Institut fiir Informatik
der Technischen Universitat Munchen

Reasoning about Terminating Functional
Programs

Konrad Slind

Vollstdndiger Abdruck der von der Fakultat fiir Informatik der Technischen
Universitidt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. Angelika Steger
Priifer der Dissertation:
1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. David Basin, Ph.D.,
Albert-Ludwigs-Universitit Freiburg

Die Dissertation wurde am 25.06.99 bei der Technischen Universitit
Miinchen eingereicht und durch die Fakultit fiir Informatik am 4.11.99

angenomien.

Abstract

This thesis addresses two basic problems with the current crop of mechanized
proof systems. The first problem is largely technical: the act of soundly in-
troducing a recursive definition is not as simple and direct as it should be. The
second problem is largely social: there is very little code-sharing between theorem
prover implementations; as a result, common facilities are typically built anew in
each proof system, and the overall progress of the field is thereby hampered.

We use the application domain of functional programming to explore the first
problem. We build a pattern-matching style recursive function definition facility,
based on mechanically proven wellfounded recursion and induction theorems.
Reasoning support is embodied by automatically derived induction theorems,
which are customised to the recursion structure of definitions. This provides a
powerful, guaranteed sound, definition-and-reasoning facility for functions that
strongly resemble programs in languages such as ML or Haskell. We demonstrate
this package (called TFL) on several well-known challenge problems.

In spite of its power, the approach suffers from a low level of automation,
because a termination relation must be supplied at function definition time. If
humans are to be largely relieved of the task of proving termination, it must be
possible for the act of defining a recursive function to be completely separate
from the act of finding a termination relation for it and proving the ensuing
termination conditions. We show how this separation can be achieved, while still
preserving soundness. Building on this, we present a new way to define program
schemes and prove high-level program transformations.

Since the second problem is largely social, we cannot solve it alone; however,
we do present an artifact that marks a path to a brighter future. In particular, we
show that the sophisticated algorithms implemented in TFL can be parameterized
by a higher order logic proof system. The package has been instantiated to
HOL and Isabelle-HOL, two quite different mechanizations of higher order logic.
In this exercise, we found that the fully formal approach taken to justifying
definitions and deriving induction schemes was fundamental in providing the
required combination of portability and soundness.

Contents

1 Introduction

1.1 Verification of functional programs
1.1.1 Programs and functions
1.2 TFL . . e
1.3 Contributions e
1.4 Relatedresearch oL oo
1.5 Organization
2 Logical Basis
2.1 Higherorderlogic oo
2.1.1 Deductive system oo
2.1.2 Definition principles
2.1.3 Notation and basic definitions
2.2 Datatypes
2.2.1 Common datatypeso
2.3 Wellfoundedness and induction
2.4 Transitiveclosure o
2.5 Wellfounded Recursion
2.6 A collection of wellfounded relations
2.6.1 Wellfounded relations for datatypes
2.7 Contextual rewriting Lo
2.7.1 Makinguse of context
2.8 Summary e e
3 Mechanization
3.1 Definitions with termination relations
3.2 Extracting termination conditions
3.3 Pattern-matching oo o
3.3.1 Translation of pattern-matching
3.3.2 Incomplete and overlapping patterns
3.4 Customized induction theorems

3.4.1 Deriving induction L.
3.4.2 Proving completeness of patterns

5

11
13
14
15
17
17
20

21
21
23
25
26
28
31
39
36
38
41
45
48
49
93

3.4.3 Remarks 80

3.5 Definitions without termination relations 81
3.5.1 Relationless definition algorithm 81
3.6 Schematic definitions 85
3.7 Summary e e 88
Nested and Mutual Recursion 91
4.1 Nested recursion i e e 91
4.1.1 Induction theorems 92
4.1.2 Proving nested termination constraints 94
4.2 Formal derivation of nested induction 95
4.3 Relationless definition of nested functions 96
4.3.1 Formalderivation 98
4.3.2 Induction for relationless definition 101
433 Example 103
434 Nestedschemes 109
4.4 Mutual recursion e e 109
4.4.1 Formal derivation of mutual recursion 117
4.4.2 Formal derivation of mutual induction 119
4.5 Related work 120
Examples 121
5.1 List permutations and sorting 121
5.1.1 Naive Quicksort Lo 122
5.1.2 Faster Quicksort Lo 123
5.2 TIterated primitive recursion 126
5.3 Propositional logic algorithms 127
5.3.1 Evaluation of conditional expressions 128
5.3.2 Wang’s algorithm 129
54 fx)=flx+1) ... 130
5.5 Higher order recursion Lo 131
5.6 Program transformations L0 133
5.6.1 Unfold 136
5.6.2 Binary recursiono 137
5.6.3 Related work, 140
5.7 Call-by-name and call-by-value 141
5.8 Formal unification revisited 144
5.8.1 Associationlists 145
.82 Terms e 145
5.8.3 Substitutions 0oL, 146
584 Unifiers @ . e 149
58 Unify. 149
5.8.6 Termination e 152

5.8.7 Correctness o e 156

6 Conclusions and Future Work 159
A System Architecture 165
Al Requirements 165
A.1.1 Imsulation 166

A1.2 Syntax 167

A13 Thms 167

Al4 Thry o 168

Al15 Rules. 169

A.2 Instantiations e e 169
A2.1 Theories e 169

A22 Rules. 170

A.3 Customization e 172

Acknowledgements

I would like to thank Tobias Nipkow for helping me to get started in Germany,
and for his unstinting efforts to improve the quality of this work. Most of the
ideas in this thesis were forged in our weekly meetings. Moreover, Tobias waited
patiently for this work to finally be completed.

Bernhard Schitz befriended me in Munich when I was just a trembling puppy
of an Ausldnder. Ever since, he has been a continual source of good humour, help
of all kinds, and general encouragement. Without him, this thesis would never
have been submitted.

Olaf Mueller was an excellent officemate; his bright and outgoing personality
helped make our time together in the office very pleasant.

John Harrison has been a fount of technical advice and theorem-proving know-
how. As well, he has been a regular and entertaining email correspondent.

My proof readers John Harrison, Mark Staples, Michael Norrish, and Joe Hurd
are due thanks for their keen-eyed reading of some fairly awful prose. Thanks are
also due to Mike Gordon, Richard Boulton, and Alan Bundy for their forbearance
while this work was being finished.

The bookends of my working days in Munich were brightened by M. Schmied-
chen, B. Schwarz, R. Schneider, H. Griinert, K. Penta, D. Hiidelmeier, and espe-
cially Horst Hiibsch.

I met Alexandra Karl in Munich; she stuck it out with me through many years
of odd hours and disruption, while somehow also achieving her own academic
goals. Her love and suppport has enabled us to prevail, and for that, a proper

thank-you lies far from the realm of words on a page. But nevermind: thanks
Alex!

10

Chapter 1

Introduction

A program is a text (a piece of syntax, marks on a page, ...) that may be regarded
as a sequence of machine operations: programs bring computers to life. Typically,
a program has been created by a human and is intended to achieve certain goals
of its author(s). However, it is often not clear whether or not a program fulfills its
author’s expectations; in fact it seems that programs rarely perform exactly as
expected. Further, most authors do not (or can not) express their expectations
precisely enough to ascertain whether or not their program works properly. This
state of affairs is the raison d’étre of the field of software engineering, which
studies principles for producing and maintaining ‘good’ software. The techniques
studied in software engineering cover a vast range and we shall only discuss a
few:

Lifecycle methods. In these [14], a model of the lifecycle of software is used
as a basis for a methodology governing the way software is produced and
maintained. Advocates of a given style will assert that better software
results if the methodology is followed. Such methods are often used on
large projects and have been found to be beneficial.

Advanced programming languages. Programming languages having exotic
type systems, parameterized modules, and incorporating object-oriented
facilities, concurrency, and distribution are under intensive investigation|[1,
10, 97]. Of course, the intent is that, with such languages, it should be easier
to write and maintain sophisticated programs than currently possible.

Formal methods. This approach is inspired by mathematical logic: the idea
is to represent (some aspect of) programs in a formal language, i.e., a
language with mathematically described syntax and semantics. In this
setting, a program is no longer just a text but also a mathematical object;
precise properties of programs can be stated and established. In particular,
correctness, i.e., that a program performs as expected, can be rigorously
shown.

11

Of course, these techniques can overlap, and there have been fruitful combi-
nations of them. For example, lifecycle methods can benefit from incorporating
formal descriptions: many incoherencies can be caught early in the lifecycle if
requirements specifications are written in a formal language. The rest of the de-
velopment may proceed non-formally but a large and expensive class of errors is
detected early, with corresponding large savings.

The work described in this thesis is a contribution to formal methods. The
main goal of formal methods is the production of ‘error-free software’ (or hard-
ware). In contrast to a lifecycle method, where one puts one’s faith in the method-
ology to weed out errors, and thus it is possible that some errors slip through,
a formal method is supposed to provide the highest degree of precision: com-
plete assurance that no logical errors exist in the software or hardware under
consideration.

The field of formal methods is undergoing rapid growth as it tries to find its
proper niche within software engineering and other fields such as mathematics.
A large number of formal methods have been proposed. In general, these reflect
the nature of the applications (concurrency, distributed systems, hybrid systems,
imperative sequential programs, functional programs, hardware, etc.), the vari-
ous formalisms suitable for modelling computational phenomena (propositional
logic, temporal logic, first order logic, higher order logic, set theory, category
theory, automata theory, process algebra, etc.), and the level of automation that
a formalism provides (the weaker the expressive power of a formalism, the more
automatable it is).

Functional programming

Our specific interest is in proving the correctness of pure functional programs.
Functional programming has its roots in the seminal logical research of the 1920s
and 1930s. Schonfinkel and later Curry discovered that all functions could be
reduced to functions having a single arity, thus starting the study of combinators
which occupied Curry for many years thereafter [28] and which have since become
an important technique in the implementation of functional languages. Church
initially put forth his lambda calculus as a foundation of mathematics. It was
shown to be inconsistent, but later on Church used a typed version of it as the
basis for a higher order logic [23]. The untyped lambda calculus proved to be of
equal strength to Turing machines; however, for many years the lambda calculus
languished until the advent of the computer. McCarthy used some aspects of
the lambda notation in his LISP language [70]. In the 1960s, Landin used the
lambda calculus as a notation that captured aspects common to a wide number
of programming languages [62]. He also invented the SECD machine, an impor-
tant technique in implementing functional languages [61]. Burstall introduced
constructor-based datatypes, ‘case’ statements and structural induction in his
seminal paper of 1969 [21]. In spite of its evident utility in capturing important

12

aspects of programming languages, there was some suspicion among logicians
about the mathematical meaning of terms in the untyped calculus. A mathemat-
ical semantics for programs was finally achieved by Dana Scott in the late 1960s
with his theory of domains [94]. In the middle of the 1970s, Robin Milner and
his colleagues presented LCF [42], a proof system for Scott’s logic. This system
was coded in ML, an influential implementation of the typed lambda calculus.

ML marks the beginning of a new era in functional programming, combin-
ing functions as first class citizens, type inference, and pattern matching. ML is
not purely functional, since its design included reference cells, which allow im-
perative operations. Some purely functional languages, which disallow any such
manipulations of a hidden state also sprang up around this time [100]. Since
these beginnings, functional programming and the lambda calculus have been
the subject of a vast amount of research, which we cannot hope to do justice to
here.

Instead we will discuss some motivations for this interest. A pure functional
program may be understood as a lambda calculus term with some extra syntax
added for readability. Therefore, theoretical properties enjoyed by the lambda
calculus are inherited by functional programs. Two practical benefits of this have
repeatedly been put forward by functional programming advocates: parallelism
and correctness. Possibilities for parallelism arise since the lambda calculus has
the Church-Rosser property - any terminating evaluation strategy for lambda
terms will give the same answer as any other, so a parallel evaluation of a function
will give the same answer, hopefully faster, as a sequential evaluation. Although
parallel implementations of functional languages have demonstrated impressive
performance [13], they are still mainly research prototypes.

1.1 Verification of functional programs

Another strength of functional programming is supposed to be that one can more
easily prove correctness. In contrast to an imperative program, one can directly
reason using the mathematical meaning of a functional program. This semantic
clarity is quite appealing.

The LCF system directly implemented Scott’s logic, and some interesting
correctness proofs were performed in it [25, 83, 84]. The Boyer-Moore theorem
prover, known as Nqthm, appeared at approximately the same time as LCF, but
was quite different in its logical basis and implementation [19]. The principal
logical choice made by Boyer and Moore was to represent programs, not as op-
erating over domains, as in LCF, but as total functions. This choice means that
the set of programs representable in Nqthm is not Turing complete, as it is in
LCF, but is instead restricted to those functions that can be proved to termi-
nate for all inputs. However, this is still a quite interesting set, as it contains
many important algorithms. Furthermore, the argument of semantic clarity has

13

even more force in the case of Nqthm, since programs are identified with total
functions. The principal benefit of this is that one can freely mix standard math-
ematics with programs. However, from the vantage point of directly modelling
higher order functional programs, the first order term language of Nqthm is in-
adequate for expressing many interesting algorithms. The current crop of higher
order logic proof systems—many of which are descendants of LCF—would seem
to be a better fit.

1.1.1 Programs and functions

We have already seen two examples of how programs can be represented in proof
systems: the computable functions of LCF, and the total functions of Nqthm.
Another possibility would be to define the abstract syntax of the programming
language of interest in the logic, and define a notion of program evaluation in
terms of these syntax trees. Reasoning about programs would then be carried
out by reasoning about evaluation. Such an approach is often called a deep
embedding. We do not pursue deep embedding in this dissertation since we are
more interested in what can be done with the native functions of a logic.

Another possibility, which is philosophically very interesting, is to not write
programs at all: in a constructive logic, proofs that specifications are satisfiable
can be translated into programs that meet those specifications [68, 26]. In prin-
ciple, one simply proves the satisfiability of a specification and, from that proof,
a correct program can be automatically extracted. We shall not pursue this ap-
proach either, since it lacks directness: our belief is that it is easier to write
programs than to do proofs.

Therefore, we want to directly express programs as the native functions of
a higher order logic. By doing so, we are intentionally confusing programs and
logical functions, just as in Nqthm. Of course, there are far more functions than
programs, so the identification is not accurate. However, we believe that the
convenience of working with pure total functions more than balances any worries
about whether, e.g., the function one has just proved a property of is computable.

How does a program actually make its way into the logic? For example, we
can’t allow just any program to be turned directly into a logical function. The
perfectly acceptable, although useless, program

fl@) = f(z)+1

would, if accepted as a logical function, have the almost immediate consequence
that 0 = 1, which renders the logic useless. A standard (and very general) remedy
for such problems is to define total recursive functions by wellfounded recursion.
A mathematical relation is wellfounded if it admits no infinite decreasing chains.
From the perspective of programs, if every sequence of recursive calls a program
makes can be fit into a wellfounded relation, that function is total, i.e., it termi-
nates. Then the recursion equations defining the function may be validly used

14

inside the logic, i.e., the program becomes a respectable citizen of the logic, and
trustworthy proofs of its correctness can be performed.

The topic of this dissertation has now been motivated: we are going to inves-
tigate the automation and application of the wellfounded recursion theorem in
higher order logic.

1.2 TFL

Our work has been implemented in a system called TFL. The TFL system has
the following significant features:

Higher order. Programs are represented by the native functions of higher order
logic. This lightweight representation means that the proof rules already
provided in the logic (e.g., S-conversion, extensionality) can be immediately
applied to programs. Since the native functions can be higher order and
polymorphically typed, programs can also be higher order and polymorphic,
and therefore a wide class of programs from popular functional languages
like ML and Haskell can be directly formalized and reasoned about.

Fully formal. Logically, the environment is a conservative extension. The ma-
chinery of TFL uses inference steps to instantiate and manipulate the well-
founded recursion theorem. Therefore, using it will not suddenly allow false
theorems to be derived. In particular, definitions of recursive programs can
be made without any worries about introducing inconsistency.

Portable. As a result of its fully formal foundation, TFL is portable in the
following sense: it can be instantiated to different proof systems. As part
of our work, we have instantiated TFL to the (quite different) Isabelle/HOL
and hol90 mechanized theorem provers.

Automatic extraction of termination conditions. We make novel use of con-
gruence based contextual rewriting to extract termination conditions from
a proposed recursive definition.

Pattern matching and variable binding operators. Our syntax effectively
deals with the pattern-matching style of definition popular in functional
programming languages. Another feature of functional languages is let
bindings. These are used to share computation, and therefore are of great
practical utility in writing efficient algorithms. The termination condition
extractor handles such variable-binding constructs. For example, quicksort
can be defined in TFL by the following programs, which builds the inputs

15

for the two recursive calls using a single pass:

part(P7 []7l17l2) (l17l2)
part(P, h :: t,1, o) i f Ph thenpart(P,t,h::ly,l)
el se part(P, 1,11, h :: lp)

fgsort(ord, [])
fasort(ord, h :: t)
let (ll, l2) =

In

fgsort(ord, l,) @ [h] @ fgsort(ord, l,).

[]

part(Ay- ordy h,t, []7 [])

Deferral of termination arguments. In other systems, termination of a func-
tion needs to be proved before it can be used. This can be a bother, espe-
cially since it seems to make good software engineering sense to be able to
define a collection of functions separately from proving their termination.
The result is that defining functions is very easy in TFL, and the poten-
tially difficult work of finding a wellfounded relation under which a function
terminates can be postponed, although never avoided.

Induction always. For each recursive function definition, TFL derives a cus-
tomized principle of induction, by instantiating and manipulating the well-
founded induction theorem. In our induction theorems, the property to be
proved is assumed to hold for arguments to recursive calls, and the task is
to show that the property holds for the original call. If that can be shown,
then the property holds for every invocation of the function.

For instance, if we describe Euclid’s algorithm (on the natural numbers)
with the following equations:

ged(0,9) =y
gcd(Suc z,0) = Suc z
gcd(Suc z, Suc y)
=if y<zthen gcd(z —y, Sucy) el se ged(Suc z, y —)

we get the following induction principle for reasoning about gcd:

VP. (Vy.P(0,y)) A
(Vz.P(Suc z,0)) A
(Ve y.(-(y < z) O P(Suc 7,y — 7)) A
(y <z D P(z—y,Sucy)) D P(Suc z,Suc y))
D Vv vr. P (v,v1).

TFL proves the pattern completeness property as part of deriving the in-
duction theorem, helping to ensure its validity.

16

1.3 Contributions

The following are the new contributions made by our work:

TFL is, to our knowledge, the first example of a sophisticated proof tool
that soundly operates in more than one proof system.

We demonstrate that a definition mechanism for terminating general re-
cursive functions can be implemented purely by deduction, i.e., it doesn’t
have to be a hardwired mechanism, as it is in every other mechanized proof
system we know of.

Our method for extracting termination conditions is unique in that it op-
erates purely by inference and is more flexible than other schemes. This is
due to the novel choice to implement it via contextual rewriting.

We show that program schemes may be defined more easily and more ab-
stractly than allowed in previous mechanizations. These can be used to
prove formal program transformations which are also simpler and more
abstract than previous attempts in mechanized systems.

Nested recursive programs are notoriously difficult to deal with in a logic of
total functions. Some authors have asserted that partial and total correct-
ness need to be proved simultaneously for such programs. We show that
this is not true:! a nested recursive program is just like any other, although
nestedness can make its termination proof more intricate. We give new and
simpler correctness proofs for some well-known nested functions.

1.4 Related research

We shall give a cursory overview of related systems, concentrating on their abil-
ity to represent and reason about functional programs. Such an analysis often
goes to the heart of such systems, since functions are such a pervasive notion in
mathematics.

ACL2 The Nqthm system has evolved into ACL2, which adds many features

but seems to leave the underlying logic essentially unchanged. The function
definition principle of ACL2 is based on wellfounded recursion. However,
the wellfounded recursion theorem itself is not available to the user other
than through the principle of definition. When given a function to define,
ACL2 computes termination conditions for the function and attempts to
prove them automatically, using a hard-wired termination relation and pre-
viously proved termination lemmas. If that proof fails, the user must state

1This observation has also been (independently) made by Juergen Giesl [40].

17

and prove the required termination lemma before the function can be de-
fined. In the case of nested recursions, the ACL2 user must prove that the
nested description is equivalent to an already defined function. For each
defined function, ACL2 builds an induction scheme, which is again an inter-
nal object that is not (naturally) available for the user to manipulate. The
great strength of the ACL2 system is in its automation: it automatically
applies a number of powerful heuristics, including inducton, in attempting
proofs.

ACL2 by default uses a size measure on data as a termination relation;
if necessary, the ordinals ‘up to €y’ can be specified. These ordinals are
commonly used to do the work of lexicographic combinations of measure
functions.

ACL2 does not provide mutual recursion; Boyer and Moore recommend
directly defining the so-called ‘union’ function.

PVS The PVS system [79] is based on a variant of Church’s higher order logic
with a powerful type system that includes subtypes and dependent types.
PVS has been used with great success on many verification problems. Like
ACL2, PVS defines functions by implicit appeal to the wellfounded recur-
sion theorem. The relations that may be supplied are measure functions
over the arguments of the recursive function, and again, the range of the
measure may be the ordinals up to 9. The powerful type system of PVS
allows nested recursions to be defined by using the type system to require
that the nested applications of the function being defined meet the be-
havioural specification of the function. Currently, PVS does not seem to
support mutual recursive definitions.

HOL The HOL system implements a slight generalization of Church’s logic in
which Church’s meta-linguistic use of type variables has been replaced by
type variables in the logic. Function definitions in HOL have typically been
based on (higher order) primitive recursion. However, there has been some
past work on wellfounded recursion in the HOL system by vanderVoort
[102]. His work attempted to reduce non-primitive recursions to primitive
recursions. Agerholm has done some interesting work which combines a sim-
plified domain-theory with termination proofs, resulting in a flexible system
for total function definition[3]. Mutual primitive recursion is supported in
HOL by a package for mutually recursive datatypes.

Isabelle The Isabelle/HOL instantiation has provided a wellfounded recursion
operator and a wellfounded recursion theorem for some time. This was
freely available for use, however, such definitions tended to be quite low level
and suffered from a lack of automation: the intended recursion equations
had to be derived, and the induction theorem would also have to be derived

18

by hand. Higher order primitive recursion, including mutual recursion,
is supported by a datatype package. An extension of Isabelle/HOL to
semantically embed LCF yielded HOLCF[89], in which functions may be
defined via a domain theoretic fixpoint operator. This has the nice property
that termination proofs need never be done; however, the user pays the
price of having two somewhat incompatible notions of function space in
HOLCF. Miiller [76] worked out a methodology for dealing effectively with
the hybrid setting, using HOLCF to handle thorny modelling problems,
while conducting the bulk of the proof activity with the total functions of
HOL.

LAMBDA The LAMBDA system essentially implements the HOL logic, and

Coq

justifies recursive definitions by means of a least fixedpoint construction.
It automatically synthesizes termination constraints when a function is
defined [36]. Mutual and nested recursion is allowed. However, a direct
connection with termination does not seem to be included: in LAMBDA,
the intent is that once the ‘termination conditions’ are eliminated from the
assumptions of the recursion equations, the function has been proved to ter-
minate. However, the system does not require that the relation computed
from the structure of the recursion (which is used to phrase the ‘termination
conditions’) be wellfounded. As a result, the semantics of certain recursive
definitions in LAMBDA must be carefully argued.

Although induction theorems are not automatically generated for function
definitions in LAMBDA, Holger Busch has made an extensive investigation
into wellfounded induction in the LAMBDA system [47].

The Coq system implements the Calculus of Inductive Constructions, a
powerful constructive type theory. The usual activity in Coq is to extract
programs from proofs. However, the thesis of Parent [80] investigated a
way of partially synthesizing a proof given a program and its specification.
The thesis of Cornes [27] featured a rich pattern language allowing overlap-
ping patterns, so-called ‘as’ patterns and pattern matching on dependent
types [66]. Another constructive type theory implementation that supports
pattern matching in definitions is Alf [64].

CYNTHIA is a system for editing ML programs [107]. The system uses the

proofs-as-programs interpretation from constructive logic to offer a smart
editor. The available editing operations are such that several weak forms
of correctness are maintained as invariants: pattern completeness, termi-
nation, and well-typedness. The user works by altering an existing correct
program. Some of the editing operations are: to change the type of the
program, to change the recursion structure of the program, to change the
pattern-matching structure, and to rename variables. Each editing step

19

leads to proofs that show that the invariants are maintained. Walther’s ap-
proach [104] is used to automate termination proofs, which can arise when
the recursion structure is changed. Whittle has tested his system out on
novice ML programmers and found that they learned better. Perhaps the
most impressive aspect of CYNTHIA is the complete hiding of a formal
method under a suitable interface.

1.5 Organization

In Chapter 2 we discuss the underlying logical and mathematical basis of the
system. In Chapter 3, the details of mechanizing the process of recursive defini-
tion and the production of induction theorems are given. In Chapter 4, we will
describe the challenges raised by nested recursion, and show how the approach
in Chapter 3 needs to be modified to accommodate nestedness. In Chapter 5,
we present a number of examples that illustrate our method. We conclude with
Chapter 6. In the Appendix, we discuss the system architecture.

20

Chapter 2

Logical Basis

This chapter provides an overview of the logical base required by TFL. We begin
by describing the version of higher order logic employed, as well as associated
notation, and recall some basic facts about datatypes. After that, we show how
to construct the main logical tools used our work: wellfoundedness, induction,
and recursion. Subsequently, support for termination proofs in the form of a small
collection of wellfoundedness theorems is discussed. The chapter finishes with a
description of an implementation of contextual rewriting, which is an essential
ingredient in TFL.

This chapter is intended to provide an accessible description of the require-
ments of TFL, so it will have a tutorial flavour at times.

2.1 Higher order logic

We choose to work inside a typed higher order predicate calculus [43], derived
from Church’s Simple Theory of Types [23]. The name commonly used for this
logic is HOL. The HOL logic is classical and has a set theoretic semantics, in
which types denote non-empty sets and the function space denotes total functions.
Several mature computer mechanizations of this logic exist [86, 7, 50], making it—
in our opinion—the best available candidate logic to code a portable proof tool
for. Porting TFL to other logical systems of adequate expressiveness, such as set
theory, is an intriguing possibility that we shall not address in this dissertation.

The HOL logic is built on the syntax of a lambda calculus with an ML-
style polymorphic type system. In the following, we define types and terms as a
prelude to discussing some aspects of the required rules of inference, axioms, and
principles of definition. In general, the discussion will neglect semantic matters,
since we are mainly interested in mechanizing proofs inside the deductive system.

The syntax of the logic is based on signatures for types (£2) and terms (Xg).
The type signature assigns arities to type operators, while the term signature
delivers the types of constants.

21

Definition 1 (HOL types) The set of HOL types is the least set closed under
the following rules:

type variable. There is a countable set of type variables, which are represented
with Greek letters, e.g., «, 3, elc.

compound type. If ¢ in Q has arity n, and each of tyi,...ty, is a type, then
c(tyr, .. .ty,) is a type.

O

A type constant is represented by a 0-ary compound type. A large collection
of types can be definitionally constructed in HOL, building on the initial types
found in Q: truth values (bool), function space (written a — 3), and an infinite
set of individuals (ind).

Terms are typed A-calculus expression built with respect to . When we
wish to show that a term M has type 7, the notation M : 7 is used. Note in the
following that, in building a term, each subterm is assigned a unique type.

Definition 2 (HOL terms) The set of terms is the least set closed under the
following rules:

Variable. if v is a string and ty is a type built from Q then v : ty is a term.

Constant. c : ty s a term if ¢ : T is in Xq and ty is an instance of T, t.e.,
there exists a substitution for type variables 0, such that each element of the
range of 0 is a type in Q and 6(1) = ty.

Combination. (M N) is a term of type B if M is a term of type « — and N
s a term of type «.

Abstraction. Av. M is a term of type o — G if v is a variable of type o and M
s a term of type (.

O

Initially, ¢ contains constants denoting equality (=), implication (D), and
a description operator (¢, which we will discuss more thoroughly in the sequel).
Types and terms form the basis of the prelogic, in which basic algorithmic manip-
ulations on types and terms are defined: the variables of a type, the free variables
in a term, a-convertibility, substitution inside types and terms, instantiation of
type variables in terms, and 3-conversion. These notions are standard, although
correct and efficient implementations can be difficult to achieve, and we simply
assume their existence.

For describing substitution, the notation [M; — M;] N is used to represent
the term N where all free occurrences of M; have been replaced by M. Of course,
M and M5 must have the same type in this operation. During substitution, every

22

binding occurrence of a variable in N that would capture a free variable in Ms is
renamed to avoid the capture taking place.

2.1.1 Deductive system

For us, the exact collection of primitive inference rules and axioms is not impor-
tant, provided all the usual classical rules for quantifiers and connectives become
available. In Figure 2.1, a useful set of inference rules is outlined, along with
the axioms of the HOL logic. The derivable theorems are just those that can
be generated by using the axioms and inference rules of Figure 2.1. For a more
parsimonious presentation of this deductive system see [43] or Appendix A of
[51].

A theorem with hypotheses P, ..., P, and conclusion @ (all of type bool) is
written

[P,..., P F Q.

In the presentation of some rules, e.g., V-elim, the following idiom is used:
[P F @Q. This denotes a theorem where P occurs as a hypothesis. A later
reference to I' then actually means I' — { P}, i.e., if P had already been among
the elements of I', it would now be removed.

Some rules, noted by use of the asterisk in Figure 2.1, have restrictions on
their use or require special comment:

e V-intro. The rule application fails if occurs free in T'.

e Jintro. The rule application fails if N does not occur free in P. Moreover,
only some designated occurrences of NV need be replaced by x. The details
of how these occurrences are singled out vary from system to system.

e J-elim. The rule application fails if the variable v occurs in TUAU{P, Q}.
e Abs. The rule application fails if v occurs free in I'.

e tylnst. A substitution # mapping type variables to types is applied to each
hypothesis, and also to the conclusion.

There is some variance among mechanized proof systems in how rules of in-
ference are implemented. Overcoming this was an important part of our work.
We shall defer a detailed discussion of this point to Appendix A.2.2.

One essential requirement of our work is € : (¢ — bool) — «, Hilbert’s
indefinite description operator. A description term ez : 7. P z is interpreted as

In some implementation techniques for the lambda calculus, e.g., deBruijn terms [29],
capture cannot happen, therefore renaming can be dispensed with. Note, however, that in
interactive theorem provers it is common for deBruijn terms to undergo renaming when terms
are printed out; otherwise, extremely confusing and unhelpful syntax may be displayed.

23

D -intro '@ r-P>@Q ARP D -elim
I'r-{P}FPD>Q TUAFQ
A-intro P AFRQ 'FPAQ A-elim
TUAFPAQ '-P T'HQ
V-intro '-P MFPVQ V-elim
'-PvQ@, THQVP IhPFM T3,QFM
MMulyulls = M
V-intro* '-P '-Vz. P V-elim
I'-Vz. P I' [z +— N|P
F-intro* r'+pP '+3z. P F-elim*
I'3z. [N+ z|P Az —v]PFQ
TUAFQ
Assume PrP FM=M Refl
Sym 'FM=N '-M=N, AFN=P Trans
'FN=M T UAFM=P
Comb 'FM=N, AFP=Q '-M=N Abs*
TUAFMP=NQ I'F (Av.M) = (Av.N)
tylnst® '-M F(Av.M)N =[v— N|M [-conv
6(T') - 0(M)
Bool FPV-P
Eta F(Av. Mv)=M
Select FPx D Pex. Px)
ImpEq F(IMODN)D(NDM)DM=N

Infinity F3f:ind—ind. Vzy. (fz=fy) D (x=y)A-(Yy.3z.y = f z)

Figure 2.1: HOL deductive system

24

follows: it delivers an arbitrary element e of type 7 such that P e holds. If there
is no object that P holds of, then €z : 7. P z denotes an arbitrary element of
7. This is summarized in the axiom + VP z. P x D P(ex. P z), repeated for
emphasis from Figure 2.1.

2.1.2 Definition principles

In large verifications, many axioms are needed to build the layers of formaliza-
tion plus the extensive libraries of support mathematics that are often required.
However, experience has shown that humans are in general quite bad at asserting
consistent axioms. One of the most influential methodological developments in
verification has therefore been the adoption of principles of definition as logical
prophylaxis. A definition principle allows the introduction of a new constant into
the signature as well as asserting an axiom characterizing it. The essential prop-
erties that such a principle should enjoy are that no inconsistency be introduced
and that meaning is preserved. By the latter we mean that a definition does not
reveal new information about already existing constants; technically, if M is a
term not containing an occurrence of defined constant c, then - M is derivable
before the definition of c if and only if - M is derivable after the definition of c.

Principle of Definition 1 (Abbreviation-HOL) Given terms z:7 and M : T
in stgnature Yo, check that

1. x is a variable and the name of x is not the name of a constant in Xq;
2. T 1s a type in);

3. M is a term in Yo with no free variables; and

4. FEvery type variable occurring in M occurs in T.

If all these checks are passed, add a constant x : T to X and introduce a
theorem - x = M.
O

Thus invocation of the principle of definition, for suitable z and M, introduces x
as an abbreviation for M. It is shown in [43] to be a sound means of extending
the HOL logic. A similar principle, used in Isabelle, demands that the constant
to be defined already exists in the signature:

Principle of Definition 2 (Abbreviation-Isabelle) Given terms ¢ : T and
M : 1 and signature Xq, check that

1. ¢: 7 18 a constant in Xq;

25

2. M is a term in Xq with no free variables and no occurrences of c;
3. Ewvery type variable occurring in M occurs in 7; and
4. No aziom c = N 1is in Xq;

If all these checks are passed, introduce the theorem - c = M.
O

In spite of their simplicity, either of these principles of definition is sufficient
to base elaborate formal developments on. In fact, one focus in implementations
of the HOL logic has been the provision of derived principles of definition, which
typically use general theorems and inference to reduce complex definition prin-
ciples such as primitive recursion, recursive datatypes, and inductive definitions
to application of the basic principles of definition. This many-to-one approach
allows different principles of definition to be provided without requiring changes
to the logic or its kernel implementation. Part of our work can be seen as falling
into this reductive approach.

For our work, a major virtue of building on such a basic definition princi-
ple is that it improves portability: in order to be as portable as possible, the
requirements should be as weak as possible. Since TFL imposes only this very
simple requirement on the notion of definition, TFL becomes correspondingly
more portable.

Finally, we note that the HOL logic also provides principles of constant speci-
fication and also type definition. Our framework does not make direct use of these
principles, so we shall refrain from discussing them. However, our framework is
dependent on the consequences arising from logical datatype definitions (Section
2.2). Since these are derived from the basic principle of type definition we are
indirectly using the primitive principle of type definition.

2.1.3 Notation and basic definitions

With the exception of function types (written @ — (), product types (written
a#5), and sum types (written o +), compound types will be written postfix,
e.g., list. In parsing types, earlier members of the following list have stronger
binding power than later members:

#7+7—>'

We will use standard notation for the logical operators and quantifiers. In parsing
logical expressions, earlier members of the following list of infixes have stronger
binding power than later members:

=A\V,D,=.

All infixes associate to the right: thus, A y A 2z is mapped to the same term
as £ A (y A z). The two forms of equality, = and = denote the same predicate;
we often use = as notation to show that a definition is being made. T denotes
a finite sequence of distinct syntactic objects. A sequence of length n may be
described by Z,. V(M) denotes the universal quantification of all free variables
in M.

The contezt notation will also be used: the syntax M[N] stands for the term
M where all free occurrences of N have been ‘marked’; then M[P] means that
each marked occurrence of N in M has been replaced by P, also in such a way
that the free variables of P do not become bound.

We will sometimes make use of the fact that predicates can be taken as sets
in our logical setting. For example, S; C S2 may be written as Vz. S; z D S, x,
and vice versa.

Function composition is written infix: fo g = Az.f(g x).

Definition 3 (Let) Let f M = f M.

The ‘I et’ construct is defined as a higher order function. The concrete syntax
let z =M in N stands for the term Let (Az. N) M. Notice that in the HOL
logic—in contrast to ML—polymorphism is not introduced via | et ; rather, it
arises from definitions.

The symbols False and True are the two constants (of type bool) denoting
truth values in the logic.

Definition 4 (Arb) Arb = ez : . True

We sometimes have to deal with, or somehow take steps to avoid, the trou-
blesome issue of partial functions. In a logic of total functions, this is a delicate
subject, which can sometimes be dealt with by use of an arbitrary but fixed value.
The definition of Arb uses the Hilbert choice operator to denote such an element,
for each type 7. Arb is fixed because True has no free variables; it is arbitrary
because Av.True holds for every element of 7. Because of the semantics of €, the
predicate Av.False would serve just as well.

Notation for proofs

To explain algorithms that perform deduction, we will quite often present the
proof steps as they unfold, ¢.e., in the so-called forward style. Such explana-
tions will describe a sequence of theorems, and discuss how later theorems in the
sequence are derived from earlier ones.

However, at times we will discuss proofs in which problem decomposition is
used; in such cases the backward, or goal-oriented style is used. In this style, an
initial goal is broken into subgoals until only trivial ones remain. The syntax
for a stage of a typical backwards proof will consist of the goal, plus whatever

27

hypotheses are currently in force. Hypotheses will be numbered, and those that
have been used, or are not of current interest may be omitted. For example,
suppose the transitivity of equality is to be shown. Then the initial goal is
represented as follows:

T=yANy=221T =2

Breaking this goal down with some decomposition steps gives the following goal
where the hypotheses are written below the line:

T=2z
0. z=y
1. y==2

Now we may use hypothesis 0 to modify the goal; subsequently, it might disappear
from the displayed hypotheses, but note that no renumbering would occur.

2.2 Datatypes

A common way of raising the level of abstraction in a logical formalization is to
use datatypes. This is largely inspired by the success of datatypes in ML, which
is due to the fact that a datatype splits into disjoint pieces, so that functions
over the datatype can be written by case analysis; consequently, proofs about
such functions also proceed by case analysis. A logical datatype (cu,...,qn) ty
declared as

(s om) ty=Cityn oo Wk |-+ | Co tYnt -+ - tYn,

(where all the type variables in ty; ... %Yn, are in {ai,...,an}), denotes the
set of all values that can be finitely built up by application of the constructors
Ci,...,C,. Constructors are injective, and applications of different constructors
always yield different values. The type is recursive if any ¢y;; in the type decla-
ration is («,...,qy,) ty. For a datatype specification that admits a solution in
HOL?, a characterizing theorem of the following form can be derived [71]:

2The syntax admits the description of datatypes that cannot exist in the HOL logic for
cardinality reasons, e.g., the following specification of lambda calculus terms:

ty = Var num | App ty ty | Abs (ty — ty).

28

Vi Lo
AH (o, ..., an) ty = 6.
Ve .oz H(Cr 2o o2e) = fiHzw) ... (Hxw) 2. T, A
: A
VEn .o Toky H(Ch Tt oo Tpky) = fo(H Zp1) oo (H Tok,) Tnt - - - Tk, -

The theorem embodies the primitive recursion principle for functions over the
specified type. It is often referred to as an initiality theorem, because of its close
relationship to the initiality property used in algebraic specification [108]. The
usual properties that can be derived from this theorem are (for discussion on the
automation of these proofs, see [71]):

Injectivity of constructors. For each constructor C; the following holds:
(Cizi oo, = Ci ar - Wiwg) = (Tir = Yir) Ao A (Tiky = Yiky)-

Distinctness of constructors. For i # j the following holds:

-(C;T=C; 7).

Structural induction. The following induction theorem can be proved, which
allows P to be assumed for an immediate subcomponent v of an application
of C;, provided v has type (a1,...,ay) ty.

VP. (Vz. PxyA...ANPzy, O P (CiT)) A

: A
(VE. Pxy A ... NP zp, O P (C,T))
D

Ve :ty. Px

However, there are further facts definable and derivable from initiality that
we need in the course of our work. In particular, the following theorems will be
required by TFL for a datatype: exhaustion, case definition, and case congruence.

Exhaustion

The following theorem schema says that all elements of the datatype are tagged
with a constructor. In our work, it is used to derive custom induction theorems,
as well as to prove the case congruence theorem for the datatype.

29

Ve :ty. (Fg.e=Cy) V...V (Tyz = C.y)

Proof. By structural induction. After induction, the nth disjunct of the nth
subgoal is easy to prove since it is just a, perhaps existentially quantified, instance

of reflexivity.
O

Case definition

Case expressions for user-defined datatypes are central to our approach, since
recursion equations are translated into a nested case expression before a definition
of the function is made. The case definition is easy to make, being a non-recursive
instance of the primitive recursive definition principle for the type.

(VZ. case_ty fi...fo (C1ZT) = A[I)
Ao A
(VZ. casety fi...fn (CoT) = f,T)

Case congruence

TFL uses congruence theorems as a means of tracking the context of recursive
calls in function definitions. Therefore, it is important that a congruence theorem
be proved for every case statement, i.e., for each datatype definition. For each
datatype, an instance of the following schema can be computed and proved.

(M =N) A

(VT (N = CIT) D) f1£E = IIE)

AN

(V. (N = C,T) D fuT = f}T)
D

Proof. Assume the antecedents of the proposition and perform a case analysis on
N, using the exhaustion theorem for the datatype. For each case i, we expand the
case definition and apply f; and f] to the arguments of C;, which, by assumption,
are equal.

O

30

2.2.1 Common datatypes

Since we will make frequent use of the datatypes of booleans, pairs, numbers,
lists, and options, we now define the constructors and some common operations
for these types. Further definitions can be also be made automatically for each
type, e.g., fold and map, but we shall omit these.

Truth values

The datatype bool is built from the constructors True and False.

Initiality Veger : . Af. (f True = ey) A (f False = e;)
Injectivity (not applicable: nullary constructors)
Distinctness —(True = False)

Nchotomy Vb. (b = True) V (b = False)

Induction VP. P True AP False DVYb. P b

Case expression | bool_case z y True =z
bool_case x y False = y
Distribution VP. P (bool case z y b) = bool_case (P z) (P y) b

The familiar conditional construct can be defined as:

if bthen z el se y = bool_case x y b.

Pairs

The datatype («, 3) pair is built from the comma (,)constructor. A type (7,) pair
may also be written 7 % 4.

Initiality V. 3h.Vzy. h(z,y)=fzy

Injectivity Veyab. ((z,y) = (a,b)) = (x=a) A (y =b)
Distinctness (not applicable: only one constructor)

Nchotomy Vp. Iz y. p=(,y)

Induction VP. (Vzy. P (z,y)) DVp. Pp

Case expression | pair_case f (z,y)=fzy

Distribution Vg. g (pair_case f p) = pair_case (Ap1p2. g(f p1 p2)) P

31

The functions fst and snd return the first and second elements of a pair re-
spectively:

fst (z,y) = =
snd (z,y) = vy
(fstz,sndz) = =z

The following is a useful infix combinator:

(f#9)(z,y) = (f 7,9 9).

The type of this combinatoris (¢ = 3) = (0 = v) 5 a*xd = F*7.

Pairing can be introduced into the syntax of lambda binding by use of pair_case.
The concrete syntax A(z,y). M, meant to denote a A-abstraction over pairs, can
be represented by pair_case(Az y. M). The notion of 3-redex can be similarly
lifted:

pair_case(Az y. M) (p,q)

with paired-3 reduction being implemented by applying the definition of pair_case,
followed by (-reduction:

(paircase(Az y. M)) (p,q) = Azy.M)pgq
=5 [y = dl([z — p]M).

We will later see how this treatment can be generalized to arbitrary datatypes

via a translation from patterns to nested case expressions.

Paired lets are also important, since they allow the modelling of multiple
simultaneous binding: for example

let (z,y) =M in N

is represented by Let(pair_case(Az y. N)) M.

Sums

The datatype («,) sum is built from the INL and INR constructors. A type
(7,6) sum may also be written 7 + 4.

32

Initiality Vfg. 3. (Vz. h (INLz) = f2) A (Vy. h (INRy) = g y)
Injectivity (Vz1z9. (INL 1 = INL 22) = (21 = 22)) A

(Vy1yz. (INRy1 =INR y2) = (y1 = 1))

Distinctness Vz y. =(INL z = INR y)

Nchotomy Vs. (3z. s=INL z) V (3y. s = INR y)

Induction VP. (Vz. P (INLz)) A (Vy. P (INRz)) DVs. Ps

Case expression |sum_case f g (INLz) = f z

sum_case f g (INRy) =gy
Distribution Vh. h(sum_case f g s) = sum_case (Az.h(f z)) (Ay.h(gy)) s

INL and INR have partial inverses OUTL and OUTR:

OUTL(INL z) = z,
OUTR(INR z) = z.

Natural numbers

The datatype nat is built from the constructors 0 and Suc.

Initiality Ve f. Alg. (90 =1¢€) A (Vn. g (Sucn) = f (gn) n)
Injectivity Vm n. (Sucm =Sucn) = (m =n)

Distinctness Vn. =(Suc n = 0)

Nchotomy Vm. (m = 0) V (3n. m = Suc n)

Induction VP. POA (Vn. Pn D> P (Sucn)) DVn. Pn

Case expression | numcaseb f 0 =10

numcase b f (Sucn)=fn

Distribution Vg. g(num_case b f n) = num_case (g b) (Am. g(f m)) n

Another useful induction principle for numbers—interderivable with mathe-
matical induction—is strong, also known as complete, also known as course-of-
values induction:

VP. (VYm. Vk. k <m D Pk)DPm)DVn. Pn.

33

Lists

The datatype « list is built from :: (cons) and [] (nil).

Initiality Ve f3lg. (g[]=2) A(Vht.g(h=t)=f(gt) ht)
Injectivity Vhtht'. (het=Kut)=((h=~KMA{l=1t)
Distinctness Vht. =([]=h 1)

Nchotomy VI.I=[])V(3ht. l=h::t)

Induction VP. P[IAN(Vht. Pt D P (h:t)) DV Pl

Case expression

list. case b f[]=b

list.case b f (h::t)=fht

Distribution

Vg. g (list.case b f 1) = list_case (g b)(Ah t. g (f ht))l

The familiar list-processing functions mem, filter, length, @, map, exists, and
rev_itlist (also known as ‘foldl’) are used in some examples; they are defined as

follows:

mem z []
mem z (h :: t)

filter P []
filter P (h :: t)

length []
length (A :: t)

[]el
(h:=t)@lI

map f []
map f (h::t)

exists P []
exists P (h :: t)

rev_itlist f [] v
rev_itlist f (h::t) v

False
(x=h)Vmemzt

[]

i f Phthen h:: (filker Pt) el se filter P ¢

0
1+ length ¢

[
h:(t@I)

[]
fhamap fi

False
P hVexists Pt

v
rev_itlist f ¢ (f h v)

34

Option

The datatype « option is built from None and Some.

Initiality Ve f. Alg. (g None = e) A (Vz. g (Some z) = f z)
Injectivity Vz z'. (Some £ = Some z') = (z = ')
Distinctness Vz. —(None = Some z)

Nchotomy Vopt. (opt = None) V 3z. opt = Some z
Induction VP. P None A (Vz. P (Some z)) D Vopt. P opt

Case expression | option_case u f None = u

option_case u f (Some z) = f z

Distribution Vg. g (option_case b f 0) = option_case (g b) (Az.g (f z)) o

2.3 Wellfoundedness and induction

Our approach to defining recursive functions bases itself on the idea of wellfound-
edness, which is a notion from set theory. The decreasing paths in a wellfounded
relation are all of finite length. In the context of programs, this means that,
if the arguments to recursive calls in a function definition can be placed in a
wellfounded relation, then the function will terminate. In the context of logic,
the corresponding notion is that the function is total. There are several equiva-
lent formal definitions of wellfoundedness [92]; the following is quite easy to deal
with (it asserts that R is wellfounded iff every non-empty set has an R-minimal
element):?

Definition 5 (Wellfoundedness)

WF(R) =VP. Qw. P w) D Imin. P min AVb. R bmin D —P b.

We will sometimes use the phrases R-less or R-smaller as an infix way of speaking
about a wellfounded relation R, e.g., z is R-less than y.
From the definition, one can quickly prove a general induction theorem.

Theorem 6 (Wellfounded induction)

VP R. WF(R) D (Vz. Vy. Ryx D Py) D> Pxz) DVz. Px.

3Note that there need not be a single R-minimal element in a set.

35

Proof. Assume R is wellfounded. Assume P x holds when P y holds for all y
R-less than z. Towards a contradiction, assume there’s a z such that —-P 2. By
wellfoundedness, there’s a R-minimal element min such that =P min. Hence,
for all y R-less than min, P y holds. Hence P min holds, a contradiction.

O

One can think of the idea of wellfoundedness as being a means of identifying
when induction is valid: wellfoundedness ensures that the inductive hypothesis
is not, in effect, what is to be proved. Wellfounded induction generalizes the
usual mathematical induction in two ways: it can be instantiated to any pred-
icate, not just predicates on numbers; and it allows the assumption of strong
induction hypotheses, i.e., one is allowed to assume that the property holds
for all R-smaller elements, not just the predecessor. Many common induction
theorems e.g., mathematical, course-of-values, structural, simultaneous, mutual,
transfinite, and recursion induction, can be obtained as instantiations of this one
general result.

Historically, mathematical induction originated with Dedekind [30] (who called
it complete induction, somewhat confusingly for modern readers) and also Peano.
Induction along the membership relation (€-induction) was established early in
the development of set theory. The generalization to induction over arbitrary
wellfounded relations came in Shepherdson’s work on inner models of set theory
in the early 1950’s.*

2.4 'Transitive closure

The proof of the recursion theorem requires some facts about transitive closures.

Definition 7 (Transitive)
transitive R=Vzyz2. ReyANARyzD Rz 2.

The transitive closure of a relation R : @« — «a — bool can be inductively
defined:

Definition 8 (Transitive closure)

TCRab=VP. Vxy. RzyD>DPzy)A
Veyz. PxyAPyzDPuxz)
DPab.

The elements of a transitive closure obey the rules in the inductive definition:
Theorem 9 transitive(TC R)A (Rxzy D TC Rz y).

One can prove properties of a transitive closure by induction on its construction:

4Thanks to Ake Kanamori and Thomas Forster for this tidbit.

36

Theorem 10 (Transitive closure induction)

VRP. (Vzy. RxyDPzxzy) A
Veyz. PxyANPyzDPuzz)
DVuv. (TCR)uv D Puw.

Proof. Direct from the definition of transitive closure.
O

In a certain sense, it is possible to drop down out of a transitive closure:

Lemma 11 TCRz 2D Rz zVIy. TCRxzyARy 2.

Proof. By transitive closure induction.
O

Transitive closure propagates wellfoundedness.
Theorem 12 WF(R) D WF(TC R).

Proof. By contraposition, assume that TC R is not wellfounded. Let B be the
non-empty set with no TC R-minimal element. We must show the existence of
a non-empty set with no R-minimal element. One such set is described by the
formula

Am.Ja z. BaATCRamATCRm zAB . (2.1)

Let w be an element of B. By two applications of the non-wellfoundedness of
TC R we obtain two elements of B, w; and w,, such that TC R w; w and
TC R we wy. Thus (2.1) is non-empty; we now show that it has no R-minimal
element. Let z be an element of (2.1); therefore, there exists a and z in B such
that TC R a x and TC R z 2. Applying Lemma 11 to the former, there are two
cases to consider:

R a z. We have that a is R-smaller than z. It remains to show that a is in (2.1).
Since a is in B, there is an element b in B such that TC R b a. It remains
to show TC R a z; this is immediate by the transitivity of TC R.

Jy. TCRay A Ryxz. We have that y is R-smaller than z. Taking a and z to
be our endpoints, it remains to show TC R y z; and this is easy, by Lemma,
11.

37

2.5 Wellfounded Recursion

Wellfoundedness not only justifies a general induction theorem, it also justifies a
general recursion theorem. Recursion theorems typically assert the unique exis-
tence of functions described by recursive equations. Their importance is that they
provide a sound way of interpreting a self-referential finite description (program)
as an infinite object (function) in the logic. In this section we derive a version
of the wellfounded recursion theorem that Tobias Nipkow initially proved in the
Isabelle system. Schwichtenberg and Wainer seem to have independently arrived
at a similar formulation [93]. We will give a leisurely discussion of the theorem,
with the intent being to give a proof so detailed that it can be re-created even
by those who do not understand it!

The statement of the wellfounded recursion theorem uses a ternary operator
that restricts a function to a certain set of values.

Definition 13 (Restriction)

(fIR,y)=Az.if Rzythen fz el se Arb.
Theorem 14 Rz y D (f|R,y) z = f .
Theorem 15 —Rz y D (f|R,y) z = Arb.

In set theory, or other logics of partial functions, function restriction may result
in a partial function. In a logic of total functions, such as HOL, a restriction of a
function is still a total function, giving a fixed but arbitrary value when applied
outside of the restriction. This is an instance of the use of underspecification to
avoid the use of partial functions.

We continue the development by defining the set of attempts for a functional
M at argument z in the presence of relation R:

Definition 16 (Attempts)
attempt RM z f= Vw. fw=if Rwzthen M (f|R,w) w el se Arb).

This definition is a predicate on functions that checks whether they agree with the
body of the recursive function at each R-predecessor of z. All other arguments
must be mapped to Arb.

By wellfounded induction, any two attempts agree on their common domain:

Theorem 17

WE(R) A

transitive(R) A

attempt R M u f A

attempt R M v g
ODVz.RzuARzvD f(z) = g(x).

38

The following definition chooses an attempt:
Definition 18 (the_fun)

the fun R M z =¢f. attempt R M z f.

Given R, M, and z, the_fun R M x picks out a function that obeys the recursion
at all R-predecessors of z, and delivers Arb otherwise. We can immediately obtain,
by application of the Select Axiom:

Lemma 19 (3g. attempt R M z g) D attempt R M z (the_fun R M x).
We now prove the crucial lemma: attempts exist.

Theorem 20 (Existence)
WF(R) A transitive(R) D Vz. 3f. attempt R M z f.

Proof. Assume that R is wellfounded and transitive. By wellfounded induction,
assume that there exists an attempt for every R-predecessor of . By lemma 19,
this is equivalent to Vy. Ry x D attempt R M y (the_fun R M y). We claim that

Ap.if Rpxzthen M (thefun R M p) p el se Arb

is an z-attempt. Consider an arbitrary w: if it is not a parent of x, then our
witness gives Arb, as an z-attempt should. Alternatively, suppose R w z. It
remains to show

M (thefun RM w) w =
M (Ap.if Rpxzthen M (thefun R M p) p el se Arb) |R,w) w

which is equivalent to
thefun RM w= (Ap.if Rpzthen M (thefun R M p) p el se Arb) | R, w.

By the induction hypothesis, there is a w-attempt the_ fun R M w and by the
definition of attempt, it now suffices to show

(Ay. M (thefun R M w|R,y) y)|R,w =
(Ap.if Rpzthen M (thefun R M p) p el se Arb)| R, w.

This is the equality of two equally-restricted functions: it suffices to consider
their equality on v a parent of w. By transitivity, R v z, and if we can show

the_fun R M w|R,v = thefun R M v

we will be finished. By the induction hypothesis the_fun B M v is an attempt
and theorem 17 applies.

O

As a corollary, we have the useful theorem for the_fun:

39

Lemma 21

WF(R) A transitive(R) AR w z
D)
the_fun R M z w= M (thefun R M z|R,w) w.

Our stated desire was to prove the wellfounded recursion theorem and we
have now built sufficient basis to do that. There is now a question as to what
recursion theorem to prove. The standard formulation is the following:

WF(R) VM. 3f. Va. f(z) = M(f|R,z) z.

This theorem will be a corollary to our development which states the theorem in
terms of a ‘controlled’ fixpoint combinator.

Definition 22 (WFREC : (¢ = « — bool) = ((a =) = (a = §)) = a — 5)

vy

WFREC R M = Az. M (the_fun(TC R) (Af v. M (f|R,v) v) z|R,z)

%

We intend WFREC R M to denote the recursive function described by M and
controlled by R. Given z, it applies M to z and a complicated expression (*)
denoting the function applied in recursive calls. The essential idea in the compli-
cated expression is that

the fun (TCR) Afv. M (f|R,v)v) x

is a function that obeys the recursion for each R-ancestor of z (given by TC(R)).
The expression doing the unfolding, (Af v. M (f|R,v) v), makes sure that each
recursive call is on an R-predecessor of the current call. We now check these
intuitions.

Theorem 23 (Wellfounded recursion)
WF(R) S V2. WFREC R M z = M (WFREC R M |R, z) z.

Proof. After expanding the definition of WFREC and some simple function-level
reasoning, we must prove the equality of the unfoldings at y, a parent of z:

the fun (TCR) (Afv. M (f|R,v)v) z y
M (thefun (TCR) (Afv. M (f|R,v) v) y|R,y) v.

By use of Lemma (21) and the lemma F ((f|TC R,w)|R,w) = (f|R,w), this
reduces to showing

the_fun (TC R) (Afv. M (
the fun (TCR) (Afv. M (f|R,v) v

40

for w a parent of y (and hence an ancestor of both z and y). The functions being
applied on both sides are both attempts and w is in their common domain so
Theorem 17 applies.

O

The theorem that TFL manipulates is just a common subexpression contraction
of Theorem 23.

Theorem 24 (TFL recursion)
(f = WFREC R M) > WF(R) > Va. f(z) = M (f|R,z) z.
O

The standard formulation of the wellfounded recursion theorem is proved using
Theorem 23 for existence, and proving uniqueness by wellfounded induction.
Theorem 25

WF(R) D VM. 3f. Vz. f(z) = M(f|R, z) .
O

2.6 A collection of wellfounded relations

Defining recursive functions in HOL always means proving termination (totality).
When using Theorem 24, a wellfounded relation must be supplied that will justify
the totality of the function: if all the recursive calls can be shown to be in the
relation, then the unconstrained recursion equations, as given by the user, can be
validly used in further proof. It can be quite difficult to directly establish that a
particular relation is wellfounded. However, this situation rarely occurs since it is
possible to combine basic wellfounded relations into more powerful wellfounded
relations. Our current collection of these wellfoundedness operators comprises
lexicographic combination, inverse image, subsets, transitive closure, and the
multiset extension. These operators give a powerful and extensible language for
expressing termination arguments.

Note that this section does not form a requirement for the machinery of TFL.
Instead, it should be thought of as the humble core of a library of wellfounded
relations that may be useful for proving termination of functions defined by the
machinery developed in later chapters.

Theorem 26 (Empty) WF(Az y. False).

Proof. Immediate, by the definition of wellfoundedness.
O

The empty relation is wellfounded. This apparently useless fact can be em-
ployed to extend a definition tool for recursive functions to definitions of non-
recursive functions: when a non-recursive definition is made, the empty relation
can be given as a termination relation.

41

Theorem 27 (Subrelation) WF(R) A (Vzy. Qzy D Rz y) D WF(Q).

Proof. By the wellfoundedness of R, an arbitrary non-empty set P has an R-
minimal element min. This element is also ()-minimal, for suppose there was
an element b of P that is ()-smaller than min. Then R b min and b is not an
element of P. Contradiction.

L

Definition 28 (Lexicographic product)
LEX Ry Ry (u,v) (z,w)=RiuzV(u=2x ARy v w).
Theorem 29 WF(R) AWF(Q) D WF (LEX R Q).

Proof. A minimal element of the product is found by first finding the set of
first elements of the pairs in the product. That set is non-empty, so it has an
R-minimal element; call it ming. Find the set of second elements of those pairs
in the product whose first element is ming. This set is non-empty, so it has a -
minimal element; call it min;. A minimal element of the product is (ming, miny).
O

Definition 30 (Relational product)
RPROD R, Rs(u,v) (z,w)= Ry u z A Ry v w.

The wellfoundedness of the relational product is an application of subrelation
to the lexicographic product.

Theorem 31 WF(R) A WF(Q) D WF(RPROD R Q).

Proof. By Theorems 27 and 29.

O

The following construction is probably the most important means of building
compound wellfounded relations.

Definition 32 (Inverse image)
invimage (R: 8 — f—bool) (f:a—=8)=Azy. R (fz) (fy)
Theorem 33 WF(R) D WF(inv_image R f).

Proof. For notational convenience, let R, stand for inv_image R f. Consider a
non-empty subset A of « (this always exists because type variables denote non-
empty sets in HOL). The image of f over A (call it B) is non-empty, because
f is total over . By wellfoundedness, B has an R-minimal element min. By
construction, there is an z in A such that f = = min. We claim that z is an

42

R;-minimal element of A, and show this by contradiction. Suppose there is a y
in A such that Ry y z. Then R(f y)(f z), i.e., R(f y) min. By the R-minimality
of min, f yis not in B. If f y is not in B, then y is not in A, since B is just the
image of f over A.
O

In the following, we require a theory of multisets (sets with repeated elements)
having operations for membership (€,4), union (Uy,), difference (—A(), and a
finiteness predicate (Fin). The empty multiset is written { } o, and a multiset
containing the single element z is written {z} . In unambiguous situations, the
M subscript will be dropped. An R-predecessor M to a multiset IV is obtained
by taking an element z out of NV and replacing it with a finite multiset Y of
R-smaller objects.

Definition 34 (Multiset predecessor)

predMset RM N=3dzY. zep N A
(M = (N = {z},) UY) A
Vy.yem Y DRyz) A
Fin NAFinY

Theorem 35 WF(R) O WF (predMset R).

Proof. There are two proofs for this. The original, due to Dershowitz and Manna,
in outline, is the following: towards a contradiction, suppose predMset R is
not wellfounded, and that R is wellfounded. There is an infinite descending
predMset R sequence. From this sequence, a labelled tree is built such that each
child of a node has a label that is R-smaller than the label of the node. By
construction, the tree is infinite and finitely branching, thus has an infinite path
by Koenig’s lemma. Contradiction. The author has formalized the Dershowitz
and Manna proof, and found it to be a challenging task.

There is a recent and logically simpler proof (it doesn’t require Koenig’s
lemma) credited to Bucholz and independently Coquand, which makes clever
use of inductive definitions. One formalization of this recent proof can be found
in [88, paper II]: it is relatively short compared to the original but much less
intuitive, in our opinion.

O
A helpful definition is the following map from lists to multisets.

Definition 36 (list_to_mset)

list_to_mset[|
list_to_mset(h :: t)

{Im

{h}m U (list_to_mset t)

Thus far, the wellfounded relations we have discussed have all been abstract.
Turning to more concrete relations, the predecessor relation on numbers is well-
founded.

43

Definition 37 (Predecessor) pred z y = (y = Suc z).
Theorem 38 WF pred.

Proof. Suppose not; then there’s a non-empty set of numbers P with no pred-
minimal element. However, an induction shows that P does have a pred-minimal
element. Contradiction.

O

The following instantiation of the inverse image combinator is heavily used in
automating proofs of termination of programs.

Definition 39 (Measure) measure = inv_image (<).
Theorem 40 Vf. WF (measure f).

Proof. If < is defined as TC (Az y.y = Suc z), the proof is immediate, by
Theorems 12 and 38.
O

For the following, we require a theory of sets defining finiteness of sets and
the notion of proper subset, as well as a theorem relating proper subsets and
cardinality.

Definition 41 (insert)
insert z S={y| (y=2)VyeS}
Definition 42 (finite set)
finite S=VP. P{ } A (Vz 5. P(s) D P(insert z s)) D P S.
Definition 43 (Proper (finite) subset)
fpss Sy So = finite So A (S1 # So) AVz. S1 2 D Sy x.
Theorem 44 fpss S; S2 D card(S;) < card(Ss).

Proof. By induction on the construction of Ss.
O

Theorem 45 WF(fpss).

Proof. By use of Theorems 27, 40, and 44.
O

44

2.6.1 Wellfounded relations for datatypes

When a datatype is defined, new wellfounded relations can be defined for it. One
particularly simple thing to do is to define the ‘predecessor’ relation for the type,
in which every application of a recursive constructor is strictly greater than each
of its immediate subterms (of the same type). The proof of wellfoundedness for
the predecessor relation for a datatype is easy to automate, but it turns out that
the size measure for a datatype is more useful, and trivial to prove wellfounded,
by Theorem 40. Size measures are extremely useful for automation of termination
proofs.

Thinking of an element of a datatype as a tree, it is standard to define its size
as one plus the sum of the sizes of the subtrees (leaves are assigned a size of zero).
Notice, however, that in a simply-typed setting, each datatype needs its own size
function. Another problem is how to define the size of polymorphic datatypes,
since the size of an instance of the type is not well captured by the size of the
defined type. For example, the size of a polymorphic type of lists could be taken
to be the length of the list, but what is the size of a list of numbers, or a list of
lists?

Problems of this kind can sometimes be solved by ‘interpreting’ each type
variable by a function. In particular, the notion of size can be parameterized
so that the size of a term of polymorphic type can take account of the size of
possible instantiations of the type variables. Thus, we intend to define the size
of elements of type (a4,...,a,)7 as a higher order function parameterized by n
size functions:

Tsize (fi:ar—=num) ... (foiap—num) (z: (q,...,0,)7)

Such a definition depends on a metalanguage translation (|-|r e)that maps a
HOL type 7 to a HOL term having type 7 — num. The general idea is to traverse
the type, and build a term by replacing type operators by size functions (by use
of T'), and type variables by parameters (by use of ©). Thus I' maps previously
defined type operators to their associated size functions, and © maps aq,..., o,

to fl:---:fn-

Definition 46 (Type size)

O(v) when v is a type variable
L(7) (Imilre) - - - (I7ilre)-

v
(T1y..,7) T

r,e
r,e

45

A typical " would include at least the following:

type size expression

T —To | ANV:T] — T2. 0

T xTy | A(f:m1 = num) (g:79 = num) (z,y). fz+gy

T1 + T2 | sum_case : (1; = num) — (72 — num) — 71 + 7o — num
bool boolcase 0 0 (= Ab. 0)

num Az:num.

option | Af. option_case 0 (Az. Suc (f z))

Remarks. The definition of the size of a pair is just the sum of the sizes of the
two projections: since pairs are not recursive, it is not useful (for our purposes)
to add one to the sum. The size of an element of a sum type is just the size of
the injected item: since sum constructors are used as discriminatory tags, any
nesting of INL and INR should be ignored in the computation of an object’s size.

Examples. In the following, © = {a — f1,8— fo}:

Inum % boollre = (Af g (2,y). f =+ gy) (Az.z)(bool_case 0 0)
=g A(z,y). + bool_case 0 0 y)
= Xz,y). x

|(c % 3 option) + num|r o
= sum.case (Af g (z,y). fz+gy) fi

((Af. option_case 0 (Az.Suc (f z)))f2))
(Az.x)

=g sum_case(A(z,y). fi + option_case 0 (Az. Suc (f2 z)) y) (Az.z)

Definition 47 (Datatype size) Suppose datatype (ou,...,a,)T has been de-
fined, with constructors Cy,...,C;. Create function variables

(fi:ag—num),. .., (fn:0en—>num),
and let © = {a1 — fi1,...,an — fn}. Extend T’ with a binding for size_:
A = Xtyop. i f tyop =7 then sizer fi...f, el se I'(tyop).
Then define

size.T f1...fu G
sizeT f1...fn (C(z1:71) - (Tm:Tm))

0, if C; is nullary; otherwise,
1+ 372 (Inlae).

46

Example. The size definition for the datatype of lists is:

0
1+ f h+ list_size f t.

list_size f []
list_size f (h :: t)

O

The size definition is intended to be useful when mechanizing termination
proofs. A particularly simple and yet effective strategy when trying to prove ter-
mination of a function over a type 7 is to attempt to prove that the recursive calls
are in the relation measure(|7|ro) (where © is reset to say that the size functions
generated from type variables just return 0). This approach to defining the size
of datatype elements becomes particularly useful when dealing with functions
defined by nested patterns.

Example. Consider the definition of a polymorphic function for removing a level
of bracketing from a list:

flat []
flat ([] :: £)
flat ((h ::t) =2 £)

[]
flat £

b flat (222 £).

To show that flat terminates, first ensure that I' contains list — list_size, and that
© ={a+ Av: . 0}. Then

| list list|r o = list_size (list_size (Av. 0)),

and proving termination of flat can be done by showing that the recursive calls
of flat lie in the relation measure (list_size (list_size (Av. 0))), i.e., (making the
abbreviation M = list_size (Av. 0)) by showing

list size M £ < list_size M ([] :: £)
= 1+ M[]+ list_size M ¢,

and also

list_size M (¢ :: £)
1+ Mt + list_size M ¢

list_size M ((h :: t) :: {)

14+ M (h::t)+ list_size M ¢

1+ (1 + list_size (Av. 0) (h =z t)) + list_size M £
1+ (14 (Av.0) h+ M t) + list_size M £

1+ (14 M t) + list_size M £.

A A

47

2.7 Contextual rewriting

The machinery of TFL makes essential use of a contextual term rewriter: it is the
purpose of this section to explain how contextual rewriting can be implemented
as a rule of inference, following the approach to implementing rewriters initiated
in [82]. Our exegetical strategy will be one of progressive enrichment: we start
with a simple unconditional rewriter and then show how it can be modified to
accommodate conditional and then contextual rewriting.

An unconditional rewrite rule is an equational theorem F+ [= r. A basic
match of a rule [= r to a term M yields a substitution # for variables of [such
that (1) = M.° A matcher is a metalanguage function that takes a rule set R
and a term M and attempts to find a rule in R that admits a basic match with
M. When a matcher is applied to M, if there is a rule [= r in R such that a
basic match attempt succeeds with substitution 6, the theorem - M = 0(r) is
deduced; if no basic match can be found, the theorem + M = M is returned.®

All that is needed now is a way to move about the term and apply a matcher
to subterms. It is simple enough to see how to do this algorithmically, but
how are such steps to be logically justified? The results of replacements must
be pasted together so that, after rewriting term to term', perhaps at internal
nodes, - term = term' can be concluded. The following two theorems transform
equalities between subterms into equalities between their parents and thus justify
gluing steps:

F(M=M)YAN(N=N') D MN=MN'
F(M=M) D> Az. M =Xz. M’
Because of the stark simplicity of the syntax of the HOL logic, these two rules
suffice for implementing term traversal. An unconditional rewriter will take a
rule set R and a term M and, in the standard case, repeatedly traverse the term
making replacements until no more replacements can be made.
Conditional rewriting arises from the desire to rewrite with equations of the
form

(2.2)

aN...N¢c, Dl=r.
A conditional matcher using rule set R makes the following steps at subterm M:
1. Matches M against R, giving - 6(c1) A ... A0(c,) D (6(1) = 0(r)) if there
isarule c; A...A¢, DI =rin R such that §(I) = M.

2. Invokes a condition prover on 6(ci) A ... A 6(c,). Notice that there can
be free variables in 6(c;) A ... A (c,) that do not occur in 8(1); these are

5The equality of #(I) with M can be modulo a theory, e.g., the rules of a8n-conversion or
other algebraic properties, but we won’t explore this. We also won’t discuss how matching
substitutions are computed; for information on this, see [9].

This is inefficient. Boulton [16] discusses an optimization that uses exception handling to
circumvent rebuilding terms that are unchanged by rewrite steps.

48

sometimes called ezistential variables. In the proof of 8(ci)A...AB(cy), the
condition prover is allowed to find values for these variables, with the result
that the condition prover either fails or returns - o(6(c1)) A ... Aa(8(cy)),
where ¢ denotes the substitution binding the existential variables.

3. Performs modus ponens (with some matching to handle o) with the results
of steps (1) and (2), giving - o(0(l)) = o(6(r)), which is just - 6(I) =
o(6(r)) because o does not have any free variables of #(l) in its domain.

If all these steps are successful, the theorem - M = o(6(r)) is returned; otherwise
the result is - M = M.

2.7.1 Making use of context

Thus, the differences between unconditional and conditional rewriting can be
localized in the matcher, and the traversal strategy is not affected. However, the
traversal strategies available so far do not allow the rewriter to take advantage of
information that becomes dynamically available during traversal. For example, in
traversing a conditional expression i f A t hen B el se C, it is valid and often
helpful to assume A when rewriting B and also to assume —A when rewriting C.
A general and flexible way to represent such information is with a congruence
rule, e.g.,

(P=PYA(P'Dz=2)AN(—P' Dy=1)

>
if Pthenzelsey=if P'thenz' el sey'.

A congruence rule has the form of a standard conditional rewrite rule, but it
is treated differently, since it supports a notion of context, which is a collection of
theorems that are locally, or dynamically, valid. The following definition captures
a simple” class of congruence rules:

Definition 48 (Simple congruence rule) A simple congruence rule for func-
tion f has the following form:

FPiDzi=y)A AP D2Zn=yn) D (fz1...20) = fyr...0n),
where the P; are optional.

To see how a congruence rule is interpreted when rewriting, assume that we
are working in a context I' and suppose that a subterm f M; ... M, has matched
a simple congruence theorem, yielding an instantiation

(P1DM1=y1)/\.../\(PnDMn:yn)DfMl...MHnyl...yn,

7A more general class allows any relation to be used, rather than just equality.

49

where all the y; are free variables. We would like to replace f M, ... M, but to do
so we must prove the antecedents, and in order to do so, instantiate the existential
variables. This is exactly the same situation faced in a standard conditional
match. However, the manner of proof of the antecedents is different. For an
antecedent P, D M; = y; the following actions are taken:

e P, is assumed and added to I' to get I'. Then a recursive invocation of
the rewriter using R and I is applied to M;. This returns a theorem
A+ M; = M]. If P, was used somewhere in the proof, then P, € A. P, is
now discharged from the assumptions, regardless of whether it occurs there
or not, yielding A; - P, D M; = M].

e The existential variable y; can now be instantiated to M throughout the
remainder of the instantiated congruence theorem.

e P, D M; = M] is eliminated from the antecedents of the instantiated con-
gruence theorem by modus ponens.

The ith step of this cycle leaves

(Pig1 D Mgy = yiy1) Ao . A (P D My, = y)
AU...UA; D

After n steps of this cycle, the right hand side of the conclusion has been fully
instantiated, and the antecedents have all been eliminated and thus f M; ... M,
can be replaced by f M| ... M.

The increased power of contextual rewriting is due to the fact that the values
of existential variables are found by a recursive invocation of the rewriter, using
an augmented context. It is common for conditional rewriters to also invoke
themselves recursively to solve conditions, so contextual rewriting can be thought
of as a refinement of conditional rewriting made possible by the stylized form of
congruence rules.

Higher order congruence rules

A higher order congruence rule is a congruence rule where the constant has a
higher order type. For example, in

(M=MYANNzz=M D fz=fz)
D (2.3)
Let f M = Let f' M,

the constant Let has type : (@« —) — a — (. There are two new issues to
address in this setting: the first is the higher order nature of the constant—this

a0

requires 3-reduction and -abstraction steps; the second is that paired abstractions
are often encountered—this requires the application of reduction steps for pairs.
Thus an instance of the congruence rule can feature an antecedent Vz. Px D
fT = f'T, where elements of T may be tuples of variables.

For a concrete example of how the matcher can be upgraded to handle such
rules, we will consider an application of (2.3). Suppose that a term

| et (IEI,IEH):MlnN

is encountered during traversal, and assume that the rewriter has already accu-
mulated a context I'. The actual ‘deep’ syntax of the term is unravelled by the
semantics of Let, and the way that paired lambda abstractions are encoded:

let (zq,...z,)=MinN
= Let(A(IEl,...,IEn). N) M
= Let (pair_case(Ax;.pair_case(Azs. .. . pair_case(Az,_1z,. N))) M,

and thus the instance of (2.3) we consider is

M=y ANVzz=yD (Az1,...,2,). N)z = f' z)
S (2.4)
Let(A(z1,...,2,). N) M = Let f'y.

The following steps are taken:

1. Rewrite M in I', obtaining A; F M = M’. In general, arbitrary new
assumptions can appear as a result of being introduced in the proof of
F M = M’'. The automatic extraction of termination conditions will be
implemented by this mechanism. We now substitute M’ for y throughout
(2.4) and then remove the first antecedent, leaving the simplified instance:

(Ve. 2 = M' D (A(zy1,...,2,). N)z = f')
AN D (2.5)
Let(A(z1,...,2,). N)M = Let f' M'.
2. Consider the next antecedent
Vz. 2 =M D (A(z1,...,2,). N) z = f' z.
Replace = throughout by the tuple (z1,...,z,) from the original term:
(Z1,.. ., @) =M D A1, s 20). N) (21, .., 20) = ' (21, .., 20).

There is now a paired (-redex and it can be reduced, returning

F (21, sTy) =M DN=f (z1,...,2,).

o1

3. Augment the context I' with (zi,...,2z,) = M’ and rewrite N. Then dis-
charge (z1,...,z,) = M'. This yields the theorem

A2|_($1,...,IE”):MIDN:NI.

4. By paired (-expansion and transitivity of equality the following has now
been proved:

(IEI,...,IEH) =M

Ay + D
(A1, 2n) N) (21, 2n) = (A (21, -, Zn). N) (T1,...,Zn)

5. Abstract (1, ..., Zy,) to z. This is surprisingly tedious; it amounts to check-
ing that none of the variables in (xy,...,%,) occur free in subterms other
than occurrences of (z1,...,z,).

A EVz. 2 =M D (Az1,...,20). N) 2= (AN21,...,T0). N)z. (2.6)

6. Apply the substitution f' — A(zy,...,z,). N' to (2.5) and then use modus
ponens to eliminate (2.6):

Al U AQ (o Let(A(.’El, “as ,IEn). N)M = Let(A(.’El, “as ,IEn). NI)MI.

Now the replacement can be performed. The important thing about these
intricate machinations is that the bound variables introduced by a binding op-
erator such as | et must be freed before the body of the | et is rewritten, and
that the binding be treated as a unit. Thus when rewriting the second clause of
Quicksort,

fagsort(ord,h :: t) = let (Iy,l) = part(Ay. ord y h,t,[],[])
in

fgsort(ord, l,) @ [h] @ fgsort(ord, l,),

the binding (Iy,l2) = part(Ay. ord y h,t,[],[]) is added to the context before
proceeding to rewrite the body of the | et . An alternative would be to omit the
paired (-reduction steps, but then the congruence rule application would require
not only that

I, = fst(part(Ay. ord y h,t,[],[])
lo = snd(part(Ay. ord y h,t,[],[]),

be added to the context, but that /; and [, be expanded out in the body before
rewriting proceeded, with the result that the sharing introduced by the | et
construct is lost. Avoiding such pitfalls is essential in the automatic extraction
of understandable termination conditions.

52

Our approach also handles a common problem: when performing a higher
order rewrite, variable names from the rewrite rule often get used instead of names
from the subterm being rewritten. The above algorithm makes sure to instantiate
the rewrite rule with names from the subterm before making the replacement. For
our application, this is important, since we want to preserve the naming scheme
used in the source program, especially when extracting termination conditions.

2.8 Summary

The basis enumerated in this chapter is relatively easy to provide. Building on
basic inference rules and a simple principle of definition, we have shown how
the required background theory of wellfoundedness, induction, and recursion can
be derived. The wellfounded recursion theorem is the most technical part of
the theorem proving effort; the elementary exposition we have given of its proof
should enable the theorem to be proved with ease in other systems.

The most difficult part of the dynamics required by the TFL system is the
implementation of a contextual rewriter adequate to the task of extracting ter-
mination conditions. Our rewriter has advanced features not available in other
rewriters (handling instances of higher order congruence theorems with paired
A-abstractions, in particular). Again, we think that our presentation is clear
enough to enable easy duplication of the required functionality. Furthermore,
contextual rewriting is such an important proof tool that any serious verification
system will have to embrace it eventually, and the explanation given here should
clarify the important implementation issues.

Since the machinery of the next chapter uses the theorems, definition prin-
ciples, and proof mechanisms from this chapter, i.e., from the underlying proof
system, any inconsistency that could result from using our machinery will al-
ready be derivable in the original system. Thus TFL is safe to use. That the
functionality TFL provides is not trivial will be established in the next chapter.

93

o4

Chapter 3

Mechanization

In this chapter we discuss the algorithms that apply the static and dynamic
utilities described in the previous chapter. We start by showing how functions
are defined when the termination relation is known. This is not an atomic act:
important sub-algorithms involve a pattern-matching translation, termination
condition extraction, and automated proof of a customized induction theorem.
In subsequent sections, we show how to relax various requirements: first, the re-
quirement that a termination relation be supplied at definition time is dropped;
second, the requirement that the definition be a closed term is liberalized—this
considerably extends the scope of TFL since such definitions can represent pro-
gram schemes, which are commonly used to implement program transformation
techniques.

3.1 Definitions with termination relations

The interface to TFL is centered about the act of defining a function: given some
pattern-matching style recursion equations

f(pat1) = rhs;

f(pat,) = rhs,
and a termination relation R, the system steps through a definition algorithm:
1. The function description is translated into a functional Af z.M;
2. The basic principle of definition is applied to define f = WFREC R (Af z.M);

3. The recursion theorem (Theorem 24) is applied to the definition and then
some basic simplifications are performed;

4. Termination conditions are extracted; and

5%}

5. An induction principle is derived by instantiating and manipulating the
wellfounded induction theorem (Theorem 6).

Our design also allows further steps to be included as “post-processors” to
step 4. In particular, the design allows for a prover that tries to establish the
wellfoundedness of R as well as a prover that attempts to eliminate the termi-
nation conditions. Whatever the success of these postprocessors, at the end of
all this manipulation a constant denoting the function has been defined and the
following are returned:

e The original recursion equations, as a theorem of the host logic;

e An induction theorem, which serves as the main way to reason about the
function; and

e Whatever termination conditions survive postprocessing. These remain as
constraints attached to the recursion equations and the induction theorem.

Example. Consider the following program:

variant(z,£) =i f mem z £t hen variant(z + 1,¢) el se z.

This function, or close relatives of it, is often found in symbolic systems since
it is helpful for renaming bound variables in the course of substitution, or in
“renaming variables apart” prior to unification. Trying to define variant formally
has apparently given some authors difficulty, e.g., Section 4 of [52]. The essential
difficulty with variant is that it recurses on a larger argument and so it takes a
moment of thought to understand exactly why it terminates. There are at least a
couple of relations that explain why variant terminates (the second is from Matt
Kaufmann).

measure A(z, £). length(filter(Ay. z < y)¢)
measure A(z,£). (max({) +1) —x

Using the first as our termination relation, the steps in the definition process
elaborate as follows:

Translation. In this simple case, we just A-abstract the arguments and the
recursively occurring function variable to get

Avary (z,£). 1 f mem z £thenvary (z + 1,¢) el se z.

The translation of definitions with more complex patterns on the left-hand
side is described in Section 3.3.

96

mvoke
provers

f(pat1) = rhs:[f]

f(paty) = Thsy[f]

/

Afz. M

/

f= WFREC R (Af z.M)

Y

(Pattern match translation)

Define function

WF(R) - Vz. f(z) = (Af z.M) (f|R,z) =

instantiate rec’n thm;
eliminate definition

Y

WF(R) F f(pat,) = rhsi[f| R, pati]

WF(R) + f(pat,) = rhs,[f| R, pat,]

B-reduction;
spec. to patterns;
case reduction

|

WF(R),TC14,...,TCy, F f(pat;) =rhs; termination

condition

WF(R),TC1,...,TCp, + f(pat,) =rhs, extraction

. WF(R),
Fo TChy ..oy TC,

Fo TChy. .., 2 TCp,

e

Y

y

WF(R)7 prove
TC.YIIa o, TCOw, F ind. thm | induction
TCnl, e ,Tann

-

{remaining TCs}, F f(pati) =rhs;

{remaining TCs}, F f(pat,) =rhs,

{remaining TCs}, ., F ind. thm

eliminate
proved
termination
conditions

Figure 3.1: The process of definition

a7

Definition. Make the definition

variant = WFREC (measure A(z, £). length(filter(Ay. z < y)£))
(Avary (z,£). i f mem z £t hen vary (z + 1,£) el se z).

Either of the principles of definition from Section 2.1.2 has no trouble in
accepting this formula.

Apply recursion theorem. By application of modus ponens with Theorem 24,
we get the following theorem (the wellfoundedness condition has been shunted
to the assumptions):

WF (measure A(z, £). length(filter(Ay. z < y)£))
F variant(z,£{) =
if (mem z £) then
(variant | measure(A(z, £). length(filter(Ay. z < y)¢)), (z,£))
(z+1,¢)
else z.

Extract termination conditions. The original recursive call variant(z + 1,)
has now been converted into a constrained form:

(variant| measure(A(z, £). length(filter(Ay. z < y))), (z,£))(z + 1, £).

The process of extraction trades such constrained occurrences for the origi-
nal occurrences, but this trade can only happen when the termination con-
dition can be proved. Our machinery enforces this requirement by logic;
the replacement is achieved by performing an inference with Theorem 14.
The details of extraction are developed in Section 3.2, where it is described
how termination conditions are captured and brought out to the top-level
of the definition, so that automatic methods can have easy access in their
attempts to prove them. If these methods fail, the termination conditions
are then also easily accessible for the user to attempt. An important fact is
that the extraction algorithm is implemented by inference steps. The result
of extraction is therefore a theorem:

WF(measure A(z, £). length(filter(Ay. z < y){)),
mem z £ D length(filter(Ay. z + 1 < y)£) < length(filter(Ay. z < y){)
|_
variant(z,£) =i f mem z £t hen variant(z + 1,¢) el se z.

98

Prove induction theorem. An induction theorem is proved, using the results
of termination condition extraction:

WF (measure A(z, £). length(filter(Ay. z < y)£)),
Vz l. memz {
D length(filter(Ay. z + 1 < y){) < length(filter(Ay. = < y)¥¢)

VP. (Vz £. (mem z £ D P(Suc z,¢)) D P(xz,£)) D Vv v;. P(v,n).

The details of this derivation are discussed in Section 3.4.

Postprocessing. The wellfoundedness prover easily proves the wellfoundedness
hypothesis and eliminates it from the theorem. However, the termination
condition solver fails on the remaining hypothesis, leaving it for the user to
prove. It can be proved by induction on ¢, using the following lemma:

(Vz. P(z) D Q(z)) D VL. length(filter P £) < length(filter @ £).

With that accomplished, the recursion equations and the induction theorem
can now be freed of termination constraints.

0 End of example.

Thus the two most important facts about the function, the recursion equations
and the induction theorem, have been generated through an unbroken chain of
inference. As can be seen, the work is mostly straightforward. Human creativity,
or automated reasoning, is required to find the right relation R, to prove the
wellfoundedness of R, and to eliminate any remaining termination conditions.

In the remainder of this chapter, we will discuss the steps taken by the process
of definition in detail. We begin by examining the way in which contextual
rewriting is used to extract termination conditions. Next, we discuss the pattern
match translation that TFL uses. After that, we examine the details of how
the induction theorem for a function is proved. This completes the discussion
of how definitions with relations are built. The subsequent section deals with
the relationless definition of recursive functions. Building on the mechanism for
relationless definitions, the next section illustrates how schematic definitions can
be dealt with.

3.2 Extracting termination conditions

Suppose a function f(z) = M with recursive calls f(21)... f(2,) occurring in M
is to be defined. Let R be the termination relation. In the instantiated recursion
theorem, this gives rise to the constrained occurrences (f|R,2)z1...(f | R, z)zn

99

and the termination conditions (R 21 2)...(R 2, z). In general, each condition
will only be provable in the context existing at the recursive call site. To illustrate,
in the variant example, the termination condition

length(filter(Ay. z + 1 < y) £) < length(filter(Ay. z < y) ¢)

is only provable when the context of the recursive call—mem z /—is taken into
account. The context I'(N) of a subterm N of M is a collection of facts that are
true because of where N occurs in M. The full termination condition of recursive
call f(z;) in context I'(2;) = [ha, .. ., hy] Will be the formula by A. .. Ahy, D R 2; 2.
If the termination conditions of a function are provable, then the function is total.

However, what does contezt really mean? Its usage in the above paragraph is
merely intuitive. OQur answer comes from noting that, using congruence rules, the
context of every subterm, including the recursive call sites, can be automatically
tracked by a rewrite engine of the kind described in Section 2.7. The implemen-
tation of TFL extracts termination conditions by using such a rewriter to rewrite
the instantiated recursion theorem coming from step (3) of the definition process
by the single conditional rewrite rule

Rzy> (fIRy)z=fz

In searching for matches to this rule, the rewriter is essentially searching
the instantiated recursion theorem for constrained recursive calls. The rewriting
process continues until one full traversal of the theorem finds no constrained
recursive call. As the rewriter makes its traversal, it gathers and discards context
according to its stock of congruence rules. Thus, the set of congruence rules
defines the notion of context. This approach is general and very flexible: by
allowing the set of congruence rules to be user-extensible, new notions of context
can be installed as they arise in formalizations; the only requirement is that the
intended notion of context be capturable in a congruence rule. So far, we have
not found this to be a limitation.

A by, b E AN By, A-introx* (T'(z;))
B.YV(hiA...ANhyy DR 2z 2) FY(hi A...ANhyy D R 2; 2) Assume
C.Y(mA...ANhy DRz 2)FhiAN...ANhy DR 2; 2 Velimx* B
D.htyeo oy b, VIMA ... ARy DR 2z 2) F R 2 2 D-elim C A
E. hi,...s by, Y(hi A .. .ANhy D R 2 2) F (f|R, %)z = f(2;)) D-elim (14) D

Figure 3.2: Capturing termination conditions by proof

It is not enough merely to accumulate context and rewrite recursive call sites;
the termination condition needs to be captured at each call site. This can neatly

60

be accomplished via inference steps. At a constrained recursive call (f | R, z)z;
in context I'(z;) (having elements hi,...,hy,), the little proof in Figure 3.2 is
performed by the condition prover component of the rewriter, thus allowing the
replacement of (f| R, 2)z; by f z. (The initial step A-introx (I'(2;)) assumes each
element in I'(z;) and then makes a sequence of A-intro steps).

The proof of Figure 3.2 always succeeds (it is easy to check that each step in it
cannot fail). After the proof is performed, the rewriter performs the replacement.
Since each replacement removes one constrained recursive call (f | R, z)z; from the
term, the rewriting process terminates. In situations with no nested functions,
a single traversal of the term is needed to capture all termination conditions. In
situations with nested functions, repeated traversals may be necessary.

In the proof, the termination condition is generalized to V(A1 A ... A by D
R z; z) and stored on the assumption list. As rewriting ‘unwinds’, each of the
context elements hq, ..., h,, will be removed at the point it was added to the con-
text. However, the termination condition will not be removed since the hq, ..., A,
are proper subexpressions of it. The end result, after rewriting finishes, is the
theorem

V(I'(z1) D R z12),...,¥(['(2,) DR zp2) F f(2) =M

in which the termination conditions have been fully separated from the recursion
equations. It is now simple for tools to either automatically attempt to solve
them or to present them as goals for the user.

Subtle point. In step B of the proof in Figure (3.2) there is a choice about
which variables to universally quantify. If all are quantified, then the termination
condition becomes effectively inert; bizarre constraints (arising from accidental
coincidence of free variables) with other formulae encountered in subsequent proof
steps can never arise. This is a good thing. However, in the case of nested re-
cursion, fully quantifying each termination condition can result in it becoming
impossible to use the definition of the function before all termination conditions
are proved (unless elaborate steps are taken). This is a bad thing, because termi-
nation proofs of nested recursive functions generally require unrolling the function
definition.

Therefore, in step B we quantify the termination condition as little as possible:
only the local variables introduced on the right hand side, e.g., those introduced
by a let construct, are generalized. This allows recursion equations to be unrolled
at a specific instance, provided the termination conditions can be proved at that
instance. We will return to this point when discussing the derivation of induction
schemes in Section 3.4, and induction schemes for nested functions in Section
4.1.1.

O

61

3.3 Pattern-matching

Pattern-matching is a convenient and standard description technique for func-
tional programs. A simple example of a function described by pattern-matching
is ged:

ged(0,9)
ged(Suc z, 0)
gcd(Suc z, Suc y)

Yy
Suc z

if y <z then gcd(z —y, Sucy)
el se gcd(Suc z, y — x)

Compilation of efficient code for pattern-matching is very important for speedy
execution of functional programs. In this section we show that such compilation
techniques can also be adapted to the problem of defining logical functions written
with patterns.

A straightforward operational interpretation of the rules for gcd is that to find
the value of gcd at a pair of natural numbers, one must match the patterns of
the left hand sides in some order until a match # for the variables in the pattern
is found, then apply # to the corresponding right hand side, and continue by
evaluating the instantiated right hand side. There are several problems with this
interpretation: first, the meaning of gcd is operational; second, the algorithm
is inefficient, since it can happen that a lot of redundant matching occurs in
the search for a successful match; third, the interpretation says nothing about
whether the matches are total, i.e., cover all possible inputs of type num % num;
fourth, the interpretation says nothing about whether the description is even a
function, ¢.e., single valued!

Augustsson [8], motivated by the second consideration, invented an effective
divide-and-conquer algorithm that considered sets of patterns. More importantly
for our logical setting, his algorithm also helps deal with the other problems. The
first problem is solved since Augustsson’s method translates the program into
a nested case expression, which is something that has a straightforward logical
interpretation using the case definitions for the concrete types of Section 2.2. The
third problem is solved because a simple restriction of the algorithm implicitly
checks that the patterns are complete. The fourth problem is solved because the
algorithm uses a priority scheme to decide which pattern to select in the case
of overlapping patterns (the potential source for multiple valuations of the same
input).

Our algorithm is not exactly that of Augustsson: he deals with overlapping
patterns by generating code that may backtrack at runtime, in order to have
compact code. Lacking a concept of runtime in our logical setting, we are un-
able to use that solution. Therefore, we divide our development into an algorithm
that works for complete and non-overlapping patterns (a simple restriction of Au-
gustsson’s algorithm), and a pre-processing extension that deals with incomplete
and overlapping patterns. The translation of overlapping patterns implements

62

the usual semantics of pattern matching in functional languages, in which the
first successful match in a top to bottom scan is taken.
Our pattern language is generated by the following grammar:

pat = v | C paty ... paty,

where v is a variable, and C: 74 — ... = 7,, = 7T,,41 is a constructor obtained by
a datatype definition of the kind described in Section 2.2. A further restriction—
linearity—is also required: no variable may occur more than once in a pattern.
This pattern language lacks several common features:

e So-called ‘as’ patterns. These provide the ability to attach names to parts
of the pattern. For example,

f(€as h:t)=rhs

allows ¢ to be used in rhs to stand for the entire list being matched. It is
not clear what the semantics of as is; however, it can be translated into
uses of | et in rhs, e.g., the example could be translated to f (h :: t) =
let £/ = h::t in rhs. We have not yet pursued this. The thesis of Cornes
[27] discusses a treatment of as patterns in the Coq proof system and there
are also constructive interpretations of as for lambda calculi with built-in

patterns [57].

o Wildcard patterns. These do not form part of our translation per se, but
must be accommodated as a part of parsing the original term, something
that TFL leaves to the underlying proof system.

We first discuss the basic pattern matching algorithm and then explain the
extensions for overlapping and incomplete patterns.

3.3.1 Translation of pattern-matching

Assume we are given the program description

f(pat1) = rhs

f(paty) E rhsp.

The algorithm O, given in Figure 3.3, and expressed in pseudo-ML, will translate
this into a nested case expression. © takes two arguments: a stack of variables
and a row matrix. A row corresponds to a clause in the function definition:
initially, it is just the list of patterns as given in the clause, each paired with
its right-hand side. In contrast to the operational interpretation given above,
which proceeded row by row, O goes from left to right, column by column.

63

The variable stack represents the environment which gets built up as matching
progresses: there is one variable for each of the data objects remaining to be
matched. There are several simple invariants for O:

All rows are of equal length (the matrix is a rectangle).
The elements in a column all have the same type.
The length of the variable stack is the width of the matrix.

The #th variable in the variable stack has the same type as the ith column.

As mentioned, @ proceeds by examining the first column. There are three
allowed cases:

Variable Each element in the column is a variable. Recall that the notation

[v — 2]M denotes the substitution of z for v throughout the term M. This
translation-time substitution essentially performs a-renaming, which itself
sets up parallel substitution at “runtime”.

Constructor Each element in the column is the application of a constructor for

End

type 7. The problem now splits into n subproblems, one for each constructor
Ci,...,C, of 7. Since each constructor can have repeated occurrences (and
applications of a constructor C; need not be grouped in consecutive rows),
there is a stage of partitioning the rows into n groups of size ki ...k,.
(In O, how this grouping is accomplished is not important. However, in
the extension to overlapping patterns, the maintenance of order will be of
crucial importance.) After partitioning, a row (C(p) :: pats,rhs) has its
lead constructor discarded, resulting in a row expression (p @ pats,rhs).
In subproblem ¢, supposing the constructor C; has type n = ... =+ 7, = 7,
J new variables vy : 7,...,v; : 7; are pushed onto the stack. This vector
of variables is denoted V;. The results of invoking © on the subproblems
are combined into a case expression that analyzes the head of the variable
stack.

The patterns have been exhausted and the stack is empty, leaving a single
right hand side, which is returned.

The result of invoking © is used to build a functional by abstracting f and a
variable z (which must not be free in any of rhsi,...,rhsy):

[2],
Afz O ([p:atl], rhsy),
([pat,), rhsy)

64

Variable

z it stack, stack,
o (vl.:: patsy, rhsy), _o (pa.tsl, [v1 = z]rhs),
(vy, 2t patsy, rhsy) (patsy, [vn, — 2]rhs,)
Constructor

(z :: stack,] \

[Cip11 :: patsiy, rhsiy

o Cl@ it patsig,, ThSig,

CnPn1 :: patsp, Thspy

K | an;n—kn it patspk,,, Thnk, |)

) Vi Qstack,

let M, = © m@patsll,rhsll

Dik, @patsig,, rhsik,

V,@Qstack,

M. — O m.@patsnl, rhsn1

DPnk,, @patsnkn p Thsnkn

in)
case ty (AV. My)...(AV,. M,,) 2

End
O([[([],rhs)]) =rhs

Figure 3.3: Basic pattern matching algorithm

65

Example. The following is the translation of the gcd program:

Agced z. pair_case
(Av v1. num_case v;
(Avg. num_case(Suc vg)
(A’U3. if (’U3 S ’UQ)
then ged(ve — vs, Suc v3)
else ged(Suc vq, v3 — v9)) v1) V) 2.

3.3.2 Incomplete and overlapping patterns

An incomplete set of patterns will fail to match at least one data object. An
overlapping set of patterns has the unwanted feature that there are data objects
that more than one pattern in the set can match. Thus, the following description

f(2,0)
f(0,z)

True
False

overlaps at (0,0) (should the result be True or False?) and is incomplete at
(Suc a, Suc b), for any a and b. Overlapping patterns are often used to succinctly
express complex patterns in data, so it is interesting to see how algorithm O can
be extended to handle them. Omitted patterns describe partial functions, and in
a logic of total functions, such can not really be supported accurately, but it is
easy to extend O to handle them as well.

Remark. There are non-overlapping pattern sets that are not dealt with by
algorithm @, as the following example from Wadler [54] shows:

diagonal(z, True, False) = 1
diagonal(False, y, True) = 2
diagonal(True, False,z) = 3.

The diagonal function has no overlaps; however, the pattern set has to be fully an-
alyzed to determine this fact. For this reason, Wadler suggests the term uniform
to denote the set of patterns that algorithm O handles. O

Incomplete patterns

In the Constructor rule, it may happen that an application C; p of some con-
structor C; of the column type is missing from the lead column. In this situation,
the pattern set is incomplete. We complete it by creating a new row for each of
the missing constructors C;, ..., Cy; these rows are then added to the row matrix.
The right hand side of each new row is just Arb, instantiated to o, the range type
of the function being translated.

66

Complete
{ p1 :: patsy, rhsy \

1 patsy, rhsy :
. Pn i: PatSy, Thsy,
' [Ci Yiyur = T1,y ..., u 1 7], Arb i o
Pp i patsy,, rhsy, .

\ [Cky_k,v1:71,...,v]~:7']~],Arb:0)

Each new row has new variables put “everywhere”: u,...,u;,...,vi,...,v; are
new variables bearing the types of the respective columns 1,..., 5. Also, vectors
of new variables ¥;, . . ., yx, must be created to be the arguments of the constructor

applications at the head of the column.

Overlapping patterns

The remaining case when the rules of O fail to apply is when the lead column is
a mixture of variables and constructor applications. This divides the row matrix
into alternating blocks headed by constructor applications and variables:

constructor block { ’
C p; :: pats;, Ths;
Vjt1 i patsjyi, Thsjtr
variable block :
Vg it patsy, rhsg

C Dro1 i patsyy1, Thspi1
constructor block) * * *

Our desire is to transform such a situation into an equivalent problem where
all the entries in the lead column are constructors. Consider row j+ 1. Under the
operational interpretation, if an attempt to match by the previous constructor
block has failed, the intent is to successfully match the leading data object with
vjt+1, and then attempt to match the remaining data objects against pats;;;. To
implement this with constructors, it suffices to replace row j + 1 by n copies of
itself, one for each constructor in 7 (assuming that 7 has n constructors). In copy
m, vj4+1 is replaced by an application of C,, : 1 — ... = 7, = T to variables
Y1 @ Ti...Yq @ Tq, Where each variable has not been used yet in the algorithm,

67

and does not occur in the original equations. The expansion vj41 — Cp y1 ... Y4
is also applied to rhs;;;. If matching row j + 1 should succeed operationally,
then exactly one of the n new rows should succeed in matching. In effect, we
have replaced a potential application of the Variable rule by a disjunction of
applications of the Constructor rule. This motivates the following, where we
focus in on only one block alternation (a block alternation involves moving either
from a variable block to a constructor block, or vice versa):

VarElim

Cp; :: patsj,rhs;

Cy U1 i pats;ya, (Vi1 — Cy Gijrhs
C p; :: pats;, Ths;
Vjy1 it patsjy1, rhsj Chn Un 1 Patsji1, [Vj+1 — Cp Tn|Thsjq

Vg it patsy, rhsg Cy uy = patsy, [vg = Cy Urlrhsy

K Cp, Uy, : pats, [vy — Cp, Tprhsy)

A mixed first column is, after executing the VarElim step, acceptable in-
put for the Constructor rule. However, the operation of Constructor must
be constrained in the partitioning step: when grouping all the rows headed by
constructor C;, care must be taken that the relative order of the source rows be
preserved. Otherwise, a row introduced by an application of VarElim might be
placed ahead of a row that initially occurred above it, thus violating the top-to-
bottom operational strategy.

The End rule must also be changed when dealing with non-uniform pattern
sets. As before, the search for a match has come to an end: the patterns have
been exhausted and the variable stack is empty. The new aspect is that now
there is a list of right hand sides to choose from, each representing a different
right hand side stemming from an overlap. This list is ordered, by the discipline
exercised in the partitioning phase of the Constructor rule, so picking the first
element of it delivers the first rule that matches in top-to-bottom order.

The enhanced pattern matching algorithm 7P incorporating these decisions is
represented in Figure 3.4. PP can be seen as an optimized version of a two-pass
algorithm that first expands all incomplete and overlapping patterns in all rows,
and then invokes O (suitably modified so as to maintain order in the partitioning
phase of the Constructor step, and to handle multiple results in the End step).

68

Variable

z :: stack, stack,
(vy :: patsy,Thsy), (patsy, [v1 — z|rhsi),
P : =P)
(vp, i: patsy, Thsy) (patsy, [vn — 2]rhsy)
Constructor
z i stack,
Py patsy, rhs;
P)
Pn i patsy, rhsy
[Cip11 :: patsiy, rhsiy i
Cipix, : patsik,, rhsig, VarElim p1 i patsy, Ths;
| et e = o :
CaPnt 1 patsp1, Thsny Complete Pn i Patsy, Thsy,
L Cnpnkn " patsnknyrhsnkn _
W1 @Qstack,
p11Q@patsyi, rhsi
M, =P .
Dik, @patsig, , rhsik,
VnQstack,
Mn _ P m.@patsnh Thsnl
Dnk, @patsnkny Thsnkn
i n

case ty (AVi. My)...(AVn. M,,) 2

End
P[], [rhsy, - .., rhsg])]) = rhs;

Figure 3.4: Pattern matching algorithm
69

The termination and correctness of a similar algorithm is shown in [67], which
deals with compilation of lazy pattern matching, a more complex problem that
subsumes ours.

Example

We now exercise P on our motivating example.
[2],

P | [(z,0)], True

[(0,y)], False

Since both rows are headed by pairs, the Constructor rule applies.

[Uly U2]7
pair_case(Av; ve. P [,0], True) 2z
[0,y], False

The lead column is a mixture of variables and constructors, so a VarElim step
is made.

[v1, va],
: [0,0], True
pair_case(Av; vg. P [Suc vs,0], True) 2
[0,y], False

The lead column is all constructor applications, so a Constructor step is made,
splitting the translation into two cases.

pair_case(Av; vp. num_case

[U2]7
P { [0], True
[y], False) vy 2

(2P (g ey))

The top case requires an application of VarElim and the bottom case invokes
the Variable rule. In the latter application, the substitution [v3 — v4] has no
effect because the right hand side is a constant.

pair_case(Av; v2. num_case

[U2]7
0], True
P H , False

[Suc vs], False) v 2

(A””’(0 Tre |))

70

The Constructor rule now applies above, and the Complete rule below.

pair_case(Av; ve. num_case

(’)

[]
num_case i [H: :;rsee] Vo
Avy P([[[11))1]], False)) vr %
[v2],
P S, m)

Things finally become simpler by application of the End and Variable rules.

pair_case(Av; v3. num_case (num_case True (Av;. False) vy)

SET)

There is now a final application of the Constructor rule.

pair_case(Av; v. num_case (num_case True (Av;. False) vy)

[];)
Av4. nuM_case ([L, T[r:e]] ve |) vz
8
2P (o a))
An application of the Variable rule and then a couple of applications of End

complete the example. We finish by abstracting the initial element in the variable
stack, and the function:

Af z. pair_case(Av; vy. num_case (num_case True (Av;. False) vy)
(Avg. num _case True (Avg. Arb) vy) v1) 2.

a

This is equal to the result of calling algorithm O on the following input:

f(0,0) = True
f(Suc z,0) = True
f(0,Suc) = False

f(Suc z,Suc y) = Arb.

71

3.4 Customized induction theorems

It is a well-known consequence of the wellfounded induction theorem that, once
a function has been shown to terminate by relation R, a customized induction
theorem can be built for it. These are the ‘induction schemes’ of Boyer and Moore.
In this section we show in detail how such induction theorems can be formally
derived, using only the termination conditions obtained via the algorithm of
Section 3.2.

3.4.1 Deriving induction

From a function definition

f(paty) = rhsi[f(an),. .., flar)]

flpaty) = rhsalf(am), ..., fam,)]

the steps of the definition algorithm of Section 3.1 produce the following termi-
nation conditions:

WF(R),
V(I'(a11) D R a1y paty), ..., Y(['(ax,) D R aw, paty),
V(I'(an1) D R any paty), ..., Y(T(ank,) D R an, paty)

(Note that, if the input patterns were incomplete or overlapping, that has been
remedied by the operation of algorithm P.) The termination conditions are used
to generate the form of the desired induction theorem for f (displayed in Figure
3.5).

Subtle point revisited. In Section 3.2, a minimalist approach to quan-
tification of termination conditions was argued for: the only variables universally
quantified in a termination condition are those introduced on the right hand side
of the definition. This allows recursion equations to be unrolled at a specific in-
stance, provided the termination conditions can be proved at that instance. For
the derivation of induction, a different approach is taken since each case in the
target induction theorem should be fully quantified (excepting only the induction
predicate P). The derivation of induction assumes the termination conditions at
a crucial point; if they are not fully quantified, the derivation may fail. Thus
the hypotheses of the induction theorem will be fully generalized versions of the
hypotheses of the recursion equations. A fully quantified formula M will be
displayed as V(M), in contrast to a minimally quantified formula V(M).

O

72

(V(T'(a11) D P ary)) A
v : A D P(pat,) A
(V(I'(aik,) D P ar,))

(V(T(an1) D P ant)) A
V]| : A D P(pat,) | D Vv. Pw.
(V(T'(@nk,) DO P ank,))

Figure 3.5: Shape of target induction theorem

The general plan of the mechanized derivation of this theorem is to establish
that the antecedent of the target induction theorem implies the antecedent of
wellfounded induction (Theorem 6):

(((V(T'(a11) D P a11))))
VI AA D P(pat1) | A
(V(C(awy) O P aix,))

A

(V(T'(an1) D P an1))
VI AA D P(pat,) | DVe.Vy.RyzDPy)DPx
(V(T(ank,) D P ang,))

Then by transitivity, we will have established the target induction theorem. In
detail, the proof proceeds according to the following algorithm.

1. Assume the antecedent of the target theorem.
(V(F(au) O P au)) AN
(HF V| : A D P(pat,) A
(VI (aw,) O P ai,))

(V(T'(an1) D P an)) A
v : A 2 P(patn)
V(T (ank,) DO P ang,))

73

2. Consider cases on paty, ..., paty,.

(a) For case pat;, assume the instantiated antecedent of Theorem 6:

Yy. Rypat; D PykFVYy. Rypat; O Py.

(b) Specialize (a) to each recursive argument in the clause, obtaining

(c)

(a) + R a; pat; O P ay

(@) F R aiy, pat; O P ay,.

Prove each antecedent of the theorems from (b): first, assume the fully
quantified termination condition and then specialize it fully.

V(['(a;1) D R appat;) F T(an) D R aypat;

V(' (air;) O R air;pat;) F T(ai;) DO R air,pat,.

Now use transitivity of D (or just modus ponens, when the context is
empty), to eliminate R a;; pat;, ..., R ay, pat; to get

(a),V(T'(a;n) D R aypat;) F T(ain) D P ay

(a),V(F(aiki) O R aikipati) ~ F(azkz) O P ik, -

Now generalize only the local variables of each theorem in (c). Quan-
tification is over the free variables in the context of the recursive
call, but not including the variables in the pattern, i.e., FV(I'(a;;) D
P a;;) — FV(pat;). This allows for the proper quantification of vari-
ables local to the right-hand side of a clause in a function definition,
e.g., those introduced by a let binding.

(a),V(T'(a;) D R appat;) + Y(['(ai) D P aq)

(a),V(F(aiki) O R aikipati) F V(F(azkz) OP azkz)

By modus ponens with the ith conjunct of (1) and the conjunction of
the theorems from (d) we have

(@), (1), Y(T(a) D R anpat;),
: F P pat;
V(F(azkz) O R aikipati)

74

and by discharging (a), we obtain

(1), V(I'(ai) D R appat;),
: F (Yy. Ry pat; O Py) D P pat;
V(F(azkz) > R aikipati)

(f) Replace pat; by . Note that the strong quantification of the hypothe-
ses means that the replacement only affects the conclusion.

x = pat;, (1)7
V(T'(a; D R ajpat;),
(Flaa) : wpats) F(My.RyzDPy)DPx
V(F(azkz) O R aikipati)

3. Steps a to f have now been done for each case, so the following n theorems
have been proved:

z = paty, (1),
V(['(a D R aypaty),
(Flon) : upati) F(My. RyzDPy)DPx

V(['(a1x,) D R awx,paty)

z = pat,, (1),
V(['(ap1) DO R anpipaty),
(F(am) : patn) FVy. Ryz D Py)DPx
V(['(ank,) DO R ank,paty)

4. We now need a disjunction theorem
FVz. (Jy1. = pati) V...V (TYs. z = paty)

where the free variables of pat; in disjunct 2 comprise the vector y;. We will
consider the production of this theorem in Section 3.4.2.

5. By applying a disjoint cases rule scheme to (3) and (4) and then generalizing
z, we obtain

[(1), V(I'(a11) D Raupaty), |

V(I'(aw,) D R aw,pati),
: FVz. Vy. Ryx D Py) D Px.
V((an1) D R anipaty),

V(F(ankn) D Ranknpatn) i

75

If the hypotheses had not been strongly quantified, this step would fail.

6. Now by modus ponens with the wellfounded induction theorem and (5),
we have derived WF(R),...,(1) F Vz. P z, as planned. Discharge the
assumption (1) and then generalize to get the target theorem:

WF(R),
V(['(a11) D R anpaty), ..., V([(awk,) D R ag,paty),
V(['(an1) D R apipaty), ..., V((ank,) D R ank,paty)

(V(T'(a11) D Pay)) A
v : A D P(pat,) A
(V(I'(a1r,) D P aw,))

(Y(C(an1) D P ant)) A
Vi A D P(paty,) | D Vv. Pu.
(V(T'(ank,) DO P ank,))

a

Remark. Since the derivation of induction schemes is driven solely by the form of
the termination conditions, some definitions may have overly elaborate schemes.
For example, the definition of ged

ged(0,9)
ged(Suc z, 0)
gcd(Suc z, Suc y)

Yy
Suc z

if y<zthen ged(z —y, Sucy) el se ged(Suc z, y —),

yields the following induction theorem:

YP. (Vy. P (0,y)) A
(Vz. P (Suc z,0)) A
(Vz y. (-(y <z) D P (Suc z,y — x)) A
(y<z D P (z—y,Sucy)) D P(Suc z,Suc y))
D Vv . P (v,v1).

76

However, a simpler scheme that omits the guards on recursive calls is also deriv-
able:

YP. (Yy. P(0,y)) A
(Vz. P(Suc z,0)) A
(Vz y. P(Suc z,y — z) A P(z — y,Suc y) D P(Suc z, Suc y))
D Vv v P (v,v1).

In general, if the termination conditions for a recursive call can be proven
without reference to the context of the call, the induction scheme need not guard
the recursive call. We do not take such considerations into account in the deriva-
tion of the induction scheme, because we will in general want to derive induc-
tion schemes without having any knowledge about the termination proof of the
function. In Section 3.5 we explain how this enables the derivation of induction
schemes for recursive functions that have not had a termination relation supplied.

3.4.2 Proving completeness of patterns

The reader may wonder why pattern completeness needs to be proven for the
induction theorem. After all, the termination conditions used as input to the
derivation of the induction theorem ultimately come from the functional that
has been built by algorithm 7P. Recall that P automatically completes and
removes overlaps from any pattern set it is given. Thus we already know —if
we believe the metalanguage calculation—that the induction theorem must be
pattern complete. However, since we use a formal logic that lacks the ability to
import the results of metalanguage calculation as theorems, e.g., a computational
reflection mechanism [4, 49], this calculation must also be carried out as an object
language deduction; to, in effect, check the work of algorithm P.

The following algorithm Q. is a slightly adapted version of algorithm O.
The essence of its operation is that it recursively rebuilds the structure of the
given patterns in a top-down manner. When the recursion bottoms out, the
variables in the patterns are existentially quantified. As the recursion unwinds,
the exhaustion theorems for datatypes are used to combine the theorems coming
from subcases (this is the counterpart of the step of generating a case expression
in @). The end result is a single theorem expressing the completeness of the
pattern set.

As with O, Q takes two arguments: a variable stack and a list of rows. A
row is now a triple: a list of patterns, a theorem, and a list of variable bindings.
The theorem component is where the structure of the patterns gets built. The
variable bindings are used to associate the variable names in the original patterns
with freshly generated variables. Assume we are given the complete and non-
overlapping patterns pat.,...,pat,. The algorithm starts by building the rows
and initializing the variable stack to a variable z which does not occur free in

77

the given patterns. Then the @ function is called: the resulting theorem is
generalized with respect to z.

([pat1]7 (:E =zkz= Z), [])7
Fvz. @ [7], :

(patal, (z =2 F 2 = 2),[)

As with O, there are only three cases to consider when examining the lead
column: (1) the column is all variables, (2) the column is all constructors, and
(3) the column is empty.

The Variable rule covers the case in which the current pattern being exam-
ined (in all rows) is a variable. The notation (u,v) denotes a variable binding,
which is carried through the computation until the End case is encountered. Ex-
plicitly carrying the substitution along avoids technical problems stemming from
name clashes; otherwise, the substitution [z — ;] could be performed in the
theorem component of each row .

Variable.
Q(z :: stack, [(v1 :: patsy,th,) vy (vp 1 patsy, th, 6)])
= Q(stack, [(patsi, th, (z,v1) :: 8), ..., (patsy,th,(z,v,) ::6)])

In the End rule, the pattern has been completely rebuilt and the variable
stack is empty. The theorem is now existentially quantified with all the variables
in the binding list (in effect, each variable is getting renamed to its original in
the pattern). Notice that the existential quantification detaches the constraints
held in the hypotheses of the theorem from their occurrence in the conclusion.

End

L (], Traz=Mz,...,z;]), {z1,51),-- -, (259:)])])
Y.y 2= My, ...,y

Il

—
-
L

In the Constructor rule, the current sub-pattern being examined in all pat-
terns is a constructor for a type 7. As in O, the problem is partitioned into n
subproblems of size k... k,. We begin in the following situation:

78

Constructor (1)

{ zn stack, i \
(CiPyy == patsi, I'kz=N,0,)

(CiDyg, = patsik,, TFx=N,bi,),

(CpPyy it PALSH1, I'kz=N,0,)

K (Cnpnkn patsux,, I'Fx=N,0u) |)

Note that the theorem I' F x = N is the same in all rows, since it is getting
‘pushed down’ towards the leaves, and being augmented in the process. A case
split on the ways to construct 7 is made, and @ is called on each case. In
subproblem i, supposing the constructor C; has type 74 — ... = 7; = 7, j new
variables v, : 7,...,v; : 7; are pushed onto the stack. This vector of variables is
denoted 7;.

Constructor (2)

v Qstack,

o (P, Q@patsy;, T,z=C1kz=[z— Ci5N, 61),
(Z_)llm @patslku F: Z = Clm Fz= [Z — CIH]N, 01]@1)
U, Qstack,

o (P,1@patsy,, I z2=Cuu, Fx=[2+ C,u,|N, 641)

(Z_)nkn@patsnkn7 F’ Z = Cnm |_ Tr= [Z = Cnm]]\n enkn)

The recursive calls delivers the following theorems.

Constructor (3)

Iz=Cyg F (Fy.z2=Muly)) V...V (Fy. = M, [y))

Iz=Chy + (Fy.z2=Mulg)) V...V (3Ty. 2= Muy,[7])

79

The cases can be existentially quantified on the left and disjoined such that all
conclusions are equal:

Constructor (4)
INIg. z=Cig + (Fg.z=Mug)Vv ... V(Tg. z=Myly]) V
: Vv
(Fg.z=Mulyg)) vV ... V(3y. 2= My, [7])
I'NIg. 2=Cy + (@g.z=Mulyg))Vv ... V(3y. z=Myly) V
: Vv
(Fg.z=Mulyg)) vV ... V(3y. 2= My, [7])

Finally, a disjoint cases rule scheme is invoked with the exhaustion theorem for
T
Ve :7. (Fge=Cg) V...V (Tgz =CJy).

This delivers the completeness of the original pattern set, with respect to the case
analysis available at type 7.

Constructor (5)

't (3g.z=Mufg) Vv ... V(Tg. z=Myly]) V

(@95 =Muld) V ... V(7. 5= My, [7)

3.4.3 Remarks

The significance of our induction theorems is that they are algorithmically derived
from the presentation of the function. In extracting the termination conditions,
and then producing the induction theorem, a valuable piece of static analysis has
been performed: the customized induction theorem tells, for any property, what
cases must hold and what assumptions can be made in each case in trying to prove
the property. Furthermore, the induction theorems are relatively general and thus
perhaps might be useful as a means of classifying functions. The classification of
functions would give a means of saying which functions were ‘similar’ to others,
based on the shape of the induction scheme computed for the function.

Another aspect that may be of worthy of further investigation is the relation
between implicit and explicit proofs, as embodied by the pattern matching algo-
rithms O and @, in which the control structure is exactly the same; only the data

80

manipulations differ. One question to ask is the following: is there a difference in
the asymptotic complexity of the two algorithms? If so, this is a good example
of a challenge that TFL in particular, and LCF style theorem provers in general,
must overcome in order to handle large examples.

3.5 Definitions without termination relations

The principal obstacle in using our principle of definition for wellfounded recur-
sion is the requirement that a wellfounded relation be given at definition time: if
a correct one cannot be found, that means that the definition cannot be made,
and that later definitions are jeopardized. Thus the automation of the act of
definition is hampered. In this section, we show that there is a way to defer
the obligation to give a correct termination relation; namely, if the termination
relation R is left variable in the proof that captures the termination condition
at a recursive call (in Figure 3.2), termination conditions can be extracted be-
fore making the definition. We must merely ensure, in step B of the proof, that
R is not quantified. This allows all the termination conditions to be gathered
and then a wellfounded relation satisfying them can be chosen before making
the definition. In other words, extraction and definition commute. This allows
one to omit termination relations for a large class of definitions. The computed
termination conditions become constraints on the resulting recursion equations
and the induction theorem.

The utility of this style of definition is that the task of proving termination
can be dealt with in isolation from the rest of the formalization. Separately, the
termination problems can be tackled by humans, or powerful automated systems
specializing in termination, of the sort discussed in [38]. It is quite convenient to
define functions in the manner of this section, an opinion that has been registered
in a more general context by Girard [41, page 44]:

The best thing is to work on recursive functions as if they were partial,
and eventually remark afterward that the function is total.

However, a strong note of caution must be added: although a single function
is described the moment the definition is made, one really wants to be able
to use the recursion equations in an unconstrained manner. This avoids nasty
surprises, e.g., coming to the end of a long formal development only to find that a
fundamental definition is not total. A verification cannot be considered finished
if the final theorem has remaining termination conditions!

3.5.1 Relationless definition algorithm

The steps in a relationless definition will be quite similar to those of the algorithm
from Section 3.1.

81

f(pat1) = rhsi|f]

f(pata) = rhs,f]

Af .M (Pattern match translation)

\}V;(]v?EREc R(\f o) | TV f@) =S 2.M) (f|R,z) @ ;Zztmt}:zfe
- Y
_\J/”V;(]V%V)I,:RECR(AJ” sy | T T@at) =rhai[f| B pati] 5 roduce
-) 5 spec. pats;
i \]/”V;(IV%V)I,:REC R (Af z.M) | - f(pat) = rhsalf | Rypat] | reduce
i ! =
- \}V;(Iv%v);:ggcll}% (Xf fl]f/—lf,) A = Jlpat) =rhs, termination
: condition
-] extraction
| \}V;(@%ggé”}é (A fT . M | b fpata) = rhs,
l define function
e
r=werec (T VRO G) o aan
eliminate definition; eliminate R’
WF(R), '

f (paty) = rhsy|[f]
Y(TCh),...,Y(TC,),
('11) (Tw) - : Aind. thm

Figure 3.6: Algorithm for relationless definition.

82

As before, the functional A f z.M is calculated from the input recursion equa-
tions via the pattern-matching translation. Then the recursion theorem is instan-
tiated with the functional. The wellfounded relation R is left as a variable. Now
extraction is invoked on the instantiated recursion theorem. Extraction leaves,
as before,

WF(R),V(I'(z1) D R z12),...,V(I'(23) D R zp2) F f(2) = M,

with the difference that both R and f are free variables. We fully quantify the
other variables in each hypothesis. We write these termination conditions as
WF(R),VY(TC:(R)),...,Y(T'C,(R)), highlighting the fact that they have a single
free variable R. Now we may define f by choosing a wellfounded relation meeting
the termination conditions:

f = WFREC (¢R. WF(R) AV(TC1(R)) A ... AV(TC,(R))) M.

(For the rest of this discussion, we take R’ to abbreviate (e R.WF(R)AV(T'C,(R))A
...AY(T'C,(R)).) Having made the definition, we can now instantiate the variable
f by the constant f and eliminate the definition from the recursion theorem, giving
the derived definition

WF(R"),V(TC\(R")),...,Y(TC,(R)) Ffz= M.
Now the termination conditions are assumed and conjoined, giving
WF(R),VY(TC\(R)),...,Y(TC,(R)) - WF(R) AV(TC(R)) A ... A\Y(TC,(R)),

to which we apply the Select Axiom (VP z. P x D P(eP)), after which we can
eliminate each R'-hypothesis from the derived definition. This leaves us with

WF(R),Y(TCy(R)), ...,V (TCo(R)) F fz = M,

a derived definition in which the computed termination conditions and the well-
foundedness requirement have been separated from the recursion equations and
can be eliminated at the user’s convenience. In order that the termination con-
ditions be inert during inference, i.e., fully closed, they may be existentially
quantified:

(3R. WF(R) AV(TC(R)) A ... AV(TC(R))) Ffz= M.
However, a perhaps cleaner alternative is to make a new definition

fTerminates = IRWF(R) AV(TC(R)) A ... AV(TC,(R))

and use that to return the theorem fTerminates - f 2 = M. Such a naive attempt
will fail when the termination conditions are polymorphic: a type variable in

83

the right-hand side of the definition will not occur in the left-hand side of the
definition (which has type bool). Thus, the best that can be done in the current
HOL logic! is to make a parameterized definition:

fTerminates R = WF(R) AV(TCi(R)) A ... AV(TC,(R)).

Failure cases

The technique of this section fails in cases where the context of a call to f con-
tains occurrences of f, because the termination conditions will have occurrences
of f; the HOL definition principle will not allow the definiens to occur in the
definiendum. Such cases occur when a nested function is being defined; a solu-
tion to the nestedness problem is given in Chapter 4. However, the technique also
fails in some non-nested functions. For example, imagine that the task at hand
is to define an evaluation function over a datatype (exp) containing a constructor
for conditional expressions:

IF : exp — exp — exp — exp.

Ignoring the other clauses in the definition (and supposing for the sake of
exposition that the evaluation function doesn’t carry an environment with it),
imagine that evaluation of a conditional in the type exp is interpreted by the
pre-existing conditional in the logic:

Eval (IFbey ex) =i f Evalbthen Eval e; el se Eval e,.

The three termination conditions extracted for this clause are

Rb (IF b €1 62),
Eval b D> Re; (IF be; ed),
—(Eval b) D Res (IF b ey es).

The occurrences of Eval in the last two conditions cause the technique outlined
above to fail. In such cases, the techniques of Chapter 4 can be used.

Remark. The derivation of the induction theorem for a relationless definition is
exactly that of Section 3.4. The only extra work is that care must be taken that
the termination relation R—a variable—is never quantified.

Remark. The algorithm of this section depends essentially on the indefinite
nature of Hilbert’s £ operator: any wellfounded relation satisfying the termination
conditions must be acceptable, not a particular one, as would be required by a
definite descriptor e.g., as in the Qy logic of Andrews [6]

Melham’s type quantifier proposal [73] could allow type variables to be quantified on the
right hand side of the definition.

84

3.6 Schematic definitions

We can liberalize definitions still further by exploiting the form of the wellfounded
recursion theorem. In making a definition

f=WFREC R (Af z.M)

the arguments to the function have thus far been bound solely in the second
argument to the functional Af z.M, i.e., in x. However, one can fruitfully
distinguish between arguments to the function, and parameters. A parameter
is defined to be a variable free in Af z.M. Attempting to directly invoke the
principle of definition with a functional having such free variables will of course
fail; however, one can parameterize the definition by the free variables Xi,..., X;
of the functional to obtain a valid definition:

f= AX,...X,;. WFREC R (Af z.M).

This amounts to defining a recursive schema. Encouragingly, the commuta-
tion of definition and extraction from the previous section still holds, with minor
modification. Likewise, the proof of induction for such definitions is only a trivial
generalization of that given in Section 3.4.

Example
Consider the following description of the ‘while’ construct familiar from impera-
tive programming:

While s =i f B sthen While (C s) el se s.

Notice that the variables B and C occur only on the right hand side. Applying
the pattern-matching translation gives:

AWhile s. i f B sthen While (C s) el se s.

Instantiating the recursion theorem with this, and then performing the sim-
plification steps and termination condition extraction leaves

WF R, Vs. Bs D R (C s) s,
f=WFREC R (AWhiles.if Bsthen While (C s) el se s)
|_
fs=if Bsthen f (C s) el se s.

Now the algorithm defines

While = AB C. WFREC (¢R. WF RAVs. BsD R (C s) s)
(AWhile s. 1 f B sthen While (C s) el se s).

85

f(pat1) = rhsi[f]

f(paty,) = Thsy[f]

ree vars ¢
{X1,...,X;} <f— Af .M Pattern match translation

{

WF(R), _ instantiate
f=WFREC R (Af z.M) Ve fl@) = (Af 2. M) (f| R, 2) @ rec’n thm

[WF(R),

| f =WFREC R (Af z.M) F f(pat,) = rhs\[(f| R, paty)]

B-reduction;

: spec. patterns;
[WF(R),] B case reduction
| f =WFREC R (Af z.M) E f(patn) = rhsa[(f | R, patn)]

A 4

[WF(R),TCl,...,TCh,]

F f(pat)) = rhs,

| f=WFREC R (Af z.M) | termination
: condition
[WF(R),TC,...,TCh,, | B extraction
| F=WFRECR (Af z.0) | T (petn) = Thsn
l Define function

RI
A
- ™~

f= AX,...X, WFREC (N e TG) (A M)

Eliminate definition; eliminate R’
Prove induction

A 4

WF(R)7 leX] (patl) :’]"h/sl[leX]]
TG, ..., TCu, _ |

: = : And. thm
TCu,. .. ,Tann fX.. X] (patn) = ’I"hSn[f Xi... X]]

Figure 3.7: Schematic definition algorithm.

86

Eliminating the definition from the previous leaves

WF (¢eR. WF RAVYs. BsD R (C s) s),
Vs. BsD (eR.WF RAVs.BsD R (Cs)s)(Cs)s
|_
While BC s=if B sthen While BC (C s) el se s.

Finally, assuming WF(R) and Vs. B s D R (C s) s and applying the Select
Axiom allows the conclusion

WF R,
Vs. Bs D R(Cs) s
|_
While BC s=if Bsthen While BC (C s) el se s.

O

The induction theorem that is derived from this definition is

WF R,

‘v’s.stR(Cs)s FVP. (VS-(BSDP(CS))DPS)DVU.Pv.

If we define the semantics of a Hoare triple {P} C {Q} as follows:
Hoare (P,C,Q) =Vs. P s D Q (C s)

then it is a very simple application of the induction theorem to prove the following
abstract While rule for total correctness:

WF R, = Hoare ((As. PsA B s), C, P) D
Vs. BsDR(Cs)s Hoare (P, While B C, (As. P s A =B s)).

Remark. Had we tried to define While as a higher order function in the standard
manner

While BC s=if Bsthen While BC (C s) el se s,
the extracted termination conditions
WF RAVBCs. BsD R(B,C,C s) (B,C,s).

would be unprovable (for example, C' could be chosen to be the identity function
and B could always return True, but there is no wellfounded relation R such
that R = z). This gives some insight into our schematic definitions: they take a
syntactic specification of a class of functions, e.g., all while loops, and the use of
wellfounded recursion for the semantics allows the total subset of that class to be
captured in the logic.

87

Remark. This approach is not specific to wellfounded recursion: it should work
for any fixpoint operator. In particular, for any fix satisfying the well-known
fixpoint equation

fix(M) = M (fix(M)),
it is merely a common subexpression elimination to get
Vg. g =1fix(M) DVz. gz =M g .

In traditional applications of this theorem, M is a closed term. However,
binding the free variables {X,...X;} of M as parameters, we obtain:

(g=AX1... X;. fix(M)) DVz. ¢ X; ... Xjz2 =M (g X1 ... X;) z.

With hindsight, the treatment of parameters in inductive definition packages
such as those reported in [72, 85, 48] can be seen as concrete applications of
this theorem. In Section 5.6 we show how schematic definitions and schematic
induction theorems can be used to derive program transformations.

3.7 Summary

In this chapter, we have shown how the basic logical tools supplied by the under-
lying proof system are put to work in defining functions and deriving induction
schemes. Three techniques have been developed: the first requires the termi-
nation relation be supplied at definition time; the second makes the definition
without a termination relation; and the third performs schematic definitions.

Our approach uses deductive steps to reduce the tasks to applications of the
wellfounded recursion and induction theorems. There are other ways to define
recursive functions, of course. Here we give a quick sketch of the ones known to
us. A thorough comparison of the different possibilities would constitute valuable
research.

1. Use Hilbert’s choice operator to define f(z) = M by f = ef. Vz. f(z) =
M. Making such a definition is effortless; however, this dodge may make
reasoning with f more difficult than the other alternatives, since the ¢
operator is notoriously difficult to deal with mechanically (for example any
nontrivial use immediately requires proving 3f. f(z) = M). However, this
approach may work well as a front end, treating other methods as means
of proving the existence theorem.

2. Require all definitions to fit the Procrustean bed of higher order primitive
recursion. This approach, although quite rich from the vantage point of
proof theory, has little to recommend it for our target audience of functional
programmers.

88

3. Inductively define the graph of the intended function, then prove that this
graph is that of a function, then perform a type transformation from o —
B — bool to o — 3. This approach is beguiling, since it seems to give a way
of avoiding explicit consideration of wellfoundedness. The main question
seems to be how hard the functionality proof is.

4. Interpret the functions as being over domains and give recursive definitions
in terms of a fixpoint operator, instead of WFREC. This approach forces
one to deal with two worlds of functions: normal functions and continuous
functions. When the functions are total, as they often are, it seems like a
large burden to maintain two worlds. It is an interesting problem to see how
smooth passage back and forth between the worlds of total functions and
continuous functions can be achieved. Miiller [76] has made an extensive
study of the topic.

5. Interpret functions as being set-theoretic least fixpoints. The paper [36]
uses this approach to give a meta-theoretic description of a higher order
logic similar to HOL. Least and greatest fixpoints have also been used
internally in higher order logic for modelling recursive objects of all kinds
[87, 77]. Least fixpoints do not have a natural notion of wellfoundedness,
so termination proofs would require extra formalization.

89

90

Chapter 4

Nested and Mutual Recursion

In this chapter, we will explore two advanced kinds of recursion: nested and
mutual. Both require more sophisticated treatment than that provided in the
previous chapter, but they can, with some effort, be reduced to instances of
wellfounded recursion and induction. It turns out that relationless and schematic
versions of nested and mutual recursion can also be obtained.

4.1 Nested recursion

A function f is said to have a nested recursion when an argument to a recursive
call of f contains another invocation of f. Nested recursion has traditionally
posed problems and caused confusion. The intuitive reason for the difficulty is
that, when a nested function is inductively constructed, each stage is not only
allowed to refer to the function constructed at the previous stage, but also to
applications of this function. For example, the main difficulty in establishing
the totality of a nested function f is that the proof may rely on the value of an
application of f. However, if f has not already been proved total, why should
it be sound to use an application of f in the proof of totality? There seems to
be a cyclic dependency between definition and valuation. This is such a serious
problem that in some mechanized proof systems, e.g., Nqthm, the totality of the
function must be shown before the function can be defined. As a result, nested
recursions in Nqthm must be defined indirectly. However, even if one can arrange
that the function be defined before the proof of totality is carried out, as done
in Chapter 3, nestedness may still cause trouble. For a running example, we use
the following constant function that always returns zero:

0
g (g 7).

g0
g (Suc z)

No change to the definition algorithm is necessary to handle nested recursions,
but we will step through it anyway. The pattern match translation yields:

91

Ag z. num_case 0 (Av. g(g v)) .

Definition. Invoke the primitive principle of definition. The termination rela-
tion is simply <.

g = WFREC (<) (Ag z. num_case 0 (Av. g(g v)) x).

Apply recursion theorem. By application of modus ponens with Theorem 24,
the following theorems are derived (the wellfoundedness condition has been
shunted to the assumptions):

WF(<) Vz. g z = num_case 0 (Av. (9] <,z) ((g|<,z) v) =.
(instantiate patterns, reduce cases,

eliminate wellfoundedness condition.)

g0=0

g (Sucz) = (g| <, (Suc z)) (] <, (Suc z)) x).

N T

T T

Extract termination conditions. Two termination conditions are extracted
for g(Suc z). Notice that nestedness imposes a requirement on the traver-
sal strategy of the extraction rewriter: termination conditions should be
captured at innermost calls first. This can be accomplished via a bottom-

up rewriting strategy, or by a top-down strategy that fails to match when
the recursive call is nested.

[z < Suc z,

gz < Suc z] F g(Suc z) = g(g x).

Postprocessing. It is simple to prove the inner termination condition, leaving
[g z < Suc z] F g(Suc z) = g(g z).

Proving the nested termination condition is not as simple. Consideration
of this will be taken up in Section (4.1.2), after we discuss the derivation of
induction.

4.1.1 Induction theorems

The style of induction theorems derived by TFL can be sloganized as ‘the induc-
tion hypothesis holds for each argument to a recursive call’. With this in mind,
the following target induction theorem is desired for g:

92

VP. PO A
(Vz. Pz AP (gz) D P (Suc x))
D)
Yv. P v.

Indeed, the algorithm of Section (3.4), will derive this induction theorem;
however, the hypotheses will be the fully quantified termination conditions of g:

Vz. z < Suc z,
V. gx <Sucz

Again, the first hypothesis is easy to eliminate. However, the second hypothe-
sis is problematic. Attempting the proof by, say, mathematical induction doesn’t
get very far. A proof by complete induction works, but will require a case split
and a lemma in order to obtain the required two inductive hypotheses. Attempt-
ing to prove the second hypothesis by use of the induction scheme itself isn’t
going to work, since there’s a circularity problem: applying the scheme requires
a proof of the original goal. However, a slight variant of the target induction
scheme does work: instead of quantifying the nested termination condition and
moving it onto the hypotheses, the conditions on the use of the nested induction
hypothesis are left ‘in place’:

HVF(<<)’SC] - WP POA
rEs o (Vz. Pz A (gz <Sucz D P(gz)) D P (Sucz))

D Vu. Pu.
(4.1)
Under this regime, a nested function definition results in an induction theorem
with extra constraints on the use of inductive hypotheses for nested calls: to
generalize from g a little, the input

fe=...f(.f(Mz)..)...

along with a termination relation R results in the induction theorem

WF R
’ F VP. (Vz. P(M z) A
[Vx-R(Mfﬂ)fE] ((R((...f)(M:E)...):EDP(---f(MIE)---))
D P)
D Yu. Po.

Again, such theorems are difficult to understand and thus to work with.
Therefore it is desirable for the termination constraints to be proved and elimi-
nated before the induction theorem is used in later proofs.

93

4.1.2 Proving nested termination constraints

With a function with n levels of nested recursions, one eliminates the termination
constraints by proceeding bottom up: first the non-nested constraints are proved
and eliminated, then the constraints that have one level of nesting are proved
and eliminated, and so on. But how are these nested constraints to be proved?
It was previously held in the literature that nested termination constraints could
only be proved by using the specification of the function, and thus that proofs
of termination and correctness needed to be somehow intertwined. In fact, there
are examples where this is not so: the function g is one, the 91 function is
another, and the unification algorithm of Section 5.8 is another, much larger,
example. In these examples, the nested termination condition can be proved by
induction—sometimes even using the constrained induction scheme—making use
of the ability to unroll the constrained function at smaller instances.

Example.

We assume that the constraints WF (<) and Vz. < Suc z have already been
proved and eliminated from the assumptions of the recursion equations and the
induction theorem for g. The nested termination constraint to be proved is

Vz. g x < Suc z.

Proof. Induct with Theorem 4.1. This leaves two goals: g 0 < Suc 0, which
is proved by unwinding the definition at the non-recursive clause, and the goal
stemming from the recursive clause:

g (Suc z) < Suc (Suc z)
0. gz <Sucz Dg(gz) < Suc (g x)
1. gz <Sucz

Rewrite with the definition of g; this is allowed because the condition on unrolling
g at Suc z is just assumption 1:

g (g z) < Suc (Suc z)
0. gz <Sucz Dg(gz) < Suc (g x)
1. gz <Sucz

The hypotheses yield g (gz) < Suc (gz). The proof then completes by a chain of
inequalities:
g (gz) < gz < Sucz < Suc (Suc z).

O

Now the recursion equations and induction scheme can be freed of the con-
straint, and can be applied to, e.g., prove a specification of g:

94

Ve.gxz =0

Note that this property could also have been proven straightaway by use
of the constrained recursion equations and mathematical induction. However,
that doesn’t invalidate our point: in many cases, termination and correctness
can be proved separately. (This statement ignores, of course, the bald fact that
termination is a kind of correctness property.)

4.2 Formal derivation of nested induction

To prove an induction theorem for a nested function, one has to make only minor
modifications to the algorithm of Section 3.4. Essentially, these will ensure that
the guard on the nested call is enforced: in order to use an inductive hypothesis
at a nested call, the nested call must first be shown to be R-smaller than the
pattern heading the clause. Steps 2{b,c} of the algorithm of Section 3.4 must be
altered. Assume that we are enagaged in constructing the inductive hypothesis
for a case of the recursive definition featuring a nested call:

f(pat) = ... f (N (FM)) ...

Let the context of the inner call be I'(M), and that for the nested call be
I'(N (f M)). The steps in the revised algorithm are as follows (we will only pay
attention to the inner and nested calls) :

(2a). For any case pat;, assume the instantiated antecedent of the wellfounded
induction theorem (Theorem 6):

(a) FVy. Ry pat D P y.
(2b). Specialize (2a) to each recursive argument in the clause, getting

(a) W RMpatO PM
(@) F R(N (f M)) pat D P(N (f M)).

(2¢). Prove each antecedent of the theorems from (2b). For the non-nested

calls, proceed as before: namely, assume the fully quantified corresponding
termination condition (and then specialize it)

V(['(M) D R M pat) =T (M) D R M pat

then use transitivity of D (or just modus ponens, when the context is
empty), to eliminate R M pat to get

95

(a), M(T'(M) D R M pat)) FT'(M) D P M.

For the nested calls, all that is necessary is to discharge the (non-existent)
assumption ['(N (f M)) from (2b) (this requires the use of classical logic):

(@) FT(N (F M)) D R (N (f M)) pat > P(N (f M)).

The rest of the algorithm proceeds without change. The main point is that
the nested termination condition has not been moved to the assumptions, but is
added to the context guard for the induction hypothesis for the nested call.

To sum up, the production of the recursion equations and induction theorem
for a nested recursive function is not really any more difficult than in the non-
nested case. However, it is often more involved to prove the nested termination
conditions.

4.3 Relationless definition of nested functions

At first glance, it seems difficult to adapt the relationless definition method of
Section 3.5 to nested functions. Conceptually, it seems hard to choose a suitable
set of conditions for termination without mentioning the function being defined.
(A secondary problem is that to unroll a nested function requires that the nested
termination condition on the hypotheses be unquantified. However, the rela-
tionless definition approach of Section 3.5 universally quantifies the termination
conditions in order to choose a closed relation, which is necessary to satisfy the
principle of definition.)

In spite of these difficulties, in this section we will show that the definition of
a nested recursive function can be separated from the delivery of its termination
relation. The key idea is to proceed in two steps, combining the relationless defi-
nition approach of Section 3.5 with the ideas behind schematic definitions. Recall
that the problem with defining a nested function in the relationless approach was
that the function would appear in the termination constraints, and consequently
the primitive principle of definition would fail. But we can make a schematic
definition to handle this; after that, the relationless technique can be applied.
We again proceed by example with the g function. Given a request to define

0
g (g),

g0
g (Suc z)

when a relation is not supplied, the first step is to compute the functional for
the recursion equations, instantiate the recursion theorem, perform the ‘case’
reductions, and extract termination conditions:

96

[WF R,
G =WFREC R F G0=0
(AG a. num _case 0 (Av. G (G v)) a)

[WF R, Rz (Sucz), R (G z) (Suc z),
G =WFREC R F G (Sucz) =G (G z)
(AG a. num _case 0 (Av. G (G v)) a)

Then the first definition is made; the auxiliary function is just parameterized by
the termination relation:

aux R = WFREC R (AG a. num_case 0 (Av. G (G v)) a)

Then we proceed to cancel the definition from the previous theorem:

WFR] + aux RO=0

WF R,
R x (Suc),
R (aux R z) (Suc z)

F aux R (Suc z) = aux R (aux R z)

Now we make the second definition—the intended one—by gathering the termina-

tion conditions for the auxiliary function and choosing a relation satisfying them.
Let eTC stand for eR. WF R A (Vz. R z (Suc z)) A (Vz. R (aux R z) (Suc z)).
Then define

g = aux (eTC)
and also prove, by the Select Axiom,

[W||i R, (Vz. Rz (Suc z)), (Vz. R (aux R z) (Suc z))]
WF (eTC) A

(Vz. (eTC) z (Suc z)) A

(Vz. (eTC) (aux (eTC)) (Suc z))

Substituting €T'C for R in the equations for aux, we get
[WF (¢TC)] F aux (¢T'C)0=0

WF (eT0),
(eTC) z (Suc), +
(eTC) (aux (eTC) z) (Suc)

aux (¢TC) (Suc z)
= aux (¢TC) (aux (eTC) z)

and finally,

97

WFR] F g0=0
WF R,
Vz. R z (Suc z), - g (Sucz) =g (gz)
Vz. R (aux R z) (Suc z)

Looking at the result, one can see that there is a strict separation between
assumptions, representing the termination conditions, and the conclusion, which
delivers the requested function. Moreover, the choice of the termination condition
is completely unconstrained in the result.

4.3.1 Formal derivation

We now give a more formal treatment of the algorithm.

1. Given a nested recursion,

f(pat)) = rhsi[f]
f(paty,) E Thsy[f]

the machinery performs the same initial steps as a relationless definition,
viz., translates patterns, instantiates the recursion theorem, performs (-
reduction, specializes the patterns, reduces the cases of the function, and
finally performs termination condition extraction to arrive at

| \J/”V;(IV%V)FgECCg](’Xf' ;.TJ%’“)] - f(pat,) = rhs,[f]

T WE(R), TC,,\[f],..., TCos [£],
_ fE(IV%V)IégECIg](Af x.z;W)kn[f]] = f(patn) = rhsu[f].

Note that R is a variable not occurring in the original equations.

2. Now the definition of the auxiliary function is made:

aux R = WFREC R (Af z.M).

98

3. Immediately, the substitution f — aux R can be made in the theorems from
step 1, and the ‘definitional assumption’ can consequently be eliminated.
Notice that the replacement of f takes place in the hypotheses as well, since
the nested termination condition will be found there.

[WF(R),TCqq]aux R],...,TCi,Jaux R]] F aux R (pat;) = rhs;[aux R]

[WF(R), TCpi[aux R),...,TCu,[aux R]] F aux R (pat,) = rhsy[aux R]
4. Now consider a relation chosen to meet the termination conditions of aux:

eR.WF(R) A V(TCii[aux R])) A... AV(TCy,[aux R])
A V(TCpilaux R)) A ... AV(TCyy, [aux R))

Call this term ¢R.T'C. Notice that this is a closed term. Now make the
definition of the intended function:

f=aux (eR.TC).

What is now required is to bridge the gap between the auxiliary definition
and the intended function.

5. Making the substitution R — ¢R.T'C in the recursion equations for aux
from step 3 gives

[WF (¢R.TC), aux (eR.TC) (pat,)
[R+— eRTC](TCy[aux R]),..., | F =

| [R— eR.TC|(T'Cy, [aux R]) | [R+— eR.TC] (rhsi[aux R])

[WF (¢R.TC),] aux (eR.TC) (pat,)
[R+— eR.TC](TCy [aux R]),..., | F =

| [R— eR.TC|(TCpp, [aux R]) | [R+— eR.TC] (rhsy [aux R])

Since R did not occur in any of the original right hand sides, and also
because the definition of f has no free variables, it is valid to replace
aux (e R.TC) by f on the right hand sides of the previous theorem:

, F f(pat) = rhs|f]

" WF (¢R.TC),
[R — ERTC] (TCH [aux R]), e
| R eR.TC| (TCy, [aux R))

[WF (eR.TC),
[R+— eR.TC](TChyi[aux R]),. ..

e, F f(paty,) = rhsylf]
| [R+— eR.TC](TCp, [aux R))

99

It is important to abstain from performing this replacement in the assump-

tions.

6. All that is required now is to finesse the assumptions, and that can be

achieved by use of the Select Axiom:

WF(R),¥(TCi1[aux R)),...,V(TCyx,[aux R))]

|_

WF (eR.TC) A
V([R — eR.TC)(TCy[aux R))) A

V([R — eR.TC)(TChy, [aux R)))

7. By invoking the Cut rule with (5) and (6), the final result is obtained:

WF(R),
V(TCH[BUX R]),

V(%ann [aux R))

WF(R),
V(TCH[BUX R]),

V(%ann [aux R))

F f (paty) = rhsi[f]

F f (pat,) = rhsylf]

Stepping back from the details, we have automatically derived the desired
recursion equations, and generated an independent termination problem. More-
over, two means of settling the termination problem have also been derived fully
automatically: the definition of the auxiliary function, and the induction scheme
for the auxiliary function. The former will be of crucial importance in the proof,
and the latter may also be required.

One might worry that the ability to prove termination has somehow been
tampered with in the derivation. We believe that no termination arguments have

been lost in this series of transformations.

Proof sketch. Suppose a function f is defined with the algorithm of Section
3.1, using a termination relation TR, i.e.,

f= WFREC TR (Af z.M).

100

Of the extracted termination conditions, the nested conditions will have occur-
rences of f. Suppose that the termination conditions are proved. In a relationless
definition of f, the auxiliary function aux is defined:

aux R = WFREC R (Af z.M).

Also, the same termination conditions are extracted as for f, except that
occurrences of TR are instead a variable R and occurrences of f are instead
applications aux R. If we substitute R — TR in the termination conditions,
all the non-nested termination conditions are provable, since they are just the
(non-nested) originals. That leaves the nested conditions, in which occurrences
of aux R are now aux TR. It is trivial to show f = aux TR, and thus each nested
termination condition is also provable.

O

4.3.2 Induction for relationless definition

It is simple to manipulate the induction theorem so that it is also separate from
the termination problem. Returning to our running example, the induction the-
orem automatically generated for aux is

[WF R,Vz. R z (Suc z)]

|_
VP. PO A
(Vz. Pz A (R (aux R z) (Suc z) D P (aux R z)) D P (Suc x))
DYv. Pv

First, notice that the nested termination condition is not an assumption, but
is instead embedded in the conclusion of the theorem. Therefore, add the nested
termination condition to the hypotheses, and then reduce the conclusion:

[WF R, Vz. Rz (Suc z), Vz. R (aux R z)(Suc z)]

|_
VP. PO A
(V. Pz A P (aux R z) D P (Suc z))
DYv. Pv

As before, let eTC stand for
eR. WF R A (Vz. R z (Suc z)) A (Vz. R (aux R z) (Suc z)).

Make the substitution R+~ ¢1T'C to obtain

101

[W|_F (eTC),Vz. (eTC) z (Suc z),Vz. ((eTC) (aux (eTC) z) (Suc z)]
VP. PO A

(Vz. Pz A P (aux (¢T'C) z) D P (Suc z))

DYv. Pv

By use of the Select Axiom, we can obtain

[WF R,Vz. Rz (Suc z),Vz. R (aux R z) (Suc z)]
|_

WF (eTC)A

Vz. (eTC) z (Suc z)A

Vz. ((eTC) (aux (eTC) z) (Suc)

and thus

[WF R,Vz. Rz (Suc z),Vz. R (aux R z) (Suc z)]
|_
VP. PO A
(Vz. Pz A P (aux (¢TC) z) D P (Suc z))
ODVu. Po

Finally, a simplification with the definition of g gives

[WF R,Vz. Rz (Suc z),Vz. R (aux R z) (Suc z)]

|_
VP. PO A
(Vz. Pz AP (g x) D P (Suc x))
DVuv. Pv
U
Algorithm

We now describe the formal derivation of induction theorems for nested relation-

less definitions. The following steps are taken:

1. Generate the induction theorem for the auxiliary function aux, by using

the modification of Section (4.3.1). We will only focus on what happens at
nested induction hypotheses, since the rest of the induction theorem will be
unchanged by the following manipulations. Recall that a nested induction
hypothesis is guarded by the context and the R-smaller condition:

I'(N (aux R M)) D R (N (aux R M)) pat O P (N (aux R M)).

102

2. The assumptions of 1 consist of all the non-nested termination conditions.
Add the nested termination conditions to the assumptions and then cancel
them from the body of 1. Thus, the induction hypothesis is transformed to

I'(N (aux R M)) D P(N (aux R M)).

and V(R (N (aux R M)) pat) is added to the assumptions.

3. The hypotheses of 2 comprise the (quantified) termination conditions for
the original function. Designate the conjunction of these requirements by
TCs. Choose a relation satisfying T'C's; call it eT'C's. This is identical to
the term from step 4 of Section (4.3.1).

4. Apply the substitution R — £T'Cs to (2). The only occurrences of R are
in induction hypotheses for nested calls, and thus the substitutions in the
body will only promote occurrences of aux R to aux €T'C's. These new
occurrences may now be replaced by f:

T(N (f M)) > P(N (f M)).

Again, it is important not to make such replacements in the assumptions.

5. Now the final step is to finesse the assumptions, exactly as in step 6 of
(4.3.1).

The foundationally inclined reader may feel quite ill after this barrage of
invocations of the Select Axiom. It would be interesting therefore, to try to find a
way to make our definitions under the assumption that a satisfactory termination
relation existed.

4.3.3 Example

McCarthy’s 91 function:

91z=if z>100then z—10 el se 91(91(z + 11))

103

is a venerable challenge problem. Defining it without a termination relation
results in the following constrained equation and induction principle:

WF R,
V. =(z > 100) D R (z +11) z,
V. =(z > 100) D R (aux91 R (z + 11)) =
|_
(Qlz=if z>100then z—10 el se 91 (91 (z + 11)))
A
(VP. (Vz. (=(z > 100) D P (91 (z + 11)))A
(=(z > 100) D P (x +11)) D P x)
D)
Vu. P v).

(4.2)

The 91 function has the following charming property:
V. 91z =if > 100then z —10 el se 91,

which we will directly prove, before going on to consider termination. In the
following, we will abuse notation and use 91 to denote the function, and 91 as a
numeric literal.

Proof. Assume the termination constraints, then apply 91-induction. This
gives the goal

91z =1if £ >100then z—10el se 91
WF R
Ve, =(z >100) D R(z+11) z
V. =(z >100) D R (aux91 R (z + 11)) =
—(z >100) D91 (91 (z +11)) = i f 91 (z +11) > 100
then9l (z+11)—10el se 91
4. =(z>100) D91 (z+11) = if 411> 100
then (z+11) — 10 el se 91.

N

Hypotheses 0, 1, and 2 are the termination constraints; we will omit to men-
tion them in subsequent steps. Now the left hand side of the goal can be simplified
with the definition of 91:

(if >100then z—10el se 91 (91 (z + 11)))

(if 2>100thenz—10el se 91).
If z > 100, the result is trivial; thus assume —(z > 100). It remains to show

91 (91 (z +11)) = 91
3. 91(91(z+11)) =if 91(z +11) > 100 t hen 91(z + 11) — 10 el se 91
4. 91(z+11)=if z+11>100then (z+11) —10 el se 91
5. —(z > 100)

104

Both induction hypotheses can be used at this point; first apply the nested hy-
pothesis to obtain the goal

(if 91 (x+11)>100then 91 (z+11) — 10 el se 91) = 91.
and then the non-nested hypothesis to obtain the goal

if (if z4+11>100then (z+11)—10 el se 91) > 100
then(if x4+11>100then (z+11)—10el se 91) —10 | =91.
el se 91

Now the induction hypotheses can be thrown away; next, consider all the cases in
the goal. Of the resulting goals, the only one that isn’t immediate is the following:

((z +11) — 10) — 10 = 91
3. —(z > 100)
4. z+11> 100
5. (z+11)—10> 100
6. 91 (z+11)=(z+11)—10

Hypotheses 3 and 5 imply that z = 100, and the result follows by calculation.
O

The partial correctness of 91 has been proved; the resulting theorem is con-
strained by the assumed termination conditions (where the nested termination
condition mentions aux91 instead of 91):

WF R,
V. =(z > 100) D R (z +11) z,
V. =(z > 100) D R (aux91 R (z +11)) z (4.3)
|_
Vz.91z=1if £ >100then z —10 el se 91.

Now we proceed to eliminate the termination conditions; the proof turns out
to be more challenging than the correctness proof, but it can be made (indeed, it
will be made) without reference to the partial correctness of 91. To get started,
a termination relation for 91 (and thus aux91) must be selected; some thought
shows that measure (Az. 101—z) is suitable. Thus, proving the following theorems
will establish the termination of 91 (and thus allow the constraints on (4.3) to be
lifted):

WF (measure (Az. 101 — z)),

Vz. =(z > 100) D measure (Az. 101 — z) (z + 11) z,

Vz. =(z > 100) D measure (Az. 101 — z)

(aux91 (measure (Az. 101 — z)) (z + 11)) z.

105

The first two are easy to establish. To prove the third will require using the
definition of aux91, which is just a parameterized version of 91:

WF R,
V. =(z > 100) D R (z + 11) =,
Vz. =(z > 100) D R (aux91 R (z + 11)) z
|_
aux91 Rz = if £>100then z—10
el se aux91 R (aux91 R (z + 11))

(4.4)

At this point, for the sake of readability, we make the following abbreviation:

N = aux91 (measure (Az. 101 — 1)).

Thus, instantiating R in (4.4) with measure (Az. 101 — z) and eliminating the
non-nested termination conditions gives :

[Vz. =(z > 100) D (measure (Az. 101 — z)) (N (z+11)) z |
|_
Nz=if 2>100thenz—10el se N (N (z + 11)).

This can be recast as the following two equations:

z>100 F Nz=z-10
—(z >100), z <N (z4+11) F Nz=N (N (z+11))

The abbreviation also allows the nested condition to be rendered as:

(4.5)

Vz. =(z > 100) D z < N (z + 11).

We now prove this. The proof will use (4.5): it may seem that there is a
circularity, since one of the assumptions of (4.5) is just what is to be proved.
Indeed, without discipline, that would be so; however, we will see how to unroll
N such that the circularity is avoided.

Proof. This is a bounded quantification and can be proved by checking the re-
sults of evaluating N for each n < 101. We do not take this route. Alternatively,
an induction theorem for aux91 has been derived. We will not use this either:
it gives apparently hopeless goals. Instead, we will use complete induction on
the termination relation. Applying this, and doing some simplification gives the
following goal:

<N (z+11)
0. Vy.z2<y>D—(y>100)Dy<N (y—+11)
1. —(z > 100)

The general idea of the proof is to progressively add conditions until the
constraints on the recursion equations are satisfied, and the equations can be

106

unrolled. Evidently, A/ must be unrolled at = 4+ 11. The clauses in the rewrite
rules for N split on whether the input is greater than 100, so consider cases on
whether z + 11 > 100. If so, then we must show

r < N(z+11)
= z£+11-10 (unrolling N)

If not, assume —(z + 11 > 100). Since z < z + 11, the induction hypothesis
can be invoked to get z + 11 < N(z + 22), or equivalently,

z < N(z+22) —11.

Immediately try to invoke the inductive hypothesis on this: the first antecedent
has just been created; if furthermore —=(N (z + 22) — 11 > 100) holds, we obtain

t<N(@+22)-11 < N(N(z+22)—11)+11) (ind.hyp.)
= NWN(z+22) (arithmetic)
= N(z+11) (unrolling N)

This would finish the proof. So how to show (N (z+22) — 11 > 100)? It’s easy:
make a case split on A (z +22) — 11 > 100. The other part of the case split has
the assumption

N(z +22) — 11 > 100
so N (z+22) > 100 (arithmetic)
so N(N(z+22))=N(z+22)—10 (unrolling N)
so N(z+11) = N (z +22) — 10. (unrolling N)

Now we are done, since

r < N(z+22)-11
< N(z+22)—10 (because N (z +22) > 100 > 11)
= N(z+11).
O
In the proof, N is unrolled three times. Two of these use the base case:
argument | condition result
z+11 T+ 11 > 100 N@z+1l)=(z+11)—10=z+1

N (z+22) | N (z+22) >100 | N N (z+22)) =N (z+22) — 10

In the third case, one assumption is —=(z+11 > 100); the inductive hypothesis
has been used to also prove z+11 < N ((z+11)+11). Thus the hypotheses of the
recursive clause of (4.5) are satisfied at the instance z+ 11, yielding N (z+11) =
N (N (z + 22)). Therefore the last remaining termination condition of of N/

107

(and thus that of 91) has been established by using the recursion equations—in
a non-circular manner. As a consequence, the constraints can be lifted from the
definition of 91, the induction theorem, and the correctness theorem:

F9lz=if z>100then z—10el se 91 (91 (z + 11)),

FVYP. (Yz. (—(z > 100) D P (91 (z + 11)))A
(=(z > 100) D P (x +11)) D P z)
VU.DP v,

FVz. 91z =if 2 >100then z — 10 el se 91.

This example shows two things: first, a nested function can be defined and
soundly reasoned about before its termination has been proved, indeed before
its termination relation has even been formulated; second, the termination proof
can—at least in this case—be performed in ignorance of the specification of the
function. The termination proof of 91 only required the induction hypothesis,
some basic arithmetic facts, and the ability to unroll the definition of aux91.

Since the functions 91 and aux91 are so similar, their relationship needs to
be clear. The basic point is that the relationless definition of 91 is blocked
by its nestedness. To get around this, an auxiliary function aux91 is defined;
this definition is not hindered by its nestedness, because it is schematic in the
termination relation. Now 91 can be defined as an application of aux91. The
desired recursion equations and induction theorem of 91 can then be derived;
these are constrained by the termination conditions of aux91. These termination
conditions are provable if a wellfounded relation can be found that makes the
termination conditions of 91 provable.

An alternative to having auxiliary functions would be to just use aux91 instead
of 91. Although this makes good logical sense, it is less convincing methodolog-
ically. For example, if one wished to import a sequence of functional program
definitions into TFL, a nested program would have to be translated to a param-
eterized function, and all subsequent programs would have to also be translated
to use the parameterized version. Furthermore, any program using a nested pro-
gram would have to likewise become parameterized by the termination relation.
Although there would still be a one-to-one correspondence between program def-
initions and function definitions, the result could be a non-trivial distortion of
the original.

A more attractive alternative to our approach would be if only one function
was defined; however, the author has not been able to find such a scheme.

Finally, one might ask what happens if the termination relation was given at
the time of defining 91, i.e., if the algorithm of Section 3.1 was used. In that case,
aux91 would not be defined, and every reference to A in the termination proof
would instead be 91. The correctness proof could also be carried out before the

108

termination proof, but it would be slightly more involved, since use of the nested
induction hypothesis would first require a termination condition to be shown.

4.3.4 Nested schemes

As in Section (3.6), a little care must be taken with the parameters in schematic
definitions, but otherwise, the definition algorithms and the derivation of induc-
tion are essentially unchanged for nested schemes. The only step requiring special
treatment is the definition of the auxiliary function:

aux R = WFREC R (Af z.M).

This must now take account of Xji,..., X}, the free variables of Af z.M, as
follows:

aux R = AX; ... X. WFREC R (\f z.M).

4.4 Mutual recursion

Functions f; ... f; are mutually recursive when a call to some f; results in a
recursive call to a different f;, and vice versa. To take a simple example, functions
for deciding whether a number is even or odd can be elegantly written as the
following mutual recursion:

even 0 = True
even (Sucz) = oddz

odd0 = False
odd (Sucz) = evenz.

The definition of a collection of mutually recursive functions is typically han-
dled by building a single ‘union’ function from which each individual function can
be carved out. We shall use sum types to accomplish this. Thus, for even and
odd, the union function EO : num + num — bool is defined (using the techniques
from the previous chapter) as follows:

EO (INL0O) = True

EO (INL (Suc z)) = EO (INRz)
EO (INRO) = False

EO (INR (Sucz)) = EO (INL z).

Note, in particular, that nested patterns are required to support such definitions.
Afterwards, the desired functions can be defined:

109

even z
odd z

EO (INL z)
EO (INR z).

Subsequently, the definitions of even and odd can be used (from right to left) to
rewrite the definition of EO to get the specified recursion equations.

Turning to induction, we encounter a conceptual problem: it is not obvious
what the induction theorem (theorems?) for even and odd should be. To pursue
the approach already developed in this thesis, we want the induction theorem to
reflect the recursive call structure of the specified functions. Existing methods for
building induction schemes for mutual recursion either use the induction scheme
for the union function [20], or expand out definitions in order to get induction
schemes phrased solely in terms of the individual functions [56]. Instead, we have
implemented a recent proposal from Richard Boulton [17], which fits neatly with
our use of sums. He advocates the use of multiple induction predicates, one for
each function. For example, the multi-predicate induction scheme for even and
odd is:

VP Q. POA(Vz. Q@ z D P (Sucz)) A
QOA (Vz. Pz D Q (Suc z))
D)
(Vv. P v) A (Yw. Q w).

This theorem can be quite easily derived starting from the following induction
scheme which has been automatically proved for EO:

V¥P. P (INL 0) A
(Vz. P(INR z) D P (INL (Suc z))) A
P (INR0) A
(Vz. P(INL) D P (INR (Suc z)))
VS.DP 8.

The derivation starts by instantiating P to sum_case P (). This delivers

sum_case P @ (INL 0) A
(Vz. sum_case P Q(INR z) D sum_case P Q (INL (Suc z))) A
sum_case P @ (INR 0) A
(Vz. sum_case P Q(INL z) D sum_case P @) (INR (Suc z)))
D)
Vs. sum_case P () s.

Simplifying this with the definition of sum_case gives

110

POA (Yz. Qz D P (Sucz)) A

QOA (Vz. Pz D Q (Suc z))
>

Vs. sum_case P (@) s.

Now all that is necessary is to instantiate s, once with INL v, and once with
INR w. Simplifying again with the definition of sum_case and then performing
some trivial tidying-up steps gives the desired result.

Since the work of Gunter [46], multi-predicate induction schemes are com-
monly derived by mutually recursive datatype packages; what is new about Boul-
ton’s approach is that it works from recursion equations, and thus can derive
induction for mutually recursive functions over a single datatype, as for even and
odd.

Thus, it seems that the definition of mutually recursive functions can be
reduced in a straightforward fashion to the definition of a single ‘union’ function,
followed by the definition of the individual functions. There is only one further
complication: in general, the ‘union’ function must be defined not only over the
sum of the domain types of the individual functions, but also its range must be
the sum of the set of range types of the individual functions.

A larger example is used for illustration: evaluation functions over a mutually
recursive datatype of first order arithmetic expressions. The component types
comprise expressions (exp), and boolean expressions (bexp). An expression is a
variable, a conditional, or an application of a function to a list of expressions.
The ‘test’ of the conditional is a boolean expression, which may be an equality

test, a test for ‘less-than-or-equal’, or a combination of boolean expressions (via
NOT and OR).

exp VAR : a— (a,f)exp
IF (o, H)bexp — (, B)exp — (a, Bexp = (, Bexp
APP : (B — («,B)exp list = (a, B)exp

bexp EQ : (a,B)exp = («, B)exp — (a, B)bexp
LEQ : («,f)exp — (o, B)exp — («, F)bexp
OR : (a,B)bexp — (a, B)bexp — («, F)bexp
NOT (o, B)bexp — (v, §)bexp

The evaluation functions to be defined are straightforward; note that they are
parameterized by a pair of environments I', which give bindings for variables and
functions. The type of I, written ty(T'), is (& = num)#(3 — num list — num).

L Actually, this is an optimization: the sum of the range types would be satisfactory.

111

E (T, VAR z)
E (F, IFb €1 62)

fst ' x
i f EB([,b) then E (T',e;) el se E (T, ey)

E (T,APP f 1) (snd T f) (EL (T, 1))
EL (T, []) = [

EL (T, h :: £) = E(T,h) = EL (I,¢)
EB (F, EQ €1 62) = E (F, 61) =E (F, 62)
EB (I, LEQe; e3) = E(T,e) <E(T,ey)
EB (I,NOTbH) = —EB(I,b)

EB (F, OR b1 b2) = EB (F, bl) Vv EB (F, b2)

The specified functions have the following types:

E : ty(D)#(«, B)exp = num
EL : ty(D)#(«, B)exp list — num list
EB : ty(I')#(«, 3)bexp — bool.

Therefore, the union function U will be typed as follows:

((ty(D)#(a, Blexp) +) (num)
U: | (ty(D)#(o,B)explist) + | — | numlist + | .
(ty(I)# (s, B)bexp) bool

Convention. An n element sum can be written in a large number of ways; we
will simply decree that the right-associated linear format

n+n+...+ma+m=n+(n+(..+Tna1+m)...)

is the one to adopt.

The description of the union function U is built starting from the specified
recursion equations. There are three considerations to address for each clause
fi(pat) = rhs in the original equations:

1. On the left hand side, the argument to f; must be injected into the do-
main of U, i.e., fi(pat) must be changed to U (DOMINJ(f;)(pat)), where
DOMINJ (f;) computes the injection for f;. The following correspondences
define DOMINJ for the example:

E — Az.INLz
EL — Az. INR(INL z)
EB — Az. INR (INR z).

112

2.

Each right hand side must be injected into the range of U, i.e., rhs must
be changed to RNGINJ(f;)(rhs). The following correspondences define
RNGINJ for the example:

E — AXz.INLz
EL — Az.INR (INL z)
EB — Az.INR (INR z).

Note that the example under current consideration has the curious feature
that DOMINJ and RNGINJ look the same; they aren’t, since the types (not
shown) are different. For comparison, recall even and odd: there DOMINJ
is

even — Azx.INLz

odd — Az.INRz

and RNGINJ is Az. x for both even and odd.

Each occurrence of an f; in rhs must be mapped to an application of U to
a suitably injected argument (via DOMINJ) and then projected out to the
original range type of fz. Thus a recursive call fy(z) will be translated to
RNGPROJ (fx)(U (DOMINJ(fy) (z))) where RNGPROJ is the compound
projection function for the range of fi. In the example, this is achieved by
the following map:

E — Xz.0OUTL<z
EL — Az. OUTL (OUTR z)
EB — Az. OUTR (OUTR z).

For example, taking the original clause

EL (T',h::¢t) = E (T, h) :: EL (T,1),

the three transformation steps are as follows:

1.
2.

3.

E(T,h):: EL (T,¢)

U(INR(INL(T,
INL(T INR(INL(E (T", h) :: EL (T, ¢)))

hat
U(INR(INL(T, b =2 ¢
OUTL(LA(INL(T, h)))
U(ONR(INL(T, o 22 1)) = INR(INL| =z)
OUTL(OUTR(U(INR(INL(T', £)))))

The final description of U is the following:

113

U(INL(T', VAR z))
U(NL(T,IF b e e9))

U(INL(T, APP £ 1))

U(INR(INR(T, EQ e, ¢5)))

U(INR(INR(T', LEQ e1€2)))

U(INR(INR(T', NOT b)))
U(INR(INR(T, OR b1 b2)))

INL(fst " z)

INL (i f OUTR(OUTR(U (INR(INR(T', b)))))
t hen OUTL(U(INL(T, e1)))
el se OUTL(U(INL(T, e3))))

INL((snd T" f)
(OUTL(OUTR(U(INR(INL(T', 1)))))))

INR(INL[])

INR(INL (OUTL(U(INL(T, h)))

OU.'.I'L(OUTR(L{(INR(INL(F, M)
INR(INR(OUTL(U(INL(T', e,)))

OUTLU(INL(T', e2)))))
INR(INR (OUTLU(INL(T, e1)))
<
OUTLU(INL(T, e5)))))
INR(INR(—(OUTR(OUTR(U (INR(INR(T', b))))))))
INR(INR (OUTR(OUTR(U (INR(INR(T', b1)))))
Vv
OUTR(OUTR(U(INR(INR(T', 12)))))))

This formula is input to the machinery discussed in this and the previous
chapter; the function U is defined and the recursion equations are returned as a
theorem, constrained by termination conditions. Also, a constrained induction
theorem is returned for U. Now the following definitions can be made:

Ez
EL z
EB z

OUTL (U (INL z)
OUTL (OUTR (¢4 (INR (INL z))))
OUTR (OUTR (U (INR (INR z)))).

These are used in the right-to-left orientation as rewrite rules, along with the
laws for OUTL and OUTR, to simplify the definition of U:

114

U(NL(T', VAR z)) = INL(fst T z)

U(INL(T, IF b eq e3)) = INL(i f EB(T',b) t hen E(T',e;) el se E(T',e3))
U(NL(T, APP f 1)) = INL((snd T f) (EL (T',1)))

U(INR(INL(T, []))) = INR(INL[])

U(INR(INL(T, b :: t))) = INR(INL(E (T, h) :: EL (T',7)))

U(INR(INR(T, EQ e1€2))) = INR(INR(E (T',e;) = E (T, e)))

U(NR(INR(I', LEQe;e3))) = INR(INR(E (T'ye;) < E (T, e3)))
U(NR(INR(I',NOTb))) = INR(INR(—(EB (T',b))))
U(NR(INR(I',ORb1b2))) = INR(INR(EB (T',51) V EB (I, b2)))

The value of RNGPROJ for each function can now be applied on both sides
of the equality; thus our example clause (now a theorem)

U(INR(INL(T, A :: £))) = INR(INL(E (T, h) :: EL (T, 7)))
is transformed via applying Az.OUTL(OUTR z) to both sides to obtain
OUTL(OUTR(U(INR(INL(T", i :: £))))) = OUTL(OUTR(INR(INL(E(T", h) :: EL(T', £))))).

The left hand side of this is an instance of EL, and the right hand side simplifies
using the laws for OUTL and OUTR to deliver the initially requested recursion
equation:

EL (T',h::t) = E (T, h) = EL (T, ¢).

That finishes the production of the recursion equations. The induction theorem
derived for U is the following:

VP. (VI z. P (INL(T, VAR z)))
A (VYT bejes. P (INR(INR(T,0))) A
(EB(T",b) D P (INL(T', e1))) A

(~(EB(T',b)) > P (INL(T', e2))) D P (INL(T, IF b eye2)))
A (YT fl. P (INR(INL(T,1))) D P (INL(T', APP f 1)))
A (YT. P (INR(NL(T, []))))
A (VT ht P (|NL(F h)) A P (INR(INL(T', 2))) D P (INR(INL(T, & :: t))))
A (VT erea. P (INL(T,e1)) A P (INL(T, e2)) D P (INR(INR(T, EQ €1€2))))
A (VT erea. P (INL(T,e1)) A P (INL(T', e2)) D P (INR(INR(T, LEQ e;e2))))
A (YT'b. P (INR(INR(F b))) O P (INR(INR(NOT b))))
A (VT bibe. P (INR(INR(T', 52))) A P (INR(INR(T', b1))

D P (INR(INR(T', OR b:55))))
D

Yov. P .

115

Now 3 induction predicates are created:

P ty(T)#(«, B)exp — bool
Py, : ty(T)#(a, B)exp list = bool
Py : ty(I)#(«, B)bexp — bool

and the sum of these, sum_case P, (sum_case P, P;), is used as an instantiation
for P in the induction theorem. For example, the induction clause

VI ht. P (INL(T, h)) A P (INR(INL(T,£))) D P (INR(INL(T', & ::)))
is instantiated to

VI ht. (sum_case P, (sum_case P» Ps)) (INL(T',h)) A
(sum_case P; (sum_case P, P3)) (INR(INL(T,)))
D)
(sum_case P; (sum_case P, P3)) (INR(INL(T, & :: t)))

Simplification with the definition of sum_case then leaves
VF htPl (F,h) /\P2 (F,t) D P2 (F,h . t)

As a result, the induction theorem has now been transformed to

(V[z. P, (T', VAR z)))
A (VT bees. P3(L,0) A
(EB(T',0) D P, (T',e1)) A
o P (F, 62)) o P (F, IFb 6162))

(EB(T', b))
(T, APP f 1)

(_|
(VT f1. P, (T,0) > P,
YT Py (T[D)
(VF ht. P1 (F,h)/\PQ (F,t) D) P2 (F,h 1 t))
(VF eres. Py (F, 61) NP (F, 62) OB (F, EQ 6162))
(VF e1ea. Pp (F, 61) NP (F, 62) OB (F, LEQ 6162))
(YT b. Py (T,b) > P; (T,NOT b))
(VT bibs. Py (T',by) A Ps (T, bs) > P (T, OR byby))

u>>>>2>>>

Vv. sum_case Py (sum_case P, P3) v.

The consequent of this theorem is now instantiated three times using DOMINJ:
v takes on the values of INL z, INR (INL y), and INR (INR z). This results in the
three consequents

116

sum_case Py (sum_case P, P3) (INL z)
sum_case Py (sum_case P, P3) (INR (INL y))
sum_case P; (sum_case P, P3) (INR (INR 2)).

Simplification with the definition of sum_case gives the consequents P z, P y,
and Ps z. These can be universally quantified with respect to z,y, 2, rendering
the final induction theorem:

(V[z. P, (T, VAR z)))

A (VF b€162. P3 (F,b) A

(EB(T,b) D P (T,e1)) A
(~(EB(T, b)) D P, (T',e5)) D Py (T, IF b eres))

(VT f1. P, (T,0) > P; (T, APP f 0)

(V. P, (I [])

(VL ht. P (T,h) AP (T,t) D Py (T, h :: 1))

(VT ereq. P; (Tye1) APy (Tyey) D P3 (T EQ e1e9))

(VT eres. P; (T'yer) APy (Tyey) D P3 (I, LEQ e1e3))

(VI b. P3 (T',b) D P3 (I',NOT b))

(VF b1 bo. P (F, bl) N P (F, b2) OB (F, OR b1b2))

u>>>>>>>

(Vz. PLz) A (Vy. Py y) A (V2. Ps 2).

4.4.1 Formal derivation of mutual recursion

Given mutually recursive equations

filpaty1) = rhsi

fn(patnkn) = Thsnkn

the definition algorithm proceeds as follows.

1. Compute domain and range sums. The types of the specified functions

f1 01— T

fo @ O — T,

lead to the domain type domty = o1 +...40,. Let pi ... p; enumerate the
set {71,...,7n}. Then rngty = p1 + ...+ p;. The union function will have
type domty — rngty.

117

2. Compute injection and projection maps. Construct maps from the in-
dividual functions to injection and projection functions for domty and rngty.

DOMINJ = {fi~ ING —1)(domty) | i€1l...n}
RNGINJ = {fi— IN(k —1)(rngty) | 1€l...nAp, =1}
RNGPROJ = {fi—OUT(k—1)(rngty) | i€l...nApp =1}

Defining the auxiliary functions IN and OUT is an interesting exercise in
functional programming; the following can perhaps be better expressed
using streams:

INg (m, 0, Az : v+ ...+ Y T)
ifi=kthen felse folNL
INo (m, Suci, folINR)

INm (v + ...+ %)

INo (0, 4, f)
INg (Suc m, i, f)

OUTm (vo+...+%)
OUTO (07 i: f)
OUTy (Sucm, i, f)

OUTy (m, 0, Az : v+ ...+ Y)
ifi=kthen felseOUTLo f
OUTy (m, Suc i, OUTRo f)

Remark. One might notice that DOMPROJ, i.e., the projections for
domty, is missing: it is subsumed by the pattern-matching translation ap-
plied when the union function is defined in step 4.

3. Apply transformations. Make U : domty — rngty. For each f;(pat) = rhs
clause, do the following:

1. Replace fi(pat) by U (DOMINJ f; pat).

2. Replace occurrences of each f;, by RNGPROJ f,oU o DOMINJ f; in
rhs. Call this rhs'.

3. Inject rhs’ into the range sum. Thus the final equation is
U (DOMINJ f; pat) = RNGINJ f; rhs'.

This is well-typed if the original equation is, although to prove it formally
would seem to take a lot of work. (G-conversion and simplification with the
definition of o should now be applied.

4. Define union function. If a relation has been supplied, define Y with the
algorithm of Section 3.1. If no relation has been supplied and U is not
nested, invoke the algorithms from section 3.5; otherwise, if no relation has
been supplied and U is nested, invoke the algorithms from Section 4.3.1.
The result is a conjunction of recursion equations and an induction theorem.

118

5. Define individual functions. For each f;, make the following definition:

f; = RNGPROJ f; oU o DOMINJ §,.

6. Derive original equations. For each equation resulting from step 4, apply

RNGPROJ f; to both sides of the equality. Simplify this with the defi-
nitions of step 5, using the definitions in the right-to-left orientation; also
apply the theorems - OUTL (INL z) = z and - OUTR (INR z) = z.

4.4.2 Formal derivation of mutual induction

The induction theorem for U from step 4 of the definition algorithm has the form
VP. induction clauses D Vx. P x, where P has type domty — bool.

1.

Create n new predicate variables P, : 0y — bool,..., P, : 0, — bool. In-
stantiate P in the induction theorem by sum_case P; ... (sum_case P, P,).
Simplify the result with the definition of sum_case.

. Make n instantiations of x in the theorem coming from step 1:

z — DOMINJ(f)

z — DOMINJ(f,).

Simplify each result with the definition of sum_case. This results in n the-
orems of the form

mnduction clauses O P 1

induction clauses O P, x,.

. If desired, universally quantify each z,...,z,.

Conjoin the resulting theorems, obtaining a theorem of the form
induction clauses O (Vx1. PL z1) A ... A (Vo Py y).
If step 3 has been skipped, the result will look like

induction clauses D Py x1 N ...\ P, z,,.

. If desired, universally quantify Py, ..., P, in the result.

119

4.5 Related work

Boyer and Moore [20] require nested definitions to be first proved to satisfy non-
nested recursion equations. They recommend that mutual recursion (and the
induction scheme) be instead phrased in terms of what we have been calling the
‘union’ function.

PVS relies on its type system to support nested recursive definitions. Es-
sentially, the specification of the function is used in proving termination: nested
recursive calls are required to lie in the set of behaviours of the function by
clever use of subtyping [79]. PVS does not appear to support mutual recursion
currently.

LAMBDA defines nested and mutual recursive definitions via a fixpoint oper-
ator, but doesn’t automatically derive induction theorems, although Busch shows
how induction theorems can be manually derived in LAMBDA [47].

Giesl [38] also made the observation—independently but earlier—that termi-
nation and correctness need not be intertwined for nested functions. In [40], he
shows that, if nested termination conditions can be proved by the specified in-
duction theorem for a nested function, then such a proof is sound. In the same
paper, he describes a powerful automated method for automatically proving ter-
mination of nested functions (it can prove the termination of the 91 function).
Giesl’s work is presented in the setting of first order logic and uses such notions
as call-by-value evaluation on ground terms; in addition his theorems are justified
meta-theoretically. In contrast, our definitions, being total functions in classical
logic, are oblivious to evaluation strategy, and can moreover be higher order and
schematic. Since our derivations all proceed by object-logic deduction in a sound
logic, we need make no soundness argument.

Kapur and Subramaniam [56] show how the RRL proof system can use its
cover set induction method to tackle the automation of mutual induction. Work
related to this can be found in Spike [15].

Researchers in Type Theory have evolved several means of dealing with nested
recursion; in early work, Nordstrom proposed accessibility relations to increase
the power of Martin-Lo6f Type Theory so that it can express general recursions,
including nested recursion[78].

120

Chapter 5

Examples

This chapter is devoted to examples that highlight our approach.

5.1 List permutations and sorting

Our aim in this section is to study some sorting algorithms. A sorted list must
have all (and only) the elements in the original list, i.e., be a permutation, and
the elements must be in ascending (or descending) order according to some order
relation. Higher order logic gives a simple definition of permutation (there are
equally viable alternatives):

Definition 49 (perm)
perm lily = Vz. filter($= z)l; = filter($= z)l,

In this definition, $ is used to defeat the infix parsing staus of equality (=), which
is curried. Thus $= z is a function of type o — bool. The following theorems
about permutations are required in the verification of Quicksort. They are all
quite simple to prove.

perm_refl perm [[

perm_transitive | transitive perm

PETM_SYM, perm [y lo = perm [[,

PETIN_CONY perm lyl3 A perm l3ly D perm(ly @ ly)(I5 @ 14)
cons_perm perm [(M @ N) D perm (z :: 1) (M Q@ (z :: N))
append_perm_sym | perm (A @ B) C D perm (B @ A) C
perm_split perm [(filter P [@ filter (— o P) [)

121

Now we define what it means for an order R to hold pairwise throughout a list.

Definition 50 (sorted)

sorted (R, [])
sorted(R, [z])
sorted(R, :: y :: rst)

True
True
R z y Asorted(R, y :: rst).

The following theorems about sorted are used in the correctness proofs:

transitive R

sorted_eq D Vz. sorted(R, x :: 1) = sorted(R,[) AVy. memyl D Rz y
transitive R A sorted(R, 1) A sorted (R, I3)

sorted_append AN (Vzy. memzli Amemyls D Rz y)

D sorted(R, [; @)

Finally, we define what it means to be a sorting function parameterized by an
order R.

Definition 51 (performs_sorting)

performs_sorting f R = VI. perm [(f(R,1)) A sorted(R, f(R,1)).

5.1.1 Naive Quicksort

We now define Quicksort and prove that it is a sorting function according to the
above specifications.

gsort (ord,[])
gsort (ord, h :: t)

[]

gsort (ord, filter (— o ord h) t)
@@
gsort (ord, filter (ord h) t).

The termination relation for gsort is measure(length o snd). TFL defines the
function but the postprocessors are not able to prove the 2 termination conditions:

Vord h t. length (filter (ord h) t) < length(h :: t)
Vord h t. length (filter (Ahy.—=(ord h hy)) t) < length(h :: 1)

These are however, quite simple to prove with the lemma,

length(filter P L) < length L.

122

After eliminating the termination conditions, the following induction theorem is
available:

FYP. (Vord. P(ord,[])) A
(Vord x rst. P(ord,filter(ord) rst) A
P (ord,filter(— o ord x) rst) D P(ord,x :: rst))
D Yo vy. P(v,v).

(5.1)

In order to prove correctness, the order relation supplied as an argument to
Quicksort must be transitive and total.

Definition 52 (total)
total(R) =Vzy. Rz yV Ry .

The following lemmas then establish the correctness of Quicksort. All are straight-
forward to prove by induction with (5.1), using the lemmas already at hand. Note
that gsort_mem_stable is only used to help prove g¢sort_perm.

gsort_mem _stable | mem z (qsort(R,1)) = mem z

gsort_perm perm [(gsort(R,1))

gsort_orders transitive R A total R D sorted (R, gsort(R, 1))
gsort_sorts transitive R A total R D performs_sorting gsort R

5.1.2 Faster Quicksort

In gsort, the partitioning step traverses the list twice. Now we make a more
reasonable implementation. To start, we define a function that partitions a list
around a predicate, and builds two result lists as it goes.

(l17l2)
if Ph then part(P,t,h::1,l)
el se part(P, 1,11, h :: lp)

part(P7 []7 ll? l2)
part(P, h :: t,1;, 1)

A quicker Quicksort is then specified as follows. We neglect to give the termina-
tion relation:

fasort(ord, []) =[]
fasort(ord, h :: t) =
| et (I1,12) = part((Ay. ord y h,t),[],]])
in
fgsort(ord, 1) @ [h] @ fgsort(ord, l3).

123

Examining the following theorem returned from the definition of fqsort, we
see that 3 termination conditions have been placed on the assumptions. The
conclusion is a conjunction. The first conjunct is the definition and the second is
the principle of recursion induction for fgsort.

WF R,
Viy lyord ht. ((lh,le) = part((Ay. ord y h),t,[],]])) D R(ord,ls)(ord, h :: t),
Viy Iy ord ht. ((I1, 1) = part((Ay. ord y h),t,[],[])) D R(ord,ly)(ord, h :: t)
|_
(fasort(ord, [1) =) A
(fgsort(ord, h :: t) =
! et (I1,1p) = part((Ay. ord y h),t,[],[])
in
fgsort(ord, 1,) @ [h] @ fgsort(ord, l3)))

A
(VP.
(Vord. P(ord,[])) A
(Vord h t.

(Virly. (I, 1) = part((Ay. ord y h),1,[],[])) D Plord,l3)) A

(Vhlo. ((L,le) = part((Ay. ord y h),t,[],[])) D Plord,li)) D P(ord, h:: t))
D Yo vy. P(v,v1))

The user is now free to decide when termination is to be proved. In this example,
we will ignore it, and merely focus on the proof of the permutation property:

perm [(fgsort(R,1)).

Proof. Start by applying the induction theorem. The base case is trivial, and the
inductive case is the following goal (we do not show the termination conditions,
which are also on the hypotheses):

perm(z :: 7st)

(I et (lly l2) = part((Ay-R Yy IE), TSt? []7 [])

in

fgsort(R, l,)@[z|Ofgsort(R, I2))
3. Vlily. ((I1,l2) = part((Ay.Ryzx),rst,[],[])) D perm l2 (fgsort(R, l2))
4. Ylily. (L,) = part(Ay.Ry z),7st,[],[])) D perm [(fgsort(R, 1))

In order to use the inductive hypotheses, the entire | et binding must somehow
be brought to the top of the goal. Applying the following higher order rewrite
rule

Pllet (z,y)=MinNzy)=(let (z,y)=Min P(Nzy)).

achieves this, giving the equivalent goal where the binding has been lifted to the
top-level:

124

let (z/,y) = part((Ay. Ry 2),rst,[],[])

In

perm(z :: rst) (fgsort(R, z')@[z|@fgsort(R, y))
3. Vlily. ((l1,lo) = part((Ay.Ryz), rst,[],[])) D perm I, (fasort(R,)
4. Vhly. ((li,lp) = part((Ay.Ry z),7st,[],[])) D perm I (fasort(R, 1))

Then it is straightforward to apply the following | et introduction rule!

T, (vstruct = M)+ N
'Hlet vstruct=Min N,

which frees the binding (z',y) = part((Ay.R y z),7st,[],[]) and places it in the
hypotheses.

perm(z :: rst) (fgsort(R, z')@[z|@fgsort(R, y))
3. Vlily. ((Ih, lp) = part((Ay.R y), rst,[],[])) D perm I, (fgsort(R,l2))
4. Ylily. (L,) = part(Ay.Ry z),7st,[],[])) D perm [(fgsort(R, 1))
5. (¢, y) = part((Ay. Ry z),7st,[],[])

Now the special treatment given locally bound variables in the production of the
induction theorem pays off, and forward chaining delivers the goal:

perm (z :: rst) (fgsort(R, z')Q[z]Ofgsort(R, y))
5. (2',y) = part((Ay. Ry z),rst,[],[])

6. perm y (fgsort(R,y))

7. perm z' (fgsort(R,z'))

Hypothesis 5 implies that perm rst (z' @ y). Use of the lemmas cons_perm,
perm_trans, and perm_cong finishes the proof.
O

One interesting aspect of this proof is the use of higher order rewriting in
order to deal with the | et construct. An alternative to the use of higher order
rewriting would be to use first order rewriting with the definition of | et . This
approach has several drawbacks, among them being: the goal size can explode;
the user’s intuition is not well supported; and the inductive hypotheses must be
subsequently be altered in order for them to be used, which may involve tedious
revision in the hypotheses.

LA wstruct is an arbitrary tuple built up from (non-repeated) variables.

125

5.2 Iterated primitive recursion

The class of functions that can be proved to terminate with finite lexicographic
combinations of the predecessor relation are known as the iterated primitive re-
cursions. In this section, we examine a few of these, focusing mainly on how
easy the termination relation is to express. The naive provers of the Appendix
suffice to prove wellfoundedness and termination, which is to be expected, since
iterated primitive recursions have a very regular syntax, which maps directly on
to lexicographic combinations of the predecessor relation.

The first, and most famous is Ackermann’s function. This celebrated example
grows faster than any first order primitive recursive function. Its termination
relation is LEX pred pred:

ack(0,n)
ack(Suc m, 0)
ack(Suc m, Suc n)

n+1
ack(m, 1)
ack(m, ack(Suc m,n))

The automatically extracted termination conditions

(Suc m = Suc m V m = Suc m A0 = Suc 1) A
(Suc m = Suc(Suc m) V Suc m = Suc m A Suc n = Suc n) A
(Suc m = Suc m
V (m = Suc m A
(Suc n = Suc ((ack| (A(s,t)(u,v).u = Suc sV (s = u Av = Suc t)),
(Suc m, Suc n))(Suc m, n))))

are trivial (as the underlined subterms show) and automatically proved by rewrit-
ing. The requested recursion equations are returned, along with the following
induction theorem:

VP. (Vn. P(0,n)) A
(Vm. P(m,1) D P(Suc m,0)) A
(Vm n. P(m,ack(Suc m,n)) A P(Suc m,n) D P(Suc m,Suc n))
D Yo vy, P (v,v1)

As a basic example, of the application of this theorem, a proof that the Ack-
ermann function grows faster than the addition function is quite easy by use of
the induction theorem:

FVzy. z+y < ack(z,y).

A closely associated function is Sudan’s function:2

2According to a posting (Sept. 12, 1997) by Bill Dubuque on the conp. t heor y newsgroup,
Sudan and Ackermann were both students of Hilbert. Sudan’s function grows faster than

126

T+y
T
Sudan n (Sudan (Suc n) (z,y),
Sudan (Suc n) (z,y) + Suc y)

Sudan 0 (z,y)
Sudan (Suc n)(z, 0)
Sudan (Suc n)(z, Suc y)

The termination relation for Sudan is LEX pred (inv_image pred snd). Again,
the automated provers handle the termination and wellfoundedness of this func-
tion automatically.

Another iterated primitive recursion was part of a posting of the American logi-
cian Harvey Friedman on the ‘FOM’ (Foundations of Mathematics) mailing list
on May 25, 1999.3

V (Suc 0,n,m)
V (Suc (Suc k),n, Suc 0)
V (Suc (Suc k), n, Suc (Suc m))

n

V (Suc k, Suc n, Suc n)

V (Suc k, V (Suc (Suc k),n,Sucm) + 1,
V (Suc (Suc k), n,Suc m) + 1)

This function grows very fast; much faster than Ackermann’s function. The
termination relation for this function is LEX pred (LEX pred pred). Again, the
automated provers handle the termination and wellfoundedness of this function
automatically.

5.3 Propositional logic algorithms

In this section, we present the termination proofs of a couple of algorithms used to
implement decision procedures for propositional logic. The first is due to Boyer
and Moore, who implement a tautology checker by translating propositions to
so-called ‘IF’-trees, which are then reduced. The function and some variants,
including a primitive recursive one, has been studied by Paulson [84]; the primi-
tive recursive algorithm has also been extracted from a constructive proof of the
specification in the COQ system. The second example is a rendition of what was
probably the first implementation, by Hao Wang, of the sequent calculus [106].
After Wang’s implementation, John McCarthy implemented the algorithm and

Ackermann’s function (except at a single point), and was published first. However, Hilbert
preferred Ackermann’s function and the rest is history. Dubuque gives the reference (which I
have not yet read)

Calude, Cristian; Marcus, Solomon; Tevy, Ionel The first example of a recursive
function which is not primitive recursive. Historia Math. 6 (1979), no. 4, 380-384.
MR 80i:03053 03D20 01A60

3Entitled Mythical Trees. The posting may be found at
htt p: //ww. mat h. psu. edu/ si npson/ f onl posti ngs/ 9905. 84.

127

presented it in the Lisp 1.5 manual. In Cambridge undergraduate lecture notes,
Martin Richards converted the Lisp presentation into ML, which is where the
author first came across it.

5.3.1 Evaluation of conditional expressions

In this example, a logical datatype (cond) of conditional expressions with the
following constructors is declared:

A : ind — cond

IF : cond — cond — cond — cond

The following then defines a normalization function for such expressions.

A
IF(A z) (norm y) (norm z)
norm (IF u (IFvy 2) (IFwy 2))

norm (A 7)
norm (IF(A z) y 2)
norm (IF(IF u v w) y 2)

The termination relation is measure M, where M, attributed to Robert Shostak,
is defined by primitive recursion:

MA:) = 1
M(IFzy 2) = Mz + (MzxMy) + (Mz x Mz)

The system returns 3 termination conditions for norm :

Mz < M(IF(Az)yz) A
My < M(IF(Az)y2) A
M(IFu (IFvyz2) (IFwy 2)) < M(F(IF v w)y z)

which when expanded with the definition of M, give the goal

Mz <14+ My + Mz A

My <1+ My+ Mz A

Mu + My * (Mv + Mv x My + Mo « Mz) +
Mu * (Mw + Mw * My + Mw x Mz)

<

(Mu + Mu * Mv + Mu * Mw) +
(Mu 4+ Mu * Mv + Mu * Mw) * My +
(Mu + Mu * Mv + Mu * Mw) * Mz

The naive termination prover from the Appendix cannot prove this automatically,
although the highly automated system of [39, 38| can. With our current toolset,
however, the simple induction lemma F Vz. 0 < Mz needs to be proved, and
arithmetic laws for distribution of products over sums must also be manually
applied to simplify the problem before the termination condition falls into the
realm of linear arithmetic.

128

5.3.2 Wang’s algorithm

Now we consider a propositional logic decision procedure first committed to ma-
chine by Hao Wang in 1958.

The whole program has about 1000 lines. The length of the se-
quents to be tested is deliberately confined to 72 symbols, so that each
sequent can be presented by a single punched card. Although this re-
striction can be removed, it makes the coding considerably easier and

gives ample room for handling the problems on hand.
— Hao Wang

Wang’s algorithm implements the sequent calculus and provides a nice demon-
stration of pattern matching. Consider the type « prop of propositions, defined
by the following datatype constructors:

VAR : o — a prop

NOT : « prop — « prop

AND : « prop — « prop — « prop
OR : « prop — « prop — « prop

Wang’s algorithm can be understood as a rewriting system on 4-tuples vl, [, r, vr
representing sequents. In such a tuple, vl, [represents the left side of the sequent
and r, vr represents the right. vl and vr are sets (here just lists) of variables, and
[and r represent lists of compound formulae yet to be broken down. The algo-
rithm repeatedly breaks leading compound formulae down. If a leading formula
is a variable, it is shunted to the variable list. Eventually, no compound formulae
remain: in the final step of the algorithm, both [and r are empty, and then the
validity test merely involves checking whether vl and vr share a common element.

Prv (vl,[],VAR v iz myur) = Prv (vl [],r,v 2 or)

Prv (W, [],NOT z :: ryur) = Prv (vl,[z],r,0r)

Prv (vl,[],ORz y ::ryur) = Prv (vl,[],z:y:r,or)

Prv (vl,[],AND z y :: myur) = Prv (vl,[],z 22 myor) APrv (vl,[],y 22 7, 0r)
Prv (vl,VAR v :: I, 1, vr) = Prv (v ol or)

Prv (vl,NOT z :: I, 7, vr) = Prv (vl, l,:v 7", ur)

Prv (Wl,AND z y :: l,m,ur) = Prv (vl,z 20,7, 0r)

Prv (vl,OR z y :: 1,7, vr) = Prv(vl,z: l,r, vr) A Prv (vl,y 22 L r or)

Prv (vl,[],[], vr)

Jy. mem y vl A mem y vr

129

The top-level invocation of the procedure is as follows:
Prove P = Prv ([],], [P], [])-

The termination of Prv can be shown with the help of a non-standard size
measure much like that for norm. What is required is to make a two-argument
proposition bigger than a list of two propositions:

Meas (VARv) = 0
Meas (NOT z) = Suc (Meas z)

Meas (AND z y) = Meas z + Meas y + 2
Meas (ORz y) = Meas z + Meas y + 2

The parameterized size function for lists helps express the termination relation
(the sum of the sizes of [and 7 decreases):

measure(A(w, z, Yy, z). list_size Meas x + list_size Meas y).

The termination conditions are then straightforward to prove. However, notic-
ing that the definition is nearly tail-recursive—always a good excuse to use the
multiset extension—an alternative and in some sense simpler termination relation
is the following:

inv_image (predMset (measure (prop_size (Av.0))))
(A(w, z,y, 2). list_to_mset (z @ y)).

That is, the multiset formed by the second and third arguments decreases in
each recursive call. The advantage of using this termination relation is that no
special notion of size has to be invented: the following ‘standard’ size definition
(discussed in Section 2.6.1) for « prop suffices (indeed, a definition that just
counts the number of constructors would also work), therefore the amount of
intelligence needed to find a correct termination relation is much less than the
previous solution.

propsize f (VAR z
propsize f (NOT p
prop_size f (OR pl p2
prop_size f (AND pl p2

5.4 f(z)= flz+1)

How does TFL handle the case of a patently non-terminating function specifica-
tion when a relationless definition is made? The result of attempting the proposed
definition is (ignoring the induction theorem):

1+ fx

1+ prop_size f p

1 4 prop_size f pl + prop_size f p2
1 4 prop_size f pl + prop_size f p2.

)
)
)
)

130

&E Jg’(;pﬂ) o | 7@ =fz+1). (5.2)

An alternate characterization of wellfoundedness is the absence of infinite
decreasing chains:

VR. WF R =—=(3f.Yn. R (f (Sucn)) (f n)).

Proof (=) By contraposition, suppose there is an infinite decreasing chain. This
describes a set with no R-minimal element.

(<) By contraposition, suppose there is a set with no R-minimal element.
The desired function is then obtained by a direct application of the axiom of
Dependent Choice:

PaAN(Vz. PxD>3dy. PyARzy)
D
Af. (f0=a)AVn. P (fn) AR (f n) (f (Suc n))

With this variant of wellfoundedness, it is easy to show that the termination
conditions are unsatisfiable, and thus that (5.2) reduces to - True.

Of course, not all non-terminating recursions are as easy to detect as in this ex-
ample; however, our deductive approach ensures that the termination constraints
will propagate faithfully through inference steps, thus preserving soundness, no
matter what kind of foolish input has been given.

5.5 Higher order recursion
A so-called higher order recursion is a one in which a higher order function is

employed to apply the function under definition to its arguments. For example,
consider a datatype of labelled, finitely branching trees defined by the constructor

Node: @ — « tree list — « tree

An ‘occurs check’ for labels in this type can be written as follows:
occurs (z,Node v tl) = (x = v) V exists (At. occurs (z,t)) tl.

131

If this recursion equation is processed in a standard notion of context, i.e.,
one holding only congruence rules for datatypes, i f _then _el se _, and | et
the extraction process of Section 3.2 will yield the termination conditions

JR. WF RA R (z, t) (z, Node v tl),

which are unprovable because there is no relationship between ¢ and Node v l.
The missing insight is that each tree in the list ¢/ will be a proper subterm of
Node v tl. Somewhat surprisingly, this insight can be captured with the following
congruence rule:

(6 =Lo) A(Vy. memy £y D (P y = Py y))
S (5.3)
exists P £, = exists Py /.

After manually adding (5.3) to the congruences known to the extraction mech-
anism described in Section 3.2, trying the definition again yields a more satisfac-
tory result:

WF R,
Vitlz v.memt tl D R (z, t) (z, Node v tl)

(occurs (z,Node v tl) = (x = v) V exists (At. occurs (z,t)) tl)
A
VP. (Vz v tl. (V. mem t tl D P (z,t)) D P (z,Node v tl)) D Yv vy. P (v,v1)

Now termination is provable, e.g., by setting R — measure (tree_size o snd)
(where tree_size counts the number of constructors in the tree).

Thus it seems that higher order functions need to have congruence theorems
proved for them, in order to facilitate subsequent definitions by higher order
recursion. The following are suitable congruence rules for two other standard
higher order functions over lists:

(ly=1L2) A (Vy. memy Ly D (fr y = fay) D map fi £1 = map fo £y
(ly=Lo) AN (by=ba)) AN(Vz a. memz £y D (fiz a= fox a))

D)
rev_itlist f1 £1 b1 = rev_itlist f2 £2 b2

Using the latter, we can define a parameterized notion of size for tree of the kind
discussed in Section 2.6.1. The input

tree_size f (Node v tl) = rev_itlist (Ah i. tree_size f h +14) tl (1 + f v).
yields

132

WF R,
Yo tl f h.mem htl O R (f, h) (f, Node v tl)
|_
(tree_size f (Node v tl) = rev_itlist (Ah i. treesize f h +1i) tl (1 + f v))
A
(VP. (Vf vitl. (Vh.mem htl D P fh) D P f (Nodewv tl)) D Vv v1. P v vy).

Again termination is provable by setting R — measure (tree_size o snd).

Although this manual use of congruence rules enables the proper definition of
higher order recursions, it has the current defect that rules have to be installed by
hand. It may be possible to automate the proof of standard congruence rules for
higher order functions, where ‘standard’ means using the idea of proper subterm
(mem in the case of the list type) to build the target congruence rule. However,
this raises the problem that there may be higher order recursions that need a
stronger notion of context in order for provable termination conditions to be
extracted for them. It may be for such reasons that the authors of [36] couldn’t
find a general way to handle higher order recursion. In any case, if a stronger
notion of context is needed, then the design of TFL allows the user to prove the
required theorem and install it in the database of congruence rules. Thus one of
the advantages of our deductive approach is its flexibility in comparison to the
meta-theoretical tack.

The ability to define functions by higher order recursion over ‘nested’ datatypes
such as tree might seem to toll the death knell for the function definition facil-
ities in nested datatype packages of the sort written by Gunter, Harrison, and
Berghofer and Wenzel [46, 48, 11]. To a large extent, that is true. However, in or-
der to prove totality of higher order recursions, one typically uses a ‘size’ measure
(as above), and—as a bootstrapping step—that would currently be most easily
defined with the function definition facilities provided by the datatype package.

5.6 Program transformations

A scheme is (loosely) defined to be a set of recursion equations with some free
variables occurring in the right hand side, but not the left. For example, in the
scheme

linRec(z) =i f atomic z t hen Az el se join (linRec (dest z)) (D z),

the variables atomic, join,dest, A,and D do not occur as arguments to linRec.
On the face of it, this is not a definition, but, as was shown in Section 3.6, a
constrained definition can be built from this description. One reason why schemes

133

are interesting is that high-level equivalences between classes of programs can be
expressed with them. Thus schemes serve as a foundation for the field of program
transformation, which is an approach to program development in which a high-
level algorithm, implementing a specification, serves as the starting point for
a sequence of formal transformation steps intended at improving the program
in some way (usually with respect to time or space efficiency). The book [81]
contains a wealth of examples summarizing the state of the art as of the late
1980s.

The linRec scheme expresses a class of linear recursive programs. Under cer-
tain conditions, instances of linRec are equal to corresponding instances of the
following tail-recursive scheme, which uses an accumulating parameter:

accRec(z,u) = i f atomic z t hen join (A z) u
el se accRec (dest z, join (D z) u).

Intuitively, the recursive calls of linRec must get ‘stacked up’ somehow,* wait-
ing for deeper recursive calls to return. In contrast, calls to accRec need not be
stacked, even mentally. If the combination function join is associative, then the
implicit bracketing of the stacked recursive calls can be replaced with a single
data value that gets passed and modified at each recursive call.

We now formalize this intuition. The result of the TFL definition of linRec is:

WF R,
V. =(atomic) D R (dest x) x
|_
(linRec D dest join A atomic x =
i f atomicxthen Ax
el se join (linRec D dest join A atomic (dest x)) (D x))
A
VP. (Vz. (—(atomic) D P (dest x)) D P z) D VYv. P v,

and that for accRec is

WF R,
Vz. =(atomic) D R (dest z) x
|_
(accRec D dest A join atomic (x,u) =
i f atomic z t hen join (Az) u
el se accRec D dest A join atomic (dest z, join (D z) u))
A
VP. (Vz u. (—(atomic) D P (dest z,join (D z) u)) D P (z,u))
D Yo vy. P (v,v).

The formal program transformation is then captured in the following theorem:

40Of course, this is just a mental picture: there is no need to expect a runtime system to use
the stack; e.g., some ML compilers allocate function calls in the heap.

134

WF R,
(Vz. =(atomic) D R (dest z) x),
(Vp qr. join p (join q r) = join (join p q) r)
= (5.4)
Vz u. join (linRec D dest join A atomic =) u

accRec D dest A join atomic (z,u).

Proof. Apply the induction theorem for accRec, then expand the definitions of
linRec and accRec.
O

Example. The factorial function supplies a simple instantiation of this theorem:
fact(z)=if z=0then 1 el se z xfact(z — 1).

By inspection, fact can be seen to be equivalent to instantiating linRec with the
following substitutions:

atomic — Az.z =0
A = Az. 1
dest — Az.z—1
join — AT Y.x*ky
D — Az

Similarly, applying these substitutions to accRec (and abbreviating the result by
the constant tailfact), yields

tailfact(z,u) = if z=0thenu
el se tailfact (z — 1, z % u).

Now the initial value for the accumulator v — 1 must be invented, and then the
instantiated (5.4) is

WF R,
(Vz. =(x =0) D R (z — 1) z), | F V. fact(z) = tailfact(z, 1).
(Vpgr.pxqxr=(pxq)*r

The assumptions are easy to eliminate, and finally the desired equivalence is
obtained. This example reveals some of the difficulty in mechanizing program
transformation: although the transformations are often easy to derive, the sys-
tematic application of them brings up difficulties at various stages, e.g., the ‘by
inspection’ steps, and also the need to invent values such as u above.

O

135

5.6.1 Unfold

This is an example originally presented by Bird [12], and later mechanized by
Shankar [95]. Consider a datatype btree of binary trees with constructors

LEAF : « btree
NODE : « btree = o — « btree — « btree.

The so-called catamorphism (primitive recursor) for this type is

btreeRec LEAF v f
btreeRec (NODE t; M t5) v f

v
f (btreeRec t; v f) M (btreeRec o v f).

This sort of structural recursion is straightforward to define; most higher
order logic systems automate such definitions (see Section 2.2). However, the so-
called anamorphism (or unfold, or co-recursor) for this type has not, until now,
been straightforward to define in these systems. Understanding the following
definition of unfold : & — 3 btree may be eased by considering it as operating
over an abstract datatype o« which supports operations more : &« — bool and
dest:a— ax*x 3 *a.

unfold x = i f morex
then | et (yi,b,y2) =dest x
in
NODE (unfold y;) b (unfold y,)
el se LEAF.

The automatically computed constraints attached to the definition are the
following (the system is not currently smart enough to know that the two termi-
nation conditions share the same context):

WF R,
Vz y1 bye. more z A ((y1,b,y2) = dest) D R ys x,
Vz y1 b ye. more z A ((y1,b,y2) = dest) D Ry, .

After some trivial manipulation to join the two termination conditions, the in-
duction theorem for unfold is the following (omitting the hypotheses):

VP. (Vz. (Yy1 b ya.more x A ((y1,b,y2) = dest x) DPy1 APyy) D Pz) (5.5)
D Yu. Po.

It is easy to generalize unfold to an arbitrary range type by replacing NODE and
LEAF with parameters g and c:

fusex = i f morez
then |l et (y1,b,y2) = dest x
in
g (fuse y1) b (fuse y2)
el se c.

136

The fusion theorem states that unfolding into a btree and then applying a
structural recursive function to the result is equivalent to interweaving unfolding
steps with the steps taken in the structural recursion. Thus two recursive passes
over the data can be replaced by one:

WF R,
Vz yi bys. more x A ((y1,b,y2) =destx) DRy ARy x
|_
Vz ¢ g. btreeRec (unfold dest more x) ¢ g = fuse ¢ dest g more x.

Proof. The proof is by induction using (5.5), followed by expanding the definitions
of btreeRec, unfold, and fuse.
O

5.6.2 Binary recursion

Now we look at a divide-and-conquer scheme that splits the input in two and
recurses on the results. The binary recursion scheme splits its argument in two
by applying the parameters le ft and right.

binRec(z) = i f atomicz then Az
el se join (binRec (left x)) (binRec (right z))

The result of our definition is

WF R,
Vz. =(atomic) D R (right z) z,
V. =(atomic) D R (left z) x
|_
(binRec right left join A atomic x =
I f atomicx then Az
el se join (binRec right left join A atomic (left x))
(binRec right left join A atomic (right z)))
A
VP. (Vz. (—(atomic) D P(right z)) A
(=(atomic z) O P(left x)) D Pz)
D Yu. Po.

The example comes from Wand [105], who used paper and pencil, and has
recently been treated by Shankar, using PVS [95]. In his original development,
Wand was interested in explaining how continuations give the programmer a

137

representation of the runtime stack, and thus can act as a bridge in the transfor-
mation of non-tail-recursive functions to tail recursive ones. In our development,
we will avoid the continuation passing step (although it is simple for us to handle)
and transform directly to tail recursion.

Now a general tail recursion scheme for lists is defined. In the definition,
the parameter dest : &« — « list breaks the head h of the work list A :: ¢ into
a list of new work, which it prepends to ¢ before continuing. Our definition is
quite general because the argument to the tail call may increase in length by any
finite amount. (Wand and Shankar only consider tail recursions in which the dest
parameter can produce two new pieces of work.)

v
i f atomic h t hen baRec (¢, join v (A h))
el se baRec (dest h @ t, v)

baRec([], v)
baRec(h :: t, v)

The result of this definition is

WF R,
Vo t h. =(atomic h) D R (dest h @ ¢, v) (h :: t,v),
Vv t h. atomic h D R (t, join v (A h)) (h::t,v)
|_
(baRec dest A join atomic ([],v) = v) A
(baRec dest A join atomic (h :: t,v) =
I f atomic h
t hen baRec dest A join atomic (t, join v (A h))
el se baRec dest A join atomic (dest h @ t,v))
A
VP. (Vv. P ([],v)) A
(Vh t v. =(atomic h) D P (dest h @ t,v) A
atomic h D P (t,joinv (A h)) D P (h:: t,v))
D)
Vv vi. P (v,vq)

We intend to prove an equivalence between binRec and baRec, but if we are not
careful, the transformation will require the constraints for both binRec and baRec
to be satisfied. However, a bit of thought reveals that the multiset extension
allows one of the constraints to be expressed in terms of the other. In particular,
the termination condition of baRec can be reduced to the (simpler) one of binRec:

138

WF R A (Yh y. ~atomic h A mem y (dest h) D Ry h)
D)
3R'. WF R' A
(Vh t v. —atomic h D R' (dest h @t, v) (h::t,v)) A
(Vh tv. atomich D R (t, joinv (A h)) (h:t,v))

Proof. Instantiate R' to inv_image (predMset R) (list_to_mset o fst). This is well-
founded by Theorems 33 and 35. The next conjunct is true by the assumptions
and Definition 34, and the final conjunct is also true by Definition 34, since no
elements are being put back into the multiset.

O

With this reduction, we can state and prove the following general theorem relating
binary recursion and tail recursion. The essential insight is that the work list [of
baRec represents a linearization of the binary tree of calls of binRec. Thus going
from left to right through the work list, invoking binRec and accumulating the
results, should deliver the same answer as executing baRec on the work list.

WF R,
Vz. —atomic z O R (left x) © A R (right z) z,
Vp q . join (join p q) r = join p (join g)
|_
Vi V.
rev_itlist(Atr v. join v (binRec right left join A atomic tr)) I vy

baRec(Azx.[left z, right x]) A join atomic (I,vo)

Proof. Induct with the induction theorem for baRec. The base case is straight-
forward; the step case is also essentially trivial, since it only involves using the
induction hypotheses and rewriting with the definitions of rev_itlist, baRec, and
binRec.

O

Finally, the specific equivalence desired can be obtained by instantiating the
work list / to comprise the initial item of work [z], and then reducing the definition
of rev_itlist away.

139

WF R,
Vz. —atomic x O R (left) x A R (right z) ,
Vp q r. join (join p q) r = join p (join q r)
|_
YV vg.
join vy (binRec right left join A atomic x)

baRec (Az. [left z, right z]) A join atomic ([x],vo)

5.6.3 Related work

The paper by Huet and Lang [53] is an important early milestone in the field
of program transformation. They worked in the LCF system, using fixpoint
induction to derive program transformations. Program schemes were not defined;
instead, transformations were represented via applications of the Y combinator,
i.e., had the form applicability conditions DY F =Y G, for functionals F and
G. An influential aspect of the work was the use of second order matching to
automate the application of program transformations.

The paper of Basin and Anderson [5] has much in common with our work:
for example, both approaches represent schemes and transformations by HOL
theorems (Basin and Anderson call these rules). Their work differs from ours
by focusing on relations (they are interested in modelling logic programs) rather
than functions. They present two techniques: in the first, program schemes are
not defined; instead, transformations are derived by wellfounded induction on the
arguments of the specified recursive relations (the relations themselves are left
as variables). In the second, a program scheme is represented by an inductively
defined relation. The first approach suffers from lack of automation: termination
constraints are not synthesized and induction theorems are not automatically
derived. In contrast, their second approach requires no mention of wellfounded-
ness, and induction is automatically derived by the inductive definition package
of Isabelle/HOL.

Work using PVS has represented program schemes and transformations by
theories parameterized over the parameters of the scheme and having as proof
obligations the applicability conditions of the transformation [95, 33, 34]. To
apply the program transformation, the theory must be instantiated, and the
corresponding concrete proof obligations proved.

In our technique—in contrast—the parameters of a scheme are arguments to
the defined constant, and the proof obligations are constraints on the recursion
equations and the induction theorem. Thus, theorems are used to represent both
program schemas and program transformations. Instantiating a program trans-
formation in our setting merely requires one to instantiate type variables and/or

140

free term variables in a theorem. It remains to be seen if one representation is
preferable to the other. In other ways, however, our approach seems to offer
improved functionality:

1. Currently, our technique produces more general schemes, since termina-
tion conditions are phrased in terms of an arbitrary wellfounded relation,
whereas termination relations in PVS are restricted to measure functions
[79]. Similarly, a general induction theorem is automatically derived for
each scheme in our setting, whereas the PVS user is limited to measure
induction (or may alternatively derive a more general induction theorem
‘by hand’ from wellfounded induction).

2. Our technique is more convenient because it automatically generates—by
deductive steps—termination conditions for schemes. Taking the example
of unfold, one doesn’t have to ponder the right constraints in our setting:
they are delivered as part of the returned definition. In contrast, the defini-
tion of unfold in [95] requires expert knowledge of the PVS type system in
order to phrase the right constraints on the Dest parameter. Since the ter-
mination conditions of a scheme constrain any program transformation that
mentions the scheme, our approach should also ease the correct formulation
of program transformations.

3. Our approach also works for mutually recursive schemes, which are not
currently available in PVS.

In [35], Farmer treats the definition of recursive functions in a logic of partial
functions and represents schematic functions in a similar manner to our approach.

In the context of language design, Lewis et al. [63] use schemes to imple-
ment a degree of dynamic scoping in a statically scoped functional programming
language. Their approach allows occurrences of a free variable, e.g., P, in the
body of a program to be marked with special syntax, e.g., ?P. The program
is then treated as being parameterized by all such variables. To instantiate
P occurring in a program f by a ground value wval, they employ a notatation
‘fwith ?P = wval’. Although their work is phrased using operational semantics
and ours is denotationally based, there are many similarities.

Finally, our approach gives a higher-order and fully formal account of the
steadfast transformation idea of Flener et al. [37]. In contrast to their work,
we need give no soundness proof since our transformations are generated by
deductive steps in a sound logic.

5.7 Call-by-name and call-by-value

Kapur and Subramaniam [56] pose the following induction challenge (we have
slightly edited it for stylistic purposes). Consider a datatype of arithmetic ex-

141

pressions arith, having constructors for constants (C), variables (V), the addition
of two expressions (Plus), and the Apply operator. The meaning of Apply B v M
is [v — M|B, thus B is meant to be understood as a function body, v as a formal
parameter, and M as the actual parameter.

C : num — « arith
V : «a— «arith
Plus : « arith — « arith — « arith
Apply : «arith — o arith — « arith — « arith

Two ways to evaluate expressions are given. The call-by-name strategy is a
mutual (and nested) recursion with a ‘helper’ function:

CBN (C n,y, 2)

CBN (V z,y, 2)

CBN (Plus a;a9,y, 2)
CBN (Apply B v M, y, 2)

Cn

if z=ythen CBNhzelseVz
Plus (CBN (a1, v, z))(CBN (as,y, 2))
CBN (CBN (B, v, 1), 3, 2

CBNh (Cn) = Cn
CBNh (Vz) = Vz
CBNh (Plus ajas) = Plus (CBNh a;1)(CBNh ay)
CBNh (Apply Bv M) = CBN (B,v, M)

The definition returns the given rules and the following induction theorem:

(Vny z.Py (Cn,y,2)) A
Veyz((z=y)D P 2)D P (Vz,y,2)) A
(Vay ag y 2.Py (a2,y,2) A Py (a1,y,2) D Py (Plus a; as,y,2)) A
(VBv My z.Py(CBN(B,v, M),y, 2) A By(B,v, M) D Py(Apply Bv M, y, 2))A
(Vn. P (Cn)) A
(Vz. P, (V z)) A
(‘v’a1 as . PrasANPra; D P (PlUS a1 CLQ)) N
(VBv M. Py (B,v,M) D> P, (Apply B v M))
D
(V’Uo. P() ’Uo) AN (V’Ul.Pl ’Ul)
(5.6)

There are nine termination constraints, which we will abbreviate for clarity:

142

CBN_Terminates(R) =

WF R A

(VM v B. R (INL (B,v, M)) (INR (Apply B v M))) A

(Va1 az. R (INR a2) (INR (Plus a; az))) A

(Va2 a1. R (INR a1) (INR (Plus a; az))) A

(Vzy M v B. R (INL (auxCBN R (INL (B, v, M)),y, 2))

(INL (Apply B v M, y, 2))) A

(Vzy M v B. R(INL (B,v,M)) (INL (Apply Bv M, y,z2))) A

(Va1 z y ag. R (INL (ag,y, 2)) (INL (Plus a; a2,y, 2))) A

(Vag z y a1. R (INL (ay,y,2)) (INL (Plus a; a2,y, 2))) A

(Vzyz. (z=y) D R(INR 2) (INL (V z,y, 2))).
Note how the nested invocation of CBN has been transformed into auxCBN in the
termination constraints.

The call-by-value strategy (also a nested function) uses an environment of

evaluated expressions, accessed by a simple lookup function:

0
if z=ythen z el se lookup z rst

lookup z []
lookup z ((y, 2) :: rst)

CBV (C n, env)

CBV (V z, env)

CBV (Plus a; a9, env)
CBV (Apply B v M, env)

n

lookup = env

CBV (a1, env) + CBV (aq, env)
CBV (B, (v,CBV (M, env)) :: env)

The following are the termination conditions of CBV; we again make a definition
that encapsulates them:

CBV_Terminates(R) =
WF R A
(Vag env a1. R (a1, env) (Plus a; az, env)) A
(Va1 env ag. R (ag, env) (Plus a1 aq, env)) A
(Vv B env M. R (M, env) (Apply B v M, env)) A
(Venv M v B. R (B, (v,auxCBV R (M, env)) :: env)
(Apply B v M, env))

With the definitions finished, the goal can be stated:

143

CBN_Terminates(R) A CBV _Terminates(R;)
D)

Yz y z env.
CBV (CBN (z,y, z), env)

CBV (z, (y, CBV (z, env)) :: env)

Proof. The proof will be by induction with (5.6), where the following instantia-
tions are made:

Py, — X=,y,2). Venv. CBV (CBN (z,y, 2), env)
CBV(z, (y, CBV (z, env)) :: env)

P, — Az Venv. CBV (CBNh z,env) = CBV (z, env).

The instantiation for F; just sets it to the goal at hand. The instantiation for
P, however, has been suggested by Boulton’s method [17] for finding induction
predicates for mutual recursive functions. With these two instantiations, the
proof is an anticlimax: it is simply induction followed by conditional rewriting
with the definitions of CBN, CBNh, CBV, and lookup.
O

The interest of this example certainly isn’t in the details of the proof, since that
was surprisingly easy, given a correctly instantiated induction theorem. What is
more of interest to us is how simple the whole exercise was. It took the author
very little time to type the example in and get the proof. In a setting where
termination had to be proved first, things would have taken much longer and the
point of the exercise—to see how the induction proof worked—would have been
like a mirage: visible but not attainable without a great deal of sweat.

5.8 Formal unification revisited

In this section we present the definition and verification of a nested unification
algorithm first described, informally but in great detail, by Manna and Waldinger
[65].> This has become a standard, although still challenging example. The
verification we present is broken down into a progression of theories: association
lists, terms, substitutions, and unifiers. The formalizations and proofs in these
support theories are due to Larry Paulson and Martin Coen; they based their

5Manna and Waldinger actually synthesized the algorithm.

144

work directly on the paper of Manna and Waldinger. In order to have a self-
contained presentation, we include the complete development; however, we omit
the proofs of all theorems in the support theories. After that, all that is left is to
verify the algorithm. Here is where we make our contribution, by giving a new
and simpler proof of termination. This also leads to a simple proof of correctness.

Larry Paulson verified this unification algorithm in the middle of the 1980s,
using Cambridge LCF [83]. His student Coen later redid much of the support
theories in Isabelle/HOL [24] but was not able to define the algorithm itself, since
Isabelle/HOL did not provide a strong enough recursion principle at that time.
In [2] Sten Agerholm performed a domain-theory verification of this algorithm,
working from Paulson’s Cambridge LCF version. A Type Theory verification
of the algorithm was performed by Rouyer [91], and some recent ones can be
found in [18, 69]. The fact that this program is still a significant verification
approximately 20 years after it first made its way into the literature (which was
already 10 years after Robinson (re-)discovered unification) is worth pondering.
Remark. This example was carried out in Isabelle/HOL; thus, relations are
represented by the type (« X «)set.

5.8.1 Association lists

Substitutions are implemented by lists of pairs, and thus a small theory of associ-
ation lists (represented by the type (a * §)list) is formalized. The assoc function
is easy to define with primitive recursion. An interesting aspect is how the nat-
ural partiality of this function is accommodated by making the invoker supply a
default value in case lookup is not successful.

Definition 53 (assoc)

d
if v=athen bel se assocv dal

assoc v d []
assoc v d ((a, b) :: al)

There is also an induction principle for association lists.
Theorem 54 (alist_induct)

P[IA (Vz y zs.P(xs) D P((z,y) :: zs)) D P(l).

5.8.2 Terms

We define a simplified set of terms. The major difference is that terms are binary
trees instead of n-ary trees. This is not a significant limitation, as Paulson argues.

Definition 55 (Terms)

Var : o — «uterm
Const : @ — o« uterm
Comb : «uterm — o uterm — o« uterm

145

Definition 56 (Variables in a term. vars_of : & uterm — « set)

{v}
{

vars_of M Uvarsof N

vars_of (Var v)
vars_of (Const c)
vars_of (Comb M N)

vars_varif f (v € vars_of(Var(w))) = (w = v)

vars_of M U vars of N
monotone_vars_of C

vars_of(Comb M P) U vars_of(Comb N Q)
finite_vars_of finite(vars_of M)

Definition 57 (Occurs check (infix). <: : « uterm — « uterm — bool)

False
False
(u=MVu=NVu<:MVu<:N)

u <: (Var v)
u <: (Const c)
u <: (Comb M N)

Notice that this definition implies that the occurs check is actually a proper
suboccurrence check: for example, it is not true that Var v <: Var v.

Definition 58 (Size of a term. uterm_size : & uterm — num)

0
0
Suc(uterm_size M + uterm_size N)

uterm_size (Var v)
uterm_size (Const ¢)
uterm_size (Comb M N)

5.8.3 Substitutions

Substitutions are represented by association lists and applied by the following
definition. We will employ the abbreviation « subst = (& * o uterm)list.

Definition 59 (Substitution (infix). <: o uterm — « subst — « uterm)

(Varvas) =
(Constc«s) =
(Comb M N«s) =

assoc v (Var v) s
nst ¢

Co
Comb (M < 5) (N «s)

146

subst_Nil ta[]=t

subst_mono (t<:u)D(t<s <:u<s)

Var notoccs | —(Var(v) <:t) D (t<(v,t<8)s =t<s)

agreement (t<ar =t<s)=Vov. v € varsof(t) D Var(v) <r = Var(v) < s

repl_invariance | v € vars_of(t) Dt < (v,u)s =t<s

Var_in_subst | v € vars_of(t) D w € vars_of(t < (v, Var(w))::s)

id_subst_lemma | (M <[(z, Varz)]) = M

Equality on substitutions

Substitutions are equal if no term can distinguish them.

Definition 60 (Equality (infix). =,: a subst — « subst — bool)

(r=58)=Vt. tar=t<s

substeqiff |(r=5s)=Vi.t<r=1t<s

r=8s2OT1r=58A

subst_equiv r=s8D8=s1 A

q=sTDr=48D¢=55

subst_subst2 | (r =4 s) AP(t<r)(u<r) D P(t<s)(u<s)

ssubst_subst2 | (s =5 1) AP(t<r)(u<r) D P(t<s)(u<s)
(

w,Var(w) < 8)::s =, s

Cons_trivial

Composition of substitutions

Definition 61 ((infix) e : « subst — « subst — « subst)

[]obl
((a,b)::al) e bl

bl
(a,b<bl)::(al e bl)

147

comp_Nil sef[]=s

subst_comp

0 = 92) D) (01 =5 02) D) ((91 '01) =5 (92002))
ger=,8)D((t<xqg)<ar=1<s)

subst_cong

(t

comp_assoc (gor)es=,qe(res)
(
(

comp_subst_subst

Domain and range of a substitution

Definition 62 (Domain. sdom : ¢ subst — « set)

{
i f Var(a) =bthen (sdom al) — {a} el se (sdom al) U {a}

sdom []
sdom((a, b)::al)

Definition 63 (Range. srange : « subst — « set)

srange(al) = U{y Jz € sdom(al). y = vars_of(Var(z) < al)}

sdomiff (v € sdom(s)) = —(Var(v) < s = Var(v))
srangeif f v € srange(s) = Jw. w € sdom(s)
A v € vars_of(Var(w) < s)

invariance (t<s=1t) = (sdom(s) Nvars_of(t) = {})

Var_elim v € sdom(s) D —(v € srange(s)) D —w € vars_of(t < s)
Var_elim2 v € sdom(s) Av € vars_of(t < s) D v € srange(s)
Var_intro v € vars_of(t < s) D v € srange(s) V v € vars_of(t)
srangeE v € srange(s) D Jw. w € sdom(s)

A v € vars_of(Var(w) < s)

dom_range_disjoint | (sdom(s) N srange(s) = {})
= Vt. sdom(s) Nvars_of(t<s) = {}

subst_not_empty —(u<s=u) D 3Iz. z € sdom(s)

More General Than
Definition 64 ((infix). >: « subst — « subst — bool)

T>s=3dq. s=,T70¢g

148

MoreGen_f f ‘ (r>s)=3q. s =, (req)
MoreGen_Nil ‘ [1>s

5.8.4 Unifiers

Unifiers are substitutions that make terms equal. Most general unifiers can be
instantiated to get any unifier.

Definition 65 (Unifier. : @ subst — o uterm — « uterm — bool)

Unifierstu= (t<s=u<s)

Unifier Comb Unifier 8 (Comb ¢ u) (Comb v w) D

Unifier 6 ¢ v A Unifier § v w

Cons Unifier —w € vars_of(t) A —w € vars_of(u) A Unifier s t u
D Unifier ((v,7)::s) tu

Definition 66 (MGU. « subst — « uterm — « uterm — bool)

MGU st u =Unifierst uAVr. Unifierrtu D s> r

MGUiff MGU st u =Vr. Unifierrtu=s>r
MGUnifier Var —Var(v) <: t D MGU|[(v,1)] (Varv) ¢
mgu_sym MGU st u=MGU sut

5.8.5 Unify

Now we give the unification algorithm.

149

Definition 67 (Unify: (o uterm x o uterm) — « subst result)

Unify(Const m, Const n) =i f (m =n) t hen Some[] el se None
Unify(Const m, Comb M N) = None

Unify(Const m, Var v) = Some|[(v, Const m)]

Unify(Varv, M) =i f (Varv <: M) t hen None el se Some[(v, M)]
Unify(Comb M N, Const) = None

Unify(Comb M N,Varv) = i f (Varv <: Comb M N) t hen None

el se Some[(v, Comb M N)]
Unify(Comb M; Ny, Comb M, Ny) =
case Unify(My, My)
of None => None
| Some 6 => case Unify(N; <0, N < 6)
of None => None
| Some o => Some(f ® o)

Termination relation

The termination relation for the unification algorithm operates on pairs of terms
and checks first for a proper subset relation on the variables and then for smaller
sizes. These are put together by mapping into a lexicographic combination with
an inverse image. The second element in the compound relation is exactly the
relational product of the size measure, but that is subsumed in the lexicographic
combination.

Definition 68 (UTR: ((« uterm * o uterm) * (o uterm * « uterm))set)

UTR = inv_.image (LEX fpss (LEX (measure uterm_size) (measure uterm size)))
((A(z,y). vars_of z U vars_of y)#(Az.))

When the recursion equations together with UTR are submitted to TFL, the
following results are returned: a constrained set of equations, a constrained in-
duction principle, and the termination conditions (the constraints).

150

Theorem 69 (Unify - output)
1.

I SN

Our goal is to prove and eliminate the termination constraints on clause 7. The
wellfoundedness of UTR, and also the inner termination condition, can be proved
straightforwardly and eliminated. However, the nested recursive call is not so
simple. To help in proving it, we will use the following induction theorem which

Unify(Const m, Const n) =i f m =n t hen Some[] el se None
Unify(Const m, Comb M N) = None
Unify(Const m, Var v) = Some|(v, Const m)]
Unify(Var v, M) =i f (Varv <: M) t hen None el se Some[(v, M)]
Unify(Comb M N, Const z) = None
Unify(Comb M N,Varv) = if (Varv <: Comb M N) t hen None
el se Some[(v, Comb M N)]

WF UTR,

((Ml, MQ), (Comb M1 Nl, Comb M2 NQ)) € UTR,

V6. Unify(M;, My) = Some 6

D ((N1 <8, Ny <8),(Comb M; Ni,Comb M, N5)) € UTR

Unify(Comb M; Ny, Comb M, Ny) =
case Unify(M, M>)
of None => None
| Some 6 =>
case Unify(V; <0, Ny < 6)
of None => None
| Some ¢ => Some(f o o)

our machinery has automatically proved.

Theorem 70 (Induction - output)

v

P.

WF UTR,

((MI,MQ), Comb M1 Nl, Comb M2 NQ) € UTR

|_
(Vm n. P (Const m, Const n)) A
(Vm M N. P (Const m,Comb M N)) A
(Vm v. P (Const m,Var v)) A
(Vv M. P (Var v, M)) A
(VM N z. P (Comb M N, Const z)) A
(VM N v. P (Comb M N, Varv)) A
(VM Ny Mz Ny,

(V6. Unify(M;, Ms) = Some 6§

D) ((N1 < 0, Ny < 0), (Comb M Nl, Comb M, NQ)) € UTR
O P (N1<10,N2<]0))

NP (MI,MQ) O P (Comb M1 le Comb M2 NQ))

D)
Yo vy. P (v,v1)

151

5.8.6 Termination
Theorem 71 (UTR is wellfounded) WF UTR

Proof. fpss is wellfounded. The variables in a term are finite. The union of two
finite sets is finite. All measure functions are wellfounded. Lexicographic product
and inverse image both propagate wellfoundedness. [I.

Now we prove the termination relation applied to the inner call:

Theorem 72 (Inner termination condition)
((Ml,MQ), (Comb M1 Nl, Comb M2 NQ)) € UTR

Proof. Either N; or N, introduce new variables or they don’t. If they do, we
apply fpss, the first projection of the termination relation. If they don’t then we
apply the second projection: M, is smaller than Comb M; N, and M, is smaller
than Comb My Ns. O

We eliminate these two constraints from the rules and the induction theorem.
In the proof of the nested termination condition, we will need the following lemma
in several of the base cases. It is a clumsy formulation (requiring two conjuncts,
each with exactly the same proof) of a more general theorem, which we do not
prove.

Theorem 73 (var_elimR)
(=Varz <: M) A ([(z,M)] =0) D

VNl NQ. (((N1 < 0, N2 < 0), (Comb M Nl, Comb (Var IE) NQ)) € UTR)
A (((Ny<8,Ny<8),(Comb(Var z) N;,Comb M N,)) € UTR)

At the very last step of the termination proof for the nested call, we need the
following lemma about UTR. Loosely, it says that UTR ignores a certain amount
of term structure. We also need the fact that UTR is transitive.

Theorem 74 (UTRassoc)

((X,Y),(Comb A (Comb B C),Comb D (Comb E F))) € UTR
D)
((X,Y), (Comb (Comb A B) C,Comb (Comb D E) F)) € UTR.

Theorem 75 (UTRtrans) transitive UTR

Now, finally, we are at the crux of our development.

Theorem 76 (Nested termination condition)

Unify(M;, Ms) = Some 6
D)
((N1 < 0, Ny « 0), (Comb M, Nl, Comb M, NQ)) € UTR

152

Proof. The first thing we do is restrict the scopes of N; and N,. Thus it suffices
to prove

VMl M2 0. Unlfy(Ml,MQ) = Some 6 D
VNl NQ. ((N1 <10,N2 <10), (Comb M1 Nl, Comb M2 NQ)) € UTR

Now we induct with Theorem 70 and simplify with the rewrite rules for Unify.
(It turns out that in this proof, we will only need the non-recursive rewrite rules,
i.e.clauses 1-6 of Theorem 69.) This eliminates the cases where Unify can only
fail: 2 and 5. Of the remaining base cases, Case 1 is easy to check, and Cases 3,
4, and 6 are all instances of theorem var_elimR.

1. (Vi <[], N2 <[]), Comb(Const n) Ny, Comb (Const n) N,) € UTR.

((N1 < [(z, Const m)], Np < [(z, Const m)]),
(Comb (Const m) Ny, Comb (Var) Ny)) € UTR

—(Var z <: M) A ([(x, M)] = theta) D
((Ny <8, Ny <8),(Comb (Var z) Ni,Comb M N,)) € UTR

—(Varz <: Comb M N) D
6. ((N1 < [(z,Comb M N)|, Ny <[(z,Comb M N)]),
(Comb (Comb M N) Ny, Comb (Var z) Ny)) € UTR

This leaves the recursive case:

case Unify(M;, My)
of None => None
| Some 03 => case (Unify(IN; <65, Ny < 63) = Some 0
of None => None
| Some o0 => Some(f; ® 0))
D)
VP Q.((P<6,Q <8),Comb(Comb M; N;) P,Comb(Comb M, N,) @) € UTR

The two inductive hypotheses are

Vby. Unify(My, My) = Some 6y D
((N1 < 00, Ny < 00), (Comb M Nl, Comb M, NQ)) c UTR D
‘v’01. Umfy(Nl < 00, N2 < 00) = Some 01 D)
VP Q ((P < 01, Q < 01), (Comb(N1 < eo)P, Comb(Ng < 00)@)) € UTR
(5.7)
and

Vy. Unify(My, My) = Some 6, D

VNl NQ. ((N1 < 02, N2 < 02), (Comb M1 Nl, Comb M2 NQ)) e UTR. (58)

153

Making a case analysis on Unify(M, M), we see that the None case is vacu-
ously true; alternatively, suppose that Some 63 is the result. We can apply the
second induction hypothesis to prove

VNI NQ. ((N1 < 03, N2 < 03), (Comb M1 le Comb M2 NQ)) € UTR (59)
and therefore the first induction hypothesis can be simplified (twice!) to obtain

VGI. Umfy(Nl < 03, N2 < 03) = Some 01 D)
vP Q ((P < 01, Q < 01), (Comb(N1 < 03)P, Comb(N2 < 03)@)) e UTR.
(5.10)
and the goal twice to get the following goal:

case (Umfy(Nl <03, Ny < 03))
of None => None = Some #

| Some 0 => Some(f; ® o)
D)

(Comb(Comb M; N;) P,Comb(Comb My N;) Q) '

We now make a case analysis on Unify(N; < 63, No < 63). Again, the None case is
vacuously true, and so suppose that Some ¢ is the result. We are left with the
goal

(Some(f3 @ o) = Some)
D)

(Comb(Comb M; N;) P,Comb(Comb My N;) Q) ’

and hence the goal (by use of the injectivity of Some and also the theorem
subst_comp)

(P<b3<0,Q<03<0), c UTR
(Comb(Comb M; N;) P,Comb(Comb My N;) Q) '

We can also further simplify (5.10) to get

(P<0,Q<0),

VP Q. ((Comb(NN; < 85) P, Comb(N < 65)Q)) €UTR- (5.11)

We can then instantiate (5.11) by P — P <63 and @ — @ <63 to prove

(P<b3<0,Q<b03<0),
((Comb3(N1403)(33403),C0mb(N2<103)(Q<103))) € UTR. (5.12)

By the definition of substitution, this is equal to

(P<b3<0,Q<03<0),
((Comb N; P <63,Comb Ny Q <0;) € UTR. (5.13)

154

This allows us to use the fact that UTR is transitive to reduce the goal to showing

((Comb N; P <6s;,Comb N, Q< 63),

(Comb(Comb M; N;) P,Comb(Comb My N5) Q)) € UTR.

We can now instantiate (5.9) with N; — Comb N; P and N, — Comb N, @ to
prove

((Comb N; P <63,Comb N, Q <63),

(Comb M; (Comb N; P),Comb M, (Comb N; Q))) € UTR.

UT Rassoc now applies.
O

With termination proved, we finally obtain a pristine set of rules and induction
theorem:

Theorem 77 (Unify - final rules)

Unify(Const m, Const n) = if (m = n) then Some[] else None
Unify(Const m, Comb M N) = None
Unify(Const m, Var v) = Some|[(v, Const m)]
Unify(Var v, M) =i f (Varv <: M) t hen None el se Some[(v, M)]
Unify(Comb M N, Const z) = None
Unify(Comb M N,Varv) = i f (Varv <: Comb M N) t hen None
el se Some[(v, Comb M N)]

Unify(Comb M; Ny, Comb My Ny) =

case Unify(M;, My)

of None => None
| Some 6 => case Unify(N; <0, Ny < 6)
of None => None
| Some o => Some(f ¢ o)

Theorem 78 (Induction - final)

VP. (VYmn. P (Const m,Const n)) A
(Vm M N. P (Const m,Comb M N)) A
(Vm v. P (Const m,Var v)) A
(Vv M. P (Var v, M)) A
(VM N z. P (Comb M N,Const z)) A
(VM N v. P (Comb M N, Var v)) A
(VM Ny My Ny,
(V6. Unify(M,, My) = Some 6 > P (N, <0, Ny <0)) A P (M,, My)
O P (Comb M1 Nl, Comb M2 Ng))
D Yo vy. P (v,v1)

155

5.8.7 Correctness

Armed with these, the correctness of Unify can be established. Unlike Manna
and Waldinger, we don’t need idempotence to prove that the algorithm produces
most-general unifiers. (They used idempotence at a crucial point in their termi-
nation proof.) This dramatically simplifies the proof of correctness.

Theorem 79 (Unify_gives MGU)

V6. Unify(P, Q) = Some § D MGU 6 P

Proof. By induction using Theorem 78. The base cases are either trivial, or
use the lemma MGUnifier_Var. In the recursive case, the failure branches are
trivial. Thus assume that Unify(M;, My) = Some 6 and Unify(N; <6, N, < 6) =
Some ¢ hold. Also assume

MGU ¢ (N1<10) (N2<10) and
MGU 6§ M, M,

It remains to show MGU(f e ¢) (Comb M; N;) (Comb M, No). It is immediate
from the definitions of MGU and Unifier and the theorem subst_comp that 0 e o
unifies (Comb M; N;) and (Comb M, Ny); we now show that feo is most general.
Assume that « unifies (Comb M; N;) and (Comb M, N,), i.e.,

M1<1’Y:M2<]’Y and
N1<]’Y:N2<]’Y-

There is a 0 such that v =, 6 e § because # is most general. By virtue of this,
(N1 <80)<d = (Ny <) <d. Thus there is a p such that § =, o p because o is
most general. We wish to prove dg. v =; 0 @ 0 @ ¢, and do so as follows:

Jdg. 7y =s0e0eq
= dg.0ed=,0ec00q
dg. 0ed =,0e(ceq)

dg. d=,0eq
Jdg.cep=;0eq
= d¢.p=sq¢
O
Idempotence

The correctness of some applications of unification depend on the fact that the
most general unifier that is returned is also idempotent. This fact is quite simple
to establish, once a small support theory of idempotent substitutions is at hand.

156

Definition 80 (Idem : « subst — bool)

Idem(s) = (s®s) = s

Idem_Nil Idem[]
Idem_if f ldem(s) = (sdom(s) N srange(s) = {})
Var_Idem —(Var(v) <: t) D Idem[(v,)]

Unifier_Idem_subst | ldem(r) A Unifier s (t<r) (u<r)
D Unifier (res) (t<r) (u<r)

Idem_comp ldem(r)
D Unifier s (t<r) (u<r)
D (Vg. Unifier g (t<7) (u<r) D (s e q) =, q)
D Idem(r e s)

Theorem 81 (Unify gives Idem)
V8.Unify(P, Q) = Some 6 D Idem 6

Proof. By induction with Theorem 78. As before, the base cases are either trivial,
or yield to application of a single lemma (in this case Var _Idem). In the recursive
case, assume Unify(M;, My) = Some 6 and Unify(N; <8, Ny <) = Some ¢. Thus,
by Theorem 79,

MGU o (N; <8) (Ny<6)

MGU @ M1 MQ.

Assume Idem ¢ and Idem 6; it remains to show Ildem (6 e 0). By Idem_comp, it
suffices to show

V. Unifier v (N1 <8) (Na<f) Doey=,1.

Assume +y unifies (V7 <) and (N3 <6). There is a 0 such that v =, 0 ® § because
o is an MGU of (N, <8) and (N3 <). Now

gey =7

= oge(0ed)=,000
= (ceo)ed=,000
= cged=,0e0

157

158

Chapter 6

Conclusions and Future Work

TFL is a sound extension to whatever HOL implementation it is instantiated to.
Thus it can be thought of as a portable and safe definition mechanism for higher
order recursive functions or, more grandiosely, as a re-usable deduction-based
environment for strong functional programming [101]. To our knowledge, there
are no other such proof tools in existence. However, we think that there should
be, for progress in our field is impeded by the current replication of work. The
same facilities get built over and over: datatype definition packages, automated
reasoners, simplifiers, etc. Building mechanized proof tools is a demanding pur-
suit and the sharing of the tool-building work may allow better overall progress
to be made.

Transferring our attention from the state of the research field to the system we
have produced, the power and utility of TFL is based upon its novel combination
of well-known theorems (wellfounded induction and recursion, consequences of
logical datatypes) and algorithms (pattern matching and contextual rewriting)
in higher order logic.

Our research progressed in stages: once the basic framework (function defi-
nitions made with a wellfounded relation) was realized, we wanted to make life
simpler for a user; after some time, we eventually saw how non-nested relationless
definitions could be achieved. Once they were in place, there was the irritating
restriction of non-nestedness to overcome in relationless definitions. For a long
while, we were blocked on this problem, but then we saw how relationless def-
initions supported schematic definitions (a separate thread of enquiry). That
lead to the realization that schemes could be employed to implement relation-
less nested definitions. After that, the extension to mutual recursive definitions
(relationless or not) was quick once we realized, after reading Boulton’s paper,
what the shape of the required induction theorems should be. Thus the initial
platform built from existing technology allowed new problems to be posed and
solved, resulting in a much more general system than initially envisaged.

The major new outcomes of this work are the following:

159

e Direct definitions where the termination relation is supplied at definition
time. Mutual and nested recursions are supported. (By a direct definition,
we mean that the specified recursion equations will automatically be derived
as HOL theorems, along with an induction theorem (and of course, any
remaining termination constraints).)

e Direct definitions where the termination relation is not supplied. Mutual
and nested recursions are supported. Thus proving termination need no
longer provide an initial barrier to a correctness proof. As a consequence,
this provides a secure and flexible basis for large-scale automation of ter-
mination proofs.

e Sound (and direct) program schemes (mutual and nested recursions are sup-
ported). We have shown how recursive definitions with parameters, i.e.,
free variables can be automated. Although schemes may also be defined
‘by hand’, experience shows that the definition is contorted, and significant
work must be done to achieve the desired recursion equations and induc-
tion theorem (Tobias Nipkow, personal communication). From the point of
view of the main stream of work in program transformation, the interest of
our schemes is their soundness: the termination constraints that automat-
ically arise in our uniform treatment enforce the totality of any satisfiable
instantiation of the scheme.

From the standpoint of reasoning about schemes, a policy of jointly in-
stantiating a scheme and its induction theorem ensures that the induction
theorem is usable for reasoning about properties of the scheme, at any step
in the instantiation chain, from initial scheme to final concrete program.

e We have deepened our understanding of termination proofs for nested re-
cursive functions. In particular, a nested function can be used to prove
its own termination, provided that it is used at ‘smaller instances’. The
heretofore standard practice of proving termination and partial correctness
simultaneously is thus revealed to be a form of ‘strengthening the induc-
tion hypothesis’. By example, we have shown several well-known nested
algorithms where this strengthening is unnecessary, in contrast to state-
ments in the literature. The benefit of our improved understanding is that
termination proofs of nested recursive functions have become less mysteri-
ous. Giesl has made the same observation, although his solution is more
meta-theoretic in flavour, and is in a more restricted logic.

Future work.

Our work raises several topics for investigation, which range from small projects
that would only take a few months, to major research efforts.

160

Comparison with other definition approaches

Another way to define a recursive function would be to define an inductive relation
representing the input/output pairs of the intended function. Then a proof of the
functionality of the relation would be needed before the desired function could be
defined. The advantage of the inductive definition approach is that it implicitly
encodes the finiteness of the recursive call chains, so explicit consideration of
wellfounded relations may be avoidable. On the other hand, we have no feeling
for how hard the functionality proofs would be in general. A thoroughgoing
comparison of the two approaches would be welcome.

Automating termination

Although there is very little work in this thesis on termination, our relationless
function definitions were designed with the intent of supporting the methodical
search for correct termination relations. The system reported in [38] seems to be
the best current system for termination proofs; it uses inductively proved lemmas,
systematic search for polynomial orderings, and a powerful decision procedure.
It would be interesting to see how these ideas would work out in our setting.

More instantiations

ProofPower [7] and HOL-Light [50] are other ML implementations of the HOL
logic, so they are prime candidates for TFL instantiations (even though HOL-
Light is written in Caml-Light, a slightly different dialect of ML). LAMBDA is
also a possible candidate, although it already has a powerful function definition
facility based on a meta-theoretic model [36].

An interesting challenge is raised by set theory since, in contrast to HOL, it
is essentially typeless; a good place to start would be the ‘ZF’ instantiation of
Isabelle.

Strong induction

One should question whether induction theorems of the form that we derive are
worth the trouble. After all, we are passing from strong induction (the well-
founded induction theorem) to a (seemingly) weaker form: instead of assuming
the property for all R-smaller terms, we are assuming it for only the recursive
arguments in the body of the function. In many cases, the latter form suffices,
but perhaps a high degree of automation could allow just the use of strong induc-
tion? This would simplify the situation, in that only the wellfounded induction
theorem would be needed, and also potentially allow more proofs to go through.
Some research on this has already been done in the context of proof planning
[44, 58].

161

Integration with a compiler

Higher order logic theorem provers and functional language translators share a
certain amount of similar functionality, then part ways. The following picture
gives an indication of what we mean:

concrete
syntax
parsing
abstract
syntax
typechecking
typechecked
abstract
syntax
l pattern match compilation
‘case’
expressions
(Logic) (Compiler)
recursion Optimization
equations and l
induction Code
l generation
Correctness
proofs

Both kinds of system parse into abstract syntax trees for sugared lambda
calculus, then perform type inference. With TFL, the pattern matching compi-
lation phase is also duplicated. However, things then diverge: on the logic side,
the input recursion equations are derived as theorems, an induction theorem is
proved, and further processing consists of proving various correctness properties
involving the function. On the compiler side, waves of optimization take place
before code is generated. It would be interesting to see whether the ‘shared initial
prefix’ could be extended so that compiler optimization could benefit from proof.
Some possibilities are the following:

e Much optimization is just simplification [10, 55], something that the theo-
rem proving community has a great deal of experience with. In some cases,

162

it seems that the wheel is being re-invented: for example, the program op-
timizer of [103] is built on the re-discovery—a decade and a half later—of
Paulson’s combinators for rewriting!

e It would be interesting to see if program transformations like the tail-
recursion optimizations validated in Section 5.6 could be systematically ap-
plied in the optimization phase of a compiler. In fact Tullsen and Hudak[99]
claim that program transformation of this type is much talked about, but
little implemented. It may be that some theorem proving to eliminate
applicability conditions and validate matches could allow these powerful
optimizations to be brought to bear.

e Going further, it seems clear that powerful program optimizations like su-
percompilation [98] or Burstall and Darlington’s transformation strategies
[22] can be very easily implemented in a higher order logic proof system.
Can they be applied by somehow using deduction inside the optimization
stage of a compiler?

The research proposed here could be done by extending a theorem prover with
a compiler middle-and-back end, or by embedding a higher order logic prover in
the internals of an existing compiler. Related work is reported in [32]; that work
differs by having been performed outside of any compiler.

A program development environment

What about using a higher order logic theorem prover as a medium for actually
writing programs, lots of them? So-called logical program development is an idea
that has been bandied about for various formalisms over many years [81, 31, 26],
and it would be interesting to see how it could work in an HOL theorem prover.

First off, we should note the mismatch between functions in a logic and pro-
grams: yes, many functions can be expressed in HOL that are not computable;
likewise, there are many programs that aren’t total functions and so wouldn’t fit
accurately into HOL. However, these reservations are slightly beside the point
that is important to us, which is that a vast number of interesting and use-
ful algorithms can be directly defined and reasoned about in higher order logic.
The problem is to see, for such algorithms, how a deductive environment aids
or hinders the activity of programming. For example, putting correctness proofs
temporarily aside, can programming be more fun in logic than in standard pro-
gram development environments? That is, does the more formal environment
offer new benefits?

We don’t know a definitive answer to this; it’s a matter for future work after
all, but there may be some potential advantages for a programmer working in
higher order logic:

163

e In classical logic, there is no built-in notion of function evaluation. Func-
tions can be represented only by their defining equations, and notions such
as evaluation strategy have no place. This is a wonderful simplification.

e One gains generality. The recursion equations of TFL offer a language in
which to write abstract programs from which concrete programs in a wide
variety of languages can be generated, essentially in a ‘code generation’
step. We do not expect this step to be at all trivial, since the gap between
the logical context to the computational context is problematic for any
number of reasons. However, this step can reasonably be thought of as
being separate from the creation of the program.

e One gets free access to a library of mathematics which mingles smoothly
with programs, since programs are just functions in the logic.

e One gets powerful algorithms used for theorem proving, e.g., simplification.
For example, it would seem that a useful debugger could be implemented by
using conditional and contextual simplification. Similar work has recently
been reported in the context of hardware verification [75].

A more subtle benefit of using a deductive framework is found in an article
by Georg Kreisel[59]. We end with this:

In the introduction to ‘Was sind und was sollen ... (form and func-
tion) Dedekind, very reasonably, asks in turn what function his foun-
dation of arithmetic might have. His answer was, of course, rigour
in the sense of ‘proof without gaps’. This raises the further question
of what use (tacitly, his idea(l) of) rigour might be, and Dedekind
himself addressed it. His answer was ”reliability”. He illustrated it
by reference to the familiar phenomena of ‘reading’, suggesting that
genuine reliability requires spelling out words letter by letter! Taken
literally, this is too far off the mark to reward elaboration; both con-
cerning reading generally and reliability in particular; both reliability
w.r.t. the written text and w.r.t. to the writer’s thoughts that were
to be recorded in the text. But the general idea — here the possibility
of increasing reliability by formal representation, and thus in ‘discrete
bits’ - is again demonstrably (by ENOD'), a real winner.

lExperience Not Only Doctrine.

164

Appendix A

System Architecture

In this appendix, we give an overview of the architecture of the TFL system, and
describe some aspects of how it was instantiated to hol90 [96] and Isabelle/HOL
[86]. Concretely, TFL is a programming language module parameterized with
respect to a collection of modules that the client proof system must supply.l. A
picture of the general structure of the system is given in Figure A.1.

A potential user of the services of TFL is in the following situation: if the client
proof system can deliver suitable modules implementing the prelogic, supplying
the right theorems, a definition principle, some rules of inference, and a few other
bits and bobs, then TFL can be instantiated to supply a package for defining and
reasoning about total recursive functions. Once this package has been instanti-
ated, however, other facilities of the client proof system can be brought into play
in order to get a more powerful tool for end users. In particular, there is a post-
instantiation customization step, where automated provers for wellfoundedness
and termination can be added as post-processors to the definition algorithms.

Thus TFL is—in its current incarnation—a package that a developer of a
mechanized logic system would take and instantiate to his or her system: it is
not a tool that an average user (someone mainly concerned with doing proofs)
can currently take and use without some effort.

We will discuss the requirements for the client proof system in a bottom-up
fashion, in general terms, before examining only a few details of the instantiations.
In the following, reference will be made to various types being supplied by various
modules: these types will be metalanguage types, not HOL types.

A.1 Requirements

The TFL system has of course been coded in a programming language (Standard
ML [74]), and thus currently has the pragmatic limitation that the client proof

1Since TFL is implemented in Standard ML, a module is an ML structure, and a parame-
terized module is called a functor.

165

User applications

Customization
(e.g., automated termination provers)

TFL

Thry Rules
(def. principle, signature ops.) | (rules of inference)

Thms

(wellfounded induction and recursion)

Syntax

(prelogic operations)

Insulation

Client Proof System

Figure A.1: System Structure

system must likewise be coded in Standard ML. However, component-based pro-
gramming [45, 90] is becoming more well-supported, so it may soon be possible
for an interlingual version of TFL to exist.

The second major requirement, without which no further progress can be
made, is that the client proof system must implement the HOL logic, as described
in Section 2.1.2 Currently, some algorithms in TFL depend at crucial points on the
use of classical logic, and the fact that the logic has an expressive type system is
deeply rooted in the code, so users of constructive logic or set theory are currently
unable to use TFL.

A.1.1 Insulation

To start, there is an insulation layer, which implements a small library of sup-
port routines for common facilities such as list processing, exception handling,
and printing messages. This provides a standard base upon which the client
is expected to provide the facilities in higher modules. Thus, this layer is not

20r at least give a convincing imitation of such: TFL can’t check that it is being instantiated
to an implementation of HOL; however, in order for the algorithms of TFL to work correctly,
the client system will have to do a very good job of impersonating higher order logic!

166

supplied by the client, but comes with the TFL package. The insulation layer
enables, for example, a ‘client-side’ module to raise an exception that functions
in the higher-level TFL module know how to interpret.

A.1.2 Syntax

The Syntax module deals with abstract syntax, not concrete syntax, and im-
plements the prelogic as alluded to in Section 2.1. Metalanguage types for HOL
types (hol t ype) and terms (pr et er mand t er m) are declared here, along with
their associated operations. The pr et er mtype is a type of lambda calculus
terms that aren’t required to be HOL terms, i.e., a pr et er mneed not be well-
typed. Many useful syntactic operations can already be defined at the level of
pr et erm Going beyond that is the type t er m which represents HOL terms,
i.e., pr et er ms that are wellformed with respect to a given signature.

The functions in Syntax are used extensively in the TFL module for analyz-
ing the structure of proposed definitions and building induction theorems. Basic
prelogic operations are adequate for much of this: however, sometimes represen-
tation choices already made in the client proof system need to be given a uniform
interface by Synt ax.

For example, two common representations of relations in HOL are (« X «) set
and &« = « — bool. The machinery in the TFL module needs to uniformly
break elements of relations down, but we don’t wish to mandate a particular
representation for relations since that would limit the applicability of TFL. Thus
Synt ax is required to supply a function dest _rel ati on that breaks apart a
proposition stating inclusion in a relation, and returns the relation plus the pair
of elements in the relation. For example, in a client system that implemented
relations as (a X «) set, invoking dest _r el at i on on the object-language term
‘(z,y) € R’ yields the (metalanguage) triple (R, ,y). Similarly, in a ‘o - a —
bool’ client, dest _rel ati on (R z y) should also return (R, z,y).

A.1.3 Thms

The Thms module provides a type t hm which represents HOL theorems. The
following three important theorems must be provided by Thms:

167

WF(R)
Wellfounded induction O (Vz. (Vy. Ryz D Py) D Pux)
ODVz. Px

Restriction rewrite |Rzy D (f|R,y)z=fz

(f = WFREC R M)
Wellfounded recursion > WF(R)

DVz. f(a)=M (f|R,x) x

The exact syntactic form of these theorems is crucial: e.g., supplying an equiv-
alent, but not identical, wellfounded induction theorem will cause the algorithm
for producing customized induction theorems of Section 3.4 to fail.

A.1.4 Thry

The Thry structure declares a type t heor y, which is a metalanguage collection
of objects related to a signature . Thry is required to supply the following
services:

e Matching algorithms for hol t ype and t erm

e A function that maps preterns to term in Xq, e.g., a type checking
function.

e An implementation of the definition principle of Section 2.1.2. Once a
definition is made, it is stored in the theory.

e A database of datatype facts of the kind listed in Section 2.2. The facts
of crucial importance are the definition of the ‘case’ construct (used in the
pattern-matching translation), the exhaustion theorem (used in proving
pattern completeness for induction theorems), and the congruence theorem
for the type (used to form contexts in termination condition extraction). It
is convenient, but not necessary, if this database is automatically augmented
when a new (object language) datatype is defined.

Along with the congruence theorems arising from types, the user may also
manually add congruence theorems for other constructs, e.g., to handle
instances of higher order recursion, the | et construct, implication, bounded
quantification, etc.

168

A.1.5 Rules

The Rules module supplies rules of inference, most of which can be found in Fig-
ure 2.1. Although the rules have quite simple specifications, the implementation
of inference rules in client systems has been the most important design choice in
the construction of TFL. We will discuss this more thoroughly in the following
section.

Along with these basic inference rules, Rules must also supply a ‘heavy-
weight’ rule of inference: the contextual rewriter used for termination condition
extraction, as described in Section 2.7.

A.2 Instantiations

The TFL package has been instantiated to two different theorem provers: hol90
and Isabelle/HOL [86]. Although these are both written in same programming
language and implement the same logic, the two theorem provers differ a great
deal in the details. The essential difference between the two systems is that
hol90 is a direct implementation of the HOL logic, while Isabelle/HOL is an
instantiation of the Isabelle logical framework to the HOL logic.

In order to avoid being trapped in a thicket of system particulars in the
following, we will discuss the two instantiations only from the point of view
of Thry and Rules, since theories and rules of inference presented the largest
differences that had to be overcome. By restricting the discussion, a wealth of
detail will be passed over in silence.

A.2.1 Theories

Work in hol90 takes place against an implicit background theory known as the
current theory. New definitions are added to the current theory by updating a
reference cell; thus, hol90 theories are imperative in nature. In contrast, a theory
in Isabelle/HOL is functional in nature: adding a new definition to a theory
results in a new and different theory being created; subsequently the new and old
theory both exist, but are different. Since TFL alters the theory when asked to
define a function, a solution implementable by both approaches was needed. The
standard functional programming idiom of explicitly passing the state (in this
case, an item of type t heory) throughout the code was adopted. This directly
suited the approach already taken in Isabelle. It is also easy to accommodate
in hol90: the extra t heory parameter is just ignored, since any accesses to the
theory can be directly made by accessing the current theory.

169

A.2.2 Rules

In hol90, as in its ancestor LCF, inference rules are implemented as metalanguage
functions. For example, modus ponens is implemented by approximately the
following code:

fun MP thl th2 =
l et val (hypsl, cl) dest _thmthl
val (hyps2, c2) = dest_thmth2
val (antecedent, consequent) = dest_inp cl

in
i f aconv antecedent c2
then THM (uni on hypsl hyps2, consequent)
el se Fail "nodus ponens fail ed"

end

(where f un is a keyword signifying that a function is being defined, val is a key-
word signifying that a variable binding is being made, dest _t hmbreaks a theo-
rem into a (hypotheses, conclusion) pair, dest _i np breaks an implication into
an (antecedent, consequent) pair, aconv implements the test for a-convertibility,
uni on joins two hypothesis lists together, THMconstructs an element of the t hm
type, and Fai | raises an exception.)

Isabelle

The Isabelle system [86] is a logical framework capable of implementing a wide
variety of different logics. In Isabelle, a logic of interest—the object logic—is
embedded in the Isabelle meta-logic. For example, the Isabelle/HOL system was
obtained by embedding the HOL logic in the Isabelle meta-logic. The Isabelle
meta-logic is a very simple lambda calculus-based higher order logic having only
connectives for equality (==), implication (D), and universal quantification (!).

D-intro I',PFQ r'EP>@Q AFP D-elim

rEP>Q TUAFQ
N-intro r=pP Nz P N-elim
'tz P I' [z +— N|P

Figure A.2: Isabelle meta-logic

The basic rules are given in Figure A.2 (the equality rules are omitted, and the
introduction rule for universal quantification has the usual proviso that z not be

170

free in I'). The rules of the Isabelle meta-logic are implemented as metalanguage
programs.
Isabelle represents object-logic rules with assertions of the general form

[¢17".7¢m] = ¢
This is just a layer of syntax that translates to
FérD...D ¢ Do

Several rules that could be derived are also coded in the metalanguage, chief
among them being a higher order resolution rule:

W1, ¥l =% (b1, P0] = @ i
0-([¢17 s 7¢i—171/}17 s 71/}m7¢i+17 .- 7¢n] = ¢) 0-(1/}) N O-(QSZ).

Now meta-logic inference can be used to implement object logic inference,
since an object logic proof step can be achieved by an application of the resolution
rule. Thus the modus ponens rule of inference (using — for the object level
implication connective) can be rendered in Isabelle as

[P—Q,P]= Q.

This rendering obscures the real structure, which uses the Trueprop constant to
separate the derivability judgement of the object logic from that of the meta-logic.
Thus the underlying representation is the following:

F Trueprop(P — @) D Trueprop(P) D Trueprop(Q). (A.1)

The Isabelle/HOL instantiation maintains a very close association between the
meta-logic connectives and their counterparts in the object-logic. Thus we had to
think hard about which connectives to choose for certain operations, particularly
since so much of the work of TFL amounts to applications of equality, implication,
and universal quantification.

Which rules?

Now that we have discussed the implementation of inference rules in both systems,
we can justify our choice. A choice had to be made, since TFL must operate
uniformly, no matter what the underlying proof system. Roughly, the choice was
between rules as programs, or as theorems. The author chose rules-as-programs,
largely because it seemed to lead to less total effort in instantiating both systems.
For example, having rules-as-theorems seemed to imply that the higher order

171

resolution rule would have to be applied directly inside TFL, which would require
an implementation of higher order resolution to be supplied by any client, hol90
in particular, with the further requirement of having to behave identically to the
Isabelle resolution rule.

Daunted by this prospect, we chose rules-as-programs. However, that was
only the interface with the upper TFL layer; in the Isabelle/HOL instantiation,
we used resolution as much as possible. For example, the actual implementation
of modus ponens that we used was the following (where RS is an infix identifer
denoting the resolution rule and the identifier mp denotes (A.1)):

fun MP thl th2 = th2 RS (thl RS np);

So in general, in the Isabelle/HOL implementation of Rules, we tried to stay
at the object logic level as much as possible and use resolution as much as possible.
However, in some cases, the meta-logic needed to be used, or was simply more
convenient. A case in point is the extraction of termination conditions (Section
3.2). Recall that the small proof performed to capture termination conditions
was invoked as the ‘condition solver’ for the contextual rewriter. The essential
step in the proof is that the termination conditions get assumed and stored away
on the assumptions. Making assumptions, and discharging them, is a facility that
only exists at the meta-logic level.

A.3 Customization

The following is a simple example of the postprocessors that can be applied to
the results of definitions in order to prove wellfoundedness and eliminate any
essentially trivial termination conditions:

e The wellfoundedness prover just backchains on theorems that propagate
wellfoundedness. A standard collection of these is the following:

- WF (<)
F WF pred
F WF (measure f)
- WF(R) AWF(Q) D +WF (LEX R Q)
FWF(R) S WF(inv.image R f)
FWF(R) > WF(TCR)

e The termination prover rewrites with the following definitions:

measure inv_image (<)

inv_image R f ; Az y. R (fz)(fy)
LEX Ry Ry (u,v) (z,w) = RiuzV(u=zARyv w)

and then invokes a linear arithmetic package.

172

Example. The gcd function

ged(0,9)
gcd(Suc z,0)
gcd(Suc z, Suc y)

Yy
Suc z

i f y<zthen gcd(z —y,Suc y)
el se gcd(Suc z,y —)

when defined by supplying the termination relation
measure (pair_case +),

which is a terse way to say that the sum of the sizes of the arguments to gcd
decreases, gives rise to the following termination conditions:

WF (measure (pair_case+)),
(my <z) D (Suc z+ (y — z)) < (Suc = + Suc y),
y <z D ((z—y)+ Sucy) < (Suc z + Suc y).

The wellfoundedness prover eliminates the first constraint in one step. The other
termination conditions are in the range of the linear arithmetic prover.
O

Future work should focus on extending this functionality to search for correct
termination relations for definitions given in the relationless style.

173

174

Bibliography

[1]

2]

[3]

[9]

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
New York, 1996.

S. Agerholm. LCF examples in HOL. The Computer Journal, 38(2):121-
130, July 1995.

S. Agerholm. Non-primitive recursive function definition. In E. T. Schubert,
P. J. Windley, and J. Alves-Foss, editors, Proceedings of the 8th Interna-
tional Workshop on Higher Order Logic Theorem Proving and Its Appli-
cations (LNCS 971), pages 17-31, Aspen Grove, Utah, September 1995.
Springer-Verlag.

S.F. Allen, R. Constable, D. Howe, and W. Aitken. The semantics of
reflected proof. In Fifth annual IEEE symposium on Logic in Computer
Science, pages 95-107, Philadelphia, USA, June 1990.

Penny Anderson and David Basin. Program development schemata as de-
rived rules. Journal of Symbolic Computation, 2000. To appear.

Peter Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

R. D. Arthan. A report on ICL HOL. In Phillip Windley, Myla Archer,
Karl Levitt, and Jeffrey Joyce, editors, International Tutorial and Work-
shop on the HOL theorem proving system and it Applications, University of
California at Davis, August 1991. ACM-SIGDA / IEEE Computer Society,
IEEE Computer Society Press.

Lennart Augustsson. Compiling pattern matching. In J.P. Jouannnaud,
editor, Conference on Functional Programming Languages and Computer

Architecture (LNCS 201), pages 368-381, Nancy, France, 1985.

Franz Baader and Tobias Nipkow. Term Rewriting and oll that. Cambridge
University Press, 1998.

175

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard
ML to Java bytecodes. In Proceedings of the 3rd ACM SIGPLAN Confer-
ence on Functional Programming, Blatimore, Maryland, September 1998.
ACM Press.

Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL -
lessons learned in Formal-Logic Engineering. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Thery, editors, Proceedings of the 12th

International Conference on Theorem Proving in Higher Order Logics
(TPHOLs’99), number 1690 in LNCS, Nice, 1999. Springer-Verlag.

Richard Bird. Functional algorithm design. In B. Moeller, editor,
Mathematics of Program Construction, Third International Conference,
(MPC’95), volume LNCS 947, pages 2-17, Kloster Irsee, Germany, July
17-21 1995.

Guy E. Blelloch and John Greiner. A provable time and space efficient
implementation of NESL. In ACM SIGPLAN International Conference on
Functional Programming, pages 213-225, May 1996.

Barry Boehm. Software engineering. IEEFE Transactions on Computers,
C-25(12):1226-1241, 1976.

Adel Bouhoula. Automated theorem proving by test set induction. Journal
of Symbolic Computation, 23(1):47-77, 1997.

Richard Boulton. Efficiency in a Fully-Exrpansive Theorem Prover. PhD
thesis, University of Cambridge, May 1994. Technical Report Number 337,
University of Cambridge Computer Laboratory.

Richard Boulton. Multi-predicate induction schemes for mutual recursion.
To appear as technical report in Division of Informatics, University of Ed-
inburgh, 2000.

Ana Bove. Programming in Martin-L&éf Type Theory. Unification: A non-
trivial Example. Master’s thesis, Chalmers University of Technology, 1999.
Licentiate Thesis.

Robert S. Boyer and J Strother Moore. A Computational Logic. Academic
Press, 1979.

Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

Rod Burstall. Proving properties of programs by structural induction. The
Computer Journal, 12(1):41-48, February 1969.

176

[22] Rod Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the Association for Computing Machinery,
24(1):44-67, January 1977.

[23] Alonzo Church. A formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5:56-68, 1940.

[24] Martin D. Coen. Interactive Program Derivation. PhD thesis, University
of Cambridge, November 1992. Technical Report Number 272, University
of Cambridge Computer Laboratory.

[25] Avra Cohn and Robin Milner. On using Edinburgh LCF to prove the
correctness of a parsing algorithm. Technical Report CSR-113-82, Dept. of
Computer Science, Edinburgh University, 1982.

[26] Robert Constable, S. Allen, H. Bromly, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki,
and S. Smith. Implementing Mathematics With the Nuprl Proof Develop-
ment System. Prentice-Hall, New Jersey, 1986.

[27] C. Cornes. Conception d’un Langage de Haut Niveau de Representation de
Preuves: recurrence par filtrage de motifs, unification en presence de types
inductif primitifs. synthese de lemmes d’inversion. These d’universite, Paris
7, November 1997.

[28] Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North-
Holland, 1958. Two sections by William Craig.

[29] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indag. Math., 34:381-392, 1972.

[30] Richard Dedekind. FEssays on the theory of numbers. Dover, 1963. Au-
thorized translations by Wooster W. Beman of Stetigkeit und irrationale
Zahlen and Was sind und sollen die Zahlen for Open Court Publishing,
1901.

[31] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[32] A. Dold, F. W. von Henke, H. Pfeifer, and H. Ruess. Formal verification
of transformations for peephole optimization. In Proceedings of FME’97
(LNCS 1318), pages 459-472. Springer-Verlag, September 1997.

[33] Axel Dold. Representing, verifying and applying software development
steps using the PVS system. In V.S. Alagar and Maurice Nivat, editors,

177

[34]

[35]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Proceedings of the Fourth International Conference on Algebraic Methodol-
ogy and Software Technology, AMAST’95, Montreal, volume 936 of Lecture
Notes in Computer Science, pages 431-435. Springer-Verlag, 1995.

Axel Dold. Software development in PVS using generic development steps.
To appear in Springer LNCS, Proceedings of a Seminar on Generic Pro-
gramming, April 1998.

William Farmer. Recursive definitions in IMPS. Available by anony-
mous FTP at ftp. harvard. edu, in directory i nps/ doc, file name
recursive-definitions.dvi.gz,1997.

Simon Finn, Mike Fourman, and John Longley. Partial functions in a total
setting. Journal of Automated Reasoning, 18(1):85-104, February 1997.

P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In
N.E. Fuchs, editor, Proceedings of LOPSTR’97 (LNCS 1463), pages 124
143. Springer-Verlag, 1998.

Jirgen Giesl. Automatisierung von Terminieringsbeweisen fir rekursiv
defininierte Algorithmen. PhD thesis, Technische Hochshule Darmstadt,
1995.

Jiirgen Giesl. Termination analysis for functional programs using term or-
derings. In Proceedings of the 2nd International Static Analysis Symposium,
Glasgow, Scotland, 1995. Springer-Verlag.

Jiirgen Giesl. Termination of nested and mutually recursive algorithms.
Journal of Automated Reasoning, 19(1):1-29, August 1997.

Jean-Yves Girard. Proof Theory and Logical Complexity, volume 1. Bib-
liopolis, 1987.

Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in
Computer Science. Springer-Verlag, 1979.

Mike Gordon and Tom Melham. Introduction to HOL, a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

Jeremy Gow, Alan Bundy, and Ian Green. Extensions to the estimation
calculus. Technical Report RP953, Edinburgh University Department of
Artificial Intelligence, 1999.

The Object Management Group. Common Object Request Broker Ar-
chitecture and Specification. Technical report, The Object Management
Group, OMG Headquarters, 492 Old Connecticut Path, Framingham, Mas-
sachusetts 01701, USA, February 1998. Also at http://www.om.org.

178

[46]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

E. L. Gunter. A broader class of trees for recursive type definitions for
HOL. In J. J. Joyce and C.-J. H. Seger, editors, Higher Order Logic Theo-
rem Proving and its Applications: 6th International Workshop (HUG’93),
number 780 in Lecture Notes in Computer Science, pages 141-154, Van-
couver, B.C., August 11-13 1994. Springer-Verlag.

H. Busch. Unification based induction. In L.J.M. Claesen and M.J.C.
Gordon, editors, International Workshop on Higher Order Logic Theorem

Proving and its Applications, pages 97-116, Leuven, Belgium, September
1992. IFIP TC10/WG10.2, North-Holland. IFIP Transactions.

John Harrison. Inductive definitions: automation and application. In
E. Thomas Schubert, Phillip J. Windley, and James Alves-Foss, editors,
Proceedings of the 1995 International Workshop on Higher Order Logic
theorem proving and its applications, number 971 in LNCS, pages 200-213,
Aspen Grove, Utah, 1995. Springer-Verlag.

John Harrison. Metatheory and reflection in theorem proving: A survey
and critique. Technical Report CRC-053, SRI International Cambridge
Computer Science Research Centre, 1995.

John Harrison. HOL-Light: A tutorial introduction. In Proceedings of
the First International Conference on Formal Methods in Computer-Aided
Design (FMCAD’96), volume LNCS 1166, pages 265-269. Springer-Verlag,
1996.

John Harrison. Theorem Proving with the Real Numbers. CPHC/BCS
Distinguished Dissertations. Springer, 1998.

P. V. Homeier and D. F. Martin. A verified verification condition generator.
The Computer Journal, 38(2):131-141, July 1995.

Gerard Huet and Bernhard Lang. Proving and applying program transfor-
mations expressed with second-order patterns. Acta Informatica, 11:31-55,
1978.

Simon Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987. With contributions by P. Wadler and P. Han-
cock.

Simon Peyton Jones and Andre Santos. A transformation-based optimiser
for Haskell. Science of Computer Programming, 32(1-3):3-47, September
1998.

Deepak Kapur and M. Subramaniam. Automating induction over mutually
recursive functions. In Proceedings of the 5th International Conference on

179

Algebraic Methodology and Software Technology (AMAST’96), volume 1101
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[567] Delia Kesner, Laurence Puel, and Val Tannen. A typed pattern calculus.
Information and Computation, 124(4):32-61, 1996.

[58] Ina Kraan, David Basin, and Alan Bundy. Middle-out reasoning for syn-
thesis and induction. Journal of Automated Reasoning, 16:113-145, 1996.

[69] Georg Kreisel. Logical aspects of computation: contributions and distrac-
tions. In P.G. Oddifreddi, editor, Logic and Computer Science. Academic
Press, 1990. Number 31 in the APIC Studies in Data Processing Series.

[60] L. Claesen and M. Gordon, editors. International Workshop on Higher Or-
der Logic Theorem Proving and its Applications, Leuven, Belgium, Septem-
ber 1992. IFIP TC10/WG10.2, Elsevier Science Publishers.

[61] P.J. Landin. The mechanical evaluation of expressions. Computer Journal,
6:308-320, 1964.

[62] P.J. Landin. The next 700 programming languages. Communications of
the ACM, 9:157-166, 1966.

[63] Jeffery R. Lewis, Mark B. Shields, Erik Meijer, and John Launchbury.
Implicit parameters: Dynamic scoping with static types. In Tom Reps,

editor, ACM Symposium on Principles of Programming Languages, Boston,
Massachusetss, USA, January 2000. ACM Press.

[64] Lena Magnusson and Bengt Nordstrom. The ALF proof editor and its
proof engine. In Types for Proofs and Programs (LNCS 806), pages 213—
237, Nijmegen, Netherlands, 1994. Springer-Verlag.

[65] Zohar Manna and Richard Waldinger. Deductive synthesis of the unification
algorithm. Science of Computer Programming, 1:5-48, 1981.

[66] Pascal Manoury. A user’s friendly syntax to define recursive functions as
typed A-terms. In Types for Proofs and Programs: International Workshop
TYPES’9/, number 996 in Lecture Notes in Computer Science, Baastad,
Sweden, June 1995. Springer-Verlag.

[67] Luc Maranget. Two techniques for compiling lazy pattern matching. Tech-
nical Report 2385, INRIA, October 1994.

[68] Per Martin-L6f. Constructive mathematics and computer programming,.
In C.A.R. Hoare and J.C. Shepherdson, editors, Mathematical Logic and
Programming Languages, Prentice-Hall International Series in Computer
Science, pages 167-184. Prentice-Hall, 1985.

180

[69]

[70]

[74]

[75]

[76]

[77]

[78]
[79]

[80]

Conor McBride. Dependently Typed Functional Programs and their Proofs.
PhD thesis, University of Edinburgh, 1999.

John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael 1. Levin. LISP 1.5 Programmer’s Manual. MIT Press, 2
edition, 1965.

Tom Melham. Automating recursive type definitions in higher order logic.
In Graham Birtwistle and P.A. Subrahmanyam, editors, Current Trends
in Hardware Verification and Automated Theorem Proving, pages 341-386.
Springer-Verlag, 1989.

Tom Melham. A package for inductive relation definitions in HOL. In
M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proceedings
of the 1991 International Workshop on the HOL Theorem Proving System
and its Applications, pages 350-357. IEEE Computer Society Press, Davis,
California, USA, August 1991.

Tom Melham. The HOL logic extended with quantification over type vari-
ables. In L. Claesen and M. Gordon [60].

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

J Moore. Symbolic simulation: An ACL2 approach. In G. Gopalakrishnan
and P. Windley, editors, Proceedings of the Second International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD’98), volume
LNCS 1522, pages 334-350. Springer-Verlag, November 1998.

Olaf Miller. A verification environment for I/O automata based on formal-
wzed meta-theory. PhD thesis, Institut fiir Informatik, Technische Univer-
sitit Miinchen, September 1998.

Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. Formal Aspects of Computing, 10:171-186, 1998.

Bengt Nordstrom. Terminating general recursion. BIT, 28:605-619, 1988.

S. Owre, J. M. Rushby, N. Shankar, and D.J. Stringer-Calvert. PVS System
Guide. SRI Computer Science Laboratory, September 1998. Available at
http://pvs.csl.sri.confmanual s. htnl .

C. Parent. Synthesizing proofs from programs in the calculus of inductive
constructions. In Third International Conference on the Mathematics of
Program Construction, number 947 in Lecture Notes in Computer Science,
pages 351-379. Springer-Verlag, July 1995.

181

[81] Helmut A. Partsch. Specification and Transformation of Programs: A For-
mal Approach to Software Development. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1990.

[82] Lawrence Paulson. A higher order implementation of rewriting. Science of
Computer Programming, 3:119-149, 1983.

[83] Lawrence Paulson. Verifying the unification algorithm in LCF. Science of
Computer Programming, 3:143-170, 1985.

[84] Lawrence Paulson. Proving termination of normalization functions for con-
ditional expressions. Journal of Automated Reasoning, 2:63-74, 1986.

[85] Lawrence Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In Alan Bundy, editor, 12th International Confer-
ence. on Automated Deduction (CADE), volume LNAI 814, pages
148-161. Springer-Verlag, 1994. Revised version available at
http://ww. cl.cam ac. uk/ users/| cp/ papers/recur. htn
under title ‘A Fixedpoint Approach to (Co)inductive and Co(datatype)
Definitions’.

[86] Lawrence Paulson. Isabelle : A Generic Theorem Prover. Number 828 in
LNCS. Springer-Verlag, 1994. Up-to-date reference manual can be found
at http://ww. cl.cam ac. uk/ Research/ HVE | sabel | e/ di st /.

[87] Lawrence Paulson. Mechanizing coinduction and corecursion in higher-
order logic. Journal of Logic and Computation, 7:175-204, March 1997.

[88] Henrik Persson. Type Theory and the Integrated Logic of Programs. PhD
thesis, Chalmers University of Technology, June 1999.

[89] Franz Regensburger. HOLCF: Eine konservative Finbettung von LCF in
HOL. PhD thesis, Institut fiir Informatik, Technische Universitiat Miinchen,
1994.

[90] D. Rogerson. Inside COM. Microsoft Press, 1996.

[91] Joseph Rouyer. Développement d’algorithme d’unification dans le Calcul
des Constructions avecs types inductifs. Technical Report 1795, INRIA-
Lorraine, November 1992.

[92] Piotr Rudnicki and Andrzej Trybulec. On equivalents of well-foundedness.
Journal of Automated Reasoning, 23(3):197-234, 1999.

[93] H. Schwichtenberg and S. Wainer. Ordinal bounds for programs. In Jeff
Remmel, editor, Feasible Mathematics 11, pages 387-406. Birkh&user, 1994.

182

[94]

[95]

[96]

[97]

[100]

[101]

[102]

[103]

[104]

Dana Scott. A type theoretic alternative to ISWIM, CUCH, OWHY. The-
oretical Computer Science, 121(1-2):411-440, December 1993.

Natarajan Shankar. Steps towards mechanizing program transformations
using PVS. In B. Moeller, editor, Mathematics of Program Construction,
Third International Conference, (MPC’95), number 947 in Lecture Notes in
Computer Science, pages 50-66, Kloster Irsee, Germany, July 17-21 1995.

Konrad Slind. An implementation of higher order logic. Technical Re-
port 91-419-03, University of Calgary Computer Science Department, 1991.
Masters Thesis.

Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,
Computer Science Today, Lecture Notes in Computer Science, vol. 1000,
pages 324-343. Springer-Verlag, Berlin, 1995.

M.H. Sorenson, R. Gliick, and N.D. Jones. A positive supercompiler. Jour-
nal of Functional Programming, 6(6):811-838, November 1996.

Mark Tullsen and Paul Hudak. Shifting expression procedures into reverse.
In Olivier Danvy, editor, Proceedings of the ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation, Technical
report BRICS-NS-99-1, University of Aarhus, pages 95-104, San Antonio,
Texas, January 1999.

D.A. Turner. Miranda: a non-strict functional language with polymorphic
types. In J. P. Jouannaud, editor, Functional Programming Languages and
Computer Architectures (FPCA), number 201 in Lecture Notes in Com-
puter Science, pages 1-16. Springer-Verlag, 1985.

David A. Turner. Elementary strong functional programming. In Pieter H.
Hartel and Marinus J. Plasmeijer, editors, Functional Programmaing Lan-
guages in FEducation, First International Symposium, FPLE’95, volume
1022 of Lecture Notes in Computer Science, pages 1-13, Nijmegen, The
Netherlands, December 1995. Springer-Verlag.

M. van der Voort. Introducing well-founded function definitions in HOL.
In L. Claesen and M. Gordon [60).

E. Visser, Z. el A. Benaissa, and A. Tolmach. Building program optimiz-
ers with rewriting strategies. In P. Hudak and C. Queinnec, editors, The
1998 International Conference on Functional Programming (ICFP’98), Bal-
timore, Maryland, September 1998. ACM.

Christoph Walther. On proving the termination of algorithms by machine.
Artificial Intelligence, 71(1):101-157, 1994.

183

[105] Mitchell Wand. Continuation-based program transformation strategies.
Journal of the ACM, 1(27):164-180, January 1980.

[106] Hao Wang. Towards mechanical mathematics. IBM Journal, 4(2-22), 1960.

[107] Jon Whittle. The Use of Proofs-as-Programs to Build an Analogy-Based
Functional Program Editor. PhD thesis, Division of Informatics, University
of Edinburgh, Scotland, 1999.

[108] Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor, For-
mal Models and Semantics, volume B of Handbook of Theoretical Computer
Science. Elsevier Science Publishers, 1990.

184

