can be eliminated safely from a D-node arenot necessarily redundant

in the classical sense of linear programming. There, constraints are considered redundantonly if they do

not affect the set of feasible solutions. That is, after insertion or deletion of a constraint that is redundant

in the classical sense, the cell remains unchanged. In our case, constraints that do partition the original

cell may be eliminated additionally. As seen in the above example, the concept of D-node reduction

allows to replace up to an exponential number of cells by their union and thus significantly unclutters the

decomposition.

In Tab. 3.2, we summarize the different types of graphs defined above.

3.4.2 Improved Incremental Algorithm

In general, by using reduced instead of complete D-nodes, the incremental search algorithm gains in

efficiency because

� fewer successor D-nodes have to be generated and tested,

� fewer constraints contribute to each cell ind-dimensional space,

� the cell decomposition becomes coarser, thereby reducing the size of the D-graph, and

� artificially bounded cells become unbounded and allow for earlier termination of the search.

Tab. 3.3 shows the improved incremental search algorithm which is an extension of our basic incre-

mental algorithm from Section 3.3.2 to reduced D-nodes (new parts are highlighted). The new algorithm

first constructs a complete D-node for the initial placement and then calls the functionreduce(). This

subroutine removes unnecessary constraints and floorgraph nodes, and returns a reduced D-node. After

that, the search proceeds as in the basic version, but only non-eliminated floorgraph nodes are switched,

thus generating significantly fewer successor candidates.

Extra work is necessary for maintaining the reduced D-nodes during the search. When moving to a

successor D-node, a validation of the reduced D-node must be performed. As a consequence, edges may

have to be added to or can be deleted from the graph representation of the D-node. This is done by the
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Input: Overlap-free placement of polygons or polyhedraP1; : : : ; Pk.

Output: Sequence of adjacent free cells containing a path that separates the parts.

1. For1 � i < j � k

� ComputeF loorgraph(Pi; Pj).

� Find a floorgraph noden0ij that contains the initial placement ofPi andPj.

2. S0  (n01;2; : : : ; n
0
k�1;k) co: construct a D-node for the initial configuration.

3. SR  reduce(S0) co: eliminate unnecessary floorgraph nodes

4. L [SR] co: initialize a list of D-nodes.
V  fSRg co: initialize a set of visited D-nodes.

5. While notempty(L)

� S  removefirst(L)

� L0  [ ] co: initialize an empty temporary list of successors.

� For each nodenij in S co: consider only non-eliminated entries

� For all neighboursn0ij of nij in F loorgraph(Pi; Pj)

� S0  S. Replacenij in S0 by n0ij.

� S0  verify(S0) co: add and/or delete constraints.

� If S0 62 V andfeasible(S; n0ij) then

� SupplementS0 with a handle to accessS in V .

� V  S0 co: markS0 as visited.

� If unbounded(S0) then output the path fromS0 to S0 and stop.

� L0  append(L0; S0) co: append the new D-node toL0.

� L conc(L0; L) co: attach the new successors at the front ofL.

6. Outputinfeasible.

Table 3.3: Improved D-graph search algorithm derived from the basic algorithm in Tab. 3.1. Differences
are highlighted.
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subroutineverify() which takes as argument a (reduced) D-node and returns a copy thereof after having

performed the necessary adjustments.

Note that the tasks to be solved byreduce() andverify() are all but trivial, and will be discussed in

detail in the next subsection.

The correctness of the improved algorithm follows from the correctness of the basic incremental

algorithm and the requirement that removing constraints must be safe, that is, must not introduce col-

lisions. The completeness follows from the completeness of the basic algorithm and the fact that the

improved algorithm computes a cover of all D-node cells visited by the basic incremental algorithm.

3.4.3 Problems of D-node Reduction

According to Definition 9 in Section 3.4.1, a constraint can be eliminated safely from a (reduced) D-

node, if and only if the set of remaining constraints describes only allowed placements of all parts. In

practice, however, this definition is not immediately useful and raises the following questions:

� Which subset of constraints should be eliminated, and how can we identify such a subset?

� Having chosen constraints for elimination, how do we prove that eliminating them is safe, that is,

no collisions are possible amongst the parts after elimination?

We discuss these problems next and possible solutions thereafter.

3.4.3.1 Optimal Defragmentation is Intractable

We show that it is a hard problem to determine which constraints should be eliminated from a D-node to

yield optimal defragmentation.

In general, the maximum size subset of constraints that can be removed safely from a D-node is not

unique. Fig. 3.10 illustrates this problem. The D-node cell is shaded with light gray, and the bounding

planes of the embedded linear floorgraph constraints are indicated by thin solid and dashed lines. Bold

segments indicate surface patches stemming from the pairwise configuration obstacles. Since we allow

touching part boundaries, the patches themselves are not forbidden, but an�-ball centered at a point on

such a patch will contain forbidden placements for any� > 0. Thin segments on the cell boundary rep-

resent feasible door cells (passages to neighboring cells). Note that in this figure, we do not distinguish

constraints stemming from different floorgraphs. As a consequence of our floorgraph decompositions,

parts of the obstacle boundary do not contribute hyperplanes to the current cell (for example, the cusps

below H). The dashed lines represent hyperplanes that do not bound the current cell, therefore being

redundant in the classical sense of linear programming. In this example, discarding the constraint hyper-

planesfE;F;Gg extends the current cell to cover four additional cells (labelled with o’s in the figure),
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Figure 3.10: Sketch of D-node cell inEd. Defining constraints (solid lines), forbidden surface patches
(thick segments), current non-boundary constraints (dashed lines).

while elimination offE;F;Hg covers six additional non-trivial cells (labelled with x’s) and therefore

yields a better defragmentation than the first subset. The resulting expanded cells are shown in Fig. 3.11.

Optimal cell defragmentation would require finding a subset of constraints that bounds a valid cell

of maximum size. To show that this problem is NP-hard, we do not have to give an exact definition of

cell size. We merely need the fact that a cell containing at least two different configurations (points)

is obviously larger than a cell that contains only a single configuration. Then, NP-hardness is a direct

consequence of Lemma 6 in Section 3.2.2 (NP-hardness of finding a cell of dimension greater than

zero around a given configuration). In other words, if we could find the best subset of constraints for

elimination, we could solve the infinitesimal translational movability problem for polygons which has

been shown to be NP-hard [50]. Note that a superset of the constraints required to describe a cell that

contains an infinitesimal translational motion can always be derived in polynomial time.

3.4.3.2 Verification of Reduced D-nodes is Costly

For the moment, assume that we could guess (nondeterministically) an optimal subset of constraints that

can be removed safely. We must prove that the reduced D-node does not contain forbidden placements.

This may be computationally costly although it does not involve combinatorial problems. In particular,

we have to prove that no intersections are possible for any pair of parts for which one or more constraints

have been eliminated from the D-node. To test whether the reduced D-node cell contains forbidden rela-

tive placements of a specific pair of parts(Pi; Pj), the following two different approaches are possible:
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Figure 3.11: Expansion of the cell in Fig. 3.10. (a) Considering elimination of hyperplanesfE;F;Gg.
(b) Considering elimination of hyperplanesfE;F;Hg.

� Embed and intersect in high-dimensional space.If the configuration obstacleCO(Pi; Pj) is

convex or can be decomposed into few convex pieces, we can embed it or its convex pieces

and test for intersections with the D-node cell directly by high-dimensional feasibility testing. If

CO(Pi; Pj) cannot be decomposed into a reasonably small number of convex pieces, one should

consider surrounding it by a convex bounding volume hierarchy (for example, using axis-aligned or

oriented bounding boxes), and intersect only the necessary embedded convex bounding volumes

with the D-node cell. Such hierarchies are state-of-the art for interference detection of massive

polyhedral models and broadly discussed in the literature, e.g. [38].

� Project and intersect in low-dimensional space.Alternatively, we can project the D-node cell

into the space of relative placements of partPi with respect to partPj to test for intersections of

the projection withCO(Pi; Pj) in a space of low constant dimension. Interference detection can

be accelerated by simultaneously growing and maintaining an inner and an outer approximation of

the projection (Appendix A.1). As soon as the inner approximation intersects or the outer approx-

imation no longer intersectsCO(Pi; Pj), we can stop. Additionally, bounding volume hierarchies

can be used forCO(Pi; Pj). Note that this approach allows for simultaneously projecting the cell

into multiple pairwise configuration spaces of disjoint pairs of parts.

Although these methods for detecting interferences for a pair of parts are conceptually straight-

forward, they may cause a significant computational burden. Each of them may involve multiple op-

erations on the high-dimensional D-node cell, and�(k2) of them may be required to prove the entire

reduced D-node. In practice, however, it is also hard to find acoherent(not necessarily optimal) set

of removal candidates without intermediate pairwise verifications. (A set of candidates can be called

coherent if all of them can actually be removed safely.) We would therefore have to eliminate constraints
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one-by-one and perform, after each such elimination step, a verification for all pairs for which we have

already eliminated one or more constraints. This would yield a total of
(k4) such tests to reduce a

complete D-node, which is impractical for largek.

3.4.4 Practical Approaches for Reduction and Verification

A smallest subset that allows for identifying redundant pairwise constraints consists of three parts. Note

in this context, that a triple of parts involves three floorgraph nodes. We describe a simple and practical

elimination scheme based on triples of floorgraph nodes. It ignores the problem of finding an optimal

set of removal candidates (the D-node is processed from left to right, and constraints from entire floor-

graph nodes are eliminated one-by-one) and reduces the effort for verifying each elimination step by

not considering all remaining constraints for the interference tests. The approach does not remove all

possible redundancies but has been observed to work with great success in all of our experimentally

evaluated examples (cf. Chapter 6). Furthermore, it allows for simple and very efficient implementations

of the functionsreduce() andverify() that are required by our improved incremental algorithm in the

previous subsection.

Thereafter, in Section 3.4.4.2, we discuss an alternative approach that allows for advanced cell de-

fragmentation.

3.4.4.1 Simple and Fast D-node Reduction Based on Triples

To safely eliminate a floorgraph nodenij corresponding to a pair of parts(Pi; Pj) from a D-node, we

identify a third partPg, called aguard, that prevents intersections ofPi andPj . A part qualifies as

a guard if suitable floorgraph nodesnig andnjg (we call themhandcuffs) are present in the D-node.

The constraints from the handcuffs must suffice to prevent intersections ofPi andPj . For instance, in

Fig. 3.8.a, the containerX is a guard for all pairs of boxes, and in particular,1AX and2BX are handcuffs

that allow for elimination of3AB . Once a nodenij is eliminated, the required handcuffs must be marked

and can no longer be eliminated from the D-node.

There are several advantages of this approach: First, interference detection by embedding or projec-

tion becomes faster and independent of the number of parts (for a triple, we have a configuration space of

constant dimension). Second, since the dependencies are explicit, we can maintain a symbolic database

to store and quickly look-up previous eliminations. A pair of handcuffs for a specific elimination candi-

date has to be verified only once, when first encountered. Referencing a table is usually much faster than

explicit methods for interference detection such as linear feasibility testing, cell projection and geometri-

cally based computations, even in low dimensions. Finally, for a single pair of parts, the total number of

candidate handcuff pairs in a D-node equalsk � 2 (the number guard candidates). Therefore, the triple

method requires onlyO(k3) low cost low-dimensional interference tests (or just table references), while

a one-by-one approach using constraints from the complete D-node cell may require
(k4) high cost

high-dimensional operations in the worst case.
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nij

nia (j; a)

nij

nja(i; a)

Figure 3.12: Dependencies of elimination: Arrows point from handcuffs to an eliminated D-node entry.
Left: nij andnia are handcuffs for eliminating(j; a) and parti is the guard. Consequently,nij is not
required as handcuff fornia, because the latter is itself a handcuff. Right: analogously, partj being the
guard.

A further improvement is possible. In addition to fast table look-up, much of the verification process

(in the functionverify()) can be performed dynamically. The effort of considering all triples is actually

required only for reducing the first D-node. The key observation is that when we step from the current

reduced D-node to one of its successors, only a single floorgraph node is being exchanged. We therefore

introduce pointers from eliminated D-node entries (pairs) to their handcuffs and vice versa, to dynami-

cally update the dependencies and test only those pairs that are actually affected by the switch-over.

This dynamic variant is indeed a significant improvement. Assume that a non-eliminated floor-

graph nodenij in the current D-node is being replaced byn0ij, which is one of its neighbours in

F loorgraph(i; j). We have to find and check all eliminated D-node entries that requirednij as a hand-

cuff. (Usingnij as a handcuff, eitherPi or Pj must have been a guard .) To this end, we follow the

pointers fromnij to pairs of the form(i; a) and(j; a). If (j; a) had been eliminated, thenPi must have

been the guard, and if(i; a) had been eliminated,Pj must have been the guard. Fig. 3.12 shows that

at most one of these two pairs can actually have been eliminated and therefore requirednij as a hand-

cuff. Thus, after switching fromnij to n0ij, at mostk � 2 eliminated D-node entries have to be verified.

Now assume that the new handcuff candidaten0ij is not sufficient for elimination ofr � k � 2 of these

previously eliminated D-node entries. Theser positions have to be filled with new floorgraph nodes,

since the floorgraph nodes that were eliminated somewhere in the past may have been left meanwhile.

Finding these new nodes is straight-forward, since we have obtained a valid placement of all parts when

moving fromnij to n0ij. The new floorgraph nodes may release at mostr handcuffs that pointed to their

D-node positions, if not required for another elimination (as a detail,n0ij may be released additionally

if it disqualifies as handcuff for all pairs that requirednij). Thus, a set of size bounded by2r + 1 + s

has to undergo a new elimination from scratch wheres is the number of floorgraph nodes that have

been neither eliminated nor required as a handcuff in the previous D-node. (Recall that we haver fresh

floorgraph nodes plusr released handcuffs.) Eliminating this subset from scratch requiresO(k(r + s))

interference tests (or table references). Assuming thats is small, we have a quadratic worst case bound

for the dynamic variant as opposed to the�(k3) complexity of a complete elimination from scratch.

Note that a D-node reduction scheme based on triples may in general not eliminate all redundancies,

regardless of the chosen elimination order. For instance, consider the horizontal placement of boxes



66 CHAPTER 3. GENERAL TRANSLATIONAL SEPARABILITY

A B C D . Although constraints for the pairsAC;AD andBD are not necessary, one of the corre-

sponding three floorgraph nodes must remain: eliminating the constraints fromAD using the handcuffs

(AB;BD) prohibits further elimination ofBD, and using handcuffs from(AC;CD) prohibits elimina-

tion ofAC.

3.4.4.2 Advanced Elimination by D-node Construction

To eliminate more redundancies than with the triple-based approach, we have to consider constraints

from all pairs of parts simultaneously. We already discussed the resulting problems which are finding a

good set of elimination candidates and keeping the number of costly pairwise interference tests as small

as possible (cf. Section 3.4.3).

The solution is to perform D-node reduction the other way round: instead of starting with a complete

D-node and eliminating constraints,we begin with an empty D-node and successively add constraints

(or floorgraph nodes) until all pairs of parts are well-separated.There are indeed various good reasons

for such a reverse approach.

When we construct the cell from scratch, the number of constraints is initially small and the constraint

set approaches its final size from below rather than from above. In contrast to this, when eliminating from

a complete D-node, we would initially have to process a large constraint set with high redundancy. As a

first consequence, tests for interferences of pairs become much faster.

Our experiments show that the number of required constraints is much smaller than the size of a

complete D-node, which depends quadratically on the number of parts. In fact, we observed an almost

linear dependence even for very unconstrained placements in which all pairs of parts are potential can-

didates for collisions (cf. Section 6.3.4). Thus, in addition to the savings for each verifications step, the

total number of construction steps is also much smaller than the number of required elimination steps.

At each step of the construction, we can either add a single constraint hyperplane from any pair

of parts or a complete floorgraph node. Choosing individual constraints may yield smaller D-nodes

descriptions, since at each step, the most promising separating hyperplane may stem from a different

pair of parts. However, adding complete floorgraph nodes at each step has the great advantage that each

pair of parts needs to be considered exactly once: after a floorgraph node from a specific pair has been

added, the pair is guaranteed to be safe, and does not have to be considered again. Of course, we add

the floorgraph node only if the partially constructed cell does not separate the parts. Thus, by adding

completefloorgraph nodes at each step, the total number of pairwise interference tests is reduced to

O(k2).

It remains to consider the order of constraint insertions (each of them pruning the cell) to yield a

D-node with few redundant constraints. Although the problem of finding an optimal order is NP-hard

(Section 3.4.3.1), there are in fact simple and general heuristics that yield good results. For instance, we

may initially compute a valid placement of parts within the current complete D-node. Then, we sort the

pairs of parts according to their distances, and add floorgraph nodes in this order. A refinement of this
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strategy would be to consider individual faces from the pairwise configuration obstacles and sort them

with increasing distance from the current placement. We then add the constraint hyperplane supported

by the currently closest face if the current D-node cell does not suffice to separate the corresponding pair

of parts. We call the latterclosest faceheuristics (CF). Alternatively, one could use the distance of the

current placement from the constraint hyperplanes themselves instead of their supporting faces. This will

be called theclosest hyperplaneheuristics (CH).

To assess the effectiveness of such simple heuristics, we compared CF and CH with random order

(RH). The results of our experiments suggest that we can reduce the number of constraints from quadratic

to an almost linear number (cf. Section 6.3.4).

3.5 C-space Expansion: Extensions and Open Problems

Our above discussion of implicit representation, incremental expansion and elimination of redundancies

focuses on the general problem as defined in Definition 5 on page 40. We turn a geometric problem into

a symbolic search problem and prune the search space by elimination of redundancies.

This section discusses practically relevant extensions and remaining problems. We first point out

improvements and extensions that can be directly integrated into the above framework. Techniques such

as heuristic ordering of node expansions and parallelization can be used to speed up the search algorithm.

Then, we discuss extensions and open problems that should be investigated in the future. Possible

extensions to other advanced tasks beyond pure separability queries will be sketched. An important

open problem is that the general approach of embedding and intersecting pairwise configuration spaces

is inefficient in certain cases, despite our reductions in the previous sections. In particular, embedding

non-convex subspaces that generate large disjoint regions still causes a combinatorial explosion. We will

illustrate the problem by means of an example, and discuss possible solutions.

3.5.1 Acceleration of Search

A) Heuristic Ordering of D-node Expansions

The above algorithms explore the reachable configuration space regions in a simple depth-first order

until one or more parts can be removed. Since the branching factor is usually high, there are numerous

alternative successors for each visited D-node. So far, the order in which they should be visited was not

specified. In a general framework such as the one above, it is impossible to specify an ordering scheme

that works equally well in all conceivable cases. If the parts are not separable at all, the reachable

component must be expanded completely, regardless of the order in which the successors are examined.

But in practical settings, heuristic ordering is reasonable, and can greatly improve the performance of the

search. We list some possibilities:

� Static Heuristics. The search chooses the successor D-node that allows for the greatest relative

progress with respect to the current D-node. This progress can be defined in terms of some dis-
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tance measure between two placements, one in the current D-node and the other in the successor

candidate. (Recall that we implicitly compute a placement in the door cell between the D-nodes

when we test whether the successor is reachable.) Since this heuristics favors the greatest local

progress, it resembles the hill-climbing strategy. Another possibility is to measure the distance

from the original placement instead of the current placement. These two heuristics can be viewed

as static, because they do not depend on the history of the search. We evaluated both of them in

practice (cf. Chapter 6).

� Dynamic Heuristics. A dynamic heuristics collects information during the search and uses this

information to rate candidate D-nodes. We describe two reasonable possibilities.

– Floorgraph Node Counters. An independent counter is attached to each single node in a

floorgraph. Each time a floorgraph node is seen in a D-node, its counter is incremented. (Note

that the counters are global and not assigned to the individual D-nodes.) The weight of a D-

node is computed as the sum of the counters that are associated with its floorgraph nodes.

It can be used to assess the degree of novelty of the D-node. As the search proceeds, the

weighting of D-nodes that contain further combinations of already visited floorgraph nodes

will increase. We can thus pick the more favourable nodes to move to other configuration

space regions. This heuristics has shown to be very helpful for overcoming combinatorial

traps when a problem contains many temporarily unrelated subproblems. We will explain

this in greater detail in Section 3.5.3.

– Minimizing the Set of Active Parts. At the first step, the search switches from the initial D-

node to one of its successors by exchanging an arbitrary floorgraph node (relabelling an edge

in the graph representation of the (reduced) D-node). Thereafter, we mark the corresponding

two parts as active. Subsequent steps from the current D-node to one of its successors prefer

to switch a floorgraph node that involves two active parts. When no further progress can be

made, we chose a part that is connected to the most active parts in the graph representation

of the (reduced) D-node, switch one of these edges, and add the new part to the set of active

parts. In intuitive terms, such a heuristics will focus the search on a particular subproblem

involving as few parts as possible. In contrast, the above floorgraph counter heuristics favors

simultaneous progress in all pairwise configuration spaces.

� User-defined Constraints and Heuristics.In a practical setting, the user may add application-

specific constraints that substantially narrow the search space. For example, envelopes of allowed

relative placements in the pairwise configuration spaces may be used to outline the solution. Other

possibilities include specifying costs for undesired part motions, or defining implicit rules for

allowed part motions. (Examples for the latter would be to ask for removability of a specific single

part or state that ’partA must move out of partC before partB’.) The consequence is that a rough
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sketch (a skeleton) of a desired plan is given. An additional depth bound can be introduced, and

the search can restrict itself on the region around the skeleton, without danger of getting stuck in

combinatorial traps.

B) Parallelization

Another standard technique for acceleration is parallelization. Common problems arising in this context

are communication overhead and interdependencies between subtasks. In our case, required communi-

cation is moderate, and the costly operations are sufficiently independent of each other. Most time is

consumed by solving linear programs for testing door cells which can be viewed as independent prob-

lems. The computational effort for search control itself is negligible. Further measurable costs may arise

from computation of pairwise floorgraphs and constraints. These may be computed in a parallel prepro-

cessing step or upon request during the search. Assume we have three modules, running in parallel, and

sharing common memory. One module will guide the search and maintain visited D-nodes, another will

test of door cells (which can consist of several parallel submodules) and a third one will derive pairwise

constraints. Most communication will concern D-nodes and requests for pairwise constraints. These

messages are reasonably small in comparison to the effort of feasibility testing and geometric compu-

tations so that we may expect definite improvements by parallelization. We will not further evaluate

parallelization in this thesis.

3.5.2 Application-specific Extensions

Our general configuration space computation techniques allow for various practical applications different

from, but related to pure separability analysis. Since the required extensions will depend on the specific

application, we limit our discussion and just point out how we can allow for small overlap between parts

and identify collisions that prevent nearly feasible removal motions. This may be an important extension

in practice, for example to account for part tolerances.

To allow for overlapping parts, floorgraph cells can be relaxed by introducing additional linear pa-

rameters. In particular, a constrainta(pi � pj) � b on the relative positions of partsi andj can be

reformulated asa(pi � pj) � b � �ij where�ij is a small bounded positive parameter allowing for

overlap of the two parts. When testing a door cell, the linear feasibility test will be replaced by a lin-

ear minimization of the sum of all overlap parameters. We rate the successors of the current D-node

according to the required overlap. If there is at least one successor with zero overlap, we continue with

the search as before. Otherwise, we temporarily defer the search at the current D-node and backtrack

to another D-node that may have successors without overlap. Only if there are no further D-nodes left

that were reachable without overlap, the search will continue at the D-node that was reachable with the

minimum overlap.
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Figure 3.13: (a) Simple example that cannot be properly described by a composite configuration space.
(b) Reduced D-node.

3.5.3 Open Problems

D-node Reduction. Our methods for configuration space expansion incrementally compute a convex

decomposition of the reachable free regions in the high-dimensional composite configuration space.

To avoid cycling and unnecessary duplicate work, we have to mark expanded cells as visited. This

is currently done on a floorgraph node resolution. That is, we store reduced D-node tuples in a data

structure that allows for efficient insertion and retrieval, and eliminated floorgraph nodes are replaced

by a special wildcard character in the tuple. However, eliminating a floorgraph node is only possible if

all of its constraints can be discarded. For each cell, we can therefore store only a subset of actually

covered space, and cannot guarantee to avoid all unnecessary effort. (Note that this affects only the

search efficiency but not the completeness or correctness.) It would therefore be interesting to leave the

floorgraph node level to obtain a finer-grained representation of visited space. An important problem in

this context is to develop an efficient data structure that allows for storing a union of high-dimensional

convex cells and testing whether a high-dimensional convex cell is covered by this union.

Another direction for future investigations is to extend the notion of pairwise constraints. Currently,

we assume that a constraint hyperplane for a pair of parts is supported by a face of the corresponding

pairwise configuration obstacle. This may not appropriate in the context of a placement of all parts, and

one could allow for arbitrary pairwise hyperplanes instead.

Independent Subproblems.An important goal of future research should be to find general strategies

that allow for efficient detection and handling of unrelated subproblems. Even when using optimally

reduced D-nodes in the sense of Section 3.4.3.1, we may run into a combinatorial trap caused by unrelated

subsets of parts. We illustrate the problem using a simple variant of the running example in Section 3.4,

shown in Fig. 3.13a. Fig. 3.13b shows the optimal D-node which is unique for the given placement. In

this example, working with the optimal D-node does not suffice to eliminate unnecessary combinatorial
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work. When we generalize the example tok boxes in different holes of the container,2k cells will be

expanded, because all parts are considered in a composite configuration space. Note that this is not a

problem of the algorithm but inherent to the composite configuration space: at least2
k convex cells are

necessary to cover the free regions.

For the human, it is not hard to see that the example essentially consists of four unrelated problems

each of which is non-separable. Of course, a simple heuristics based on pairs of parts could be used

to detect that the boxes are in different connected components of the container. But it is in general

easy to find counterexamples that make such specialized approaches fail: in our case, assume the boxes

are contained in different channels, each with several sharp bends, converging at some region of the

container. The above heuristics will not be applicable, and all boxes will have to be considered in a single

composite configuration space. A realistic example for such a situation is the bookcase in Fig. 6.9 on

page 107. There, the hooks that support the shelves must be lifted and then pulled out of the side panels.

These tasks are essentially independent from each other, but the parts are not completely unrelated, since

pairs of hooks might intersect during removal.

When we are testing for removability, and there is indeed a removal path for one or more parts,

the dynamic heuristics based on floorgraph node counters in Section 3.5.1 provides a solution. First, we

attach a counter to each node in a floorgraph. The counters are incremented each time their corresponding

floorgraph node is seen in a D-node. We can then compute a weight for a D-node by simply adding the

values of the counters associated to its floorgraph nodes. The search algorithm is slightly modified

to favor D-nodes with smaller weight over D-nodes that have a greater weight. Thus, the heuristics

favors exploration of new floorgraph nodes whenever possible. In the case of unrelated subproblems, the

search is guaranteed to explore new regions before wasting exponential effort in mere recombinations of

previously visited pairwise relative placements. This simple extension resulted in great improvements in

our experiments with the bookcase example (cf. Chapter 6).

However, such an approach does not help when the problem is infeasible. For instance, consider

our above example of boxes in interconnected but bounded channels. Another heuristics motivated by

this example could simply determine that no box can be removed from the container, so the problem

is infeasible. But ending up with a collection of heuristics inspired by special-cases or observations in

low-dimensional space was not the goal in this work. Note that in contrast to that, our above dynamic

heuristics using the counters tackles the problem on a more general level within our framework for

implicit representation and expansion of composite configuration spaces.

It remains to be studied in future work, whether there are general concepts to identify independent

subproblems, and exploit this to temporarily plan in separate subspaces. Beyond elimination of combi-

natorial traps, this would have two advantages: unnecessary constraints would be disregarded, and the

dimension of the search space would be (temporarily) reduced.
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Chapter 4

Linear Unboundedness Testing

In this chapter, we address the problem of testing for linear unboundedness, that is, finding a direction in

which the feasible region of a given set of linear constraints is unbounded. We first consider only con-

junctions of constraints. In this case, the feasible region is the intersection ofd-dimensional half-spaces

forming a (possibly unbounded) convex polyhedron. We describe a new efficient unboundedness testing

algorithm that improves by a factor ofd over the naive approach. It is optimal when optimal algorithms

are used for the two main steps: solving a single homogeneous system of linear equations followed by a

single linear feasibility test. To support this claim, we will show that testing for unboundedness is com-

putationally at least as hard as these two subproblems. Our algorithm has specific practical applications

in separability analysis (Chapters 2, 3) and can also be of more general use.

We then show that the problem of finding an unbounded direction for linear AND/OR constraint

sets is NP-complete. Interestingly, two constraints per disjunction are sufficient to make the problem

NP-hard, while the apparently corresponding problem for boolean formulae,2-SAT, is inP .

4.1 Unboundedness Testing for Conjunctions of Constraints

We begin by formally defining the unboundedness testing problem for conjunctions of linear constraints

and describe a simple algorithm for solving it based on2d linear programming problems ind dimensions.

We then propose a new algorithm that answers the query by solving a single system of homogeneous

linear equations followed by a single linear feasibility test. By then reducing these two subproblems to

unboundedness testing, we show that testing for unboundedness is computationally at least as hard as the

two dominating steps of our new algorithm. Using the best known algorithms for solving homogeneous

equations and linear feasibility testing, the new algorithm is faster than the simple algorithm by a factor

of d.

73
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4.1.1 Problem Definition

Consider a set of half-spaces ind dimensions, defined by the inequalities:

a11x1 + a12x2 + � � � + a1dxd � b1

a21x1 + a22x2 + � � � + a2dxd � b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + � � � + andxd � bn

or, using matrix notation:

Ax � b:

Each of the half-spaces is bounded by a hyperplane of the formaix = bi, wherex = (x1; : : : ; xd),

andai = (ai1; : : : ; aid) are the hyperplane normal vectors.

The intersection of these half-spaces defines aconvex cellS in d-dimensional space. Notice that the

dimension ofS can be lower thand. Without loss of generality, we assume that the intersection of the

half-spaces is non-empty, because verifying this condition is a standard problem in linear programming.

A non-empty cell is said to be unbounded if it entirely contains a ray.

Definition 11 (Linear unboundedness testing)The problem of linear unboundedness testing is stated

as follows: Given half-spaces ind dimensions with non-empty intersection, decide whether there is a ray

r = fp + tu j t � 0g that is contained in all half-spaces. If positive, return a valid direction vector

u 6= 0.

Since the cell is convex, the choice of the direction vectoru is independent ofp. Thus, any combination

of a valid direction vector and a valid point will yield a ray that is contained in the cell. Note that we

do not require the coordinates ofu to be all non-negative and that a valid pointp will be delivered as a

by-product of the linear feasibility test used initially to verify that the cell is non-empty.

4.1.2 Basics and a Direct Approach

There are two difficulties in solving the unboundedness testing problem with standard tools for linear

programming. First, although it can be formulated as a linear optimization problem, the actual objective

function, that is, the direction in which the maximum is to be found, is not known in advance. Second,

even if a direction is known, unboundedness is usually regarded as an error condition in linear program-

ming: the maximization will fail if the given objective function has no upper bound inside the cell.

In fact, any base of thed-dimensional space provides a sufficient set of directions to test. Let

s1; : : : ; sd be a linear base ofd�space. We can perform a maximization for each of+si and�si,

subject to the half-space inequalities defining the given cell. If one of these maximizations fails, the cell

is unbounded. Notice, however, that a direction�si that causes the maximization to fail is not necessar-

ily a valid direction vector for a ray inside the given cell. For example, consider the half-plane defined
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by the constrainty � x � 1 in E2. A maximization alonge1 = (1; 0) will report unboundedness, since

x can become arbitrarily large, but no ray with direction vectore1 is contained in the half-plane.

To compute a valid direction vector, we first transform the cellS by shifting the bounding hyper-

planes to the origin, that is, we replace the defining half-spacesaix � bi by the corresponding homoge-

neous half-spacesaix � 0. We denote the transformed cell byS0, since it always contains the origin.

The following lemma and corollary show that this transformation does not affect the set of unbounded

directions:S is unbounded in a directionu if and only if S0 is unbounded in directionu.

Lemma 9 S0 contains a pointu 6= 0 if and only ifS is unbounded in directionu.

Proof: Let u 6= 0 be a vector inS0 (Au � 0) andp be a point inS (Ap � b). Thus, fort � 0,

A(p+ tu) � b andS is unbounded in directionu. Now assume thatS contains a rayfp+ tu j t � 0g.

ThusA(p+ tu) � b and, equivalently,t(Au) � b�Ap for anyt � 0. This impliesAu � 0. Thusu

is in S0 andu 6= 0 by definition of the ray. 2

Corollary 3 S0 contains a pointu 6= 0 if and only ifS0 is unbounded in directionu.

Now, testing for unboundedness can be reduced to finding a pointu 6= 0 within the transformed cell.

If successful, the location vector of this point specifies a direction in which the original cell is unbounded.

We can determineu by, e.g., intersecting the transformed cellS0 with the bounding hyperplanes of ad-

dimensional box centered at the origin. Instead of maximizing in the directions+ei and�ei for each unit

vectorei, we perform feasibility tests on the constraint setsfAx � 0; eix = 1g andfAx � 0; eix =

�1g. Any solution is then a non-trivial point (not the origin) inS0 and thus a valid direction vectoru.

This simple algorithm requires2d linear feasibility tests in the worst case to decide if the set is

unbounded. Is this the most efficient way of testing? In particular, can we detect boundedness (the worst

case for the simple algorithm) with a faster method? We address these questions next.

4.1.3 An Efficient Algorithm

There is indeed an intuitive approach for unboundedness testing using a single linear maximization that

works in most cases: compute the direction of optimization as the sum of all constraint hyperplane

normal vectors.

This amounts to simultaneously maximizing the distance from all hyperplanes and yields a correct

but incomplete unboundedness test. That is, in certain cases an unbounded cell might be classified as

bounded. In the following, we show how this problem can be fixed. Tab. 4.1 presents a new algorithm

which is motivated by the above idea but includes an initial step to identify the critical cases. It is there-

fore correct and complete. We begin with an informal description and then formally prove correctness

and completeness.

First, we test if the homogeneous system ofequations, derived from the given inequalities, is under-

constrained (step 1). If it is, the cell is unbounded since the solution space is at least of dimension one,
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Input: Half-spacesH+
1 ; : : : ;H

+
n defined by inequalitiesH+

i : aix � bi.

Output: unbounded directionu when the cell defined byH+
1 \ : : : \H

+
n is unboundedor

boundedotherwise.

1. If the homogeneous system of equationsaix = 0; 1 � i � n, has a non-trivial solution
u 6= 0, returnunbounded, the vectoru, and exit.

2. Construct a combined directiona� :=
Pn

i=1 ai.
If a� = 0 returnboundedand exit.

3. Construct the constraint setC as:

aix � 0; 1 � i � n

a�x = 1

If C is feasible, returnunbounded. The solution of the feasibility test is the directionu.
Else returnboundedand exit.

Table 4.1: The new linear unboundedness testing algorithm.

and we can compute non-trivial solutions directly. If the homogeneous system of equations isnotunder-

constrained, we construct a combined vector as the sum of the hyperplane normal vectors (step 2). The

hyperplane defined by this vector at a positive distance from the origin will intersect any ray emanating

from the origin in the cell due to the full rank of the matrix. If the combined vector is zero, no such plane

exists and thus the cell is bounded. Otherwise, we construct a new set of constraints consisting of the

homogeneous inequalities and the new hyperplane (step 3). Now unboundedness can be detected with a

single linear feasibility test on the new constraint set.

This algorithm reduces the number of hyperplanes to be tested from2d hyperplanes (the simple test

in Section 4.1.2) to a single hyperplane with combined normala�. This reduction is only possible after

we have established the range of the underlying constraint set, which means that step 1 is not redundant,

as illustrated by the following example. Leta1 = (�1; 0), a2 = (2; 0), b1 = �2, b2 = 2. After transfor-

mation, the cell containing the origin, i.e. the cell defined bya1x � 0 anda2x � 0 is unbounded, but

a� = (1; 0), so thatC is infeasible.

We now prove the correctness and completeness of the algorithm. The proof for the correctness of

step 1 follows from Lemma 9 and the fact that the set of solutions ofAx = 0 is a subset ofS0. Notice

that step 1 fails if and only ifdimha1; : : : ;ani = d. To prove the correctness and completeness of steps

2 and 3 when applied after step 1, we state:

Lemma 10 (variant of Farkas’ lemma) Let dimha1; : : : ;ani = d. ThenS0 contains a pointu 6= 0 if

and only ifC is feasible.
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Proof: Let u 6= 0 be a point inS0. We must show thatC is feasible. Assumea�u = 0. Sinceu is in

S0 (aiu � 0), we haveaiu = 0 for eachi � n, sou is orthogonal to eachai. But this would imply that

dimha1; : : : ;an;ui is strictly greater thand. Thusa�u 6= 0. The same argument shows thata� 6= 0

if the space spanned bya1; : : : ;an has full dimension andS0 contains a pointu 6= 0. For each scalar

t � 0, the pointtu is in S0. Thus after appropriate scaling, we can assumea�u = 1, so thatu satisfies

C. Conversely, a point satisfyingC is clearly a non-zero point inS0. 2

4.1.4 Complexity Analysis

Is this test the fastest possible test? Our algorithm relies on finding a non-trivial solution for a homoge-

neous system of linear equations and linear feasibility testing. Is there a test that does not require one or

both of these two steps? The following constructions show that the problem of testing for unbounded-

ness and finding an unbounded direction is at least as hard as these two steps. Based on these reductions,

the new algorithm is optimal when optimal algorithms for solving the homogeneous equations and for

feasibility testing are used. We show that with known algorithms for these two problems the new un-

boundedness testing algorithm that is faster by a factor ofd over the simple approach in Section 4.1.2.

Lemma 11 Testing for linear unboundedness is at least as hard as finding a non-trivial solution for a

homogeneous system of linear equations.

Proof: We reduce the problem of finding a non-trivial solution of a homogeneous linear system to un-

boundedness testing. Given a homogeneous system ofn linear equationsAx = 0 (E), we construct an

equivalent homogeneous system (U) of2n linear inequalities consisting ofAx � 0 andAx � 0. We

determine a non-trivial solutionu 6= 0 for (E) by finding an unbounded direction for (U). Due to Corol-

lary 3, (E) allows only for the trivial solution if and only if (U) is bounded. Notice that (U) has twice as

many rows as (E). However, assuming that testing for unboundedness is polynomial inn, this increase

does not affect the asymptotic computing time. Also, the described transformation itself is dominated by

the unboundedness test and thus does not increase the complexity. 2

Lemma 12 Testing for linear unboundedness is at least as hard as linear feasibility testing for the con-

straint setC.

Proof: We give a simple reduction of feasibility testing forC to unboundedness testing. Consider the

linear feasibility problem (C)

Ax � 0

a�x = 1
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with dimha1; : : : ;ani = d, i.e., the rank of the matrixA is full. We can transform this problem into a

(homogeneous) test for unboundedness by setting (U)

Ax � 0

a�x� z = 0

z � 0

We must show that (C) is feasible if and only if the cell defined by the system (U) is unbounded.

First, assume that (C) is feasible, i.e.Ax0 � 0 anda�x0 = 1 for somex0 2 Ed. Thusz(Ax0) � 0

andz(a�x0 � 1) = 0 for any z � 0 and (U) is unbounded in direction(x0; 1). Now assume that (U)

is unbounded, i.e., there is a vectoru = (x0; z) 6= 0 in (U). We first show thatz > 0. Assume that

z = 0 (and thusx0 6= 0). Sinceu is in (U) we would then havea�x0 = 0 andAx0 � 0. But this

implies thataix0 = 0 for all rows ofA and we have a non-zero vectorx0 that is orthogonal to allai, in

contradiction todimha1; : : : ;ani = d. Thus, after appropriate scaling ofu, we can assume thatz = 1,

so thatu0 = (x00; 1) is in (U). Thus,x00 is in (C).

The transformation from (C) to (U) has increased both the dimensiond and the numbern of con-

straints of the problem by one. Assuming the number of steps required for a linear feasibility test (with

n constraints ind dimensions) is polynomial inn and ind, this increase does not affect the asymptotic

computing time. 2

The following more general lemma implies that we can in fact reduce any linear feasibility testing

problem to unboundedness testing. Thus, even without allowing explicit feasibility testing, our initial

prerequisite that the input cell is non-empty is not a restriction.

Lemma 13 Testing for linear unboundedness is at least as hard as linear feasibility testing.

Proof: Given a linear feasibility problem (F)

Ax � b

we construct a homogeneous set of inequalities (U) that is unbounded if and only if (F) is feasible. Note

that there are no implicit non-negativity constraints on the variables inx = (x1; : : : ; xd). We define (U)

using the variablesz � 0;u = (u1; : : : ; ud) andv = (v1; : : : ; vd):

A(u� v) � zb

cz � u1 + v1 + : : :+ ud + vd

uj � 0; j = 1; : : : ; d

vj � 0; j = 1; : : : ; d

wherec > 0 is an appropriately large constant (see below).
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We first show that (F) is feasible if (U) is unbounded. If (U) is unbounded then there is a vector

w = (z; u1; v1; : : : ; ud; vd) 6= 0 that satisfies the constraints in (U). Sincecz � u1 + v1 + : : :+ ud + vd

we must havez > 0. ThereforeA(u� v)=z � b andx = (u� v)=z satisfies (F).

Now assume that (F) is feasible, i.e., there is a pointx that satisfies the constraints in (F). We show

that (U) is unbounded by specifying a non-trivial pointw = (z; u1; v1; : : : ; ud; vd) in (U). We setz = 1

anduj = xj ; vj = 0 if xj � 0 anduj = 0; vj = xj otherwise. ThusA(u � v) � zb. To satisfy

cz � u1 + v1 + : : : + ud + vd, the constantc must have been chosen sufficiently large in advance. In

Appendix B, it is shown that such a bound can be computed in a preprocessing step that is guaranteed to

be not slower than any possible unboundedness test and therefore does not spoil the total running time.

Finally, as in the previous lemma, the added variables and constraints do not affect the asymptotic

running times, that is, anO(n�d�)-time unboundedness test can be used to construct a feasibility test

with the same asymptotic complexity. 2

The new algorithm in Section 4.1.3 does not specify how solving the homogeneous equations and

linear feasibility testing are to be performed. Based on known algorithms for these two sub-problems,

we obtain the following time bound for our test:

Lemma 14 The complexity of the algorithm in Tab. 4.1 isO(nd4:5) wheren is the number of constraints

andd is the number of variables.

Proof: Based on Karmarkar’s method, linear maximization and feasibility testing take at mostO(Ld3:5)

steps, whereL is the accumulated length of the input coefficients [74]. If the length of each individual

coefficient is fixed and constant, i.e., the number of bits necessary to represent each number is at most

l, thenL = O(nd), so that the described feasibility test takes at mostO(nd4:5) steps. Step 1 can be

performed inO(nd2) steps (forn constraints andd variables, [67]). Thus the complexity of the algorithm

in Tab. 4.1 isO(nd4:5) versusO(nd5:5) for the simple method in Section 4.1.2, and our algorithm allows

for a reduction of time bounds by a factor ofd when compared to the simple method. 2

4.2 Unboundedness Testing for AND/OR Constraint Sets

Allowing both conjunctions and disjunctions of constraints, is it still possible to test for unboundedness

in deterministic polynomial time? We show that with two constraints per disjunction, unboundedness

testing becomes NP-hard, even when all variables are required to be non-negative. This is not obvious,

since the apparently corresponding problem for the case of boolean formulae, known as2-SAT, can be

decided in deterministic polynomial time. The difference is that in our case each constraint may contain

up to three variables, whereas in2-SAT, a literal contains information of a single variable only. We

exploit this observation in the proof of the following
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Lemma 15 The problem of finding an unbounded direction (with non-negative variables) for a linear

AND/OR constraint set with two constraints per disjunction and at most three variables per constraint is

NP-hard.

Proof: By reduction from 3-SAT. (A somewhat similar reduction from 3-SAT to integer linear program-

ming is given in [26].) For a given 3-SAT expressionE we construct a AND/OR constraint set with at

most two constraints per disjunction and at most three variables per constraint that is unbounded in a

direction with non-negative coordinates if and only if there is a satisfying assignment for the variables in

E.

We represent a boolean variableXi in E by two non-negative real-valued variablesti andfi. Xi =

TRUE will be expressed byti > 0; fi = 0 whileXi = FALSE will be expressed byti = 0; fi > 0.

First, we must ensure that if the set of solutions is unbounded then exactly one ofti; fi is strictly

greater than zero while the other one is equal to zero. To this end, we introduce a new non-negative

variablez and add the constraints (Vi)

ti � 0 _ fi � 0

ti � z _ fi � z

ti + fi � z

Together withti; fi; z � 0 it follows that eitherz = 0 and ti = fi = 0 or z > 0 and either

ti = 0; fi = z or fi = 0; ti = z. Note that the samez can be used in these constraints for all pairs

(ti; fi).

We now describe constraints representing the clauses in the given boolean expressionE. Let�i be a

literal, that is,�i = Xi or �i = :Xi. A clause�a _ �b _ �c will be transformed into the constraint (for

the moment we drop the requirement that a constraint contain at most three variables)

xa + xb + xc � z (4.1)

wherexi = ti if �i = Xi andxi = fi if �i = :Xi. Note that we have the implicit non-negativity

constraints on all variables.

Representing all clauses this way, the complete AND/OR set of constraints constructed so far is

unbounded if and only if there is a satisfying truth assignment for the variables inE. First assume that

E has a satisfying truth assignment. We may freely choosez � 0 as long as we setti = z; fi = 0

if Xi = TRUE in the satisfying assignment forE and ti = 0; fi = z otherwise. Thus the solution

space of the constraint set is unbounded. Conversely, assume that the solution space of the AND/OR

constraint set is unbounded and consider a non-trivial solution. The constraints (Vi) requirez > 0 in this

case. Furthermore, for each pair(ti; fi), we have eitherti = z; fi = 0 or ti = 0; fi = z. To satisfy an

inequality of the form (4.1), at least one of the three involved variables on the left side must be equal to

z. Thus the variables pairs(ti; fi) indicate a truth assignment that satisfies the expression.
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Finally, each constraint with four variables,xa+xb+ xc � z can always be substituted by introduc-

ing a new variabley � 0 and two constraints with three variables each,xa+xb � y andy+xc � z. 2

Note that the overhead of the described transformations is bounded by a polynomial. To be more

precise, for the reduction the input size is not increased more than by a polynomial function asymptot-

ically. A simpler variant of the proof shows that AND/OR feasibility testing, under the same condi-

tions, is NP-hard. Specifically, the constraints (Vi) that assert consistent variable assignment simplify to

ti � 1 _ fi � 1 andti + fi � 1, and the constraints (4.1) becomexa + xb + xc � 1.

Theorem 6 The problem of finding an unbounded direction for binary AND/OR constraint sets with

non-negative variables is NP-complete.

Proof: It remains to show that the problem is in NP. This is straight-forward: a non-deterministic

algorithm guesses an unbounded combination of constraints (one constraint from each disjunction) and

then calls our efficient unboundedness testing algorithm for the resulting conjunction of constraints.2
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Chapter 5

Implementation

In this chapter, we address three problems that are important for a practical implementation of our algo-

rithms in Chapter 3:

Computation of Configuration Spaces for Pairs of Parts.Computing configuration spaces for pairs

of polygons is well-understood and reasonably efficient in practice. We give a short summary

of literature and known algorithms. For general non-convex polyhedra, the problem can become

more intricate. We discuss the practical challenges and point out how to approach them.

Book-keeping of Visited D-nodes.Visited D-nodes must be stored for two purposes. First, we must

prevent the search from cycling and unnecessary overhead. Second, for most search strategies, a

tree of D-nodes has to be maintained in order to store candidate subpaths.

Linear Programming in a Composite Configuration Space.Testing a door cell between the two D-

nodes requires a linear feasibility test. On the whole, these tests consume most of the running time

of our basic incremental algorithm. We show what kind of improvements are possible here.

5.1 Computation of Configuration Spaces for Pairs of Parts

The general problem of computing pairwise configuration spaces comprises several well-studied sub-

classes. For some of them, efficient algorithmic solutions have been proposed (for example, cf. [42, 52,

57]). In our context, Minkowski sums and convex decompositions have to be computed in order to obtain

linear constraints for pairs of parts.

In the planar case, both the Minkowski sum and the equally useful convolution of polygons have

been studied in [33, 55]. For computation of convex decompositions in two dimensions, cf. [49].

In the case of polyhedral parts, preprocessing becomes more intricate. Guibas [20] computes con-

volutions of convex polyhedra by reciprocal search. Kaul [32] considers Minkowski sums of regular

polyhedra. In the context of satellite antenna layout, Boissonnat [2] computes projections of three-

dimensional Minkowski sums to a plane directly in the lower-dimensional projection space. Recently,

83
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(a) (b)
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Figure 5.1: (a) RS-232 plug P and (b) socket S. (c) Initial configuration (side view). (d) Projection of
cell for configuration in (c).

Ramkumar [55] developed a theory of convolutions for non-convex polyhedra, thus extending the work

of Guibas et al. [19] to three dimensions.

When the considered parts have relatively few faces, complete floorgraphs can be computed in a

preprocessing step. This approach was used in our implementation. To obtain the Minkowski sums,

our program decomposes the parts into convex pieces and computes the Minkowski sums of all pairs of

pieces. It then obtains complete floorgraphs by performing a plane-sweep over the resulting arrangement.

Running times for preprocessing all pairs of parts ranged from fractions of a second up to several seconds

in our examples.

For complex models with many faces, complete configuration space computation for pairs of parts

can become a major obstacle. Note however, that the high-dimensional search in our application proceeds

incrementally. We therefore do not need to pre-compute complete configuration spaces. Instead, it is

sufficient to compute a current cell and its neighbors for each pair of parts. During the search, only

the required parts of the pairwise configuration spaces will be expanded. Although parts may be quite

complex, the portions of the Minkowski sums that actually have to be computed are usually much simpler

in assembly planning applications (e.g., for a situation similar to a peg in a hole, the current cell may be



5.2. BOOK-KEEPING OF VISITED D-NODES 85

only a ray or a cylinder as illustrated in Fig. 5.1).

The idea of computing configuration spaces locally is not new. Ramkumar [55] proposes in his con-

clusions to compute local portions of the convolution from which parts of the Minkowski sum surface

can be derived. However, no algorithm or experimental results are given there. Bounding volume hierar-

chies as described e.g. in [38] are a common approach for computing the distance between non-convex

polyhedra. They are practical for large models and can be easily extended to extract relevant pairs of

triangles for incremental configuration space cell computation. To illustrate this, we created two coaxial

cylinders with 512 triangles each. The cell for the selected configuration is also a cylinder. Filtering

the closest triangle pairs required testing13; 000 bounding volume pairs and2; 600 triangle pairs. The

resulting triangle pairs are sufficient to construct the cell. The total running time was only a fraction of

a second on a SUN Ultra-60 workstation with 300 MHz. In contrast, considering all260; 000 pairs and

computing the complete convolution of the two cylinders would be much slower.

5.2 Book-keeping of Visited D-nodes

As the search proceeds, the explored configuration space regions will be covered by visited D-nodes. To

avoid visiting the same configuration space regions multiple times, we must be able to efficiently store

and look-up visited D-nodes. In addition to that, candidate solution paths must be maintained.

To encode a D-node, we use a tuple whose entries are pointers to the corresponding floorgraph

nodes. A special symbol (we use an asterisk�) indicates that the corresponding floorgraph node has

been eliminated. The actually used domain of each entry is normally relatively small in practical cases.

(The number of actually visited nodes in a single floorgraph depends on how many distinct critical

relative placements the two corresponding parts will to take.) However, the lengthD of the tuple depends

quadratically on the number of parts (D = k(k � 1)=2 for k parts), and this is problematic: although a

total order on D-nodes can be defined in a straight-forward way (e.g. the lexicographic order), it is not

recommendable to store D-nodes using a standard comparison-based one-dimensional set data structure.

Each comparison of two D-nodes may require scanning the whole tuple at quadratic cost in the worst

case. For a set containingn D-nodes, insertion or look-up of a single D-node may require several such

comparisons and takes time�(D logn) in the worst case. Hashing could be used instead, but it may be

difficult to find a hash function that produces few collisions. Beside that, it is difficult to assess a good

size for the required hash table in advance.

Trie Approach

However, the greatest shortcoming of the above one-dimensional approaches is that they are wasteful in

terms of space. A D-node and all its successors differ only at a single position. Even amongst all D-nodes

generated during the whole search process, there may be large subsets that share the same substring.

We therefore propose to store D-nodes using the well-known trie-concept [36]: D-nodes are stored
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Figure 5.2: (a) Trie representation for efficient access to visited D-nodes. (b) Search tree with D-nodes.

as paths in a tree, starting at the root node. Edges along each path are labeled with the entries in the

corresponding D-node, from left to right. Thus, two D-nodes with a common prefix share a subpath

starting at the root and labeled with the maximum length common prefix. To reduce storage requirements,

it is common to store unique suffixes at the leaf nodes. Fig. 5.2.a (solid drawing) shows an example trie

representing the set

f(�; 1; 3; 7; 3); (�; 1; 7; �; 2); (�; �; 5; 4; 3); (�; 6; 1; 2; 3); (3; �; 4; 2; 1); (3; �; �; 1; 2); (4; 2; 2; 3; 4)g:

A trie approach is simple to implement, and proved to be efficient in our experiments. Letm be the

maximum number of children of a single node in the trie. (m is bounded by the number of floorgraph

nodes that will be visited for a single pair of parts. Note that this bound is very conservative, especially

for nodes at the lower levels in the trie.) In our case,m can be considered to remain much smaller than

n, which was defined above as the number of currently stored D-nodes. The insert operation for a D-

node into a trie is straight-forward and can be done in timeO(D logm) in the worst case: we scan the

D-node from the left to the right, following a possibly existing path in the trie and branching off when

necessary. This compares favorably with the�(D log n) effort for a comparison based one-dimensional

data structure. Note thatn may grow rapidly during the search. To look-up a D-node, the trie can be

traversed in a similar way at the sameO(D logm) cost. For efficientO(logm)-time access, the children

of each node have to be organized using a standard set data structure [43].

For a general discussion of multi-dimensional indexes, cf. [44]. Note that spatial access methods

have also been investigated in the field of database applications [15].
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Overlaid Search Tree

A general graph search algorithm maintains a tree of candidate subpaths. In our application, these consist

of sequences of D-nodes. To save space, we can overlay the search tree over the above trie. Fig. 5.2.b

shows a sample search tree. The dashed lines in Fig. 5.2a show how this tree is represented by supple-

menting leaf nodes in the trie with pointers.

5.3 Linear Programming in a Composite Configuration Space

In our incremental algorithms, a linear feasibility test determines whether the potential successor D-

nodes are reachable via feasible door cells. These tests consume most of the running time in the basic

incremental algorithm. Related operations such as linear maximizations are required for cell projections

and D-node reduction.

We argue that for these operations, it suffices to consider non-negative reference point coordinates.

First, assume arbitrary (including negative) coordinates for all reference points and imagine a rectangle (a

cube in the case of 3D coordinates) that contains all of the reference points in an arbitrary configuration.

We can shift this box back into the first quadrant (octant) to obtain positive reference point coordinates.

In other words, any configuration can be represented by reference points with exclusively non-negative

coordinates.

Why is it advantageous to use an additional restriction on the reference points? Non-negativity con-

straints on variables are the implicit default in most linear feasibility test implementations. Allowing

for unconstrained variables requires replacing each variable by the difference of two new non-negative

variables (this is a standard technique) and thus increases the problem dimension by a factor of two. For

instance, when using the simplex algorithm for feasibility testing, non-negative reference point coordi-

nates will considerably speed-up the door tests.

Can we further improve the door tests? It is known that the time complexity of the simplex algorithm

is polynomial in most practical settings, and that certain (pathological) examples of constraint systems

can be constructed to require an exponential number of simplex iterations. For other approaches (e.g.

Karmarkar’s algorithm [31]), polynomial worst case upper bounds on the running time have been shown.

However, these bounds depend polynomially on the accumulated length of an encoding of all input

coefficients rather than on the number of variables and constraints. In general, it is a long standing open

theoretical question in the field of linear programming whether there exists a ’genuinely’ polynomial-

time algorithm for feasibility testing. (The running time of such an algorithm would have to depend

polynomially on the numbers of variables and constraints in the worst case.)

In our case, the tested constraint sets have a special structure, and at most four (six) variables are

contained in a single constraint. Can we exploit this fact for a more efficient feasibility test? The answer

is yes, but only in certain cases. In general, it can be shown that linear constraints with three variables

are sufficient to replace any linear constraint, introducing at most polynomial overhead. (To this end,
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new variables have to be introduced, and an inequality withd variables is replaced by a collection of

inequalities with three variables each. We omit the details here.) A genuinely polynomial-time algorithm

for feasibility testing with three or more variables per constraint would therefore immediately imply

a genuinely polynomial-time algorithm for general linear feasibility testing. Thus, the fact that our

floorgraph constraints have only four (six) variables does not seem to help directly. (For the case of two

variables per constraint, an efficientO(mn2 logm) feasibility test has been given in [24], wheren is the

total number of variables andm is the number of constraints.)

There is an interesting special case in which we can indeed further improve the door tests. Assume

polygons with axis-parallel segments (polyhedra with orthogonal faces). In this case, pairwise part con-

straints have the particularly simple form ofdifference constraints:

xi � xj � a; yi � yj � b; (zi � zj � c)

A system of difference constraints can be represented by a weighted directed graph such that it is

feasible if and only if there is no cycle with negative weight in the graph [53]. Feasibility testing can

therefore be done in timeO(mn), wheren is the number of variables andm is the number of constraints

[54]. Even further reductions are possible because during the search, we dynamically maintain a set

of floorgraph constraints (in the current D-node). When testing potential successor D-nodes, only a

small set of constraints (corresponding to a single floorgraph node) has to be added to the current set

of constraints. A special property of difference constraints is that incremental addition and deletion of

constraints can be done very efficiently [54]: addition of a single constraint takes timeO(m+ n log n).

Deletion of a constraint can be performed in constant time if the original system is feasible. In our case,

constraints have to be deleted only when stepping to a successor D-node. Thus the constraint system

will be feasible when we delete constraints. Note that when the constraints become infeasible, we do not

delete constraints but simply restart with the constraints from the current D-node (which are known to

be feasible) and test another potential successor D-node.

To summarize, we can take advantage of using non-negative variables for the door feasibility tests.

Furthermore, if all constraints are difference constraints, linear feasibility testing should be based on

efficient incremental algorithms.



Chapter 6

Examples and Experimental Results

We implemented and tested all major algorithms described in the previous chapters. In particular, we

evaluated the practicality of our algorithms for efficient linear unboundedness testing, form-handed sep-

arability and for general translational separability. This chapter summarizes results and reports running

times for a variety of two- and three-dimensional examples. The experiments show that the algorithms

are of practical use and can solve problems that are completely infeasible for other planning approaches

such as random planners.

Since the focus in this work is on computations in composite configuration spaces of several parts, we

computed complete floorgraphs for all pairs of parts in a preprocessing step. In our example problems,

this is possible because the polygons and polyhedra have relatively few vertices. Required times for

complete preprocessing range from a fraction of a second to several seconds and are not included.

Note that for both 2- and 3-dimensional examples with only axis-parallel part faces, each embedded

linear constraint contains at most two variables (non-zero coefficients). Such constraint systems can be

solved with very efficient special-case algorithms [54] (see Chapter 5 for more details). However, we did

not optimize our prototypical implementation for orthogonal parts but instead used the simplex algorithm

for all examples.

All experiments in this chapter were performed using the following equipment:

� SUN Ultra-60 workstation (300 MHz, 384 MB main memory)

� Solaris 2.6

� Programming languages: C/C++

� Tools: MINOS [46] (simplex feasibility testing), Numerical Recipes in C [14] (singular value

decomposition), LEDA [45] (basic data types and geometric computations)

6.1 Linear Unboundedness Testing

We implemented both the simple unboundedness test in Section 4.1.2 and our new algorithm described

in Section 4.1.3. Singular value decomposition was used for solving the homogeneous set of equations,
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Cell characteristics Simple algorithm New algorithm

# d n� n= unb t f T th unbh tf unbf

a 40 0 39 yes 0.1 1 0.1 0.2 yes 0.1 no

b 40 0 40 no 7.8 80 7.8 0.2 no 0.1 no

c 200 0 199 yes 10 1 10 20 yes 7.6 no

d 200 0 200 no 60 8 3,000 20 no 8.1 no

e 200 100 0 yes 1.1 1 1.1 6.6 yes 0.8 yes

f 200 500 0 no 976 8 48,800 54 no 119 no

g 500 0 499 yes 171 1 171 399 yes 135 no

h 500 200 400 no 1233 4 308,250 841 no 275 no

Table 6.1: Results of running the simple and new linear unboundedness testing algorithms on randomly
generated homogeneous cells defined byd variables,n� half-space constraints, andn= hyperplane con-
straints.

and the simplex method was used for feasibility testing.

To quantify the performance of the new unboundedness testing algorithm with respect to the simple

one, we created a series of problems consisting of randomly generated homogeneous cells. Tab. 6.1 sum-

marizes the results. The first five columns (cell characteristics) describe the properties of the randomly

generated cells:# the name,d the number of variables (problem dimensionality),n� the number of

random half-space constraints of the formaix � 0, n= the number of random hyperplane constraints

aix = 0 andunb whether the cell is unbounded or not. The next two columns (simple algorithm) de-

scribe the running timet that was measured forf actually performed feasibility tests. For all bounded

cells except (b), we did not run the simple algorithm to completion, since this requires exactly2d fea-

sibility tests (all failing). In these cases, the following column specifies an estimateT = 2dt=f for the

complete running time of all2d tests. The last four columns (new algorithm) describe the running times

th andtf of solving the homogeneous equations and performing the feasibility test and whether the cell

was found to be unbounded by the respective step (unbh andunbf ).

The experimental results show that the new algorithm can handle large, high-dimensional problems

with many constraints. It is significantly faster on large bounded cells for which the simple algorithm

leads to impractical running times (columnT in cases d, f, and h). The simple test is only better in special

cases (a, c and g) where the set of unbounded directions is a subset of the solutions of the homogeneous

equations, and where the number of necessary feasibility tests (attempts to find an unbounded variable)

is small. Note also that for the new algorithm, the shorter running times for the feasibility test suggest it

can be advantageous to first perform this test before solving the homogeneous equations.

In our algorithms for general translational separability, the unboundedness test will operate almost

exclusively on bounded cells. (The search can stop when the first unbounded cell is found.) It is therefore

especially important that the test runs fast on bounded cells but does not miss any unbounded direction.
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6.2 M-handed One-shot Translational Separability of Polygons

The experiments in this section follow our classification in Section 2.2.3 which subdivides the problem

instances according to the number of pairs of parts that are separated by a straight line in the initial

placement:

� Only separated pairs of parts.We showed that under this condition, the parts can always be sep-

arated by an ’explosion-like’ simultaneous translation (cf. Section 2.2.3). During such a motion,

all pairs of parts are translated away from each other. The required computations to determine the

individual part motions are quite simple and straight-forward and were therefore not evaluated in

practice.

� Only non-separated pairs of parts. This condition requires rather interlaced initial placements

which can be especially complex to separate for the human and may imply surprising solutions.

However, this subclass of the generalm-handed separability problem can be handled efficiently

with algorithmic approach. Examples and results of applying our polynomial-time algorithm in

Section 2.2.3 are summarized in Section 6.2.1.

� Examples with both non-separated and separated pairs of parts.This class comprises in-

stances that make the generalm-handed separability problem NP-hard (cf. Section 2.2.6). In

Section 6.2.2, we illustrate by means of two very similar examples, one separable and the other

not, that general high-level configuration space based heuristics can be used to decidem-handed

separability of placements with both non-separated and separated pairs of parts.

6.2.1 Examples With no Initially Separated Pair of Parts

We report experimental results obtained with a program that uses our worst-case polynomial time algo-

rithm in Section 2.2.3.

The example in Fig. 6.1 shows a planar assembly in which no pair of parts is separated in the initial

placement (top). The program establishes that four of the five parts must be translated simultaneously

with distinct velocities and into different directions. The computed part velocities and magnitudes are

indicated by arrows in the figure. A sequence of three snapshots (lower pictures) illustrates such a simul-

taneous one-shot separating translation. In this example, unboundedness testing takes a small fraction

of a second, because the dimension is rather small and we have a single convex cell to test (no initially

separated pair of parts). By examining subassemblies, the program also determined that nom-handed

disassembly translation with less than four hands is possible.

A second example of a planar assembly with no initially separated pairs of parts is shown in Fig. 6.2.

Because of its construction, it is easy to augment the number of parts. For an instance with16 moving

parts (not shown), the program took less than a second to find a one-shot separating translation.
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1.221.00

1.19

1.55

Figure 6.1: Parts can be separated by the motion indicated by arrows. Lengths of arrows (values shown
with arrows) represent relative velocities.

Figure 6.2: Example with no initially separated pair of parts that can be easily extended to an arbitrary
number of parts.
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(a) (b)

Figure 6.3: Examples for reduction by base cell projection.

6.2.2 Examples With Initially Separated and Non-separated Pairs of Parts

Fig. 6.3 shows two nearly identical eight-part assemblies with14 separated pairs and14 non-separated

pairs, respectively. While the placement on the left can be separated by a simultaneous one-shot transla-

tion, the parts on the right interlock. In both cases, the nonconvex constraints from all separated pairs of

parts can be eliminated using the base cell projection heuristics (as described in Section 2.2.4). Thus, in

fact only a single convex cell has to be tested for unboundedness in each of the examples. The tests de-

termine that the placement on the left can be disassembled, but not the one on the right. The total running

time is about0:55s, consisting of0:5s for base cell projections and removal of nonconvex constraints,

and0:05s for unboundedness testing of a single high-dimensional convex cone. For the infeasible case

in Fig. 6.3.b, a naive approach based on exhaustive analysis of the combined pairwise constraints would

have to test214 cells for unboundedness, resulting in a running time of almost180s (under the favorable

assumption that a single unboundedness test takes only0:01s).

6.3 Configuration Space Expansion for Polygons

We summarize experimental results obtained with the algorithms in Chapter 3 for several polygonal

placements with different properties. Efficient unboundedness testing as discussed in Chapter 4 was used

for testing cells during the search and finding translational separating motions. In several experiments,

the complete reachable free regions in composite configuration space were expanded by running the

algorithms without testing cells for unboundedness.

Fig. 6.4 and Fig. 3.2 (page 42) show the examples, and Tables 6.2,6.3 summarize the results of this

section. Tab. 6.2 comprises only separable examples, and Tab. 6.3 contains both separable and non-

separable examples for which the complete reachable configuration space was expanded. Two rows of

numbers are given for each single example. The upper row contains the measurements for the basic

incremental algorithm in Tab. 3.1 (p. 54), and the lower row contains the measurements for the improved
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incremental algorithm in Tab. 3.3 (60) using triple based D-node reduction. The columns comprise the

number of nodes in the search treeT , the number of door feasibility testsD, the number of generated, but

already visited successor D-node candidatesV , and the running timet (in seconds). Note that the total

number of generated successor D-node candidates isD+ V , and thatD� T is the number of infeasible

or not reachable successor candidates. Note also that the running times do not comprise preprocessing,

that is, complete computation of floorgraphs.

Section 6.3.1 summarizes results for Figs. 6.4.a–e, including some variations. Section 6.3.2 dis-

cusses Fig. 6.4.f, and Section 6.3.3 reports results for examples in Chapter 3 (Fig. 3.2, p. 42). Finally,

Section 6.3.4 evaluates heuristics for advanced D-node reduction by construction.

6.3.1 Simple Experiments

We first illustrate the practicality of our concepts from Section 3.3 (C-space Expansion, Part I) by com-

puting general translational separating motions as well as proving infeasibility for polygonal placements

with very small clearances between parts.

The simple example in Fig. 6.4.a shows a container and two boxes, none of which can be removed.

Our basic incremental algorithm can prove this fact rapidly. Row C1 in Tab. 6.3 shows the resulting size

of the search treeT , the number of door feasibility testsD and the number of already visited D-nodes

V (for which no door tests are necessary). By changing the container as indicated by dashed lines in the

figure, the black box can be removed after the dark grey box has been moved into the enlarged cavity

(see row S1 in Tab. 6.2). As in the above infeasible case, the improved algorithm reduces the number

of cells to handle and runs faster than the basic algorithm despite the overhead of D-node management.

This first example is particularly simple and, due to the few degrees of freedom (two moving parts),

it could probably also be solved by computing a complete arrangement of hyperplanes in composite

configuration space.

The example in Fig. 6.4.b is much more difficult because it involves six moving parts (the container

is fixed). It is doubtful if a complete arrangement of valid and forbidden cells, bounded by contact

hyperplanes, can be computed explicitly within reasonable time in this case. For six moving polygons,

the composite configuration space has dimension 12. Rows S2 and S3 in Tab. 6.2 show the experimental

results of our incremental algorithms. In S3, we used a simple heuristic orderingH for the successors of

a D-node: the search continues with the successor that is closest to the current placement in the current

D-node. (Note that when switching to a successor D-node, the door test computes a point contained in

the door cell and therefore in the successor.)

The examples in Figs. 6.4.c,d are almost identical. In both cases, five of the six parts are free to

translate. While the parts in (c) can be separated, (d) cannot be separated without causing overlap,

because the peg of the right interior part has been slightly extended. For our incremental algorithms,

the examples are rather simple yet, because the reachable component of configuration space contains

only relatively few cells. Rows S4 and S5 in Tab. 6.2 show the measurements for computing a sequence
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Examples for configuration space expansion and translational separability. Note the differ-
ence between (c) and (d).
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Computation of Separating Translations

# Example Heur. T D V t[s]

81 520 134 0.91
S1 Fig. 6.4.a1 –

64 231 64 0.63

284 8,582 415 51.4S2 Fig. 6.4.b –
149 2,579 149 15.4

195 4,123 118 25.1S3 Fig. 6.4.b H

114 2,002 98 11.9

299 4,246 293 19.7S4 Fig. 6.4.c –
76 380 45 5.55

126 1,519 69 7.5S5 Fig. 6.4.c H0

47 239 18 3.42

232 4,391 262 35.1
S6 Fig. 6.4.e2 –

141 1,538 134 14.3

204 3,066 133 24.7S7 Fig. 6.4.e2 H0

112 949 67 9.52

46 129 18 0.34
S8 Fig. 6.4.f3 –

46 84 16 0.41

607 4,531 256 24.9S9 Fig. 3.2.a, p. 42 H0

117 731 48 5.24

Table 6.2: Computing separating translations. Results
from basic algorithm (upper rows) and improved algorithm
with triple-based D-node reduction (lower rows).T size of
search tree,D number of door tests,V number of already
visited nodes.1enlarged cavity in container as indicated by
dashed lines in the figure,2slightly modified to allow for
disassembly,3without center part.

Complete Expansion of Reachable C-space

# Example Separable T D V t[s]

48 533 177 0.83
C1 Fig. 6.4.a no

42 271 109 0.67

55 2,366 177 10.1C2 Fig. 6.4.d no
10 132 14 1.29

216 9,113 798 61.7C3 Fig. 6.4.e no
111 2,225 301 17.6

1 10 0 �0C4 Fig. 6.4.f no
1 10 0 �0

18,600 701,843 136,681 3,255C5 Fig. 3.2.b, p. 42 no
6,935 154,526 40,241 963

48 119 169 0.11
C6 3 boxes yes

36 37 155 0.05

1,344 7,775 8,353 10.3C7 4 boxes yes
619 786 5,164 2.57

71,160 782,519 640,681 1,554
C8 5 boxes yes

17,749 28,580 231,810 251

103,254 2,687,333 851,895 9,280C9 Fig. 3.2.c4, p. 42 no
13,722 169,829 69,847 925

Table 6.3: Complete expansion of reachable C-space. Results from basic
algorithm (upper rows) and improved algorithm with triple-based D-node
reduction (lower rows).T size of search tree,D number of door tests,V

number of already visited nodes.4black bolt fixed.
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of translations that separate (c). In row S5, we used another heuristicsH0 to sort successor D-nodes

according to the distance of their associated points from the initial placement (the origin in the composite

configuration space). Row C2 in Tab. 6.3 shows that for the infeasible variant, D-node reduction (lower

row of numbers) significantly reduces the number of cells to test and therefore the improved algorithm

performs much faster than the basic algorithm despite the overhead for D-node maintenance.

Fig. 6.4.e shows an example of a latch assembly almost identical to the one in [73]. The difference is

that our example is non-separable by modification of a small detail. Results for our variant are in row C3

in Tab. 6.3. The motions required to disassemble the original parts are non-monotone, since each of the

parts must be brought into intermediate placements. We also analyzed the original placement which is

separable. Measurements for finding a sequence of separating translations are in rows S6 and S7, where

S7 uses the heuristicsH0 described above.

To summarize, in nearly all examples the concept of reduced D-nodes showed great improvements

both on the number of cells and the running times (despite overhead for maintenance).

6.3.2 Experiments With Combinatorial C-space Boundaries

The following examples illustrate that, using an implicit linear constraint formulation of cells instead of

explicitly computing their boundaries and vertices, our algorithm avoids exponential overhead.

The first example in Fig. 6.4.f is a generalization of the example in Fig. 3.4 (page 46) to two feasible

degrees of freedom for each part. Note that the parts interlock, and a series of similarly interlocking as-

semblies with growing numberk of parts can be constructed by recursively replacing the inner rectangle

with an appropriately scaled copy of the entire assembly. Since each pair of parts is separable (when

considered alone), each of the pairwise floorgraphs consists of several nodes. However, only a single

(the initial) D-node is examined, since none of its successor candidates is reachable. The total number

of arcs in all floorgraphs is polynomial ink. Assuming linear feasibility testing of the door cells is poly-

nomial, we obtain a polynomial time bound for performing a complete search. To show that in these

examples, the boundary of the free (d-dimensional) componentC containing the origin has exponential

complexity, we observe that the tolerances allow for placing each inner part into two distinct corners of

the part around it. Selecting one such corner for each of the inner parts corresponds to oned-dimensional

vertex on the boundary ofC. This gives rise to2k�1 distinct vertices reachable from the origin. (The

vertices constructed in this way are only a subset of the total vertex set ofC.) Experimental results for

the placement in (f) are in row C4 in Tab. 6.2. Further experiments with generalized instances (having 9

and 17 parts, as described above) are in good agreement with the above argumentation (see Tab. 6.4).

Interestingly, after deletion of the central part, the placement in Fig. 6.4.f can be separated by a

sequence of translations (see row S8 in Tab. 6.2). Since no pair of parts is separated by a straight line in

the initial placement, we also ran our efficient polynomial-time algorithm form-handed separability in

Section 2.2.3. The result is that the parts (without the central box) can also be separated by anm-handed

one-shot translation.
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k t[s] t=k5[s]

5 0:6 1:9 � 10�4

9 3:2 5:4 � 10�5

17 19:3 1:3 � 10�5

Table 6.4: Computing times (in seconds CPU-time) for establishing infeasibility of the example in
Fig. 6.4.f and of generalizations to 9 and 17 parts. The latter placements can be obtained by recursively
replacing the central box with a downscaled copy of the original.

6.3.3 Experiments With Combinatorial Examples

The greatest improvements by D-node reduction were obtained for inherently combinatorial examples.

We ran our algorithms on the examples in Fig. 3.2 (p. 42) and on random overlap-free initial placements

of unit squares (’boxes’).

PARTITION Examples.Two simple instances reducing thePARTITIONproblem for the setsf1; 3; 3; 5; 6g

andf2; 2; 2; 6; 6g are shown in Figs. 3.2.a,b (page 42). The numbers are represented by blocks of corre-

sponding lengths. While the first set can be partitioned, the second cannot. As a consequence, the black

bolt in the example (a) can be removed after properly rearranging the blocks in two rows within the space

on the left inside the container. In (b) however, no such arrangement is possible. Thus, the reachable

free configuration space regions comprise all permutations of the blocks within the space between the

container and the lock.

Row S9 in Tab. 6.2 shows that using the heuristicsH0 (which sorts the successor D-nodes according

to their distances from the initial placement), our algorithms are capable of quickly finding the right crit-

ical placement of the blocks in the free space on the left to remove the bolt (case (a)). In the infeasible

case (b), the numbers of cells and running times are much higher due to the inherent combinatorics (row

C5 in Tab. 6.3). However, the number of costly door tests could be reduced by a factor of4:5 by using

D-node reduction.

Towers of Hanoi Simulation. We computed the complete reachable configuration space for the example

in Fig. 3.2.c (p. 42). If the number of U-shaped parts were large enough, the rules of the well-known

Towers of Hanoinearly had to be followed to remove the black lock (cf. [49] for a discussion of the

example). In the general case, such a construction is clearly impossible to handle with a complete al-

gorithm. We therefore ran our algorithms on the quite simple version shown in the figure and evaluated

the quality of the cell decomposition and the improvements obtained by D-node reduction. In our ex-

periments, both the container and the black bolt were fixed. Thus, the program computed the complete

reachable free configuration space regions (placements in which the U-shaped parts are in the container).

Row C9 in Tab. 6.3 shows the results. Simple triple-based D-node reduction cuts down the number of

door tests by a factor of almost 16, and improves the running time by a factor of almost 10.
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Unit Boxes. To obtain further examples with cluttered, combinatorial configuration spaces, we ran the

program on overlap-free placements of unit boxes in the plane. Unboundedness testing was disabled dur-

ing the search, thus the algorithms computed a complete convex cell decomposition of free configuration

space. (Note that the quite restricted coordinated motion planning problem for an arbitrary number of

rectangles that are allowed to translate only horizontally and vertically within a rectangular workspace is

PSPACE-complete [25, 27].)

Rows C6–C8 in Tab. 6.3 show the results. Recall thatT is the number of D-nodes in the search tree,

D is the number of door (feasibility) tests andV is the number of already visited candidate successor

D-nodes. (The latter are generated as successor candidates, but not further examined after determining

that they have been visited before.) The total number of examined D-nodes isD + V . Only feasible

and reachable D-nodes are inserted in the search tree, soT < D. Note that the number of failed door

tests equalsD � T . The last column contains the total running times for the search (including D-node

maintainance). Note that although all non-empty D-nodes are reachable (boxes can be brought into any

overlap-free placement), we haveT < D because by switching floorgraph nodes, the algorithm also

generates infeasible D-nodes yielding empty cells.

Although we used only the simple triple based elimination scheme, significant improvements over

the basic algorithm can be observed. Especially the number of expensive feasibility tests was reduced

greatly. To compare the basic algorithm and the improved algorithm with D-node reduction, we define

the ratio of examined nodes

R =
V2 +D2

V1 +D1

where the values in the numerator come from the improved algorithm while the values in the denominator

come from the basic algorithm. In our experiments,R decreased fromR = 0:67 for three boxes to0:38

for four boxes and0:17 for five boxes. This suggests thatR is reduced by half for each additional box

and the D-node reduction becomes increasingly more effective for more parts.

It can be observed in general, that the effect of D-node reduction becomes stronger both for examples

with more combinatorial freedom and for increasing number of parts (cf. results from the previous

subsections). Note that the parts must move in a space of small constant dimension (the plane). We

conjecture that the average number of constraints required for forming reduced D-nodes depends linearly

on the number of parts. This will be supported by the experimental results in the next subsection.

6.3.4 Heuristic Incremental Cell Construction

We illustrate the approach of D-node reduction by cell construction as proposed in Section 3.4.4.2. Since

optimal D-node cell construction is intractable (cf. Section 3.4.3.1), we evaluate simple heuristics that

aim at finding a good order in which the individual pairwise constraints should be added to produce a

cell that is as unconstrained as possible.

Heuristic cell construction for a given placement of parts starts with an initially empty set of con-

straints. At each step of the construction, one or more best suited constraint hyperplanes (according the
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Figure 6.5: Random placement of four boxes illustrating the CF heuristics. The order in which pairwise
constraints are considered for construction of reduced D-node cell depends on the pairwise part distances.

heuristics) from a single pair of parts are added to the cell description, and the obstacle faces behind them

are marked as shadowed. The construction is complete when the cell around the given configuration con-

tains only intersection-free placements of all parts. Since in our experiments parts were convex, it was

sufficient to consider a single constraint hyperplane per pair of parts. Note that we consider only hyper-

planes supported by the faces of the pairwise configuration obstacles. The following simple heuristics to

select constraint hyperplanes were implemented and tested:

CF (Closest Face)Choose a constraint hyperplane whose supporting obstacle face is closest to the cur-

rent configuration.

CH (Closest Hyperplane) Chose a constraint hyperplane which is itself closest to the current configu-

ration.

RH (Random Hyperplane) Randomly choose a pair of parts and add any (random) valid hyperplane

supported by the configuration obstacle of this pair. This is not really a heuristics, but serves as

a benchmark to assess the quality of the two above heuristics. Furthermore, this strategy will

show that even totally uninformed incremental cell construction is much better than considering

constraints from all pairs of parts.

We performed experiments with random overlap-free sample placements of unit boxes, triangles and

simple octagons. (In a single such placement, all parts have the same shape.) The focus here is on place-

ments with many parts rather than placements of parts with complex shapes. We show that heuristics

can be helpful to extract good (small) subsets of required constraints from the set of all pairwise con-

straints. Note that although the objects considered here are convex and simple, the resulting composite

configuration spaces are highly non-convex and cluttered. (Assume a random direction in composite

configuration space and simultaneously translate the objects, starting at a random initial placement; col-

lisions will result in almost all directions.) For an illustrative example, consider Fig. 6.5 (showing only

a few boxes). The first pair of boxes suggested by the CF heuristics would be(B;C) because this is the

closest pair. As a consequence, the linear inequalityyB � yC � c1 is added to the cell representation as

the first constraint. Thereafter, the pair(A;C) would be selected, introducing a constraint of the form

xA�xC � c2, and so on. Note that not all six pairs will have to contribute an explicit constraint on their

positions.
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Figure 6.6: Data points: average value and standard deviation of cell description sizes for 100 random
placements ofk parts (top: unit boxes, bottom: triangles) in terms of number of constraints for different
selection heuristics: CH (closest hyperplane), CF (closest face) and RH (random hyperplane). Curves:
best fit ofak2 + bk + c (cf. Tab. 6.6). The curvek(k � 1)=2 represents the upper bound.
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Figure 6.7: Closest constraint heuristics may generate redundant constraints.

Boxes Triangles

k CH CF RH CH CF RH

3 2.68 (0.469) 2.68 (0.394) 2.68 (0.302) 2.76 (0.429) 2.82 (0.386) 2.93 (0.256)

4 4.74 (0.787) 4.74 (0.783) 4.74 (0.659) 5 (0.725) 5.35 (0.783) 5.6 (0.569)

5 6.98 (1.32) 6.98 (1.03) 6.98 (1.06) 7.86 (1.03) 8.43 (1.09) 8.95 (1.01)

10 20.8 (2.53) 20.8 (2.07) 20.8 (2.99) 24.6 (2.96) 29.3 (2.47) 34.8 (2.98)

15 34.9 (3.83) 34.9 (3.08) 34.9 (4.92) 41.1 (4.24) 57 (4.07) 70.8 (5.45)

20 51 (4.88) 51 (4.35) 51 (8.14) 59.8 (4.71) 88.6 (5.58) 116 (6.22)

25 66.2 (5.08) 66.2 (5.62) 66.2 (10.7) 76.6 (5.7) 124 (6.76) 164 (8.55)

30 82.1 (6.08) 82.1 (5.75) 82.1 (10.9) 96.7 (6.03) 163 (6.85) 219 (11.5)

35 96.3 (6.65) 96.3 (6.52) 96.3 (13.8) 113 (7.13) 204 (8.39) 280 (13.3)

40 112 (7.86) 112 (7.47) 112 (14.2) 131 (7.28) 247 (9.12) 346 (15.1)

45 127 (7.18) 127 (8.14) 127 (19.1) 148 (7.75) 290 (10.1) 410 (19.4)

50 143 (7.77) 143 (9.65) 143 (18.9) 168 (8.29) 340 (10.6) 482 (19.3)

50 143 (7.77) 143 (9.65) 143 (18.9) 168 (8.29) 340 (10.6) 482 (19.3)

Table 6.5: Average value and standard deviation (in parentheses) of cell description sizes (numbers of
constraints) for 100 random placements ofk boxes/triangles using different selection heuristics: CH
(closest hyperplane), CF (closest face) and RH (random hyperplane).

Boxes Triangles

CH 3:3 � 10�3k2 + 2:8k � 6:9 3:9 � 10�3k2 + 3:3k � 8:5

CF 4:1 � 10�2k2 + 3:3k � 9:3 6:5 � 10�2k2 + 3:8k � 12

RH 8:8 � 10�2k2 + 4:2k � 14 1:1 � 10�1k2 + 4:4k � 16

Table 6.6: Best fit ofak2 + bk + c to the data in Tab. 6.5.
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We created 100 random overlap-free placements fork = 3; 4; 5; 10; 15; : : : ; 50 parts and constructed

D-node cells around each single placements using each of the above heuristics. Tab. 6.5 contains the

resulting average cell description sizes (in terms of required pairwise separating hyperplanes) and the

empirical standard deviations in parentheses. To assess the dependence of the average cell description

size onk (the number of parts), we used standard least squares curve fitting of a quadratic template

f(k) = ak2 + bk+ c to the measurements. Fig. 6.6 shows the data points, the resulting curves and error

bars indicating the standard deviations of the data. Tab. 6.6 confirms that the curves for CH are almost

linear. We performed the same experiments with octagons, resulting in the same qualitative curves (not

shown) and an almost linear dependence onk. The constant factors appear to increase from boxes over

triangles to octagons.

These results suggest that even in very cluttered configuration spaces in which every pair of parts is

a potential candidate for collisions, incremental cell construction (together with simple heuristics) can

reduce the number of required constraints from quadratic to linear. It is clear that already for a few

parts, a sample size of only 100 configurations is very small. We performed limited experiments with

sampling sets of 1000 configurations (and less than 40 parts) and observed that the linear dependence on

the number of parts was preserved.

Note that CH may, although apparently superior on average, yield redundant constraints in the general

case. This is illustrated in Fig. 6.7 (the current configuration is indicated by anx). AlthoughA andB

are closer thanC, they are redundant becauseC is required in any case. To show that CH is not optimal

even for orthogonal objects, we also performed experiments in which the boxes were arranged with some

clearance between them to form a regular square. For these arrangements, CF performed better than CH,

showing that CH is not optimal. However, Fig. 6.6 strongly suggests that on average, CH is the best

heuristics in the above scenario. Future work should investigate constraint selection heuristics for more

complicated part shapes and placements as well as the three-dimensional case. For placements with

interlaced non-convex parts, we conjecture that CF yields better results.

6.4 Spatial Examples for General Translational Separability

We tested our algorithms for general translational separability in Chapter 3 with several more realistic

spatial examples. To show the special importance of fast and complete unboundedness testing, we in-

corporated both the simple algorithm from Section 4.1.2 and our new algorithm from Section 4.1.3 and

compared their performances. Running times were recorded for the following two tasks:

� Search for the first unbounded cell.The search stops when the first unbounded cell is found, that

is, at least one part can be removed from the remaining parts. Tab. 6.7 summarizes the results. The

columns specify the problem name, the number of parts, the number of cells tested for unbound-

edness during the search, the times of the simple and new unboundedness test for all cells, and the

time required for for the search (includes door feasibility tests).



104 CHAPTER 6. EXAMPLES AND EXPERIMENTAL RESULTS

Lock

Bolt

Container

Figure 6.8: To decide whether the bolt can be removed, reachable placements of the lock must be exam-
ined (example from the introduction).

� Complete disassembly. Having found an unbounded cell, the problem is split into separable

subsets and the subproblems are processed recursively until they consist of single parts or cannot

be disassembled any further. Tab. 6.8 summarizes the cumulative running times for complete

disassembly.

6.4.1 Lock and Bolt

As a first very simple example, we revisit the lock/bolt mechanism from our introduction (cf. Fig. 6.8).

The bolt can be removed if and only if the notch of the lock can be brought into alignment with it. Due

to the peg, the lock can only move back and forth in a limited range within the container. We created two

instances of this construction in which the notch of the lock is at two different locations. Only one of them

allows for removal of the bolt. Note that although the parts are quite simple, complete configuration space

computation (direct arrangement computation) can be quite costly. Our basic incremental algorithm from

Chapter 3 solves both examples almost instantly by proving infeasibility in one case and determining

separating translations in the other case. Since the lock cannot be removed from the container, we did

not consider complete disassembly here. The running times are within fractions of a second in both

cases.

6.4.2 Wooden Cube Puzzle

We revisit the 12-part wooden cube in Fig. 3.1 (p. 41). A total of 38 unboundedness tests were necessary

to find a removal sequence for the first subset of parts (Tab. 6.7). Our new unboundedness test performs

almost six times faster than the simple algorithm in this example. For complete disassembly, the required

non-monotone sequence of translations was found by our program in about 13 seconds. About 2 seconds
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Example Parts U-tests Simple New Search

Cube 12 38 5.91 1.00 7.24

Bookcase 17 147 50.71 9.82 14.83

Desk1�

(not decoupled) 9 504 25.17 2.61 7.64

(decoupled) 2� 5 25 0.37 0.03 0.18

Desk2y

(not decoupled) 9 256 11.14 1.23 13.09

(decoupled) 2� 5 32 0.50 0.08 0.52

Table 6.7: Searching for first unbounded cell (�can be disassembled,ycannot be disassembled). Total
running times (in seconds) are the sum of the numbers in columns Simple and Search or New and Search
(according to which unboundedness test was used).

Example Parts U-tests Simple New Search

Cube 12 132 12.42 2.05 10.94

Bookcase 17 277 55.82 10.42 16.23

Desk1�

(not decoupled) 9 960 37.10 3.86 10.35

(decoupled) 2� 5 118 1.24 0.10 0.54

Table 6.8: Complete disassembly (�can be disassembled). Total running times (in seconds) are the sum
of the numbers in columns Simple and Search (using the simple unboundedness test) or New and Search
(using our new unboundedness test).

Example Simple New Search

Cube 22.59 (12.42) 3.34 (2.05) 33.85 (10.94)

Bookcase 115.31 (55.82) 16.62 (10.42) 77.90 (16.23)

Desk2y 195.93 (11.14) 22.7 (1.23) 1635.18 (13.09)

(not decoupled)

Table 6.9: Running times for complete disassembly without D-node reduction (ycannot be disassembled).
Times using D-node reduction from Tab. 6.8 are shown in parentheses.
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are for the new unboundedness test whereas the simple test would have taken more than 12 seconds for

all cells (cf. Tab. 6.8). The first row in Tab. 6.9 shows the running times of the algorithm without D-node

reduction (for comparison, the results with D-node reduction from Tab. 6.8 are in parentheses). The

speed-up factor of about three shows that triple based D-node reduction can be very effective for tightly

packed three-dimensional assemblies with many interlaced parts.

6.4.3 Book-case

For the 17-part bookcase in Fig. 6.9.a, constraints from many pairs of parts can be eliminated due to

redundancy. This is illustrated in Fig. 6.9.b, which shows exploded side view of one half of the bookcase

(11 parts instead of 17) and in Fig. 6.9.c, showing the reduced D-node for the initial mounted config-

uration. Only 22 out of 55 pairwise constraints (edges) are necessary for the 11 parts. For the entire

bookcase assembly, the graph representation of the initial reduced D-node contains 50 out of 136 edges.

A complete disassembly plan was computed in about 16 seconds for the search and 10 seconds for the

new unboundedness test (277 cells were tested for unboundedness). In contrast, the simple algorithm

took almost six times longer (56 seconds). Tab. 6.9 shows that D-node reduction with the new unbound-

edness test speeds up the computation by a factor of about 3.5. Note that for this example, we used

the dynamic heuristics with floorgraph node counters as described in Section 3.5 for sorting successor

D-nodes.

6.4.4 Desk

Fig. 6.10.a shows a desk with eight drawers. The container of the drawers is a single part. Each of

the drawers slides along two splints, secured against falling out. The drawers must be pulled out, lifted

and then pulled further out to be removed. Before a single drawer can be lifted enough for removal,

the one above it must have been removed. We created two versions, Desk1 which is demountable and

Desk2 which is not demountable. The second model is nearly identical to the first but the back panels

of the topmost drawers were heightened so that these drawers could no longer be lifted enough for

removal. Consequently, none of the drawers can be removed, although they can all be moved back and

forth independently. Fig. 6.10.b shows the initial reduced D-node. The container (C) separates the left

(L1–L4) and right (R1–R4) drawers: there are no edges between any L- and R-nodes.

The running times for finding the first unbounded cell and for complete disassembly of Desk1 are

shown in Tab. 6.7 and Tab. 6.8 (rows indicated by ’not decoupled’). For comparison, Tab. 6.9 shows that

the total running time (using our new unboundedness test) is more than 100 times slower without D-node

reduction.

In the case of Desk2 (non-separable), D-node reduction cannot avoid that2
8 cells are examined since

the two cabinets are not checked independently: each of the eight drawers is checked in two positions:

pushed in and pulled out. This is exactly the situation described in Section 3.5.3 (Independent Subprob-

lems). Actually, the drawers in the left cabinet cannot interact with the drawers in the right cabinet in
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Figure 6.9: (a) A bookcase that requires several sequential motion direction changes to remove the
shelves. (b) Exploded side view (front side only) and (c) graph representation of reduced initial D-node.
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Figure 6.10: (a) Desk with eight drawers and (b) Initial D-node allowing for decoupling into two sub-
problems.

any relative placement. Therefore, the problem can be split in two simpler decoupled subproblems (left

and right cabinet). We decoupled the left and right cabinets and ran the program twice, once on the left

cabinet alone and the second time only on the right cabinet. The resulting running times are included

in the tables (rows indicated by ’decoupled’ in the leftmost column). The two separate problems with

5 parts each allow for faster detection of infeasibility, resulting in significant speedup (up to a factor of

almost 50).



Chapter 7

Conclusion

7.1 One-shot Translational Separability

We discussed the problem of translational one-shot separability for overlap-free placements of polygons

or polyhedra. A classification of different subproblems was given, and the problems ofm-handed and

c-handed separability were considered in detail. To the best of our knowledge, this contribution is the

first, except for our own recent work, to delve with the case of multiple moving subsets in the context of

simultaneous infinite translations.

In them-handed case, we started with polygonal parts and derived a linear constraint framework

for describing the set of all valid infinite one-shot separating translations. We then presented efficient

algorithms for the cases where either all or no pairs of polygons are separated in the initial placement.

Since the generalm-handed separability problem is NP-complete, we developed effective heuristic pre-

processing and a branch-and-bound algorithm to tackle instances with both separated and non-separated

pairs. We then proved NP-completeness ofm-handed separability of polygons by a reduction from the

PARTITIONproblem for integers. We showed how our algorithms and heuristics can be extended to

polyhedral parts, and adapted the NP-completeness proof from the polygonal case.

Motivated by the complexity ofm-handed separability and the existence of polynomial-time al-

gorithms for single-handed separability, we studied the problem ofc-handed separability. There, the

number of different subset velocities must not exceed a constantc. We showed that the problem of find-

ing ac-handed separating translation can be reduced to a velocity or direction assignment problem, but

both problems are NP-complete forc = 2. We consider this an important result, since deterministic

polynomial-time algorithms are known for the special casec = 1.

For the proof of NP-hardness of two-handed separability of polygons and two-handed velocity as-

signment for polygons, we needed additional fixture constraints. (In the polyhedral case, no fixture

constraints were necessary.) It remains an open question in this work, whether the hardness result can be

obtained without these fixture constraints in the planar case.

Many practically motivated extensions may be studied in the future. Note that the basic principles

for one-shot separability also apply to curved planar parts, as long as separating directions for pairs of
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parts can be derived. Further heuristic preprocessing strategies can be envisaged beyond the proposed

base cell projection to simplify various separability problems. From the practical perspective, it would

be important to incorporate additional constraints and possibly reformulate the problem as (approximate)

optimization of some cost function. For instance, one may be interested in finding the minimum number

of hands required to separate a given placement of parts, or the maximum number of parts that can be

removed simultaneously. To execute separating motions without costly fixturing mechanisms, it may be

required that parts moving with the same velocity form a connected and stable subassembly.

7.2 General Translational Separability

General translational separability is known to be PSPACE-hard. But this fact and a number of related

hardness results for subclasses of the problem concern the worst-case complexity. In contrast to this,

the complexity of many practically relevant instances is much simpler when we consider only the set

actually feasible translations.

We first discussed various general problems of convex cell decompositions in the context of mul-

tiple translating parts (polygons or polyhedra), and then proposed a framework for high-dimensional

C-space expansion. Based on this idea, our methods incrementally compute reachable free regions in the

composite configuration space. We then discussed further general defragmentation methods to eliminate

remaining redundancies.

Our approach will work best for composite configuration spaces with narrow channels and non-

combinatorial properties (in those regions that are reachable from the initial placement). An example

with narrow channels but excessive combinatorics that will remain hard for our approach would be the

well-known sliding block puzzles. The conditions under which our approach can be successfully used

are often met in assembly planning applications. There, we usually have highly coordinated motions

of parts and constrained configuration spaces. Combinatorics in assembly planning usually arises when

enumerating all possible disassembly sequences. In this work, however, we considered the problem of

finding a single separating sequence or proving that no such sequence exists. When parts have been

separated into at least two subsets, the configuration space becomes combinatorial, but then the search

can stop and can recursively work on the separated subassemblies.

In the above scenario, our approach compares favorably with other planning methods for the fol-

lowing reasons. Our algorithms are exact and complete (under the above assumptions). Random and

heuristic planners will inevitably fail in narrow configuration space channels. A great advantage is that

our approach can be extended to allow for bounded overlap. This could be used to identify the contact

pairs that prevent an almost feasible separating motion. We regard this as a practically very relevant

feature. Other exact and complete planning methods either limit the set of allowed translations or are too

intricate for a reasonable implementation. Our algorithms have been implemented and evaluated, and

are based on subproblems that have been extensively studied in the literature, such as computation of
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configuration space for pairs of parts and linear programming.

The following open problem should be studied in the future: unrelated subsets of parts may in-

troduce a combinatorial explosion if it is not obvious how to decouple these subproblems. This was

illustrated using simple examples in Section 3.5.3. The main problem is that, since in our approach

we combine pairwise configuration spaces, all combinations of convex pieces from independent non-

convex subspaces may be feasible and have to be tested in the composite configuration space (for the

sake of completeness). Note that only eliminating the redundant constraints (in whatever sense) does not

help here. Better ways than the mentioned very simple heuristics have to be found in order to decouple

subproblems without loosing completeness.

To conclude, it is hard to find high-level techniques for tackling the problem of translational sepa-

rability in its full generality. Previous approaches have analyzed various subclasses of the problem by

restricting the allowed translations to either single translations, small constant-length sequences of trans-

lations or one moving part per translation. Our algorithms are presented in the very general framework

of the composite configuration space, under the quite abstract assumption that the set of feasible trans-

lations is not too complex. They proved to be practical in many interesting examples for which other

implemented methods such as random planners are not suited. A variety of theoretical methods that have

been proposed to solve general motion planning problems do not seem to be of practical applicability at

all, if the number of independently moving objects is not limited to a small constant.

7.3 Efficient Linear Unboundedness Testing

Efficient linear unboundedness testing is a key to practical algorithms for translational separability. We

first defined the problem and pointed out why it cannot be solved using standard methods of linear

programming in a straight-forward way. We then proposed a newO(nd4:5)-time algorithm for unbound-

edness testing withn constraints andd variables. It improves by a factor ofd over the naive approach

using2d linear maximizations or feasibility tests. We showed that unboundedness testing is at least as

hard as the dominating steps of our new algorithm: solving homogeneous equations and feasibility test-

ing. This suggests that unboundedness testing cannot be performed faster asymptotically unless faster

methods for feasibility testing become available.

Allowing disjunctions of constraints, we proved that the problem of finding an unbounded direction is

NP-complete already for a maximum of two constraints per disjunction and three variables per constraint.

An open question is whether this still holds for at most two variables per constraint.

7.4 Implementation

We discussed some practically relevant subproblems that were omitted in Chapter 3 in order to keep the

presentation clear. In particular, we showed

� that non-negativity constraints on all reference point coordinates can be advantageous,
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� how visited D-nodes and solution paths can be stored and retrieved efficiently, and

� that pairwise configuration space computation is well-understood and should be performed incre-

mentally during the search if polyhedral parts of high complexity are considered. However, the

latter is a topic for future research.

7.5 Experiments and Evaluation

The experimental results show that our algorithms can solve a variety 2- and 3-dimensional translational

separability problems. Proving infeasibility and computing the complete set of reachable placements can

be more or less effort than finding a removal motion: on the one hand, a non-separable placement of

parts may be very constrained, thus involving fewer reachable D-node cells than a separable example.

On the other hand, proper heuristics can help finding removal motions quickly while proving infeasibility

always requires the expansion of all reachable cells (cf. thePARTITIONexamples). The concept of D-

node reduction turned out to be of great importance. We implemented and tested D-node reduction using

a triple-based elimination scheme which showed to have a great impact on the numbers of examined

cells. Despite the overhead caused by additional maintenance steps, the running times were, in almost

all cases, reduced substantially by this cell defragmentation.

When a sequence of separating translations actually existed, both very constrained and very uncon-

strained problems could be solved rapidly. In the former case, free space is limited, thus forcing the

search to follow the right channels. In the latter case, an unbounded cell maybe within reach. It is actu-

ally the type of problems in-between which are hard. That is, constrained problems with combinatorial

properties, such asPARTITIONor theTowers of Hanoisimulation.

To test different D-node cell construction heuristics for improved cell defragmentation, we discussed

our experiments with random sample placements of boxes, triangles and octagons. The results show that

the number of actually required constraint hyperplanes can be reduced drastically by incremental cell

construction and use of proper heuristics for selection of promising separating hyperplanes. Even for

the considered very unconstrained placements, a linear number of constraints appears to be sufficient.

There is much room for future work here. Especially for placements with many non-convex parts or

realistic assemblies, the effectiveness of the proposed (or similar) cell construction heuristics should be

investigated.



Appendix A

Cell Projection

Given a set ofd-dimensional constraintsAx � b, compute a linear projection of the set of feasible

points to an arbitrary linear subspace (calledprojection space). If the projection space is spanned by a

subset of the canonical basis of the input set, an equivalent problem is eliminating all variables whose

basis vectors do not contribute to the subspace.

A.1 Convex Hull Method

When the dimension of the projection space is a small constant (in our cases, 2 or 3), we can compute

an explicit vertex representation of the projection using theConvex Hull Methodpresented in [28] for

parameter elimination. The method combines principles from high dimensional linear optimization with

explicit vertex-face representation in low-dimensional projection space. Since the input set is linear and

convex, its projection must be a linear convex set, too. We can therefore incrementally construct the

projection starting with an initial inner approximation and adding new vertices and faces that are the

result of linear optimizations subject to the input constraints.

Growing an Inner Approximation

A facet of the approximation is terminal, that is, it belongs to the projection, if a high-dimensional linear

optimization orthogonally outwards to the facet yields a vertex whose projection is contained in the

facet. Otherwise, the new vertex is outside the current hull and must be added to the representation, thus

generating new facets to be processed next. The algorithm stops when all facets are terminal.

To obtain the initial inner approximation of the projection, we first run a minimization and maximiza-

tion along an arbitrary basis vector of the projection space. If the extrema coincide, we select another

basis vector. (If all basis vectors of projection space yield identical extrema, the projection is a single

point.) Next, we minimize in an arbitrary direction that is orthogonal to the segment connecting the two

initial vertices. The new vertex is added, and we continue until the approximation is full-dimensional.

We continue testing and expanding facets as described above until we have obtained all terminal facets.

In the worst case, the running time of the method is exponential in the dimension of the projection
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space, because we explicitly compute all vertices of the projection. The following example illustrates

the above principles to obtain projections to a part-relative subspace (which is the case required in our

context).

Example: Given the placement of four planar parts in Fig. A.1.a, we get the following pairwise linear

constraints:

(A;B): f0 � xA � xB � 1; yA � yB � xA + xB = 0g

(B;C): fxB � xC = 0; 0 � yB � yC � 1g

(C;D): f0 � xC � xD � 1; yC � yD = 0g

The constraints state that partA can move diagonally in the hole insideB, partB can move vertically

within C andC can move horizontally withinD. We assume that partC is fixed, i.e. we addxC = yC =

0. These constraints form our systemAx � b, wherex = (xA; yA; xB ; yB; xC ; yC ; xD; yD).

We are interested in the possible relative placements of partA with respect to partD. This amounts

to computing the projection of the above constraints to the(xA�xD; yA�yD)-subspace. Note that here,

the projection space is not spanned by a subset of canonical basis vectors of the input set.

In a first step, we minimize and maximizexA � xD subject toAx � b which yields the points

(xA � xD; yA � yD) = (0; 0) and(xA � xD; yA � yD) = (2; 1), respectively (Fig. A.1.a). Note that

both extrema are not unique. In fact, another minimal vertex would be(0; 1) and another maximial

vertex(2; 2). The correctness of the following steps is of course independent of the chosen minimum

and maximum vertex.

Since we project into a two-dimensional space, the directions for the next minimization and maxi-

mization are unique: the unique straight line(xA�xD)�2(yA�yD) = 0 is determined by the initial two

points(0; 0) and(2; 1) (Fig. A.1.b). Minimizing and maximizing(xA� xD)� 2(yA� yD) yields(1; 2)

and(1; 0), respectively. Now we have an initial approximation of the projection, shown in Fig. A.1.c,

which is bounded by the constraints

yA � yD � 0

�(xA � xD) + (yA � yD) � �1

�(xA � xD)� (yA � yD) � 3

2(xA � xD)� (yA � yD) � 0

The following three minimizations orthogonally to the bounding straight lines of these constraints

reveal that the first two faces already belong to the final projection, and that two new vertices, must be

inserted: minimizing�(xA � xD)� (yA � yD) yields(2; 2) and minimizing2(xA � xD)� (yA � yD)

yields (0; 1). The new approximation (Fig. A.1.d, bold segments indicate terminal facets) is therefore

bounded by
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Figure A.1: Example for cell projection by growing an inner approximation using the Convex Hull
Method.
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yA � yD � 0

�(xA � xD) + (yA � yD) � �1

xA � xD � 2

yA � yD � 2

(xA � xD)� (yA � yD) � 1

xA � xD � 0

Minimizing orthogonally to the bounding lines of the four non-terminal constraints yields no further

vertices and we can terminate with the projection in Fig. A.1.e.

Simultaneously Shrinking an Outer Approximation

While growing the inner approximation, we can simulteneously maintain a shrinking outer approxima-

tion of the projection. The bounding faces of the outer approximation are obtained by establishing hy-

perplanes through the vertices of the inner approximation. The normal vector of such a hyperplane is the

direction in which the corresponding supporting vertex was obtained. This is illustrated in Fig. A.2 for

the above example. The dashed lines show the inner approximation. Since the faces of the inner approx-

imation define the directions of the next optimizations, each bounding face of the outer approximation is

parallel to a face of the previous inner approximation.

A.2 Base Cell Projection

This algorithm is a simplification of the aboveConvex Hull Methodfor the special case that the input

cell is given byAu � 0 (u = (x1; y1; : : : ; xk; yk)). We compute the projection to the space of relative

positions of parti with respect to partj.

In the general case, this projection will be a single convex cone in the plane with the apex at the

origin. We therefore need to find a sector of feasible directions. Two special cases are possible: the

projection can be (1) the whole plane (all directions feasible) or (2) the origin only (empty set of feasible

directions).

To find the feasible directions, we test which points on a closed curve around the origin in the target

c-space satisfy the cell constraints. For the curve we chose a square, because its edges can be most easily

described by linear constraints in the variablesxi � xj andyi � yj. To test all points on the square, we

run linear programs in both directions on each edge of the square subject to the additional constraints

Au � 0 of the given cell. Two optimizations per edge are sufficient since all points between the extrema

must satisfy the constraints, too. The result is a connected sequence of feasible segments on the square

which represents the feasible directions.
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Figure A.2: Simultaneously shrinking an outer approximation (shaded) in the example. Inner approxi-
mation shown with dashed lines

The example in Fig. A.3 illustrates the concepts. Tab. A.1 summarizes the edge constraints which

we add to the cell constraintsAu � 0, the different objective functions and the resulting extremal points

of the maximizations. Here, e.g. maximization along the right vertical edge in positivey-direction

(max yi � yj) will yield the point q. In contrast, both optimizations using the bottom edge constraints

will fail since the bottom edge is outside the projection. From the extremal points we can deduce the

intersection of the square with the projection of the given cell. This intersection is shown with bold

lines in the figure. Finally, the projection is constructed by casting two rays from the origin through the

endpoints of the intersection (dashed lines in the figure).

If all optimizations succeed and each extremal points coincides with some square vertex, then the

projection covers the whole plane. In contrast, if all optimizations fail, then the projection must be the

origin only.
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p
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q

xi � xj

yi � yj

Figure A.3: Projection of a homogenous convex cell of directions to an arbitrary plane (shaded cone
bounded by dashed lines). Extremal pointsp, q andr on centered square.

edge additional edge objective directions results

constraints functions

right xi � xj = 1; �(yi � yj) up(+),down(�) q(+), r(�)

�1 � yi � yj � 1

left xi � xj = �1; �(yi � yj) up(+),down(�) infeasible

�1 � yi � yj � 1

top yi � yj = 1; �(xi � xj) right(+),left(�) q(+), p(�)

�1 � xi � xj � 1

bottom yi � yj = �1; �(xi � xj) right(+),left(�) infeasible

�1 � xi � xj � 1

Table A.1: Constraints specifying the edges of a centered square, objective functions for optimizing
along edges and extremal points (p; q; r) for the situation in Fig. A.3.
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Bounds on Vertex Coordinates

Given an(n� d)-matrixA and ann-dimensional column-vectorb, both integral, we consider the poly-

hedron defined by

Ax � b

We show that upper bounds for the1-norm (l1-norm) of all vertices of this set can be computed

1. withO(nd) basic arithmetic operations, and

2. in timeO(L log d+ log
2 d) whereL denotes the number of bits required to representA andb.

Note that both time bounds do certainly not exceed the asymptotic time complexity of any conceivable

unboundedness testing algorithm, as required in the proof of Lemma 13 (p. 78).

To derive the first bound, we can assume that there is a non-singular subsystem ofAx � b, which

we denoteEx � f , such that a vertexv is the unique solution ofEx = f . Without loss of generality,

E is a (d � d)-matrix andf a d-vector. By Cramer’s rule,vj = detEj=detE, whereEj is obtained

from E by replacing thej-th column byf . SincejdetEj � 1 (the matrix is integral and non-singular),

jvj j � jdetEjj. TheHadamard inequality[17] states that for a(d� d)-matrixC,

jdetCj �

dY
i=1

kcik

For the integral matrixEj, this inequality implies

jdetEj j �

dY
i=1

vuutf2i � e2ij +
dX

k=1

e2ik �
nY
i=1

(b2i +
dX

k=1

a2ik)

Thus, an upper boundc = d �maxj jdetEjj for the1-norm ofv can be computed withO(nd) basic

arithmetic operations.

Second, we analyze the required time to compute an upper boundc using the Turing machine model,

that is, we additionally consider the size of the numbers occurring in our computations. From Lemma

3.1.33 in [17] we obtainjvj j � 2
L�d2 for any vertexv, whereL denotes the accumulated length of the

(integral) input coefficients (using binary encoding). We may for instance choosec = d2L. SinceL � d,

we can computed2L in timeO(L log d+ log
2 d).
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