
Lehrstuhl für Effiziente Algorithmen
der Technischen Universität München

Scheduling Connections
in Fast Networks

Thomas Erlebach

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. Wilfried Brauer

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Ernst W. Mayr

2. Univ.-Prof. Dr. Peter Gritzmann

3. Univ.-Prof. Dr. Rolf H. Möhring,
Technische Universität Berlin
(schriftliche Beurteilung)

Die Dissertation wurde am 21.10.1998 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 06.05.1999
angenommen.





Abstract

Fast and reliable exchange of data in world-wide communication networks
has acquired essential importance in our society today, and telecommunica-
tions is one of the most important growth sectors in all leading economies.
New applications like supercomputer networking, multimedia networking,
and real-time medical imaging require transfer rates in the range of several
gigabits per second, and they become possible only through advances in the
technology and architecture of communication networks: enormous amounts
of data can be transmitted through optical fiber using laser beams today,
and new network protocols, e.g., ATM, allow flexible bandwidth reservation
and enable simultaneous transmission of data with various different charac-
teristics (telephone calls, multimedia data, electronic messages), satisfying
the different requirements of all these various traffic types at the same time.

The efficient use of modern communication networks is tied to a number
of demanding algorithmic problems, in particular concerning the allocation
of network resources to individual connections. More specifically, wavelength
assignment in all-optical networks and call scheduling in communication net-
works with bandwidth reservation lead to a number of interesting combinato-
rial optimization problems. In this thesis, the complexity of such problems,
i.e., the difficulty of algorithmic solutions, is determined under various re-
strictions, and polynomial-time approximation algorithms, i.e., algorithms
computing solutions that are provably good (but not always optimal), are
presented. The combinatorial optimization problems studied in this thesis
pertain to simplified models of real-life communication networks. These com-
binatorial models capture the essential characteristics of the diverse problems
encountered in practice.

In all-optical networks with wavelength-division multiplexing, several con-
nections can use the same fiber link simultaneously if the signals are trans-
mitted on different wavelengths. Connections must use the same wavelength
on the whole transmitter-receiver path, if wavelength conversion is not avail-
able. The path coloring problem is to assign colors (wavelengths) and paths
to a given set of connection requests such that paths using the same link

i



ii ABSTRACT

are assigned different colors. The goal is to minimize the number of differ-
ent colors used. This problem is shown to be NP-hard for bidirected trees
even in the binary case, for undirected trees of arbitrary degree and for bidi-
rected and undirected rings. A polynomial-time optimal algorithm is given
for undirected trees of constant degree. For undirected trees of arbitrary
degree, an asymptotic 1.1-approximation is presented. A polynomial-time
5/3-approximation is given for bidirected trees of arbitrary degree.

If the number of available wavelengths is limited, which is the case in
practice, the maximum path coloring (MaxPC) problem is of interest as
well. Given a set P of connection requests and a number W of available
wavelengths, the goal is to select a maximum cardinality subset P ′ of P
and to compute an assignment of colors and paths to the connection re-
quests in P ′ using at most W colors. MaxPC is studied for bidirected trees.
Polynomial-time optimal algorithms are shown to exist if the tree has depth
one or if both W and the degree of the tree are bounded by a constant.
Furthermore, MaxPC is proved NP-hard for bidirected trees of constant de-
gree if W can be arbitrary, and for bidirected trees of arbitrary degree even
if W = 1. In the case W = 1 the problem is equivalent to the maximum edge-
disjoint paths problem. For every fixed ε > 0, a polynomial-time (5/3 + ε)-
approximation algorithm for the maximum edge-disjoint paths problem (and,
therefore, for MaxPC with W = 1) is obtained. Using a known reduction
from MaxPC with arbitrary number of wavelengths to MaxPC with W = 1,
a 2.22-approximation for MaxPC with arbitrary number of wavelengths is
derived.

While path coloring problems have a mainly graph theoretic flavor, the
problem of call scheduling in communication networks with bandwidth reser-
vation is closely related to multiprocessor scheduling and bin packing. When
a call is established, the required bandwidth is reserved on all links along a
path from sender to receiver for the duration of the call. The communication
network is represented by a graph with edge capacities. A call is specified
by a pair of vertices, a bandwidth requirement, and a call duration. Call
scheduling is the problem of assigning paths and starting times to calls in
a communication network such that the sum of bandwidth requirements of
simultaneously active calls using the same link does not exceed the capacity
of that link. Upper and lower bounds on the approximation ratio achieved by
variants of the List-Scheduling (LS ) algorithm are obtained for call schedul-
ing in star and tree networks. The variants for calls with arbitrary duration
work also if the duration of a call is not known in advance; hence, these vari-
ants are batch-style on-line algorithms. For unit duration, the approximation
ratio of LS in stars is shown to be at most 4.875 for arbitrary lists and at
most 22

3
if the list of calls is sorted according to non-increasing bandwidth



iii

requirements. For arbitrary, unknown duration, the competitive ratio of LS
is proved to be at most 5. In tree networks with n nodes, a variant of LS for
calls with unit duration has approximation ratio at most 6, and a variant for
calls with arbitrary, unknown duration has competitive ratio at most 5 log n.

On the one hand, the obtained results show the difficulty of computing
optimal solutions for a number of combinatorial optimization problems con-
cerning the allocation of resources in communication networks. These results
resolve substantial open questions regarding the boundary between tractable
and intractable versions of the problems under consideration. On the other
hand, several efficient approximation algorithms are presented and analyzed;
they do not always compute an optimal solution, but a solution that can
be worse than the optimal solution only by a small (often constant) factor.
These algorithms and their analysis give important insight into the practical
benefit of different network architectures and the network utilization achiev-
able in the worst case. Furthermore, the algorithms can be used as a basis
for the implementation of resource allocation methods that perform well in
practice for optical networks and for networks with bandwidth reservation.
Finally, the analysis of the studied list-scheduling variants provides a justifi-
cation for the use of simple heuristics, which are often preferred in practice
due to ease of implementation, under certain conditions.





Acknowledgments

This work would have been impossible without the help from a number of
people. First of all, I am deeply indebted to my advisor Ernst Mayr for
invaluable guidance and support throughout the past four years, for teaching
me insight into a number of advanced concepts and ideas, for giving me
the motivation and opportunity to investigate challenging problems and try
harder to solve them, and for many things more. I would also like to thank
all my colleagues and ex-colleagues at the Chair for Efficient Algorithms and
at TUM in general for assistance with numerous issues and for making the
working environment here very pleasant and enjoyable at all times.

Furthermore, I want to express my sincere gratitude to Klaus Jansen for
the many stimulating ideas, helpful discussions, and fruitful collaborations.
He deserves a substantial share of the credits for the results presented in
this thesis; many of them were derived only after he initiated to study the
problems, suggested promising ways to tackle them, or came up with the
right ideas that led to a solution.

I am also grateful to numerous other colleagues in the field, who have
been extremely helpful by readily providing preliminary versions of their
own results when they were not yet published, by sharing ideas regarding
possible improvements of my work, or by engaging in stimulating discussions.
Among many others, I want to thank Anja Feldmann, Vijay Kumar, Christos
Kaklamanis, Stefano Leonardi, Aris Pagourtzis, Pino Persiano, Adi Rosén,
and Alexander Schrijver.

Besides, I would like to gratefully acknowledge the support from the Ger-
man Research Foundation (DFG), who has been funding my position at TUM
under grant SFB 342 TP A7.

Finally, I want to dedicate this thesis to my parents, who have always
supported me in the best of all ways, and, above all, to my wife Lai-Chong,
whose love brings sunshine and happiness into my life on every single day
and without whom everything else would be worthless.

v





Contents

Abstract i

Acknowledgments v

1 Introduction 1
1.1 Technological Background . . . . . . . . . . . . . . . . . . . . 2

1.1.1 All-Optical Networks . . . . . . . . . . . . . . . . . . . 3
1.1.2 ATM Networks . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 11
2.1 Notation and Basic Concepts . . . . . . . . . . . . . . . . . . 11

2.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Graph Searching . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Vertex Coloring . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Coloring of Paths . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Graph Matching and Edge Coloring . . . . . . . . . . . 18

2.2 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Path Coloring and Path Packing . . . . . . . . . . . . 25
2.3.2 MaxPC, MaxPP, and Multicommodity Flow . . . . . . 33
2.3.3 Call Scheduling . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Scheduling of File-Transfers . . . . . . . . . . . . . . . 36
2.3.5 Multiprocessor Scheduling . . . . . . . . . . . . . . . . 37

3 Complexity of Path Coloring and Call Scheduling 39
3.1 Path Coloring in Tree Networks . . . . . . . . . . . . . . . . . 40

3.1.1 Undirected Trees . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Bidirected Trees . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Path Coloring in Ring Networks . . . . . . . . . . . . . . . . . 56
3.3 Arbitrary Duration and Bandwidth . . . . . . . . . . . . . . . 59

vii



viii CONTENTS

4 Path Coloring in Trees 63
4.1 Path Coloring in Undirected Trees . . . . . . . . . . . . . . . . 63
4.2 Path Coloring in Bidirected Trees . . . . . . . . . . . . . . . . 64

4.2.1 Outline of Algorithm . . . . . . . . . . . . . . . . . . . 65
4.2.2 Partitioning and Coloring Strategy . . . . . . . . . . . 70
4.2.3 Partitioning into Triplets (Simple Cases) . . . . . . . . 86
4.2.4 Partitioning into Triplets (Difficult Cases) . . . . . . . 89
4.2.5 Dealing with L = 3` + 1 and L = 3` + 2 . . . . . . . . 94
4.2.6 An Optimal Local Greedy Algorithm . . . . . . . . . . 96
4.2.7 Implementation and Experiments . . . . . . . . . . . . 97

5 MaxPC and MaxPP in Bidirected Trees 101
5.1 Complexity of MaxPC and MaxPP . . . . . . . . . . . . . . . 102

5.1.1 Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.2 W and ∆ Bounded by a Constant . . . . . . . . . . . . 103
5.1.3 Arbitrary Maximum Degree ∆ . . . . . . . . . . . . . . 105
5.1.4 Arbitrary Number W of Wavelengths . . . . . . . . . . 107

5.2 Approximating MaxPP . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Approximation Algorithms for W = 1 . . . . . . . . . . . . . . 113

5.3.1 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Details of the First Pass . . . . . . . . . . . . . . . . . 121

5.4 Approximating MaxPC for Arbitrary W . . . . . . . . . . . . 161

6 Analysis of List-Scheduling Variants 163
6.1 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.1.1 List-Scheduling . . . . . . . . . . . . . . . . . . . . . . 165
6.1.2 First-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Approximation Results for Stars . . . . . . . . . . . . . . . . . 167
6.2.1 Unit Bandwidth Requirements . . . . . . . . . . . . . . 169
6.2.2 Arbitrary Bandwidth, Unit Duration . . . . . . . . . . 171
6.2.3 Arbitrary Bandwidth and Duration . . . . . . . . . . . 188

6.3 Approximation Results for Trees . . . . . . . . . . . . . . . . . 192
6.3.1 Arbitrary Bandwidth, Unit Duration . . . . . . . . . . 192
6.3.2 Arbitrary Bandwidth and Duration . . . . . . . . . . . 193

7 Conclusion 197
7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 197
7.2 Directions for Future Research . . . . . . . . . . . . . . . . . . 199

Bibliography 203



Chapter 1

Introduction

The demand for communication networks with ever-increasing capacity and
service quality is the driving force behind ongoing fruitful research on physi-
cal network technology, flexible protocols, and efficient resource management.
Over the past 30 years, users’ telecommunication needs have exploded. In
the early 1970s, the highest-speed private lines were 9.6 kbps (kilobits per
second); today, private lines at 45 Mbps (megabits per second) are widely
available. Within the public network in the USA, the 1.544 Mbps facilities of
the 1970s have been replaced by 2.4 Gbps (gigabits per second) Synchronous
Optical Network (SONET1) facilities after the advent of Broadband ISDN
(Broadband Integrated Services Digital Network, B-ISDN) [RS92]. Now, ap-
plications that require transfer rates of several Gbps are emerging. Such po-
tential gigabit applications include supercomputer networking, remote visu-
alization, medical imaging, collaborative group work, HDTV (high-definition
television), virtual reality, and telepresence. Fast and powerful networks are
required on the LAN (local area network), MAN (metropolitan-area net-
work), and WAN (wide area network) levels. The most promising technology
for the implementation of gigabit networks are so-called all-optical networks,
i.e., networks in which data is transmitted on lightwaves through optical fiber
and no optical-to-electrical conversions are required at intermediate nodes on
the way from sender to receiver.

Changing characteristics of applications have also led to a shift from
packet switching to (virtual) circuit switching for the transmission of digital
data. Traditionally, telephone networks were realized by circuit switching (a
connection is established by reserving a channel on all links of a path be-
tween the communication endpoints), but digital data was transmitted using
packet switching (a message is split into small packets that are forwarded

1The SONET optical transmission standard is referred to internationally as the Syn-
chronous Digital Hierarchy (SDH).

1



2 CHAPTER 1. INTRODUCTION

from node to node until they reach the receiver). While packet switching is
appropriate for file transfers or electronic messages, today more and more
applications require connections with guaranteed available bandwidth and
delay characteristics. For example, if moving image sequences (animations,
movies) are transmitted in multimedia applications (e.g., multimedia tele-
conferencing), it is essential that all data arrive at the receiver in a timely
fashion. Because of such applications, networks with guaranteed quality of
service are becoming increasingly important. In such networks, a connection
request can specify its required bandwidth and other service parameters, and
the network guarantees that the requested bandwidth and service quality will
be available to the connection as long as it remains active. This is achieved
by allocating resources along a path from sender to receiver; it can be viewed
as establishing a virtual circuit.

In all-optical networks and in networks with guaranteed quality of service,
resource management is an important issue. Resources must be reserved for
every established connection, and a bad resource management strategy may
lead to reduced utilization and throughput of the network. In particular,
call admission (deciding whether to accept or reject a connection request),
call scheduling (establishing all connections in a set of connection requests
and completing them in minimum time), and wavelength routing (assigning
paths and wavelengths to connection requests in all-optical networks with
wavelength-division multiplexing) are problems that must be addressed. We
study several combinatorial optimization problems related to call admission,
call scheduling, and wavelength routing. The focus of the work is on sim-
plified combinatorial models that capture the essential characteristics of the
diverse problems encountered in practice. The types of results that we will de-
rive are complexity results (determining which problems areNP-hard [GJ79]
and which can be solved in polynomial time) and algorithms (polynomial-
time optimal algorithms and, predominantly, approximation algorithms with
provable performance guarantees).

1.1 Technological Background

In this section, we briefly explain certain aspects regarding the technology of
all-optical networks and of networks with guaranteed quality of service. The
material in this section is not a prerequisite for understanding the remaining
chapters of this thesis; it should rather serve as motivation for studying the
combinatorial optimization problems defined in Section 2.2.



1.1. TECHNOLOGICAL BACKGROUND 3

1.1.1 All-Optical Networks

Three generations of physical-level technology for communication networks
can be defined [Gre91]. For networks of the first generation, up to the early
1980s, fiber-optic technology was not available, and copper was the main
medium for transmission of data. Networks of the second generation, still
widely in use today, are mainly characterized by upgrading individual copper
links to optical fiber. These networks take advantage of the higher bandwidth
and smaller bit-error rate of optical fiber on individual links, but all switching
in the network nodes is still done electronically. The topologies and protocols
are the same as those used in the first generation. Finally, networks of the
third generation, which have begun to emerge at the time of this writing,
will use fiber for its unique properties. The bottleneck caused by electronic
switching is overcome by doing all switching optically (photonic switching).
The key advantage of optical switching is that it avoids multiple optical-
to-electrical conversions and electronic switching operations at intermediate
nodes along a connection.

A single fiber-optic cable offers bandwidth of about 25,000 to 30,000 GHz.
It can potentially carry information at the rate of several terabits per second.
No electronic device can process data at such speeds. In order to utilize
the potential of optical fiber, wavelength-division multiplexing (WDM) is
used [CNW90, CHK+96]. The bandwidth is partitioned into a number of
channels at different wavelengths. A single channel supplies bandwidth in the
range of gigabits per second, and several signals can be transmitted through
a fiber link simultaneously on different channels. The typical number of
channels (wavelengths) available in WDM systems today ranges from as few
as two to as many as several hundred [VD93, Ram93], with numbers from
40 to 60 appearing practical. Tunable lasers or arrays of fixed-wavelength
lasers are used to generate the laser beams that are to be transmitted on
the optical channels [Bra90]. Add/drop multiplexers are employed at the
network nodes to insert lightwaves into the fiber or to extract them. Fixed-
wavelength or tunable filters and receivers are used at the receiving side of a
transmission. The electronic equipment is not required to operate faster than
a single optical channel; thus, WDM allows existing electronic equipment to
fully use the enormous potential of optical fiber.

Several architectures for all-optical networks have been proposed. We
assume an architecture with pairs of unidirectional fiber links or with single
bidirectional links between adjacent nodes of the network and with reconfig-
urable wavelength-selective switches (also known as generalized switches) in
the nodes. No distinction between access nodes and routing nodes is made.
A reconfigurable wavelength-selective switch is capable of splitting the sig-



4 CHAPTER 1. INTRODUCTION

nals on incoming links according to their wavelengths and switching them
onto arbitrary outgoing links. While setting up the configuration of such a
switch is costly (it takes around 50ms for switches manufactured today), it
can switch incoming signals onto outgoing links virtually without any delay.
The routing of a signal depends only on its wavelength (wavelength routing);
no inspection of packet headers etc. is required. The latency of an all-optical
network is therefore limited only by the propagation delay of light in fiber.
Light travels in fiber at a speed of about 2×108m/s; hence, a distance of, say,
5,000 meters cannot be traveled faster than 25 microseconds. All-optical net-
works with reconfigurable wavelength-selective switches have been proposed
and studied, for example, in [CGK92, VD93, RS95].

Most optical switches that are built today do not offer wavelength con-
version; a signal that enters the switch on one wavelength must leave the
switch on the same wavelength. All-optical networks with reconfigurable
wavelength-selective switches, but without wavelength conversion are called
wavelength-selective (WS) networks. In WS networks, a connection must use
the same wavelength on the whole path from transmitter to receiver. Due to
interference, no two signals may be transmitted through a fiber link on the
same wavelength. Hence, a wavelength must be reserved for a connection
on all links on a path from transmitter to receiver; the path is then called a
lightpath.

Switches with wavelength conversion capabilities are a field of ongoing
research. At the time of this writing, wavelength conversion technology is
still considered relatively immature and expensive [BDO+98]. However, it
is conceivable that technological progress will make these devices practical
in the future. A switch with full wavelength conversion capabilities can
switch any incoming signal onto any outgoing link and at the same time
change its wavelength into any other wavelength. All-optical networks with
full wavelength conversion switches are called wavelength-interchanging (WI)
networks. In a WI network, a connection can use different wavelengths on
different links of its transmitter-receiver path.

The complexity of building switches with full wavelength conversion ca-
pabilities is high; therefore, switches with limited wavelength conversion are
also considered. In particular, switches that can convert every wavelength
only to a subset of the other wavelengths or even only to adjacent wave-
lengths may be more practical than switches with full wavelength conversion
capabilities.

In all-optical WDM networks, the number of channels (wavelengths) is
a scarce resource. The cost and complexity of the switches and add/drop
multiplexers grow substantially with increasing number of wavelengths.

A set of connections in a WS network can be established if each connection



1.1. TECHNOLOGICAL BACKGROUND 5

is assigned a transmitter-receiver path and one of the available wavelengths
such that connections sharing a link receive different wavelengths. This gives
rise to two kinds of optimization problems. First, it is desirable to establish
a given set of connection requests with a minimum number of wavelengths.
This problem is relevant, for example, when the provider designs the net-
work and decides which add/drop multiplexing devices should be employed.
We view wavelengths as colors and model this routing and wavelength as-
signment problem as the path coloring problem (all optimization problems
mentioned in this section will be defined formally in Section 2.2). The second
problem arises when the capacity of an existing network is not sufficient for
establishing all requests in a given set of connection requests simultaneously.
If the network supports a certain number of wavelengths, the goal is to es-
tablish as many of the connection requests as possible simultaneously, while
rejecting or deferring the remaining requests. This problem is modelled by
the MaxPC problem. Solutions to these problems of efficient wavelength
allocation have substantial importance for the future development of WDM
technology.

In a WI network, a set of connections can be established if they are
assigned transmitter-receiver paths such that no link is used by more con-
nections than the number of available wavelengths. For WI networks, we
encounter the same two kinds of optimization problems as for WS networks;
here, we refer to them as path packing and MaxPP, respectively.

At the WAN level, all-optical networks would typically be employed by
big telecommunications providers. The network connects nodes located in
different parts of a country or in different countries. The connection requests
correspond to connectivity requirements predicted by the provider from infor-
mation collected about telephone calls and data transmissions over a period
of time. The availability of optical amplifiers (using Erbium-doped fiber)
ensures that large distances do not cause a problem for all-optical networks.

The application of all-optical networks for distributed computing seems
very promising as well [VD93]. Lightpaths can be used to establish a virtual
topology on top of the underlying physical topology of the network. For
example, a regular topology like hypercube or grid may be imposed on nodes
interconnected by an irregular all-optical network; it suffices to establish
a lightpath for each connection of the virtual topology. Different virtual
topologies can be achieved by reconfiguring the switches of the network.
Once a certain virtual topology is established, the communication between
the nodes can take place as if the links of the virtual topology were physically
present; no delay beyond the propagation delay of light in fiber is introduced
by the fact that a link of the virtual topology is realized by a lightpath in
the physical topology.



6 CHAPTER 1. INTRODUCTION

A different architecture for all-optical WDM networks is based on the
broadcast-and-select paradigm. For example, the passive optical star topol-
ogy has received a lot of attention. A number of nodes are connected to a
central hub. All the transmissions from the various nodes are combined in
the central hub (a WDM passive star coupler), and the mixed optical in-
formation is broadcast to all nodes. Besides the star topology, linear bus
and tree structures have been proposed. Broadcast-and-select networks can
be classified into single-hop systems and multihop systems. The former are
surveyed in [Muk92a], the latter in [Muk92b]. Unlike the all-optical networks
we study, broadcast-and-select networks do not allow spatial reuse of wave-
lengths. [Ram93] explains the technology and compares the respective advan-
tages and disadvantages of broadcast-and-select networks and wavelength-
routing networks.

While WDM appears the most promising alternative for employing all-
optical networks, there is a competing space-division multiplexing (SDM)
technology. Here, several parallel single-wavelength links are installed be-
tween adjacent nodes. All data is transmitted on the same wavelength. The
advantage is that there are no wavelength assignment problems for SDM net-
works; a disadvantage is the cost for the additional fiber cables, especially
for MAN and WAN distances. It is also conceivable that SDM and WDM
are combined in an all-optical network. Architectural and technological con-
cepts for corporate optical backbone networks using low-cost components and
a combination of WDM rings and SDM rings are developed in the COBNET
project [BDO+98], for example. One of the factors that determine which
of the proposed variants of all-optical networks (with respect to architec-
ture, topology, wavelength conversion capabilities, multiplexing technique,
etc.) will become the standard technology for high-performance networks of
the future is the quality of resource allocation strategies for the individual
variants.

A number of books cover the application of optics to computer science:
the book by McAulay [McA91] presents the basics of optics in a comprehen-
sive way; the books by Green [Gre93] and Mukherjee [Muk97] discuss optical
communication networks.

1.1.2 ATM Networks

One example of networks with guaranteed quality of service are ATM net-
works. A comprehensive introduction to the concepts and architecture of
ATM networks can be found in [Vet95]. ATM has become increasingly pop-
ular over the past few years, and it has been accepted as a standard for
B-ISDN. ATM stands for asynchronous time-division multiplexing or asyn-



1.1. TECHNOLOGICAL BACKGROUND 7

chronous transfer mode [ATM95]. In an ATM network, every connection
request specifies a certain traffic type (constant bit-rate, variable bit-rate,
or available bit-rate), the required bandwidth (sustained bandwidth, peak
bandwidth, and burst length), and the preferred quality of service (mean cell
delay, cell delay variation and cell loss ratio). If the connection is established,
the network guarantees that the required resources will be available to the
connection as long as it remains active.

Although several problems related to their efficient application have not
yet found satisfactory solutions, it seems clear that ATM networks will be
among the high-speed networks of the future. Communication in wide area
networks as well as in local area networks can be done with ATM. Hence,
WANs and LANs can use the same basic communication protocol, and it
will no longer be necessary to have expensive devices that transform LAN
traffic into WAN traffic and vice versa. ATM is currently being used for
high-speed backbone networks on the MAN and WAN level, and is becoming
increasingly important for high-performance LANs as well.

In ATM networks all data is transmitted in small, fixed-length packets
called cells. Each cell contains 48 bytes of user data and 5 bytes of header
information. Typical transmission speeds of physical links in ATM networks
are 155 Mbps, 622 Mbps, or 2.4 Gbps. This bandwidth can be shared by
different virtual connections with asynchronous time-division multiplexing:
The cells belonging to different connections are interleaved and transmitted
over the same link one by one. ATM switches can receive cells on many
incoming links simultaneously and forward them to outgoing links with very
little delay. Routing in ATM networks is based on the concepts of virtual
channels and virtual paths; for details, please refer to one of the introductory
textbooks on ATM networks (e.g., [Cla97]).

The most striking advantages of ATM networks over conventional net-
works include scalability, high bandwidth, guaranteed quality of service,
statistical multiplexing, and the flexibility to support a variety of traffic
types with different service requirements in one network (traffic integra-
tion) [KW95]. The high bandwidth and guaranteed quality of service in
ATM networks are essential for emerging applications like multimedia net-
working [IMI+95], high-definition distance learning (HDDL) [SDRF95], or
real-time medical imaging [RS92]. In addition, the high bandwidth ATM
brings into LANs makes workstation clusters an attractive alternative to
dedicated parallel computers for parallel and distributed computing.

The problem that still needs to be solved is how to utilize an ATM net-
work efficiently in an environment where heterogeneous connection requests
compete for the resources in the network.

We consider a simplified model of ATM networks (or other networks with



8 CHAPTER 1. INTRODUCTION

similar characteristics) that we call networks with bandwidth reservation. In
such networks, every link has a certain capacity (bandwidth), and every
connection request (call) specifies a certain bandwidth requirement. The
network guarantees that once the connection is established, the requested
bandwidth is available to it as long as it remains active. Consequently, this
bandwidth must be reserved on all links along a path that connects the
endpoints of the call in the network.

Note that our model of networks with bandwidth reservation applies to
ATM networks directly if only constant bit-rate connections are allowed.
(In the context of ATM, a constant bit-rate connection is a connection that
specifies a certain bit-rate in advance and then transmits data at exactly
that bit-rate as long as the connection is active.) In practice, one wants to
allow available bit-rate connections as well; these are connections that have
no timing constraints and can tolerate arbitrary delays. Such available bit-
rate connections are appropriate for electronic messages and file transfers,
for example. They can be handled without interfering with constant bit-rate
connections by an appropriate congestion control mechanism; hence, we can
ignore available bit-rate connections in our model.

Another type of connections in ATM networks are variable bit-rate con-
nections. They require the peak bandwidth only for short time intervals
(bursts), while most of the time data is transmitted at a lower rate (sus-
tained bandwidth). Connections with such characteristics arise from trans-
mission of compressed audio or video, for example. If many such variable
bit-rate connections share the bandwidth of a link, statistical multiplexing
is effective: it is not necessary to reserve the peak bandwidth for each indi-
vidual connection, because it is unlikely that all the connections have their
bursts at the same time. In our model, we do not deal with variable bit-rate
connections.

Given a set of calls in a network with bandwidth reservation, it is desirable
to complete all the calls in minimum time. This can help utilize the network
efficiently and speed up distributed applications. For each call, it must be
determined when it should be established and which path it should take in
the network. Once a call is established, it remains active for a period of time
that depends on the call and that may be unknown in advance. Preemption
(interrupting a call after it has been established) and rerouting (changing the
path for a call after it has been established) are not allowed. While a call
is active, it occupies its requested bandwidth on all links along its path; the
sum of the bandwidth requirements of different active calls using a link must
not exceed the capacity of that link. The problem of assigning paths and
starting times to calls under these constraints with the goal of minimizing
the latest completion time is modelled as call scheduling .



1.2. THESIS OUTLINE 9

1.2 Thesis Outline

In Chapter 2, Preliminaries, the notation and concepts used throughout
this thesis are introduced. Precise definitions of the optimization problems
considered in subsequent chapters are given here as well. This chapter also
includes an extensive review of related work.

Chapters 3 to 6 present our results with rigorous proofs. Chapter 3,
Complexity of Path Coloring and Call Scheduling, investigates the computa-
tional complexity of path coloring and call scheduling in different restricted
settings. It is shown that most variants are NP-hard, and polynomial-time
optimal algorithms are presented for some special cases.

The wavelength assignment problem in all-optical tree networks is tack-
led in Chapter 4, Path Coloring in Trees. For undirected tree networks of
arbitrary degree, an approximation algorithm with absolute approximation
ratio 4/3 and asymptotic approximation ratio 1.1 is derived from a known
approximation algorithm for edge coloring of multigraphs. For bidirected
tree networks of arbitrary degree, an approximation algorithm requiring at
most d(5/3)Le colors for sets of directed paths with maximum load L is pre-
sented. This is optimal within the class of local greedy algorithms, to which
the algorithm and all other known algorithms for the problem belong.

Chapter 5, MaxPC and MaxPP in Bidirected Trees, deals with the call-
admission problem in all-optical networks. MaxPC is a variant of the path
coloring problem in which the number of available colors (wavelengths) is
limited and the goal is to color a maximum cardinality subset of the given
paths using the available colors. MaxPP is another variant that applies to
optical networks with full wavelength conversion. It is shown that MaxPC
and MaxPP can be solved optimally in polynomial time if the degree of the
tree and the number of available wavelengths are both bounded by a con-
stant. If one of these two parameters can be arbitrary, both problems are
proved NP-hard. For MaxPP, a 2-approximation algorithm is presented for
arbitrary number of available wavelengths. In the case of one available wave-
length, MaxPC and MaxPP are equivalent and correspond to the maximum
edge-disjoint paths problem. For every fixed value of ε > 0, a polynomial-
time (5/3+ε)-approximation algorithm for the maximum edge-disjoint paths
problem in bidirected trees is presented. Using a known reduction from
MaxPC with many wavelengths to MaxPC with one wavelength, an algo-
rithm with approximation ratio 2.22 is obtained for MaxPC with arbitrary
number of wavelengths.

Approximation algorithms for call scheduling in networks with bandwidth
reservation are studied in Chapter 6, Analysis of List-Scheduling Variants.
Calls with variable bandwidth requirements and either unit duration or ar-



10 CHAPTER 1. INTRODUCTION

bitrary duration are considered. It is shown that variants of List-Scheduling,
which are simple and easy to implement, have small, constant approxima-
tion ratio in stars and trees for calls with unit duration. For calls with
arbitrary duration, batch-style on-line algorithms, which do not require ad-
vance knowledge of the duration of a call, with competitive ratio 5 for stars
and competitive ratio 5 log n for trees with n nodes are presented.

Finally, Chapter 7, Conclusion, summarizes the obtained results and dis-
cusses their implications. A number of possible extensions and directions for
future research are suggested.

Most of the results presented in Chapters 3 to 6 have been obtained in
joint work with Klaus Jansen. Preliminary versions of these results were
announced at various conferences. In particular, the complexity results for
path coloring and call scheduling from Chapter 3 were presented in part
at PASA’96 [EJ97c] and in part at HICSS-30 [EJ97a]. From the results
of Chapter 4, the approximation algorithm for path coloring in undirected
trees was also presented at PASA’96 [EJ97c], and two preliminary versions of
the approximation algorithm for path coloring in bidirected trees were pre-
sented as joint papers with Klaus Jansen, Christos Kaklamanis, and Pino
Persiano at a DIMACS Workshop on Network Design [EJKP98] and at
ICALP’97 [KPEJ97]. The modifications that allow a more efficient imple-
mentation, which are integrated into the presentation in Section 4.2, as well
as experimental results were reported at WAE’98 [EJ98a]. The complexity
and approximation results for MaxPC and MaxPP in bidirected trees from
Chapter 5 are announced at ISAAC’98 [EJ98b]. Preliminary results regard-
ing the analysis of list-scheduling variants in Chapter 6 were presented at
WG’97 [EJ97b].



Chapter 2

Preliminaries

2.1 Notation and Basic Concepts

The set of natural numbers (excluding zero) is denoted by N , and N0 =
N ∪ {0}. Furthermore, Q is the set of rational numbers. By Q+ we denote
the set of positive rational numbers. The cardinality of a set M is denoted
by |M |. The power-set of a set M , i.e., the set of all subsets of M , is denoted
by 2M . All logarithms are base 2.

An optimization problem P is given by a set I of instances (inputs), a
set S of solutions (outputs), a function s : I → 2S mapping instances to
sets of feasible solutions, a function val : I × S → N0 measuring the quality
val(I, S) of solution S ∈ s(I) for instance I ∈ I, and a goal min or max.
If the goal is min, one wants to find a solution S ∈ s(I) that minimizes
val(I, S); if the goal is max, a solution S ∈ s(I) that maximizes val(I, S) is
desired. We consider only optimization problems for which it is easy to check
whether I ∈ I for a given I, to check whether S ∈ s(I) for given I and S,
and to compute val(I, S) for given I and S. Further details regarding the
formal definition of optimization problems (and a comprehensive coverage
of the interrelation between approximation algorithms and probabilistically
checkable proofs) can be found in [MPS98].

When we define particular optimization problems later on, we will present
them in a more informal way, but it should always be clear how they can fit
in the framework outlined above.

For considerations regarding the time complexity of optimization prob-
lems or decision problems, we use the model of a standard Turing machine
as defined, e.g., in the book by Papadimitriou [Pap94]. We assume that in-
stances of the optimization problems under consideration are encoded using
an alphabet and any reasonable encoding; in particular, numbers are encoded

11



12 CHAPTER 2. PRELIMINARIES

using a logarithmic number of bits. However, reductions will be described at
a more abstract level, keeping in mind that it would be straightforward to
derive Turing machines executing the reductions in polynomial time.

For the presentation of algorithms, we use the RAM model of computa-
tion. The time complexity of problems in the RAM model and in the Turing
machine model is polynomially related. For a discussion of the RAM model
and for further prerequisites regarding the specification and analysis of algo-
rithms the reader is referred to one of the available introductory textbooks
on the design and analysis of algorithms, e.g., the book by Aho, Hopcroft,
and Ullman [AHU76].

A decision problem P is NP-complete if it is in NP and there is a
polynomial-time many-one reduction from every other problem in NP to P .
The decision version of an optimization problem P is the decision problem
obtained by adding a value K ∈ N0 to every instance I and asking the yes/no
question “Is there an S ∈ s(I) such that val(I, S) ≥ K?” in case of a maxi-
mization problem or “Is there an S ∈ s(I) such that val(I, S) ≤ K?” in case
of a minimization problem. We call an optimization problem P NP-hard if
its decision version is NP-complete. For all optimization problems consid-
ered in this thesis it is easy to see that the decision version is in NP; hence,
we will prove NP-hardness by reducing known NP-complete problems to
the decision versions of our optimization problems. We refer the reader to
the book [GJ79] by Garey and Johnson for an introduction to the theory of
NP-completeness.

A polynomial-time algorithm that always produces an optimal solution
for a given optimization problem is called an exact algorithm. The existence
of an exact algorithm for an NP-hard optimization problem would imply
P = NP. Therefore, one is interested in polynomial-time approximation
algorithms for NP-hard optimization problems.

An approximation algorithm A for an optimization problem P is a de-
terministic algorithm whose running-time is polynomial in the size of the
input and that always computes a feasible solution. Denote by A(I) the
value of the output of A on input I, i.e., A(I) = val(I, y) where y ∈ s(I)
is the output produced by A on input I. Denote by OPT (I) the value of
an optimal solution to I, i.e., OPT (I) = maxS∈s(I) val(I, S) for maximiza-
tion problems and OPT (I) = minS∈s(I) val(I, S) for minimization problems.
If P is a maximization problem, A has (absolute) approximation ratio ρ if
OPT (I)/A(I) ≤ ρ for all inputs I. Similarly, if P is a minimization problem,
A has (absolute) approximation ratio ρ if A(I)/OPT (I) ≤ ρ for all inputs I.
If A has approximation ratio ρ, we call A a ρ-approximation algorithm. The
approximation ratio of an algorithm is often referred to as its performance
ratio or its performance guarantee.



2.1. NOTATION AND BASIC CONCEPTS 13

Sometimes we are also interested in the asymptotic approximation ratio
of an algorithm. For a minimization problem, an algorithm A has asymp-
totic approximation ratio ρ if lim supOPT (I)→∞ A(I)/OPT (I) ≤ ρ. For a
maximization problem, an algorithm A has asymptotic approximation ra-
tio ρ if lim supOPT (I)→∞ OPT (I)/A(I) ≤ ρ. An overview of approximation
algorithms for NP-hard problems can be found in the book [Hoc97] edited
by Hochbaum.

As approximation algorithms usually require that the complete input is
given to the algorithm in advance, they can be classified as off-line algo-
rithms. For the optimization problems considered in this thesis, the input
will (in part) consist of a set of connection requests. For some of the applica-
tions, it is realistic to assume that the connection requests arrive dynamically
and the algorithm must process each request without knowledge about fu-
ture requests; algorithms that work in such a scenario are called on-line
algorithms. For other applications, it is realistic to assume that all connec-
tion requests are known to the algorithm in advance, but the duration of a
connection is unknown until its completion. Such algorithms that work for
connection requests with unknown duration are called batch-style on-line al-
gorithms, because they receive a batch of connection requests with unknown
duration as input. Please refer to the book by Borodin and El-Yaniv [BEY98]
and the book edited by Fiat and Woeginger [FW98] for an introduction to
on-line algorithms and an overview of the current state of the art.

The competitive ratio measures the worst-case approximation ratio of an
on-line algorithm or batch-style on-line algorithm [ST85]. For a scheduling
problem where the makespan (schedule length) is to be minimized, an on-
line algorithm has competitive ratio ρ if it always produces a schedule whose
makespan is at most a factor ρ longer than the makespan of the optimal
(off-line) schedule.

We will mainly be concerned with off-line algorithms. The batch-style on-
line scenario will be studied only in Chapter 6, where we assume that all calls
are given to the call scheduling algorithm in advance, but that the duration
of a call is unknown. As observed by Feldmann et al. [FMS+95, Fel95], a
batch-style on-line algorithm for call scheduling can easily be converted into
a fully on-line algorithm, i.e., an algorithm that can deal with additional calls
that arrive on-line while other calls have already been scheduled. A result
due to Shmoys, Wein, and Williamson [SWW91] implies that this conversion
increases the competitive ratio by no more than a factor 2. However, the
makespan is not the only important criterion for the quality of a schedule in
the fully on-line scenario; in addition, criteria like response time or network
throughput must be considered. We will not deal with the fully on-line
scenario.



14 CHAPTER 2. PRELIMINARIES

2.1.1 Graphs

Graphs are a very important concept that is used throughout this thesis.
For definitions that cannot be found here, we refer to any introductory
text on graphs or graph algorithms, e.g., the books by Berge [Ber76] and
Golumbic [Gol80].

An undirected graph G = (V, E) consists of a finite set V of vertices
(nodes) and a finite set E of edges, where each edge e ∈ E joins two distinct
vertices and is represented by a subset of V with cardinality 2. Two vertices
joined by an edge are called adjacent. All vertices adjacent to a given vertex
v are the neighbors of v. An edge e = {u, v} is said to be incident to u and
to v, and u and v are called its endpoints. The degree δ(v) of a vertex v
is the number of edges incident to it. The set of edges incident to vertex v
is denoted Γ(v). A vertex with degree 0 is called an isolated vertex. An
undirected graph is called simple if it does not contain parallel edges, i.e., if
every pair of vertices is joined by at most one edge. A class of graphs has
bounded degree if there is a constant c such that all vertices in graphs of the
class have degree at most c.

A path from u to v in G = (V, E) is a sequence

{v0, v1}, {v1, v2}, . . . , {vr−1, vr}
of edges such that v0 = u and vr = v. The length of a path is the number
of its edges. Unless specified otherwise, paths are assumed to be simple, i.e.,
we have vi 6= vj for 0 ≤ i < j ≤ r. A path with vi 6= vj for 1 ≤ i < j ≤ r and
v0 = vr is called a (simple) cycle. We say that a path runs from u to w if it
contains a path from u to w as a subpath. Two paths intersect if they share
at least one edge. An undirected graph is connected if there is a path from
any vertex to any other vertex. A mesh is a two-dimensional array of vertices
such that a vertex is adjacent to its neighbors in the same column and in
the same row. This definition can be extended to d-dimensional meshes in
the obvious way. A d-dimensional mesh with d = O(1) is called a mesh of
bounded dimension.

Connected undirected graphs without cycles are called trees. In a tree,
the vertices with degree 1 are called leaves, and the remaining vertices are
called internal vertices. A tree is a binary tree if all its vertices have degree
at most 3. A subset E ′ ⊆ E of the edge set of an undirected, connected
graph G = (V, E) is a spanning tree, if G′ = (V, E ′) is a tree. A star is a
special case of a tree that consists of a single vertex of arbitrary degree all
of whose adjacent vertices have degree 1. (This notion of star is completely
unrelated to the definition of a star graph as a graph whose vertices represent
permutations and whose edges correspond to transpositions exchanging the



2.1. NOTATION AND BASIC CONCEPTS 15

first element of a permutation with any other element [AHK87].) The graphs
obtained from stars by replacing edges by simple paths (i.e., by subdividing
edges) are called spiders.

An undirected graph is called a chain, if it consists of a single path, and
a ring, if it consists of a single cycle. Note that a chain is a special case of
a tree. A tree of rings is an undirected graph that can be constructed from
a single vertex by repeated application of the following operation: pick an
arbitrary vertex v of the graph, add a disjoint ring that contains only new
vertices, and identify v with an arbitrary vertex of the new ring. Observe
that a tree of rings can be turned into a tree by removing an arbitrary edge
from each ring used in its construction.

Any vertex r in a tree can be designated the root of the tree. In a rooted
tree, the level of a vertex v ∈ V is the length of the path from r to v. The root
r has level 0. The maximum level among all vertices of the tree is the depth
of the tree. For a vertex v 6= r the unique neighbor of v whose level is one
smaller than that of v is called the parent p(v) of v; all neighbors of v whose
level is one larger than that of v are called the children of v. Inductively, w
is an ancestor of v either if w = v or if w is an ancestor of p(v). We denote
by lca(u, v) the least common ancestor (lca) of two vertices u and v, i.e.,
the vertex with smallest level on the path from u to v. The lca of a path is
defined as the lca of its endpoints. The one or two edges on a path from u
to w that are incident to lca(u, w) are called the top edges of the path from u
to w. A path touches a vertex v if it begins at v, ends at v, or contains v as
an internal vertex.

In a rooted tree T = (V, E), the subtree rooted at a vertex v consists of v
and all vertices that have v as an ancestor as well as all edges between these
vertices. Only such subtrees will be considered. We say that a subtree of T
contains the path from u to w if lca(u, w) is a vertex in that subtree.

An undirected graph G = (V, E) is bipartite if V can be partitioned into
disjoint sets V1 and V2 such that each edge in E joins a vertex in V1 and
a vertex in V2. An undirected graph is regular if all its vertices have the
same degree. If this degree is k, the graph is called k-regular. A 2-regular
undirected graph is called a cycle cover, because its edges can be partitioned
into a number of vertex-disjoint cycles such that each vertex is contained in
exactly one cycle.

The edge-expansion of an undirected graph G = (V, E) is the minimum
ratio, taken over all non-empty subsets S ⊆ V with |S| ≤ |V |/2, of the
number of edges leaving S to the cardinality of S.

In a directed graph G = (V, E) every edge is directed from one vertex
(called tail) to another vertex (called head) and represented by an ordered
pair of vertices. (Note that directed edges are often called arcs in the liter-



16 CHAPTER 2. PRELIMINARIES

ature; we reserve that term for arcs of a circle.) The edges with tail v are
called outedges of v, and their number is the outdegree of v. The edges with
head v are called inedges of v, and their number is the indegree of v. We say
that a directed edge is incident to v if it is either an inedge or an outedge
of v.

Paths and cycles in directed graphs are defined as in undirected graphs;
consecutive vertices vi and vi+1 on a path or cycle are joined by a directed
edge (vi, vi+1). A directed path from u to w is sometimes written as (u, w),
if no confusion with the directed edge (u, w) is possible.

Directed graphs are called bidirected if they can be obtained from an
undirected graph by replacing each edge {u, v} by two directed edges (u, v)
and (v, u) with opposite directions. In particular, a bidirected tree is the graph
obtained from an undirected tree in this way. The undirected graph from
which a bidirected graph can be obtained is called its underlying undirected
graph. In a bidirected graph, the outdegree of each vertex equals its indegree;
hence, it is convenient to refer to the outdegree or indegree of a vertex simply
as its degree. Given an undirected or bidirected graph, we use ∆ to refer to
the maximum degree of the graph. Note that bidirected graphs are sometimes
called symmetric directed graphs in the literature.

In general we assume all graphs to be simple unless we speak of multi-
graphs. Multigraphs can have an arbitrary number of edges joining the same
pair of vertices. On occasion we will also allow multigraphs that have self-
loops (edges joining a vertex and itself). The size of a graph or multigraph
G = (V, E) is taken to be |V |+ |E|.

An undirected graph G = (V, E) is called a line graph if it can be obtained
from a multigraph G′ = (V ′, E′) (without self-loops) by setting V = E ′ and
inserting edges {e1, e2} into E for all edges e1, e2 ∈ E ′ that share an endpoint
in G′.

2.1.2 Graph Searching

Often it is necessary for an algorithm to visit all vertices of a graph G = (V, E)
in a certain order. For connected, undirected graphs, a search procedure of
the following general type can be used:

1. Pick a start vertex s ∈ V ; mark s as active and all other vertices as
unvisited.

2. While there is an active vertex v, pick such a vertex v, mark it as visited
and mark all its unvisited neighbors as active.



2.1. NOTATION AND BASIC CONCEPTS 17

Executing such a search procedure produces a rooted spanning tree of G: the
start vertex is the root of the tree, and a vertex v is the parent of a vertex w
if the procedure marked w active while visiting v.

Individual variants of this general search procedure differ with respect to
the selection rule for active vertices in Step 2. Depth-first search (dfs) always
chooses the vertex that has been marked active last among all presently
active vertices, while breadth-first search (bfs) chooses the active vertex that
has been marked active first. Seen from another viewpoint, dfs maintains
the active vertices in a stack (LIFO), while bfs employs a queue (FIFO). The
dfs procedure can also be implemented recursively, in which case the active
vertices are implicitly maintained in the activation records on the execution
stack of the program. In general, the stack-based implementation and the
recursive implementation of dfs do not necessarily visit the vertices of the
graph in exactly the same order unless the graph is a tree.

While the vertices of G are visited by a search procedure, numbers from
1 to |V | can be assigned to them according to the order in which they are
marked visited. If dfs is used, we refer to these numbers as dfs-numbers,
and to the order in which the vertices are visited as dfs-order. Similarly,
bfs-numbers and bfs-order can be defined. The spanning trees produced by
dfs and bfs are called dfs-trees and bfs-trees, respectively. The running-time
for dfs or bfs is linear in the size of the graph, i.e., O(|V |+ |E|).

2.1.3 Vertex Coloring

Given an undirected graph G = (V, E), a (vertex) coloring of G is an assign-
ment of colors to vertices such that vertices receive different colors if they are
joined by an edge. Usually, colorings are represented by functions mapping
V to N0 . A coloring S must satisfy

∀{u,v}∈ES(u) 6= S(v) .

A coloring is called a k-coloring if it uses at most k different colors, i.e., if
|S(V )| ≤ k. For general graphs, it is NP-hard to compute a coloring using
the smallest possible number of different colors [GJ79].

2.1.4 Coloring of Paths

Given a set P of simple paths in a graph G = (V, E), the load L(e) of an edge
e ∈ E is the number of paths in P that contain edge e. The maximum load L
of P in G is defined as L = maxe∈E L(e). The maximum load is also referred
to as the congestion of P in G. A coloring of a set of paths is an assignment



18 CHAPTER 2. PRELIMINARIES

of colors to paths such that paths receive different colors if they share an
edge. The conflict graph of a given set of paths is the graph with one vertex
for each path and an edge between two vertices if the corresponding paths
intersect. A coloring of a set of paths can be viewed as a vertex-coloring of
the conflict graph. For a coloring S : P → N0 , we denote by |S| the number
of different colors used in the coloring. Again, a coloring that uses at most k
colors is called a k-coloring. These definitions apply to undirected paths in
undirected graphs and to directed paths in directed graphs.

2.1.5 Graph Matching and Edge Coloring

Given an undirected graph G = (V, E), a subset M ⊆ E is called a matching
if no two edges in M share an endpoint. A maximum matching is a matching
of maximum cardinality. Maximum matchings can be computed in time
O(
√|V ||E|) in bipartite graphs [HK73] and in general graphs [MV80]. A

matching M in G is called a perfect matching if |M | = |V |/2, i.e., if every
vertex of G has an incident edge in M . In a regular bipartite graph G =
(V, E), there exists a perfect matching and it can be computed in O(∆|E|)
time [Sch98], where ∆ is the degree of the vertices in G.

The notion of b-matchings [GLS88, pp. 257–259] is a generalization of
the concept of matchings. Given an undirected graph G = (V, E) and a
function b : V → N0 , a b-matching is a function x : E → N0 such that∑

e∈Γ(v) x(e) ≤ b(v) for every vertex v ∈ V . In other words, every edge may
be included into the b-matching with arbitrary multiplicity, but the sum of
the multiplicities of edges incident to a vertex v must not exceed b(v). There
is a polynomial-time algorithm for computing a b-matching of maximum
weight, i.e., a b-matching for which

∑
e∈E w(e)x(e) is maximum, where w :

E → Q is an arbitrary weight function. In particular, if w(e) = 1 for all
e ∈ E, the algorithm produces a b-matching that maximizes the sum of the
multiplicities of the edges.

If the multiplicities with which edges can be included into the b-matching
are bounded by edge capacities c(e), the resulting problem is called the capac-
itated b-matching problem. Given an undirected graph G = (V, E), a function
b : V → N0 , and a capacity function c : E → N0 , a c-capacitated b-matching
is a function x : E → N0 such that x(e) ≤ c(e) for every edge e ∈ E and∑

e∈Γ(v) x(e) ≤ b(v) for every vertex v ∈ V . Like for the standard b-matching
problem, there is also a polynomial-time algorithm for computing a capac-
itated b-matching of maximum weight. In fact, the capacitated b-matching
problem can be reduced to the standard b-matching problem [GLS88, p. 258].

An edge coloring of an undirected graph or multigraph G = (V, E) is
an assignment of colors to edges such that no two edges incident to the



2.2. PROBLEM DEFINITIONS 19

same vertex receive the same color. The chromatic index χ′(G) of G is the
number of colors used in an optimal edge coloring, i.e., in an edge coloring
using the least possible number of different colors. Note that the problem of
edge coloring a multigraph G is equivalent to the problem of vertex coloring
the line graph of G. It is NP-complete to decide whether there is an edge
coloring of a given 3-regular graph using three colors [Hol81]. The edges of a
bipartite graph or multigraph, however, can always be colored using ∆ colors,
where ∆ is the maximum degree of the graph or multigraph. Furthermore,
such an edge coloring can be obtained in polynomial time. More precisely,
an optimal edge coloring for a bipartite multigraph with maximum degree ∆
and m edges can be obtained in time O(m log m) [CH82] or in time O(∆m)
[Sch98]. If a bipartite graph or multigraph G = (V, E) is ∆-regular, an edge
coloring of G corresponds to a partitioning of E into ∆ perfect matchings. In
Section 4.2 we will require a subroutine for edge coloring ∆-regular bipartite
multigraphs. To simplify notation, we use Tec(n, ∆) to denote the time for
edge coloring a ∆-regular bipartite multigraph with n vertices. Observe that
Tec(n, ∆) ≥ n∆/2 (as the multigraph contains n∆/2 edges) and Tec(n, ∆) =
O(min{∆2n, ∆n log(∆n)}) (using the algorithms mentioned above). Refer
to the book [FW77] by Fiorini and Wilson for a comprehensive treatment of
known results on edge coloring.

2.2 Problem Definitions

Now we are ready to formally define the optimization problems investigated
in the following chapters. All the problems are related to resource allocation
for connection requests or calls in a communication network. We model
the given communication network by a graph G = (V, E). Network nodes
correspond to vertices of the graph, and physical links correspond to edges.
In some cases, an undirected graph is a better model of the physical network,
in other cases a bidirected graph.1 All optimization problems introduced in
the following can be investigated for both variants of graphs, and in most
cases the relationship between the bidirected and the undirected case is less
direct than one might expect.

As motivated in Chapter 1, we distinguish two basic types of communica-
tion networks: networks with bandwidth reservation and all-optical networks.

In a network with bandwidth reservation, every edge e ∈ E has an as-
sociated capacity c(e) ∈ Q+ . Every connection request specifies a certain
bandwidth requirement, and this amount of bandwidth is reserved on all
links along a path between the communication endpoints of the connection

1We do not consider networks whose topology is an arbitrary directed graph.



20 CHAPTER 2. PRELIMINARIES

request at the time the connection is established. We refer to connection
requests and connections in networks with bandwidth reservation as calls. A
call c = (uc, vc, bc, dc) is given by its communication endpoints uc ∈ V and
vc ∈ V , its bandwidth requirement bc ∈ Q+ , and its duration dc ∈ N . If the
call c is established at time tc, it will complete at time tc + dc.

The call-scheduling problem is to find a minimum makespan schedule for a
given set of calls in a network with bandwidth reservation. Given a graph G,
edge capacities c(e) for all e ∈ E, and a set R of connection requests (calls),
a feasible schedule S assigns to each call c ∈ R a starting time tc ∈ N0 and
a path Pc from uc to vc in G such that ∀e∈E,t∈N0 :

∑
c∈Ae

t
bc ≤ c(e), where

Ae
t = {c ∈ R | e ∈ Pc ∧ tc ≤ t < tc + dc} is the set of calls using edge e that

are active at time t. The makespan |S| of a schedule S (also called the length
of the schedule) is the latest completion time of a call, i.e., maxc∈R tc + dc.

PROBLEM Call Scheduling
Input: graph G = (V, E) with edge capacities c : E → Q+ , set R of

calls
Output: assignment of paths and starting times to calls such that the

sum of the bandwidth requirements of simultaneously active
calls using the same edge does not exceed the capacity of that
edge

Goal: minimize the makespan of the schedule

Note that we assume that all calls are available at time 0 and do not
have to be completed by a certain deadline. There is no precedence relation
between the calls. We consider the off-line version of the call-scheduling
problem, where call duration is known in advance, as well as the batch-style
on-line version, where the duration of a call is unknown to the scheduling
algorithm.

We will only deal with the case that all edges have the same capacity
c(e) = 1. Furthermore, we will study restricted variants where we assume
that either all calls have the same bandwidth requirement bc = 1 or the same
duration dr = 1 or both. The most restricted variant, in which c(e) = 1
for all e ∈ E and bc = dc = 1 for all calls c, is equivalent to the rout-
ing and wavelength assignment problem in all-optical networks (optical net-
works with wavelength-division multiplexing and reconfigurable wavelength-
selective switches, as explained in Section 1.1.1) without wavelength conver-
sion: time steps correspond to wavelengths.

In all-optical networks, a connection request between node u and node v
is represented by the ordered pair (u, v). (If the network is undirected, the
ordering of the nodes is irrelevant.) It is established by reserving one wave-



2.2. PROBLEM DEFINITIONS 21

a

b

c d

e

f

Figure 2.1: Directed paths in a bidirected tree

length on all links along a path from u to v. The paths corresponding to
different connections must not use the same wavelength on the same link. If
the switches do not support wavelength conversion, a connection must use
the same wavelength on the whole path from transmitter to receiver. The
routing and wavelength assignment problem in all-optical networks without
wavelength conversion is commonly referred to as path coloring.

PROBLEM Path Coloring (PC)
Input: graph G = (V, E), set R of connection requests in G
Output: assignment of paths and colors to requests such that paths

using the same edge are assigned different colors
Goal: minimize the number of colors used

If the graph is clear from the context, we denote by OPT (R) the number
of colors required for a set R of connection requests in an optimal solution.

An assignment of paths to the given connection requests is called a rout-
ing. Note that the routing has to be computed by the path coloring algorithm.
If the routing is given as part of the input (instead of allowing the algorithm
to choose the paths), the fixed path coloring problem is obtained. For tree
networks, fixed path coloring and path coloring are equivalent, because the
paths for connection requests are unique.

Figure 2.1 shows a simple example of an instance of the path coloring
problem in a bidirected tree. The bidirected tree consists of six nodes; for
the sake of simplicity, only its underlying undirected tree is drawn in the
figure. A set of five paths is sketched: from a to e, from f to e, from f
to c, from d to b, and from a to b. A possible valid coloring assigns these
paths colors 1, 2, 1, 2, and 3, respectively. This coloring with three colors is
optimal, because the conflict graph of the paths is a cycle of length 5.

In optical networks with support for full wavelength conversion, the re-
quirement that a connection must use the same wavelength on the whole



22 CHAPTER 2. PRELIMINARIES

path from transmitter to receiver can be dropped. Hence, the number of
wavelengths required to establish a set of connections is equal to the maxi-
mum load of the paths. We call the resulting optimization problem the path
packing problem.

PROBLEM Path Packing (PP)
Input: graph G = (V, E), set R of connection requests in G
Output: assignment of paths to requests
Goal: minimize the maximum load

The goal of the path packing problem is to compute a routing so that the
maximum load is minimized. The maximum load achieved by an optimal
routing for a given instance of path packing is denoted by LOPT. Note that
studying the path packing problem for tree networks is meaningless, because
the paths and, therefore, the maximum load are completely determined by
the connection requests.

Path packing applies to optical networks with space-division multiplexing
as well. If a routing with maximum load L is found, all requests can be
established if L parallel fiber links are available between adjacent nodes;
hence, it is desirable to minimize the maximum load.

It is also interesting to study path coloring and path packing for sets
of connection requests of special form. In particular, the set of connection
requests for all-to-all path coloring or all-to-all path packing consists of con-
nections from each node to every other node. (This communication pattern is
also called gossiping.) Furthermore, one-to-all instances (also called broad-
cast instances) consist of connection requests from one node to all other
nodes, k-relations are sets of connection requests in which every node is the
sender and the receiver of at most k connection requests, and permutations
are 1-relations. It is known that a k-relation can be split into O(k) per-
mutations. We will discuss some results regarding path coloring for special
instances in the section on related work (Section 2.3).

Path coloring and path packing are relevant if a network provider de-
signs a network so as to satisfy given demands or if an existing network has
sufficient optical bandwidth to satisfy the given connection requests. The
situation is different if an existing network has insufficient capacity to route
all connections simultaneously; in this case, it is reasonable to select a sub-
set of the given connection requests such that all requests in that subset
can be established simultaneously. The goal can be to maximize the num-
ber of accepted requests. In all-optical networks without wavelength con-
version this optimization problem is referred to as maximum path coloring



2.2. PROBLEM DEFINITIONS 23

(MaxPC)2, in networks with full wavelength conversion as maximum path
packing (MaxPP).

PROBLEM Maximum Path Coloring (MaxPC)
Input: graph G = (V, E), set R of connection requests in G, positive

integer W
Output: subset R′ ⊆ R and assignment of paths and at most W colors to

requests in R′ such that paths using the same edge are assigned
different colors

Goal: maximize the cardinality of R′

Observe that the MaxPC problem can be viewed as a call-scheduling
problem with deadlines: given a set of calls with unit bandwidth requirements
and unit duration, a network with unit edge capacities, and a deadline W ∈
N , the goal is to select a maximum cardinality subset of the given calls and
schedule them before the given deadline.

PROBLEM Maximum Path Packing (MaxPP)
Input: graph G = (V, E), set R of connection requests in G, positive

integer W
Output: subset R′ ⊆ R and assignment of paths to requests in R′ such

that the maximum load is at most W
Goal: maximize the cardinality of R′

Besides all-optical networks with wavelength converters, MaxPP applies
also to optical networks with space-division multiplexing (W represents the
number of parallel fiber links in this case) or to conventional networks with
circuit switching (here, W represents the number of channels available on
each link).

As with the fixed path coloring problem, one can also study the variants
of MaxPC and MaxPP in which the paths for the connection requests are
already given as part of the input. We refer to these variants as MaxPC with
fixed paths and MaxPP with fixed paths, respectively. Note again that the
variants with and without fixed paths are the same for tree networks.

If only a single wavelength is available, MaxPC and MaxPP are equiva-
lent. This special case of MaxPC and MaxPP is usually called the maximum
edge-disjoint paths problem.

2The name MaxPC was introduced by Nomikos and Zachos in [NZ97].



24 CHAPTER 2. PRELIMINARIES

PROBLEM Maximum Edge-Disjoint Paths (MEDP)
Input: graph G = (V, E), set R of connection requests in G
Output: subset R′ ⊆ R and assignment of paths to requests in R′ such

that the paths are edge-disjoint
Goal: maximize the cardinality of R′

Recall that all these problems can be studied for the undirected case and
for the bidirected case. In networks with bandwidth reservation, the undi-
rected case reflects symmetric communication requests like phone calls or
video conferences, whereas the directed case models asymmetric communi-
cation patterns. In all-optical networks, the undirected case models an ar-
chitecture with single bidirectional fiber links between adjacent nodes, while
the bidirected case applies to the more common architecture with pairs of
unidirectional fiber links.

Note that the definitions of the optimization problems above are given for
the general case where the topology of the network is an arbitrary undirected
or bidirected graph. We will mostly be dealing with the special case of tree
networks. In tree networks, the path for a connection request is uniquely
determined by its communication endpoints. We will refer to connection
requests in tree networks as undirected or directed paths. Hence, we denote
the set of connection requests given as input to one of the problems path
coloring, path packing, MaxPC, or MaxPP in tree networks by P instead
of R.

For a set R of calls with arbitrary duration and bandwidth requirements
in a tree network T = (V, E), the load of an edge e ∈ E is defined as
L(e) =

∑
r∈R:e∈Pr

brdr. Obviously, the load of an edge is a lower bound on
the minimum schedule length for R.

Algorithms for tackling the above optimization problems in tree networks
need not be concerned with the routing aspect of the problems; other inter-
esting variants of the problems are obtained if the topology of the network
is restricted to some other class of graphs, e.g., rings or meshes.

It should be remarked that the sets of connection requests or sets of
calls that are part of the input for the optimization problems defined above
can contain multiple connection requests or multiple calls with the same
parameters, e.g., there can be several connection requests between the same
two nodes. This means that every set of connection requests or set of calls can
actually be a multiset; for the sake of simplicity, however, we will continue
to call them sets.



2.3. RELATED WORK 25

2.3 Related Work

This section reviews a number of results that were obtained by different au-
thors and that are relevant to our work in one way or another. In general,
all work on network routing is closely related to the optimization problems
defined in Section 2.2. However, we will mostly be concerned with tree net-
works, where the routing aspect of these optimization problems is trivial.
Therefore, we don’t discuss the extensive literature on routing here. Instead,
we refer the interested reader to the book edited by Korte, Lovász, Prömel,
and Schrijver [KLPS90], in particular the chapter written by Frank [Fra90],
for a discussion of the complexity and polynomial-time solvable special cases
of routing problems in the context of VLSI-layout; to Leighton’s book [Lei92]
for a comprehensive presentation of routing problems and algorithms for par-
allel computer architectures; to the book by Borodin and El-Yaniv [BEY98,
Chapter 13] and to the survey by Leonardi [Leo98] for an overview of results
for on-line routing problems.

2.3.1 Path Coloring and Path Packing

The path packing problem is closely related to the integral multicommodity
flow problem. Every connection request corresponds to a demand for one unit
of flow from its sender to its receiver, and the goal is to find the minimum
capacity for the edges such that all demands can be routed through the
network. It follows from [EIS76] that the path packing problem is NP-
hard for general networks in the bidirected and in the undirected case. A
general technique to obtain (randomized) approximation algorithms for path
packing under certain conditions is the randomized rounding technique due
to Raghavan and Thompson; details of the method and applications to VLSI
routing and multicommodity flow can be found in [RT87].

The path coloring problem, which models the wavelength allocation prob-
lem in all-optical networks with wavelength division multiplexing, has re-
ceived considerable interest in the past few years.

Chlamtac, Ganz, and Karmi [CGK92] proved that the fixed path color-
ing problem is NP-hard for arbitrary networks (this holds already for mesh
networks, as shown by Harder, Lee, and Choi [HLC97]), but can be solved in
polynomial time in directed acyclic graphs. For sets of paths with maximum
load L in a directed acyclic graph, they showed that L colors are sufficient.
Furthermore, they proposed shortest path routing and greedy wavelength
assignment heuristics for path coloring and MaxPC in general networks. Ex-
tensive simulation results regarding the performance of these heuristics in
irregular network topologies are reported in [CGK92] as well. They also



26 CHAPTER 2. PRELIMINARIES

studied the dynamic case in which lightpaths are established and terminated
over time.

Banerjee and Mukherjee proposed to tackle the path coloring problem by
using an LP relaxation and randomized rounding [RT87] to solve the routing
problem, while employing a graph coloring heuristic to color the conflict
graph of the resulting paths [BM96]. They reported that experiments with
random inputs showed that this heuristic yields solutions whose number of
colors is close to the lower bound obtained from the LP relaxation.

Some work on path coloring dealt with the question of how many colors
are required for permutation routing, i.e., for sets of connection requests in
which every node is the sender and the receiver of at most one connection.
For networks of bounded degree with n nodes, Pankaj proved that Ω(log n)
wavelengths are required [Pan92]. Aggarwal et al. constructed a network
for which O(log n) wavelengths suffice for permutation routing [ABNC+94,
ABNC+96]. They also showed that O(L ·min{d,

√
m}) colors always suffice

to color paths with maximum load L and maximum path length (dilation) d
in a network with m edges, and that there are networks and sets of connection
requests where this many colors are in fact required. Other related work on
permutation routing concentrated on bounds on the number of switches and
the number of wavelengths in all-optical networks with nonreconfigurable
routers or wavelength-independent switches [BH94, ABNC+94, ABNC+96,
RU94].

Raghavan and Upfal studied path coloring for k-relations [RU94]. They
showed that for every β ≤ 1 and k ∈ N , there is a bounded-degree graph
with edge-expansion β and a k-relation such that Ω(k/β2) colors are re-
quired. They also presented a randomized algorithm for arbitrary bounded-
degree graphs that uses at most O(k(−3 log(kn)/ log λ)2) colors with high
probability, where λ is the second largest eigenvalue (in absolute value) of
the transition matrix of the standard random walk on G. For permutations
(k = 1) and in terms of the edge-expansion β, this amounts to O(log2 n/β4)
colors (O(log2 n/β2) for some graphs). Aumann and Rabani gave an im-
proved algorithm that requires only O(log2 n/β2) colors for a permutation in
any bounded-degree graph with edge-expansion β and n nodes [AR95].

Path coloring for one-to-all instances and all-to-all instances in bidirected
graphs of several general classes has been investigated by Bermond et al.
in [BGP+96]. A survey of these and other graph problems arising from
wavelength-routing in all-optical networks was written by Beauquier et al.
[BBG+97]. More recent references to results regarding path coloring for one-
to-all instances, all-to-all instances, and permutation instances can be found
in the survey by Klasing [Kla98].



2.3. RELATED WORK 27

Tree Networks

Since the topologies of existing wide-area networks are mainly trees and trees
of rings, wavelength allocation in tree networks has been a focus of attention.

For chain networks (also called linear arrays), which are a special case of
tree networks, the path coloring problem can be solved optimally in poly-
nomial time. This follows because the conflict graph of paths in a chain is
an interval graph. It is well-known that interval graphs can be colored opti-
mally in polynomial time [Gav72]. This solves the path coloring problem for
bidirected chains as well as for undirected chains.

Raghavan and Upfal gave a polynomial-time algorithm that requires at
most (3/2)L colors for coloring any set of paths with maximum load L
in an undirected tree; hence, the algorithm is a (3/2)-approximation algo-
rithm [RU94]. As a subroutine, their algorithm uses an edge-coloring algo-
rithm that requires at most (3/2)∆ colors for a multigraph with maximum
vertex degree ∆ (this edge-coloring algorithm is due to Shannon [Sha49]; it
is explained, e.g., in [FW77]).

Path coloring in undirected tree networks can be viewed as coloring edge
intersection graphs of paths in a tree. These EPT graphs were already exam-
ined by Golumbic and Jamison in [GJ85a] and [GJ85b]. The former proved
recognition of EPT graphs NP-complete, the latter proved NP-hardness of
the coloring problem for EPT graphs (thus implying that path coloring for
undirected trees is NP-hard). Tarjan gave a (3/2)-approximation algorithm
for coloring EPT graphs [Tar85], which was rediscovered in [RU94] as men-
tioned above. Note that EPT graphs are different from path graphs, which
are the vertex -intersection graphs of paths in a tree and represent a special
case of chordal graphs [Gol80].

It was observed in [MKR95] that the (3/2)-approximation algorithm for
path coloring in undirected trees can be improved to give asymptotic approx-
imation ratio 9/8 using the edge-coloring algorithm by Goldberg [Gol84b,
Gol84a]. In Section 4.1 we use the edge-coloring algorithm by Nishizeki and
Kashiwagi [NK90] to obtain an algorithm with asymptotic approximation
ratio 11/10 and absolute approximation ratio 4/3.

The directed version of path coloring in tree networks was first consid-
ered by Mihail, Kaklamanis, and Rao in [MKR95]. (Unlike EPT graphs, the
conflict graphs of directed paths in a bidirected tree had not received atten-
tion previously.) They presented an approximation algorithm that uses at
most (15/8)L colors to color a set of paths with maximum load L. This was
subsequently improved to (7/4)L independently by Kaklamanis and Persiano
in [KP96] and by Kumar and Schwabe in [KS97].

In Section 4.2 we will further improve this to d(5/3)Le. Jansen proved



28 CHAPTER 2. PRELIMINARIES

that every local greedy algorithm uses at least b(5/3)Lc colors in the worst
case [Jan97], even in the case of binary trees. All known algorithms for path
coloring in bidirected trees are local greedy algorithms, i.e., they consider the
nodes of the tree in depth-first search order and extend an existing partial
coloring by choosing colors for the uncolored paths touching the current node.

The algorithm from Section 4.2 for path coloring in arbitrary bidirected
trees is quite technical; simpler algorithms requiring at most b(5/3)Lc col-
ors for the special case of path coloring in binary trees were obtained by
Jansen [Jan97] and by Caragiannis, Kaklamanis, and Persiano [CKP97].

The question of how many colors are required even in an optimal solution
for sets of directed paths with maximum load L in a bidirected tree has also
been studied. The example shown in Figure 2.1 on page 21 represents an
instance with L = 2 for which an optimal coloring requires three colors. A
much more complicated construction gives a set of directed paths in a binary
tree such that the maximum load is three and an optimal solution requires
five colors [Jan97]. Furthermore, there is a family of instances with arbitrarily
large load L for which an optimal coloring uses d(5/4)Le colors [KS97].

Many of the complexity results for path coloring in undirected and bidi-
rected trees that we will present in Section 3.1 have been obtained inde-
pendently and contemporaneously by Kumar, Panigrahy, Russel, and Sun-
daram [KPRS97]. In particular, they showed that path coloring is NP-
hard for undirected stars (previously proved in [GJ85b]), for bidirected trees
of depth two, and for bidirected binary trees. Furthermore, they gave a
polynomial-time optimal algorithm for path coloring in undirected trees of
bounded degree, and they proved that path coloring in arbitrary undirected
or bidirected graphs of constant size can be solved optimally in polynomial
time; this result can be obtained by generalizing the proof of Theorem 3.1.7
in a straightforward way.

All-to-all path coloring in bidirected trees was studied by Gargano, Hell,
and Perennes in [GHP97]. They proved that the directed paths in an all-to-
all instance can always be colored with L colors, where L is the maximum
load of the paths. They also observed that among all bidirected trees, only
spiders (called generalized stars in [GHP97]) have the property that any set
of paths with maximum load L can be colored with L colors.

Ring Networks and Trees of Rings

A 2-approximation algorithm for path coloring in ring networks can be ob-
tained easily. It suffices to remove an arbitrary link from the ring and to
route all requests so that they do not use the removed link. The conflict
graph of the resulting paths is an interval graph, which can be colored op-



2.3. RELATED WORK 29

timally in polynomial time. The fact that this yields a 2-approximation
was observed for undirected ring networks in [RU94] and for directed ring
networks in [MKR95]; see also Section 3.2.

As observed by Raghavan and Upfal [RU94], this edge-removal technique
can be generalized to trees of rings: If there is a path coloring algorithm A
for trees that uses at most αL colors (for some α ≥ 1) for any set of paths
with maximum load L, an algorithm using at most 2αOPT colors for a set
of connection requests in a tree of rings can be obtained, where OPT is the
number of colors in an optimal solution for the tree of rings. It suffices to
remove an arbitrary edge from each ring in the tree of rings and to apply
algorithm A to the resulting tree; this way, a 3-approximation algorithm for
path coloring in undirected trees of rings can be obtained from the (3/2)L-
algorithm mentioned above, and a 10/3-approximation algorithm for path
coloring in bidirected trees of rings can be derived from the (5/3)L-algorithm
we present in Section 4.2.

A number of results for path coloring and path packing in bidirected ring
networks were obtained by Wilfong and Winkler in [WW98]. Using a linear
relaxation of an integer program as a subroutine, they devised an exact al-
gorithm for path packing, i.e., a polynomial-time algorithm that produces a
routing with load LOPT. In addition, they showed that there are instances
of path coloring for which 2LOPT − 1 colors are necessary, and that there is
a polynomial-time approximation algorithm using at most 2LOPT− 1 colors,
which gives a 2-approximation (just like the method that removes an arbi-
trary link of the ring). They also proved that the path coloring problem in
bidirected rings is NP-hard. Their proof for this was found independently
from the proof we will present in Section 3.2 (Theorem 3.2.1); while the proof
in [WW98] is somewhat simpler, our proof establishes NP-hardness for path
coloring in bidirected rings and undirected rings.

A weighted variant of the path packing problem for undirected ring net-
works was studied by Schrijver, Seymour, and Winkler in [SSW98]. Every
connection request is associated with a nonnegative integral demand, and
the goal is to find a routing that minimizes the maximum load, where the
load of an edge is the sum of the demands routed through it. They gave a
polynomial-time algorithm that achieves a maximum load that exceeds the
optimal load by at most 3/2 times the maximum demand. If all demands
are equal to 1, the problem is equivalent to the path packing problem and
solvable optimally in polynomial time; this follows from a result by Okamura
and Seymour [OS81], as shown by Frank et al. in [Fra85, FNS+92].

Fixed path coloring in undirected or bidirected ring networks is equiv-
alent to the coloring problem for circular-arc graphs (ARC-COLORING).
An approximation algorithm using at most 2L − 1 colors was given by



30 CHAPTER 2. PRELIMINARIES

Tucker in [Tuc75], and the problem was proved NP-hard by Garey et al.
in [GJMP80]. A (5/3)-approximation algorithm for arc-coloring was pre-
sented by Shih and Hsu in [SH90].

Kumar used randomized methods to devise improved approximation al-
gorithms for arc-coloring and for path coloring in undirected rings [Kum98].
He obtained a randomized algorithm for arc-coloring that achieves asymp-
totic approximation ratio 1+1/e ≈ 1.37 with high probability if lnn = o(L),
where n is the number of distinct arc endpoints and L is the width of the
arc set. For path coloring in undirected rings, he obtained a randomized
algorithm that achieves asymptotic approximation ratio 1.5 + 1/(2e) ≈ 1.68
with high probability if lnn = o(OPT ), where n is the number of nodes of
the ring and OPT is the optimal number of colors.

The problems of all-to-all path coloring and all-to-all path packing for
bidirected ring networks were solved by Wilfong in [Wil96]. He showed that
every routing has load at least kn, where kn = (n2 − 1)/8 if n is odd and
kn = dn2/8e if n is even, and he proved that a routing with load kn can
indeed be achieved and that kn colors are sufficient for coloring the resulting
paths.

Mesh Networks

Kramer and van Leeuwen gave an NP-hardness proof for a wire routing
problem that occurs in the context of VLSI theory [KvL84, Theorem 6].
Simple modifications of that proof show that the maximum edge-disjoint
paths problem in undirected and bidirected (two-dimensional) mesh networks
is NP-complete. Therefore, path coloring and path packing are both NP-
hard for undirected and bidirected meshes, and there are no polynomial-time
approximation algorithms with absolute approximation ratio smaller than 2
unless P = NP.

A randomized algorithm for path coloring in d-dimensional meshes that
uses at most O(kdn1/d) colors for k-relations with high probability was pre-
sented by Raghavan and Upfal in [RU94]. For path coloring in meshes of
bounded dimension with n nodes, an approximation algorithm using at most
O(log n log |R|OPT (R)) colors for an arbitrary set R of connection requests
was presented by Aumann and Rabani in [AR95]. Kleinberg and Tardos im-
proved this and obtained an algorithm with approximation ratio O(log n) for
two-dimensional meshes with n nodes [KT95a]. The best known algorithm
for two-dimensional meshes has approximation ratio polynomial in log log n;
it was obtained by Rabani in [Rab96]. He also presented an algorithm that
outputs an upper bound on the number of colors so that the upper bound
is an O(1)-approximation to the optimal number. Some of these results for



2.3. RELATED WORK 31

two-dimensional meshes actually extend to a slightly larger class of mesh-like
planar graphs.

Wavelength Converters

The problem of bandwidth allocation in all-optical networks with wavelength
converters has also been investigated. A (full) wavelength converter can re-
ceive an incoming signal on one wavelength and transmit it on an outgoing
link on another wavelength. Therefore, a single path may be assigned dif-
ferent wavelengths on different subpaths if the subpaths are separated by a
node with a wavelength converter.

Wilfong and Winkler observed in [WW98] that a single wavelength con-
verter in a bidirected or undirected ring suffices to ensure that L wavelengths
are enough to color any set of paths with maximum load L. Since there are
exact algorithms for path packing in undirected and bidirected ring networks,
this implies that an optimal assignment of wavelengths can be computed in
polynomial time for ring networks with at least one wavelength converter. For
arbitrary bidirected graphs G = (V, E), they defined a sufficient set S ⊆ V
to be a set of nodes such that if exactly the nodes in S are equipped with
wavelength converters, L wavelengths are enough to route any set of paths
in G with maximum load L. They proved that a set S is sufficient for G if and
only if the graph G(S), which is obtained from G by “exploding” the nodes in
S (see [WW98]), is a disjoint union of spiders. In addition, they proved that
finding a sufficient set of minimum cardinality is NP-hard even for planar
graphs. Kleinberg and Kumar obtained a 2-approximation algorithm for the
minimum sufficient set problem in arbitrary bidirected graphs by relating it
to the vertex cover problem [KK99]. They also presented a polynomial-time
primal-dual algorithm that yields a 2-approximation for arbitrary directed
graphs. (See the chapter by Goemans and Williamson [GW97] in the book
edited by Hochbaum for an introduction to primal-dual algorithms.)

Wavelength allocation in bidirected tree networks in the presence of (full)
wavelength converters was studied by Auletta, Caragiannis, Kaklamanis, and
Persiano in [ACKP97]. They proved that there is always a sufficient set
consisting of at most b(n− 2)/4c nodes in an arbitrary bidirected tree with
n nodes, and that such a set can be found in polynomial time. They also
constructed a binary tree with n nodes for which b(n− 2)/4c wavelength
converters are indeed necessary. In addition, they studied limited wavelength
converters, i.e., converters that can convert wavelength i into wavelength j
only for a subset of all possible pairs (i, j). Further results regarding limited
wavelength converters in all-optical tree networks can be found in [ACKP98a,
ACKP98b, Gar98].



32 CHAPTER 2. PRELIMINARIES

On-line Path Coloring

In the on-line version of the path coloring problem the algorithm is given
connection requests one by one and must assign paths and colors immediately
without knowledge about future requests. For path coloring in tree networks
or for fixed path coloring in arbitrary networks, this problem is a special case
of on-line graph coloring: the goal is to color the conflict graph of the paths,
and the vertices of this graph are revealed to the algorithm one by one. (The
survey by Kierstead [Kie98] gives an overview of on-line graph coloring.)

A classic result for on-line coloring of interval graphs due to Kierstead and
Trotter [KT81] provides on-line algorithms for path coloring in undirected
and bidirected chain networks; these algorithms use at most 3OPT (P ) − 2
colors for a set P of paths in a chain network. Furthermore, no on-line
algorithm can use fewer than 3OPT (P )− 2 colors in the worst case [KT81].
The algorithm for on-line coloring of interval graphs can be generalized to an
on-line algorithm for coloring circular-arc graphs that uses at most 4OPT−2
colors [MHIR96]. This gives an on-line algorithm for fixed path coloring in
bidirected or undirected rings with competitive ratio 4.

Bartal and Leonardi [BL97] obtained deterministic on-line algorithms
with competitive ratio O(log n) for path coloring in networks with n proces-
sors whose topology is that of a tree, a tree of rings, or a mesh. In addition,
they presented a matching lower bound of Ω(log n) for all on-line algorithms
for path coloring in meshes, and a lower bound of Ω(log n/ log log n) for path
coloring in trees. Note that the on-line version of the path coloring problem
corresponds to a call-scheduling problem where the algorithm must assign
starting times to call requests one by one before the first call is established.
Hence, the lower bounds in [BL97] do not apply to the batch-style on-line
algorithms for the call-scheduling problem that we will present in Chapter 6.

The dynamic scenario in which the algorithm receives both connection
requests and termination requests has been considered by Gerstel, Sasaki,
Kutten and Ramaswami in [GSKR97]. They announced algorithms that use
O(L log n) colors for paths with load L in rings or trees with n nodes. They
also considered the case of limited wavelength conversion.

Recently, Leonardi and Vitaletti gave lower bounds on the competitive
ratio of all on-line algorithms for path coloring that hold even for randomized
algorithms [LV98]. They proved that the expected number of colors used by
any randomized on-line algorithm for a set P of paths in a chain network is
at least 3OPT (P )− 2− o(1/OPT (P )) in the worst case, thus extending the
lower bound from [KT81] to randomized algorithms. Furthermore, they gave
an Ω(log ∆) lower bound on the competitive ratio of randomized algorithms
for on-line path coloring on trees of diameter ∆ = O(log n) with n nodes.



2.3. RELATED WORK 33

2.3.2 MaxPC, MaxPP, and Multicommodity Flow

In the following, we will review known results and some related work con-
cerning MaxPC, MaxPP, and multicommodity flow. Since we study the off-
line variant of MaxPC and MaxPP, we mention only a few references with
work on on-line algorithms. More information about the rich field of on-line
algorithms for call-admission and circuit routing can be found in [BEY98,
Chapter 13] and [Leo98]; variants of path packing and MaxPP for connec-
tion requests with variable bandwidth requirements are also discussed there.

IP formulations for MaxPC and MaxPP and their LP relaxations were
used by Ramaswami and Sivarajan in [RS95] to obtain upper bounds on
the number of connections that can be established using only the available
wavelengths. They generalized the upper bounds to the case of random
arrivals of connection requests, and also showed that the upper bounds are
asymptotically tight. Their work includes simulation results comparing the
performance of heuristics with the upper bounds.

In (undirected or bidirected) chain networks, MaxPC and MaxPP are
equivalent and can both be solved optimally in polynomial time by finding
a maximum W -colorable subgraph in the conflict graph, which is an interval
graph in this case [YG87].

In undirected tree networks, the maximum edge-disjoint paths problem
is equivalent to the maximum independent set problem for EPT graphs; a
polynomial-time optimal algorithm for the latter was given by Tarjan [Tar85].
Using the reduction from many wavelengths to one wavelength from Sec-
tion 5.4, this gives an approximation algorithm whose approximation ratio
is e/(e − 1) ≈ 1.58 for MaxPC in undirected trees. The approximation al-
gorithm for integral multicommodity flow in trees (see below) from [GVY93]
gives a 2-approximation algorithm for MaxPP in undirected trees (using the
same adaptation that we employ for bidirected trees in Section 5.2).

Wan and Liu showed that the maximum edge-disjoint paths problem for
bidirected or undirected ring networks can be solved optimally in polynomial
time. With the reduction from Section 5.4, this gives a 1.58-approximation
algorithm for MaxPC in bidirected or undirected ring networks. For MaxPC
with fixed paths in undirected or bidirected ring networks, Nomikos and
Zachos presented a (3/2)-approximation algorithm in [NZ97]. While theNP-
hardness of MaxPC in ring networks follows from the NP-hardness of path
coloring (in all four cases, i.e., with and without fixed paths and in bidirected
or undirected rings), to our knowledge it is still open whether there are exact
algorithms for (some of the variants of) MaxPP in ring networks.

The maximum edge-disjoint paths problem for undirected meshes, which
is NP-hard [KvL84], has been investigated by a number of researchers.



34 CHAPTER 2. PRELIMINARIES

An O(log n)-approximation algorithm for two-dimensional meshes with n
nodes was presented by Aumann and Rabani in [AR95] and, independently,
by Kleinberg and Tardos in [KT95a]. Subsequently, Kleinberg and Tardos
gave an O(1)-approximation algorithm for this problem [KT95b]. Using the
technique from Section 5.4, this gives an O(1)-approximation algorithm for
MaxPC in two-dimensional meshes (in fact, for a slightly more general class
of planar graphs). Note that the constant hidden by the O(1) is very large
for these algorithms. A randomized on-line algorithm with competitive ra-
tio O(log n) for the maximum edge-disjoint paths problem in meshes was
also given in [KT95b]. This implies a randomized on-line algorithm with
competitive ratio O(log n) for the MaxPC problem in meshes as well.

For MaxPC with fixed paths in two-dimensional meshes, Nomikos and
Zachos showed in [NZ97] that no approximation algorithm with constant
approximation ratio can exist unless P = NP.

A different version of the MaxPC problem was considered by Awerbuch,
Azar, Fiat, Leonardi, and Rosén in [AAF+96]. They studied the case where
each wavelength is associated with a different network topology, and they
gave a general technique to obtain a (ρ + 1)-approximation for arbitrary
number of wavelengths by repeated application of a ρ-approximation for one
wavelength. This technique will be used in Section 5.4 to obtain algorithms
for MaxPC from algorithms for the maximum edge-disjoint paths problem.
It can be applied to randomized algorithms and to on-line algorithms with
the same increase in competitive ratio. Awerbuch et al. obtained randomized
on-line algorithms with polylogarithmic competitive ratio for their variant of
MaxPC in switchless networks shaped as rooted directed forests.

MaxPP is strongly related to the integral multicommodity flow problem.
For a given set of source-sink pairs (commodities) in an undirected graph
with edge capacities, the multicommodity flow problem is to maximize the
sum of the flows of the commodities constrained by the given edge capac-
ities.3 For the integral multicommodity flow problem, the flow through an
edge is required to be integral for every commodity. In the case of unit edge
capacities, the integral multicommodity flow problem is equivalent to the
maximum edge-disjoint paths problem. Integral multicommodity flow and
multicut have been studied for undirected trees by Garg, Vazirani, and Yan-
nakakis in [GVY93]. They obtained exact algorithms for integral multicom-
modity flow in undirected trees of depth one with arbitrary edge capacities
and for arbitrary undirected trees with unit edge capacities (the polynomial-
time solvability for the latter case was already shown by Tarjan [Tar85]).
For trees with edge capacities 1 or 2, they proved the problem NP-hard

3In fact, this is only one out of several variants of the multicommodity flow problem.



2.3. RELATED WORK 35

and MAXSNP-hard. For trees with arbitrary edge capacities, they gave
a 2-approximation algorithm. The algorithm can be adapted to give a 2-
approximation for MaxPP in undirected trees, as mentioned above, and we
will use the algorithm to obtain a 2-approximation for MaxPP in bidirected
trees in Section 5.2.

An interesting combination of path coloring and MaxPC, called path mul-
ticoloring, was studied by Nomikos, Pagourtzis, and Zachos in [NPZ97]. A
multicoloring of a set of paths is an assignment of colors such that several
paths through an edge may be assigned the same color. Given a set P of
paths in a graph and a number W of available colors, the goal of path mul-
ticoloring is to color all paths in P using W colors such that the number of
color collisions in minimized. More formally, the number of color collisions
cc(e) on an edge e is defined as the maximum number of paths through e
that are assigned the same color, and the goal is to find a multicoloring
that minimizes

∑
e∈E cc(e). Nomikos et al. obtained an exact algorithm for

path multicoloring in chain networks and a 2-approximation algorithm for
rings. Path multicoloring is relevant for optical networks that combine space-
division multiplexing and wavelength-division multiplexing.

2.3.3 Call Scheduling

Feldmann et al. initiated research on on-line call scheduling in [FMS+95].
They motivated the investigation of call-scheduling problems by observing
that the utilization of a network is likely to improve if calls are not rejected
in times of overload, but deferred and established at a later time. First, they
considered the case that the call-admission algorithm is allowed to defer a call
at most for a time interval that is bounded by a constant times the (known)
duration of the call. In this scenario, they proved that no deterministic or
randomized on-line algorithm can achieve a competitive ratio smaller than
Ω(log n) with respect to the data-admission ratio (see [FMS+95]). Conse-
quently, they considered the call-scheduling problem as defined in Section 2.2.
They also focused on batch-style on-line algorithms, because they observed
that conversion of a batch-style on-line algorithm into a fully on-line algo-
rithm can be done losing at most a factor of 2 in the competitive ratio (for
certain algorithms, only an additive term of 1 is lost).

They analyzed the competitive ratio of the List-Scheduling (LS ) algo-
rithm (see Section 6.1; the algorithm is called GREEDY in [FMS+95]) for
call scheduling in a number of different network topologies. They also consid-
ered only the case that all edges of the network have the same capacity. For
the case of arbitrary bandwidth requirements, they showed that the schedule
produced by LS can be longer than an optimal schedule by a factor of Ω(n)



36 CHAPTER 2. PRELIMINARIES

even for calls with unit duration in a chain network with n nodes. Further-
more, they gave examples of calls with unit duration and unit bandwidth
requirements in a binary tree with n nodes such that the schedule produced
by LS is longer than the optimal schedule by a factor of Ω(log n).

Regarding upper bounds, Feldmann et al. proved that LS has competitive
ratio at most 2(c + 1) log n in a binary tree with n nodes, if all bandwidth
requirements are either bounded from above by 1 − 1/c or bounded from
below by 1/c for an arbitrary constant c > 1. By running LS once on
the calls with bandwidth requirements at most 1/2 and once on the calls
with bandwidth requirements greater than 1/2, they obtained a batch-style
on-line algorithm for call scheduling in binary trees with competitive ratio
12 log n. They also proved a lower bound of Ω(log log n/ log log log n) on the
competitive ratio of any deterministic on-line algorithm for call scheduling
in binary trees. Furthermore, they generalized the LS algorithm to arbitrary
networks with small edge separators by restricting the routing to reasonable
paths with respect to the separators (see [FMS+95]). Their result implies a
call-scheduling algorithm with competitive ratio O(

√
n) for arbitrary planar

graphs, for example.
For chain networks, Feldmann et al. showed that the competitive ratio of

LS is between 4.4 and 25.8 in the case of unit bandwidth requirements. For
the case of arbitrary bandwidth requirements between 1/c and 1/2, where
c ≥ 2 is an arbitrary constant, they gave a different algorithm that achieves
competitive ratio c.

In [Fel95], Feldmann presented, in addition to the results from [FMS+95],
a variant of LS with competitive ratio O(log2 n) for call scheduling in meshes
with n nodes. Furthermore, she obtained a variant of LS that uses only two-
hop paths for call scheduling in complete graphs with n nodes. She proved
that this variant has constant competitive ratio. (The exact bound given in
[Fel95] is 78.)

2.3.4 Scheduling of File-Transfers

Coffman et al. studied a file-transfer scheduling problem that is closely related
to call scheduling in stars [CGJL85]. An instance of the file-transfer schedul-
ing problem is given by a file-transfer multigraph G = (V, E) with integer
node labels p(v) (representing port constraints) and edge labels d(e). An edge
e = {u, v} corresponds to a requested file-transfer connection between node
u and node v with duration d(e). The goal is to find a minimum makespan
schedule such that at any instant no node v is involved in more than p(v)
active file-transfer connections. This model corresponds to call scheduling in
a star with varying edge capacities (representing port constraints) and calls



2.3. RELATED WORK 37

with unit bandwidth requirements and arbitrary duration (representing edges
of G). [CGJL85] contains complexity results for various restricted versions
of the problem (file-transfer graph structure, port constraints, edge multi-
plicity), approximation results (approximation ratio of List-Scheduling and
variants of it), and distributed implementations of file-transfer scheduling al-
gorithms. However, most of their results do not apply to the call-scheduling
problem with unit edge capacities and arbitrary bandwidth requirements,
which we study in Chapter 6.

2.3.5 Multiprocessor Scheduling

Scheduling calls with unit bandwidth requirements in stars with unit edge
capacities is equivalent to scheduling multiprocessor tasks with prespecified
processor allocations if each task requests one or two processors. (Proces-
sors correspond to edges of the star, tasks correspond to calls, and task
execution time corresponds to call duration.) The computational complex-
ity of this multiprocessor scheduling problem was investigated by Hoogeveen,
van de Velde, and Veltman in [HvdVV94]. They proved the problem strongly
NP-hard for three processors, which implies that call scheduling with unit
edge capacities, unit bandwidth requirements, and arbitrary call duration is
strongly NP-hard in a star of degree three. Furthermore, they gave an exact
algorithm for their multiprocessor scheduling problem in the case of con-
stant number of processors and unit execution time; their proof uses ideas
by Blazewicz et al. [BDW86], and we will use the same ideas to prove Theo-
rem 3.1.7 in Section 3.1.1. Hoogeveen et al. also proved NP-hardness results
for variants of their scheduling problem with release dates, with precedence
constraints, and with a different objective function (minimizing the sum of
the completion times instead of the makespan).

Note that the call-scheduling problem in tree networks can also be seen as
a special case of multiprocessor scheduling with resource constraints: edges
correspond to resources, calls correspond to tasks, and there are more proces-
sors than tasks. Garey and Graham showed that the approximation ratio of
List-Scheduling (LS ) for multiprocessor scheduling with resource constraints
is s + 1, where s is the number of resources [GG75]. It follows that LS has
approximation ratio at most m + 1 for call scheduling in a tree network with
m edges.





Chapter 3

Complexity of Path Coloring
and Call Scheduling

This chapter studies the complexity of path coloring and call scheduling
for various special cases. Each variant is either proved NP-hard, or a
polynomial-time exact algorithm is given. In Sections 3.1 and 3.2, we con-
sider the path coloring problem, which is equivalent to call scheduling in the
setting where calls have unit bandwidth requirements and unit duration.

First, in Section 3.1, we examine path coloring in tree networks. For the
special case of undirected binary trees, a simple greedy algorithm is shown
to produce the optimal solution. Then we give a polynomial-time exact
algorithm to solve the undirected path coloring problem in any undirected
tree network of bounded degree. The main ingredient of this result is a proof
that an optimal edge coloring in multigraphs with a bounded number of
nodes (but unbounded number of edges) can be computed in polynomial time,
either by a dynamic programming approach or by integer linear programming
with a fixed number of variables. If the degree of the nodes of the tree is
unbounded, however, path coloring in undirected trees (even in stars) is
proved NP-hard, and approximating it with absolute approximation ratio
smaller than 4/3 is also proved NP-hard. It is shown that path coloring in
undirected trees is completely equivalent to edge coloring of multigraphs and
that approximation algorithms for the two problems are interchangeable.

For path coloring in bidirected trees, we prove that restricting the de-
gree does not help: the problem is already NP-hard for binary trees. This
resolves an open question in [MKR95]. For bidirected trees of arbitrary de-
gree, we prove again that approximation with absolute approximation ratio
smaller than 4/3 is NP-hard. For comparison, the best known approxima-
tion algorithm (presented in Section 4.2) uses at most d(5/3)Le colors, where
L is the maximum load and a lower bound on the optimal solution.

39



40 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

Note that many of the complexity results mentioned so far for path color-
ing in bidirected and undirected trees have been obtained contemporaneously
and independently by Kumar, Panigrahy, Russel, and Sundaram [KPRS97].

In addition, we show that path coloring is solvable optimally in polyno-
mial time if the number of paths touching a single node of the tree network
is bounded by a constant, for undirected trees as well as for bidirected trees.
Such an assumption may be valid in real telecommunication applications if
each customer submits only a limited number of call requests to the network
and if most calls are local calls. The corresponding algorithm works by trying
out all possible colorings for paths touching a single node and combining for
each node the information obtained from its children.

Section 3.2 proves NP-hardness for path coloring in undirected and bidi-
rected ring networks. A very simple approximation algorithm gives an ap-
proximation ratio of 2, but devising an algorithm with a substantially better
approximation ratio seems difficult.

Regarding call scheduling in the general setting with arbitrary bandwidth
requirements and duration, we give some NP-hardness results in Section 3.3.
In particular, scheduling calls with arbitrary bandwidth requirements on a
single link, scheduling calls with arbitrary duration in chain networks, and
scheduling calls with either arbitrary bandwidth requirements or arbitrary
duration in networks that contain at least two edge-disjoint paths between
some pair of nodes are all NP-hard.

3.1 Path Coloring in Tree Networks

Recall that an undirected graph G = (V, E) is a tree if it is connected and
does not contain a cycle, and that a bidirected tree is the graph obtained
from an undirected tree by replacing each undirected edge by two directed
edges with opposite direction.

Note that the path coloring problem is solvable optimally in polynomial
time for undirected and bidirected chain networks, because it is equivalent
to the vertex coloring problem for interval graphs [Gav72].

Obviously, the maximum load L of the given set of paths in the tree is a
lower bound on the optimal number of colors necessary to color the paths.
On the other hand, it is not difficult to see that 2L colors always suffice,
both in the undirected and the bidirected case. This upper bound can be
tightened to (3/2)L for undirected trees (see [Tar85]) and to d(5/3)Le for
bidirected trees (see Section 4.2).



3.1. PATH COLORING IN TREE NETWORKS 41

Algorithm: Level Algorithm
Input: undirected binary tree G = (V, E), set P of paths in G

begin
(1) compute for each node v ∈ V the set P (v)
(2) for color c = 0, 1, . . . do
(3) for all nodes v ∈ V , processed in order of non-decreasing levels do

begin
(4) choose ≤ 2 paths in P (v) to be assigned color c:

(i) if P (v) contains a two-sided path p and both
downward links of v are still available for this color,
choose that path p

(ii) otherwise, choose one left path p1, if possible,
and one right path p2, if possible

(5) remove the chosen paths from P (v) and assign them color c
end

(6) terminate when all paths are colored
end

Figure 3.1: The Level Algorithm

3.1.1 Undirected Trees

Given a set P of undirected paths in an undirected tree, colors must be
assigned to all paths in P such that paths receive different colors if they
share an edge. The goal is to minimize the number of colors used.

A Simple Algorithm for Binary Trees

First, we examine the case that G = (V, E) is an undirected binary tree with
n nodes. In [FMS+95] it was shown that in this setting the greedy algorithm,
i.e., the algorithm that considers the paths one by one and assigns each the
smallest available color, can require a number of colors that is greater than
the optimal number by a factor of Ω(log n). We present a simple polynomial-
time algorithm that always produces an optimal coloring.

Let w be the root of the binary tree G (any node of G with degree at
most 2 can be used as the root). Recall that the level of a node is its distance
from the root. For a node v of the tree, we refer to the (undirected) edges
joining v and its children as the downward links of v.

For a path p ∈ P from u to v, we let zp denote the node lca(u, v). For
every node v ∈ V , the set P (v) ⊆ P is the set of all paths p ∈ P with zp = v.
With respect to a node v, a path p ∈ P (v) is called a two-sided path if it



42 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

uses both downward links of v, otherwise a one-sided path. Note that every
one-sided path starts at v. More specifically, one-sided paths are called left
paths or right paths depending on which of the two downward links they use
(assuming an arbitrary ordering of the children of each node).

The path coloring algorithm for undirected binary trees is given in Fig-
ure 3.1. Note that whenever the algorithm reaches step (4), at most one of
the two downward links is reserved by a path that has been assigned the
current color at a previous node. We call this algorithm the Level Algorithm.
Obviously, it can be implemented to run in time polynomial in the size of G
and P .

Theorem 3.1.1 The Level Algorithm computes an optimal coloring for paths
in undirected binary trees.

Proof: We describe how to transform any optimal coloring into the coloring
produced by the Level Algorithm without increasing the number of colors
used, thereby showing that the Level Algorithm is optimal. Let P be the set
of paths given to the algorithm. Denote by C∗ and C the number of colors
used in the optimal solution S∗ and in the solution S produced by the Level
Algorithm, respectively. The transformation proceeds color by color.

Assume that S and S∗ are identical for all colors from 0 up to c − 1.
(This assumption holds trivially for c = 0.) We explain how to modify S∗

such that S and S∗ become identical for all colors from 0 up to c. This
modification does not increase the number of colors used in S∗. Hence, S∗

can be transformed into S by repeated application of such modifications, and
the theorem follows.

For the modification of S∗ for color c, the nodes of G are processed in
order of non-decreasing levels. When processing a node v at level `, we can
therefore assume that S and S∗ are already identical with respect to paths
that touch nodes with level smaller than `. We call these paths fixed paths
(with respect to v). Note that there can be at most one fixed path (w.r.t. v)
touching v. Hence, color c can be in use by such a fixed path on at most
one of the downward links of v, and it is the same downward link both in S
and in S∗. Color c has not been assigned to fixed paths using the remaining
one or two downward links (free links), but may have been assigned to paths
from P (v) in S or S∗. We distinguish three cases in our presentation of the
modifications that are necessary to make S and S∗ identical w.r.t. node v
for color c as well (we call S and S∗ identical w.r.t. node v for color c if the
paths on all edges incident to v assigned color c are the same in S and S∗):

1. If no paths on the free downward links are assigned color c in color-
ing S, all paths of P (v) that could have been assigned color c have



3.1. PATH COLORING IN TREE NETWORKS 43

already been assigned a smaller color. Therefore, no such path has
been assigned color c in coloring S∗ either. Hence, S and S∗ are al-
ready identical w.r.t. node v for color c, and we can proceed to the next
node.

2. If a two-sided path p of P (v) is assigned color c in S, there must exist a
color c′ ≥ c such that p is assigned color c′ in S∗. If c 6= c′, we exchange
the paths in the subtree rooted at v assigned color c in S∗ and those
assigned color c′. Obviously, S∗ remains a feasible solution with the
same number of colors. S and S∗ are now identical w.r.t. node v for
color c, and we can proceed to the next node.

3. If one or two one-sided paths p1 and (possibly) p2 are assigned color c
in S, there must exist colors c′1 ≥ c and c′2 ≥ c such that p1 and p2 are
assigned color c′1 and c′2 in S∗, respectively. If c 6= c′1, we exchange the
paths in the left subtree of v assigned color c in S∗ and those assigned
color c′1. Analogously, if c 6= c′2, we exchange the paths in the right
subtree of v assigned color c in S∗ and those assigned color c′2. This is
always possible because it cannot occur that a two-sided path of P (v)
is assigned color c in S∗ while two one-sided paths are assigned color
c in S. Again, the exchanges preserve the feasibility of S∗ and do not
increase the number of colors used. S and S∗ are now identical w.r.t.
node v for color c, and we can proceed to the next node.

The exchanges performed at a node v do not affect the work we have done
at nodes processed previously for this color or for previous colors. Therefore,
after processing at most n nodes, colorings S and S∗ are identical for all
colors up to c. tu

Note that the existence of an exact algorithm for path coloring in undi-
rected binary trees follows also from the more general result we will present
later as Corollary 3.1.8. However, the Level Algorithm is of independent
interest because it is considerably simpler and faster than the algorithm we
will use to obtain Theorem 3.1.7 and Corollary 3.1.8.

Combining Local Colorings is Easy

Given a tree G = (V, E) (of arbitrary degree) and a set P of paths in G,
denote by Pw (for any w ∈ V ) the subset of P that contains all paths touch-
ing w. We refer to the problem of coloring paths in a set Pw as computing
a local coloring . Next, we investigate how individual local colorings can be
combined to a global coloring without increasing the number of colors.



44 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

Theorem 3.1.2 Given colorings Sw for the sets of paths Pw for all w ∈
V , there is a polynomial-time algorithm that computes a coloring S for P
satisfying |S| = maxw∈V |Sw|.

Proof: The merging process starts at an arbitrary node v. Initially, we set
S = Sv and mark v as the only node that has already been processed. During
the whole construction |S| will remain less than or equal to maxw∈V |Sw|.
We repeatedly merge S and a coloring Sw, where w is a node that has not
yet been processed but that is adjacent to a previously processed node (for
example, visit the nodes using a depth-first search). Note that the node w is
adjacent to exactly one previously processed node u, and that all paths that
are contained in both S and Sw use the edge {u, w}. Call these paths the
intersecting paths. Let T denote the subtree of G that contains w and all
nodes reachable from w without using edge {u, w}. The intersecting paths
are the only paths in S that touch T . Furthermore, the intersecting paths
are the only paths in Sw that touch G \ T . Hence, the intersecting paths are
the only paths that have to be taken care of when merging S and Sw.

We permute the coloring Sw (i.e., we rename the colors) in such a way that
the resulting coloring is a feasible coloring for Pw with the intersecting paths
being assigned the same colors as in S. Since the permuted coloring for Pw

and the coloring S are “compatible” (the intersecting paths are assigned the
same colors), we can merge them in the obvious way and obtain a coloring S ′.
No new color is necessary to obtain S ′ from S and Sw in this way. Therefore,
the number of colors used in S ′ is equal to max {|S|, |Sw|}, and we can use
S ′ as the new S. We mark w as processed and continue with the next node.
This process terminates after finitely many steps. The coloring S we obtain
in the end uses maxw∈V |Sw| colors. Hence, we obtain a coloring S using the
required number of colors for the whole set of paths P . tu

As a consequence, optimal colorings for the sets Pw can be merged into
an optimal coloring for P in polynomial time.

Corollary 3.1.3 For any set P of undirected paths in an undirected tree,
the number of colors used in an optimal coloring, denoted OPT (P ), is given
by OPT (P ) = maxw∈V OPT (Pw).

Computing Local Colorings is Difficult

Now we will show that the approach of computing optimal local colorings
for all Pw and combining them into an optimal coloring for P is not fea-
sible, because it is already NP-hard to compute an optimal coloring for a
set Pw. This is a consequence of the following theorem, which was proved



3.1. PATH COLORING IN TREE NETWORKS 45

by Golumbic and Jamison in [GJ85b, Theorem 5]; we include a short proof
here for the sake of completeness.

Note that paths in a set Pw intersect if and only if they share an edge
incident to w. Therefore, computing a local coloring is equivalent to path
coloring in a star.

Theorem 3.1.4 (Golumbic and Jamison, 1985) Given a multigraph G
with maximum degree ∆, it is possible to compute in polynomial time a set
P of paths with maximum load ∆ in a star G′ such that the conflict graph
of P is (isomorphic to) the line graph of G, and vice versa.

Proof: Let G = (V, E) be the given multigraph. Construct the star G′ =
(V ′, E′) by setting V ′ = V ∪ {x}, where x /∈ V , and E ′ = { {v, x} | v ∈ V }.
Build P by including a path from v to w (in G′) for every edge {v, w} ∈ E.
Observe that two paths in P intersect if and only if the corresponding edges
in G share a vertex. Thus, the conflict graph of P is (isomorphic to) the line
graph of G, as required. Furthermore, note that the maximum load of P
in G′ is equal to the maximum degree of G.

For the other direction, let G′ = (V ′, E′) be the given star (with central
node x) and let P be the given set of paths in G′. Let k be the number of
paths in P that use only one edge of G′, i.e., paths that start at x. Construct
the multigraph G = (V, E) as follows. Set V = (V ′ \ {x}) ∪ {u1, . . . , uk},
where ui /∈ V ′ for 1 ≤ i ≤ k. For every path from v 6= x to w 6= x in P ,
include an edge {v, w} into E; for the i-th path from x to v 6= x in P , include
an edge {v, ui} into E. Observe that two edges of G share an endpoint if
and only if the corresponding paths in G′ share an edge. Hence, the conflict
graph of P is (isomorphic to) the line graph of G. Furthermore, note that
the maximum degree of G is equal to the maximum load of P in G′. tu

A consequence of the theorem is that the class of graphs that can be
obtained as conflict graphs of paths in a star is exactly the class of line graphs
of multigraphs. Since edge coloring is equivalent to vertex coloring of line
graphs and was shown NP-hard by Holyer [Hol81], the theorem implies that
path coloring is NP-hard for undirected paths in stars. Therefore, coloring
the paths in a set Pw is also NP-hard.

On the positive side, the construction from the proof of Theorem 3.1.4
shows that approximation algorithms for edge coloring of multigraphs and
for path coloring in trees are interchangeable.

Corollary 3.1.5 Let f : N0 → N0 be an arbitrary non-decreasing function,
i.e., a function satisfying f(a) ≤ f(b) for a ≤ b. If there is an approximation
algorithm A for edge coloring of multigraphs that uses at most f(χ′(G)) colors



46 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

for any multigraph G, it is possible to derive an approximation algorithm B
for path coloring in undirected trees such that B uses at most f(OPT (P ))
colors for any given set P of paths, and vice versa.

Proof: Given an approximation algorithm A for edge coloring that uses at
most f(χ′(G)) colors for a multigraph G, construct algorithm B as follows.
Let an instance of the path coloring problem be given by a tree T = (V, E)
and a set P of paths in T . For every w ∈ V , construct a multigraph Gw from
the set Pw of paths touching w as in the proof of Theorem 3.1.4, use A to
compute an edge coloring for Gw, and convert it to a coloring for the paths
in Pw. This coloring uses at most f(χ′(Gw)) = f(OPT (Pw)) colors. Use the
merging algorithm from Theorem 3.1.2 to obtain a coloring for P using at
most

max
w∈V

f(OPT (Pw)) = f(max
w∈V

OPT (Pw)) = f(OPT (P ))

colors. Algorithm B calls algorithm A as a subroutine |V | times, and every
such call takes time polynomial in the size of the input; hence, the total
running-time of algorithm B is polynomial in the size of the input.

Given an approximation algorithm B for path coloring that uses at most
f(OPT (P )) colors for any set P of paths in an undirected tree, construct
algorithm A as follows. For a given multigraph G, construct a set P of
paths in a star like in the proof of Theorem 3.1.4. Now the paths in P can
be colored using f(OPT (P )) = f(χ′(G)) colors using algorithm B, and the
coloring can be converted to an edge coloring of G using the same number
of colors. tu

Note that an approximation algorithm for path coloring in undirected
trees with approximation ratio smaller than 4/3 could be used to decide
whether the edges of a given multigraph can be colored with three colors or
not. Furthermore, it is known that the edges of a 3-regular simple graph
can always be colored with either three or four colors, but it is NP-hard to
decide whether three colors suffice [Hol81]. Thus, we obtain the following
corollary.

Corollary 3.1.6 For undirected paths in stars (and, therefore, also in ar-
bitrary undirected tree networks), it is NP-hard to approximate the optimal
coloring with absolute approximation ratio smaller than 4/3.

Undirected Trees of Bounded Degree

Next, we examine the path coloring problem in undirected trees whose de-
gree is bounded by an arbitrary constant c. The following theorem on edge



3.1. PATH COLORING IN TREE NETWORKS 47

coloring of multigraphs with bounded number of nodes implies that it is solv-
able in polynomial time. The basic idea is similar to the one employed by
Blazewicz et al. in [BDW86] to schedule multiprocessor tasks with bounded
parallelism and unit execution time.

Theorem 3.1.7 Let G = (V, E) be a multigraph with |V | = n and |E| = m,
possibly with self-loops. If n is bounded by a constant c, an optimal edge
coloring for G can be computed in polynomial time.

Proof: We give two alternative polynomial-time algorithms for computing
an optimal edge coloring for G, a dynamic programming approach and an
integer linear programming approach. Both make use of the fact that if n
is bounded by a constant, the number of different possible types of edges of
G and the number of different types of matchings of G, i.e., sets of pairwise
disjoint edges, are both bounded by a constant as well. The former is bounded
by k =

(
c
2

)
+c, because there are at most

(
c
2

)
different types of edges between

different nodes and at most c different types of self-loops. The latter is
trivially bounded by 2k, because this is the number of different subsets of the
set of types of edges. Each set of disjoint edges constitutes a potential color
class; its edges can be assigned the same color in an edge coloring.

The multigraph G can be represented by a vector ~g ∈ Nk , where the i-th
component gi gives the number of edges of type i in G. Let l ≤ 2k be the
number of different possible sets of pairwise disjoint edges in a multigraph
with at most c nodes. Then the possible sets of pairwise disjoint edges can
be represented as vectors ~b1, . . . ,~bl ∈ {0, 1}k, where the i-th component of ~bj

is 1 if and only if an edge of type i belongs to the j-th set.
The dynamic programming approach computes the minimum number of

colors for an edge coloring of every subgraph of G, starting with the smallest
subgraphs. (Here, a subgraph of G is a multigraph with the same set of
vertices as G, but whose edge set is an arbitrary subset of the edge set of G.)
For a multigraph ~a ∈ Nk , the minimum number of colors OPT (~a) is given

by mini=1,...,l

{
OPT (~a− ~bi) + 1

}
and can be computed in constant time if

OPT (~h) has already been computed for all multigraphs ~h with ~h < ~a. For
a given multigraph ~g, the results of these computations are stored in a table
with (g1 + 1) · (g2 + 1) · . . . · (gk + 1)− 1 = O(mk) entries before OPT (~g) can
be computed. The running-time for the algorithm is O(mk), where k is a
constant depending on c as shown above. It is easy to see that this approach
cannot only compute the minimum number of colors, but also a minimum
edge coloring for G.

The integer linear programming approach is described next. Obviously,
our edge-coloring problem is equivalent to the following ILP:



48 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

Minimize ∑l
j=1 xj

subject to∑l
j=1 xj · ~bj = ~g

xj ≥ 0
xj integer

Intuitively, each xj gives the number of color classes of type j appearing in
the minimum edge coloring. The number of variables in this ILP is l, which is
a constant depending on c. Due to a result by Lenstra [Len81], integer linear
programming with a fixed number of variables is solvable in polynomial time.

tu
If we have an undirected tree G = (V, E) whose degree is bounded by

a constant c, the path coloring problem for each individual set Pw corre-
sponds to an edge-coloring problem in a multigraph whose number of nodes
is bounded by c as well (employ the construction from the proof of Theo-
rem 3.1.4, but insert self-loops in the multigraph for paths starting at w).
Hence, we can use one of the algorithms given in the proof of Theorem 3.1.7
to compute an optimal coloring Sw for each Pw and combine these individual
colorings according to Theorem 3.1.2.

Corollary 3.1.8 The path coloring problem in undirected trees whose degree
is bounded by a constant can be solved optimally in polynomial time.

3.1.2 Bidirected Trees

Given a set P of directed paths in a bidirected tree, colors must be assigned to
all paths in P such that paths receive different colors if they share a directed
edge. The goal is to minimize the number of colors used.

Hardness for Binary Trees

Unlike in the undirected case, restricting the degree of the tree does not
seem to make path coloring in bidirected trees easier. For the proof of the
following theorem, we use a reduction from the NP-complete problem ARC-
COLORING. A graph G = (V, E) is a circular-arc graph if its vertices can
be represented by arcs of a circle such that there is an edge between two
vertices in G if and only if the corresponding arcs intersect. The vertex-
coloring problem for circular-arc graphs is referred to as ARC-COLORING,
and its decision version is known to be NP-complete [GJMP80].

Theorem 3.1.9 Path coloring in bidirected binary trees is NP-hard.



3.1. PATH COLORING IN TREE NETWORKS 49

Proof: (by reduction from ARC-COLORING)
An instance I of ARC-COLORING is given by a family F = {A1, A2, . . . , An}
of circular arcs and a positive integer K. Each arc Ai ∈ F is given by a pair
(ai, bi) with ai 6= bi and ai, bi ∈ {1, . . . , m}. We call ai and bi the endpoints
of arc Ai. Intuitively, the set {1, . . . , m} represents points that are located
consecutively around a circle.

The span sp(Ai) of arc Ai is the set {ai + 1, ai + 2, . . . , bi} if ai < bi and
{ai + 1, ai + 2, . . . , m, 1, . . . , bi} if ai > bi. Two arcs Ai and Aj intersect if
sp(Ai) ∩ sp(Aj) 6= ∅. It is an NP-complete problem to decide whether the
arcs in F can be colored with K colors such that arcs with the same color
do not intersect [GJMP80].

Note that we can assume without loss of generality that m = O(n) (n
arcs can have at most 2n different endpoints), that K ≤ n (otherwise, the
answer is yes, because n arcs can always be colored with n colors), and that
each number i, i ∈ {1, . . . , m}, is contained in the span of exactly K arcs
(otherwise, new arcs of the form (i, i+1) or (m, 1) can be introduced without
changing the K-colorability). Furthermore, we can assume that m is even
(otherwise, choose the next larger multiple of 2 as m).

Intuitively, the idea behind the transformation is to view the arcs as
directed paths (with, say, counter-clockwise orientation) in a ring network,
and to “squash” the ring so as to obtain a bidirected chain network. The
obtained paths in the chain network, however, are not necessarily simple.
Therefore we split each problematic path into two (or even three) simple
paths. Additional care will be taken to ensure that the split paths resulting
from the same original path are assigned the same color in any K-coloring.
For this purpose, we need to attach some additional nodes to the chain,
turning it into a binary tree.

A formal presentation of the reduction follows. We transform instance
I of the ARC-COLORING problem into an instance I ′ of the path coloring
problem in a binary tree T = (V, E). The set of paths for I ′ is denoted by
P . T consists of a chain with m

2
+ 2K nodes, where each of the leftmost

K nodes and each of the rightmost K nodes is connected to the root of
a distinct binary tree of depth 1. The structure of the binary tree T is
shown in Figure 3.2; note that the underlying undirected tree is drawn in
the figure. The nodes of the chain are, from left to right, lK , lK−1,. . . , l2,
l1, v1, v2,. . . , vm

2
, r1, r2,. . . , rK−1, rK . For each node li, 1 ≤ i ≤ K, there

are three additional nodes l1i , l
2
i , and l3i , with incident edges as indicated in

Figure 3.2. Similarly, there are three such nodes r1
i , r

2
i , and r3

i for each ri,
1 ≤ i ≤ K. Each node vi corresponds to points i and m + 1− i on the circle
in instance I, the other nodes are used for the turn-around of problematic
paths. Regarding the span of arcs, each edge {vi, vi+1} corresponds to the



50 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

lK lK−1 l2

l12

l22 l32

l1

l11

l21 l31

v1 v2 v3
vm

2
−1 vm

2 r1

r1
1

r2
1 r3

1

r2

r1
2

r2
2 r3

2

rK−1 rK

r1
K

r2
K r3

K

Figure 3.2: Binary tree network T

point i + 1, if used in direction from left to right, and to the point m + 1− i,
if used in direction from right to left. The right part of T (the part to the
right of vm

2
) corresponds to the point m

2
+ 1, the left part (the part to the

left of v1) to point 1.

Each arc (ai, bi) in F can be classified into one of six distinct groups,
depending on which of the following conditions it satisfies:

(1) ai < bi ≤ m
2

(3) bi < ai ≤ m
2

(5) ai > m
2
, bi ≤ m

2

(2) ai ≤ m
2
, bi > m

2
(4) bi > ai > m

2
(6) ai > bi > m

2

Figure 3.3 sketches the corresponding paths we put into P for each arc in
group (1), (2) and (3). Groups (4), (5) and (6) are treated analogously.

Arcs in groups (1) and (4) are not problematic because they span neither
point 1 nor point m

2
+1. For each such arc, we have exactly one corresponding

path in P . For an arc in group (1) the corresponding path is (vai
, vbi

), for
an arc in group (4) it is (vm+1−ai

, vm+1−bi
). Arcs in the remaining groups

are problematic, because they span point 1 or point m
2

+ 1 (or both) and the
corresponding paths have to “turn around” at one or both ends of T . Arcs
in group (2) have to turn around at the right end of T , arcs in group (5) at
the left end, and arcs in groups (3) and (6) at both ends. According to our
assumption, exactly K arcs have to turn around at the right end, and exactly
K arcs at the left end. For each problematic arc c, we can therefore fix a
value Rc, if it has to turn around at the right end, and a value Lc, if it has
to turn around at the left end, such that two distinct arcs turning around
at the same end of T have different values for Rc (or Lc), and such that
Rc, Lc ∈ {1, . . . , K}. Intuitively, Rc [Lc] determines which of the K attached
binary trees at the right [left] end of T the paths corresponding to c will use
for the turn-around. The following table shows which corresponding paths
we introduce for each problematic arc:



3.1. PATH COLORING IN TREE NETWORKS 51

arc c in condition paths

group (2) ai ≤ m
2
, bi > m

2
(vai

, r2
Rc

), (r3
Rc

, vm+1−bi
)

group (3) bi < ai ≤ m
2

(vai
, r2

Rc
), (r3

Rc
, l2Lc

), (l3Lc
, vbi

)

group (5) ai > m
2
, bi ≤ m

2
(vm+1−ai

, l2Lc
), (l3Lc

, vbi
)

group (6) ai > bi > m
2

(vm+1−ai
, l2Lc

), (l3Lc
, r2

Rc
), (r3

Rc
, vm+1−bi

)

In addition, for each i, 1 ≤ i ≤ K, we add K − 1 paths (l3i , l
2
i ) and K − 1

paths (r3
i , r

2
i ). These paths act as blockers. They make sure that all paths

corresponding to a problematic arc are assigned the same color in any K-
coloring. In Figure 3.3, only one of the K − 1 blockers for a pair of paths
corresponding to the same arc is sketched.

m
2

+1m

1

2
3

m
2

(ai, bi)
ai

bi

⇒
vai

vbi

m

1

2
3

m
2

(ai, bi)
ai

bi

⇒
vai

vm+1−bi

K − 1 blockers

m

1

2
3

m
2

(ai, bi)

aibi

⇒
vbi

vai

K − 1 blockersK − 1 blockers

Figure 3.3: Arcs and corresponding paths

Summing up, we have one, two or three corresponding paths for each arc,
and 2K(K−1) additional blockers. These paths make up the set P of paths
for instance I ′ of the path coloring problem. Obviously, I ′ can be constructed



52 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

in polynomial time. We will show that the paths in I ′ can be colored with
K colors if and only if the arcs in I can be colored with K colors. This is a
consequence of the following facts:

(a) any coloring with at most K colors for I ′ uses exactly K colors, and all
paths corresponding to the same arc are assigned the same color

(b) if two arcs c1 and c2 do not intersect, their corresponding paths do not
intersect either (and can be assigned the same color)

(c) if two arcs c1 and c2 intersect, there is a conflict between at least one
path corresponding to c1 and one path corresponding to c2

(d) if the two paths meeting at an attached binary tree are assigned the
same color, the K − 1 blockers of that binary tree can be assigned the
K − 1 other colors arbitrarily

Each of the edges (r1
i , r

2
i ) is used by K paths in the same direction, therefore

any coloring for the paths in I ′ must use at least K colors. Since K−1 colors
are required for the K − 1 blockers (r3

i , r
2
i ), there is only one color left, in

any coloring with K colors, for the two remaining paths using edges (r1
i , r

2
i )

and (r3
i , r

1
i ). Hence, these two paths must be assigned the same color in such

a coloring. Analogous reasoning can be applied for the paths meeting in a
binary tree on the left side of T . This shows that fact (a) holds. Fact (d)
is obviously true, because each attached binary tree “sees” only the K − 1
blockers and the two paths meeting in that binary tree.

Facts (b) and (c) are also easy to see. Just observe the following: An
arc has a corresponding path that uses the edge (vi, vi+1) if and only if the
arc spans point i + 1. An arc has a corresponding path that uses the edge
(vi+1, vi) if and only if the arc spans point m + 1 − i. A path (except for
a blocker) that uses any edge to the right of vm

2
corresponds to an arc that

spans point m
2

+ 1. A path (except for a blocker) that uses any edge to the
left of v1 corresponds to an arc that spans point 1. In addition, if an arc
spans 1 or m

2
+ 1, it has corresponding paths using edge (l1, v1) and (v1, l1)

or edge (vm
2
, r1) and (r1, vm

2
), respectively. Therefore, if two arcs c1 and c2

have corresponding paths touching the left [right] part of T , at least one of
the corresponding paths of c1 is in conflict with a corresponding path of c2.
Furthermore, it is clear that all paths corresponding to the same arc can be
assigned the same color.

Facts (a) to (d) show that there is a one-to-one correspondence between
K-colorings of the arcs in I and K-colorings of the paths in I ′. Hence,
deciding whether a K-coloring for the paths in T exists is NP-complete. tu



3.1. PATH COLORING IN TREE NETWORKS 53

G
G′

u

v
⇒

w

u v

u1 u2 u3 v1 v2 v3

u11 u12 v21 v22

Figure 3.4: Reduction from EDGE-COLORING

Consequently, we cannot hope for an optimal polynomial-time algorithm
for path coloring in bidirected trees even in the binary case unless P = NP.

A Lower Bound on the Achievable Approximation Ratio

The following theorem gives a lower bound on the best absolute approxima-
tion ratio that can be achieved by a polynomial-time algorithm if P 6= NP.

Theorem 3.1.10 Deciding whether a set of paths in a bidirected tree network
of arbitrary degree can be colored with 3 colors is NP-complete. Therefore, no
polynomial-time approximation algorithm with approximation ratio smaller
than 4/3 exists unless P = NP.

Proof: (by reduction from EDGE-COLORING)
It is NP-complete to decide whether a given regular graph G = (V, E) with
degree three can be properly edge-colored with three colors [Hol81]. We show
how to transform any 3-regular graph G into an instance of the path coloring
problem in a bidirected tree network G′ = (V ′, E′) such that the paths can
be colored with 3 colors if and only if G can be properly edge-colored with
3 colors. Here, V ′ contains all nodes v ∈ V and nine additional nodes
v1, v2, v3, v11, v12, v21, v22, v31, v32 for each v ∈ V , as well as a new node w.
The edges in E ′ are such that w is the root of G′, v ∈ V are the children
of w, v1, v2, v3 are the children of v, and vi1, vi2 are the children of vi:

V ′ = {w} ∪ { v, v1, v2, v3, v11, v12, v21, v22, v31, v32 | v ∈ V }
E ′ = { {w, v}, {v, vi}, {vi, vij} | v ∈ V, i ∈ {1, 2, 3}, j ∈ {1, 2} }

The set P of paths contains four paths for each edge e = {u, v} ∈ E,
namely pe

1 = (ui1, vj2), pe
2 = (vj1, ui2), and pe

3 = pe
4 = (ui1, ui2). (The node u



54 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

can be chosen arbitrarily among the two nodes joined by the undirected
edge e.) The values of i and j are selected from {1, 2, 3} such that a different
value of i [of j] is chosen for each edge incident to u [incident to v]. Intuitively,
pe

1 and pe
2 play the same role as a single undirected path in the proof of

Theorem 3.1.4, and the other two paths pe
3 and pe

4 are merely blockers that
make sure that pe

1 and pe
2 are assigned the same color in any 3-coloring of

P . A 3-regular graph and part of the resulting instance of the path coloring
problem are sketched in Figure 3.4. The nodes of the graph G on the left-
hand side correspond to the children of the root of the bidirected tree G′

on the right-hand side (only the underlying undirected tree of G′ is drawn).
The black nodes in G correspond to the black children of the root in G′. The
dotted edge between the black nodes in G corresponds to the four dotted
paths indicated in G′. The subtrees rooted at the children of the root of G′

are shown only for the two relevant nodes.
Now we show that there is a 3-coloring of P in G′ if and only if a proper

edge coloring with 3 colors exists for G. Since the decision version of path
coloring in bidirected trees is obviously in NP, this implies that it is NP-
complete.

Assume that we have a 3-coloring of G. For each edge e ∈ E, we assign to
the paths pe

1 and pe
2 the color of edge e. The paths pe

3 and pe
4 are assigned the

two remaining colors that are still available. Obviously, this yields a valid
3-coloring for P in G′.

In the other direction, assume that there is a 3-coloring for P in G′. The
blockers make sure that in such a coloring pe

1 and pe
2 (for each e ∈ E) are

assigned the same color. No path pf
1 with e 6= f ∈ E and f ∩ e 6= ∅ can be

assigned this color. As a consequence, if we assign each edge e ∈ E the color
of the path pe

1, we obtain a proper 3-coloring for the edges of G.
An approximation algorithm with absolute approximation ratio smaller

than 4/3 could be used to decide whether a given set of paths can be colored
with 3 colors or not. Using the reduction above, this algorithm could be used
to decide whether a given 3-regular graph can be properly edge-colored with
3 colors, which is NP-complete according to [Hol81]. Since the construction
of G′ and P can be done in polynomial time, the theorem follows. tu

Bounding the Number of Paths Touching a Single Node

In the following, we examine the case when the number of paths touching
a single node of the tree is bounded by a constant. Recall that L denotes
the maximum load of the given paths. Observe that L is also bounded by a
constant (the same constant) if the number of paths touching a single node
is bounded by a constant.



3.1. PATH COLORING IN TREE NETWORKS 55

We will show that the path coloring problem in bidirected trees can be
solved optimally in polynomial time if the number of paths touching a single
node of the tree is bounded by a constant. A similar proof can establish
this fact for path coloring in undirected trees as well, but there this result
already follows from Theorems 3.1.2, 3.1.4, and 3.1.7: If the number of paths
touching a node is bounded, then also the number of non-isolated nodes in
the multigraph whose edge coloring corresponds to a coloring of the paths
touching the node (Theorem 3.1.4) is bounded by a constant; thus the edge
coloring can be computed in polynomial time (Theorem 3.1.7), giving an
optimal local coloring, and the local colorings can be merged into a global
optimal coloring (Theorem 3.1.2).

Theorem 3.1.11 If G = (V, E) is a bidirected tree network and P is a set
of directed paths such that the number of paths touching a single node of
G is bounded by a constant, an optimal coloring of P can be computed in
polynomial time.

Proof: We give a polynomial-time algorithm that decides, for any given
C ∈ {L, L+1, . . . , 2L}, whether P can be colored with C colors. If P can be
colored with C colors, the algorithm computes such a coloring. Since P can
always be colored using less than 2L colors [MKR95], we can then use linear
or binary search to find the optimal coloring. This yields a polynomial-time
algorithm.

Given a number C ≤ 2L of available colors, the algorithm to compute a
C-coloring, if it exists, is as follows. First, it computes for every leaf v of G
the set of all possible C-colorings of the paths touching v. Since both C and
the number of paths touching v are bounded by a constant, this set contains
only a constant number of colorings. Now the algorithm works its way to
the (arbitrarily chosen) root of the tree (bottom-up). Each node v passes to
its parent p the set Sp

v of all valid C-colorings for the paths touching both v
and p. (Such a coloring is called valid if it can be extended to a C-coloring
for all paths touching nodes in the subtree of G rooted at v.)

When the algorithm processes an internal node v of G, it computes the
set Sv of all possible C-colorings of paths touching v. Again, there are only a
constant number of such colorings. Then it checks, for every coloring s ∈ Sv,
whether there is a compatible coloring s′ ∈ Sv

w for every child w of v; here,
a coloring s′ ∈ Sv

w is considered compatible if the paths touching v and w
are assigned the same color in s′ and in s. If there is no such compatible
coloring in at least one Sv

w, s is discarded from Sv. Finally, the paths that
touch v but not the parent p of v are removed from all colorings remaining
in Sv. The resulting set of colorings is the set Sp

v of valid C-colorings that is
passed to the parent p of v.



56 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

When the algorithm processes the root node r, there are two possibilities.
Either, all colorings in the set Sr must be discarded, in which case no C-
coloring of the given paths exists, or at least one coloring remains in Sr, in
which case the given set P of paths can be colored with at most C colors.

If we store at each node v of the tree which of the valid colorings passed
from its children were found to be compatible with each valid coloring for
the paths touching v, the same algorithm can be used to obtain a C-coloring
for all paths. tu

If the maximum load L and the degree of the nodes in G are both bounded
by a constant, it follows that the number of paths touching a node of G is
also bounded by a constant; hence, we get the following corollary.

Corollary 3.1.12 Path coloring in a bidirected tree G can be solved opti-
mally in polynomial time if both L and the degree of the nodes in G are
bounded by a constant.

3.2 Path Coloring in Ring Networks

The path coloring problem in ring networks is closely related to the problem
of coloring circular-arc graphs (this latter problem was discussed at the be-
ginning of Section 3.1.2). If each connection request has to specify which of
the two alternative routes in the ring it takes, the resulting fixed path color-
ing problem is equivalent to ARC-COLORING. Since we have the additional
freedom of choosing one of two possible routings for each connection request,
however, it is not immediately clear whether the path coloring problem for
ring networks is NP-hard. Nevertheless, this can be shown by a reduction
from ARC-COLORING.

Theorem 3.2.1 Path coloring is NP-hard for undirected and for bidirected
ring networks.

Proof: (by reduction from ARC-COLORING)
Like in the proof of Theorem 3.1.9, let an instance I of the ARC-COLORING
problem be given by a family F = {A1, . . . , An} of circular arcs and a positive
integer K, where each arc Ai ∈ F is a pair (ai, bi) with ai, bi ∈ {1, . . . , m}.
Assume again that m ≤ 2n and that each point i, 1 ≤ i ≤ m, is contained
in the span of exactly K arcs.

First, we transform I into an instance I ′ of the ARC-COLORING problem
that can be colored with K colors if and only if I can be colored with K
colors. Whereas I can contain arcs that span more than half of the circle,



3.2. PATH COLORING IN RING NETWORKS 57

1
2 3 4

5

6
789

10
I ⇒

1

2
3

4

5

6

7
8

9

10

51

52

53

54

55

5611
12
13
14
15
16

I ′

Figure 3.5: Instances I and I ′ of the ARC-COLORING problem

the length of all arcs in I ′ will be strictly smaller than half the circumference
of the (slightly larger) circle. Afterwards, we will prove that the instance I ′,
if viewed as an instance I ′′ of the path coloring problem, can be colored with
K colors if and only if I can be colored with K colors.

In order to transform I into I ′, we introduce 4K new points on the circle,
2K points between m and 1 and 2K points between bm/2c and bm/2c+ 1.
We number the new points between m and 1 by m + 1, m + 2, . . . , m + 2K.
By our assumption, there are exactly K arcs B1, . . . , BK spanning point 1.
We replace each such arc Bi = (ui, vi) by three new arcs B1

i = (ui, m + i),
B2

i = (m + i, m + K + i) and B3
i = (m + K + i, vi). Each of the points

m + 1, . . . , m + 2K is an endpoint of exactly two arcs. Every two arcs that
share such an endpoint must necessarily be assigned the same color in any
proper K-coloring for the new family of arcs because they intersect the same
K − 1 other arcs. Hence, B1

i , B
2
i and B3

i must be assigned the same color in
such a coloring, and any K-coloring for the modified instance corresponds to
a K-coloring for I and vice versa.

The insertion of 2K new points between bm/2c and bm/2c + 1 works
the same way as between m and 1. Here, we replace each arc Ci from a
set {C1, . . . , CK} by three new arcs C1

i , C2
i and C3

i . Having inserted 4K
new points altogether, we obtain the instance I ′ of the ARC-COLORING
problem. It is clear that the transformation can be done in polynomial time
and that there is a K-coloring for I ′ if and only if there is a K-coloring for I.



58 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

Figure 3.5 shows an instance I of the ARC-COLORING problem with K = 3
and the instance I ′ obtained from I by inserting 4K = 12 new points.

Now we interpret I ′ as an instance I ′′ of the path coloring problem in an
undirected ring network. (We will show later how to obtain an instance of
the path coloring problem in a bidirected ring.) Each arc (ai, bi) is viewed as
a connection request between nodes ai and bi on a ring network with m+4K
nodes. We claim that there is a routing and K-coloring for I ′′ if and only if
there is a proper K-coloring for I ′. First, it is possible to generate a routing
and K-coloring for I ′′ from a K-coloring for I ′ by routing each connection
request in the direction indicated by the corresponding arc and assigning it
the color of that arc. Second, a routing and K-coloring for I ′′ also gives a
K-coloring for I ′. This follows because all connection requests in I ′′ must be
routed the short way in order to allow a K-coloring for the resulting paths,
and because the corresponding arc of a connection request corresponds to
the short route for this connection request.

Note that every connection request in I ′′ uses strictly more edges if routed
the long way (≥ m/2+2K+1 edges, if m is even, and ≥ (m+1)/2+2K edges,
if m is odd) than it uses if routed the short way (≤ m/2+2K−1 edges, if m
is even, and ≤ (m−1)/2+2K edges, if m is odd). If each connection request
is routed the short way and the resulting paths are colored with K colors,
every edge of the ring is used by K paths with different colors. Therefore,
if at least one connection request is routed the long way, the coloring of the
paths must use strictly more than K colors.

To obtain a K-coloring for I from a routing and K-coloring for I ′′, we
simply take the K-coloring for I ′ which we get immediately and derive a K-
coloring for I by coloring each arc of I with the color of all corresponding arcs
in I ′. (We already showed that these arcs are colored with the same color in
any K-coloring for I ′.) Given a particular arc in I, note that we have up to
five corresponding arcs in I ′, which are viewed as connection requests in I ′′.
These connection requests must be assigned the same color, if all connection
requests in I ′′ are routed and colored with K colors.

Finally, we explain how an instance I ′′ of the path coloring problem in a
bidirected ring can also be obtained from I ′. For this purpose, it suffices to
substitute two connection requests (u, v) and (v, u) for each arc (u, v) of I ′.
In any routing and K-coloring for I ′′, all connection requests must again be
routed the short way. (This follows from the same argument as above.) Such
a routing and K-coloring actually consists of two independent colorings, one
for the connection requests routed in clockwise direction and one for those
routed in counterclockwise direction. Each of these two colorings contains
exactly one of the two connection requests corresponding to an arc of I ′, and
can therefore be used to obtain a K-coloring for I ′.



3.3. ARBITRARY DURATION AND BANDWIDTH 59

Similarly, any K-coloring for I ′ can be used to obtain a routing and K-
coloring for I ′′: assign both connection requests corresponding to an arc the
color assigned to that arc in the K-coloring of I ′, and route all connection
requests the short way. tu

Interestingly, a 2-approximation algorithm for path coloring in undirected
ring networks is obtained by simply ignoring some arbitrary edge e of the
ring [RU94]. The connection requests on the resulting chain graph can be
colored optimally by coloring the conflict graph, which is an interval graph.
An optimal coloring for the paths on the chain graph uses at most twice as
many colors as an optimal coloring on the ring. This follows from the fact
that given an optimal routing and coloring with C∗ colors on the ring, one
can route the connection requests using e the other way and assign them
colors in the range from C∗ + 1 to 2C∗, thereby obtaining a coloring of the
paths in the chain graph using at most 2C∗ colors. The optimal coloring of
the paths in the chain graph uses no more colors than this.

A 2-approximation algorithm for path coloring in bidirected ring networks
can be obtained the same way as in undirected ring networks [MKR95].
Removing an arbitrary edge from the given ring leads to two independent
path coloring problems in separate chain networks. These can be solved
optimally in polynomial time using an interval graph coloring algorithm. The
resulting routing and coloring of the connection requests in the ring network
uses at most twice as many colors as an optimal routing and coloring.

It seems surprisingly difficult to devise approximation algorithms with ap-
proximation ratio better than 2 for path coloring in rings. Recently, however,
a randomized approximation algorithm for path coloring in undirected rings
achieving approximation ratio 1.5 + 1/2e + o(1) with high probability under
certain conditions was presented [Kum98]. For the ARC-COLORING prob-
lem, a (5/3)-approximation algorithm was given in [SH90]. A randomized
approximation algorithm for ARC-COLORING achieving approximation ra-
tio 1+1/e+o(1) with high probability can be found in [Kum98]. Apart from
that, better deterministic approximation algorithms for ARC-COLORING
are known only for special classes of circular-arc graphs [Tuc75, OBB81].

3.3 Arbitrary Duration and Bandwidth

The previous sections in this chapter have dealt with the complexity of the
path coloring problem in tree and ring networks. Recall that the path coloring
problem is equivalent to the call-scheduling problem with unit call duration,
unit bandwidth requirements, and unit edge capacities. In this section we
investigate the more general call-scheduling problem with either arbitrary call



60 CHAPTER 3. COMPLEXITY OF PATH COLORING AND . . .

(a) Reduction from PARTITION

8
7
6
5
4
3
2
1

time

(b) Reduction from 3-PARTITION

14
13
12
11
10
9
8
7
6
5
4
3
2
1

time

Figure 3.6: Proving NP-hardness for call scheduling with arbitrary duration

duration or arbitrary bandwidth requirements. We assume that the capacity
of all edges in the network is the same and that this capacity is normalized
to 1.

Once we allow either arbitrary call duration or arbitrary bandwidth re-
quirements, call scheduling becomes NP-hard for virtually every network
topology. If arbitrary bandwidth requirements are allowed, a call can re-
quest any bandwidth b, 0 < b ≤ 1. Similarly, arbitrary call duration means
that the duration of a call can be any natural number (we assume without
loss of generality that the duration is given as a multiple of a fixed time
quantum). As the NP-hardness proofs are not difficult or follow directly
from known results, we sketch only the basic ideas here. All results hold for
the call-scheduling problem both in undirected and in bidirected graphs.

An instance of the NP-complete problem PARTITION [GJ79] is given
by a finite set A with sizes s(a) ∈ N for each a ∈ A such that

∑
a∈A s(a) =

2B is even. The question is whether there is a subset A′ ⊆ A such that∑
a∈A′ s(a) =

∑
a∈A\A′ s(a) = B. In other words, the question is whether A

can be partitioned into two equal-size subsets.
An instance of the strongly NP-complete problem 3-PARTITION [GJ79]

is given by a finite set A of 3m elements, a positive integer B, and a size
s(a) ∈ N satisfying B/4 < s(a) < B/2 for each a ∈ A such that

∑
a∈A s(a) =

mB. Here, the question is whether A can be partitioned into m disjoint sets
such that the sum of the item sizes in each set is equal to B.

Once arbitrary call duration is allowed, call scheduling in chain net-
works becomes equivalent to the one-dimensional layout compaction prob-
lem, whose decision version is known to be strongly NP-complete [DL87].
The proof of NP-completeness can be adapted to call scheduling immedi-
ately. Given an instance of the PARTITION or 3-PARTITION problem, a
set of frame-calls can be specified (shown dotted in Figure 3.6) that can be
scheduled optimally only such that one particular edge of the chain network



3.3. ARBITRARY DURATION AND BANDWIDTH 61

remains idle during separate time intervals of length B. In addition, it is
possible to generate a call of duration s(a) for each a ∈ A that uses only that
idle edge. These calls can be scheduled within the gaps left by the frame-calls
if and only if A can be partitioned into two (in the case of PARTITION, see
Figure 3.6(a)) or m (in the case of 3-PARTITION, see Figure 3.6(b)) equal-
size subsets. Therefore, we have NP-hardness for chain networks with at
least 8 nodes and strong NP-hardness for arbitrary chain networks.

Another reduction from 3-PARTITION shows that call scheduling with
unit bandwidth requirements and arbitrary duration is strongly NP-hard in
a star with degree 3; this follows from the proof of strong NP-hardness for
scheduling of multiprocessor tasks with prespecified processor allocations on
three processors in [HvdVV94, Theorem 2.3]. Therefore, call scheduling with
unit bandwidth requirements and arbitrary duration is strongly NP-hard in
any tree containing a node of degree at least 3.

If we have unit call duration but allow arbitrary bandwidth requirements,
call scheduling is already NP-hard for a chain network consisting of a single
link, because it is equivalent to the bin-packing problem. In particular, PAR-
TITION and 3-PARTITION can be reduced to the call-scheduling problem
with arbitrary bandwidth requirements on a single link, implying also that
the decision problem of the latter is strongly NP-complete.

Finally, we consider networks that contain two nodes u and v with at
least two edge-disjoint paths connecting u and v. Note that the maximum
number k of edge-disjoint paths between two nodes u and v can be computed
in polynomial time with a maximum flow algorithm (see [AMO93]). Further-
more, this computation gives also a minimum u-v-cut, i.e., a set of k edges
such that every path from u to v uses at least one of these k edges.

In a network G with k edge-disjoint paths between u and v, call schedul-
ing is NP-hard for calls with unit duration and arbitrary bandwidth require-
ments and for calls with arbitrary duration and unit bandwidth requirements.
Given an instance of PARTITION, a call from u to v with bandwidth re-
quirement s(a)/B or duration s(a) is generated for each a ∈ A, and k − 2
additional calls that ensure that the former calls use exactly two of the edges
in the minimum u-v-cut. Hence, these calls must be partitioned into two
equal-size subsets in order to obtain a schedule with makespan 1 or with
makespan B, respectively.





Chapter 4

Path Coloring in Trees

Given a set of paths in a tree, the path coloring problem is to assign colors to
the paths such that paths receive different colors if they share an edge. The
goal is to use as few different colors as possible. This problem models wave-
length assignment in all-optical communication networks without wavelength
converters.

In Chapter 3 it has been shown that path coloring is NP-hard for undi-
rected paths in undirected trees if the degree of the tree is arbitrary and for
directed paths in bidirected trees even if the degree is bounded by three. In
this chapter we present polynomial-time approximation algorithms for path
coloring in undirected and bidirected trees of arbitrary degree.

In Section 4.1 we use a known approximation algorithm for edge coloring
of multigraphs to obtain an approximation algorithm for path coloring in
undirected trees with asymptotic approximation ratio 1.1. In Section 4.2
we present an approximation algorithm for path coloring in bidirected trees
that uses at most d(5/3)Le colors to color a given set of paths with maximum
load L. The algorithm belongs to a class of local greedy algorithms, and it is
known that every algorithm in this class uses at least b(5/3)Lc colors in the
worst case, even for instances where an optimal coloring uses only L colors
[Jan97]. Hence, the approximation algorithm from Section 4.2 is optimal in
the class of local greedy algorithms with respect to the number of colors used
in the worst case.

4.1 Path Coloring in Undirected Trees

Using a known result for edge coloring of multigraphs, we improve on a
(3/2)-approximation from [RU94] and derive a polynomial-time approxima-
tion algorithm with absolute approximation ratio 4/3 and asymptotic ap-

63



64 CHAPTER 4. PATH COLORING IN TREES

proximation ratio 1.1 for path coloring in undirected trees.

Corollary 3.1.5 in Section 3.1.1 implies that approximation algorithms for
edge coloring of multigraphs can be converted to approximation algorithms
for path coloring in undirected trees with the same absolute and asymptotic
approximation ratio.

In [NK90], Nishizeki and Kashiwagi presented an approximation algo-
rithm for edge coloring that uses at most b1.1 · χ′(G) + 0.8c colors for any
multigraph G. Furthermore, if the edges of a multigraph G can be colored
with one or two colors, an optimal coloring can be obtained in polynomial
time (by coloring the line graph of G, which is a bipartite graph in this case).
If χ′(G) ≥ 3, note that b1.1 · χ′(G) + 0.8c ≤ (4/3)χ′(G). Therefore, there
is a polynomial-time algorithm for edge coloring of multigraphs with abso-
lute approximation ratio 4/3 and asymptotic approximation ratio 1.1. Using
Corollary 3.1.5, this implies the following theorem.

Theorem 4.1.1 There is a polynomial-time approximation algorithm that
colors a given set P of undirected paths in an undirected tree using at most
OPT (P ) colors if OPT (P ) ≤ 2 and at most b1.1 ·OPT (P )+0.8c colors oth-
erwise. The algorithm has absolute approximation ratio 4/3 and asymptotic
approximation ratio 1.1.

Note that it is conjectured in [Hoc97, p. 394] that ultimately an approxi-
mation algorithm for edge coloring any multigraph G using at most χ′(G)+1
colors will be found; such an algorithm would immediately give an approxi-
mation algorithm that colors a set P of paths in an undirected tree using at
most OPT (P ) + 1 colors.

4.2 Path Coloring in Bidirected Trees

For path coloring in undirected trees it is difficult to color the paths touching
a single node, but it is easy to combine individual local colorings to obtain
a global coloring without increasing the number of colors used. For path
coloring in bidirected trees, it is easy to color the paths touching a single
node, as will be seen later, but it is NP-hard to combine these optimal local
colorings into an optimal coloring of all paths. Hence, a different approach is
required to obtain an approximation algorithm for path coloring in bidirected
trees.



4.2. PATH COLORING IN BIDIRECTED TREES 65

4.2.1 Outline of Algorithm

The input to the algorithm is a bidirected tree T = (V, E) with N nodes
and a set P of directed paths in T . L denotes the maximum load among all
edges of T . We analyze the running-time of our algorithm in terms of the
parameters N and L.

We will present a polynomial-time algorithm that produces a coloring of
P using at most d(5/3)Le colors. For now we assume that L = 3` is a mul-
tiple of 3. As in the previous approaches to path coloring in bidirected trees
[MKR95, KP96, KS97], our algorithm is a greedy algorithm. It processes the
nodes of the given tree in depth-first search order (or any other order cor-
responding to a graph search procedure derived from the general procedure
presented in Section 2.1.2), starting at an arbitrary leaf node. Initially, the
paths touching the leaf node can easily be colored using L colors. When a
node v is processed, all paths touching its parent (in the depth-first search
tree) or any other node with smaller dfs-number have already been colored,
and this coloring is now extended to include all paths touching v.

Note that this coloring-extension step at a node v could be carried out by
considering the uncolored paths touching v one by one and simply assigning
each path the smallest color still available for it. In fact, this simple greedy
algorithm uses at most 2L− 1 colors, as observed in [MKR95]. The number
of colors used in the worst case can be improved by performing the coloring-
extension step in a more careful manner.

During the whole path coloring process, our algorithm maintains the fol-
lowing two invariants:

Invariant 1: The number of colors used in total is at most (5/3)L = 5`.

Invariant 2: The number of colors used on a pair of directed edges with
opposite directions is at most (4/3)L = 4`.

Initially, when only the paths touching one leaf node are colored, the invari-
ants hold. We will show how a given coloring can be extended to include the
paths touching an additional node without violating the invariants.

For comparison, note that the previously known path coloring algorithms
have been obtained using weaker invariants: the algorithm from [MKR95]
uses at most (15/8)L colors in total and at most (3/2)L colors on each pair
of directed edges; the algorithms from [KP96] and [KS97] use at most (7/4)L
colors in total and at most (3/2)L colors on each pair of directed edges.

We assume that each directed edge of the tree has load exactly L. (Oth-
erwise, extra paths can be added to the given instance.) The problem of
extending an existing partial coloring to include the paths touching a new



66 CHAPTER 4. PATH COLORING IN TREES

n0

v

n1 n2 n3 vx3

x3

vx2

x2

vx1

x1

vx0

x0

Vx3

X3

Vx2

X2

Vx1

X1

Vx0

X0

Figure 4.1: Construction of the bipartite graph Gv

node v is reduced to a constrained edge-coloring problem in a bipartite multi-
graph Gv. Denote by n0 the parent of v in the dfs-tree and by n1, n2, . . . , nk

the children of v, where k = δ(v)− 1. Note that all paths touching n0 have
already been colored, and that the goal is to color all paths touching v but
not n0 without violating the invariants. The bipartite graph Gv has left and
right vertex set

⋃k
i=0{xi, vxi

} and
⋃k

i=0{Xi, Vxi
}, respectively. Hence, Gv has

4δ(v) vertices. Each path touching v contributes one edge to Gv as follows:

• A path running from ni to nj contributes an edge {xi, Xj}.
• A path touching ni and terminating at v contributes an edge {xi, Vxi

}.
• A path starting at v and touching ni contributes an edge {vxi

, Xi}.
Note that all vertices xi and Xi have degree L, whereas the vertices vxi

and
Vxi

may have smaller degree. In order to make Gv L-regular, dummy edges
are added between vertices vxi

on the left side and vertices Vxj
on the right

side, if necessary. (More precisely, for every edge {xi, Xj} a dummy edge
{vxj

, Vxi
} is added.) Figure 4.1 illustrates this construction, with dashed

lines indicating dummy edges. Note that vertices in the same row of Gv (i.e.,
vertices that are opposite each other) cannot be adjacent.

It is easy to see that two paths touching v must be assigned different colors
if and only if the corresponding edges in Gv share a vertex. Hence, any valid
edge coloring of Gv constitutes a valid coloring for the paths touching v and
vice versa. Since an optimal edge coloring in a bipartite multigraph can
be computed in polynomial time [CH82, Sch98], this implies that the path
coloring problem can be solved optimally in polynomial time for the set of



4.2. PATH COLORING IN BIDIRECTED TREES 67

paths touching a single node of a bidirected tree if no other constraint is
present. In our case, however, the paths touching n0 have been colored in a
previous step, and thus the edges incident to x0 and X0 have already received
a color. We refer to these edges as pre-colored edges. The colors that appear
on pre-colored edges of Gv are called single colors if they appear only once,
and double colors if they appear twice (i.e., on a pre-colored edge incident
to x0 and on a pre-colored edge incident to X0). Denote by S the number
of single colors, and by D the number of double colors. Invariant 2 ensures
that S + D ≤ (4/3)L. Since we assume that every edge has load L, we have
S + 2D = 2L and, consequently, D ≥ (2/3)L.

We will show that the uncolored edges of Gv can be colored using at
most (1/3)L new colors (i.e., colors that do not appear on the pre-colored
edges) such that no row of Gv sees more than (4/3)L colors. (We say that
a row sees a color c if an edge incident to a vertex of that row is colored
with c. Similarly, we say that a vertex sees c if an incident edge is colored c.
Two opposite vertices share a color c if both vertices have an incident edge
colored c.) This implies that both invariants hold at the end of the current
edge-coloring phase. Note that the new colors can actually be colors that
have been used to color paths touching previous nodes, provided they do not
appear on pre-colored edges. Furthermore, the running-time of our algorithm
for this constrained bipartite edge-coloring problem will be of the same order
as the running-time of the best algorithm for unconstrained bipartite edge
coloring.

We claim that we can assume that D is exactly (2/3)L without loss of
generality. The reason is that if D is greater than (2/3)L, one can simply
“split” an appropriate number of double colors by assigning one of the two
pre-colored edges colored with the same double color a new color for the
duration of this edge-coloring phase. The time required for splitting the
double colors is O(L). The following lemma shows that it is possible to
restore a valid coloring afterwards in linear time.

Lemma 4.2.1 Denote the original number of single and double colors on the
pre-colored edges of Gv by S and D, respectively. Assume that D > (2/3)L
and that an edge coloring for Gv with ≤ (4/3)L colors per row and ≤ (5/3)L
colors altogether has been found after splitting s = D− (2/3)L double colors.
Then the original colors on the pre-colored edges can be re-established without
violating the invariants in time linear in the size of Gv.

Proof: Denote by d1, d2, . . . , ds the double colors that were split for the
duration of the edge-coloring phase. Assume that double color di was split
by assigning a new color ni to the edge ei that was previously colored di and



68 CHAPTER 4. PATH COLORING IN TREES

e← ei; u← left endpoint of e;
c1 ← di; c2 ← ni;
repeat

change color of e from c2 to c1;
if ∃ edge e′ = {u, u′} 6= e incident to u colored c1 then

e← e′; u← u′; swap(c1, c2);
else if C(ū) = {c2} then

e← edge {ū, ū′} incident to ū colored c2;
u← ū′;

else exit;
fi

until false;

Figure 4.2: Algorithm for re-establishing color di on edge ei

that is incident to X0 and a left vertex ui. The algorithm for re-establishing
the original colors on the pre-colored edges handles each edge ei in turn.
The problem is that changing the color of edge ei from ni back to di may
either result in more than (4/3)L colors in the row containing vertex ui, or
it may cause two edges incident to ui being colored with the same color di.
Therefore, the algorithm must in general change the color of more than one
edge.

Consider the subgraph Gi
v of Gv that contains only the edges colored

di and ni. Every vertex in Gi
v has degree at most two. Hence, Gi

v is a
collection of paths and cycles whose edges are colored alternately with di

and ni. In particular, x0 and X0 have degree one and are endpoints of paths.
The edge incident to x0 is colored di, the edge incident to X0 is colored ni.
Our algorithm (see Figure 4.2) starts by exchanging colors di and ni on the
path starting at X0. Assume that this path ends at a certain vertex u, and
that the color of the edge incident to u was changed from c2 to c1, where
{c1, c2} = {di, ni}. The vertex opposite u is denoted by ū, and the set of
colors that are assigned to edges incident to ū is denoted by C(ū). If ū has
degree one and if its incident edge is colored with c2, the number of colors
in the row of u and ū has increased by one. In this case, the algorithm
exchanges colors di and ni on the path starting at ū as well. Otherwise, the
algorithm terminates.

It remains to show that the algorithm always terminates and that the
coloring it produces satisfies the requirements. Obviously, the algorithm
recolors only paths in Gi

v and never starts to recolor a cycle. Hence, the only
possibility for the algorithm not to terminate is to get stuck in a cycle of



4.2. PATH COLORING IN BIDIRECTED TREES 69

paths. (We call paths p0, p1, . . . , pk−1 in Gi
v a cycle of paths if an endpoint

of pi is opposite an endpoint of pi+1 mod k for 0 ≤ i ≤ k − 1 and if pi 6= pj for
i 6= j.) Furthermore, it is clear that such a cycle of paths must contain the
paths starting at x0 and X0, because otherwise the algorithm wouldn’t have
recolored any path of the cycle in the first place. Even if the paths starting
at x0 and X0 are part of the same cycle of paths, however, we can show that
the algorithm will not recolor the path starting at x0 and, therefore, will not
get stuck in this cycle of paths.

Assume to the contrary that it is possible to reach x0 from X0 by travers-
ing paths in the same order as the algorithm in Figure 4.2. Such a traversal
always passes an edge colored ni from a right vertex to a left vertex, and an
edge colored di from a left vertex to a right vertex. Hence, the last edge it
traverses before it reaches x0 must be colored ni, which contradicts the fact
that the only edge incident to x0 is colored di.

In particular, this shows that the algorithm never recolors the edge in-
cident to x0 in Gi

v. Hence, the original colors on the pre-colored edges are
re-established. Furthermore, the algorithm does not increase the number of
colors in any other row of Gv. This follows because colors on two incident
edges are simply exchanged for inner vertices of recolored paths, and because
the path starting at the vertex opposite the endpoint of the previously re-
colored path is also recolored in case the number of colors in the current row
would be increased otherwise.

It is easy to see that the running-time for re-establishing the original
colors on the pre-colored edges is linear in the size of Gv, i.e., it can be
bounded by O(δ(v)L). tu

So now we assume that S = (2/3)L and D = (2/3)L. Since the bipartite
graph Gv is L-regular, its edges can be partitioned into L disjoint perfect
matchings. Such a partitioning can be obtained using an arbitrary algorithm
for edge coloring of bipartite multigraphs. Hence, the time requirement for
computing the L perfect matchings is O(Tec(δ(v), L)). Each perfect match-
ing is classified according to the colors on its two pre-colored edges [KP96].
Matchings with two single colors are called SS-matchings. Matchings with a
single color and a double color are called ST-matchings. Matchings with two
different double colors are called TT-matchings. A matching with the same
double color on both pre-colored edges is a PP-matching.

We obtain 3-regular subgraphs, each containing two single colors and four
(not necessarily distinct) double colors, by partitioning the L matchings into
triplets, i.e., groups of 3 matchings, in an appropriate way. The time require-
ment for this partitioning into triplets will be O(L + δ(v)). The uncolored
edges of each triplet H can then be colored using at most one new color and
reusing some of the old colors such that no row of H (except the top row with



70 CHAPTER 4. PATH COLORING IN TREES

vertices x0 and X0) sees more than 4 colors. Hence, at most D/2 = (1/3)L
new colors are used altogether, and no row sees more than (4/3)L colors.
The running-time for coloring the uncolored edges of a triplet is linear in
the size of the triplet, i.e., O(δ(v)). As there are L/3 triplets, the running-
time for coloring them is O(δ(v)L) altogether. Hence, the running-time for
the coloring-extension substep is dominated by the time for partitioning the
edges of Gv into L perfect matchings and amounts to O(Tec(δ(v), L)). The
details of the partitioning and edge coloring are presented in the following
sections.

4.2.2 Partitioning and Coloring Strategy

Kumar and Schwabe introduce a very helpful concept that allows to color a
special kind of 3-regular subgraph of Gv using at most one new color such
that every row except the top row sees at most 4 colors [KS97].1 Precisely
speaking, they consider 3-regular subgraphs H of Gv with the property that
of the six pre-colored edges of H , two are colored with the same preserved
double color d, two are colored with (possibly distinct) double colors, and
the remaining two are colored with single colors s and s′. In addition, they
assume that the edges colored s and s′ are not incident to the same vertex out
of {x0, X0}. We refer to such subgraphs of Gv as KS-subgraphs. Furthermore,
they call a subgraph H1 of Gv a gadget if x0 and X0 have degree 3 in H1

while all other vertices have degree 2. Their important result concerning
KS-subgraphs can be stated as the following lemma.

Lemma 4.2.2 (Kumar and Schwabe, 1997) Let H be a KS-subgraph of
Gv with preserved double color d and single colors s and s′. If H can be
partitioned into a gadget H1 and a matching H2 on all vertices other than
x0 and X0, then H can be colored using colors d, s, s′, and at most one new
color such that no row of H except the top row sees more than 4 colors.

The proof of this lemma is of a similar nature as the proof we will give
for Lemma 4.2.4 shortly. In particular, the running-time for computing the
required coloring is linear in the size of the KS-subgraph H .

Kumar and Schwabe obtain their (7/4)L result by extracting and coloring
KS-subgraphs until the ratio of remaining edges with double colors to edges
with single colors drops from 1 : 1 (they assume (3/2)L colors per link, and
hence S = 2D) to 1 : 2 or lower. They have to treat the remaining uncolored
edges in a rather complicated way, however, and require 3 colors in a row for
every two matchings considered in the worst case.

1The author would like to thank Vijay Kumar for supplying a preliminary full version
of [KS97] and for helpful discussions.



4.2. PATH COLORING IN BIDIRECTED TREES 71

We improve on the (7/4)L result by Kumar and Schwabe by showing
how the entire graph Gv can be partitioned into triplets each of which can
be colored with one new color and with at most 4 colors per row.

If color a appears on an edge e incident to x0 in Gv, we denote the other
endpoint of e by r(a). Similarly, if color b appears on an edge f incident
to X0, we denote the other endpoint of f by l(b).

First, we generalize Lemma 4.2.2 to the case where the triplet cannot be
partitioned into gadget and matching.

Lemma 4.2.3 Let H be a KS-subgraph of Gv with preserved double color d
and single colors s and s′. If no row of H except the top row sees more than
4 colors on pre-colored edges, then the uncolored edges of H can be colored in
time O(δ(v)) using colors d, s, s′, and at most one new color such that no
row of H except the top row sees more than 4 colors.

Proof: Denote the colors on edges incident to x0 by d, d1, and s, and
the colors on edges incident to X0 by d, d2, and s′. Note that d1 may
be equal to d2. First, we try to partition H into gadget and matching.
For this purpose, remove vertices x0 and X0 from H and introduce dummy
edges {l(d), r(d)}, {l(s′), r(s)} and {l(d2), r(d1)}. The obtained graph H ′

is again 3-regular, and its edges can be split into three perfect matchings
M1, M2, and M3 in linear time using Schrijver’s algorithm [Sch98]. If one
of the three matchings, say M1, does not contain a dummy edge, then H
can be partitioned into the gadget H \M1 and the matching M1, and the
coloring method from Lemma 4.2.2, which takes time linear in the size of H ,
is applicable.

Otherwise, each matching contains exactly one dummy edge, and the
matching containing the dummy edge {l(d), r(d)} immediately gives a PP-
matching M in H . If the double colors d1 and d2 are equal, the matching
containing the dummy edge {l(d2), r(d1)} gives a second PP-matching, the
matching containing the dummy edge {l(s′), r(s)} gives an SS-matching, and
the triplet can be colored as required by coloring the uncolored edges of the
first PP-matching by d, those of the second PP-matching by d1, and those
of the SS-matching by s. No new color is required. Therefore, we assume
d1 6= d2 from now on.

H can be partitioned into the PP-matching M with color d and a cycle
cover C = H \M . The uncolored edges of M can be colored with color d.
If the uncolored edges of the cycle cover C can be colored using s, s′, and a
new color n such that no row (except the top row) sees more than 3 colors
in the cycle cover, we have obtained the desired coloring: since each row sees
only one color in the PP-matching and at most 3 colors in the cycle cover,
the triplet is colored using at most 4 colors per row. In the remainder of this



72 CHAPTER 4. PATH COLORING IN TREES

x0 X0

s n s s n d2

s′

nsnnsn

d1

Figure 4.3: Case 1: x0 and X0 are contained in the same cycle

proof, we will show that in all cases except one the required coloring of the
cycle cover C using 3 colors per row can be obtained. The only remaining case
(Case 6) can then be handled by modifying the coloring of the PP-matching.

Note that C has two pre-colored edges with colors s and d1 incident to x0,
and two pre-colored edges with colors s′ and d2 incident to X0. We consider
several cases regarding the structure of the cycles containing x0 and X0 in C.

Case 1: x0 and X0 are contained in the same cycle. The uncolored edges
of the cycle consist of two paths of odd length. Color them by alternating n
and s, starting with n. The remaining cycles are also colored by alternating
n and s. In this way every vertex except x0 and X0 sees color n. Therefore,
every pair of opposite vertices (except the top row) shares n, and we have at
most 3 colors per row (see Figure 4.3).

Case 2: x0 and X0 are contained in different cycles, r(s) 6= r(d1), and
l(s′) 6= l(d2). Color all cycles not containing x0 or X0 by alternating n and s.
Color the uncolored edges of the cycle containing x0 by alternating colors n
and s, starting with n on the edge incident to r(s). If r(d1) is not opposite
to l(s′), color the uncolored edges of the cycle containing X0 by alternating
colors n and s, starting with n on the edge incident to l(s′) (see part (a) of
Figure 4.4). Among all vertices except x0 and X0, every vertex except r(d1)
and l(d2) sees n, and every vertex except l(s′) sees s. As l(s′) is not opposite
to r(d1) and cannot be opposite to l(d2), l(s′) shares n with its opposite
vertex. Every other vertex (except x0 and X0) shares s with its opposite
vertex. A coloring with 3 colors per row (except the top row) is achieved.

If r(d1) is opposite to l(s′), color the uncolored edges of the cycle con-
taining X0 by alternating colors n and s again, but starting with s on the
edge incident to l(s′) (see part (b) of Figure 4.4). Now r(d1) and l(s′) share
color s, and all other pairs of opposite vertices (except x0 and X0) share
color n. Hence, we have a coloring with 3 colors per row (except the top
row).



4.2. PATH COLORING IN BIDIRECTED TREES 73

(a) r(d1) not opposite l(s′)

(b) r(d1) opposite l(s′)

x0 r(s)

r(d1)

s n s

sns

d1

X0l(d2)

l(s′)

d2sn

n s n

s′

x0 r(s)

r(d1)

s n s

sns

d1

X0l(d2)

l(s′)

d2ns

s n s

s′

Figure 4.4: Case 2: x0 and X0 are in separate non-degenerate cycles

(a) r(s) not opposite l(s′)

(b) r(s) opposite l(s′)

x0

r(d1) = r(s)

s d1

X0l(d2)

l(s′)

d2sn

n s n

s′

x0

r(d1) = r(s)

s d1

X0l(d2)

l(s′)

d2ns

s n s

s′

Figure 4.5: Case 3: x0 and X0 are in separate cycles, and the cycle containing
x0 is degenerate



74 CHAPTER 4. PATH COLORING IN TREES

l(d)

u2

l(s′) = l(d2)

x0

r(d)

u1

r(s) = r(d1)

X0

e1

e2

Figure 4.6: Case 6: Modified coloring of the PP-matching: e1 is colored s,
e2 is colored s′, all other edges are colored d

Case 3: x0 and X0 are contained in different cycles, r(s) = r(d1), and
l(s′) 6= l(d2). Color the cycles containing neither x0 nor X0 by alternating
n and s. If r(s) is not opposite to l(s′), color the uncolored edges of the
cycle containing X0 by alternating colors n and s, starting with n on the
edge incident to l(s′). Among all vertices excluding x0 and X0, every vertex
except r(d1) and l(d2) sees n, and every vertex except l(s′) sees s. As l(s′)
is not opposite to r(d1) and cannot be opposite to l(d2), l(s′) shares n with
its opposite vertex. Every other vertex shares s with its opposite vertex. A
coloring with 3 colors per row is achieved.

If r(d1) is opposite to l(s′), color the uncolored edges of the cycle con-
taining X0 by alternating colors n and s again, but starting with s on the
edge incident to l(s′). Now r(d1) and l(s′) share color s, and all other pairs of
opposite vertices (except x0 and X0) share color n. Hence, we have a coloring
with 3 colors per row.

Case 4: x0 and X0 are contained in different cycles, r(s) 6= r(d1), and
l(s′) = l(d2). This case is symmetrical to Case 3 and can be handled analo-
gously.

Case 5: x0 and X0 are contained in different cycles, r(s) = r(d1), l(s′) =
l(d2), and r(s) is not opposite l(s′). Color all uncolored cycles by alternating
s and s′. Every vertex shares either s or s′ (or both) with its opposite vertex,
and thus the coloring uses at most 3 colors per row. No new color is required
in this case.



4.2. PATH COLORING IN BIDIRECTED TREES 75

Case 6: x0 and X0 are contained in different cycles, r(s) = r(d1), l(s′) =
l(d2), and r(s) is opposite l(s′). Note that the row containing r(s) and l(s′)
sees the four colors s, s′, d1, and d2. Since the condition of the lemma states
that no row except the top row sees 5 colors on pre-colored edges, we know
that r(d) 6= r(s) and l(d) 6= l(s′). Denote the PP-matching by M . Let e1 be
the edge incident to l(s′) in M , and let u1 be its other endpoint. Similarly,
let e2 be the edge incident to r(s) in M , and let u2 be its other endpoint.
Note that u2 6= x0 and u1 6= X0 (see Figure 4.6). We cannot allow color d on
e1 or e2, because this would give 5 colors in a row. Therefore, we color edge
e1 with color s and edge e2 with color s′. (Note that e1 6= e2, because vertices
r(s) and l(s′) are in the same row and, therefore, cannot be adjacent.) All
other edges of M are colored d. The row containing r(s) and l(s′) sees 4
colors now, and no other row (except the top row) sees colors d1 or d2. But
we must take special care when coloring the uncolored edges of the cycle
cover, because color s is forbidden at u1, and s′ is forbidden at u2. However,
color d is still available at u1 and u2, hence it may be used to color an edge
{u1, u2} in the cycle cover, in case such an edge exists.

The cycle cover C consists of two degenerate (i.e., having length two)
cycles containing x0 and X0, and a number of disjoint cycles, each with an
even number of uncolored edges. We want to color the uncolored edges of C
using colors s, s′, and n such that u1 does not see s and u2 does not see s′ in
C.

If u1 and u2 are contained in different cycles of C, color the cycle con-
taining u1 by alternating s′ and n, and the cycle containing u2 as well as all
other cycles by alternating s and n.

If u1 and u2 are contained in the same cycle, and if this cycle has length 2,
we color this cycle with colors n and d, and all other cycles by alternating n
and s.

If u1 and u2 are contained in the same cycle, if this cycle has length
greater than 2, and if an edge {u1, u2} is part of the cycle, we color {u1, u2}
with color d and the rest of the cycle by alternating n and s, starting with n
at u1 and u2. All other cycles are also colored by alternating n and s.

If u1 and u2 are contained in the same cycle, if this cycle has length
greater than 2, and if no edge {u1, u2} is part of the cycle, then the cycle
consists of two paths from u1 to u2 with odd length at least 3. One path is
colored by alternating n and s, starting and ending with n. The other path
is colored by starting with s′ at u1 and then alternating n and s, ending with
s at u2.

In all subcases of Case 6, we have achieved at most 4 colors per row,
because all rows except the top row and the row with r(s) and l(s′) see only
the colors s, s′, n, and d.



76 CHAPTER 4. PATH COLORING IN TREES

It is clear that the case analysis and coloring rules given above can be
implemented to run in time linear in the size of H . As H is a 3-regular
graph with 4δ(v) vertices, the running-time for edge coloring H as required
is O(δ(v)). tu

Now that we have Lemma 4.2.3 available as a tool for coloring KS-
subgraphs, our algorithm tries to select KS-subgraphs satisfying the con-
dition of the lemma whenever possible. In some cases, however, a different
kind of triplet must be colored: a triplet that contains, like a KS-subgraph,
two single color edges and four double color edges, but without any double
color occurring twice. If such a triplet H can be partitioned into a gadget
H1 and a matching H2 on all vertices except x0 and X0, the following lemma
shows that H1 can, under certain conditions, be colored using at most three
colors per row (except the top row), and without using any new color. This is
possible because degenerate cases are excluded by requiring that pre-colored
edges colored with the double colors occurring in H are not parallel. The
coloring must reuse double colors carefully in order to make sure that no
conflict with the pre-colored edges outside H1 is introduced. As the edges
of H2 can be colored with a new color, the lemma implies that H can be
colored as required: using one new color and at most four colors per row
(except the top row). The proof of the lemma is rather long and consists
of a thorough case analysis; the reader may wish to skip the proof on first
reading and continue to read from page 86 instead.

Lemma 4.2.4 Let H1 be a subgraph of Gv that is a gadget with single color s
and double colors a and a′ incident to x0, and with single color s′ and double
colors b and b′ incident to X0. Assume that H1 does not contain parallel
pre-colored edges. Furthermore, assume that the set of pre-colored edges of
Gv with colors in {a, a′, b, b′} does not contain parallel edges. Then H1 can
be colored in linear time without using any new color by re-using s, s′, a, a′,
b, and b′ such that opposite vertices (except x0 and X0) share at least one
color.

Proof: As H1 is a gadget, it can be seen as a collection of three paths,
each running from x0 to X0 or looping back from x0 or X0 to its starting
point, and a certain number of cycles involving only vertices other than x0

and X0. The cycles have even length and are colored by alternating colors s
and s′. There are two possibilities for the remaining paths: either all three of
them run from x0 to X0, or only one runs from x0 to X0 while the other two
loop back to their starting point. Kumar and Schwabe [KS97] refer to such
gadgets as football-shaped gadgets and dumbbell-shaped gadgets, respectively.
The vertices adjacent to x0 are named v1, v2, and v3, and those adjacent to



4.2. PATH COLORING IN BIDIRECTED TREES 77

x0 X0

v1

v2

v3

v4

v5

v6

(a) football-shaped gadget

x0 X0
v3

v1

v2

v6

v4

v5

(b) dumbbell-shaped gadget

Figure 4.7: The two kinds of gadgets

X0 are named v4, v5, and v6. The pre-colored edge incident to vi is denoted
by ei. For football-shaped gadgets, we assume that one of the three paths
runs from v1 to v4, one from v2 to v5, and one from v3 to v6. For dumbbell-
shaped gadgets, we assume that one of the three paths runs from v1 to v2, one
from v3 to v6, and one from v4 to v5. Figure 4.7 shows the gadget shapes and
the naming of vertices adjacent to x0 and X0. Note that dumbbell-shaped
gadgets are non-degenerate (i.e., v1 6= v2 and v4 6= v5) because there are no
parallel pre-colored edges.

We study different cases depending on the arrangement of colors on the
pre-colored edges. Note that we omit symmetrical cases that arise from
exchanging colors a and a′ or b and b′. Cases F1 and F2 pertain to football-
shaped gadgets, and cases D1 to D3 deal with dumbbell-shaped gadgets.
When we use expressions like all vertices or every vertex, we refer to the
vertices of Gv excluding x0 and X0.

Case F1: s and s′ are on different paths.
Let the colors on e1 to e6 be a, a′, s, s′, b′, and b, respectively.

Case F1.1: v1 is not opposite v5 or v6.
Color all three paths by alternating colors s and s′, starting with s at v1 and
with s′ at v2 and v3 (see Figure 4.8). All vertices except v1 see color s′. All
vertices except v2, v5, and v6 see color s. v1 cannot be opposite v2. As v1 is
not opposite v5 or v6, the coloring is correct.

Case F1.2: v1 is opposite v5.
All paths are colored by alternating colors s and s′, starting with s at v1 and
v2 and with s′ at v3. v1 and v5 share s. The only other vertex that does not
see s′ is v2, and the only vertex that does not see s is v6. Hence, the coloring
is valid unless v2 is opposite v6 (see part (a) of Figure 4.9).

If v2 is opposite v6, we replace the color s on the edge incident to v2 by b.
(Note that v2 6= r(b).) Unless v2 and v5 are adjacent, this coloring is correct
because v2 and v6 share b, whereas all remaining vertices share s or s′ (see



78 CHAPTER 4. PATH COLORING IN TREES

x0 X0

v1 v4

v2 v5

v3 v6

a

s s′ s′ s

s′

a′ s′ s s s′ b′

s

s′ s s s′
b

Figure 4.8: Case F1.1: v1 is not opposite v5 or v6

(a) v2 is not opposite v6
[v2 is opposite v6, and v2 is not adjacent to v5]

x0 X0

v1 v4

v2 v5

v3 v6

a

s s′ s′ s

s′

a′ s
[b]

s′ s′ s b′

s

s′ s s s′
b

(b) v2 is opposite v6, and v2 and v5 are adjacent

x0 X0

v1 v4

v2 v5

v3 v6

a

s s′ s′ s

s′

a′ a b′

s

s′ s s a

b

Figure 4.9: Case F1.2: v1 is opposite v5

x0 X0

v1 v4

v2 v5

v3 v6

a

s s′ s′ s

s′

a′ s s′ s′ s b′

s

s′ s s a

b

Figure 4.10: Case F1.3: v1 is opposite v6



4.2. PATH COLORING IN BIDIRECTED TREES 79

part (a) of Figure 4.9, color in square brackets). If v2 and v5 are adjacent,
we color the edge {v2, v5} and the edge incident to v6 but not to X0 with a.
(Note that v5 6= l(a) and v6 6= l(a).) This coloring is valid because v1 and
v5 share a, v2 and v6 share a, and all other vertices share s (see part (b) of
Figure 4.9).

Case F1.3: v1 is opposite v6.
Color all paths by alternating s and s′, starting with s at v1 and v2 and with
s′ at v3. Re-color the edge incident to v6 with color a. (Note that v6 6= l(a).)
The coloring is valid because v1 and v6 share a and all other vertices share s.

Case F2: s and s′ are on the same path.
Let the colors on e1 to e6 be s, a, a′, s′, b, and b′, respectively. Consider the
vertex v4. Denote the vertex different from X0 that is adjacent to v4 by u.
Note that u = v1 is possible. Since the pre-colored edges with colors a and a′

incident to X0 (these edges are contained in Gv \H1) are not parallel, either
a or a′ can be used to color the edge {u, v4}. Without loss of generality,
assume that a can be used for this purpose.

Case F2.1: v3 is not opposite v4.
Color all three paths by alternating colors s and s′, starting with s′ at v1 and
with s at v2 and v3. The color on edge {u, v4} is replaced by a. Every vertex
except v4 sees color s, and v4 sees colors s′ and a. The only vertex that does
not see s′ and a and that could be opposite v4 is v3. Hence, the coloring is
valid (see Figure 4.11).

Case F2.2: v3 is opposite v4, u is not opposite v5 or v6.
Color all three paths by alternating colors s′ and s, starting with s′. The
color on edge {u, v4} is replaced by a. Every vertex except u sees color s′,
and u sees color s. The only vertices that do not see s and could be opposite
u are v5 and v6, because v2 is a right vertex and v3 is opposite v4. Hence,
the coloring is valid (see Figure 4.12).

Case F2.3: v3 is opposite v4, u is opposite v5.
Color the paths by alternating s and s′, starting with s′ at v1 and v3 and
with s at v2. The color on edge {u, v4} is replaced by a. v3 and v4 share s′.
All other vertices except v6 see s. v6 sees s′. The only vertex that does not
see s′ and could be opposite v6 is v2. Hence, the coloring is valid unless v6

is opposite v2 (see part (a) of Figure 4.13). If v6 is opposite v2, replace the
color on the edge incident to v6 but not to X0 by color a (see part (b) of
Figure 4.13). Now, v2 and v6 share a, v3 and v4 share s′, and all other vertices
share s (if v3 is adjacent v6, v3 and v4 share color a).

Case F2.4: v3 is opposite v4, u is opposite v6.
The second coloring from Case F2.3 is valid in this case as well, because v3

and v4 share s′ (or a, in case v3 and v6 are adjacent), u and v6 share a, and



80 CHAPTER 4. PATH COLORING IN TREES

x0 X0

v1 u v4

v2 v5

v3 v6

s

s′ s s a

s′

a s s′ s′ s b

a′

s s′ s′ s

b′

Figure 4.11: Case F2.1: v3 is not opposite v4

x0 X0

v1 u v4

v2 v5

v3 v6

s

s′ s s a

s′

a s′ s s s′ b

a′

s′ s s s′
b′

Figure 4.12: Case F2.2: v3 is opposite v4, u is not opposite v5 or v6

(a) v2 not opposite v6

x0 X0

v1 u v4

v2 v5

v3 v6

s

s′ s s a

s′

a s s′ s′ s b

a′

s′ s s s′
b′

(b) v2 opposite v6

x0 X0

v1 u v4

v2 v5

v3 v6

s

s′ s s a

s′

a s s′ s′ s b

a′

s′ s s a

b′

Figure 4.13: Case F2.3: v3 is opposite v4, u is opposite v5



4.2. PATH COLORING IN BIDIRECTED TREES 81

x0 X0

v1 u v4

v2 v5

v3 v6

s

s′ s s a

s′

a s s′ s′ s b

a′

s′ s s a

b′

Figure 4.14: Case F2.4: v3 is opposite v4, u is opposite v6

all other vertices share s (see Figure 4.14).
We have seen how H1 can be colored as required if it is a football-shaped

gadget. For dumbbell-shaped gadgets, we distinguish cases D1 to D3.

Case D1: The path from x0 to X0 contains one single color.
Without loss of generality, we assume that the colors on e1 to e6 are a, a′,
s, s′, b′, and b, respectively. In addition, if either v1 or v2 is opposite v5,
we name the vertices such that v2 is opposite v5. Figure 4.15 illustrates
Cases D1.1–D1.3.

Case D1.1: v1 is not opposite v6.
Color the three paths by alternating s′ and s, starting with s′ at v2, v3,
and v5. All vertices except v1 see color s′. v1 sees color s. The only vertices
that do not see s are v2, v5, and v6. v2 cannot be opposite v1 because both are
right vertices. v5 cannot be opposite v1 because of our naming conventions.
Therefore, none of the possibly problematic vertices is opposite v1. Hence,
v1 shares s with its opposite vertex, and all other vertices share s′.

Case D1.2: v1 is opposite v6, v2 is not opposite v5.
Color the paths by alternating s′ and s, starting with s′ at v1, v3, and v5.
Now, v2 shares s with its opposite vertex, and all other vertices share s′.

Case D1.3: v1 is opposite v6, v2 is opposite v5.
Use the coloring from Case D1.2 and replace color s by b′ on the edge incident
to v2. v2 and v5 share b′, and all other vertices share s′.

Case D2: The path from x0 to X0 contains no single color.
Without loss of generality, we assume that the colors on e1 to e6 are s, a, a′,
s′, b, and b′, respectively. Figure 4.16 illustrates Cases D2.1–D2.4.

Case D2.1: v2 is not opposite v5 or v6.
Color the three paths by alternating s′ and s, starting with s′ at v1, v3,
and v5. All vertices except v2 see color s′. v2 sees color s. The only vertices



82 CHAPTER 4. PATH COLORING IN TREES

Case D1.1: v1 is not opposite v6

x0 X0

v1

v2

v3 v6

v4

v5

a

s
s′

s

s
s′

a′

s s′ s s s′ b
s′

s
s′

s

s
s′

b′

Case D1.2: v1 is opposite v6

[Case D1.3: v2 is opposite v5]

x0 X0

v1

v2

v3 v6

v4

v5

a

s′
s

s′

s′
s

[b′]

a′

s s′ s s s′ b
s′

s
s′

s

s
s′

b′

Figure 4.15: Case D1: One single color on the path from x0 to X0

that do not see s and could possibly be opposite v2 are v5 and v6. Hence,
the coloring is valid.

Case D2.2: v2 is opposite v5.
Color the paths by alternating s and s′, starting with s at v2, v3, and v4.
Replace color s′ by a on the edge incident to v5. (Note that v5 6= l(a).) Now,
v2 and v5 share color a, and all other vertices share s.

Case D2.3: v2 is opposite v6, v3 is not opposite v5.
Color the paths by alternating s and s′ just like in Case D2.2, without re-
placing color s′ by a on one edge afterwards. Every vertex except v5 sees s.
v5 sees s′. The only vertex that does not see s′ and that could possibly be
opposite v5 is v3. Hence, v5 shares s′ with its opposite vertex, and all other
vertices share s.

Case D2.4: v2 is opposite v6, v3 is opposite v5.
Use the coloring from Case D2.3 and replace the color s′ by a′ on the edge
incident to v5. v3 and v5 share a′, and all other vertices share s.

Case D3: The path from x0 to X0 contains s and s′.
Without loss of generality, we assume that the colors on e1 to e6 are a, a′, s,
b, b′, and s′, respectively. Denote by u the vertex that is adjacent to v6 but



4.2. PATH COLORING IN BIDIRECTED TREES 83

Case D2.1: v2 is not opposite v5 or v6

x0 X0

v1

v2

v3 v6

v4

v5

s

s′
s

s′

s′
s

a

a′ s′ s s s′ b′
s′

s
s′

s

s
s′

b

Case D2.2: v2 is opposite v5

x0 X0

v1

v2

v3 v6

v4

v5

s

s′
s

s′

s′
s

a

a′ s s′ s′ s b′
s′

s
s′

s

s
a

b

Case D2.3: v2 is opposite v6, v3 is not opposite v5

x0 X0

v1

v2

v3 v6

v4

v5

s

s′
s

s′

s′
s

a

a′ s s′ s′ s b′
s′

s
s′

s

s
s′

b

Case D2.4: v2 is opposite v6, v3 is opposite v5

x0 X0

v1

v2

v3 v6

v4

v5

s

s′
s

s′

s′
s

a

a′ s s′ s′ s b′
s′

s
s′

s

s
a′

b

Figure 4.16: Case D2: No single color on the path from x0 to X0



84 CHAPTER 4. PATH COLORING IN TREES

not to X0. Note that u = v3 is possible. One of the edges colored a and a′

outside H1 can be incident to v6, but not both of them. Hence, either a or
a′ can be used to color the edge {u, v6}. Without loss of generality, assume
that a is this color. Figures 4.17 and 4.18 illustrate Cases D3.1–D3.4 and
D3.5–D3.6, respectively.

Case D3.1: v5 is not opposite v1 or u, and v2 is not opposite v4.
Color the three paths by alternating s and s′, starting with s′ at v2, v3,
and v5. Recolor edge {u, v6} with color a. All vertices except v2, v5, and
v6 see color s. All vertices except v1, u, and v4 see color s′. Note that u
cannot be opposite v6 since these two vertices are adjacent. Furthermore,
note that v1 and v6 share a if they are opposite each other. Hence, the only
problematic pairs of vertices are v1–v5, u–v5, and v2–v4. Since none of these
is a pair of opposite vertices, the coloring is valid.

Case D3.2: v5 is opposite v1, and u is not opposite v4.
Use the coloring from Case D3.1 and exchange colors s and s′ on the path
from v4 to v5. v1 and v5 share s. Every other vertex except u sees s′. u sees s.
The only vertex that could be opposite u and that does not see s is v4. Hence,
the coloring is valid.

Case D3.3: v5 is opposite v1, u is opposite v4, v2 is not opposite v6.
Use the coloring from Case D3.1 and exchange colors s and s′ on the path
from v1 to v2. v1 and v5 share s′, and u and v4 share s. All other vertices
except v2 see s′. v2 sees s. The only vertex that does not see s and that
could be opposite v2 is v6. Hence, the coloring is valid.

Case D3.4: v5 is opposite v1, u is opposite v4, v2 is opposite v6.
Use the coloring from Case D3.1 and replace the color s′ by a on the edge
incident to v5. (Note that v5 6= l(a).) Now, v1 and v5 share a, v2 and v6 share
s′, and all other vertices share s. The coloring is valid.

Case D3.5: v2 is opposite v4.
Use the same coloring as in Case D3.2. v2 and v4 share s′. All other vertices
except v6 see s. v6 sees a and s′. The only vertex that sees neither a nor s′

is v5, which cannot be opposite v6. Hence, the coloring is valid.
Case D3.6: v5 is opposite u.

Again, use the same coloring as in Case D3.2. v5 and u share s. All other
vertices except v1 see s′. v1 sees a and s. The only vertex that sees neither
a nor s and that can be opposite v1 is v4. Hence, the coloring is valid unless
v1 is opposite v4. If v1 is indeed opposite v4, replace color s by b on the edge
incident to v1. Now, v1 and v4 share color b, u and v5 share color s, and all
other vertices share color s′.

The foregoing case analysis has shown that the gadget H1 can be colored
as required in all cases. It is easy to see that the resulting coloring algorithm
can be implemented to run in time linear in the size of the gadget. tu



4.2. PATH COLORING IN BIDIRECTED TREES 85

Case D3.1: v5 not opposite v1 or u; v2 not opposite v4

x0 X0

v1

v2

v3 u v6

v4

v5

a

s
s′

s

s
s′

a′

s s′ s s a s′
b

s
s′

s

s
s′

b′

Case D3.2: v5 is opposite v1; u is not opposite v4

x0 X0

v1

v2

v3 u v6

v4

v5

a

s
s′

s

s
s′

a′

s s′ s s a s′
b

s′
s

s′

s′
s

b′

Case D3.3: v5 opposite v1; u opposite v4; v2 not opposite v6

x0 X0

v1

v2

v3 u v6

v4

v5

a

s′
s

s′

s′
s

a′

s s′ s s a s′
b

s
s′

s

s
s′

b′

Case D3.4: v5 opposite v1; u opposite v4; v2 opposite v6

x0 X0

v1

v2

v3 u v6

v4

v5

a

s
s′

s

s
s′

a′

s s′ s s a s′
b

s
s′

s

s
a

b′

Figure 4.17: Cases D3.1–D3.4: s, s′ are on the path from x0 to X0



86 CHAPTER 4. PATH COLORING IN TREES

Case D3.5: v2 is opposite v4

x0 X0

v1

v2

v3 u v6

v4

v5

a

s
s′

s

s
s′

a′

s s′ s s a s′
b

s′
s

s′

s′
s

b′

Case D3.6: v5 is opposite u
[v1 is opposite v4]

x0 X0

v1

v2

v3 u v6

v4

v5

a

s [b]
s′

s

s
s′

a′

s s′ s s a s′
b

s′
s

s′

s′
s

b′

Figure 4.18: Cases D3.5–D3.6: s and s′ are on the path from x0 to X0

In Section 4.2.3, we show how KS-subgraphs satisfying the condition of
Lemma 4.2.3 and other triplets whose coloring is straightforward can be ex-
tracted from Gv until a configuration out of a limited set of alternatives
is obtained. In Section 4.2.4, we show how to make use of Lemma 4.2.4
to deal with these configurations whose partitioning is more involved. In
Section 4.2.5, we present the modifications that are necessary for the cases
L = 3` + 1 and L = 3` + 2. Section 4.2.6 explains why the resulting algo-
rithm is optimal in the class of local greedy algorithms. Section 4.2.7 reports
experience with an implementation of the algorithm.

4.2.3 Partitioning into Triplets (Simple Cases)

Like in [KP96], ST- and TT-matchings are viewed as a collection of chains
and cycles. Given a matching M , we refer to the color of the edge incident to
x0 as the left color of M , and to the color of the edge incident to X0 as the
right color of M . A sequence 〈M0, M1, . . . , Ml−1〉 of l > 1 TT-matchings is a
cycle of length l if the right color of Mi is equal to the left color of Mi+1 mod l

for all 0 ≤ i ≤ l − 1. A sequence 〈M0, M1, . . . , Ml−1〉 of l > 1 matchings is



4.2. PATH COLORING IN BIDIRECTED TREES 87

a chain of length l if M0 and Ml−1 are ST-matchings, M1, M2, . . . , Ml−2 are
TT-matchings, and the right color of Mi is equal to the left color of Mi+1 for
all 0 ≤ i ≤ l− 2. The terms l-cycle and l-chain refer to cycles and chains of
length l, respectively.

Let us introduce some notation. We use letters a, a′, b, b′, . . . to denote
double colors, and letters s, s′, t, t′, . . . to denote single colors. For instance,
an SS-matching with left color s and right color s′, a 2-chain, a 3-chain, and
a 5-cycle are represented as follows:

s
s′

s a
a s′

s a b
a b s′

a b c d e
b c d e a

A matching is specified by writing its left color above its right color, and
a sequence of matchings is given by writing down the individual matchings
from left to right.

The set of all matchings can be grouped into SS-matchings, chains, PP-
matchings, and cycles in time O(L). Next, the chains and cycles are pre-
processed so that the resulting chains and cycles do not contain parallel
pre-colored edges. If the i-th and j-th matching in a cycle or chain contain
parallel pre-colored edges incident to, say, x0, then the parallel pre-colored
edges can be exchanged, and this results in a shorter cycle or chain (or
SS-matching) and an additional cycle. For instance, if r(b) = r(e) in the
following example, the 6-chain can be divided into a 3-chain and a 3-cycle.

s a b c d e
a b c d e s′

−→ s a b
a b s′

+
e c d
c d e

This preprocessing can be implemented to run in time O(δ(v) + L). The
benefit obtained is that any KS-subgraph containing two matchings from the
same cycle or chain now satisfies the condition of Lemma 4.2.3 and can be
colored as required in linear time.

Since we have S = D, the ratio of the number of edges with double colors
to the number of edges with single colors is 2 : 1 altogether. The only groups
of matchings that have a smaller ratio than that are SS-matchings and 2-
chains. Therefore, whenever there is a group whose number of double color
edges is more than twice the number of its single color edges, there must be a
sufficient number of SS-matchings and 2-chains to outweigh this imbalance.
As we extract only 3-regular subgraphs with four double color edges and two
single color edges, the ratio of double color edges to single color edges in the
remaining graph will again be 2 : 1.

The following groups of matchings can be combined with SS-matchings
and 2-chains easily in order to obtain KS-subgraphs satisfying the condition
of Lemma 4.2.3.



88 CHAPTER 4. PATH COLORING IN TREES

A cycle of even length can be divided into pairs of matchings such that
every pair of matchings has a common double color. Each pair can
either be combined with an SS-matching to obtain one KS-subgraph,
or with two 2-chains to obtain two KS-subgraphs. For example, a 4-
cycle can be combined with two 2-chains and one SS-matching:

a b c d
b c d a

+
s e
e s′

+
t f
f t′

+
u
u′ =

u a b
u′ b c

+
s e c
e s′ d

+
t f d
f t′ a

There is always a sufficient number of SS-matchings or 2-chains avail-
able for such reductions because the ratio of double color edges to single
color edges is 2 : 1 altogether. In particular, when no SS-matchings are
left, there must be at least one 2-chain for every remaining matching
of the cycle.

A chain of odd length can be divided into two parts. The two matchings
at the beginning of the chain and the matching at the end together
constitute a KS-subgraph. If the chain has length 3, we are finished.
Otherwise, a sequence of TT-matchings of even length remains. This
sequence has the property that any two consecutive matchings share a
double color. Hence, this sequence can be handled just like a cycle of
even length.

Two chains of even length, at least one of which has length at least 4,
can also be combined with SS-matchings or 2-chains. Denote the longer
chain by C1 and the other one by C2. Combine the first two matchings
of C1 with the last matching of C2, and the first matching of C2 with the
last two matchings of C1. Both combinations result in KS-subgraphs.
We are left with zero, one, or two sequences of even length such that
consecutive matchings in each sequence share a double color. Hence,
these sequences can be handled like cycles of even length.

A 2-chain and a cycle of odd length can be handled by combining the
2-chain with the first matching of the cycle to obtain a KS-subgraph.
The remainder of the cycle is a sequence of even length with the prop-
erty that consecutive matchings share a double color, and it can be
handled like a cycle of even length.

A 2-chain and a PP-matching can be colored without any new color.
Color the PP-matching with its double color and each of the matchings
in the 2-chain with its single color. Since the number of colors that ap-
pear in this 3-regular subgraph is 4 altogether, the constraint on the
number of colors per row is satisfied.



4.2. PATH COLORING IN BIDIRECTED TREES 89

Two PP-matchings and an SS-matching can also be colored without
using any new color. Color each PP-matching with its double color
and the SS-matching with one of its single colors. Again, there are
only 4 colors involved altogether.

Applying these reductions in arbitrary order repeatedly as long as possible,
we are left with SS-matchings, at most one PP-matching, at most one chain
of even length greater than 2, and a number of cycles of odd length. (If
there was a 2-chain left, the fact that the ratio of double color edges to single
color edges is 2 : 1 altogether would imply that there is also at least one
PP-matching, cycle, or chain of length greater than 3. Hence, the 2-chain
should have been combined with one of these.) Section 4.2.4 shows how these
remaining matchings can be colored without violating the invariants.

4.2.4 Partitioning into Triplets (Difficult Cases)

First, we show how to handle two cycles of odd length.

Lemma 4.2.5 Given two cycles, each without parallel pre-colored edges, of
length 2i + 1 (i ≥ 1) and 2j + 1 (j ≥ 1), respectively, and i + j + 1 SS-
matchings, these n = 3(i+ j +1) matchings can be colored using at most n/3
new colors such that no row sees more than (4/3)n colors.

Proof: Denote the cycles by C1 and C2. Pick an arbitrary SS-matching M
with single colors s and s′. Pick a matching M1 with colors a and b from C1

such that none of the pre-colored edges of M1 is parallel to an edge colored s
or s′ in M . Pick a matching M2 with colors a′ and b′ from C2 with the same
property. These matchings exist because both cycles have length at least 3
and do not contain parallel pre-colored edges.

Next, check whether any of the pre-colored edges colored a or b in C1 is
parallel to a pre-colored edge colored a′ or b′ in C2. This can be checked by
testing the conditions r(a) = r(a′), r(a) = r(b′), r(b) = r(a′), r(b) = r(b′),
l(a) = l(a′), l(a) = l(b′), l(b) = l(a′), and l(b) = l(b′). If one of these cases
occurs, a pre-colored edge e1 in C1 that is parallel to a pre-colored edge e2

in C2 has been found. Exchanging these two pre-colored edges turns C1∪C2

into a single cycle C of even length. C can be viewed as consisting of two
subsequences, one originating from C1 and one from C2, such that pre-colored
edges within a subsequence are not parallel. Choose a pair of consecutive
matchings from C such that the pair consists of one matching from C1 and
one matching from C2 (there are two possibilities for choosing such a pair;
it doesn’t matter which one is selected). The pair contains either M1 or M2.
Hence, M and the two matchings from the pair represent a KS-subgraph



90 CHAPTER 4. PATH COLORING IN TREES

satisfying the condition of Lemma 4.2.3 and can be colored as required. The
remainder of C is a sequence of TT-matchings of even length that consists of
one even subsequence of TT-matchings originating from C1 and a second even
subsequence of TT-matchings originating from C2. By combining each pair of
consecutive TT-matchings from this sequence with an arbitrary SS-matching
we obtain KS-subgraphs that can be colored according to Lemma 4.2.3. (As
each such KS-subgraph contains either two TT-matchings originating from
C1 or two TT-matchings originating from C2, no row except the top row can
see 5 colors on pre-colored edges.)

If no pre-colored edge colored a or b in C1 is parallel to a pre-colored
edge colored a′ or b′ in C2, we consider the triplet H = M ∪ M1 ∪ M2.
Remove the vertices x0 and X0 from H and add dummy edges {r(a), l(b′)},
{r(a′), l(b)}, and {r(s), l(s′)}. The obtained graph H ′ is again 3-regular and
can be partitioned into three perfect matchings in linear time using the edge-
coloring algorithm by Schrijver [Sch98]. If each of the matchings contains
exactly one dummy edge, H can be split into an SS-matching with colors s
and s′, a TT-matching with colors a and b′, and a TT-matching with colors
a′ and b. Exchanging the new matchings for the old ones turns the cycles
C1 and C2 into a single cycle C of even length. We claim that C can be
colored by combining pairs of consecutive TT-matchings with arbitrary SS-
matchings if the matching with colors a′ and b is considered the first matching
of C. To see this, consider the two resulting pairs of matchings that contain
a TT-matching originating from H : the first one contains the matching with
colors a′ and b as well as the original matching from C1 with colors b and,
say, c. We know r(a′) 6= r(b), because this case has been handled above,
and l(b) 6= l(c), because these two pre-colored edges both originate from C1.
Similar reasoning can be applied to the second pair containing a matching
originating from H . Hence, each of the two pairs containing a matching
originating from H can be combined with an SS-matching to give a KS-
subgraph that can be colored according to Lemma 4.2.3. All other pairs of
consecutive matchings from C involve two matchings originating from either
C1 or C2, and they can be combined with SS-matchings in the same way.

If one of the matchings obtained from H ′ does not contain a dummy edge,
this matching gives a partitioning of H into gadget H1 and matching H2. In
that case, we can, according to Lemma 4.2.4, color H1 using only its old
colors such that no row except the top row sees more than 3 colors. H2

can then be colored using a single new color. Therefore, H is colored such
that no row except the top row sees more than 4 colors. When H has been
colored, the remaining sequences C1 \M1 and C2 \M2 have even length and
the property that consecutive matchings share a double color; they can be
colored as shown in Section 4.2.3, reusing only colors not in {a, b, a′, b′}. tu



4.2. PATH COLORING IN BIDIRECTED TREES 91

Since this lemma allows us to combine pairs of cycles of odd length with
SS-matchings, we are left with SS-matchings, at most one PP-matching, at
most one cycle of odd length, and at most one chain of even length. In
addition, we note that the number of edges with double colors is divisible
by 4 since the number of double colors is even (D = 2` by assumption).
Hence, only the following cases can occur (each with the appropriate number
of SS-matchings):

(a) one PP-matching and one cycle of odd length

(b) one PP-matching and one chain of even length

(c) one cycle of odd length and one chain of even length

These are handled by the following three lemmas.

Lemma 4.2.6 Given a PP-matching, a cycle of length 2i+1 (i ≥ 1) without
parallel pre-colored edges, and i+1 SS-matchings, these n = 3(i+1) matchings
can be colored using at most n/3 new colors such that no row sees more than
(4/3)n colors.

Proof: Pick an arbitrary SS-matching M with colors s and s′. Pick a match-
ing M ′ with double colors a and b from the cycle such that none of its
pre-colored edges is parallel to an edge colored s or s′ in M . Consider the
3-regular subgraph H obtained as the union of the PP-matching, the SS-
matching M , and the TT-matching M ′. H is a KS-subgraph satisfying the
condition of Lemma 4.2.3. Hence, H can be be colored using only the color
of the PP-matching, colors s, s′, and at most one new color such that no row
except the top row sees more than 4 colors.

When H is colored as required, we are left with a sequence of matchings
of even length such that consecutive matchings share a double color, and
SS-matchings. These can be colored as shown in Section 4.2.3. tu

Lemma 4.2.7 Given a PP-matching, a chain of length 2i (i ≥ 2) without
parallel pre-colored edges, and i − 1 SS-matchings, these n = 3i matchings
can be colored using at most n/3 new colors such that no row sees more than
(4/3)n colors.

Proof: Pick an arbitrary SS-matching M with colors s and s′. If the chain
contains a TT-matching M ′ with colors a and b such that none of its pre-
colored edges is parallel to a pre-colored edge of M , the matchings M , M ′

and the PP-matching are a KS-subgraph that can be colored according to
Lemma 4.2.3. We are left with a prefix and a suffix of the chain, one of odd



92 CHAPTER 4. PATH COLORING IN TREES

length and one of even length. Combine either the first two matchings of the
prefix with the last matching of the suffix, or the first matching of the prefix
with the last two matchings of the suffix. Color the resulting KS-subgraph
according to Lemma 4.2.3. Make the choice such that two (possibly empty)
even-length sequences of TT-matchings remain. These sequences are such
that consecutive matchings share a double color, and they can be combined
with SS-matchings as shown in Section 4.2.3.

Now consider the case that all TT-matchings of the chain contain a pre-
colored edge that is parallel to a pre-colored edge in M . In this case, the chain
must actually be a 4-chain. Furthermore, the second and third matching of
the 4-chain must each have exactly one pre-colored edge that is parallel to a
pre-colored edge in M . Consider the KS-subgraph H obtained by combining
the SS-matching M , the PP-matching, and the second matching of the chain.
No row of this triplet except the top row sees 5 colors on pre-colored edges
(otherwise, that row would see two colors from the TT-matching and two
colors from the SS-matching, implying that both pre-colored edges in the
TT-matching are parallel to a pre-colored edge in the SS-matching, a contra-
diction), and thus it can be colored as required according to Lemma 4.2.3.
The remaining three matchings of the 4-chain again form a KS-subgraph that
can be colored in this way. tu

Lemma 4.2.8 Given a cycle of length 2i+1 (i ≥ 1) and a chain of length 2j
(j ≥ 2), each without parallel pre-colored edges, and i + j − 1 SS-matchings,
these n = 3(i + j) matchings can be colored using at most n/3 new colors
such that no row sees more than (4/3)n colors.

Proof: Denote the cycle by C and the chain by N . Pick an arbitrary SS-
matching M with single colors s and s′. Pick a matching M ′ with double
colors a and b from the cycle such that none of its pre-colored edges is parallel
to an edge colored s or s′ in M . Such a matching M ′ exists because the cycle
has length at least three.

Next, check whether N contains a TT-matching M ′′ such that none of its
pre-colored edges is parallel to a pre-colored edge in M . If such a matching
M ′′ does not exist, N must actually be a 4-chain and each of its two TT-
matchings must have exactly one pre-colored edge that is parallel to a pre-
colored edge in M . In this case, exchange both pairs of parallel pre-colored
edges. Consequently, N ∪M is either turned into a 3-chain and a 2-chain
or into two 2-chains and a PP-matching. In the former case, the 3-chain
is a KS-subgraph that can be colored according to Lemma 4.2.3, and the
2-chain can be combined with the odd cycle C as shown in Section 4.2.3.
In the latter case, one 2-chain can be combined with the PP-matching and



4.2. PATH COLORING IN BIDIRECTED TREES 93

the other 2-chain can be combined with the odd cycle C (again as shown in
Section 4.2.3).

Now consider the case that N contains a TT-matching M ′′ such that none
of its pre-colored edges is parallel to a pre-colored edge in M . Let a′ and b′ be
its double colors. Next, check whether any of the pre-colored edges colored
a or b in C is parallel to a pre-colored edge colored a′ or b′ in N . This can
be checked by testing the conditions r(a) = r(a′), r(a) = r(b′), r(b) = r(a′),
r(b) = r(b′), l(a) = l(a′), l(a) = l(b′), l(b) = l(a′), and l(b) = l(b′). If
one of these cases occurs, a pre-colored edge e1 in C that is parallel to a
pre-colored edge e2 in N has been found. Exchanging these two pre-colored
edges turns C ∪ N into a single chain N ′ of odd length. N ′ can be viewed
as consisting of three subsequences: a prefix originating from N , an internal
subsequence originating from C, and a suffix originating from N . Pre-colored
edges within a subsequence are not parallel. Choose a pair of consecutive
TT-matchings from N ′ by choosing M ′′ and either the matching before or
after M ′′ in N ′ such that the pair consists of one matching from C and one
matching from N . Hence, M and the two matchings from the pair represent
a KS-subgraph satisfying the condition of Lemma 4.2.3 and can be colored
as required. The remaining matchings in N ′ originating from C form an
even-length subsequence of TT-matchings such that consecutive matchings
share a double color. Hence, these matchings can be combined with SS-
matchings as shown in Section 4.2.3. Now we are left with a prefix of N
and a suffix of N , each consisting of at least one matching and one of them
with even and the other with odd length. As in the proof of Lemma 4.2.7,
combine either the first two matchings of the prefix with the last matching
of the suffix, or the first matching of the prefix with the last two matchings
of the suffix, and color the resulting KS-subgraph according to Lemma 4.2.3.
Make the choice such that two (possibly empty) even-length sequences of
TT-matchings remain. These sequences are such that consecutive matchings
share a double color, and they can be combined with SS-matchings as shown
in Section 4.2.3.

If no pre-colored edge colored a or b in C is parallel to a pre-colored
edge colored a′ or b′ in N , we consider the triplet H = M ∪ M ′ ∪ M ′′.
Remove the vertices x0 and X0 from H and add dummy edges {r(a), l(b′)},
{r(a′), l(b)}, and {r(s), l(s′)}. The obtained graph H ′ is again 3-regular and
can be partitioned into three perfect matchings in linear time using the edge-
coloring algorithm by Schrijver [Sch98]. If each of the matchings contains
exactly one dummy edge, H can be split into an SS-matching with colors
s and s′, a TT-matching M1 with colors a′ and b, and a TT-matching M2

with colors a and b′. Exchanging the new matchings for the old ones turns
C ∪N into a single chain N ′ of even length. N ′ consists of a prefix from N ,



94 CHAPTER 4. PATH COLORING IN TREES

followed by M1, followed by an even number of matchings from C, followed
by M2, followed by a suffix from N . M1 and its successor matching (with
double colors b and, say, c) can be combined with an arbitrary SS-matching to
obtain a KS-subgraph that can be colored according to Lemma 4.2.3. (Note
that r(a′) 6= r(b) because the case r(a′) = r(b) has been handled above, and
that l(b) 6= l(c) because these edges originate from the same cycle.) M2 and
its predecessor in N ′ can be handled in the same way. What remains is a
(possibly empty) even-length sequence of matchings from C, which can be
combined with SS-matchings as shown in Section 4.2.3, and a prefix and a
suffix of matchings originating from N , one of even length and the other of
odd length, and these can be handled as above.

If one of the matchings obtained from H ′ does not contain a dummy edge,
this matching gives a partitioning of H into gadget H1 and matching H2. In
that case, we can color H1 using only its old colors such that no row except
the top row sees more than 3 colors (Lemma 4.2.4). H2 can then be colored
using a single new color. Therefore, H is colored such that no row except the
top row sees more than 4 colors. When H has been colored, C \M ′ leaves
an even sequence of TT-matchings behind (which can be combined with
SS-matchings as shown in Section 4.2.3), and the prefix and suffix resulting
from N \M ′′ are such that one has even length and the other has odd length
(so they can be handled as above). Note that the double colors that were
reused to color H (by application of Lemma 4.2.4) are not reused in any
other triplet. tu

It is easy to see that the coloring methods used in the proofs of the four
lemmas in this section are such that the time requirement per triplet is linear
in the size of the triplet.

At this point, we have accomplished the goal of showing for the case
L = 3` that the uncolored edges of the bipartite graph Gv can be colored
in time O(Tec(δ(v), L)) such that the invariants are maintained. The next
section shows how to modify the invariants and generalize the algorithm for
the cases L = 3` + 1 and L = 3` + 2.

4.2.5 Dealing with L = 3` + 1 and L = 3` + 2

If the load L is not a multiple of three, the invariants introduced in Sec-
tion 4.2.1 have to be modified. For the case L = 3` + 1, they become:

Invariant 1’: The number of colors used in total is at most d(5/3)Le =
5` + 2.

Invariant 2’: The number of colors used on a pair of directed edges with
opposite directions is at most 4` + 2.



4.2. PATH COLORING IN BIDIRECTED TREES 95

Invariant 2’ implies S + D ≤ 4` + 2. Taking into account S + 2D = 6` + 2,
we have D ≥ 2`. Furthermore, if D > 2` we can argue along the lines
of Lemma 4.2.1, and hence we assume D = 2` without loss of generality.
D = 2` implies S = 2` + 2.

Among all SS-matchings, PP-matchings, chains, and cycles of Gv, only
SS-matchings and 2-chains contain more single colors than double colors.
Since we have two more single colors than double colors altogether, there
must either be one SS-matching or two 2-chains. If there is an SS-matching
M , we consider the graph G′ = Gv \M . G′ is 3`-regular and has 2` single
colors and 2` double colors on its pre-colored edges. Hence, G′ can be colored
with 4` colors per row and 5` colors altogether as shown in the previous
sections. The matching M can be colored using any of its single colors. This
results in at most 4` + 2 colors per row and at most 5` + 2 colors altogether,
as required.

If there is no SS-matching, there must be two 2-chains P1 and P2. In this
case, we consider the graph G′ = Gv \ (P1 ∪ P2). Since P1 ∪P2 is a 4-regular
subgraph with 4 single colors and 2 double colors, G′ is 3(`− 1)-regular and
has 2(`− 1) single colors and 2(`− 1) double colors on its pre-colored edges.
Again, G′ can be colored with 4(` − 1) colors per row and 5(` − 1) colors
altogether as shown in the previous sections. The four matchings of P1 ∪ P2

can be colored without any new colors by coloring each of them with its
single color. In addition to the colors used in G′, these are at most 6 more
colors per row and altogether. Hence, we have colored Gv using at most
4` − 4 + 6 = 4` + 2 colors per row and at most 5` − 5 + 6 = 5` + 1 colors
altogether, as required. This concludes the discussion of the case L = 3`+1.

For the case L = 3` + 2, we use the following invariants:

Invariant 1”: The number of colors used in total is at most d(5/3)Le =
5` + 4.

Invariant 2”: The number of colors used on a pair of directed edges with
opposite directions is at most 4` + 4.

Invariant 2” implies S + D ≤ 4` + 4. As S + 2D = 6` + 4, we have D ≥ 2`
and can again assume D = 2` without loss of generality. Since D = 2`
implies S = 2` + 4, there must be a sufficient number of SS-matchings or
2-chains in Gv to account for the additional single colors. More precisely,
there must either be two SS-matchings, one SS-matching and two 2-chains,
or four 2-chains. In the following, we show that all three possibilities can be
dealt with without violating the invariants.

If there are two SS-matchings M1 and M2, the graph G′ = Gv \(M1∪M2)
is 3`-regular with 2` single colors and 2` double colors. G′ can be colored



96 CHAPTER 4. PATH COLORING IN TREES

with 4` colors per row and 5` colors altogether, and each of M1 and M2 can
be colored with any of its single colors. The resulting coloring uses at most
4` + 4 colors per row and 5` + 4 colors altogether.

If there is one SS-matching M and two 2-chains P1 and P2, the graph
G′ = G \ (M ∪ P1 ∪ P2) is 3(` − 1)-regular with 2(` − 1) single colors and
2(` − 1) double colors. Color G′ with 4(` − 1) colors per row and 5(` − 1)
colors altogether. Color M with any of its single colors, and color each of
the matchings in P1 and P2 with its respective single color. The number
of colors used in M ∪ P1 ∪ P2 is 8, and we obtain a coloring with at most
4(`− 1) + 8 = 4` + 4 colors per row and at most 5(`− 1) + 8 = 5` + 3 colors
altogether.

Finally, if there are no SS-matchings, we have four 2-chains Pi, 1 ≤ i ≤ 4,
and consider the graph G′ = G\(P1∪P2∪P3∪P4). G′ is 3(`−2)-regular with
2(`− 2) single colors and 2(`− 2) double colors, and it can be colored using
4(`− 2) colors per row and 5(`− 2) colors altogether. Coloring each of the
remaining matchings in the 2-chains P1, P2, P3, and P4 with its respective
single color, we need 12 more colors in addition to the colors used in G′ and
obtain a coloring with at most 4(`− 2) + 12 = 4` + 4 colors per row and at
most 5(`− 2) + 12 = 5` + 2 colors altogether.

4.2.6 An Optimal Local Greedy Algorithm

In the previous sections we have shown that there are invariants that can be
maintained at each coloring-extension substep by a greedy algorithm. The
invariants imply that the number of colors used to color a given set of paths
with load L is at most d(5/3)Le. The time requirement for one coloring-
extension substep at a node v is O(Tec(δ(v), L)), because it is dominated by
the time for partitioning the edges of the L-regular graph Gv into L perfect
matchings. Consequently, the time requirement for the execution of the whole
algorithm can be bounded by

∑
v∈V O(Tec(δ(v), L)) = O(Tec(N, L)). Hence,

we obtain the following theorem, which is the main result of this chapter.

Theorem 4.2.9 Given a set of directed paths in a bidirected tree with N
nodes such that the load on each directed edge is at most L, a coloring for the
paths using at most d(5/3)Le colors can be computed in time O(Tec(N, L)).

The exact running-time depends on the subroutine used to solve the uncon-
strained edge-coloring problem for regular bipartite multigraphs. Using the
edge-coloring algorithm due to Cole and Hopcroft [CH82], a running-time of
O(NL(log N +log L)) is achieved for path coloring in bidirected trees. Using
Schrijver’s algorithm [Sch98], a running-time of O(NL2) is obtained.



4.2. PATH COLORING IN BIDIRECTED TREES 97

A local greedy algorithm for the path coloring problem is an algorithm
that assigns colors to the paths touching a certain start node of the tree
first and then visits the remaining nodes of the tree in depth-first search
order (or any other order that ensures that the next node is adjacent to a
previously visited node, i.e., any order derived from the general graph search
procedure given in Section 2.1.2). At each node v it extends the existing
partial coloring to include the paths touching v that have not been colored
at a previous node. In addition, the algorithm must satisfy two requirements:
First, the algorithm must be greedy in the sense that it never changes the
color of a path once the color has been assigned to that path. Second, the
algorithm must make local decisions in the sense that the only information
about the paths touching the current node v that it takes into account during
the coloring-extension substep is which edges incident to the current node
these paths use.

It is easy to see that our algorithm belongs to this class of local greedy
algorithms. All previous algorithms for path coloring in bidirected trees
[MKR95, KP96, KS97] belong to this class as well. Local greedy algorithms
are well-suited for distributed implementation of wavelength assignment in
all-optical WDM networks: one node of the network can initiate the wave-
length assignment by assigning wavelengths to the connection requests touch-
ing it, and then transfer control to its neighbors who can proceed to extend
the wavelength assignment independently and in parallel.

For a given deterministic local greedy algorithm A and any positive inte-
ger L, an adversary can construct an instance of path coloring in a bidirected
binary tree such that A uses at least b(5/3)Lc colors while an optimal solu-
tion uses only L colors [Jan97]. Hence, our algorithm is optimal within the
class of local greedy algorithms with respect to the number of colors used
in the worst case. It remains an interesting open problem whether a differ-
ent approach to path coloring in bidirected trees can lead to an improved
approximation algorithm.

4.2.7 Implementation and Experiments

The author has implemented the approximation algorithm for path coloring
in bidirected trees presented in the preceding sections. The implementation
was carried out in C++ [Str97] using the LEDA class library [MN95]. Schri-
jver’s algorithm [Sch98] has been used as the edge-coloring subroutine, so
the implemented path coloring algorithm has a worst-case running-time of
O(NL2) for inputs consisting of a tree with N nodes and paths with maxi-
mum load L.

The source code of the implemented algorithm is structured as follows:



98 CHAPTER 4. PATH COLORING IN TREES

• Coloring KS-subgraphs according to Lemma 4.2.3: 3,500 lines of code

• Coloring gadgets according to Lemma 4.2.4: 1,000 lines of code

• Schrijver’s edge-coloring algorithm [Sch98]: 600 lines of code

• Constrained bipartite edge-coloring algorithm (using the three subrou-
tines above; including preprocessing of chains and cycles, and selection
of triplets): 3,600 lines of code

• Main control structure of algorithm (visiting the nodes of the tree in
dfs order and constructing the bipartite graphs): 500 lines of code

This adds up to 9,200 lines of code (228,000 bytes). The comparatively big
code size is mainly caused by the huge number of similar cases that must be
distinguished and treated in a slightly different way in the coloring routines.
The user interface of the algorithm is provided by a function that takes as
arguments a tree T and a list L of paths in T (the paths are presented as
pairs of nodes). It returns the list of colors assigned to the paths by the
algorithm.

In addition to the algorithm itself, a graphical user interface allowing easy
demonstration of the algorithm has been implemented. The user can edit the
tree network, enter a set of paths manually or have it created randomly, let
the algorithm assign colors to the paths, and view the assignment. The
LEDA classes GraphWin and window were convenient to use for this purpose
and led to a quick completion of the code for this user interface.

Experiments with the implementation were conducted on a Pentium PC
(MMX, 166 MHz) running the Linux operating system. The observed in-
crease in running-time for randomly generated inputs of growing size was
linear in N and slightly super-linear in L. The running-times for path color-
ing in a nearly balanced 5-ary tree with 100 nodes ranged from approximately
1 second for L = 20 to less than 12 seconds for L = 110. It should be noted
that no attempt was made to tune the code to achieve faster running-times.

For sets of paths that create the same load on every edge of the tree, the
number of wavelengths used by the algorithm was close to (5/3)L in almost
all experiments. This should not come as a surprise, because the algorithm
does not try to use fewer than (5/3)L colors if possible: if the existing partial
coloring uses few colors and, consequently, the bipartite graph Gv contains
many double colors, the algorithm gives away this advantage by splitting
some of the double colors (Lemma 4.2.1) temporarily. For comparison, the
simple greedy algorithm (mentioned in Section 4.2.1), which uses 2L − 1
colors in the worst case, was also implemented. It turned out that the simple



4.2. PATH COLORING IN BIDIRECTED TREES 99

greedy algorithm used about 20 percent fewer colors than our algorithm on
many inputs. Hence, it is meaningful to run both algorithms and use the
better of the two colorings: in this way, the d(5/3)Le worst-case guarantee
can be combined with better average-case behavior. Additional heuristics
might improve the number of colors used in the average case even further.
The implementation of our algorithm and the experiments we conducted are
described in more detail in [EJ98a].





Chapter 5

MaxPC and MaxPP in
Bidirected Trees

For a given bidirected tree T = (V, E), set P of directed paths in T , and
number W of available colors, the maximum path coloring (MaxPC) prob-
lem is to compute a subset P ′ ⊆ P and a W -coloring of P ′, and the maximum
path packing (MaxPP) problem is to compute a subset P ′ ⊆ P with max-
imum load W . For both problems, the goal is to maximize the cardinality
of P ′. For a given instance of MaxPC or MaxPP, we denote by P ∗ an ar-
bitrary optimal solution. The MaxPC problem is equivalent to finding a
maximum W -colorable subgraph in the conflict graph of the given paths.
MaxPC applies to wavelength assignment in optical networks without wave-
length converters; with this application in mind, we will use the terms colors
and wavelengths interchangeably. MaxPP applies to all-optical networks with
wavelength converters, to optical networks with space-division multiplexing,
or to networks with circuit switching.

In this chapter, we present complexity results and approximation algo-
rithms for MaxPC and MaxPP in bidirected trees. Note that an algorithm
is a ρ-approximation algorithm for MaxPC or MaxPP if it always outputs
a set P ′ whose cardinality is at least a (1/ρ)-fraction of the cardinality of
an optimal solution. In Section 5.1, we begin by showing that MaxPP and
MaxPC are equivalent if the given tree is a star and that both problems can
be solved optimally in polynomial time in this case. Then, both problems
are shown to be solvable optimally in polynomial time if the maximum de-
gree ∆ of the given tree network and the number W of available wavelengths
are bounded by a constant. If either ∆ or W can be arbitrarily large, both
problems are proved NP-hard.

In Section 5.2, we adapt the approximation algorithm for integral multi-
commodity flow in undirected trees due to Garg, Vazirani, and Yannakakis

101



102 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

[GVY93] and obtain a 2-approximation algorithm for MaxPP with arbi-
trary W in bidirected trees. If W = 1, i.e., only one wavelength is avail-
able, then MaxPC and MaxPP are equivalent to the maximum edge-disjoint
paths problem, and in Section 5.3 we give a family of polynomial-time ap-
proximation algorithms with approximation ratio 5/3+ε for this case, where
ε can be chosen arbitrarily small. In Section 5.4 we obtain, for MaxPC
with arbitrary W , a 2.22-approximation for trees of arbitrary degree and a
1.58-approximation for trees whose degree is bounded by a constant.

5.1 Complexity of MaxPC and MaxPP

5.1.1 Stars

Recall that a star consists of a node v and a number of nodes u1,. . . ,u∆

that are adjacent to v but not adjacent to each other. A set of paths in
a star with maximum load L can always be colored with L colors, because
coloring paths with maximum load L in a star is equivalent to edge coloring a
bipartite multigraph with maximum degree L (see Section 4.2.1). Therefore,
the MaxPC and MaxPP problems are equivalent for stars. Furthermore, the
problem of selecting a maximum number of paths from a set P of paths in
a star such that the selected paths can be colored with W colors can be
reduced to the b-matching problem in an undirected bipartite multigraph
G′ = (V1 ∪ V2, E

′) as follows. The construction of G′ is the same as the
construction of Gv in Section 4.2.1, but without the addition of dummy
edges.

For each node ui, 1 ≤ i ≤ ∆, V1 contains two vertices xi and vxi
, and

V2 contains two vertices Xi and Vxi
. For each path from v to some ui in P ,

add an edge {vxi
, Xi} to E ′. For each path from some ui to v in P , add an

edge {xi, Vxi
} to E ′. For each path from some ui to some uj in P , add an

edge {xi, Xj} to E ′. Observe that each path in P corresponds to one edge
in G′, and that two paths can be assigned the same color if and only if the
corresponding edges in G′ do not share an endpoint. Hence, the problem
of selecting a maximum number of paths in P that can be colored with W
colors is equivalent to the problem of selecting a maximum number of edges
in E ′ that can be colored with W colors.

As the edges of a bipartite multigraph with maximum degree W can al-
ways be colored with W colors, it is sufficient to select a maximum cardinality
subset E ′′ of E ′ such that the multigraph G′′ = (V1 ∪ V2, E

′′) has maximum
degree W . This is a special case of the capacitated b-matching problem (see
Section 2.1.5), which can be solved in polynomial time [GLS88, pp. 257–259].



5.1. COMPLEXITY OF MAXPC AND MAXPP 103

Hence, MaxPC and MaxPP can be solved optimally in polynomial time for
stars.

Note that this solution to the MaxPC problem in stars extends to the
weighted case, where each path in the input is associated with a benefit
and the goal is to maximize the sum of the benefits of all accepted paths.
This extension is achieved simply by using an algorithm for the weighted
version of the capacitated b-matching problem, which can also be solved in
polynomial time. Another possible extension is to solve MaxPP in the case
that the number of available wavelengths can be different on different edges;
it suffices to choose the values b(v) for the nodes in G′ appropriately.

5.1.2 W and ∆ Bounded by a Constant

Now we assume that T = (V, E) is a tree whose maximum degree ∆ is
bounded by a constant and that the number W of available wavelengths is
also bounded by a constant. We show that MaxPC and MaxPP can both be
solved optimally in polynomial time in this case.

First, we present the algorithm for MaxPC. Recall that L denotes the
maximum load of a directed edge in T . In the following, a colored set is a
set of paths together with a coloring for the paths. The number of paths
in a colored set M is denoted by |M |. We use a bottom-up computation to
compute values f(v, Pv) ∈ N for all v ∈ V and for all Pv ∈ Pv. Here, Pv is
the set of all colored subsets Pv of P such that the following two conditions
hold.

1. Pv contains only paths touching v and its parent p(v).

2. The paths in Pv are colored using only colors from {1, . . . , W} such
that intersecting paths receive different colors.

The value f(v, Pv) will represent the maximum number of paths contained in
the subtree rooted at v such that these paths together with the paths in Pv

can be colored using W colors (without changing the colors of the paths
in Pv).

The values f(v, Pv) can be computed as follows. First, f(v, Pv) is initial-
ized to zero for every node v and all valid colored sets Pv ∈ Pv. For the
leaves of the tree, no further computation is necessary; they are considered
ready. An internal node v of T is processed only after all its children are
ready, i.e., after the values f(w, Pw) for all its children w and all colored sets
Pw ∈ Pw are available. While the node v is processed, enumerate all possible
colored sets Qv containing paths touching v that are colored using at most
W colors. For a neighbor w of v, denote by Qv[w] the colored subset of Qv



104 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

that contains all colored paths touching v and w. For every colored set Qv,
the values f(vi, Qv[vi]) for all children vi of v and the value |Qv \Qv[p(v)]| are
added up. If the result is greater than the previous value for f(v, Qv[p(v)]),
that value is updated.

At the root node u with children u1, . . . , uk, determine for all colored sets
Qu the term |Qu| +

∑k
i=1 f(ui, Qu[ui]). The maximum value m (taken over

all colored sets Qu) of this term gives exactly the maximum number of paths
in P that can be colored with W colors. By storing for each pair (v, Pv)
which colored set Qv yielded the maximum value of f(v, Pv), the algorithm
can output not only the value m, but also m paths together with a valid
W -coloring in the end.

The running-time of the algorithm is bounded by a polynomial in L and
|V | and, therefore, polynomial in the size of the input. In fact, the worst-
case running-time for processing a node v of T can be estimated as follows.
There are at most

(
L
0

)
+
(

L
1

)
+ · · ·+ (L

W

) ≤ WLW possibilities to choose up
to W paths going through an edge e with load ≤ L. As v has ≤ ∆ outgoing
and ≤ ∆ incoming edges, at most (WLW )2∆ = LO(1) different sets of paths
touching v must be considered. Each of these contains at most 2∆W paths;
therefore there are at most W 2∆W = O(1) possible colorings for each such
set. Hence, for each node v only a polynomial number of colored sets Qv must
be considered, and each of them can be processed in polynomial time. As
there are only |V | nodes to be processed, the overall running-time is bounded
by a polynomial in L and |V |.

In order to solve the MaxPP problem in the case of bidirected trees with
bounded degree and constant W , a very similar bottom-up computation can
be used. The details are left to the reader.

Note that the algorithms for MaxPP and MaxPC in bidirected trees of
bounded degree with bounded number of wavelengths, like the algorithm
for stars, extend to the weighted variants of the MaxPC and MaxPP prob-
lems: It suffices to redefine the value f(v, Pv) to represent the maximum total
weight of paths contained in the subtree rooted at v such that these paths
together with the paths in Pv can be colored using W colors. Furthermore,
the algorithms can also be generalized to the case where the set of available
wavelengths varies from link to link and to the case where wavelength con-
verters with limited wavelength conversion are allowed. In addition, variants
of the algorithm give exact algorithms for integral multicommodity flow in
bidirected or undirected trees of bounded degree, if the edge capacities are
bounded by a constant.



5.1. COMPLEXITY OF MAXPC AND MAXPP 105

zkyj

xi

xi,1 xi,pi

xi,l,1 xi,l,2

Figure 5.1: Construction of the tree for the 3D-matching problem

5.1.3 Arbitrary Maximum Degree ∆

Now we consider the case that the maximum degree of the tree T can be
arbitrary while the number W of available wavelengths is bounded by a con-
stant. If the constant is 1, i.e., if W = 1, the MaxPC problem is equivalent to
the problem of determining a maximum cardinality subset P ′ of P such that
the paths in P ′ are edge-disjoint, i.e., to the maximum edge-disjoint paths
problem. This problem can be shown NP-hard by a reduction adapted from
the proof for the NP-hardness of integral multicommodity flow in undirected
trees with edge capacities one or two from [GVY93, Theorem 6].

Theorem 5.1.1 The maximum edge-disjoint paths problem is NP-hard for
bidirected trees.

Proof: We reduce the NP-complete 3D-matching problem [GJ79] to the
maximum edge-disjoint paths problem for bidirected trees. An instance of
the 3D-matching problem consists of three disjoint sets X, Y, Z with |X| =
|Y | = |Z| = n and a set of triples S ⊆ { (xi, yj, zk) | xi ∈ X, yj ∈ Y, zk ∈ Z }.
The goal is to decide whether S contains n disjoint triples.

Given an instance of the 3D-matching problem, we construct a bidirected
tree T of depth three as follows. The root of T has 3n children: one for each
xi ∈ X, one for each yj ∈ Y , and one for each zk ∈ Z. Each node xi has
pi children xi,1,. . . ,xi,pi

, where pi is the number of occurrences of xi in S.
Each xi,j has two children xi,j,1 and xi,j,2. See Figure 5.1 for a sketch of
this construction; note that only a small subset of the nodes of the tree is
actually shown there, and that pairs of oppositely directed edges are depicted
as undirected edges for the sake of simplicity.



106 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

Now, we create a set P of paths in T . Number the occurrences of xi in
the triples of S from 1 to pi arbitrarily. For every triple in S we add three
paths to P . Let triple (xi, yj, zk) contain the l-th occurrence of xi in S. Then
we add a path from xi,l,1 to yj, a path from zk to xi,l,2, and a path from xi,l,1

to xi,l,2.

We claim that S contains n disjoint triples if and only if P contains a
subset P ′ of at least |S|+ n edge-disjoint paths. Assume that S contains n
disjoint triples (xi1 , yj1, zk1),. . . ,(xin , yjn, zkn). Let triple (xit , yjt, zkt) contain
the lt-th occurrence of xit . Then the following |S| + n paths form a set P ′

of edge-disjoint paths: for each t, 1 ≤ t ≤ n, choose the path from xit,lt,1

to yjt , the path from zkt to xit,lt,2, and pit − 1 paths from xit,l,1 to xit,l,2 for
l ∈ {1, . . . , pit} \ {lt}.

Conversely, assume that there is a subset P ′ of P containing at least
|S| + n edge-disjoint paths. Note that P ′ can contain at most one path
entering the subtree rooted at xi from above and at most one path leaving
the subtree rooted at xi. The only possibility for P ′ to contain more than
pi paths using edges of the subtree rooted at xi is to contain one path from
xi,l,1 to xi,l,2 for pi − 1 values of l and two additional paths, one from xi,li,1

to some yj and one from some zk to xi,li,2. In that case, P ′ contains pi + 1
paths using edges of the subtree rooted at xi. The only way for P ′ to contain
at least |S| + n paths is that P ′ contains exactly pi + 1 paths using edges
of the subtree rooted at xi for every i, 1 ≤ i ≤ n. In that case, the triples
(xi, yj, zk) ∈ S containing the li-th occurrence of xi form a set of n disjoint
triples. tu

In fact, the statement of the theorem can be strengthened (as observed
in [GVY93]) as follows: Note that the maximum 3D-matching problem is
MAX SNP-complete [Pap94] and APX -complete [MPS98] even if each of the
xi, yi, and zi may occur in at most a constant number of triples in S [Kan91].
The reduction used in the proof of Theorem 5.1.1 is an L-reduction [PY91]
and an AP-reduction [CKST95] if we reduce from this bounded variant of
the 3D-matching problem. Hence, we can conclude that the maximum edge-
disjoint paths problem in bidirected trees is MAX SNP-hard and APX -hard.
This implies that there is no polynomial-time approximation scheme for the
problem unless P = NP.

So we know that MaxPC is NP-hard (and even APX -hard) already for
W = 1. Furthermore, MaxPC is also NP-hard if W = c for any fixed
c > 1. To see this, note that the maximum edge-disjoint paths problem can
be reduced to MaxPC with W = c by simply adding c − 1 dummy paths
of length one for every directed edge of the tree; this effectively reduces the
number of wavelengths available for the original paths to one.



5.1. COMPLEXITY OF MAXPC AND MAXPP 107

5.1.4 Arbitrary Number W of Wavelengths

If the number of available wavelengths is part of the input and is not bounded
by a constant, we show that MaxPC and MaxPP are NP-hard already for
binary trees. Therefore, bounding the maximum degree by a constant at
least three does not help in this case. (The case ∆ = 2, i.e., T is a chain, can
be solved optimally in polynomial time for arbitrary W .)

The NP-hardness of MaxPC follows easily from the NP-hardness proof
for path coloring in binary trees given in Theorem 3.1.9 in Section 3.1.2.
There it is shown that it is NP-complete to decide whether a set P of paths
in a binary tree T with maximum load L can be colored using L wavelengths.
However, P can be colored using L wavelengths if and only if the output of
MaxPC on input T , P and W = L is P (and a coloring for P ). Hence,
MaxPC is NP-hard already for binary trees if W can be arbitrary.

Next, we show that the MaxPP problem is also NP-hard already for
binary trees if W can be arbitrary. We will prove this using a modification
of the proof of Theorem 5.1.1 in the preceding section. First, we present a
helpful lemma. Call a path consisting of a single directed edge a one-edge
path. Informally, the lemma states that it is always the right decision to
accept as many one-edge paths as possible.

Lemma 5.1.2 Let an instance of MaxPP be given by a bidirected tree T =
(V, E), a number W of available wavelengths, and a set P of directed paths
in T . For every directed edge e ∈ E, let s(e) denote the number of one-
edge paths in P consisting only of edge e. Then there is an optimal solution
P ∗ ⊆ P for this instance of MaxPP such that P ∗ contains, for each edge e,
exactly min{s(e), W} one-edge paths from P that consist only of edge e.

Proof: Let Q be an optimal solution that contains, for some edge e, strictly
less than min{s(e), W} paths that consist only of edge e. Hence, there must
be a path p ∈ P \Q consisting only of edge e. If the paths in Q created load
less than W on edge e, we could add p to Q without exceeding the load W on
any edge, a contradiction to the fact that Q is an optimal solution. Hence,
edge e has load exactly W in Q, and Q contains at least one path p′ through
e that does not consist only of edge e. Replacing p′ by p in Q gives another
optimal solution Q′ with one additional one-edge path. This process can be
iterated until the condition of the lemma is satisfied. tu

We remark that this lemma holds also for the MaxPC problem.

Theorem 5.1.3 MaxPP is NP-hard for binary trees, if W can assume ar-
bitrary values.



108 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

Figure 5.2: A complete binary tree (left) is sketched as a triangle (right)

Proof: As in the proof of Theorem 5.1.1, we reduce the NP-hard 3D-
matching problem to the MaxPP problem. Here, however, we are only al-
lowed to construct an instance of MaxPP using paths in a binary tree, and
we will use a larger number W of available wavelengths and a larger depth
of the tree in order to compensate this restriction.

Let an instance S of the 3D-matching problem be given as in the proof
of Theorem 5.1.1. Again, denote by pi the number of occurrences of xi in
triples in S, 1 ≤ i ≤ n.

Let d = dlog ne. Note that a complete binary tree of depth d has 2d ≥ n
leaves. We construct a binary tree T as follows (see Figure 5.3; for the sake
of simplicity, complete binary trees are sketched as triangles, as indicated
in Figure 5.2). Start with a complete binary tree with four leaves. Call its
root r, and call its leftmost three leaves x, y and z, respectively. Identify each
of x, y and z with the root of a distinct complete binary tree of depth d. Call
the leftmost n leaves of x’s subtree x1, . . . , xn, those of y’s subtree y1, . . . , yn,
and those of z’s subtree z1, . . . , zn. Now identify each of x1, . . . , xn with
the root of a distinct complete binary tree such that xi’s subtree has depth
dlog pie for 1 ≤ i ≤ n and, therefore, at least pi leaves. Call the leftmost
pi leaves of xi’s subtree x1

i , . . . , x
pi

i . Finally, attach to each node xj
i , where

1 ≤ i ≤ n and 1 ≤ j ≤ pi, two children aj
i and bj

i . This construction results
in a binary tree T whose size is polynomial in n and |S|.

We set the number of available wavelengths for the MaxPP instance to
W = n. Finally, the set P of paths in T is created. Number the occurrences
of xi in the triples of S from 1 to pi arbitrarily. For every triple in S we
add n + 2 paths to P . Let triple (xi, yj, zk) contain the l-th occurrence of
xi in S. Then we add a path from al

i to yj, a path from zk to bl
i, and n

paths from al
i to bl

i. The former two paths are called long paths, the latter
n paths short paths. Note that there are exactly 2|S| long paths and n|S|
short paths altogether. Finally, add n − 1 one-edge paths on each of the
edges (xi, p(xi)), (p(xi), xi), (p(yi), yi) and (zi, p(zi)) for 1 ≤ i ≤ n. These



5.1. COMPLEXITY OF MAXPC AND MAXPP 109

x y z

y1 y2 yn z1 z2 zn

r

a1
1 b1

1 ap1
1 bp1

1 a1
n b1

n apn
n bpn

n

xnx1

x1
1 xp1

1
x1

n xpn
n

Figure 5.3: Reduction from 3D-matching problem to MaxPP in binary trees

are 4n(n− 1) one-edge paths altogether.

We claim that S contains n disjoint triples if and only if P contains a sub-
set P ′ of at least n|S|+4n(n−1)+n paths with maximum load W . Assume
that S contains n disjoint triples, and let these triples be (xi1 , yj1, zk1), . . . ,
(xin , yjn, zkn). Let the t-th triple, triple (xit , yjt, zkt), contain the lt-th occur-
rence of xit . Then the following n|S|+4n(n−1)+n paths form a set P ′ ⊆ P
of paths with maximum load W = n: for each t, 1 ≤ t ≤ n, choose the path
from alt

it to yjt, the path from zkt to blt
it , n− 1 short paths from alt

it to blt
it , and

n short paths from al
it to bl

it for each of the pit − 1 remaining values of l, i.e.,
for l ∈ {1, . . . , pit} \ {lt}. Finally, the 4n(n−1) one-edge paths can be added
without increasing the maximum load above W .

Conversely, assume that there is an optimal subset P ′ of P containing at
least n|S| + 4n(n − 1) + n paths with maximum load W . By Lemma 5.1.2,
we can assume that P ′ contains all the 4n(n − 1) one-edge paths from P .
Hence, it must contain at least n|S|+ n additional paths, each of which uses
edges in the subtree rooted at some xi. Note that the one-edge paths create
load W − 1 on the edges (xi, p(xi)), (p(xi), xi), (p(yi), yi) and (zi, p(zi)) for
1 ≤ i ≤ n. Therefore, P ′ can then contain at most one long path entering
the subtree rooted at xi, at most one long path leaving the subtree rooted



110 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

at xi, at most one long path reaching yi from its parent, and at most one long
path running from zi to its parent. The only possibility for P ′ to contain
more than npi paths using edges of the subtree rooted at xi is to contain n
paths from al

i to bl
i for pi − 1 values of l and n + 1 additional paths for the

remaining value of l, say li: one from ali
i to some yj, one from some zk to

bli
i , and n − 1 paths from ali

i to bli
i . In that case, P ′ contains npi + 1 paths

using edges of the subtree rooted at xi. The only way for P ′ to contain at
least n|S| + n paths using edges in the subtrees rooted at some xi is that
P ′ contains exactly npi + 1 paths using edges of the subtree rooted at xi for
every i, 1 ≤ i ≤ n. In that case, the triples (xi, yj, zk) ∈ S containing the
li-th occurrence of xi form a set of n disjoint triples. tu

5.2 Approximating MaxPP

We propose a greedy algorithm for finding a large subset P ′ of P with max-
imum load W that works as follows. Initially, set P ′ = ∅. Then process all
nodes of the tree in order of non-increasing levels (i.e., bottom-up). When
processing node v, consider the paths whose lca is v in arbitrary order. In-
sert each such path into P ′ if this does not increase the maximum load of P ′

above W . In the end, output P ′. Note that this algorithm is an adapta-
tion of the 2-approximation algorithm for integral multicommodity flow in
undirected trees due to Garg, Vazirani, and Yannakakis [GVY93]; their algo-
rithm also works bottom-up, considers the demands with lca v one by one,
and satisfies as much of each demand as possible without violating the edge
capacities.

Theorem 5.2.1 The algorithm outputs a subset P ′ of P with maximum load
W and with cardinality at least |P ∗|/2, where P ∗ is a maximum cardinality
subset of P with maximum load at most L. Hence, the algorithm is a 2-
approximation algorithm for MaxPP in bidirected trees.

Proof: First, introduce some notation. Consider the state of the algorithm
after processing i paths. The set of all paths can be partitioned into four
subsets:

• a set Ai of paths that have been inserted into P ′

• a set Ri of paths that have been processed, but not inserted into P ′

because this would have exceeded maximum load W

• a set A′
i of paths that have not yet been processed, but will be inserted

into P ′ later on



5.2. APPROXIMATING MAXPP 111

• a set R′
i of paths that have not yet been processed and that will not be

inserted into P ′ later on

Fix an arbitrary optimal solution P ∗. We use induction on i to prove the
following claim:
Claim: After i paths are processed, P ∗ can be partitioned into two subsets
Ci and Di such that

(a) |Ai| ≥ |Ci|/2,

(b) the paths in Di have not yet been processed by the algorithm,

(c) the paths in Ai ∪Di have maximum load at most W , and

(d) the paths in Ci that have not yet been processed will not be included
into P ′ by the algorithm.

Initially, the claim holds for C0 = ∅ and D0 = P ∗. If the claim holds after
all |P | paths are processed by the algorithm, we have C|P | = P ∗, D|P | = ∅,
and, by (a), |P ′| = |A|P || ≥ |P ∗|/2.

Assume that the claim holds after i − 1 paths are processed by the al-
gorithm. We must show that the claim holds also after the i-th path p has
been processed. Let v be the lca of p. The following cases can occur.

Case 1: The algorithm does not insert p into P ′. In this case, including
p in P ′ would have exceeded the maximum load W , and hence p /∈ Di−1.
Instead, p ∈ Ci−1 or p /∈ P ∗. In either case, the claim holds for Ci = Ci−1

and Di = Di−1.
Case 2: The algorithm inserts p into P ′, and p ∈ P ∗. In this case, (d)

implies p /∈ Ci−1 and, therefore, p ∈ Di−1. Now set Ci = Ci−1 ∪ {p} and
Di = Di−1 \ {p}. The cardinality of Ai and of Ci has increased by one, hence
(a) is satisfied. Obviously, (b) and (d) are satisfied as well. Condition (c)
holds, because Ai ∪Di = Ai−1 ∪Di−1. Therefore, the claim holds.

Case 3: The algorithm inserts p into P ′, and p /∈ P ∗. In this case, the
cardinality of Ai increases by one, and we show that conditions (a) to (d)
can be satisfied by moving at most two paths from Di−1 to Ci−1 to obtain Ci

and Di. Obviously, doing so will necessarily satisfy conditions (a) and (b).
However, we must choose the paths to be moved from Di−1 to Ci−1 carefully
in order to satisfy conditions (c) and (d).

If the set Ai ∪ Di−1 has maximum load at most W , no path needs to
be moved from Di−1 to Ci−1 and we can choose Ci = Ci−1 and Di = Di−1.
Otherwise, adding the path p to Ai−1 ∪ Di−1 creates load W + 1 on some
edge(s) in the subtree rooted at v. Assume that p uses the edges (vi, v) and
(v, vj) for some children vi and vj of v. (If p begins or ends at v, a similar



112 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

reasoning can be applied.) All paths from Di−1 that intersect p must also use
the edge (vi, v) or (v, vj) (or both), because the paths in Di−1 have not yet
been processed by the algorithm and, consequently, the levels of their lcas
are not larger than the level of v. Let Dp be the subset of Di−1 of all paths
that intersect p. The set Ai−1 ∪Dp ∪ {p} has maximum load W + 1.

More precisely, that set has load W + 1 on some edge(s) of p and load
≤ W on all other edges of T . It is possible to choose at most two paths
p1, p2 from Dp such that Ai−1 ∪ (Dp \ {p1, p2}) ∪ {p} has maximum load at
most W . For example, if e1 and e2 are the lowest upward resp. downward
edges of T that are contained in W + 1 paths of Ai−1 ∪ Dp ∪ {p}, one can
choose an arbitrary path in Dp ∩ R′

i containing e1 as p1 and an arbitrary
path in Dp ∩ R′

i containing e2 as p2. Such paths must exist. As p1 contains
the subpath from e1 to v and p2 contains the subpath from v to e2, the
set Ai−1 ∪ (Dp \ {p1, p2}) ∪ {p} has maximum load W . Therefore, the set
Ai−1 ∪ (Di−1 \ {p1, p2}) ∪ {p} has maximum load W as well.

We observe that the sets Ci = Ci−1 ∪ {p1, p2} and Di = Di−1 \ {p1, p2}
satisfy (c) and (d): Ai ∪Di has maximum load W as shown above, and the
paths that have been newly inserted into Ci were taken from R′

i and will,
therefore, not be inserted into P ′ later on. This concludes Case 3.

Hence, it has been shown that the claim holds after i paths are processed
assuming that it was satisfied after i − 1 paths were processed. Therefore,
the claim still holds after all paths are processed. tu

The proof we have just given for the theorem is elementary and self-
contained. It is also possible to derive the theorem from the fact that the ap-
proximation algorithm for integral multicommodity flow in undirected trees
given in [GVY93] has approximation ratio 2. To see this, observe that the
approximation algorithm from [GVY93] works also for bidirected trees: the
proof of approximation ratio 2 using primal-dual arguments carries over with-
out difficulties. Then, note that the only difference between the multicom-
modity flow problem in [GVY93] and the MaxPP problem is that with the
MaxPP problem, no commodity can have flow greater than one.

Our greedy algorithm for MaxPP in a bidirected tree T with edge ca-
pacity W behaves like the algorithm from [GVY93] in a slightly extended
tree T ′: for each path (commodity) p from a node u to a node w, add two
new nodes up and wp, add two unit capacity edges (up, u) and (w, wp), and
replace p by a path from up to wp. It is easy to see that the multicommodity
flow problem in the resulting tree T ′ is equivalent to the MaxPP problem in
the original tree, and that our greedy algorithm produces the same solution
as the algorithm from [GVY93] on this instance.



5.3. APPROXIMATION ALGORITHMS FOR W = 1 113

5.3 Approximation Algorithms for W = 1

For W = 1 the MaxPC and MaxPP problems are equivalent. If the degree
of the tree is bounded by a constant, an optimal solution can be obtained
in polynomial time (Section 5.1.2), but if the degree is arbitrary, the prob-
lem is NP-hard (Section 5.1.3). The algorithm from the previous section
achieves approximation ratio 2 also for W = 1. In this section we present
an improved algorithm for MaxPC and MaxPP with W = 1, i.e., for the
maximum edge-disjoint paths problem. More precisely, we present, for any
given ε > 0, a polynomial-time (5/3+ε)-approximation algorithm. The main
idea that leads to this improvement is to consider all paths with the same
lca simultaneously instead of one by one.

Fix any ε > 0. Let an instance of the maximum edge-disjoint paths
problem be given by a bidirected tree T and a set P of directed paths in T .
Denote by P ′ the solution computed by the approximation algorithm and by
P ∗ an optimal solution for the given instance. In the first pass, our algorithm
processes the nodes of the tree bottom-up; at a node v, it tries to decide for
the paths with lca v whether they should be accepted or rejected. Let Pv

denote the subset of all paths (u, w) ∈ P with lca(u, w) = v that do not
intersect any of the paths that have been accepted by the algorithm at a
previous node and that do not use any edges that have been reserved or
fixed by the algorithm (see below). For the sake of simplicity, we can assume
without loss of generality that we have u 6= v 6= w for all paths (u, w) ∈ Pv;
otherwise, we could add an additional child to v for each path in Pv starting
or ending at v and make the path start or end at this new child instead. We
say that two paths (u1, w1) and (u2, w2) with lca v are equivalent if they use
the same two edges incident to v, i.e., if their top edges are the same. If all
paths in a set Q of paths with lca v are equivalent, we say that v has only
one equivalence class of paths in Q. If v has only one equivalence class of
paths in Pv, we say that v has only one equivalence class.

As mentioned above, the algorithm processes the nodes of T in order of
non-increasing levels (i.e., bottom-up) in the first pass. When it processes
node v, it tries to determine for the paths in Pv whether they should be in-
cluded in P ′ (these paths are called accepted) or not (these paths are called
rejected). Sometimes, however, the algorithm cannot make this decision right
away. In these cases the algorithm will leave some paths in an intermediate
state and resolve them later on. The possibilities for paths in such interme-
diate states are

• undetermined paths,

• groups of deferred paths,



114 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

e

v

c

p( )v

e

v

v’

Figure 5.4: Possible configurations of a group of deferred paths

• groups of exclusive paths, and

• groups of 2-exclusive paths.

We refer to undetermined paths, groups of exclusive paths, and groups of
2-exclusive paths (but not groups of deferred paths) as unresolved paths.

In the following we give explanations regarding these possible groups of
paths in intermediate states. First, the algorithm will sometimes leave a
single path p of Pv in an undetermined state. If v has only one equivalence
class of paths, accepting a path p ∈ Pv might cause the algorithm to miss the
chance of accepting two paths with an lca of smaller level later on. Hence,
the algorithm could at best achieve a 2-approximation. On the other hand,
if the algorithm rejects all paths in Pv whenever v has only one equivalence
class of paths, it will not accept any paths in an instance where all nodes
have at most one equivalence class of paths. Therefore, instead of accepting
or rejecting the paths in Pv right away, the algorithm picks one of them and
makes it an undetermined path. All other paths in Pv, if any, are rejected,
and the undetermined path will be accepted or rejected at a later node.

A second situation in which the algorithm does not accept or reject all
paths in Pv right away is sketched in Figure 5.4 (left). (Here and in the
following, pairs of oppositely directed edges are drawn as undirected edges in
all figures.) In this situation, the algorithm decides to accept one of several
intersecting paths from Pv, but it defers the decision which one of them
to accept. The intersecting paths are called a group of deferred paths. All
paths in a group of deferred paths use the same edge incident to v and to



5.3. APPROXIMATION ALGORITHMS FOR W = 1 115

a child c of v. In the figure, this is the edge (c, v). (Analogous arguments
apply to the case where the edge (v, c) is shared by the deferred paths.)
Furthermore, each deferred path uses also an edge (v, c′) connecting v and
a child c′ 6= c, and not all of the deferred paths use the same such edge. If
the algorithm decides to defer such a group of paths, it marks the edge (c, v)
as reserved (assuring that no path accepted at a node processed after v can
use the edge), but leaves all edges (v, c′) for children c′ 6= c available. The
reserved edge is indicated by a dotted arrow in Figure 5.4. The motivation
for introducing groups of deferred paths is as follows: first, the reserved edge
blocks at most one path with lca of smaller level that could be accepted in
an optimal solution; second, no matter which path using the edge (p(v), v)
is accepted at a node processed after v, that path uses at most one of the
edges (v, c′), and as there is still at least one deferred path that does not use
that particular edge (v, c′), the algorithm can pick such a deferred path in a
second pass which proceeds top-down. When processing later nodes during
the first pass, the algorithm can actually treat the group of deferred paths
as a single accepted path using only the reserved edge of the deferred paths.

In some cases the algorithm will create a group of deferred paths from
intersecting paths with two different least common ancestors v and v′, where
v is an ancestor of v′. Such a case is depicted in Figure 5.4 (right). Assume
that the edge e incident to v′ that is shared by the paths in such a group
of deferred paths is directed towards the root. (The case that e is directed
towards the leaves is symmetrical.) Then the algorithm marks all edges on
the path from e to v as reserved. These reserved edges are indicated by dotted
arrows in Figure 5.4. (Actually, it would be sufficient to reserve only the top
edge among these, i.e., the edge incident to v, because every path with lca
of smaller level than v intersecting any of the reserved edges must intersect
this top edge as well.) Again, no matter which paths with lca of smaller level
than v not intersecting the reserved edges are accepted by the algorithm later
on, there is still one of the deferred paths that can be accepted.

A group of exclusive paths is sketched in Figure 5.5 (left). Such a group
consists of one path q (called the lower path) contained in the subtree rooted
at a child c of v and one path p (called the higher path) with lca v that
intersects q. At most one of the two paths can be accepted, but if the
algorithm picks the wrong one this choice may cause the algorithm to accept
only one path while the optimal solution would accept the other path plus
one or two additional paths. Hence, the algorithm defers the decision which
path to accept until a later node. For now, it only marks the top edge of path
q that is intersected by p as fixed (indicated by a dotted arrow in Figure 5.5).
A group of exclusive paths has the following property.



116 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

p( )v

c
p

q

c

v

p( )v

Figure 5.5: Possible configuration of a group of exclusive paths (left), and
situation in which both exclusive paths are blocked (right)



5.3. APPROXIMATION ALGORITHMS FOR W = 1 117

v

Figure 5.6: Group of 2-exclusive paths consisting of a pair of independent
groups of exclusive paths

Property (E): As long as at most one path touching v but not using the
fixed edge is accepted at a later node, either p or q can still be accepted.
Only when two paths touching v are accepted at a later node, they may
block p and q from being accepted.

See the right-hand side of Figure 5.5 for an example of how two paths ac-
cepted at a later node can block both exclusive paths. While processing later
nodes, the algorithm will try to avoid this whenever possible.

The last types of unresolved paths are sketched in Figures 5.6 and 5.7.
These groups of 2-exclusive paths consist of a set of four paths at most two
of which can be accepted. More precisely, the first possibility for a group of
2-exclusive paths is to consist of two independent groups of exclusive paths
(Figure 5.6), i.e., of two groups of exclusive paths such that the fixed edge
of one group is directed towards the root and the fixed edge of the other
group is directed towards the leaves. Furthermore, the two groups must
either be contained in disjoint subtrees (as shown in Figure 5.6), or only
their lower paths are contained in disjoint subtrees and their higher paths
do not intersect each other. A pair of independent groups of exclusive paths
has two fixed edges, i.e., the fixed edges of both groups (indicated by dotted
arrows in Figure 5.6).



118 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v v

Figure 5.7: Further configurations of groups of 2-exclusive paths

The second possibility for a group of 2-exclusive paths is to consist of a
group of exclusive paths contained in a subtree rooted at a child of v and
two paths p1 and p2 with lca v that intersect the exclusive paths (but not
their fixed edge) in a way such that accepting p1 and p2 would block both of
the exclusive paths from being accepted (Figure 5.7). Two edges are marked
fixed, namely the top edge of the higher exclusive path intersected by a path
with lca v and the top edge of the lower exclusive path intersected by a path
with lca v. The fixed edges and their directions are indicated by dotted
arrows in Figure 5.7.

A group of 2-exclusive paths has the following property.

Property (2E): If at most one path touching v but not using a fixed edge
is accepted at a later node, two paths from the group of 2-exclusive
paths can be accepted. If two paths touching v but not using a fixed
edge are accepted at a later node, at least one path from the group of
2-exclusive paths can be accepted.

While processing later nodes, the algorithm will try to avoid accepting two
paths touching v such that only one path from the group of 2-exclusive paths
can be accepted.



5.3. APPROXIMATION ALGORITHMS FOR W = 1 119

This concludes the description of the possibilities of paths being put into
an intermediate state by the algorithm. When the algorithm has finished
processing a node v, the subtree rooted at v will contain at most one of the
following:

• one undetermined path, or

• one group of exclusive paths, or

• one group of 2-exclusive paths.

All other paths in the subtree are accepted, rejected, or member of a group
of deferred paths.

When the algorithm has processed the root node at the end of the first
pass, it can simply resolve the remaining paths that are in an unresolved state
(if any) in a greedy manner: if there is an undetermined path, accept it; if
there is a group of exclusive paths, pick one of them arbitrarily and accept it;
if there is a group of 2-exclusive paths, pick two edge-disjoint paths arbitrarily
and accept them. Now, all paths are accepted, rejected, or deferred, and the
algorithm processes the nodes of the tree in a second pass in reverse order
(order of non-decreasing levels, i.e., top-down) and determines at each node v
that is the lca of one or more groups of deferred paths which of the deferred
paths to accept. After this second pass, the algorithm outputs the set P ′ of
all accepted paths.

5.3.1 Invariants

In the next subsection we will present the details of how the algorithm pro-
ceeds during the first pass. At the same time, we will show that the approx-
imation ratio achieved by the algorithm is 5/3 + ε, where ε is an arbitrarily
small positive constant. For establishing this, we will prove by induction that
the following invariants can be maintained. These invariants hold before the
first node of T is processed, and they hold again each time an additional
node of T has been processed. A node v is called a root of a processed subtree
if the node v has already been processed, but its parent has not.

Invariant A: For every root v of a processed subtree, all paths in that
subtree are accepted, rejected, or deferred except if one of the following
cases occurs:

• The subtree contains one undetermined path. All other paths
contained in the subtree are accepted, rejected, or deferred. No
edge in the subtree is marked as fixed.



120 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

• The subtree contains one group of exclusive paths. All other paths
contained in the subtree are accepted, rejected, or deferred. The
only edge marked fixed in the subtree is the one corresponding to
the group of exclusive paths.

• The subtree contains one group of 2-exclusive paths. All other
paths contained in the subtree are accepted, rejected, or deferred.
The only edges marked fixed in the subtree are the two corre-
sponding to the group of 2-exclusive paths.

Invariant B: Let A be the set of all paths that have already been accepted
by the algorithm. Let F be the set of all paths in P whose lca has not
yet been processed and which are not blocked by any of the accepted
paths, by reserved edges of deferred paths, or by fixed edges. Let d be
the number of groups of deferred paths that are contained in processed
subtrees. Let U be the set of all undetermined paths. Let X be the
union of all groups of exclusive paths and groups of 2-exclusive paths.
Then there is a subset O ⊆ F ∪U ∪X of edge-disjoint paths satisfying
the following conditions:

(a) |P ∗| ≤ (5/3 + ε)(|A|+ d) + |O|
(b) for every group of exclusive paths, O contains one path from that

group; for every group of 2-exclusive paths, O contains two paths
from that group

Intuitively, the set O represents a subset of P containing paths that could
still be accepted by the algorithm and that has the following property: if the
algorithm accepts at least a 1/(5/3+ε)-fraction of the paths in O (in addition
to the paths it has already accepted), its output is a (5/3+ε)-approximation
of the optimal solution.

Observe that the invariants are satisfied initially with A = ∅, d = 0,
F = P , U = ∅, X = ∅, and O = P ∗ an arbitrary optimal solution. Whereas
it will be easy to see from the description of the algorithm that Invariant A
is indeed maintained throughout the first pass, special care must be taken to
prove that Invariant B is maintained as well. For this purpose, we will show
how the set O that establishes Invariant B before node v is processed can
be manipulated so as to satisfy Invariant B also after node v is processed.
In particular, a certain number of paths must be replaced in O or removed
from O in order to satisfy O ⊆ F ∪ U ∪ X and to keep O a set of edge-
disjoint paths after v is processed, and it must be shown that the number
of paths removed from O is at most (5/3 + ε)(av + dv) if the algorithm
accepts av additional paths and creates dv new groups of deferred paths while



5.3. APPROXIMATION ALGORITHMS FOR W = 1 121

processing v (thus satisfying condition (a) of Invariant B). Condition (b) must
only be considered explicitly when a new group of exclusive paths or group
of 2-exclusive paths is created by the algorithm.

If the invariants are satisfied after the root node is processed, we have
F = ∅, O ⊆ U∪X, and |P ∗| ≤ (5/3+ε)(|A|+d)+|O|. At this time, there may
still be one undetermined path, one group of exclusive paths, or one group
of 2-exclusive paths. If there is an undetermined path, the algorithm accepts
it. If there is a group of exclusive paths, the algorithm accepts one of them
arbitrarily. If there is a group of 2-exclusive paths, the algorithm accepts two
edge-disjoint paths of them arbitrarily. The algorithm accepts |O| additional
paths in this way, and the resulting set A satisfies |P ∗| ≤ (5/3 + ε)(|A|+ d).

In the second pass, the algorithm processes the nodes of the tree in reverse
order, i.e., according to non-decreasing levels (top-down). At each node v
that is the lca of at least one group of deferred paths, it accepts one path
from each of the groups of deferred paths such that these paths are edge-
disjoint to all previously accepted paths and to each other. This can always
be done due to the definition of groups of deferred paths. Hence, the number
of paths accepted by the algorithm increases by d in the second pass, and in
the end we have |P ∗| ≤ (5/3 + ε)|A|. This establishes the main theorem of
this chapter.

Theorem 5.3.1 For every fixed ε > 0, there is a polynomial-time approxi-
mation algorithm for the maximum edge-disjoint paths problem in bidirected
trees with approximation ratio 5/3 + ε.

5.3.2 Details of the First Pass

Recall that the algorithm processes the nodes of the given tree T in order
of non-increasing levels (bottom-up) in the first pass. Assume that the algo-
rithm is just about to process node v. Recall that Pv ⊆ P is the set of all
paths with lca v that do not intersect any previously accepted path nor any
fixed or reserved edge. Let Uv be the set of undetermined paths contained in
subtrees rooted at children of v. Let Xv be the union of (paths in) groups of
exclusive paths and groups of 2-exclusive paths contained in subtrees rooted
at children of v. In the following, we explain how the algorithm processes
node v and determines which of the paths in Pv∪Uv∪Xv should be accepted,
rejected, deferred, or left (or put) in an unresolved state.

Note that for a given set of paths with lca v the problem of determining
a maximum cardinality subset of edge-disjoint paths is equivalent to finding
a maximum matching in a bipartite graph (see Section 5.1.1 or Section 4.2.1
and Figure 4.1 on page 66 for an explanation of the reduction) and can thus



122 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

be done in polynomial time. Whenever we use an expression like compute a
maximum number of edge-disjoint paths in S ⊆ Pv in the following, we imply
that the computation should be carried out by employing this reduction to
maximum matching.

Furthermore, we will use the following property of bipartite graphs: for
s = 1 or s = 2, the fact that a maximum matching in a bipartite graph G
has cardinality s implies that there are s vertices in G such that every edge is
incident to at least one of these s vertices. (The property holds for arbitrary
values of s and is known as the König theorem [Kön31]; see, e.g., the book
by Berge [Ber76, pp. 132–133].)

Observe that each child of the current node v is the root of a processed
subtree, which may, by Invariant A, contain at most one of the following:

• one undetermined path, or

• one group of exclusive paths, or

• one group of 2-exclusive paths.

Let k be the number of children of v that have an undetermined path in their
subtree, let ` be the number of children of v that have a group of exclusive
paths, and let m be the number of children of v that have a group of 2-
exclusive paths. We use the expression subtrees with exclusive paths to refer
to all subtrees rooted at children of v with either a group of exclusive paths
or with a group of 2-exclusive paths.

Note that one main difficulty lies in determining which of the paths in
Uv ∪Xv should be accepted and which should be rejected. For example, if a
path in Uv is accepted, it may block two edge-disjoint paths in Pv (or even
paths with a least common ancestor of smaller level) from being accepted;
if the path is rejected, the algorithm may lose one path as compared to an
optimal solution without gaining any benefit. Similar difficulties exist for
paths in Xv. If k + `+m is bounded by a constant, all possible combinations
of accepting and rejecting paths in Uv ∪ Xv can be tried out in polynomial
time, but if k + ` + m is large, the algorithm must proceed in a different
way in order to make sufficiently good decisions. Hence, we will distinguish
the case that k + ` + m is small and the case that k + ` + m is large. The
exact threshold for determining when k + ` + m is considered large, and
consequently the running-time of the algorithm, depends on the constant ε.

As introduced in Section 5.3.1, let F denote the set of all paths whose
lca is v or a node that is processed after v and which are not blocked by an
accepted path or by a reserved or fixed edge before v is processed. Let U be
the set of all undetermined paths before v is processed, let X be the union



5.3. APPROXIMATION ALGORITHMS FOR W = 1 123

of all (paths in) groups of exclusive paths and groups of 2-exclusive paths
before v is processed, and let d be the number of groups of deferred paths
that are contained in processed subtrees before v is processed. Similarly, let
F ′, U ′, X ′, and d′ denote the respective sets or values after v is processed.
Furthermore, denote by av the number of paths that are newly accepted
while processing v, and denote by dv the number of groups of deferred paths
that are newly created while processing v.

Before v is processed, Invariant B implies that there is a set O ⊆ F∪U∪X
satisfying conditions (a) and (b). In order to satisfy Invariant B after v is
processed, some paths in O may have to be replaced by other paths and some
paths may have to be removed from O. The set derived from O in this way
is referred to as O′.

When the algorithm processes v, it takes the paths in Pv ∪ Uv ∪Xv and
possibly accepts some paths, rejects some paths, creates one or more new
groups of deferred paths, creates a new undetermined path, creates a new
group of exclusive paths, or creates a new group of 2-exclusive paths. Then
all paths intersecting a newly accepted path or the reserved edge of a newly
created group of deferred paths must be removed from O. Note that at most
two such paths can have an lca of smaller level than v, because all such paths
with lca of smaller level must use the edge (v, p(v)) or (p(v), v). In addition,
paths rejected by the algorithm must be removed or replaced in O in order to
satisfy O′ ⊆ F ′ ∪ U ′ ∪X ′. Furthermore, if a new group of exclusive paths or
group of 2-exclusive paths is created, it must be ensured that O′ contains one
or two paths from that group, respectively, in order to maintain condition (b)
of Invariant B.

In each single case of the following case analysis, it must be shown that
conditions (a) and (b) of Invariant B are satisfied for O′. In particular, the
number of paths deleted from O in order to obtain O′ must be at most
(5/3 + ε)(av + dv). As the value |A| + d increases by av + dv while v is
processed, this implies that condition (a) of Invariant B holds also after v is
processed, i.e., |P ∗| ≤ (5/3 + ε)(|A′| + d′) + |O′|. Recall that we say that a
path p runs from u to w if it contains the directed path from u to w as a
subpath.

Case 1: k + ` + m ≤ max{3, 2/ε}. The algorithm can try out all combi-
nations of accepting or rejecting unresolved paths in the subtrees rooted at
children of v: for undetermined paths there are two possibilities (accepting
or rejecting the path), for groups of exclusive paths there are two possibilities
(accepting the lower path or accepting the higher path), and for groups of
2-exclusive paths there are either four possibilities (in the case of a pair of
independent groups of exclusive paths as shown in Figure 5.6 on page 117:



124 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

accepting the lower or higher path in one group and the lower or higher
path in the other group) or two relevant possibilities (in the cases shown in
Figure 5.7 on page 118: accepting the lower or higher path of the group of
exclusive paths contained in the group of 2-exclusive paths and the edge-
disjoint path among the remaining two paths; note that accepting no path of
the group of exclusive paths and only the remaining two paths blocks more
paths from F than any of the other two possibilities, hence we do not need
to consider this third possibility) of accepting two edge-disjoint paths of the
group. Hence, the number of possible combinations is bounded from above
by 2k+`4m = O(1). For each of these combinations, the algorithm can com-
pute a maximum number of edge-disjoint paths in Pv not intersecting any
of the paths from Uv ∪ Xv that are (tentatively) accepted for the current
combination. Let s be the maximum, over all combinations, of the number
of tentatively accepted paths from Uv ∪ Xv plus the number of maximum
edge-disjoint paths in Pv. If s = 0, we have k = ` = m = 0 and Pv = ∅, and
the algorithm does nothing and proceeds with the next node. Otherwise, we
distinguish the following cases.

Case 1.1: s = 1. As s ≥ k + ` + 2m, s = 1 implies m = 0 and k + ` ≤ 1.

Case 1.1.1: k = ` = m = 0. If v has only one equivalence class of paths,
pick one of them, say p, arbitrarily and make it an undetermined path. Reject
all other paths in Pv. If O contains a path p′ 6= p from Pv, replace p′ by p in
O to obtain O′, otherwise let O′ = O. The invariants are satisfied.

If v has more than one equivalence class of paths, there must be an edge
e incident to v that is shared by all paths in Pv (as a consequence of the
König theorem). Make Pv a group of deferred paths with reserved edge e
(cf. left-hand side of Figure 5.4 on page 114). Hence, we have dv = 1. O
may contain at most one path intersecting edge e, either a path from Pv or
a path with lca of smaller level. It suffices to delete this path from O in
order to obtain a valid set O′. Therefore, the invariants are satisfied after v
is processed.

Case 1.1.2: k = 1, ` = m = 0. There is one child c that has an unde-
termined path p with lca w in its subtree. If Pv = ∅, the algorithm does
nothing and leaves p in its undetermined state. If Pv 6= ∅, all paths in Pv

must intersect p in the same edge, say in the edge (u, w) with w = p(u).
(The case that they intersect p in an edge (p(u), u) is symmetrical.) The
algorithm picks an arbitrary path q from Pv and makes {p, q} a group of ex-
clusive paths (cf. Figure 5.5 on page 116). All other paths in Pv are rejected.
If O does not contain any path from Pv ∪Uv, it may contain a path p′ whose



5.3. APPROXIMATION ALGORITHMS FOR W = 1 125

e1
e2

v

Figure 5.8: Case 1.2.1 (a): All sets of two edge-disjoint paths use the same
four top edges

lca has smaller level than v and that uses the edge (u, w) (and possibly a
second path with lca of smaller level), or it may contain two paths p1 and p2

with lca of smaller level not using (u, w) that intersect both p and q. In the
former case, remove p′ from O, and in the latter case, remove p1 from O. In
both cases, either p or q does not intersect a path from the resulting set O
due to Property (E) and can therefore be inserted into O to obtain O′. If O
contains a path p′ from Pv ∪ Uv already, this path can be replaced by p or q
if p′ 6= p, q. In any case the invariants are satisfied after v is processed. In
particular, |O| does not decrease.

Case 1.1.3: k = m = 0, ` = 1. There is one child of v that has a group
of exclusive paths in its subtree. As any path from Pv could be combined
with a path from the group of exclusive paths to obtain two edge-disjoint
paths and because we have assumed s = 1, ` = 1 implies Pv = ∅. Hence, the
algorithm does nothing at node v and leaves the group of exclusive paths in
its intermediate state.

Case 1.2: s = 2. Observe that k + ` + 2m ≤ s = 2.

Case 1.2.1: k = ` = m = 0. As s = 2, there must be two edges incident
to v such that all paths in Pv use at least one of these two edges (by the
König theorem). Let e1 and e2 be two such edges.

Case (a): All possible sets of two edge-disjoint paths from Pv use the
same four edges incident to v. See Figure 5.8 for an example. The algorithm
picks two arbitrary edge-disjoint paths from Pv, accepts them, and rejects all
other paths from Pv. Hence, we have av = 2. It suffices to remove at most
three paths from O in order to obtain a valid set O′: if O contains at most one
path from Pv, removing this path and at most two paths with lca of smaller
level is sufficient; if O contains two paths from Pv, removing these two paths
is sufficient, because they use the same top edges as the paths accepted by



126 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

e2

e1

v

Figure 5.9: Case 1.2.1 (b): There is only one equivalence class of paths using
edge e1, but more than one class using edge e2

the algorithm, and O cannot contain any further path intersecting the paths
accepted by the algorithm. Hence, the invariants are satisfied.

In the following, let D be the set of all paths in Pv that intersect all other
paths from Pv. In other words, a path p ∈ Pv is in D if Pv does not contain
a path q that is edge-disjoint to p.

Note that if Case (a) does not apply, it follows that either the paths
in Pv \ D using edge e1 or those using edge e2 must form more than one
equivalence class of paths.

Case (b): There is only one equivalence class C of paths in Pv \D using
edge e1, but more than one equivalence class of paths in Pv \D using edge e2

and not intersecting a path from C. See Figure 5.9. (The case with e1

and e2 exchanged is analogous. Furthermore, note that the case that there
is only one equivalence class C of paths in Pv \ D using edge e1 and only
one equivalence class of paths in Pv \ D using edge e2 and not intersecting
a path from C satisfies the condition of Case (a).) The algorithm picks a
path p from C arbitrarily, accepts p, and makes the paths using edge e2 and
not intersecting p a group of deferred paths with reserved edge e2. All other
paths in Pv are rejected. We have av = 1 and dv = 1. It suffices to remove at
most three paths from O in order to obtain a valid set O′: if O contains at
most one path from Pv, removing that path and at most two paths with lca of
smaller level is sufficient; if O contains two paths from Pv, these paths must
also use both top edges of p and the newly reserved edge, and thus removing
these two paths from O is sufficient. Hence, the invariants are satisfied.

Case (c): There is more than one equivalence class of paths in Pv \ D
using edge e1, there is more than one equivalence class of paths in Pv \ D
using edge e2, and Cases (a) and (b) do not apply. The algorithm makes
the paths in Pv \D using e1 a group of deferred paths with reserved edge e1,
and the paths in Pv \ D using e2 a group of deferred paths with reserved
edge e2. All other paths in Pv are rejected. Note that no matter which paths
with lca of smaller level are accepted by the algorithm later on, there are still



5.3. APPROXIMATION ALGORITHMS FOR W = 1 127

e1 e2

v

e1 e2

v

Figure 5.10: Case 1.2.1 (c): Configurations in which two groups of deferred
paths can be created

two paths, one in each of the two groups of newly deferred paths, that are
edge-disjoint from these paths with lca of smaller level and from each other.

To see this, assume first that e1 is directed towards v and e2 is directed
towards a child of v. See the left-hand side of Figure 5.10. Obviously, no path
from the group of deferred paths with reserved edge e1 can intersect a path
from the group of deferred paths with reserved edge e2, and vice versa. Now,
a path with lca of smaller level using edge (v, p(v)) and not intersecting a
reserved edge can only intersect a path from the group of deferred paths with
reserved edge e2, and a path with lca of smaller level using edge (p(v), v) and
not intersecting a reserved edge can only intersect a path from the group of
deferred paths with reserved edge e1. In any case, there will still be at least
one path in each of the two groups of deferred paths that can be accepted in
the second pass. Next, assume that e1 and e2 are both directed towards v.
See the right-hand side of Figure 5.10. (The case that they are both directed
towards a child of v is symmetrical.) Among the paths with lca of smaller
level not intersecting a reserved edge, only a path using the edge (p(v), v)
can intersect a path from either of the two groups of deferred paths. If, after
accepting one such path with lca of smaller level later on, only one path
from the two groups of deferred paths could be accepted in the second pass,
Case (a) would actually apply for this configuration (see Figure 5.8).

Hence, we have dv = 2 after creating the two new groups of deferred
paths. It suffices to remove at most three paths from O in order to obtain
a valid set O′: if O contains at most one path from Pv, removing this path
and at most two paths with lca of smaller level is sufficient; if O contains
two paths from Pv, these paths use e1 and e2 as well, and removing these
two paths from O is sufficient, because O cannot contain any further path
intersecting a reserved edge of the newly deferred paths. The invariants are
satisfied.

Case 1.2.2: k = 1, ` = m = 0. There is one child of v that has an unde-
termined path in its subtree. We begin by making some simple observations.



128 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

v v1 2

c

v’

Figure 5.11: Case 1.2.2.2: Pv contains paths running from v1 to several
children of v, and from several children of v to v2

First, the set of paths in Pv not intersecting the undetermined path must not
contain two edge-disjoint paths. Hence, there must be an edge e incident to v
that is shared by all paths in Pv not intersecting the undetermined path. Sec-
ond, observe that s = 2 implies that the maximum number of edge-disjoint
paths in Pv is also at most two. Hence, there must be two edges e1 and e2

incident to v such that every path in Pv uses at least one of these two edges.

Let the lca of the undetermined path be v′, and let c be the child of v
whose subtree contains the undetermined path (possibly c = v′). Let v1 and
v2 be children of v′ such that the undetermined path uses the edges (v1, v

′)
and (v′, v2). We consider a number of subcases regarding the structure of the
paths in Pv.

Case 1.2.2.1: Pv = ∅. This case cannot occur, because we have s = 2.

Case 1.2.2.2: Pv contains paths running from v1 to children c′ of v for at
least two different c′ 6= c, and Pv contains paths running from children c′

of v to v2 for at least two different c′ 6= c. See Figure 5.11. In this case,
all paths from Pv not intersecting the undetermined path must use the edge
(c, v) or the edge (v, c), because otherwise Pv would contain more than two
edge-disjoint paths. The algorithm rejects the undetermined path, makes
the paths in Pv using the edge (c, v) a group of deferred paths with reserved
edge (c, v), and makes the paths in Pv using the edge (v, c) a second group



5.3. APPROXIMATION ALGORITHMS FOR W = 1 129

of deferred paths with reserved edge (v, c).
It suffices to remove at most three paths from O in order to obtain a valid

set O′: if O contains at most one path from Pv∪Uv, removing this path and at
most two paths with lca of smaller level is sufficient; if O contains two paths
from Pv ∪ Uv, these two paths use at least one of the edges (c, v) and (v, c),
and O can contain at most one path with lca of smaller level intersecting the
other of these two edges. Hence, the invariants are satisfied.

Case 1.2.2.3: Pv 6= ∅, and v has only one equivalence class of paths in Pv.
The algorithm accepts the undetermined path and an arbitrary edge-disjoint
path from Pv. We have av = 2. It suffices to remove at most three paths
from O in order to obtain a valid set O′: if O contains at most one path from
Pv ∪ Uv, removing this path and at most two paths with lca of smaller level
is sufficient; if O contains two paths from Pv ∪Uv, removing these two paths
from O is sufficient, because O cannot contain any path with lca of smaller
level intersecting a path accepted by the algorithm. Hence, the invariants
are satisfied.

Case 1.2.2.4: Pv 6= ∅, no path in Pv intersects the undetermined path,
and v has more than one equivalence class of paths in Pv. There must be an
edge e incident to v that is shared by all paths in Pv. The algorithm accepts
the undetermined path and makes Pv a group of deferred paths with reserved
edge e. It suffices to remove at most three paths from O in order to obtain a
valid set O′: if O contains at most one path from Pv∪Uv, removing this path
and at most two paths with lca of smaller level is sufficient; if O contains two
paths from Pv ∪ Uv, it must contain the undetermined path and one path
from Pv, and removing these two paths is sufficient. Hence, the invariants
are satisfied.

Case 1.2.2.5: Pv contains paths running from v1 to some c′ 6= c, but all
these paths run to the same c′, and Pv contains paths running from some
c′′ 6= c to v2, but all these paths run from the same c′′ to v2. Note that
c′ = c′′ is possible. The configuration of the paths in Pv intersecting the
undetermined path is depicted in Figure 5.12, on the left-hand side for the
case c′ = c′′ and on the right side for the case c′ 6= c′′. Let P ′

v be the set of
all paths in Pv that do not intersect the undetermined path. We distinguish
several cases regarding the paths in P ′

v.
Case (a): P ′

v is empty. The algorithm accepts an arbitrary path running
from v1 to c′ and an arbitrary path running from c′′ to v2. All other paths
in Pv ∪ Uv are rejected. We have av = 2. It suffices to remove at most three
paths from O in order to obtain a valid set O′: if O contains at most one



130 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

2

v

c’=c’’c

v

v’

v1

c’ c’’

v

v’

v1 2

v

c

Figure 5.12: Case 1.2.2.5 (a): Configurations of paths in Pv intersecting the
undetermined path

path from Pv ∪ Uv, removing this path and at most two paths with lca of
smaller level is sufficient; if O contains two paths from Pv ∪ Uv, these two
paths block the same edges incident to v (the edges (c, v), (v, c), (c′′, v), and
(v, c′)) as the paths accepted by the algorithm, and removing these two paths
is sufficient. Hence, the invariants are satisfied.

Case (b): All paths in P ′
v run from c to the same child d of v, possibly

d = c′ or d = c′′. (The case that all paths in P ′
v run from a child d to c is

symmetrical.) See Figure 5.13. The algorithm accepts an arbitrary path from
P ′

v and the undetermined path. All other paths in Pv are rejected. Hence,
av = 2. It suffices to remove at most three paths from O in order to obtain a
valid set O′: if O contains at most one path from Pv∪Uv, removing that path
and at most two paths with lca of smaller level is sufficient; if O contains
two paths from Pv ∪ Uv, these paths also block the edges (c, v) and (v′, v2),
and O can contain at most one path with lca of smaller level intersecting a
path accepted by the algorithm (i.e., a path with lca of smaller level using
the edge (v, d)). Hence, the invariants are satisfied.

Case (c): All paths in P ′
v run from c′′ to c′. Note that this can occur

only if c′ 6= c′′. See Figure 5.14. The algorithm accepts an arbitrary path
from P ′

v and the undetermined path. All other paths in Pv are rejected.
Hence, av = 2. It suffices to remove at most three paths from O in order to
obtain a valid set O′: if O contains at most one path from Pv ∪Uv, removing
this path and at most two paths with lca of smaller level is sufficient; if O



5.3. APPROXIMATION ALGORITHMS FOR W = 1 131

c’=c’’c

v

v’

v1 2

v

d dc’’c’

v

v’

v1 2

v

c

Figure 5.13: Case 1.2.2.5 (b): All paths in P ′
v run from c to d

dc’ c’’

v

v’

v1 2

c

v

Figure 5.14: Case 1.2.2.5 (c): All paths in P ′
v run from c′′ to c′



132 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

c’=c’’c

v

v’

v1 2

v

d c’ c’’ d

v

v’

v1 2

c

v

Figure 5.15: Case 1.2.2.5 (d): All paths in P ′
v run from c′′ to d

contains two paths from Pv ∪ Uv, these paths also block the edges (v1, v
′),

(v′, v2), (c′′, v), and (v, c′), and O cannot contain any path with lca of smaller
level intersecting a path accepted by the algorithm. Hence, the invariants
are satisfied.

Case (d): All paths in P ′
v run from c′′ to the same child d 6= c, c′ of v.

(The case that all paths in P ′
v run from the same child d 6= c, c′′ of v to c′ is

symmetrical.) See Figure 5.15. The algorithm accepts an arbitrary path from
P ′

v and the undetermined path. All other paths in Pv are rejected. Hence,
av = 2. It suffices to remove at most three paths from O in order to obtain a
valid set O′: if O contains at most one path from Pv∪Uv, removing this path
and at most two paths with lca of smaller level is sufficient; if O contains two
paths from Pv ∪Uv, these paths must also block the edges (v1, v

′) and (c′′, v),
and O can contain at most one path with lca of smaller level intersecting a
path accepted by the algorithm, because such a path with lca of smaller level
must use the edge (p(v), v). Hence, the invariants are satisfied.

Case (e): There is more than one equivalence class of paths in P ′
v, and

the edge e incident to v that is used by all paths in P ′
v is one of the edges

(v, c), (c, v), (v, c′), or (c′′, v). See Figure 5.16 (only the case c′ = c′′ is shown,
because the case c′ 6= c′′ is not substantially different). The algorithm makes
the paths in P ′

v a group of deferred paths with reserved edge e, and it accepts
the undetermined path. All other paths in Pv are rejected. We have dv = 1
and av = 1. It suffices to remove at most three paths from O in order to
obtain a valid set O′: if O contains at most one path from Pv ∪Uv, removing



5.3. APPROXIMATION ALGORITHMS FOR W = 1 133

c’=c’’c

v

v’

v1 2

v

e

Figure 5.16: Case 1.2.2.5 (e): P ′
v contains more than one equivalence class of

paths

this path and at most two paths with lca of smaller level is sufficient; if O
contains two paths from Pv∪Uv, these paths must also block edge e and either
(v1, v

′) or (v′, v2), and O can contain at most one path with lca of smaller
level intersecting a path accepted by the algorithm. Hence, the invariants
are satisfied.

Case (f): There is more than one equivalence class of paths in P ′
v, and

the edge e incident to v that is used by all paths in P ′
v is none of the edges

(v, c), (c, v), (v, c′), or (c′′, v). Assume that e = (d, v) for some d 6= c, c′′. (The
case that e = (v, d) for some d 6= c, c′ is analogous.) As s = 2, each path from
P ′

v must intersect one of the two edge-disjoint paths from Pv that intersect
the undetermined path. Hence, there are exactly two equivalence classes of
paths in P ′

v: paths running from d to c, and paths running from d to c′. (In
particular, the case d = c′ cannot occur.) See Figure 5.17. The algorithm
accepts an arbitrary path running from d to c′ and the undetermined path.
Hence, we have av = 2. Observe that any combination of two edge-disjoint
paths from Pv∪Uv blocks at least as many paths with lca of smaller level than
three of the four top edges of the paths accepted by the algorithm. Hence, if
O contains two paths from Pv ∪Uv, it can contain at most one path with lca
of smaller level intersecting a path accepted by the algorithm, and it suffices
to remove at most three paths from O to obtain O′. If O contains at most
one path from Pv ∪ Uv, removing this path and at most two paths with lca



134 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

c’=c’’c

v

v’

v1 2

v

d

e

c’’ dc’

e

v1 2

v

c

v’

v

Figure 5.17: Case 1.2.2.5 (f): Special case of P ′
v with two equivalence classes

of paths

of smaller level is sufficient. The invariants are satisfied.

Case 1.2.2.6: Pv contains paths running from v1 to some child c′ 6= c of v,
but Pv does not contain paths running from some child c′′ 6= c of v to v2.
See Figure 5.18. (The case with paths running from c′′ to v2 but no paths
running from v1 to c′ is analogous.) Let P ′

v be the set of all paths in Pv that
do not intersect the undetermined path. Note that P ′

v 6= ∅, because s = 2.

Case 1.2.2.6.1: There is only one equivalence class of paths in P ′
v. The

algorithm accepts an arbitrary path from P ′
v and the undetermined path. All

other paths in Pv are rejected. We have av = 2. It suffices to remove at most
three paths from O in order to obtain a valid set O′: if O contains at most
one path from Pv ∪Uv, removing this path and at most two paths with lca of
smaller level is sufficient; if O contains two paths from Pv ∪ Uv, these paths
must consist of one path from P ′

v and one path using the edge (v1, v
′), and O

can contain at most one path with lca of smaller level intersecting the paths
accepted by the algorithm. Hence, the invariants are satisfied.

Case 1.2.2.6.2: There is more than one equivalence class of paths in P ′
v.

Let e be the edge shared by all paths in P ′
v. The algorithm makes P ′

v a group
of deferred paths with reserved edge e, and it accepts the undetermined path.
All other paths in Pv are rejected. We have av = 1 and dv = 1. It suffices
to remove at most three paths from O in order to obtain a valid set O′: if



5.3. APPROXIMATION ALGORITHMS FOR W = 1 135

c’

v

v’

v1 2

c

v

Figure 5.18: Case 1.2.2.6: Pv contains paths coming from v1, but no paths
running to v2

O contains at most one path from Pv ∪ Uv, removing this path and at most
two paths with lca of smaller level is sufficient; if O contains two paths from
Pv∪Uv, these paths must consist of one path from P ′

v, which uses edge e, and
one path using the edge (v1, v

′), and O can contain at most one path with
lca of smaller level intersecting the path accepted by the algorithm. Hence,
the invariants are satisfied.

Case 1.2.2.7: Pv contains paths running from v1 to some c′ 6= c, but all
these paths run to the same c′, and Pv contains paths running from some
c′′ 6= c to v2 for at least two different c′′. (The case with multiple equivalence
classes of paths coming from v1 and a single equivalence class of paths running
to v2 is analogous.) See Figure 5.19. Let P ′

v be the set of all paths in Pv that
do not intersect the undetermined path. Every path in P ′

v must intersect
at least one of the edges (v, c), (c, v), or (v, c′), because otherwise Pv would
contain three edge-disjoint paths.

Case 1.2.2.7.1: P ′
v = ∅. The algorithm accepts an arbitrary path from Pv

running from v1 to c′, and it makes the paths in Pv running from some c′′ to
v2 a group of deferred paths with reserved edge (v, c). We have av = 1 and
dv = 1, and it suffices to remove at most three paths from O to obtain a valid
set O′: if O contains at most one path from Pv∪Uv, removing this path and at
most two paths with lca of smaller level is sufficient; if O contains two paths
from Pv ∪ Uv, these paths must also use the edges (v, c), (c, v), and (v, c′),



136 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

v’

v1 2

v

c

c’

Figure 5.19: Case 1.2.2.7: Pv contains one equivalence class of paths coming
from v1, but several equivalence classes of paths running to v2

and O cannot contain any path with lca of smaller level intersecting the path
accepted by the algorithm or the newly reserved edge. The invariants are
satisfied.

Case 1.2.2.7.2: P ′
v has one equivalence class of paths. The algorithm

accepts an arbitrary path from P ′
v and the undetermined path. We have

av = 2. It suffices to remove at most three paths from O to obtain a valid
set O′: if O contains at most one path from Pv ∪ Uv, removing this path
and at most two paths with lca of smaller level is sufficient; if O contains
two paths from Pv ∪ Uv, it can contain at most one path with lca of smaller
level intersecting a path accepted by the algorithm. (To see the latter, note
that either O contains the undetermined path, in which case it must also
contain a path from P ′

v, or it does not contain the undetermined path, in
which case it must either contain a path running from v1 to c′ and a path
running from some c′′ to v2, thus blocking three of the four top edges of the
paths accepted by the algorithm, or it must contain a path from P ′

v and a
path from Pv \ P ′

v, again blocking three of the four top edges of the paths
accepted by the algorithm.) The invariants are satisfied.

Case 1.2.2.7.3: P ′
v has more than one equivalence class of paths, and the

edge e shared by all these paths is one of the edges (c, v), (v, c), or (v, c′). The
algorithm accepts the undetermined path and makes P ′

v a group of deferred
paths with reserved edge e. We have av = 1 and dv = 1. It suffices to



5.3. APPROXIMATION ALGORITHMS FOR W = 1 137

v

v’

v1 2

v

c

d c’

Figure 5.20: Case 1.2.2.7.4: P ′
v contains several equivalence classes of paths

sharing the edge (d, v)

remove at most three paths from O to obtain a valid set O′: if O contains
at most one path from Pv ∪ Uv, removing this path and at most two paths
with lca of smaller level is sufficient; if O contains two paths from Pv ∪Uv, it
can contain at most one path with lca of smaller level intersecting the path
accepted by the algorithm or the newly reserved edge. (To see the latter,
note that either O contains the undetermined path, in which case it must
also contain a path from P ′

v using the newly reserved edge, or it does not
contain the undetermined path, in which case it must either contain a path
running from v1 to c′ and a path running from some c′′ to v2, thus blocking
both top edges of the path accepted by the algorithm and the reserved edge
of the new group of deferred paths, or it must contain a path from P ′

v and
a path from Pv \ P ′

v, thus blocking the reserved edge and one of the two top
edges of the path accepted by the algorithm.) The invariants are satisfied.

Case 1.2.2.7.4: P ′
v has more than one equivalence class of paths, and the

edge e shared by all these paths is an edge (d, v) for some d 6= c, c′. (Note that
it is not possible that e = (c′, v) or e = (v, d) for some d 6= c′, c, because we
would get three edge-disjoint paths in Pv in this case.) As every path in P ′

v

must intersect either the path running from v1 to c′ or all paths running from
some c′′ to v2, the situation must be as shown in Figure 5.20: P ′

v contains
exactly two equivalence classes of paths, one class of paths running to c′ and
one class of paths running to c. The algorithm accepts an arbitrary path
running from d to c′ and the undetermined path. Hence, we have av = 2.



138 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

v’

1 2 1 2

v’’

v’ v’ v’’ v’’

p q

Figure 5.21: Case 1.2.3: v has two children with undetermined paths in their
subtrees

Observe that any combination of two edge-disjoint paths from Pv∪Uv blocks
at least three of the four top edges of the paths accepted by the algorithm.
Hence, if O contains two paths from Pv ∪Uv, it can contain at most one path
with lca of smaller level intersecting a path accepted by the algorithm, and
it suffices to remove at most three paths from O to obtain O′. If O contains
at most one path from Pv ∪ Uv, removing this path and at most two paths
with lca of smaller level is sufficient. The invariants are satisfied.

Case 1.2.3: k = 2, ` = m = 0. Two children of v have undetermined paths
in their subtrees. Denote the undetermined paths by p and q. See Figure 5.21.
As s = 2, every path in Pv must intersect at least one undetermined path.
In addition, if there are two paths in Pv that intersect one undetermined
path in different top edges, at least one of them must also intersect the other
undetermined path.

Case 1.2.3.1: Pv = ∅. The algorithm accepts both undetermined paths.
Hence, we have av = 2, and we claim that it suffices to delete at most
three paths from O in order to obtain a valid set O′. If O contains both
undetermined paths, it suffices to remove these two paths from O. If O
contains only one of the two undetermined paths, it may contain at most
two paths with lca of smaller level intersecting the other undetermined path,
and it suffices to remove at most three paths from O to obtain O′. If O
does not contain any of the two undetermined paths, O can contain at most



5.3. APPROXIMATION ALGORITHMS FOR W = 1 139

v

1 2 1 2

v’’

v’ v’ v’’ v’’

v’

p q

Figure 5.22: Case 1.2.3.2: All paths in Pv intersect the same undetermined
path

two paths with lca of smaller level intersecting the paths accepted by the
algorithm, and only these two paths must be deleted from O in order to
obtain a valid set O′.

Case 1.2.3.2: Pv 6= ∅, every path in Pv intersects the same undetermined
path, say p, and no path in Pv intersects the other undetermined path. Note
that all paths in Pv must intersect p in the same top edge, because other-
wise we would have s = 3. See Figure 5.22. The algorithm accepts both
undetermined paths. Hence, we have av = 2, and we claim that it suffices
to delete at most three paths from O in order to obtain a valid set O′: If
O contains both undetermined paths, it cannot contain any path with lca of
smaller level intersecting a path accepted by the algorithm, and it suffices
to remove the undetermined paths from O; if O contains a path from Pv

intersecting p and the other undetermined path, it can contain at most one
path with lca of smaller level intersecting p, and it suffices to remove these at
most three paths; if O contains at most one path from Pv∪Uv, it can contain
at most two paths with lca of smaller level intersecting a path accepted by
the algorithm, and again it suffices to remove these at most three paths. The
invariants are satisfied.

Case 1.2.3.3: Pv 6= ∅, at least one path in Pv intersects the undetermined
path p, and at least one path intersects the other undetermined path q.



140 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

1 2 1 2v’ v’ v’’ v’’

v’

p q

v’’

Figure 5.23: Case 1.2.3.3.1 (a): Both intersection edges are directed towards
the root

Case 1.2.3.3.1: All paths from Pv intersecting p intersect p in the same
edge e1, and all paths from Pv intersecting q intersect q in the same edge e2.

Case (a): e1 and e2 are both directed towards the root of the tree. (The
case that e1 and e2 are both directed to the leaves is symmetrical.) See
Figure 5.23. The algorithm accepts both undetermined paths. If O contains
two paths from Pv ∪ Uv, these paths block the edges e1 and e2, and O can
contain at most one path with lca of smaller level intersecting a path accepted
by the algorithm, because that path must use the edge (p(v), v). Hence, it
suffices to remove at most three paths from O in order to obtain O′. If O
contains at most one path from Pv ∪ Uv, it can contain at most two paths
with lca of smaller level intersecting a path accepted by the algorithm, and
again it suffices to remove at most three paths from O in order to obtain O′.

Case (b): One of e1 and e2, say e1, is directed towards the root, and e2 is
directed towards the leaves. See Figure 5.24. If Pv contains two edge-disjoint
paths p1 and p2 (this is the case in Figure 5.24), the algorithm makes p, q, p1

and p2 a group of 2-exclusive paths consisting of a pair of independent groups
of exclusive paths, and rejects all other paths from Pv. The edges e1 and e2

are marked fixed. If O contains two paths from the new group of 2-exclusive
paths already, let O′ = O. Otherwise, it is possible to replace paths in O by
paths from the new group of 2-exclusive paths to obtain O′. In any case, |O|
does not decrease, and the invariants are satisfied.



5.3. APPROXIMATION ALGORITHMS FOR W = 1 141

v

1 2 1 2v’ v’ v’’ v’’

v’

p q

v’’

Figure 5.24: Case 1.2.3.3.1 (b): The intersection edges have different direc-
tions

If Pv does not contain two edge-disjoint paths, the algorithm accepts both
undetermined paths. If O contains both undetermined paths, it suffices to
remove these two paths to obtain a valid set O′. If O contains one undeter-
mined path and one path from Pv, these paths block three out of four top
edges blocked by the paths accepted by the algorithm, and O can contain at
most one path with lca of smaller level intersecting a path accepted by the
algorithm. It suffices to remove at most three paths from O. If O contains at
most one path from Pv ∪ Uv, again it suffices to remove at most three paths
from O to obtain O′.

Case 1.2.3.3.2: There are paths p1, p2 ∈ Pv such that p1 intersects p in an
edge directed towards the root, p2 intersects p in an edge directed towards the
leaves, and either p1 or p2 does not intersect q. (The case with p replaced by
q is symmetrical.) Recall that at least one of p1 and p2 must also intersect q.
Without loss of generality, assume that p1 intersects q and p2 does not. See
Figure 5.25.

Let v′ be the lca of p, and let v′′ be the lca of q. Let the top edges of p be
(v′

1, v
′) and (v′, v′

2). Let the top edges of q be (v′′
1 , v

′′) and (v′′, v′′
2). Let c′ be

the child of v that is an ancestor of v′, possibly c′ = v′, and let c′′ be the child
of v that is an ancestor of v′′, possibly v′′ = c′′. Note that all paths in Pv

that run from v′
1 to v must intersect q, because otherwise such a path could

be combined with p2 and q to obtain three edge-disjoint paths, contradicting
s = 2.



142 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

1 2 1 2v’ v’ v’’ v’’

p q

v’’

v

v’

c

c’ c’’

Figure 5.25: Case 1.2.3.3.2 (a): Paths from Pv intersect p in different direc-
tions

The algorithm accepts both undetermined paths p and q. In order to
maintain the invariants, we must show that O contains at most three paths
intersecting p or q. If O contains only one path from Pv ∪ Uv, this follows
because O can contain at most two paths with lca of smaller level intersecting
p or q. If O contains two paths from Pv ∪ Uv, we claim that O can contain
at most one path with lca of smaller level intersecting p or q. We distinguish
two cases.

Case (a): There is a path in Pv running from a child c 6= c′, c′′ of v to v and
intersecting p in the edge (v′, v′

2). Note that this is the case in Figure 5.25.
Observe that any path in Pv that runs from v′′

1 to v must use the edge (v, c′),
because otherwise we would get three edge-disjoint paths in Pv ∪ Uv.

If Pv does not contain any path running from v′′
1 to v, any selection of

two edge-disjoint paths from Pv ∪ Uv blocks the edges (v′, v′
2) and (v′′, v′′

2).
Hence, if O contains two paths from Pv ∪Uv, it can contain at most one path
with lca of smaller level intersecting p or q, because such a path must use
the edge (v, p(v)).

If Pv contains a path running from v′′
1 to c′ not intersecting p, note that

Pv cannot contain any path running from v to v′′
2 not intersecting p (other-

wise, we would get three edge-disjoint paths in Pv ∪ Uv). In this case, any
combination of two edge-disjoint paths from Pv∪Uv blocks at least three out
of the four top edges of p and q, and O can contain at most one path with



5.3. APPROXIMATION ALGORITHMS FOR W = 1 143

1 2 1 2v’ v’ v’’ v’’

p q

v

v’

c

c’
c’’

v’’

Figure 5.26: Case 1.2.3.3.2 (a) cont.: Pv contains a path from v′′
1 to c′ not

intersecting p

lca of smaller level intersecting p or q. See Figure 5.26.

If Pv contains at least one path running from v′′
1 to c′, and if all such paths

intersect p, then Pv may contain an arbitrary number of paths running from
arbitrary children d of v to v′′

2 . See Figure 5.27. All paths in Pv ∪ Uv use
edge (v′, v′

2) or edge (v′′, v′′
2). Hence, if O contains two paths from Pv ∪ Uv,

these paths block (v′, v′
2) and (v′′, v′′

2), and O can contain at most one path
with lca of smaller level intersecting p or q, because such a path must use
the edge (v, p(v)).

Case (b): All paths in Pv intersecting p in the edge (v′, v′
2) run from c′′

to v′
2. See Figure 5.28.

If there is a path in Pv intersecting q in the edge (v′′, v′′
2) but not in-

tersecting p (see Figure 5.29), observe that any path running from v′′
1 to v

must intersect p, because otherwise we would get three edge-disjoint paths
in Pv ∪Uv. Hence, all paths in Pv ∪Uv use edge (v′, v′

2) or edge (v′′, v′′
2). If O

contains two paths from Pv ∪ Uv, these paths block (v′, v′
2) and (v′′, v′′

2), and
O can contain at most one path with lca of smaller level intersecting p or q,
because such a path must use the edge (v, p(v)).

If all paths in Pv intersecting q in the edge (v′′, v′′
2) intersect p, then Pv may

contain an arbitrary number of paths running from v′′
1 to arbitrary children d

of v. See Figure 5.30. Observe that any selection of two edge-disjoint paths
from Pv ∪ Uv blocks three of the four top edges of p and q. Hence, if O



144 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

1 2 1 2v’ v’ v’’ v’’

p q

v

c

c’
c’’

v’’v’

d

Figure 5.27: Case 1.2.3.3.2 (a) cont.: All paths in Pv running from v′′
1 to v

intersect p

1 2 1 2v’ v’ v’’ v’’

p q

v’’

v

v’

c’ c’’

Figure 5.28: Case 1.2.3.3.2 (b): All paths in Pv intersecting p in (v′, v′
2) run

from c′′ to v′
2



5.3. APPROXIMATION ALGORITHMS FOR W = 1 145

1 2 1 2v’ v’ v’’ v’’

p q

v’’

v

v’

c’ c’’

Figure 5.29: Case 1.2.3.3.2 (b) cont.: Pv contains a path running from v to
v′′
2 not intersecting p

1 2 1 2v’ v’ v’’ v’’

p q

v

v’

c’
c’’

v’’

d

Figure 5.30: Case 1.2.3.3.2 (b) cont.: All paths in Pv running from v to v′′
2

intersect p



146 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

1 2 1 2v’ v’ v’’ v’’

p q

v

v’ v’’

Figure 5.31: Case 1.2.3.3.3: All paths from Pv intersect p and q

contains two paths from Pv ∪Uv, it can contain at most one path with lca of
smaller level intersecting p or q.

Case 1.2.3.3.3: All paths in Pv intersect both p and q, and there are two
edge-disjoint paths in Pv. See Figure 5.31. The algorithm accepts p and q.
We have av = 2. If O contains two edge-disjoint paths from Pv ∪ Uv, these
two paths block at least as many paths with lca of smaller level as p and q,
and O cannot contain any path with lca of smaller level intersecting p or q;
it suffices to remove two paths from O. If O contains at most one path from
Pv∪Uv, it can contain at most two paths with lca of smaller level intersecting
p or q, and it suffices to remove at most three paths from O. The invariants
are satisfied.

Case 1.2.4: ` = 1, k = m = 0. There is one child c of v that has a group
of exclusive paths in its subtree. We distinguish further cases regarding the
maximum number of edge-disjoint paths in Pv.

Case 1.2.4.1: Pv = ∅. In this case, Pv ∪ Xv cannot contain two edge-
disjoint paths. Hence, this case cannot occur for s = 2.

Case 1.2.4.2: There are two edge-disjoint paths p1 and p2 in Pv. As s = 2,
p1 and p2 must intersect the exclusive paths in a way that blocks all of them
from being accepted. See Figure 5.32. Denote the higher and the lower path
in the group of exclusive paths by p and q, respectively. Assume without loss



5.3. APPROXIMATION ALGORITHMS FOR W = 1 147

2

e1

2
p

e

c’

q

v

p

1
p c c’’

p

c’

1e

2e

2

q

v

p

1
p

p’

c c’’

Figure 5.32: Case 1.2.4.2: Pv contains two edge-disjoint paths that block the
exclusive paths

of generality that the fixed edge of the group of exclusive paths is directed
towards the root of the tree (as shown in Figure 5.32). Let p1 intersect p,
and let p2 intersect q. Let c′ 6= c be the child of v such that p1 runs from c
to c′, and let c′′ 6= c be the child of v such that p2 runs from c′′ to c. Note
that c′ = c′′ is possible. Let the top edge of p intersected by p1 be e1, and let
the top edge of q intersected by p2 be e2. Observe that every path p′ ∈ Pv

must either intersect edge e1, or intersect edge e2, or intersect both p1 and p2.
(The latter case is possible only if c′ 6= c′′ and if all paths in Pv that intersect
e1 run from c to c′ and all paths in Pv that intersect e2 run from c′′ to c;
in that case, p′ must run from c′′ to c′, as shown on the right-hand side of
Figure 5.32.) Otherwise, Pv ∪Xv would contain more than two edge-disjoint
paths.

Case (a): All paths in Pv that intersect e1 run from c to c′, and all paths
in Pv that intersect e2 run from c′′ to c.

First, assume that all paths in Pv intersect either e1 or e2. Note that



148 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

there are exactly two equivalence classes of paths in Pv in this case. See
Figure 5.32 (left-hand side). The algorithm uses the group of exclusive paths
plus one representative from each of the two equivalence classes of paths in
Pv to form a group of 2-exclusive paths (cf. Figure 5.7 on page 118). All other
paths in Pv are rejected. The fixed edge of the group of exclusive paths is no
longer marked fixed, instead the edges e1 and e2 are marked fixed (compare
the dotted arrows in Figure 5.7). We must manipulate the set O of paths in
order to satisfy the invariants. Note that O cannot contain two paths from Pv

as O contains one of the exclusive paths due to condition (b) of Invariant B.
If O contains one path from Pv, replace that path by the path in the same
equivalence class picked by the algorithm as the representative of that class.
If O does not contain any path from Pv, O can also be modified such that it
contains two paths from the new group of 2-exclusive paths. To see this, note
that O can contain at most one path with lca of smaller level intersecting
a newly fixed edge; if it contained two such paths, these paths would block
both exclusive paths in Xv, a contradiction to condition (b) of Invariant B.
Therefore, it suffices to remove at most one path with lca of smaller level
from O to achieve a situation in which none of the two newly fixed edges is
intersected by a path in O with lca of smaller level and in which at most one
path in O with lca of smaller level touches the subtree rooted at v at all.
After removing from O also the exclusive path in Xv that was contained in
O, we can add two paths from the new group of 2-exclusive paths to O due
to Property (2E). |O| does not decrease, and the invariants are satisfied.

Now assume that there is a path p′ in Pv that intersects neither e1 nor e2.
As noted above, we must have c′ 6= c′′ in this case, and p′ must run from
c′′ to c′. See Figure 5.32 (right-hand side). The algorithm accepts the lower
path from the group of exclusive paths and the path p′, and it rejects all
other paths in Pv ∪Xv. No edge is marked fixed anymore. We have av = 2.
If O contains only one path from Pv ∪ Xv, removing this path and at most
two additional paths with lca of smaller level is sufficient. Furthermore, note
that any combination of two edge-disjoint paths from Pv ∪Xv blocks at least
three of the four top edges of the paths accepted by the algorithm. Hence,
if O contains two paths from Pv ∪Xv, it can contain at most one path with
lca of smaller level intersecting the paths accepted by the algorithm but not
intersecting the two paths from Pv ∪ Xv contained in O. In any case, it
suffices to delete at most three paths from O to obtain a valid set O′.

Case (b): There are at least two equivalence classes of paths in Pv in-
tersecting the higher path of the group of exclusive paths. The algorithm
accepts the lower path of the group of exclusive paths and makes the paths
in Pv intersecting the higher path a group of deferred paths. All other paths



5.3. APPROXIMATION ALGORITHMS FOR W = 1 149

in Pv ∪Xv are rejected, and no edge is marked fixed anymore. The reserved
edge of the group of deferred paths is the top edge shared by all these paths.
If O contains two paths from Pv∪Xv, note that one of the two paths must be
from Xv (due to condition (b) of Invariant B) and that these two paths also
block the top edges of the lower path of the group of exclusive paths. Hence,
O cannot contain any path with lca of smaller level intersecting the lower
path, and it can contain at most one path with lca of smaller level intersecting
the reserved edge of the newly deferred paths. It suffices to remove at most
three paths from O to obtain O′. If O contains only one path from Pv ∪Xv,
it suffices to remove at most three paths from O to obtain O′, because O
can contain at most two paths with lca of smaller level intersecting the path
accepted by the algorithm or the reserved edge of the newly deferred paths.
The invariants are satisfied.

Case (c): There is only one equivalence class of paths in Pv intersecting
the higher path of the group of exclusive paths, and there are at least two
equivalence classes of paths in Pv intersecting the lower path of the group
of exclusive paths. The algorithm accepts the higher path of the group of
exclusive paths and makes the paths in Pv intersecting the lower path a group
of deferred paths. All other paths in Pv ∪ Xv are rejected, and no edge is
marked fixed anymore. The reserved edge of the group of deferred paths is
the top edge shared by all these paths. If O contains two paths from Pv∪Xv,
note that one of the two paths must be from Xv (due to condition (b) of
Invariant B) and that these two paths also block edge e1. Hence, O cannot
contain any path with lca of smaller level intersecting e1, and it can contain
at most one path with lca of smaller level intersecting the reserved edge of
the newly deferred paths or the top edge of the higher path that is directed
towards the leaves, because all such paths must use the edge (p(v), v). It
suffices to remove at most three paths from O to obtain O′. If O contains
only one path from Pv ∪Xv, it suffices to remove at most three paths from
O to obtain O′, because O can contain at most two paths with lca of smaller
level intersecting the path accepted by the algorithm or the reserved edge of
the newly deferred paths. The invariants are satisfied.

Case 1.2.4.3: There is only one equivalence class of paths in Pv. If there is
a path p in Pv that does not intersect the lower path of the group of exclusive
paths, the algorithm accepts p and the lower path of the group of exclusive
paths. If all paths in Pv intersect the lower path of the group of exclusive
paths, the algorithm picks one path p in Pv arbitrarily and accepts p and the
higher exclusive path. All other paths in Pv ∪Xv are rejected, and no edge
is marked fixed anymore. Hence, we have av = 2. It suffices to remove at



150 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

most three paths from O in order to obtain a valid set O′: if O contains two
paths from Pv ∪Xv, it can contain at most one path with lca of smaller level
that intersects a path accepted by the algorithm; if O contains only one path
from Pv ∪Xv, removing this path and at most two paths with lca of smaller
level is sufficient. Hence, the invariants are satisfied.

Case 1.2.4.4: All paths in Pv share an edge e (called intersection edge)
incident to v, and there are at least two equivalence classes of paths in Pv.
Recall that c is the child of v whose subtree contains the group of exclusive
paths. Let v′ be the lca of the higher exclusive path. Assume that the fixed
edge of the group of exclusive paths is directed towards the root. (Otherwise,
analogous arguments apply.) We distinguish two cases regarding the position
of the intersection edge e with respect to c.

Case (a): e = (c, v), or e = (v, c′) for some c′ 6= c. The algorithm makes
Pv a group of deferred paths with reserved edge e, accepts the lower path
of the group of exclusive paths (note that no path in Pv intersects the lower
path in this case), and rejects the other path in Xv. No edge is marked
fixed anymore. Hence, we have av = 1 and dv = 1. Furthermore, at most
three paths in O may intersect the path accepted by the algorithm or the
reserved edge of the deferred paths: one path from the group of exclusive
paths, at most one path using the edge e, and at most one path using the
edge (p(v), v). Hence, the invariants are satisfied.

Case (b): e = (v, c), or e = (c′, v) for some c′ 6= c. The algorithm makes
Pv a group of deferred paths with reserved edge e, and it makes the group
of exclusive paths a second group of deferred paths whose reserved edges are
the formerly fixed edge plus all further edges in that direction on the path
from the fixed edge to v′. Hence, we have av = 0 and dv = 2. Furthermore,
at most three paths in O may intersect reserved edges of the new groups of
deferred paths: one path from the group of exclusive paths, at most one path
using the edge e, and at most one path using the edge (v, p(v)). Hence, the
invariants are satisfied.

Case 1.2.5: ` = 2, k = m = 0. There are two children of v whose subtrees
contain a group of exclusive paths. s = 2 implies Pv = ∅ in this case, as any
path from Pv could be combined with one exclusive path from each subtree
to obtain a set of three edge-disjoint paths.

If the fixed edges of both groups of exclusive paths point in the same
direction (i.e., are both directed to the root or to the leaves), the algorithm
accepts the lower paths of both groups of exclusive paths. The higher paths
are rejected, and no edge is marked fixed anymore. We have av = 2, and
at most three paths must be removed from O to obtain a valid set O′: the



5.3. APPROXIMATION ALGORITHMS FOR W = 1 151

v

Figure 5.33: Case 1.2.6.1: Pv contains two edge-disjoint paths

two paths from the groups of exclusive paths that are contained in O, and at
most one path with an lca of smaller level using the edge between v and p(v)
whose direction is opposite to the direction of the formerly fixed edges.

If the fixed edges of the groups of exclusive paths point in different di-
rections (i.e., one is directed towards the root and one towards the leaves),
the groups represent a pair of independent groups of exclusive paths, and
the algorithm can create a new group of 2-exclusive paths. Note that O
contains two paths from the new group of 2-exclusive paths already, because
it contained one path from each of the two groups of exclusive paths in Xv

due to condition (b) of Invariant B. Therefore, O does not change, and the
invariants are still satisfied.

Case 1.2.6: k = ` = 1, m = 0. There is one child of v that has a group of
exclusive paths in its subtree, and one child of v that has an undetermined
path in its subtree. All paths in Pv must intersect the undetermined path,
because otherwise a path from Pv could be combined with the undetermined
path and an exclusive path to obtain a set of three edge-disjoint paths.

Case 1.2.6.1: There are two edge-disjoint paths in Pv. In this case, the
situation must be as shown in Figure 5.33: the two edge-disjoint paths from



152 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

Figure 5.34: Case 1.2.6.2 (a): The fixed edge and the intersection edge have
the same direction

Pv must intersect the group of exclusive paths in a way that blocks all ex-
clusive paths from being accepted, and there cannot be any other kinds of
paths in Pv.

The algorithm accepts the lower path from the group of exclusive paths
and the undetermined path, and it rejects all other paths in Pv ∪ Xv. No
edge is marked fixed anymore. We have av = 2. If O contains only one path
from Pv∪Uv∪Xv, removing this path and at most two additional paths with
lca of smaller level is sufficient. Furthermore, note that any combination of
two edge-disjoint paths from Pv ∪ Uv ∪ Xv blocks at least three of the four
top edges of the paths accepted by the algorithm. Hence, if O contains two
paths from Pv ∪Uv ∪Xv, it can contain at most one path with lca of smaller
level intersecting the paths accepted by the algorithm but not intersecting
the two paths from Pv ∪ Uv ∪Xv contained in O. In any case, it suffices to
delete at most three paths from O to obtain a valid set O′.

Case 1.2.6.2: All paths in Pv intersect the same edge e (called intersection
edge) of the undetermined path.

Case (a): The direction of e is the same as that of the fixed edge of
the group of exclusive paths (see Figure 5.34). The algorithm accepts the



5.3. APPROXIMATION ALGORITHMS FOR W = 1 153

v

Figure 5.35: Case 1.2.6.2 (b): The fixed edge and the intersection edge have
different directions, and there is a path in Pv not intersecting the higher
exclusive path

undetermined path and the lower path from the group of exclusive paths. All
other paths in Pv ∪ Xv are rejected, and no edge is marked fixed anymore.
Hence, we have av = 2. If O contains only one path from Pv ∪ Uv ∪ Xv, it
suffices to delete three paths from O to obtain a valid set O′. If O contains
two paths from Pv ∪ Uv ∪ Xv, these paths also use the fixed edge and the
intersection edge, and at most one further path from O can be blocked by
the paths accepted by the algorithm. Again, it suffices to delete three paths
from O to obtain a valid set O′.

Case (b): The direction of e is different from that of the fixed edge, and
there is a path p in Pv that does not intersect the higher exclusive path (see
Figure 5.35). The algorithm uses Xv, p and the undetermined path together
to form a new group of 2-exclusive paths consisting of a pair of independent
groups of exclusive paths. All other paths is Pv are rejected by the algorithm.
In addition to the fixed edge of the old group of exclusive paths, the inter-
section edge e is marked fixed. The set O must be manipulated in order to
satisfy condition (b) of Invariant B. Note that O contains one path from Xv

due to condition (b) of Invariant B. If O contains the undetermined path or
the path p, let O′ = O. If O contains one path 6= p from Pv, replace this path



154 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

v

Figure 5.36: Case 1.2.6.2 (c): The fixed edge and the intersection edge have
different directions, and all paths in Pv intersect the higher exclusive path

either by p or by the undetermined path (one of these must be possible). If
O does not contain a path from Pv∪Uv, but contains a path p′ using the edge
between v and p(v) in the direction given by the intersection edge, replace p′

either by p or by the undetermined path (one of the two must be possible). If
O does not contain a path from Pv ∪Uv and no path using the edge between
v and p(v) in the direction given by the intersection edge, add either p or
the undetermined path to O. In any case, the invariants are satisfied. In
particular, |O| does not decrease.

Case (c): The direction of e is different from that of the fixed edge, and
all paths in Pv intersect the higher exclusive path (see Figure 5.36). The
algorithm accepts the undetermined path and the lower path from the group
of exclusive paths, and it rejects all other paths from Pv ∪ Xv. No edge is
marked fixed anymore. We have av = 2. If O contains only one path from
Pv ∪ Uv ∪Xv, it is obviously enough to remove at most three paths from O
in order to obtain a valid set O′. If O contains two paths from Pv ∪Uv ∪Xv,
it must contain at least one of the two paths accepted by the algorithm,
and the other path in O uses a top edge of the other path accepted by the
algorithm. Hence, O can contain at most one further path with lca of smaller
level intersecting the paths accepted by the algorithm. Again, it suffices to



5.3. APPROXIMATION ALGORITHMS FOR W = 1 155

remove at most three paths from O in order to obtain O′.

Case 1.2.7: m = 1, k = ` = 0. There is a subtree rooted at a child of v
that contains a group of 2-exclusive paths. Therefore, we must have Pv = ∅,
because any path in Pv could be combined with two paths from Xv to form a
set of three edge-disjoint paths. Hence, the algorithm does nothing at node v
and leaves the group of 2-exclusive paths in its unresolved state.

Case 1.3: s ≥ 3. The algorithm accepts the s paths and rejects all other
paths from Pv ∪ Uv ∪Xv. No edge in this subtree is marked fixed anymore.
As s is the maximum number of edge-disjoint paths in Pv ∪ Uv ∪Xv, O can
contain at most s paths from Pv ∪ Uv ∪ Xv. Furthermore, O can contain
at most two paths from F using the edges (v, p(v)) or (p(v), v), and these
are the only two further paths in O that could possibly be blocked by the s
paths accepted by the algorithm. Hence, a valid set O′ can be obtained from
O by deleting at most s + 2 paths. As s + 2 ≤ (5/3)s, the invariants are
maintained.

Case 2: k + ` +m > max{3, 2/ε}. Although each child of v can contain at
most one undetermined path, one group of exclusive paths, or one group of 2-
exclusive paths, there can nevertheless be a huge number of such unresolved
paths or groups of paths in subtrees rooted at children of v, because there is
no bound on the number of children of a node in T . In this case, the algorithm
cannot try out all possibilities of accepting or rejecting undetermined paths or
exclusive paths in polynomial time. Instead, it calculates only four candidate
sets of edge-disjoint paths from Pv∪Uv∪Xv and chooses the largest of them.

For obtaining two of the four sets, we employ a method of removing r
paths from an arbitrary set S of edge-disjoint paths in Pv such that ` + 2m
exclusive paths from Xv can be accepted in addition to the paths remaining
in S. The resulting set of edge-disjoint paths in S ∪ Xv has cardinality
|S|+`+2m−r. The details of the method and a proof that r ≤ (|S|+`+m)/3
will be presented shortly in Lemma 5.3.2. With this tool we are ready to
describe the candidate sets S1, S2, S3, and S4.

1. S1 is obtained as the union of all k undetermined paths and a maximum
number s1 of edge-disjoint paths from Pv not intersecting any undeter-
mined path, and as many additional edge-disjoint paths from the `+m
subtrees with exclusive paths as possible. We have |S1| ≥ k + s1 + m,
because S1 contains k undetermined paths and at least m paths from
groups of 2-exclusive paths in Xv due to Property (2E).



156 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

2. S2 is obtained from S1 by removing r of the s1 paths in S1∩Pv from S1

such that ` + 2m exclusive paths can be accepted. S2 contains ` + 2m
exclusive paths, and according to Lemma 5.3.2 only r ≤ (s1 + `+m)/3
of the s1 paths in S1∩Pv were removed to obtain S2. As S2 still contains
the k undetermined paths, we have |S2| ≥ k + m + (2/3)(s1 + ` + m).
In addition, we have |S2| ≥ k + ` + 2m ≥ max{3, 2/ε}, because S2

contains all undetermined paths from Uv and ` + 2m exclusive paths.

3. S3 is obtained by taking a maximum number s3 of edge-disjoint paths
from Pv and as many additional edge-disjoint paths from the ` + m
subtrees with exclusive paths and the k subtrees with undetermined
paths as possible. We have |S3| ≥ s3 + m, because S3 contains at least
m paths from groups of 2-exclusive paths in Xv due to Property (2E).

4. S4 is obtained from S3 by removing r of the s3 paths in S3∩Pv from S3

until ` + 2m exclusive paths can be accepted, in the same way as S2 is
obtained from S1. Since r ≤ (s3 + ` + m)/3 according to Lemma 5.3.2,
we have |S4| ≥ m + (2/3)(s3 + ` + m).

The algorithm accepts the paths in that set Si with maximum cardinality and
rejects all other paths from Pv∪Uv∪Xv. Recall that av denotes the number of
paths accepted by the algorithm at node v, and note that av ≥ max{3, 2/ε}
follows from |S2| ≥ max{3, 2/ε}.

We claim that the number of paths in Ov = O ∩ (Pv ∪ Uv ∪Xv) satisfies

|Ov| ≤ s1 + (s3 − s1)/2 + k + ` + 2m. (5.1)

Let b′ be the number of paths from Pv that are contained in Ov and that
intersect at least one of the k undetermined paths. Observe that Ov can con-
tain at most k−b′/2 undetermined paths. Note that the maximum number of
edge-disjoint paths from Pv is s3 and the maximum number of edge-disjoint
paths from Pv not intersecting undetermined paths is s1. If b′ ≥ s3 − s1, we
have

|Ov| ≤ s3 + k − b′/2 + ` + 2m ≤ s1 + (s3 − s1)/2 + k + ` + 2m.

If b′ < s3 − s1, we have

|Ov| ≤ s1 + b′ + k − b′/2 + ` + 2m ≤ s1 + (s3 − s1)/2 + k + ` + 2m.

With this upper bound on |Ov| and the lower bounds on the cardinalities of
the four sets Si, we can now prove that at least one of the sets Si satisfies
|Ov| + 2 ≤ (5/3 + ε)|Si|. Since it suffices to delete at most |Ov| + 2 paths
from O in order to obtain a valid set O′, this implies that the invariants are
maintained.



5.3. APPROXIMATION ALGORITHMS FOR W = 1 157

Case 2.1: s3 − s1 > (3/2)k. Let α be such that s3 − s1 = αk. Note that
α > 3/2.

Case 2.1.1: ` + 2m ≤ (α/2)k. From (5.1) we get |Ov| ≤ s1 + (1 + α)k,
and we have av ≥ |S3| ≥ s3 + m ≥ s1 + αk. We obtain |Ov| + 2 ≤ av(1 +
α)/α + 2 ≤ (5/3)av + 2 ≤ (5/3 + ε)av, where the last inequality follows from
av ≥ max{3, 2/ε}, and the invariants are satisfied.

Case 2.1.2: ` + 2m ≥ (α/2)k. From (5.1) we get |Ov| ≤ s1 + (1 + α/2)k +
` + 2m, and we have av ≥ |S4| ≥ (2/3)s1 + (2α/3)k + (2/3)` + (5/3)m. We
can bound the ratio between |Ov|+ 2 and av as follows:

|Ov|+ 2

av

≤ s1 + (1 + α/2)k + ` + 2m

(2/3)s1 + (2α/3)k + (2/3)` + (5/3)m
+

2

av

≤ 3

2
+

(1− α/2)k

(2/3)s1 + (2α/3)k + (2/3)` + (5/3)m
+ ε

≤ 3

2
+

(1− α/2)k

(2α/3)k + (α/3)k
+ ε

≤ 1 +
1

α
+ ε ≤ 5

3
+ ε

Consequently, the invariants are satisfied.

Case 2.2: (4/3)k < s3 − s1 ≤ (3/2)k. Let α be such that s3 − s1 = αk.
Note that 4/3 < α ≤ 3/2.

Case 2.2.1: ` + 2m ≤ (3/2)(α − 1)k. From (5.1) we get |Ov| ≤ s1 +
(2α − 1/2)k, and we have av ≥ |S3| ≥ s3 + m ≥ s1 + αk. We obtain
|Ov|+2 ≤ av(2α−1/2)/α+2 ≤ av(2−(1/2α))+2 ≤ (5/3)av+2 ≤ (5/3+ε)av,
where the last inequality follows from av ≥ max{3, 2/ε}, and the invariants
are satisfied.

Case 2.2.2: ` + 2m ≥ (3/2)(α− 1)k. From (5.1) we get |Ov| ≤ s1 + (1 +
α/2)k + ` + 2m, and we have av ≥ |S2| ≥ (2/3)s1 + k + (2/3)`+ (5/3)m. We
can bound the ratio between |Ov|+ 2 and av as follows:

|Ov|+ 2

av
≤ s1 + (1 + α/2)k + ` + 2m

(2/3)s1 + k + (2/3)` + (5/3)m
+

2

av

≤ 3

2
+

(α− 1)k/2

(2/3)s1 + k + (2/3)` + (5/3)m
+ ε

≤ 3

2
+

(α− 1)k/2

k + (α− 1)k
+ ε



158 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

≤ 2− 1

2α
+ ε ≤ 5

3
+ ε

Consequently, the invariants are satisfied.

Case 2.3: s3− s1 ≤ (4/3)k. From (5.1) we get |Ov| ≤ s1 +(2/3)k+k + `+
2m ≤ s1 + (5/3)k + ` + 2m, and we have av ≥ |S2| ≥ (2/3)s1 + k + (2/3)` +
(5/3)m. We obtain |Ov| + 2 ≤ (5/3)av + 2 ≤ (5/3 + ε)av, where the last
inequality follows from av ≥ max{3, 2/ε}, and the invariants are satisfied.

We have shown that |Ov|+ 2 ≤ (5/3 + ε)av in all subcases of Case 2. To
complete the description of Case 2, we still have to explain the method for
removing paths from S1 and S3 in order to obtain S2 and S4, respectively.
The method takes an arbitrary set S of edge-disjoint paths in Pv and removes
paths from S to obtain a set S ′ such that every subtree with exclusive paths
is touched by at most one path in S ′. The motivation for this is that S can
cause all paths from a group of exclusive paths to be blocked only if two paths
from S intersect the corresponding subtree (Property (E)). Similarly, if only
one path from a group of 2-exclusive paths can be accepted, S must contain
two paths from Pv that intersect the corresponding subtree (Property (2E)).

The method proceeds as follows. Consider a graph G with the paths in
S as its vertices and an edge between two paths if they touch the same child
of v. G has maximum degree two and consists of a collection of chains and
cycles. Note that every edge of G corresponds to a child of v that is touched
by two paths in S. We are interested in the maximal parts of chains and
cycles that consist entirely of edges corresponding to children of v that are the
roots of subtrees with exclusive paths. There are the following possibilities
for such parts:

(i) a cycle such that all paths on the cycle have both endpoints in a subtree
with exclusive paths

(ii) a chain such that the paths at both ends have only one endpoint in a
subtree with exclusive paths, while the internal paths have both end-
points in subtrees with exclusive paths

(iii) a chain such that the path at one end has only one endpoint in a
subtree with exclusive paths, while all other paths have both endpoints
in a subtree with exclusive paths

(iv) a chain such that all its paths have both endpoints in a subtree with
exclusive paths



5.3. APPROXIMATION ALGORITHMS FOR W = 1 159

v

a b c d e f g h

! ! ! ! ! !

Figure 5.37: Set of edge-disjoint paths in Pv

e-a

g-h

a-d

d-c

h-f

f-gc-b

Figure 5.38: Graph G representing the structure of the paths

Note that every such maximal part of a cycle or chain consists of at least two
paths, because it must contain at least one edge. The method for removing
paths proceeds as follows. Cycles of even length and chains are handled by
removing every other path from S, starting with the second path for chains.
Cycles of odd length are handled by removing two consecutive paths in one
place and every other path from the rest of the cycle.

As an example, consider the configuration depicted in Figure 5.37. The
node v has eight children, a to h, and six of them (c to h) are the root of
a subtree with exclusive paths (indicated by an exclamation mark). A set
S of edge-disjoint paths in Pv is sketched. The graph G obtained from this
set is shown in Figure 5.38, and the label of a vertex in G is u-w if the
corresponding path runs from u to w in T (i.e., if the corresponding path
begins in the subtree rooted at u and ends in the subtree rooted at w). With
respect to (i)–(iv) above, G contains: a cycle of type (i) with length three,
containing the paths f -g, g-h, and h-f , and a chain of type (ii) with length
three, containing the paths a-d, d-c, and c-b. According to the rules given
above, three paths would be removed from S: two paths, say f -g and g-h,
from the cycle, and the path d-c from the chain of length three. After these
three paths are removed from S, S doesn’t contain any pair of paths with
endpoints in the same subtree with exclusive paths, as required.

It is easy to see that this process always ensures that in the end S contains,
for each subtree with exclusive paths, at most one path with an endpoint in
that subtree. Hence, due to Properties (E) and (2E), S can be filled up with



160 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

edge-disjoint exclusive paths until it contains all `+2m exclusive paths. Let
r be the number of paths removed from S during this process. The resulting
set of edge-disjoint paths has cardinality |S|+ ` + 2m− r.

Lemma 5.3.2 Let v be a node with ` + m children with exclusive paths. Let
S ⊆ Pv be a set of edge-disjoint paths with lca v. Let S ′ ⊆ S be the set of
paths obtained from S by removing paths according to the method described
above. Let |S| = s and |S \ S ′| = r. Then r ≤ (s + ` + m)/3.

Proof: Let a be the number of cycles of type (i), and let ai for 1 ≤ i ≤ a be
the length (number of paths) of the i-th cycle. Let b be the number of chains
of type (ii), and let bi for 1 ≤ i ≤ b be the length of the i-th such chain. Let
c be the number of chains of type (iii), and let ci for 1 ≤ i ≤ c be the length
of the i-th such chain. Let d be the number of chains of type (iv), and let di

for 1 ≤ i ≤ d be the length of the i-th such chain. Note that ai, bi, ci, di ≥ 2
for all i. As the number of paths contained in the union of all these chains
and cycles is at most s, we have

a∑
i=1

ai +

b∑
i=1

bi +

c∑
i=1

ci +

d∑
i=1

di ≤ s. (5.2)

Considering the number of children with exclusive paths covered by each
chain or cycle, we obtain

a∑
i=1

ai +
b∑

i=1

(bi − 1) +
c∑

i=1

ci +
d∑

i=1

(di + 1) ≤ ` + m. (5.3)

Using bi − 1 ≥ bi/2, we use (5.3) to obtain

a∑
i=1

ai +

b∑
i=1

bi

2
+

c∑
i=1

ci

2
+

d∑
i=1

di

2
≤ ` + m. (5.4)

Adding up (5.2) and (5.4), we obtain

2

a∑
i=1

ai +
3

2

(
b∑

i=1

bi +

c∑
i=1

ci +

d∑
i=1

di

)
≤ s + ` + m. (5.5)

The number of paths removed from S to obtain S ′ is

r =

a∑
i=1

⌈ai

2

⌉
+

b∑
i=1

⌊
bi

2

⌋
+

c∑
i=1

⌊ci

2

⌋
+

d∑
i=1

⌊
di

2

⌋
. (5.6)



5.4. APPROXIMATING MAXPC FOR ARBITRARY W 161

With dai/2e ≤ (2/3)ai for ai ≥ 2 and using (5.5), we obtain from (5.6):

r ≤ 2

3

a∑
i=1

ai +
1

2

(
b∑

i=1

bi +
c∑

i=1

ci +
d∑

i=1

di

)
≤ s + ` + m

3
.

tu

In the example displayed in Figure 5.37, we had s = 7 and ` + m = 6,
and it was sufficient to remove r = 3 paths. Indeed, r ≤ (s + ` + m)/3 = 41

3
.

By now we have specified completely how our approximation algorithm
proceeds during the first and second pass. We have shown that Invariants A
and B are indeed maintained; this implies that our algorithm is a (5/3 + ε)-
approximation algorithm for MaxPC with W = 1 (i.e., for the maximum
edge-disjoint paths problem) in bidirected trees. Its running-time is polyno-
mial in the size of the input for fixed ε > 0, but exponential in 1/ε. More
precisely, the running-time can be bounded by O(42/ε · q(n, L)) for a set P
of paths with maximum load L in a bidirected tree with n nodes, where q is
a polynomial function. As a consequence, one can choose ε = 1/Θ(log(nL))
and still achieve running-time polynomial in the size of the input. With this
modification, the algorithm achieves approximation ratio 5/3+1/Θ(log(nL))
and, therefore, asymptotic approximation ratio 5/3.

5.4 Approximating MaxPC for Arbitrary W

In order to obtain approximation algorithms for MaxPC with an arbitrary
number W of available wavelengths, we employ a technique from [AAF+96]
that allows reducing the problem with W wavelengths to the problem with
one wavelength with only a small increase in the approximation ratio.1 The
technique works for MaxPC in arbitrary graphs G; we discuss it here only for
trees. Let an instance of MaxPC be given by a bidirected tree T = (V, E),
a set P of paths in T , and a number W of wavelengths. An approximation
algorithm A for arbitrary number W of wavelengths is obtained from an
approximation algorithm A1 for one wavelength (i.e., for the maximum edge-
disjoint paths problem) by running W copies of A1, giving as input to the i-th
copy the bidirected tree T and the set of paths that have not been accepted
by the first i−1 copies of A1 (see Figure 5.39). The output of A is the union
of the W sets of paths output by the copies of A1, and the paths in the i-th
set are assigned color i.

1The author is grateful to Stefano Leonardi for pointing out the reduction from MaxPC
with arbitrary number of wavelengths to MaxPC with one wavelength and to Adi Rosén
for informing him about the improved analysis for the ratio obtained by this reduction in
the case of identical networks for all wavelengths.



162 CHAPTER 5. MAXPC AND MAXPP IN BIDIRECTED TREES

Algorithm A
Input: bidirected tree T , set P of paths, number W of wavelengths
Output: subsets P1,. . . ,PW of P such that each Pi is edge-disjoint
begin
for i = 1 to W do

begin
Pi ← A1(T, P );
P ← P \ Pi;
end

end

Figure 5.39: Reduction from many wavelengths to one wavelength

In [AAF+96] it is shown that the algorithm A obtained using this tech-
nique has approximation ratio at most ρ+1 if A1 has approximation ratio ρ,
even if different wavelengths are associated with different network topologies.
For identical networks, which we have in our application, the approximation
ratio achieved by A can even be bounded by

1

1− (1− 1
ρW

)W

which is smaller than
1

1− e−1/ρ

for all W . This bound is mentioned in a preliminary draft of the journal
version of [AAF+96], which was kindly supplied to the author by Adi Rosén.
The bound can be proved easily by using the fact that if A has selected pk

paths after running k copies of A1, there is still a set of at least (|P ∗| −
pk)/W edge-disjoint paths among the remaining paths (this follows from a
pigeonhole argument), and the next copy of A1 accepts at least a 1/ρ fraction
of them. As observed in the journal version of [AAF+96], this proof can be
viewed as an adaptation of a similar proof to be found in [CFN77].

Since we have obtained an exact algorithm for MaxPC with W = 1 in
bidirected trees of bounded degree and (5/3+ε)-approximation algorithms for
MaxPC with W = 1 in arbitrary bidirected trees, we can employ the above
technique and obtain approximation algorithms with ratio 1/(1−1/e) ≈ 1.58
for arbitrary W in bidirected trees of bounded degree and with ratio ≈ 2.22
for arbitrary W in arbitrary bidirected trees.



Chapter 6

Analysis of List-Scheduling
Variants

The previous chapters have studied path coloring problems that can be
viewed as restricted call-scheduling problems with unit bandwidth require-
ments and unit duration. In this chapter, we investigate algorithms for the
general call-scheduling problem with arbitrary bandwidth requirements and
(possibly unknown) duration. This problem arises in communication net-
works with bandwidth reservation, e.g., ATM networks (see Section 1.1.2).

The communication network is represented by a graph G = (V, E) with
edge capacities. We focus on the case of undirected tree networks with unit
edge capacities. A call c = (uc, vc, bc, dc) is specified by its communication
endpoints uc ∈ V and vc ∈ V , its bandwidth requirement bc (an arbitrary
rational number satisfying 0 < bc ≤ 1), and its duration dc ∈ N . For a call c
in a tree network T = (V, E) we denote by Pc the (unique) undirected path
from uc to vc in T . Recall that the load L(e) of an edge e is the sum of bcdc

over all calls c with e ∈ Pc, and that L(e) is a lower bound on the optimal
schedule length.

Usually we denote calls by c (for call) or by r (for request), and we denote
sets of calls by C or R. If the calls are arranged in a list, we denote this
list by L. (The maximum load, which was also denoted by L in previous
chapters, will not appear in this chapter; therefore, no confusion should arise
from this.) An instance of the call-scheduling problem is given by a tree
network T = (V, E) and a set R of calls. We want to find a feasible schedule,
i.e., an assignment of a starting time tc ∈ N0 to every call c ∈ R such that
the sum of bandwidth requirements of calls that are active at time t and use
the same edge e is at most 1, for all t ∈ N0 and all e ∈ E. A call c is active
in the time interval [tc, tc + dc). The time interval [t, t+1) for some t ∈ N0 is
called time step t. The length |S| of a schedule S is defined as maxc∈R tc +dc

163



164 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

and is also called its makespan. The goal of the call scheduling problem is
to find a feasible schedule of minimum makespan. We denote by OPT (R)
(or simply by OPT if R is clear from the context) the minimum makespan
for R, and by A(R) the length of the schedule produced by algorithm A.

Since it is NP-hard to compute a minimum makespan schedule for calls
with arbitrary bandwidth requirements in any network containing at least
one edge (see Section 3.3), we analyze the performance of polynomial-time
approximation algorithms. Recall that a call-scheduling algorithm A has ap-
proximation ratio ρ if A(R)/OPT (R) ≤ ρ for all sets R of calls and asymp-
totic approximation ratio ρ if lim supOPT(R)→∞ A(R)/OPT (R) ≤ ρ. For a
particular instance R, we say that A has approximation ratio ρ on that in-
stance if A(R)/OPT (R) ≤ ρ.

We will consider the case that all calls are available at time 0 and complete
information about them (including bandwidth requirements and call dura-
tion) is given to the call-scheduling algorithm in advance, i.e., we consider
off-line algorithms. Some of our algorithms do not require advance knowl-
edge of call duration, however, and we refer to these as batch-style on-line
algorithms, although they still require that all calls are given to the algorithm
in advance.

In this chapter, we will analyze the performance of variants of the classical
List-Scheduling (LS ) algorithm [Gra69] for call scheduling with arbitrary
bandwidth requirements. These variants will be introduced in Section 6.1.
First, we deal with call scheduling in stars (Section 6.2), then in arbitrary
trees (Section 6.3). Among other results, we will show that DBLS (L) ≤
d(8/3)OPT (L)e for calls with unit duration in stars, that LS (L) ≤ 5·OPT (L)
for calls with arbitrary duration in stars, that LLS (L) ≤ 6 ·OPT (L) for calls
with unit duration in trees, and that LSL(L) ≤ 5 log n·OPT (L) for calls with
arbitrary duration in trees with n nodes. We will also give lower bounds on
the approximation ratios achieved by these algorithms in the worst case.
DBLS , LLS , and LSL are variants of LS that will be defined shortly. LS
and LSL are batch-style on-line algorithms.

6.1 Basic Algorithms

This section reviews some classical algorithms that are well-known from the
multiprocessor scheduling world or from bin-packing. In subsequent sections,
we will analyze the performance of these algorithms and modified versions if
applied to the call-scheduling problem.

Bin-packing is the problem of packing a given set of items of variable sizes
into bins of a given capacity such that the sum of the sizes of items packed into



6.1. BASIC ALGORITHMS 165

Algorithm: List-Scheduling (LS)
Input: tree T and set R of calls, arranged in a list L

begin
t← 0;
while not all calls have been scheduled do

begin
if ∃ call r in L such that bandwidth br

is available at time t along path Pr in T
then

establish the first (in L) such call r at time t;
remove r from L;

else
t← earliest time when one of the active calls finishes;

fi
end

end

Figure 6.1: Algorithm List-Scheduling for calls in a tree

the same bin does not exceed the capacity of that bin; the goal is to minimize
the number of non-empty bins. This can be viewed as call scheduling for
calls with arbitrary bandwidth requirements and unit duration in a network
consisting of two nodes connected by a single edge: calls correspond to items,
and time steps correspond to bins. Therefore, call scheduling in stars or trees
is a generalization of bin-packing, and many techniques and results for bin-
packing are relevant for call scheduling as well. Please refer to the chapter
by Coffman, Garey, and Johnson [CGJ97] (in a book edited by Hochbaum)
for an introduction to bin-packing and an overview of known approximation
algorithms; the chapter by Graham [Gra76] (in a book edited by Coffman)
is another excellent reference for bin-packing.

The call-scheduling algorithms introduced in this section assume that the
set of calls is presented to them in a list L.

6.1.1 List-Scheduling

One of the earliest heuristics for the solution of scheduling problems was
the List-Scheduling (LS ) algorithm introduced by Graham [Gra69]. This
algorithm, if applied to the call-scheduling problem in tree networks, is shown
in Figure 6.1. We refer to schedules produced by LS as list-schedules.



166 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

Algorithm: First-Fit (FF)
Input: tree T and set R of calls, arranged in a list L

begin
while list L is not empty do

begin
r ← first call in L;
tr ← smallest value in N0 such that all edges of Pr have band-

width br available in dr consecutive time steps after tr;
schedule call r at time tr;
delete r from L;
end

end

Figure 6.2: Algorithm First-Fit for calls in a tree

One important property of list-schedules is that if a call r is established at
time tr, it follows that at any time prior to tr at least one of the edges on path
Pr did not have bandwidth br available. We will use this property later as
a tool to prove bounds on the approximation ratio of List-Scheduling. Note
that this property holds only because there are no precedence constraints for
the calls.

The length of the schedule produced by List-Scheduling can depend on
the order in which the calls are arranged in the list L. Hence, sorting the calls
according to certain criteria may improve the approximation ratio achieved
by List-Scheduling. Therefore, we also consider the List-Scheduling variant
DBLS (Decreasing-Bandwidth List-Scheduling), which sorts the calls accord-
ing to non-increasing bandwidth requirements as a first step.

6.1.2 First-Fit

The First-Fit (FF ) strategy has been thoroughly analyzed in the context
of bin-packing [JDU+74]. Adapted to the call-scheduling scenario, First-
Fit is displayed in Figure 6.2. It is easy to see that First-Fit and List-
Scheduling produce the same schedule in the case of call scheduling with unit
call duration. Therefore, we can derive bounds on the approximation ratio
of variants of LS for calls with unit duration by analyzing the corresponding
variant of FF , and vice versa.

As with List-Scheduling, schedules produced by First-Fit have a property
that can be exploited for analyzing its performance: if a call r is scheduled



6.2. APPROXIMATION RESULTS FOR STARS 167

at time step tr, there is no time interval of dr time steps prior to tr such that
all edges of Pr have at least br bandwidth available during the whole interval.
In addition, at least one of the edges of Pr must have less than br bandwidth
available (i.e., the sum of bandwidth requirements of active calls using the
edge must exceed 1− br) just before tr.

In the bin-packing scenario, it is well-known that the performance of First-
Fit varies considerably when the items are arranged in a certain order before
the algorithm is applied to the list. In particular, First-Fit-Decreasing (sort-
ing the items by non-increasing size) is known to have an asymptotic approx-
imation ratio of 11/9 as compared to 17/10 for standard First-Fit [JDU+74].
Hence, we will investigate the performance of such a variant of the First-Fit
algorithm also for call-scheduling problems. First-Fit-Decreasing-Bandwidth
(FFDB) is the variant where the calls are sorted by non-increasing bandwidth
requirements. Observe that FFDB and DBLS produce the same schedule for
calls with unit duration.

6.2 Approximation Results for Stars

Stars occur as the subgraphs of trees that are induced by an arbitrary node
of the tree and its neighbours. Hence, we encounter call-scheduling problems
in stars as subproblems when we want to schedule calls in trees.

Note that there are two kinds of calls in a star T . First, there are calls
that connect the central node to one of the other nodes. Second, there are
calls that connect two nodes that are both adjacent to the central node. We
refer to these calls as 1-calls and 2-calls, respectively.

The next two lemmas show that we can make some simplifying assump-
tions about worst-case examples for LS and its variants. These assumptions
will be helpful in proving bounds on the approximation ratio of these call-
scheduling algorithms.

Lemma 6.2.1 Let A be an algorithm for call scheduling in stars that works
by applying List-Scheduling to the input list of calls, possibly after sorting the
list based on the bandwidth requirements or duration of the calls. If there is an
input list L of calls in a star T such that A(L) = αOPT (L) for some α ≥ 1,
then there is also an input list L′ in a star T ′ such that OPT (L′) = OPT (L),
A(L′) = αOPT (L′), and all calls in L′ are 2-calls, i.e., they use exactly two
edges of T ′. Moreover, |L| = |L′| and the bandwidth requirement and duration
of the i-th call in L are equal to the bandwidth requirement and duration of
the i-th call in L′, for 1 ≤ i ≤ |L|.



168 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

Proof: We show how to construct T ′ and L′. Initially, let T ′ = T and let
L′ = L. Then, for each 1-call c in L′ that uses an edge e of T ′, add a new
node uc and a new edge ec joining uc and the central node to T ′, and replace
c in L′ by a 2-call c′ with the same bandwidth requirement and duration that
uses the edges e and ec. It is easy to see that neither the optimal schedule
length nor the schedule length produced by algorithm A is affected by this
construction. tu

This lemma allows us to assume that all calls in a worst-case example
for LS or DBLS are 2-calls. In the case of unit call duration, we can make
the same assumption on worst-case instances for FF or FFDB . The next
lemma allows us to make an additional assumption regarding the structure
of the schedule. We say that two list-schedules S1 and S2 for calls in a star
are disjoint if the set of edges used by calls in S1 is disjoint from the set of
edges used by calls in S2. Simlarly, we say that a schedule produced by LS
for a list L of calls in a star can be partitioned into two disjoint schedules if
there are two disjoint sublists L1 and L2 of L such that every call in L is
contained in either L1 or L2 and the list-schedule for L1 is disjoint from the
list-schedule for L2. Finally, we say that the calls established before time t
in a list-schedule for L can be partitioned into two disjoint schedules if the
list-schedule for L′ can be partitioned into two disjoint schedules, where L′

is the sublist of L containing all calls established before time t by LS .

Lemma 6.2.2 Let A be as in Lemma 6.2.1. If there is an input list L of
calls in a star T such that A(L) = αOPT (L) for some α ≥ 1, then there is an
input list L′ in a star T ′ such that OPT (L′) = OPT (L), A(L′) = αOPT (L′),
all calls in L′ are 2-calls, and the following property holds:

If A schedules a call c ∈ L′ at time tc, and if c uses the edges
e1 and e2 of T ′, then the calls established before time tc in the
schedule produced by A can be partitioned into two disjoint sched-
ules such that the calls scheduled on e1 belong to one of the two
schedules and those scheduled on e2 belong to the other schedule.

Furthermore, the set of bandwidth requirements of calls in L that are estab-
lished at a time t in the schedule produced by A for L is equal to the set of
bandwidth requirements of calls in L′ that are established at time t in the
schedule produced by A for L′, and the same holds for the duration of these
calls.

Proof: First, obtain T ′ and L′ as in Lemma 6.2.1 so as to ensure that L′

contains only 2-calls and A(L′) = αOPT (L′). Then iterate the following
construction. Consider the schedule produced by A for L′. Among all calls



6.2. APPROXIMATION RESULTS FOR STARS 169

violating the property stated in the lemma, let c be one established first by A.
Assume that c uses edges e1 and e2. Let Lc be the sublist of L′ of all calls
established by LS before time tc. Let L′

c be an identical copy of Lc that uses
disjoint edges incident to the central node newly added to T ′. Replace c in
L′ by a call c′ that uses e1 and the edge e′2 corresponding to e2 in the set
of edges used by calls in L′

c. Every call in L′ that has not been established
before time tc and that uses edge e2 (including c) is replaced by a call that
uses e′2 instead of e2, but is identical otherwise. Finally, every call in L′

c is
inserted into L′ right after its corresponding call from Lc. This concludes the
description of one iteration of the construction. The desired property still
holds for all calls that are established before time tc by A (i.e., for the calls
from Lc and L′

c), and now it holds for c as well. Therefore, this construction
terminates after a finite number of iterations and yields T ′ and L′ such that
the desired property holds for every call. tu

Like Lemma 6.2.1, this lemma applies to LS and DBLS (always) and to
FF and FFDB (only in case of unit call duration). Note that the construction
in the proof of Lemma 6.2.2 can produce a set L′ of calls in a star T ′ such
that the cardinality of L′ and the size of T ′ are exponential in the size of the
original instance. Since we use the construction only as a tool for analyzing
the worst-case approximation ratio of LS variants, this exponential blow-up
does not cause any problem.

6.2.1 Unit Bandwidth Requirements

In this section we assume that bc = 1 for all calls c. If we assume in ad-
dition that we have unit call duration, i.e., dc = 1 for all calls c, then the
call-scheduling problem is equivalent to path coloring and, therefore, already
NP-hard for stars (see Corollary 3.1.6 on page 46). A polynomial-time
approximation algorithm with absolute approximation ratio 4/3 and asymp-
totic approximation ratio 11/10 for path coloring in stars (and trees) has
been obtained in Theorem 4.1.1 using an edge-coloring algorithm due to
Nishizeki and Kashiwagi [NK90]. The equivalence between call scheduling
in stars and edge coloring is lost once we allow arbitrary bandwidth require-
ments or arbitrary call duration, however. In this section we will focus on
the simple heuristics List-Scheduling and First-Fit, which work for these
more general settings as well. Lemma 6.2.3 and Lemma 6.2.5 below can be
obtained by adapting the result given by Coffman, Garey, Johnson, and La-
paugh in [CGJL85, Corollary 12.2] for file-transfer scheduling. We give short
self-contained proofs here in order to illustrate techniques that will be used
again in subsequent sections.



170 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

Lemma 6.2.3 (Coffman et al., 1985) List-Scheduling has approximation
ratio 2 for call scheduling with unit bandwidth requirements and arbitrary
duration in stars.

Proof: Let R be the given set of calls, and let r be one of the calls that
finish last in the schedule produced by List-Scheduling, i.e., a call r with
LS (R) = tr + dr. By Lemma 6.2.1 we can assume that r is a 2-call. Let the
edges used by r be e1 and e2. The List-Scheduling property implies that in
each of the time steps prior to tr either e1 or e2 was occupied by another call.
Hence, one of these edges, say e1, was occupied during at least dtr/2e time
steps prior to tr. Therefore, the load of e1 is at least dtr/2e+dr. This implies
OPT (R) ≥ dtr/2e+ dr. Consequently, LS (R) = tr + dr ≤ 2 · dtr/2e + dr ≤
2 ·OPT (R). tu

As First-Fit produces the same schedule as List-Scheduling for calls with
unit duration, we get the following corollary immediately.

Corollary 6.2.4 First-Fit has approximation ratio 2 for call scheduling with
unit bandwidth requirements and unit duration in stars.

The upper bound 2 on the approximatio ratio of LS from Lemma 6.2.3
can be shown to be tight.

Lemma 6.2.5 (Coffman et al., 1985) There are stars and lists of calls
with unit bandwidth requirements and unit duration for which the schedule
computed by List-Scheduling is longer than the optimal schedule by a factor
arbitrarily close to 2.

Proof: Let n be an arbitrary integer. Consider the star with n + 1 nodes
v1, v2, . . . , vn+1 adjacent to the central node v and n+2 nodes altogether. The
edge {v, vi} is denoted by ei for 1 ≤ i ≤ n + 1. Now consider the following
sets of calls:

R1 = {n− 1 copies of (vi, v, 1, 1) | 2 ≤ i ≤ n + 1 }
R2 = { (v1, vi, 1, 1) | 2 ≤ i ≤ n + 1 }

Let L and L′ be lists containing the calls in R1 ∪ R2. Let the calls from R1

precede those from R2 in L, and let the calls from R2 precede those from R1

in L′. It is easy to see that LS (L) = 2n−1 and LS (L′) = OPT (R1∪R2) = n.
Hence, LS (L)/OPT (L) = 2−1/n. Figure 6.3 shows the two schedules for the
case n = 8: the horizontal axis represents the time, there is a dotted rectangle
for every edge ei, and every call is represented by one or two squares drawn
within the rectangles of the one or two edges it uses. The shaded squares
correspond to calls from R2. tu



6.2. APPROXIMATION RESULTS FOR STARS 171

0 5 10 15

e1

e2

e3

e4

e5

e6

e7

e8

e9

012345678

e1

e2

e3

e4

e5

e6

e7

e8

e9

Figure 6.3: List-schedule and optimal schedule

Corollary 6.2.6 There are stars and lists of calls with unit bandwidth re-
quirements and unit duration for which the schedules computed by FF, FFDB
and DBLS are longer than the optimal schedule by a factor arbitrarily close
to 2.

Proof: The schedule computed by FF is identical to the schedule computed
by List-Scheduling because all calls have the same duration. Furthermore,
since all calls have the same bandwidth requirement and the same duration,
FFDB and DBLS will not change the ordering of the calls and, therefore,
perform just as badly as standard First-Fit and List-Scheduling. tu

6.2.2 Arbitrary Bandwidth, Unit Duration

In this section we assume that the duration of every call is 1, while bandwidth
requirements can be arbitrary rational numbers br, 0 < br ≤ 1. While call r
is active, it occupies br bandwidth on the one or two edges it uses, i.e., on
all edges of Pr. Several active calls can share an edge if the sum of their
bandwidth requirements is at most 1.

First-Fit and List-Scheduling

List-Scheduling will be shown to have approximation ratio at most 5 for
calls with arbitrary bandwidth requirements and arbitrary duration in stars.
Since we assume unit call duration in this section, we are able to establish
a tighter bound: we will prove that the approximation ratio of LS is at
most 4.875 in this case. As LS and FF produce the same schedule for calls
with unit duration, this implies that the approximation ratio of FF is also
at most 4.875.

Given a schedule S computed by LS for a list L of calls, it turns out that
estimates on the approximation ratio of LS on that particular instance L



172 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

depend heavily on the smallest bandwidth requirement of a call that finishes
last in S, i.e., at time |S|. The following lemmas make this relationship
clearer. First, we consider the case that a call with bandwidth requirement
at most 1

3
finishes last in the list-schedule.

Lemma 6.2.7 Let S be a list-schedule for a list L of calls with arbitrary
bandwidth requirements and unit duration. If there is a call r with bandwidth
requirement br ≤ α for some α ≤ 1

3
that finishes last in S, then

|S| ≤
⌈

2

1− α
OPT

⌉
.

Proof: By Lemma 6.2.1 we can assume that r is a 2-call. Since r is blocked
during the first tr time steps, at least one of the two edges used by r has
less than br bandwidth available during at least dtr/2e time steps before tr.
Hence, the load on that edge is greater than dtr/2e · (1− α). Since the load
is a lower bound on OPT , we obtain OPT > (tr/2)(1 − α), which implies
tr < (2/(1− α)) ·OPT and, thus, |S| = tr + 1 ≤ d(2/(1− α)) ·OPT e. tu

Now we study the case that a call that finishes last in the list-schedule
has bandwidth requirement at most 1

2
.

Lemma 6.2.8 Let S be a list-schedule for a list L of calls with arbitrary
bandwidth requirements and unit duration. If there is a call r with bandwidth
requirement br ≤ 1

2
that finishes last in S, then |S| ≤ 3.875 ·OPT.

Proof: Let r be a call with the smallest bandwidth requirement br among
all calls that finish last in S, i.e., among all calls that are scheduled at time
t = |S| − 1. Lemma 6.2.1 allows us to assume without loss of generality that
r is a 2-call. If br ≤ 1

3
, it follows from Lemma 6.2.7 with α = 1

3
that

|S| ≤
⌈

2

1− α
OPT

⌉
≤ 3 ·OPT .

Therefore, assume that 1
3

< br ≤ 1
2
. Consider all calls with bandwidth

requirement at most 1
3

that use at least one edge that is also used by r. If
there is no such call, the call r is blocked in every time step prior to tr on
one of its two edges either by one call with bandwidth greater than 1

2
or by

two calls with bandwidth greater than 1
3

each. Let the edges used by r be e1

and e2, and introduce the following variables (cf. Figure 6.4):

• a1 = number of time steps before tr during which r is blocked on e1 by
a single call, but not blocked on e2



6.2. APPROXIMATION RESULTS FOR STARS 173

|S|tr0
time

e2

e1
r

r

a1 b1

a2 b2

Figure 6.4: List-schedule S, br ≤ 1
2

• b1 = number of time steps before tr during which r is blocked on e1 by
a combination of at least two calls, but not blocked on e2

• a2 = number of time steps before tr during which r is blocked on e2 by
a single call

• b2 = number of time steps before tr during which r is blocked on e2 by
a combination of at least two calls

Note that the time steps accounted for by these variables need not be consec-
utive; they are drawn as intervals in Figure 6.4 (and in all following figures)
only for the sake of simplicity. The definitions made above imply:

|S| = a1 + b1 + a2 + b2 + 1 (6.1)

OPT ≥ a1 + 1 (6.2)

OPT ≥ a2 + 1 (6.3)

2 ·OPT ≥ 1

2
(a1 + a2) +

2

3
(b1 + b2 + 1) (6.4)

Inequality (6.2) holds because a1 calls with bandwidth requirements greater
than 1 − br ≥ 1

2
use edge e1, and none of them can be combined with r.

Inequality (6.3) holds for the same reason by considering e2. Inequality (6.4)
is derived by adding up the bandwidth requirements of calls on e1 and e2,
and by taking into account L(e1) + L(e2) ≤ 2 · OPT . From (6.1) and (6.4)
we can derive:

|S| = a1 + a2 + b1 + b2 + 1 ≤ 4 ·OPT − b1 + b2

3
(6.5)

If b1 + b2 > 3
2
OPT , (6.5) implies |S| ≤ 3.5 · OPT . If b1 + b2 ≤ 3

2
OPT ,

inequalities (6.1), (6.2), and (6.3) imply |S| ≤ 3.5 ·OPT .
If there are calls with bandwidth requirement at most 1

3
that use at least

one edge that is also used by r, let c be a call with the latest completion
time tc + 1 among all such calls. By Lemma 6.2.2 we may assume that c is a



174 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

|S|trtc tc+10
time

e3

e2

e1
r

r

c

c

d1 d2

c1 c2a

b

b1

b2

Figure 6.5: List-schedule S, br ≤ 1
2
, bc ≤ 1

3

2-call and that it does not use the same two edges as r. Let the edges used
by r be e1 and e2, and let the edges used by c be e2 and e3. Introduce the
following variables (cf. Figure 6.5):

• a = number of time steps during which c is blocked on e2

• b = number of time steps during which c is blocked on e3, but not on e2

• b1 = number of time steps prior to tc during which r is blocked on e2,
but not c

• b2 = number of time steps prior to tc during which r is blocked on e1,
but not on e2

• c1 = number of time steps after tc during which r is blocked on e2 by
a single call

• c2 = number of time steps after tc during which r is blocked on e2 by
a combination of at least two calls

• d1 = number of time steps after tc during which r is blocked on e1 by
a single call, but not blocked on e2

• d2 = number of time steps after tc during which r is blocked on e1 by
a combination of at least two calls, but not blocked on e2

Note that the time steps accounted for by these variables need not be consecu-
tive. Using these definitions, it is clear that |S| = a+b1+b2+c1+c2+d1+d2+2.
If a+c2+d2 ≤ 3

8
OPT , the easily observed inequalities OPT > 2

3
(b1+b2) (fol-

lows from b ≥ b1 + b2 and the load on e3), OPT ≥ c1 + 1, and OPT ≥ d1 + 1
imply |S| ≤ 3.875 · OPT . If a + c2 + d2 > 3

8
OPT , consider the sum of the

loads on e1 and e2 (note that there is load greater than 1
2

on e1 or e2 at



6.2. APPROXIMATION RESULTS FOR STARS 175

time tc because r is blocked, and that there is load greater than 1
3

on e1 and
e2 at time tr because of r):

L(e1) + L(e2) >
2

3
(a + c2 + d2 + 1) +

1

2
(b1 + b2 + c1 + d1 + 1)

Since L(e1) + L(e2) ≤ 2 ·OPT , we get |S| < 4 ·OPT − 1
3
(a + c2 + d2 + 1) ≤

3.875 ·OPT . tu
Now we are ready to prove the announced general upper bound on the

approximation ratio of LS and FF .

Theorem 6.2.9 First-Fit and List-Scheduling have approximation ratio at
most 4.875 for call scheduling with arbitrary bandwidth requirements and unit
duration in stars.

Proof: As FF and LS produce the same schedule for calls with unit duration,
we consider only LS in the following. Let r be a call with the smallest
bandwidth requirement br among all calls that finish last in S. If br ≤ 1

2
,

Lemma 6.2.8 implies that |S| ≤ 3.875 ·OPT . Hence, we assume that br > 1
2

from now on. Lemma 6.2.1 allows us to assume that r is a 2-call. Consider
all calls c with bandwidth requirement bc ≤ 1

2
that use at least one edge that

is also used by r. If there is no such call, at least one of the edges used by r
is occupied by a call with bandwidth requirement greater than 1

2
in at least

dtr/2e+1 ≤ OPT time steps, and hence |S| ≤ 2 ·OPT . Otherwise, let c be a
call with the latest completion time tc +1 among all such calls. Lemma 6.2.2
allows us to assume that c is a 2-call that does not use the same edges as r.
Let the edges used by r be e1 and e2, and let the edges used by c be e2 and e3.

Consider all calls c′ 6= c with bandwidth requirement bc′ ≤ 1
3

that use at
least one edge that is also used by c and that are scheduled before tc. For
the case that there is no such call c′ (note that bc ≤ 1

3
is not excluded in this

case), introduce the following variables (cf. Figure 6.6):

• a1 = number of time steps during which c is blocked on e2 by a single
call (which must have bandwidth requirement greater than 1

2
so it can

block c)

• a2 = number of time steps during which c is blocked on e2 by a com-
bination of at least two calls

• b1 = number of time steps during which c is blocked on e3 by a single
call, but not blocked on e2

• b2 = number of time steps during which c is blocked on e3 by a combi-
nation of at least two calls, but not blocked on e2



176 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

|S|trtc tc+10
time

e3

e2

e1
r

r

c

c

d1

d2

b2 b1

a2 a1

Figure 6.6: List-schedule S, br > 1
2
, bc ≤ 1

2

• d1 = number of time steps after tc during which r is blocked on e1

• d2 = number of time steps after tc during which r is blocked on e2, but
not on e1

With these definitions, it is clear that

|S| = a1 + a2 + b1 + b2 + d1 + d2 + 2

and that d1 + 1 ≤ OPT , a1 + d2 + 1 ≤ OPT , and b1 ≤ OPT . This implies
|S| ≤ 3 · OPT + a2 + b2. If a2 + b2 ≤ 3

2
OPT , we have |S| ≤ 4.5 · OPT . If

a2 + b2 > 3
2
OPT , we consider the load on e2 and e3 to obtain:

2

3
(a2 + b2) +

1

2
(a1 + b1 + d2 + 1) < 2 ·OPT

This can be transformed and combined with d1 + 1 ≤ OPT to give |S| ≤
5OPT − 1

3
(a2 + b2). Since a2 + b2 > 3

2
OPT , we obtain again that |S| ≤

4.5 · OPT . (In the case that bc ≤ 1
3
, this can in fact be tightened to |S| ≤

4.25 ·OPT .)
Now we deal with the case that there is at least one call c′ 6= c with

tc′ < tc and with bandwidth requirement bc′ ≤ 1
3

that uses at least one edge
that is also used by c. Let c′ be a call with latest completion time among
all these calls. First, consider the case that the edge used by c and c′ is e2.
Lemma 6.2.1 allows us to assume that c′ is a 2-call. Let e4 be the other edge
used by c′. By Lemma 6.2.2 we can assume that e4 /∈ {e1, e2, e3}. Introduce
the following variables (cf. Figure 6.7):

• f = number of time steps during which c′ is blocked on e2

• b1 = number of time steps before tc′ during which c is blocked on e2,
but c′ is not blocked on e2



6.2. APPROXIMATION RESULTS FOR STARS 177

|S|trtc tc+1tc′ tc′+10
time

e4

e3

e2

e1
r

r

c

c

c′

c′

d1

d2

a1 a2

c1 c2f b1

b2

b

Figure 6.7: List-schedule S, br > 1
2
, bc ≤ 1

2
, bc′ ≤ 1

3
, c and c′ use e2

• b2 = number of time steps before tc′ during which c is blocked on e3,
but not on e2

• b = number of time steps during which c′ is blocked on e4, but not
on e2

• c1 = number of time steps after tc′ and before tc during which c is
blocked on e2 by a single call

• c2 = number of time steps after tc′ and before tc during which c is
blocked on e2 by a combination of at least two calls

• a1 = number of time steps after tc′ and before tc during which c is
blocked on e3 by a single call, but not blocked on e2

• a2 = number of time steps after tc′ and before tc during which c is
blocked on e3 by a combination of at least two calls, but not blocked
on e2

• d1 = number of time steps after tc during which r is blocked on e1, but
not on e2

• d2 = number of time steps after tc during which r is blocked on e2

These definitions imply b = b1 + b2 and

|S| = f + b + c1 + c2 + a1 + a2 + d1 + d2 + 3 .

Furthermore, note that b ≤ 3
2
OPT because of the load on e4. Then observe

that d1 + 1 ≤ OPT , d2 + c1 + 1 ≤ OPT , and a1 + 1 ≤ OPT . Thus we get

|S| ≤ 4.5 ·OPT + f + c2 + a2 .



178 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

|S|trtc tc+1tc′ tc′+10
time

e4

e3

e2

e1
r

r

c

c

c′

c′

d1

d2

a1 a2

c1 c2

f b1

b2

b

Figure 6.8: List-schedule S, br > 1
2
, bc ≤ 1

2
, bc′ ≤ 1

3
, c and c′ use e3

If f + c2 + a2 ≤ 3
8
OPT , we have |S| ≤ 4.875 ·OPT . If f + c2 + a2 > 3

8
OPT ,

add the load on e2 and e3 to obtain:

1

2
(b1 + b2 + c1 + a1 + d2 + 2) +

2

3
(f + c2 + a2) < 2 ·OPT

Together with d1 + 1 ≤ OPT this implies |S| ≤ 5 · OPT − 1
3
(f + c2 + a2),

and we obtain |S| ≤ 4.875 ·OPT in this case as well.
Finally, the last remaining case is as follows: there are calls scheduled

before tc and with bandwidth requirement at most 1
3

that use at least one
edge that is also used by c, and a call c′ with latest completion time among
all these calls uses edge e3. By Lemma 6.2.1 we can assume that c′ is a 2-call.
Let e4 be the other edge used by c′. Lemma 6.2.2 allows us to assume that
e4 /∈ {e1, e2, e3}. Introduce the following variables (cf. Figure 6.8):

• f = number of time steps during which c′ is blocked on e3

• b1 = number of time steps before tc′ during which c is blocked on e3,
but c′ is not blocked on e3

• b2 = number of time steps before tc′ during which c is blocked on e2,
but not on e3

• b = number of time steps during which c′ is blocked on e4, but not
on e3

• c1, c2, a1, a2, d1, d2 are defined as in the previous case

The same calculations as in the previous case show that |S| ≤ 4.875 · OPT
in this final case as well. This establishes the theorem. tu

Next, we try to obtain lower bounds on the approximation ratio of LS .
First, we consider the case that a call with bandwidth requirement at most α



6.2. APPROXIMATION RESULTS FOR STARS 179

List-Schedule

0 1 2 3 4 5 6 78

e1

e2

e3

e4

e5

e6

e7

e8

e9

Optimal Schedule

01234

e1

e2

e3

e4

e5

e6

e7

e8

e9

Figure 6.9: Schedules for k′ = 2 and ` = 3: LS (L) = 8,OPT (L) = 4

for some α ≤ 1/3 finishes last in the list-schedule. Lemma 6.2.7 showed
that LS (L) ≤ d(2/(1− α)) ·OPT (L)e in this case. We restrict α to values
of the form 1/k for integers k ≥ 3. Then Lemma 6.2.7 says that LS (L) ≤
d(2k/(k − 1)) ·OPT (L)e. Lemma 6.2.10 below proves that this bound is
asymptotically tight.

In [Gra76, pp. 217–219], First-Fit bin-packing is analyzed under the re-
striction that all items have size at most α for some α ≤ 1

2
. With k′ = b1/αc,

it is shown that for any list of items with sizes at most α, FF (L) ≤ ((k′ +
1)/k′)OPT+2 and that there are examples with FF (L) ≥ ((k′+1)/k′)OPT−
1/k′. We adapt this construction to prove the lemma.

Lemma 6.2.10 For every k ≥ 3, k ∈ N , there are stars and lists L of calls
with unit duration and bandwidth requirements smaller than 1/(k − 1) such
that a call with bandwidth requirement smaller than 1/k finishes last in the
list-schedule for L and LS (L)/OPT (L) is arbitrarily close to 2k/(k − 1).

Proof: Let k′ = k − 1. Let ` be a positive integer such that k′ divides
`(k′ +1)−1. We construct a list L of calls with optimal schedule length `+1
and list-schedule length 2(`(k′ + 1) − 1)/k′. Let bδ

j and aδ
1j = · · · = aδ

k′j be
defined as

bδ
j =

1

k′ + 1
− k′2j+1δ, j = 0, 1, 2, . . . , `− 1

aδ
ij =

1

k′ + 1
+ k′2jδ, i = 1, . . . , k′, j = 1, 2, . . . , `,

where δ is chosen sufficiently small (k′2`+1δ � 1). A list of calls with exactly
one call with bandwidth requirement bδ

j for each j = 0, 1, . . . , `−1 and one call
with bandwidth requirement aδ

ij for each i = 1, 2, . . . , k′ and j = 1, 2, . . . , `



180 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

Table 6.1: Values of LS (L)/OPT (L) obtained by Lemma 6.2.10

k 3 4 5 6 7

2k/(k − 1) 3 22
3

2.5 2.4 21
3

except the one for i = k′, j = 1 is called a δ-list if the calls are ordered as
follows: the aδ

ij-calls appear in order of non-increasing bandwidth, the bδ
j -calls

appear in order of strictly increasing bandwidth, there are k′ aδ
ij-calls between

every pair of successive bδ
j -calls, and the call with bandwidth requirement bδ

`−1

is the second call in the list. Note that a δ-list contains `(k′ + 1)− 1 calls.
Consider a δ-list Lδ such that all calls in Lδ are 1-calls using the same

edge e. Since First-Fit bin-packing is equivalent to LS for calls with unit
duration on one edge, [Gra76, pp. 217–219] implies LS(Lδ) = (`(k′+1)−1)/k′

and OPT (Lδ) = `. LS schedules exactly the first k′ calls of the remaining
list in every time step, and no time step has more than 1/(k′+1)−(k′3−k′2−
k′)δ ≤ 1/(k′+1)−k′δ bandwidth available on edge e in the resulting schedule.
In addition, the call with bandwidth bδ

0 < 1/(k′ + 1) = 1/k is scheduled in
the last time step. In an optimal schedule, the call with bandwidth bδ

j can be
scheduled together with the k′ calls with bandwidth aδ

ij , for 2 ≤ j ≤ ` − 1;
the calls with bandwidth bδ

0 and bδ
1 can be combined with the k′−1 calls with

bandwidth aδ
i1; the remaining calls are those with bandwidth aδ

i`, and they
can be scheduled in one time step as well.

We use `(k′ + 1)− 1 such δ-lists with 1-calls on separate edges (one edge
for each δ-list). These δ-lists come first in the list L. At the end of L, we
append one additional δ′-list Lδ′ , with δ′ such that k′2`−1δ′ < k′δ. Let v be a
vertex of the star that has not been used by any of the 1-calls. The calls in Lδ′

all connect the vertex v to one of the vertices used by the `(k′ +1)−1 δ-lists,
such that no two calls in Lδ′ connect v to the same vertex v′. Obviously, LS
will schedule the calls in Lδ′ in (`(k′+1)−1)/k′ successive time steps starting
from (`(k′+1)−1)/k′. Hence, the list-schedule has length 2(`(k′+1)−1)/k′.
Furthermore, we have OPT ≤ ` + 1, because a schedule of length ` + 1 can
be obtained by scheduling the calls from Lδ′ in the first ` time steps and then
scheduling the calls from each Lδ in ` out of the first `+1 time steps, skipping
the time step in which a call from Lδ′ uses the respective edge. Therefore,
the approximation ratio of LS on these examples is at least:

2 `(k′+1)−1
k′

` + 1
=

2`(k′ + 1)− 2

(` + 1)k′
`→∞−→ 2(k′ + 1)

k′

By choosing ` large enough, the approximation ratio can be brought arbi-
trarily close to 2(k′ + 1)/k′ = 2k/(k − 1).



6.2. APPROXIMATION RESULTS FOR STARS 181

See Figure 6.9 for a sketch of the list-schedule and optimal schedule in
the case k′ = 2 and ` = 3; the calls from the δ′-list are drawn as shaded
rectangles. For this instance we have LS (L) = 2 · OPT ; choosing ` = 21
instead of ` = 3 would give LS (L) ≈ 2.8 · OPT , and ` = 99 would give
LS (L) ≈ 2.96 ·OPT , for example. tu

The lemma yields a family of examples L with LS (L)/OPT (L) arbitrarily
close to 3 if we set k = 3. For values of k ranging from 3 to 7, we obtain
families of examples with LS (L)/OPT (L) arbitrarily close to the values given
in Table 6.1.

Now we consider the case that a call r with bandwidth requirement br sat-
isfying 1

3
< br ≤ 1

2
finishes last in the list-schedule. Under this assumption,

Lemma 6.2.8 tells us that the approximation ratio of LS is at most 3.875.
Using a worst-case example for First-Fit bin-packing, we are able to con-
struct call-scheduling instances for which the approximation ratio of LS is
arbitrarily close to 3.7.

Lemma 6.2.11 There are stars and lists of calls with arbitrary bandwidth
requirements and unit duration such that the schedule computed by List-
Scheduling or First-Fit is longer than the optimal schedule by a factor ar-
bitrarily close to 3.7. The call scheduled last by List-Scheduling or First-Fit
has bandwidth requirement 1

2
.

Proof: Let ` be any positive integer divisible by 17. We describe how to
construct a list L of calls with optimal schedule length 10`/17 + 1 and list-
schedule length 37`/17+1. Following a well-known worst-case input to First-
Fit bin-packing (cf. [Gra76, pp. 211-213]) with approximation ratio ≈ 17/10,
consider the following bandwidth requirements, dependent on a parameter δ
(δ � 18−`/17):

a0,i =
1

6
+ 33δi

a2,i = a3,i =
1

6
− 7δi

a5,i =
1

6
+ 9δi

a1,i =
1

6
− 3δi

a4,i =
1

6
− 13δi

a6,i = a7,i = a8,i = a9,i =
1

6
− 2δi,

where 1 ≤ i ≤ `/17 and δi = δ · 18`/17−i. The 10`/17 calls with these band-
width requirements are followed by 10`/17 calls with the following bandwidth
requirements, 1 ≤ i ≤ `/17:



182 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

b0,i =
1

3
+ 46δi

b2,i = a3,i =
1

3
+ 6δi

b5,i =
1

3
− 10δi

b1,i =
1

3
− 34δi

b4,i =
1

3
+ 12δi

b6,i = b7,i = b8,i = b9,i =
1

3
+ δi

Finally, we have 10`/17 calls with bandwidth requirement 1
2
+ δ. We call

a list of 30`/17 calls with such bandwidth requirements a 1.7-list. In the
bin-packing scenario, it is known that First-Fit requires ` bins for a list of
items with such sizes, whereas the optimal packing requires no more than
10`/17+1 bins. Furthermore, each bin is filled to at least 1

2
+δ in the packing

produced by First-Fit.
Let `′ = 10`/17. The input list L for the List-Scheduling algorithm

contains calls in a star with 2 + 2`′ + 3`′(`′ + 1) vertices adjacent to the
central vertex c. These vertices are denoted u, u1, . . . , u`′, v0, . . . , v`′ , and
wi,j for 0 ≤ i ≤ `′ and 1 ≤ j ≤ 3`′. The list L contains the following calls
(ε < 1/(6`′)):

1. For 1 ≤ i ≤ `′, i− 1 calls with bandwidth 1 connecting ui and c.

2. For 1 ≤ i ≤ `′, a call with bandwidth 1
2
− ε connecting u and c and a

call with bandwidth 3ε connecting u and ui.

3. For 0 ≤ i ≤ `′ and 1 ≤ j ≤ 3`′, `′ calls with bandwidth 1 connecting
wi,j and c.

4. For 0 ≤ i ≤ `′, a 1.7-list of calls connecting vi and some vertex wi,j,
such that no two calls connect vi to the same wi,j.

5. For 1 ≤ i ≤ `′, a call with bandwidth 1
2

+ ε connecting u and vi.

6. A call with bandwidth 1
2

connecting u and v0.

It is easy to verify that List-Scheduling will produce the schedule sketched
in Figure 6.10. The edge {u, c} is occupied by a call with bandwidth 1

2
− ε

and a call with bandwidth 3ε during the first `′ time steps. All 1.7-lists are
scheduled from time step `′ to `′ + ` − 1, because every call in a 1.7-list is
blocked during the first `′ time steps on an edge {wi,j, c}. The calls with
bandwidth 1

2
+ ε connecting u and vi are scheduled from time step `′ + ` to

2`′ + `− 1, because they are blocked on {u, c} during the first `′ time steps
and subsequently on {vi, c} during the next ` time steps. (Recall that the
1.7-lists occupy at least 1

2
+ δ bandwidth from time step `′ to `′ + `− 1 on all



6.2. APPROXIMATION RESULTS FOR STARS 183

u1

u2
...

u`′

u
v0

v1
...

. . .
v`′

w0,1
...

w`′,3`′

. . .

time︸ ︷︷ ︸
`′

︸ ︷︷ ︸
`

︸ ︷︷ ︸
`′ + 1

Figure 6.10: Example with LS (L)/OPT (L) ≈ 3.7

edges {vi, c}.) Finally, the call (u, v0,
1
2
, 1) is scheduled in time step 2`′ + `.

Hence, LS (L) = 37`/17 + 1.

On the other hand, it is clear that L can be scheduled in `′+1 time steps.
In particular, on edge {u, c} one can schedule one call with bandwidth 1

2
− ε

and one call with bandwidth 1
2
+ε during each of the first `′ time steps. Since

ε has been chosen small enough, all calls with bandwidth 3ε together with
the call (u, v0,

1
2
, 1) can then be scheduled together at time `′. The 1.7-lists

can be scheduled in `′ + 1 time steps, such that one of the time steps has
bandwidth at least 1

2
+ ε available. Hence, the schedule for the 1.7-list on vi

can be arranged such that the call connecting u and vi is scheduled at that
time step. Finally, the remaining 1-calls can be filled in without making the
schedule longer. Hence, we have OPT (L) ≤ `′ + 1. This implies:

LS (L)

OPT (L)
≥

37`
17

+ 1
10`
17

+ 1
=

37` + 17

10` + 17

`→∞−→ 3.7

By choosing ` large enough, we obtain instances of call scheduling such that
the approximation ratio of LS (or FF ) on these instances is arbitrarily close
to 3.7. tu

Note that Lemma 6.2.11 and Lemma 6.2.8 show that the exact bound
on the worst-case approximation ratio of List-Scheduling lies somewhere be-
tween 3.7 and 3.875 if a call with bandwidth requirement at most 1

2
finishes

last in the list-schedule.



184 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

We have not been able to construct an instance where the calls that
finish last in the list-schedule have bandwidth requirement greater than 1

2

and where the approximation ratio of LS is worse than for the case where a
call with bandwidth requirement at most 1

2
finishes last in the list-schedule.

This seems to indicate that the upper bound from Theorem 6.2.9 is not tight.

Decreasing-Bandwidth List-Scheduling

While our best general upper bound on the worst-case approximation ra-
tio of LS (and FF ) for calls with unit duration and arbitrary bandwidth
requirements in stars is 4.875 (and we have examples where the ratio is
arbitrarily close to 3.7), a slightly modified algorithm gives a much better
approximation ratio. The algorithm Decreasing-Bandwidth List-Scheduling
(DBLS ) behaves just like standard List-Scheduling, but it sorts the given list
of calls according to non-increasing bandwidth requirements before it begins
to schedule the calls.

Theorem 6.2.12 For a list L of calls with arbitrary bandwidth requirements
and unit duration in a star, DBLS(L) = FFDB(L) ≤ d(8/3) ·OPT e. Hence,
DBLS and FFDB have asymptotic approximation ratio at most 8

3
= 22

3
for

call scheduling with arbitrary bandwidth requirements and unit duration in
stars.

Proof: DBLS and FFDB produce the same schedule for calls with unit
duration, and we focus on FFDB for the remainder of the proof. Given a
set R of calls, denote by L the list of calls obtained by sorting R in order
of non-increasing bandwidth requirements, and denote by S the schedule
produced by FFDB .

First, we show that the completion time tc+1 of any call c ∈ R with band-
width requirement bc > 1

3
satisfies tc + 1 ≤ 2 ·OPT (R). If c has bandwidth

requirement bc > 1
2
, consider the part Lc of L that contains all calls from the

beginning of the list up to and including c. At the point when FFDB decided
to schedule c at time tc, it knew only about the calls in Lc. Hence, the sched-
ule produced by FFDB for Lc already has length tc + 1. Furthermore, note
that no two calls in Lc can be scheduled at the same time if they use the same
edge. Therefore, the optimal schedule length for Lc is the same as the optimal
schedule length for a list L′

c that is identical to Lc except that the bandwidth
requirements of all calls are set to 1. In addition, the lengths of the schedules
produced by FFDB for Lc and L′

c are both equal to tc + 1. Corollary 6.2.4
ensures that tc +1 = FFDB(L′

c) ≤ 2 ·OPT (L′
c) = 2 ·OPT (Lc) ≤ 2 ·OPT (R).

If c has bandwidth requirement bc satisfying 1
3

< bc ≤ 1
2
, consider again

the part Lc of L that contains all calls from the beginning of the list up to



6.2. APPROXIMATION RESULTS FOR STARS 185

and including c. At the point when FFDB decided to schedule c at time tc,
it must have been the case that during all time steps prior to tc, on at least
one of the edges used by c more than 1−bc bandwidth was occupied by other
calls from Lc. Hence, there must be an edge e that is occupied to this extent
during at least dtc/2e time steps prior to tc. During each such time step,
the respective edge must be used either by a single call occupying more than
1− bc bandwidth or by two calls occupying at least bc bandwidth each. It is
clear that even an optimal schedule requires dtc/2e time steps for these calls
and an additional time step for c, and thus tc+1 ≤ 2·OPT(Lc) ≤ 2·OPT (R).
Hence, if a call c with bandwidth requirement bc > 1

3
is scheduled at time tc

by FFDB , we have tc + 1 ≤ 2 ·OPT (R).
Now we prove the theorem. Let r be a call with maximum bandwidth

requirement among the calls that finish last in S. Note that |S| = tr + 1. If
br > 1

3
, the previous argument shows that |S| ≤ 2 · OPT . If br ≤ 1

4
, note

that at least one edge used by r has less than br bandwidth available during
at least dtr/2e time steps prior to tr. Considering the load on that edge,
we obtain dtr/2e · (1 − br) < OPT . This implies tr < (2/(1 − br)) · OPT
and, thus, tr + 1 ≤ d(2/(1− br)) ·OPT e. With br ≤ 1

4
, this shows tr + 1 ≤

d(8/3) ·OPT e.
Finally, consider the case that 1

4
< br ≤ 1

3
. By Lemma 6.2.1 we can

assume that r is a 2-call. Denote by C the set of all calls with bandwidth
requirement greater than 1

3
that use at least one edge also used by r. If C

is empty, r is blocked during the first tr time steps entirely by calls d with
bandwidth requirement bd satisfying br ≤ bd ≤ 1

3
. In addition, it is clear that

two such calls are not enough to block r, because 2 · 1
3

+ br ≤ 1. Therefore,
whenever r is blocked on an edge during one of the first tr time steps, at least
3br bandwidth is occupied on that edge in that time step. Since r is blocked
on at least one edge during at least dtr/2e time steps, we have dtr/2e · 3br <
OPT and, consequently, tr + 1 ≤ d(2/(3br)) ·OPT e ≤ d(8/3) ·OPT e, where
the last inequality follows from br > 1

4
.

Now, assume that C is not empty, and let c be a call with the latest
completion time among all calls in C. Note that tc + 1 ≤ 2 ·OPT . Further-
more, note that starting from tc + 1 call r is blocked entirely by calls d with
bandwidth requirement bd satisfying br ≤ bd ≤ 1

3
, and that three such calls

are necessary in each time step to block r. Hence, the sum of the loads on
the two edges used by r gives the following lower bound on 2 ·OPT :

(tc + 1)(1− br) + (tr − tc − 1)3br + 2br < 2 ·OPT (6.6)

Inequality (6.6) can simply be transformed into:

3br(tr − tc − 1 +
2

3
+ tc + 1) < 2 ·OPT + (tc + 1)(4br − 1) (6.7)



186 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

Using tc + 1 ≤ 2 ·OPT , inequality (6.7) yields:

3br(tr +
2

3
) < 2 ·OPT + 2 ·OPT (4br − 1) = 8br ·OPT

This implies tr + 2
3

< (8/3) · OPT and, therefore, tr + 1 ≤ (8/3) · OPT .
Altogether, we have shown FFDB(L) = DBLS (L) ≤ d(8/3) ·OPT (L)e for
all lists L of calls in a star with unit duration and arbitrary bandwidth
requirements. tu

Now we use a well-known family of worst-case instances I for First-
Fit-Decreasing (FFD) bin-packing with FFD(I) = (11/9)OPT (I) [Gra76,
p. 220, Fig. 5.40] to construct instances L that provide a lower bound on
the approximation ratio of FFDB for call scheduling. The basic idea is to
exploit the fact that it suffices to block a call on only one of its two edges
in each time step before it is scheduled; by blocking the call on each of its
edges for approximately (11/9)OPT time steps, the approximation ratio of
FFDB can be made arbitrarily close to 22/9.

Theorem 6.2.13 There are instances of call scheduling with arbitrary band-
width requirements and unit duration in stars for which the approximation
ratio of FFDB and DBLS is arbitrarily close to 22/9.

Proof: We construct instances L using calls with bandwidth requirements
α = 1

2
+ ε, β = 1

4
+ 2ε, γ = 1

4
+ ε, and δ = 1

4
− 2ε. Note that α + γ + δ =

1 and 2β + 2δ = 1. For a given n ∈ N , let N = 62208n5 + 3888n3 +
30n and M = 5184n4 + 252n2 + 1, and consider a star with N + M edges
e1, . . . , eN , f1, . . . , fM . L contains the following calls:

(1) for i = 1, . . . , N , we have 6n calls with bandwidth α using only edge ei;

(2) for i = 1, . . . , M and j = 0, . . . , 6n−1, we have one call with bandwidth
α using edges fi and eN−(i−1)·6n−j ;

(1’) for i = 1, . . . , N , we have 6n calls with bandwidth β using only edge
ei;

(2’) for i = 1, . . . , M and j = 0, . . . , 6n−1, we have one call with bandwidth
β using edges fi and eN−M ·6n−(i−1)·6n−j ;

(3) for i = 1, . . . , N −M · 12n = 864n3 + 18n and j = 0, . . . , 6n − 1, we
have one call with bandwidth γ using edges ei and fM−(i−1)·6n−j ;

(4) for i = 1, . . . , M−(864n3+18n)·6n = 144n2+1 and j = 0, . . . , 6n−1, we
have one call with bandwidth γ using edges fi and eN−M ·12n−(i−1)·6n−j ;



6.2. APPROXIMATION RESULTS FOR STARS 187

(5) for i = 1, . . . , 12n and j = 0, . . . , 12n− 1, we have one call with band-
width δ using edges ei and f2+(i−1)12n+j ;

(6) for j = 0, . . . , 12n− 1, we have one call with bandwidth δ using edges
f1 and e1+j.

Note that the calls are given in order of non-increasing bandwidth and will,
therefore, be scheduled in that order by FFDB and DBLS . Furthermore,
FFDB and DBLS will produce the same schedule, because the calls have
unit duration; we focus on FFDB for the remainder of the proof. It is
not difficult to see that groups (1) and (1’) of calls will be scheduled by
FFDB in the first 6n time steps, groups (2) and (2’) in the second 6n time
steps, group (3) from time step 12n to time step 14n − 1, group (4) from
time step 14n to time step 16n − 1, group (5) from time step 16n to time
step 19n− 1, and group (6) from time step 19n to time step 22n− 1. Hence,
we have FFDB(L) = 22n.

Furthermore, the optimal schedule length is OPT (L) = 9n + 1. To
see this, note that the calls touching a fixed edge e can be scheduled in
at most 9n+1 time steps (disregarding all other edges for the moment). For
example, the calls using edge f1 can be scheduled as follows: combine three
calls with bandwidth requirements α, γ and δ to fill each of 6n time steps,
and combine two calls with bandwidth β and two calls with bandwidth δ to
fill each of 3n additional time steps. Thus, 9n time steps suffice for edge f1.
For most other edges, the same kind of schedule (or a shorter schedule) exists;
only for some edges (for example, edge e1), 9n + 1 time steps are required,
because there is one call in addition to the calls that fit into the schedule of
length 9n sketched above.

Now, we claim that the schedules of length 9n + 1 for individual edges
can be combined into a schedule of the same length for all calls. This follows
because the edges of the star can be considered in a certain order such that the
schedule for all calls can be constructed by starting with an empty schedule
and then, at each edge, merging the schedule obtained so far with the schedule
for calls using that edge. The order of the edges will ensure that at most one
call using the current edge e also used an edge e′ preceding e in the order.
Consequently, the optimal schedule for the calls using the current edge can
be permuted such that this one call is scheduled in a time step compatible
with the schedule obtained so far, and the two schedules can be merged in
the obvious way.

It remains to show that there exists an order of the edges with the required
property. Let t(e) denote the latest completion time of a call using edge e in
the schedule produced by FFDB for all calls. It is easy to see that an order
with the required property can be obtained by sorting the edges according



188 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

to non-increasing values of t(e); some care must be taken only to order edges
with the same values of t(e) appropriately as well. tu

6.2.3 Arbitrary Bandwidth and Duration

Having examined different restricted cases in the previous sections, we will
now investigate the unrestricted call-scheduling problem in stars. Call dura-
tion can be arbitrary positive integers, and bandwidth requirements can be
arbitrary rational numbers b satisfying 0 < b ≤ 1.

Theorem 6.2.14 LS is a batch-style on-line algorithm for scheduling calls
with arbitrary bandwidth requirements and arbitrary duration in stars. Its
competitive ratio is at most 5. If one of the calls that finish last in the list-
schedule has bandwidth requirement at most 1

2
, the list-schedule is at most

4 times as long as an optimal schedule.

Proof: It is clear that LS is a batch-style on-line algorithm, because it does
not require advance knowledge of call duration. Let r be a call with the
smallest bandwidth requirement br among all calls that finish last in S, i.e.,
at time |S|. Since call r is blocked during all time steps prior to tr, we have
OPT > dtr/2e · (1− br) + drbr. This implies:

tr ≤ 2

1− br
OPT − 2br

1− br
dr

tr + dr ≤ 2

1− br
OPT +

1− 3br

1− br
dr

For br ≤ 1
3
, we have 1−3br ≥ 0 and, using dr ≤ OPT , obtain |S| = tr +dr ≤

((2+(1−3br))/(1−br))OPT = 3·OPT ; for 1
3

< br ≤ 1
2
, 2/(1−br) is at most 4,

and with 1− 3br < 0 we obtain |S| = tr + dr ≤ 4 ·OPT . Hence, we assume
that br > 1

2
. By Lemma 6.2.1 we can assume that r is a 2-call. Consider all

calls with bandwidth requirement at most 1
2

that use at least one edge that
is also used by r. If there is no such call, at least one of the edges used by
r is blocked by a call with bandwidth requirement greater than 1

2
in at least

dtr/2e + dr ≤ OPT time steps, and consequently, |S| = tr + dr ≤ 2 · OPT .
Otherwise, let c be a call with the latest completion time tc + dc among
all such calls. Assume that c finishes before r is established. (Otherwise,
|S| ≤ 5 · OPT follows directly from tc + dc ≤ 4 · OPT , which can be shown
as above, and dr ≤ OPT .) By Lemma 6.2.2 we can assume that c is a 2-call
that does not use the same two edges as r. Let the edges used by r be e1 and
e2, and let the edges used by c be e2 and e3. The list-schedule is partitioned
into the following disjoint time intervals:



6.2. APPROXIMATION RESULTS FOR STARS 189

|S|trtc tc+dc0
time

e3

e2

e1 r

r

c

c

b1

b2k2

≥ k1 + `1

k1

`1

T1︷ ︸︸ ︷ dc︷ ︸︸ ︷ T2︷ ︸︸ ︷ dr︷ ︸︸ ︷

Figure 6.11: List-schedule S, br > 1
2
, bc ≤ 1

2

Part A: T1 time steps from the beginning of the schedule until tc (the time
when call c is scheduled)

Part B: dc time steps during which call c is active

Part C: T2 time steps from the completion time of c until tr (the time when
call r is scheduled)

Part D: dr time steps during which call r is active

Obviously, |S| = T1 + dc + T2 + dr. We introduce the following variables (cf.
Figure 6.11):

• b1 = number of time steps in Part C during which r is blocked on e1,
but not on e2

• b2 = number of time steps in Part C during which r is blocked on e2

• k1 = number of time steps in Part A during which r is blocked on e2,
but not c

• k2 = number of time steps in Part A during which c is blocked on e2

• l1 = number of time steps in Part A during which r is blocked on e1,
but not on e2

Considering the load on edge e3, we obtain (T1 − k2)(1− bc) + dcbc ≤ OPT .
Since T1 = k1 + k2 + l1, this implies:

k1 + l1 ≤ 1

1− bc
OPT − bc

1− bc
dc .



190 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

Adding dc on both sides of this inequality and using dc ≤ OPT , 1− 2bc ≥ 0,
we have:

k1 + l1 + dc ≤ 1

1− bc
OPT +

1− 2bc

1− bc
OPT = 2 ·OPT (6.8)

In addition, the following equation and inequalities follow directly from the
definitions of the variables:

|S| = k1 + k2 + l1 + dc + b1 + b2 + dr

k2 + b2 ≤ 2 ·OPT

b1 + dr ≤ OPT

Using these and inequality (6.8), we obtain |S| ≤ 5 ·OPT . tu
For the case that a call with bandwidth requirement at most 1

3
finishes

last in the list-schedule, the next theorem gives matching upper and lower
bounds on the competitive ratio of List-Scheduling.

Theorem 6.2.15 Let L be a list of calls with arbitrary duration and band-
width requirements. Let S be the schedule computed for list L by List-
Scheduling. If there is a call with bandwidth requirement at most 1

3
that

finishes last in S, then |S| ≤ 3 ·OPT (L). Furthermore, for arbitrary k > 2,
k ∈ N , there are stars and lists L of calls such that a call with bandwidth
requirement 1/k finishes last in the list-schedule and LS (L)/OPT (L) is ar-
bitrarily close to 3.

Proof: First, we prove the upper bound. Let r be a call that finishes last
in S and that has bandwidth requirement br ≤ 1

3
and duration dr. Since r

is blocked on at least one edge during at least dtr/2e time steps prior to tr,
the load on that edge is more than dtr/2e · (1 − br) + drbr. Hence, we can
calculate as follows (using 1− 3br ≥ 0 and dr ≤ OPT ):

tr
2

(1− br) + drbr < OPT

tr + dr <
2

1− br

OPT +
1− 3br

1− br

dr

tr + dr <
2 ·OPT + (1− 3br)OPT

1− br
= 3 ·OPT

Hence, |S| = tr + dr < 3 ·OPT .
For the lower bound on the competitive ratio of List-Scheduling, fix an

arbitrary integer k > 2 and an arbitrary positive integer `. We construct a



6.2. APPROXIMATION RESULTS FOR STARS 191

list of calls such that LS (L) = 3`, OPT (L) = `+1, and the call that finishes
last in the list-schedule for L has bandwidth requirement 1/k.

The star used for the construction has k` + 3 nodes: a central node c,
and nodes u, v, u1, . . . , u`, v1, . . . , v(k−1)` adjacent to c. The list L contains
the following calls (ε is chosen sufficiently small):

(1) For i = 1, . . . , `: k − 1 calls (u, c, 1/k, 1), k(i − 1) calls (ui, c, 1/k, 1),
and one call (ui, u, ε, 1).

(2) For i = 1, . . . , (k − 1)`: k` calls (vi, c, 1/k, 1).

(3) For i = 0, . . . , `− 1: for j = 1, . . . , k − 1: one call (v, vi(k−1)+j, βi,j, 1),
where the bandwidth requirement βi,j is specified below.

(4) One call z = (u, v, 1/k, `).

For δ chosen sufficiently small, the βi,j are defined as follows:

βi,1 =
1

k
+ kδi

βi,2 =
1

k
− δi

...

βi,k−1 =
1

k
− δi

Here, δ0 = δ and δi+1 = ((k − 2)/k)δi.
The schedule produced by List-Scheduling for the list L is as follows. The

calls (1) fill the edge {u, c} to (k−1)/k+ε during the first ` time steps. Each
of the calls with bandwidth ε is blocked on one of the edges {ui, c} in all time
steps before its starting time. The calls (2) fill the edges {vi, c} completely
during the first ` time steps. The calls (3) are scheduled in time steps ` to
2` − 1, because each call is blocked on a different edge {vi, c} during the
first ` time steps and blocked on the edge {v, c} from time step ` up to its
starting time minus one. Exactly k − 1 calls (3) are scheduled in each time
step, because their bandwidth requirements add up to (k − 1)/k + 2δi and,
therefore, block all subsequent calls (3). Finally, call z is scheduled at time
2`, because it is blocked on {u, c} during the first ` time steps and on {v, c}
during the second ` time steps. Hence, LS (L) = 3`.

In an optimal schedule, call z is scheduled at time 0. In each of the
first ` time steps, k − 1 calls from (1) using edge {u, c} and with bandwidth
requirement 1/k can be scheduled together with z. All the calls from (1) with



192 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

bandwidth ε are scheduled together at time `. The remaining calls from (1)
can easily be scheduled in the remaining free time slots during the first `
time steps.

Among the calls from (3), the k − 1 calls with bandwidth requirements
βi,2, . . . , βi,k−1, βi+1,1 are scheduled together in time step i, for 0 ≤ i ≤ `− 1.
(For i = `− 1, there is no call with bandwidth βi+1,1, and only k − 2 of the
calls from (3) are scheduled in time step `−1.) The bandwidth requirements
of the calls from (3) scheduled during one of the time steps 0, . . . , `− 2 add
up to exactly (k−1)/k. Hence, they can be scheduled concurrently with call
z. The call with bandwidth β0,1 is scheduled at time `. Now, the calls from
(2) can easily be scheduled in the remaining free time slots during the first
` + 1 time steps. Therefore, OPT = ` + 1. tu

Note that the calls used in the proof of this theorem have bandwidth
requirements smaller than 1/(k − 1).

6.3 Approximation Results for Trees

In the previous section we have seen that variants of List-Scheduling achieve
small, constant approximation ratios or competitive ratios for call schedul-
ing in stars. Now we investigate the performance of LS variants for call
scheduling in trees. For the case of unit duration (Section 6.3.1), we present
a variant with constant approximation ratio; for the case of arbitrary dura-
tion (Section 6.3.2), we obtain a batch-style on-line variant with logarithmic
competitive ratio.

6.3.1 Arbitrary Bandwidth, Unit Duration

It is known that the performance of LS can be arbitrarily bad in trees or
even in chains if arbitrary bandwidth requirements are allowed. Feldmann
et al. gave a list of calls with unit duration in a chain with n + 1 nodes such
that the approximation ratio of LS is Ω(n) on that instance [FMS+95].

Therefore, we consider the following variant of the basic List-Scheduling
algorithm. Pick an arbitrary node of the tree network as the root and recall
that the level of a node of the tree is its distance (number of edges) from
the root. (The root has level 0.) Let mr be that node on Pr (the path
corresponding to call r) whose level is minimum among all nodes on Pr.
The level of a call r is defined to be equal to the level of the node mr.
We consider the Level-List-Scheduling algorithm (LLS ), which is identical
to List-Scheduling except that it sorts the list of calls according to non-
decreasing levels before it starts to schedule the calls.



6.3. APPROXIMATION RESULTS FOR TREES 193

Theorem 6.3.1 LLS has approximation ratio at most 6 for call scheduling
with arbitrary bandwidth requirements and unit duration in trees.

Proof: Let S be a schedule computed by LLS for a given set R of calls. First,
we show that any call r with bandwidth requirement br ≤ 1

2
finishes no later

than at time 4 ·OPT . To see this, consider the node mr, and let e1 and e2 be
the edges incident to mr that are used by r. (If r uses only one edge incident
to mr, it can be proved by similar arguments that tr + 1 ≤ 2 · OPT .) It is
clear that call r is blocked either on edge e1 or on edge e2 by calls with equal
or smaller level during all time steps prior to tr. Hence, at least one of these
edges has less than 1

2
bandwidth available during at least dtr/2e time steps

prior to tr. Therefore, OPT > 1
2
dtr/2e and, consequently, tr + 1 ≤ 4 ·OPT .

Now, let r be a call with minimum bandwidth requirement br among all
calls that finish last in S. If br ≤ 1

2
, the argument above implies |S| ≤ 4·OPT .

Therefore, assume that br > 1
2
. Let e1 and e2 be the edges incident to mr

that are used by r. Again, it is clear that call r is blocked either on edge
e1 or on edge e2 by calls with equal or smaller level during all time steps
prior to tr. Let c be a call with bandwidth requirement bc ≤ 1

2
that has

the latest completion time among all such calls. (If no such call exists, call
r is blocked only by calls with smaller or equal level and with bandwidth
requirements greater than 1

2
, and |S| ≤ 2 · OPT .) The argument above

implies tc + 1 ≤ 4 · OPT , and tr − tc ≤ 2 · OPT follows from the fact that
call r is blocked by calls with bandwidth requirements greater than 1

2
either

on e1 or on e2 during all time steps from tc + 1 to tr. Combining these
inequalities, we obtain |S| = tr + 1 ≤ 6 ·OPT . tu

Note that the proof technique from Theorem 6.2.9, which established that
LS (L) ≤ 4.875 · OPT for calls with unit duration in stars, cannot be used
directly to improve the upper bound of 6 on the approximation ratio of LLS
for calls with unit duration in trees. The reason is that in the case of trees a
call with small bandwidth requirement can block the call r that finishes last
in the list-schedule without being itself blocked on any of the two top edges
used by r; therefore, it cannot be concluded that the load on one of the top
edges used by r must be high, like we did in the proof of Theorem 6.2.9.

Nevertheless, we suspect that the exact worst-case approximation ratio
of LLS for calls with unit duration in trees is in fact smaller than 6.

6.3.2 Arbitrary Bandwidth and Duration

Finally, we deal with the most general variant of the call-scheduling problem
considered in this chapter: we allow calls with arbitrary bandwidth require-
ments and arbitrary duration in tree networks of arbitrary degree. We will



194 CHAPTER 6. ANALYSIS OF LIST-SCHEDULING VARIANTS

obtain a batch-style on-line algorithm with competitive ratio 5 logn for trees
with n nodes. This improves on the batch-style on-line algorithm due to Feld-
mann, for which competitive ratio 12 log n was proved only for the special
case of binary trees [Fel95].

Given a tree network T with n nodes, we use a well-known technique
[ABFR94, BL97] based on a tree separator [vL90] to assign separator-levels
to the nodes of T as follows:

• Choose a node v whose removal splits T into subtrees T1, T2, . . . , Tk

with at most n/2 nodes each. Assign node v the separator-level 0.

• In each subtree Ti of size ni, find a node vi whose removal splits Ti

into subtrees with at most ni/2 nodes. Assign all such nodes vi the
separator-level 1.

• Continue recursively until every node of T is assigned a separator-level.

This way every node of T is assigned a separator-level `, 0 ≤ ` ≤ log n. For
each call r = (u, v, b, d) in T , the level of r is defined to be the smallest
separator-level of all nodes on the path Pr from u to v in T . In addition,
the root node of r is defined to be that node on Pr whose separator-level is
equal to the level of r. (Note that the root node is uniquely determined; if
two nodes of equal separator-level are on a path P , there must exist a node
of smaller separator-level on P .) Given a list L of calls in T , L` is the sublist
of L that contains all calls of level `, 0 ≤ ` ≤ dlog ne. Note that scheduling
a list L` is equivalent to scheduling calls in a number of disjoint stars: calls
in L` with the same root node intersect if and only if they use the same edge
incident to that root node; calls in L` with different root nodes never intersect.
Therefore, LS (L`) ≤ 5 · OPT (L`) as a consequence of Theorem 6.2.14. The
algorithm List-Scheduling by Levels (LSL) is shown in Figure 6.12; it simply
uses List-Scheduling to schedule the lists L`, 0 ≤ ` < dlog ne, one after
another. (Ldlog ne is empty, because the root node of a call can never have
separator-level dlog ne.) Note that LSL is a batch-style on-line algorithm,
because it does not require advance knowledge of call duration. Hence, we
obtain the following theorem.

Theorem 6.3.2 LSL is a batch-style on-line algorithm for scheduling calls
with arbitrary bandwidth requirements and arbitrary duration in trees. Its
competitive ratio is at most 5 log n.

For comparison, note that a lower bound of Ω(log logn/ log log log n) on
the competitive ratio of any deterministic batch-style on-line algorithm was
obtained by Feldmann for call scheduling with arbitrary (unknown) duration
in tree networks, even in the case of unit bandwidth requirements [Fel95].



6.3. APPROXIMATION RESULTS FOR TREES 195

Algorithm: List-Scheduling by Levels (LSL)
Input: tree T and set R of calls, arranged in a list L

begin
for ` = 0 to dlog ne − 1 do

begin
schedule L` with List-Scheduling;
wait until all active calls have finished;
end

end

Figure 6.12: Algorithm List-Scheduling by Levels





Chapter 7

Conclusion

In this final chapter we will first, in Section 7.1, summarize and discuss
the results presented in the previous chapters and then, in Section 7.2, give
possible directions for future research.

7.1 Summary of Results

We have studied optimization problems that model the allocation of resources
to individual connections in modern network architectures. In particular,
we investigated the problem of assigning wavelengths to connections in all-
optical networks with wavelength-division multiplexing and the problem of
call scheduling in networks with bandwidth reservation. For all problems
considered, we have given a full account of the boundary between tractable
and intractable (NP-hard) versions:

• Call scheduling for calls with arbitrary bandwidth requirements is NP-
hard in any network topology.

• Call scheduling for calls with arbitrary duration is NP-hard in any
network topology containing either a node of degree at least 3, or a
pair of nodes with at least two edge-disjoint paths between them, or a
path of length 8.

• Path coloring is NP-hard for bidirected and undirected rings.

• Path coloring is NP-hard for bidirected trees even in the binary case,
and for undirected trees in the case of arbitrary degree; it can be solved
optimally in polynomial time for undirected trees of bounded degree.

197



198 CHAPTER 7. CONCLUSION

• MaxPC and MaxPP in bidirected trees can be solved optimally in
polynomial time if the degree of the tree and the number of available
wavelengths are both bounded by a constant; they are NP-hard for
bidirected binary trees if the number of wavelengths can be arbitrary,
and for bidirected trees of arbitrary degree even in the case of a single
available wavelength.

These complexity results show that only very restricted versions of the opti-
mization problems under consideration can be solved optimally in polynomial
time. This implies that the goal should be to devise efficient approximation
algorithms and on-line algorithms that perform well on practical instances
and for which a good bound on the worst-case performance can be proved.
Our main results are two such approximation algorithms for the path col-
oring problem and the maximum edge-disjoint paths problem in bidirected
tree networks:

• An efficient algorithm for path coloring in bidirected trees that uses at
most d(5/3)Le colors for sets of paths with maximum load L.

• For every fixed ε > 0, an efficient (5/3 + ε)-approximation algorithm
for the maximum edge-disjoint paths problem in bidirected trees.

Our algorithm for path coloring in bidirected trees is the best known algo-
rithm for this problem, and it improves on previous algorithms that used
at most 2L − 1 colors, (15/8)L colors, and (7/4)L colors, respectively. The
algorithm shows that any set of paths with maximum load at most (3/5)W
can be colored using W colors. In a network with full wavelength converters,
however, any set of paths with maximum load at most W can be established
using W wavelengths (colors). Therefore, our algorithm and its analysis
provides a basis for assessing the trade-off between the cost for wavelength
converters and the cost for additional wavelengths required in networks with-
out converters. Besides, the algorithm can easily be implemented in a dis-
tributed network because it is a local greedy algorithm, and its average-case
performance can be improved by additional heuristics.

Our algorithm for the maximum edge-disjoint paths problem is the first
known approximation algorithm for this problem in bidirected trees. It can
be converted into an approximation algorithm for MaxPC with arbitrary
number W of wavelengths, and it achieves approximation ratio 2.2 in this
case.

In addition, we have analyzed variants of List-Scheduling (LS ) for call
scheduling in undirected stars and trees. In the case of unit call duration, we
have given variants of LS with asymptotic approximation ratio at most 8/3



7.2. DIRECTIONS FOR FUTURE RESEARCH 199

for calls with arbitrary bandwidth requirements in stars, and with approx-
imation ratio at most 6 for calls with arbitrary bandwidth requirements in
trees. In the case of arbitrary call duration, our variants of LS do not require
advance knowledge of the duration of a call; hence, they are batch-style on-
line algorithms. We have devised variants with competitive ratio at most 5
for calls with arbitrary bandwidth requirements and arbitrary, unknown du-
ration in stars, and with competitive ratio at most 5 logn for calls with
arbitrary bandwidth requirements and arbitrary, unknown duration in trees
with n nodes. It seems likely that our upper bounds are not tight, and only
contrived examples can force the LS variants to have approximation ratio
moderately close to our upper bounds; therefore, we suspect that variants
of LS produce schedules with makespan close to the optimal makespan in
practice.

7.2 Directions for Future Research

There are a number of promising directions for future research. In partic-
ular, it would be interesting to see whether our approximation algorithms
for bidirected trees can be improved. For path coloring, it is known that no
local greedy algorithm can use less than b(5/3)Lc colors in the worst case,
but it is open whether a different approach might lead to an improved ap-
proximation ratio. Further results regarding the non-approximability of path
coloring in bidirected trees would also be interesting; we have shown that no
approximation algorithm can achieve absolute approximation ratio smaller
than 4/3 unless P = NP, but no lower bound is known regarding the asymp-
totic approximation ratio. It is also desirable to determine how many colors
are required in an optimal coloring for paths with maximum load L in the
worst case; in particular, it is not known whether there are instances with
arbitrarily large L for which more than d(5/4)Le colors are necessary [KS97].

The maximum edge-disjoint paths problem for bidirected trees was proved
APX -hard in Chapter 5, so we cannot expect a polynomial approximation
scheme unless P = NP; however, it is an open question whether an algo-
rithm with approximation ratio smaller than 5/3 can be found. It might even
be possible to improve the algorithm presented in Chapter 5 to achieve ap-
proximation ratio 3/2 or even smaller. Furthermore, it would be interesting
to know whether there is an underlying reason for the fact that our best algo-
rithms for path coloring and for the maximum edge-disjoint paths problem in
bidirected trees achieve the same approximation ratio 5/3. The problems are
dual to each other in some sense, but our algorithms proceed very differently
and it is not clear why the same approximation ratio is achieved for both



200 CHAPTER 7. CONCLUSION

problems. In addition, it would be interesting to see whether techniques we
used in the (5/3+ε)-approximation for MaxPC and MaxPP with W = 1 can
lead to improved approximation algorithms for the integral multicommodity
flow problem in trees or for special cases thereof; for the latter problem, the
best known approximation is still the 2-approximation from [GVY93].

We used a reduction from MaxPC with arbitrary number of wavelengths
to the maximum edge-disjoint paths problem in order to obtain approxima-
tion algorithms for MaxPC; a different approach that tackles the MaxPC
problem directly might lead to a better approximation ratio, but no such
approach is known so far.

Regarding the analysis of variants of List-Scheduling for call scheduling
in stars and trees (Chapter 6), the comparatively large gaps between upper
and lower bounds on the worst-case approximation ratio for some versions of
the problem are unsatisfactory; it is a challenging problem to tighten these
bounds. Furthermore, there is also a gap between the upper and lower bounds
on the competitive ratio of any batch-style on-line algorithm for call schedul-
ing in trees: our algorithm implies an upper bound of O(logn) for trees with
n nodes, and Feldmann’s lower bound [Fel95] is Ω(log log n/ log log log n).

Our results were obtained for models that make a number of simplifying
assumptions regarding the architecture of the communication network and
regarding the objectives of the optimization problems; it would be desirable
to generalize the results to more flexible models. In particular, the following
generalizations appear reasonable:

• All-optical networks with limited wavelength converters and with dif-
ferent sets of available wavelengths on different links.

• Weighted versions of MaxPC and MaxPP, where every connection re-
quest is associated with a certain benefit and the goal is to maximize
the sum of the benefits of the accepted requests.

• Networks with different capacities on different links.

• Call scheduling with a mixture of unidirectional and bidirectional calls
in bidirected networks (a bidirectional call would require reservation of
bandwidth on two directed paths with opposite directions between the
endpoints of the call).1

• Approximation algorithms and on-line algorithms for call scheduling
that try to minimize the average response time (which is impossible for
deterministic algorithms in the worst case, however).

1It is easy to see that our results from Chapter 6 generalize to the case of unidirectional
calls in bidirected networks directly.



7.2. DIRECTIONS FOR FUTURE RESEARCH 201

• Call scheduling for calls with release times, deadlines, or precedence
constraints.

• Call scheduling, path coloring, path packing, MaxPC, MaxPP, and
the maximum edge-disjoint paths problem for network topologies other
than trees, and for fully on-line scenarios with dynamic arrivals of con-
nection requests with finite and possibly unknown duration.

Regarding network topologies, an interesting starting point would be the class
of graphs with bounded treewidth (also called partial k-trees) [Bod93]. These
graphs resemble trees in some well-defined sense, and it is often possible to
generalize techniques from algorithms for trees to algorithms for graphs with
bounded treewidth. For example, the algorithm for MaxPC with bounded
number of wavelengths in trees of bounded degree (Section 5.1.2) can in fact
be generalized to graphs with bounded treewidth and of bounded degree.





Bibliography

[AAF+96] Baruch Awerbuch, Yossi Azar, Amos Fiat, Stefano Leonardi,
and Adi Rosén. On-line competitive algorithms for call admis-
sion in optical networks. In Proceedings of the 4th Annual Eu-
ropean Symposium on Algorithms ESA ’96, LNCS 1136, pages
431–444, 1996.

[ABFR94] Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén.
Competitive non-preemptive call control. In Proceedings of
the 5th Annual ACM–SIAM Symposium on Discrete Algorithms
SODA ’94, pages 312–320, 1994.

[ABNC+94] Alok Aggarwal, Amotz Bar-Noy, Don Coppersmith, Rajiv Ra-
maswami, Baruch Schieber, and Madhu Sudan. Efficient routing
and scheduling algorithms for optical networks. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algo-
rithms SODA ’94, pages 412–423, 1994.

[ABNC+96] Alok Aggarwal, Amotz Bar-Noy, Don Coppersmith, Rajiv Ra-
maswami, Baruch Schieber, and Madhu Sudan. Efficient rout-
ing in optical networks. Journal of the ACM, 46(6):973–1001,
November 1996.

[ACKP97] Vincenzo Auletta, Ioannis Caragiannis, Christos Kaklamanis,
and Pino Persiano. Bandwidth allocation algorithms on tree-
shaped all-optical networks with wavelength converters. In Pro-
ceedings of the 4th International Colloquium on Structural In-
formation and Communication Complexity SIROCCO’97, pages
24–39. Carleton Scientific, 1997.

[ACKP98a] Vincenzo Auletta, Ioannis Caragiannis, Christos Kaklamanis,
and Pino Persiano. On the complexity of wavelength converters.
In Proceedings of the 23rd International Symposium on Math-
ematical Foundations of Computer Science MFCS’98, LNCS
1450, pages 771–779. Springer-Verlag, 1998.

[ACKP98b] Vincenzo Auletta, Ioannis Caragiannis, Christos Kaklamanis,
and Pino Persiano. Efficient wavelength routing in trees with

203



204 BIBLIOGRAPHY

low-degree converters. In Proceedings of the DIMACS Workshop
on Optical Networks (March 16–19, 1998), 1998. To appear.

[AHK87] S. B. Akers, D. Harel, and B. Krishnamurthy. The star graph:
An attractive alternative to the n-cube. In Sartaj K. Sahni, ed-
itor, Proceedings of the 1987 International Conference on Par-
allel Processing, pages 393–400, University Park-London, 1987.
Pennsylvania State University Press.

[AHU76] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, MA, 1976.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, New Jer-
sey, 1993.

[AR95] Yonatan Aumann and Yuval Rabani. Improved bounds for all
optical routing. In Proceedings of the 6th Annual ACM-SIAM
Symposium on Discrete Algorithms SODA ’95, pages 567–576,
1995.

[ATM95] The ATM Forum, Upper Saddle River, NJ. ATM User-Network
Interface (UNI) Specification Version 3.1., 1995.

[BBG+97] Bruno Beauquier, Jean-Claude Bermond, Luisa Gargano, Pavol
Hell, Stéphane Perennes, and Ugo Vaccaro. Graph problems
arising from wavelength-routing in all-optical networks. In Pro-
ceedings of IPPS ’97, Second Workshop on Optics and Computer
Science (WOCS), 1997.

[BDO+98] Gian-Luca Bona, Wolfgang E. Denzel, Bert J. Offrein, Roland
Germann, Huub W. M. Salemink, and Folkert Horst. Wave-
length division multiplexed add/drop ring technology in corpo-
rate backbone networks. Technical Report RZ3046, IBM Re-
search Division, August 1998.

[BDW86] Jacek Blazewicz, Mieczyslaw Drabowski, and Jan Weglarz.
Scheduling multiprocessor tasks to minimize schedule length.
IEEE Transactions on Computers, c-35(5):389–393, May 1986.

[Ber76] Claude Berge. Graphs and Hypergraphs. North-Holland, Ams-
terdam, second edition, 1976.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

[BGP+96] J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and
U. Vaccaro. Efficient collective communication in optical net-
works. In Proceedings of the 23rd International Colloquium



BIBLIOGRAPHY 205

on Automata, Languages and Programming ICALP ’96, LNCS
1099, pages 574–585. Springer-Verlag, 1996.

[BH94] Richard A. Barry and Pierre A. Humblet. On the number of
wavelengths and switches in all-optical networks. IEEE Trans-
actions on Communications, 42(2/3/4):583–591, 1994.

[BL97] Yair Bartal and Stefano Leonardi. On-line routing in all-optical
networks. In Proceedings of the 24th International Colloquium
on Automata, Languages and Programming ICALP ’97, LNCS
1256, pages 516–526. Springer-Verlag, 1997.

[BM96] Dhritiman Banerjee and Biswanath Mukherjee. A practi-
cal approach for routing and wavelength assignment in large
wavelength-routed optical networks. IEEE Journal on Selected
Areas in Communications, 14(5):903–908, June 1996.

[Bod93] Bodlaender. A tourist guide through treewidth. Acta Cybernet-
ica, 11, 1993.

[Bra90] Charles A. Bracket. Dense wavelength division multiplexing net-
works: Principles and applications. IEEE Journal on Selected
Areas in Communications, 8(6):948–964, August 1990.

[CFN77] Gerard Cornuejols, Marshall L. Fisher, and George L. Nemhau-
ser. Location of bank accounts to optimize float: An analytic
study of exact and approximate algorithms. Management Sci-
ence, 23(8):789–810, April 1977.

[CGJ97] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Ap-
proximation algorithms for bin packing: A survey. In Dorit S.
Hochbaum, editor, Approximation Algorithms for NP-hard
Problems, pages 46–93. PWS Publishing Company, Boston, MA,
1997.

[CGJL85] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and A. S. La-
paugh. Scheduling file transfers. SIAM J. Comput., 14(3):744–
780, August 1985.

[CGK92] Imrich Chlamtac, Aura Ganz, and Gadi Karmi. Lightpath com-
munications: An approach to high bandwidth optical WAN’s.
IEEE Transactions on Communications, 40(7):1171–1182, July
1992.

[CH82] R. Cole and J. Hopcroft. On edge coloring bipartite graphs.
SIAM J. Comput., 11(3):540–546, August 1982.

[CHK+96] R. L. Cruz, G. R. Hill, A. L. Kellner, R. Ramaswami, G. H.
Sasaki, and Y. Yamabayashi, editors. Special issue on Optical
Networks, volume 14, number 5 of IEEE Journal on Selected



206 BIBLIOGRAPHY

Areas in Communications. IEEE Communications Society, June
1996.

[CKP97] Ioannis Caragiannis, Christos Kaklamanis, and Pino Persiano.
Bounds on optical bandwidth allocation on directed fiber tree
topologies. In Proceedings of IPPS ’97, Second Workshop on
Optics and Computer Science (WOCS), 1997.

[CKST95] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure
in approximation classes. In Ding-Zhu Du and Ming Li, edi-
tors, Proceedings of the 1st Annual International Conference on
Computing and Combinatorics COCOON’95, LNCS 959, pages
539–548. Springer-Verlag, 1995.

[Cla97] Martin P. Clark. ATM Networks: Principles and Use. Wiley-
Teubner, Chichester, 1997.

[CNW90] N. K. Cheung, K. Nosu, and G. Winzer, editors. Special issue
on Dense Wavelength Division Multiplexing Techniques for High
Capacity and Multiple Access Communication Systems, volume
8, number 6 of IEEE Journal on Selected Areas in Communica-
tions. IEEE Communications Society, August 1990.

[DL87] J. Doenhardt and T. Lengauer. Algorithmic aspects of one-
dimensional layout compaction. IEEE Transactions on Com-
puter-Aided Design, CAD-6(5):863–878, September 1987.

[EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of
timetable and multicommodity flow problems. SIAM J. Com-
put., 5(4):691–703, December 1976.

[EJ97a] Thomas Erlebach and Klaus Jansen. Call scheduling in trees,
rings and meshes. In Proceedings of the 30th Hawaii Inter-
national Conference on System Sciences HICSS-30, volume 1,
pages 221–222. IEEE Computer Society Press, 1997.

[EJ97b] Thomas Erlebach and Klaus Jansen. Off-line and on-line call-
scheduling in stars and trees. In Proceedings of the 23rd Inter-
national Workshop on Graph-Theoretic Concepts in Computer
Science WG ’97, LNCS 1335, pages 199–213. Springer-Verlag,
1997.

[EJ97c] Thomas Erlebach and Klaus Jansen. Scheduling of virtual con-
nections in fast networks. In Proceedings of the 4th Parallel Sys-
tems and Algorithms Workshop PASA ’96, pages 13–32. World
Scientific Publishing, 1997.

[EJ98a] Thomas Erlebach and Klaus Jansen. Efficient implementation
of an optimal greedy algorithm for wavelength assignment in
directed tree networks. In Kurt Mehlhorn, editor, Proceedings



BIBLIOGRAPHY 207

of the 2nd Workshop on Algorithm Engineering WAE’98, Tech-
nical Report MPI-I-98-1-019, pages 13–24, Max-Planck-Institut
für Informatik, Saarbrücken, August 1998.

[EJ98b] Thomas Erlebach and Klaus Jansen. Maximizing the number of
connections in optical tree networks. In Kyung-Yong Chwa and
Oscar H. Ibarra, editors, Proceedings of the 9th Annual Interna-
tional Symposium on Algorithms and Computation ISAAC’98,
LNCS 1533, pages 179–188. Springer-Verlag, 1998.

[EJKP98] Thomas Erlebach, Klaus Jansen, Christos Kaklamanis, and
Pino Persiano. An optimal greedy algorithm for wavelength allo-
cation in directed tree networks. In Proceedings of the DIMACS
Workshop on Network Design: Connectivity and Facilities Lo-
cation, volume 40 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 117–129. AMS, 1998.

[Fel95] Anja Feldmann. On-line call admission for high-speed networks
(Ph.D. Thesis). Technical Report CMU-CS-95-201, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA,
October 1995.

[FMS+95] Anja Feldmann, Bruce Maggs, Jiri Sgall, Daniel D. Sleator, and
Andrew Tomkins. Competitive analysis of call admission al-
gorithms that allow delay. Technical Report CMU-CS-95-102,
School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, January 1995.

[FNS+92] András Frank, Takao Nishizeki, Nobuji Saito, Hitoshi Suzuki,
and Éva Tardos. Algorithms for routing around a rectangle.
Discrete Applied Mathematics, 40:363–378, 1992.

[Fra85] András Frank. Edge-disjoint paths in planar graphs. J. Comb.
Theory Series B, 39(2):164–178, October 1985.

[Fra90] András Frank. Packing paths, circuits, and cuts – a survey.
In Bernhard Korte, László Lovász, Hans Jürgen Prömel, and
Alexander Schrijver, editors, Paths, Flows, and VLSI-Layout,
pages 47–100. Springer-Verlag, Berlin, 1990.

[FW77] S. Fiorini and R. J. Wilson. Edge-Colourings of Graphs. Re-
search Notes in Mathematics 16. Pitman, London, 1977.

[FW98] Amos Fiat and Gerhard J. Woeginger, editors. Online Algo-
rithms: The State of the Art. LNCS 1442. Springer-Verlag,
Berlin, 1998.

[Gar98] Luisa Gargano. Limited wavelength conversion in all-optical tree
networks. In Proceedings of the 25th International Colloquium



208 BIBLIOGRAPHY

on Automata, Languages and Programming ICALP ’98, LNCS
1443, pages 544–555. Springer-Verlag, 1998.

[Gav72] Fǎnicǎ Gavril. Algorithms for minimum coloring, maximum
clique, minimum covering by cliques, and maximum indepen-
dent set of a chordal graph. SIAM J. Comput., 1:180–187, 1972.

[GG75] M. R. Garey and R. L. Graham. Bounds for multiproces-
sor scheduling with resource constraints. SIAM J. Comput.,
4(2):187–200, June 1975.

[GHP97] Luisa Gargano, Pavol Hell, and Stephane Perennes. Colouring
paths in directed symmetric trees with applications to WDM
routing. In Proceedings of the 24th International Colloquium
on Automata, Languages and Programming ICALP ’97, LNCS
1256, pages 505–515. Springer-Verlag, 1997.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability. A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, New York-San Francisco, 1979.

[GJ85a] Martin Charles Golumbic and Robert E. Jamison. Edge and
vertex intersection of paths in a tree. Discrete Math., 55:151–
159, 1985.

[GJ85b] Martin Charles Golumbic and Robert E. Jamison. The edge
intersection graphs of paths in a tree. J. Comb. Theory Series
B, 38(1):8–22, February 1985.

[GJMP80] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadim-
itriou. The complexity of coloring circular arcs and chords.
SIAM J. Algebraic Discrete Methods, 1(2):216–227, 1980.

[GLS88] Marin Grötschel, László Lovász, and Alexander Schrijver. Ge-
ometric Algorithms and Combinatorial Optimization. Springer-
Verlag, Berlin, 1988.

[Gol80] Martin Charles Golumbic. Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, New York, 1980.

[Gol84a] M. Goldberg. An approximate algorithm for the edge-coloring
problem. Congressus Numerantium, 43:317–319, 1984.

[Gol84b] M. Goldberg. Edge-coloring of multigraphs: Recoloring tech-
nique. Journal of Graph Theory, 8:123–137, 1984.

[Gra69] R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math., 17(2):416–429, March 1969.

[Gra76] R. L. Graham. Bounds on the performance of scheduling algo-
rithms. In Edward G. Coffman, Jr., editor, Computer and Job-
Shop Scheduling Theory, pages 165–227. John Wiley & Sons,
Inc., New York, 1976.



BIBLIOGRAPHY 209

[Gre91] Paul E. Green. The Future of Fiber-Optic Computer Networks.
IEEE Computer, 24(9):78–87, September 1991.

[Gre93] Paul E. Green. Fiber Optic Networks. Prentice Hall, Englewood
Cliffs, NJ, 1993.

[GSKR97] Ornan Gerstel, Galen Sasaki, Shay Kutten, and Rajiv Ra-
maswami. Dynamic wavelength allocation in optical networks.
In Proceedings of the 16th Annual ACM Symposium on Princi-
ples of Distributed Computing PODC’97, page 293, 1997.

[GVY93] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis.
Primal-dual approximation algorithms for integral flow and mul-
ticut in trees, with applications to matching and set cover. In
Proceedings of the 20th International Colloquium on Automata,
Languages and Programming, ICALP ’93, LNCS 700, pages 64–
75, 1993.

[GW97] Michael X. Goemans and David P. Williamson. The primal-
dual method for approximation algorithms and its application
to network design problems. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-Hard Problems, pages 144–
191. PWS Publishing Company, Boston, MA, 1997.

[HK73] John Hopcroft and Richard Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput.,
2(4):225–231, December 1973.

[HLC97] Eric J. Harder, Sang-Kyu Lee, and Hyeong-Ah Choi. On wave-
length assignment in WDM optical networks. In Proceedings of
the 4th International Conference on Massively Parallel Process-
ing Using Optical Interconnections MPPOI’97. IEEE, 1997.

[Hoc97] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-
Hard Problems. PWS Publishing Company, Boston, MA, 1997.

[Hol81] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Com-
put., 10(4):718–720, November 1981.

[HvdVV94] J. A. Hoogeveen, S. L. van de Velde, and B. Veltman. Com-
plexity of scheduling multiprocessor tasks with prespecified pro-
cessor allocations. Discrete Applied Mathematics, 55:259–272,
1994.

[IMI+95] A. Iwata, N. Mori, C. Ikeda, H. Suzuki, and M. Ott. ATM con-
nection and traffic management schemes for multimedia inter-
networking. Communications of the ACM, 38(2):72–89, Febru-
ary 1995.

[Jan97] Klaus Jansen. Approximation Results for Wavelength Routing



210 BIBLIOGRAPHY

in Directed Trees. In Proceedings of IPPS ’97, Second Workshop
on Optics and Computer Science (WOCS), 1997.

[JDU+74] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and
R. L. Graham. Worst-case performance bounds for simple one-
dimensional packing algorithms. SIAM J. Comput., 3:299–326,
1974.

[Kan91] Viggo Kann. Maximum bounded 3-dimensional matching is
MAX SNP-complete. Information Processing Letters, 37:27–35,
1991.

[Kie98] Hal A. Kierstead. Coloring graphs on-line. In Amos Fiat and
Gerhard J. Woeginger, editors, Online Algorithms: The State of
the Art, LNCS 1442. Springer-Verlag, Berlin, 1998.

[KK99] Jon Kleinberg and Amit Kumar. Wavelength conversion in op-
tical networks. In Proceedings of the 10th Annual ACM–SIAM
Symposium on Discrete Algorithms SODA ’99, pages 566–575,
1999.

[Kla98] Ralf Klasing. Methods and problems of wavelength-routing in
all-optical networks. Technical Report CS-RR-348, Department
of Computer Science, University of Warwick, September 1998.
Presented as invited talk at the MFCS’98 Workshop on Com-
munications.

[KLPS90] Bernhard Korte, László Lovász, Hans Jürgen Prömel, and
Alexander Schrijver, editors. Paths, Flows, and VLSI-Layout.
Springer-Verlag, Berlin, 1990.

[Kön31] D. König. Graphen und Matrizen. Mat. Fiz. Lapok, 38:116–119,
1931.

[KP96] Christos Kaklamanis and Pino Persiano. Efficient wavelength
routing on directed fiber trees. In Proceedings of the 4th An-
nual European Symposium on Algorithms ESA ’96, LNCS 1136,
pages 460–470. Springer-Verlag, 1996.

[KPEJ97] Christos Kaklamanis, Pino Persiano, Thomas Erlebach, and
Klaus Jansen. Constrained bipartite edge coloring with applica-
tions to wavelength routing. In Proceedings of the 24th Interna-
tional Colloquium on Automata, Languages and Programming
ICALP ’97, LNCS 1256, pages 493–504. Springer-Verlag, 1997.

[KPRS97] S. Ravi Kumar, Rina Panigrahy, Alexander Russel, and Ravi
Sundaram. A note on optical routing on trees. Inf. Process.
Lett., 62:295–300, 1997.

[KS97] Vijay Kumar and Eric J. Schwabe. Improved access to optical
bandwidth in trees. In Proceedings of the 8th Annual ACM–



BIBLIOGRAPHY 211

SIAM Symposium on Discrete Algorithms SODA ’97, pages
437–444, 1997.

[KT81] Henry A. Kierstead and William T. Trotter, Jr. An extremal
problem in recursive combinatorics. Congressus Numerantium,
33:143–153, 1981.

[KT95a] Jon Kleinberg and Éva Tardos. Approximations for the disjoint
paths problem in high-diameter planar networks. In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing
STOC ’95, pages 26–35, 1995.

[KT95b] Jon Kleinberg and Éva Tardos. Disjoint paths in densely embed-
ded graphs. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science FOCS’95, pages 52–61, 1995.

[Kum98] Vijay Kumar. Approximating circular arc coloring and band-
width allocation in all-optical ring networks. In Proceedings of
the International Workshop on Approximation Algorithms for
Combinatorial Optimization APPROX’98, LNCS 1444, pages
147–158. Springer-Verlag, 1998.

[KvL84] M. E. Kramer and J. van Leeuwen. The complexity of wire rout-
ing and finding the minimum area layouts for arbitrary VLSI
circuits. In Franco P. Preparata, editor, Advances in Comput-
ing Research; VLSI Theory, volume 2, pages 129–146. JAI Press
Inc., Greenwich, CT-London, 1984.

[KW95] B. G. Kim and P. Wang. ATM network: Goals and challenges.
Communications of the ACM, 38(2):39–44, February 1995.

[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann
Publishers Inc., San Mateo, CA, 1992.

[Len81] H. W. Lenstra. Integer programming with a fixed number of
variables. Technical Report 81-03, Mathematics Dept., Uni-
vesity of Amsterdam, 1981.

[Leo98] Stefano Leonardi. On-line network routing. In Amos Fiat and
Gerhard J. Woeginger, editors, Online Algorithms: The State of
the Art, LNCS 1442. Springer-Verlag, Berlin, 1998.

[LV98] Stefano Leonardi and Andrea Vitaletti. Randomized lower
bounds for online path coloring. In Proceedings of the 2nd
International Workshop on Randomization and Approximation
Techniques in Computer Science, LNCS 1518, pages 232–247.
Springer-Verlag, 1998.

[McA91] Alastair D. McAulay. Optical Computer Architectures. Wiley,
New York, 1991.



212 BIBLIOGRAPHY

[MHIR96] M. V. Marathe, H. B. Hunt III, and S. S. Ravi. Efficient approx-
imation algorithms for domatic partition and on-line coloring of
circular arc graphs. Discrete Applied Mathematics, 64:135–149,
1996.

[MKR95] Milena Mihail, Christos Kaklamanis, and Satish Rao. Efficient
access to optical bandwidth. In Proceedings of the 36th An-
nual Symposium on Foundations of Computer Science FOCS’95,
pages 548–557, 1995.

[MN95] Kurt Mehlhorn and Stefan Näher. LEDA: A platform for com-
binatorial and geometric computing. Communications of the
ACM, 38, 1995.

[MPS98] Ernst W. Mayr, Hans Jürgen Prömel, and Angelika Steger, ed-
itors. Lectures on Proof Verification and Approximation Algo-
rithms. LNCS 1367. Springer-Verlag, Berlin, 1998.

[Muk92a] Biswanath Mukherjee. WDM-based local lightwave networks
part I: Single-hop systems. IEEE Network, 6(3):12–27, May
1992.

[Muk92b] Biswanath Mukherjee. WDM-based local lightwave networks
part II: Multihop systems. IEEE Network, 6(4):20–32, July
1992.

[Muk97] Biswanath Mukherjee. Optical Communication Networks.
McGraw-Hill, 1997.

[MV80] S. Micali and V. V. Vazirani. An O(
√|V | · |E|) algorithm for

finding maximum matching in general graphs. In Proceedings of
the 21st Annual IEEE Symposium on Foundations of Computer
Science FOCS’80, pages 17–27, 1980.

[NK90] Takao Nishizeki and Kenichi Kashiwagi. On the 1.1 edge-
coloring of multigraphs. SIAM J. Disc. Math., 3(3):391–410,
August 1990.

[NPZ97] Christos Nomikos, Aris Pagourtzis, and Stathis Zachos. Ef-
ficient coloring with applications in multiwavelength routing.
Presented at the ICALP’97 Workshop on Algorithmic Aspects
of Communication (July 11–12, 1997, Bologna, Italy), 1997.

[NZ97] Christos Nomikos and Stathis Zachos. Coloring a maximum
number of paths in a graph. Presented at the ICALP’97 Work-
shop on Algorithmic Aspects of Communication (July 11–12,
1997, Bologna, Italy), 1997.

[OBB81] James B. Orlin, Maurizio A. Bonuccelli, and Daniel P. Bovet. An
O(n2) algorithm for coloring proper circular arc graphs. SIAM
J. Algebraic Discrete Methods, 2(2):88–93, 1981.



BIBLIOGRAPHY 213

[OS81] Haruko Okamura and P. D. Seymour. Multicommodity flows in
planar graphs. J. Comb. Theory Series B, 31(1):75–81, August
1981.

[Pan92] R. K. Pankaj. Architectures for linear light-wave networks. PhD
thesis, MIT, 1992.

[Pap94] Christos H. Papadimitriou. Computational Complexity.
Addison-Wesley, Reading, MA, 1994.

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approxi-
mization and complexity classes. Journal of Computer and Sys-
tem Sciences, 43:425–440, 1991.

[Rab96] Yuval Rabani. Path coloring on the mesh. In Proceedings of the
37th Annual Symposium on Foundations of Computer Science
FOCS ’96, pages 400–409, 1996.

[Ram93] Rajiv Ramaswami. Multiwavelength lightwave networks for
computer communication. IEEE Communications Magazine,
31(2):78–88, February 1993.

[RS92] M. Niel Ransom and Dan R. Spears. Applications of public
gigabit networks. IEEE Network, 6(2):30–40, March 1992.

[RS95] Rajiv Ramaswami and Kumar N. Sivarajan. Routing and wave-
length assignment in all-optical networks. IEEE/ACM Trans-
actions on Networking, 3(5):489–500, October 1995.

[RT87] P. Raghavan and C. D. Thompson. Randomized rounding: A
technique for provably good algorithms and algorithmic proofs.
Combinatorica, 7(4):365–374, 1987.

[RU94] Prabhakar Raghavan and Eli Upfal. Efficient routing in all-
optical networks. In Proceedings of the 26th Annual ACM Sym-
posium on Theory of Computing STOC ’94, pages 134–143,
1994.

[Sch98] Alexander Schrijver. Bipartite edge-coloring in O(∆m) time.
SIAM J. Comput., 28(3):841–846, 1998.

[SDRF95] James A. Schnepf, David H. C. Du, E. Russell Ritenour, and
Aaron J. Fahrmann. Building future medical education envi-
ronments over ATM networks. Communications of the ACM,
38(2):54–69, February 1995.

[SH90] Wei-Kuan Shih and Wen-Lian Hsu. An approximation algo-
rithm for coloring circular-arc graphs. In SIAM Conference on
Discrete Mathematics, 1990.

[Sha49] C. E. Shannon. A theorem on coloring lines of a network.
J. Math. Phys., 28:148–151, 1949.



214 BIBLIOGRAPHY

[SSW98] Alexander Schrijver, Paul Seymour, and Peter Winkler. The
ring loading problem. SIAM J. Disc. Math., 11(1):1–14, Febru-
ary 1998.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of the ACM,
28(2):202–208, February 1985.

[Str97] Bjarne Stroustrup. The C++ Programming Language: Third
Edition. Addison-Wesley Publishing Co., Reading, Mass., 1997.

[SWW91] David B. Shmoys, Joel Wein, and David P. Williamson. Schedul-
ing parallel machines on-line. In Proceedings of the 32nd An-
nual Symposium on Foundations of Computer Science FOCS
’91, pages 131–140, 1991.

[Tar85] Robert E. Tarjan. Decomposition by clique separators. Discrete
Math., 55:221–232, 1985.

[Tuc75] Alan Tucker. Coloring a family of circular arcs. SIAM J. Appl.
Math., 29(3):493–502, November 1975.

[VD93] Ronald J. Vetter and David H. C. Du. Distributed computing
with high-speed optical networks. IEEE Computer, 26(2):8–18,
February 1993.

[Vet95] Ronald J. Vetter. ATM concepts, architectures, and protocols.
Communications of the ACM, 38(2):30–38, February 1995.

[vL90] Jan van Leeuwen, editor. Handbook of Theoretical Computer
Science. Volume A: Algorithms and Complexity. Elsevier North-
Holland, Amsterdam, 1990.

[Wil96] Gordon Wilfong. Minimizing wavelengths in an all-optical ring
network. In Proceedings of the 7th Annual International Sympo-
sium on Algorithms and Computation ISAAC’96, LNCS 1178,
pages 346–355. Springer-Verlag, 1996.

[WW98] Gordon Wilfong and Peter Winkler. Ring routing and wave-
length translation. In Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms SODA’98, pages 333–
341, 1998.

[YG87] Mihalis Yannakakis and Fǎnicǎ Gavril. The maximum k-
colorable subgraph problem for chordal graphs. Inf. Process.
Lett., 24(2):133–137, January 1987.



Index

(5/3)L algorithm, 96
2-exclusive paths

group of, 117
3-PARTITION, 60
3D-matching, 105, 108

algorithm
approximation, 164
batch-style on-line, 13, 164,

188, 192, 194
exact, 12, 43
local greedy, 97
off-line, 13, 164
on-line, 13
simple greedy, 65

all-to-all, 22
approximation algorithm, 12
approximation ratio, 13, 164

absolute, 12
asymptotic, 13

ARC-COLORING, 49, 56

b-matching, 18, 102
bandwidth reservation, 19, 163
benefit, 103
bfs, see breadth-first search
bfs-order, 17
bidirected, 16
bidirected trees

MaxPC and MaxPP in, 101–
162

path coloring in, 48, 64–99
bin-packing, 165–167, 179, 180,

182, 186

bottom-up, 103
bounded degree, 46, 103
breadth-first search, 17
broadcast, 22

call admission, 2
call scheduling, 2, 8, 20, 59, 163–

194
capacity, 8, 18, 19
chain, 15, 87
chromatic index, 19
circuit switching, 1
coloring-extension, 65
competitive ratio, 13, 188, 192, 194
conflict graph, see graph, conflict
cycle, 86
cycle cover, 15, 71

DBLS, see List-Scheduling, De-
creasing-Bandwidth

deadline, 23
deferred paths

group of, 114
depth-first search, 17
dfs, see depth-first search
dfs-number, 17, 65
dfs-order, 17
double color, 67
dynamic programming, 47

edge coloring, 18, 45, 47, 64, 66,
169

edge-disjoint paths, 9, 23, 30, 33,
34, 61, 105, 106, 113, 121,
161, 198–201

215



216 INDEX

edge-expansion, 15, 26
exclusive paths

group of, 115
experiments, 97

FF, see First-Fit
FFDB, see First-Fit, Decreasing-

Bandwidth
fiber, 1, 3
file-transfers

scheduling of, 169
First-Fit, 166, 179

Decreasing, 186
Decreasing-Bandwidth, 167

fixed path coloring, 21
fixed paths, 23

gadget, 70
gigabit applications, 1
gossiping, 22
graph, 14

bidirected, 16
bipartite, 15, 19, 66
conflict, 18, 45, 59, 101
directed, 15
regular, 15
undirected, 14

graph search, 17
guaranteed quality of service, 2

implementation, 97
distributed, 97

integer linear programming, 47
invariants, 65, 119–120

k-relation, 22
KS-subgraph, 70, 71

lca, see least common ancestor
least common ancestor, 15, 41, 110,

111, 113, 160
LEDA, 97

level, 15, 41, 110, 112–114, 192
lightpath, 4
line graph, 16, 19
Linux, 98
list-schedule, 165
List-Scheduling, 164, 165, 175, 188

by Levels, 194
Decreasing-Bandwidth, 166,

184–188
Level, 192
property of, 165

LLS, see List-Scheduling, Level
load, 17, 24, 63, 163
local coloring, 43
local colorings

combining, 43
computing, 44

lower bound, 53, 163, 164, 172,
178, 186, 190, 194

LS, see List-Scheduling
LSL, see List-Scheduling, by Levels

makespan, 13, 164
matching, 18, 70

perfect, 69–71, 90, 93, 96
maximum flow, 61
maximum load, 9, 17, 22, 23, 25–

29, 31, 39, 40, 45, 54, 56,
65, 97, 101–103, 107, 110,
161, 198

maximum path coloring, 5, 23, 101
maximum path packing, 5, 23, 101,

107, 110
MaxPC, see maximum path color-

ing
MaxPP, see maximum path pack-

ing
mesh, 14, 25, 30
multigraph, 9, 16, 19, 27, 36, 39,

45–48, 55, 63, 64, 66, 69,
96, 102



INDEX 217

network
all-optical, 1, 3–6, 20
ATM, 6–8
broadcast-and-select, 6

one-to-all, 22
optimization problem, 11, 19

packet switching, 1
PARTITION, 60
path coloring, 5, 17, 21, 169
path packing, 5, 22
permutation, 22
power-set, 11
PP-matching, 69
pre-colored edge, 67

quality of service, 7

resource management, 2
rings, 6, 15

path coloring in, 28, 56–59
routing, 25

schedule, 163, 166
Schrijver’s algorithm, 71, 96, 97
SDM, see space-division multiplex-

ing
single color, 67
size, 16
space-division multiplexing, 6
spiders, 15, 28, 31
SS-matching, 69
ST-matching, 69
star, 6, 14
stars

call scheduling in, 167–192
MaxPC and MaxPP in, 102

switch
generalized, 3
wavelength-selective, 3

switching, 3

optical, 3

topology, 24
virtual, 5

tree
binary, 41, 48

tree of rings, 15
trees, 14

binary, 14
call scheduling in, 192–194
path coloring in, 40–56, 64
rooted, 15
spanning, 14

triplets, 69
partitioning into, 86, 89

TT-matching, 69

undetermined paths, 114
unresolved paths, 114

virtual circuit, 2

wavelength, 101
wavelength conversion, 4, 21
wavelength routing, 2
wavelength-division multiplexing,

3
WDM, see wavelength-division

multiplexing
WI network, 4
WS network, 4


