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Zusammenfassung

Niederdruck-Plasmaverfahren sind zum unverzichtbaren Bestandteil moderner Hochtechnolo-
gieprozesse geworden. Neben einer Vielzahl innovativer Anwendungen im Bereich Ober-
flächenbehandlung bzw. -veredelung sowie Beleuchtungstechnik ist vor allem der Einsatz
von Niederdruckentladungen in der Fertigung von Halbleitern bzw. Flachbildschirmen von
wirtschaftlicher Bedeutung. Typischerweise sind Plasmaverfahren bei der Herstellung einer
modernen integrierten Schaltung an bis zu 50 Teilprozeßschritten beteiligt. Die zunehmende
Integrationsdichte und die stetig steigenden Anforderungen an die Ausbeute der Einzelschritte
erfordern in zunehmendem Maße ein grundlegendes Verständnis der komplexen physikalischen
sowie plasmachemischen Prozesse.

Die vorliegende Arbeit gibt einen Überblick, wie die in Niederdruckplasmen ablaufenden
Transportprozesse mittels geeigneter mathematischer Modelle verstanden werden können. In
gleichem Maße wird auf eine Validierung der theoretischen Daten Wert gelegt. Neben allge-
meinen Betrachtungen zur Gültigkeit von hydrodynamischen Beschreibungen liegt der Schwer-
punkt bei der Beschreibung moderner induktiver Plasmaquellen, wie sie vermehrt in der Halb-
leiterfertigung eingesetzt werden. Die Modellrechnungen werden vielfach mit experimentellen
Daten verglichen. Es wird nachgewiesen, daß hydrodynamische Modelle in der Lage sind, mit
großer Genauigkeit Elektronendichteverteilungen sowie Teilchenflüsse vorherzusagen. Neben
einer ausführlichen und vergleichenden Diskussion verschiedener Modellsysteme wird im eindi-
mensionalen Fall eine Empfindlichkeitsanalyse durchgeführt, die den Einfluß der zugrundelie-
genden Eingabedaten der Modelle diskutiert. Große Aufmerksamkeit wird hierbei der Frage
der Gültigkeit vereinfachter Modelle gewidmet, d.h. in welchen Bereichen evtl. vereinfachte,
und deshalb schnellere und stabilere Modelle eingesetzt werden können.

Die gesamte Veröffentlichung gliedert sich in drei Teile. Um einen qualitativen Vergleich
der verschieden komplexen Modellansätze zu ermöglichen, wird zunächst die allgemeine Klasse
hydrodynamischer Modellsysteme aus der Boltzmann-Gleichung hergeleitet. Anhand einzelner
Vereinfachungen gelangt man zu Erhaltungsgleichungen für Masse, Impuls und Energie. Die
Frage einer numerischen Lösung, ebenso wie die Wahl geeigneter Randbedingungen, wird mit
Hinblick auf bereits vorliegende Arbeiten anderer Autoren ausführlich diskutiert. Im zweiten
Teil werden für eindimensionale Testprobleme die verschiedenen denkbaren Modellansätze
qualitativ verglichen und die Gültigkeitsbereiche sowie Empfindlichkeiten gegenüber den ver-
wendeten Eingabedaten analysiert. Im letzten Teil schließlich werden zweidimensionale in-
duktive Entladungen behandelt. Theoretische Ergebnisse werden mit experimentellen Daten,
gewonnen aus Sondenmessungen, verglichen und bestätigen in einem weiten Parameterbereich
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die Anwendbarkeit hydrodynamischer Transportmodelle. Die abschließenden Abschnitte sind
der Thematik Designregeln gewidmet. Exemplarisch wird dargestellt, wie mittels geeigneter
optimierter Geometrie der Entladungskammer ein optimales Prozeßergebnis erzielt werden kann.
Die wesentlichen physikalischen Grundmechanismen, die bei dem Entwurf von Entladungen
ber”ucksichtigt werden sollten und eine Reihe von “Faustregeln” die Kammerdesign ohne auf-
wendige Modellrechnungen ermöglichen, werden diskutiert.
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Summary

The presented thesis deals with various aspects of models for low pressure discharges. As well
the theoretical background of hydrodynamic plasma models as the comparison of calculated
data with experimental results are discussed.

In the first part of this work hydrodynamic conservation equations are derived from the
Boltzmann equation. Main focus is the application to low pressure plasmas. Different model
systems for electrons and ions are presented. The question in which case simplified models can
be applied, is treated as well as numerical aspects and algorithms for obtaining a solution are
discussed.

In a second part hydrodynamic models were used for performing one-dimensional simula-
tions. The sensitivity of the model in dependence of input parameters like momentum exchange
frequencies was analysed. As well different model systems were compared qualitatively in or-
der to get an estimate for the error introduced by using simple and numerical more stable model
systems.

In the third part hydrodynamic models were applied to simulate different kinds of low pres-
sure discharges. Main focus were inductively driven plasmas like they are used in semiconduc-
tor fabrication as high density plasma source. Calculated data for this kind of discharge were
compared with experimental values obtained from Langmuir probe measurements. Theory and
experiment show very good agreement.

In a final part the scaling laws and geometry dependence derived from hydrodynamic models
were used to assemble a set of general reactor design rules. Examples were presented, how
reactor performance can be optimised by careful choice of geometry parameters. Also general
dependencies on external parameters like discharge pressure were discussed.
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Chapter 1

Introduction

1.1 Application of low pressure, low temperature plasmas

Low pressure plasma discharges are used in an increasing number of technical applications.
Examples are the deposition of thin films like for hardening of tools or to produce coatings
with optical properties. While a great variety of applications for plasma processes exists1, from
an economical point of view, the most important field is semiconductor and flat panel display
fabrication.

For example, more than 50 plasma steps are involved in producing a modern PC processor-
chip. Low pressure, low temperature discharges are used for cleaning, etching, deposition and
stripping. Plasma processing is one of the key technologies in modern semiconductor manufac-
turing. About 30 percent of all process steps involve plasma. During the last years, especially
inductively driven high density plasma sources [46] were introduced for semiconductor fabri-
cation processes.

According to the roadmap of the Semiconductor Industry Association [2], the future chal-
lenges for etch processing are largely driven by the decreasing critical dimensions and the need
to use new materials:

“The most challenging front end etch technical requirements are maintaining
low bias and high uniformity of edge profile at continually larger wafer dia-
meters and obtaining the required etch selectivity and etch profiles for the new
materials.”

Especially, because of the large substrate diameters and the increasing number of process
steps, a maximum yield must be guaranteed for each single step. For plasma process steps this
means especially:

- Plasma parameters like ion flux or ion velocity should be as homogeneous as possible
over the whole wafer area. The typical variation of deposition or etch rates should not
exceed two percent.

1More exotic examples are the treatment of wool before dyeing, the coating of PET bottles in order to reduce
oxidation of the filling, the sterilisation of medical equipment or plasma deposited anti-grafitti coatings.
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- For sequentially processed wafers, the deposition or etch rates should be the same.

- As long as possible, the operating conditions in a reactor chamber should not vary.

It has to be emphasised that the desired results (uniformity of etch and deposition rate) will
depend on a variety of interacting internal parameters of the process discharge like the electron
density, electron temperature, neutral gas temperature, species concentration, ion fluxes, ion
energies, potential distributions or the electron distribution function.

The internal parameters of the discharge, on the other hand, depend on externally adjustable
parameters like discharge power, the process gases and their pressure, the externally applied
magnetic fields or bias voltages. They have to be adjusted in order to optimise the process.
The discharge geometry has a crucial influence on the process as well, but normally can not be
varied while the process is in operation.

In Fig. 1.1 for an RF-discharge the interdependence of internal discharge parameters, exter-
nal parameters (which can be chosen by the operator) and the process result are shown. From
the manufacturer’s point of view, the main goal is to design a reactor chamber and to find exter-
nal process parameters which guarantee the process to operate stable and to deliver reproducible
results.

While the internal parameters of the plasma process obviously have a crucial influence on
the desired result, in a real world application the user of a plasma process (e.g. a semiconductor
manufacturer) is often not aware of these internal parameters nor of their interdependence.
This unconsciousness might not be satisfactory,, not only from a scientific point of view. The
introduction of each new technology generation, i.e. decreasing structure sizes in combination
with increasing wafer diameters, and shrinking tolerance margins narrow the size of the process
window.

In future, it will not longer be possible to run processes without an understanding of the basic
relations between the internal parameters. A process control by an accurate timing of each step
might not be able to guarantee a result within the specified margins. This is the main reason
why modelling of process equipment and the understanding of physical principles over the last
years has become a topic not only for principle researchers, but also for process engineers.

1.2 Modelling of low pressure plasmas

A serious problem relating to increasing wafer sizes is the question of scalability of existing
processes. The step to a larger wafer diameter requires more effort than just an up-scaling of
existing reactor designs. As the costs for the equipment tend to increase massively from one
technology generation to the next, an expensive try-and-error approach is unacceptable.

This answers the question, why simulation of low pressure plasma processes is of funda-
mental interest. Simulation can provide valuable information about internal parameters which
otherwise could only be determined with high experimental effort. It is the only possibility to
study the properties of a new discharge chamber without actually building it. This opinion is
shared by the SIA roadmap authors, who expect an increasing importance of reactor models in
the near future [2]:
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Figure 1.1: Influence of external parameters like RF-power and gas supply on the process pa-
rameters for radio frequency low pressure discharges. The external parameters determine char-
acteristic internal parameters like electron density, the electron energy distribution function
(EEDF), ion fluxes and energy. The desired process output depends directly on the internal
parameters of the discharge.

“Plasma modelling and simulation is one of the more difficult unit process sim-
ulation areas. Accurate plasma models, the link of this gas phase models to
the features on a wafer (such as good sheath models), and the ability to pre-
dict the equipment related variations across a wafer would lead to a significant
improvement in process understanding.”
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While the need for accurate simulations is obvious, it is a very demanding task, as for real
process applications an enormous number of coupled physical as well as chemical processes is
involved. Input parameters like reaction rates, ionisation, excitation, and charge exchange cross
sections or emission rate coefficients would be required for the process gases, the important
radicals and unstable chemical species which are present in a process plasma. Unfortunately,
data are only known for a limited number of materials or gases.

Furthermore, it is very difficult to test the reliability of a simulation result as only spec-
troscopic methods provide the possibility to measure the concentration of species inside the
discharge without perturbing the setup. The experimental effort can be enormous, and even
then it might not be possible to determine the concentration of all the involved species.

A very sensitive diagnostic method is the energy and mass spectroscopy (EMS). It provides
mass selective information about particles (ions or neutrals) leaving the discharge. A valuable
insight into the chemical reactions and their products might be acquired. But only those particles
can be detected which leave the discharge. A direct measurement of internal parameters or
volume processes is not possible. This reflects the second problem complicated plasma models
suffer from:

The input parameters are unknown, and it is also impossible to compare simulation results
with experimental data. Only those quantities which can be directly measured and spatially
resolved are useful for model calibration. These are, for example, the electron density, the
potential distribution, and the mean electron energy. For process applications relative species
concentrations would be interesting. In previous works, different authors presented calculations
for typical process gases [98], [65], [116] but did not show corresponding experimental results.

The goal of this thesis is to provide an overview of different approaches to model low tem-
perature, low pressure plasma discharges. Especially the case of inductively coupled discharges
(ICPs) will be treated. Different models and their specific advantages will be discussed and
compared. The class of hydrodynamic models, which assume the plasma to be a mixture of dif-
ferent interacting fluids, will be especially dealt with. If it is possible, the presented simulation
results will be compared with the corresponding experimental data. All used input parameters
will be presented, and the references to the literature from which these parameters were taken
will be given. The sensitivity of the models with respect to various input parameters will be
discussed.

1.3 Diagnostics

In the previous section, the importance of diagnostic methods for evaluating and calibrating
models of low pressure discharges was mentioned. But also diagnostics of real process applica-
tions can be expected to become more and more important in the near future. The reason again
is the shrinking of tolerance margins for plasma processes caused by the technological advance
in semiconductor fabrication.

Up to now, in many cases plasma processes in industrial environments were only controlled
by the process timing. A very high effort is spent to ensure a maximum reproducibility, to
guarantee that each batch of wafers is processed under identical conditions. On the other hand,
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it is well known that the coating of a process chamber during several days of operation causes a
shift in the process parameters. The industrial answer to this problem is a regular cleaning of the
chamber. However, recent investigations [101] showed that even directly after a clean cycle the
measured internal discharge parameters like the electron density can vary dramatically. This
means that the time and the effort spent for cleaning the chamber cannot guarantee identical
process conditions. Furthermore, the conditions in a clean chamber are normally out of the
process window, so that typically one batch of blank wafers has to be processed to reach a state
where chamber walls are coated again.

It might be expected that for these reasons certain diagnostic methods will be integrated in
industrial processes which

- are an indicator whether the chamber is operating properly or whether a clean cycle is
required,

- check whether the process parameters are inside the specified tolerance margins,

- measure relevant process parameters and adjust the process timing according to the mea-
sured data.

At least, process monitoring can be expected to become standard during the next years, pro-
cess control including feedback of measured quantities might be realised for future technology
generations.

The enormous sensitivity of semiconductor plasma processes2 is the reason why only a
small selection of materials like aluminium, quartz or stainless steel are used for the construc-
tion of plasma equipment. While electrical probes could provide valuable information about
the process conditions, their use is unacceptable in real applications as evaporated probe ma-
terial could contaminate the process. However, diagnostic methods which are not invasive but
make process monitoring possible have become more and more popular [16]. A very promising
approach is the so-called Self Excited Electron Resonance Spectroscopy (SEERS), which mea-
sures the electron density and the elastic electron-neutral collision rate. It is based on harmonics
generated by nonlinear effects in RF-sheaths [48],[47], [49], [101].

Another possibility to perform non invasive diagnostics [54] is Optical Emission Spec-
troscopy (OES). While the effort to obtain absolute or spatially resolved [25] information may
be unacceptably high for a real process environment, a simplified version of OES can still pro-
vide valuable information. For example, in etch processes the light emission of materials which
stem from the processed substrate can be used as an endpoint detection [38], [118].

Though non invasive methods (like OES, SEERS) are the only acceptable possibility to
perform diagnostics in a highly sensitive process environment, they have the disadvantage of
providing (line of sight or volume) averaged quantities, only. In order to interpret the results,
knowledge e.g. about the electron density distribution inside the chamber is required. This
underlines the close relation between diagnostics and modelling. For many diagnostic methods
models are required in order to derive quantitative from raw data.

2Especially materials which could act as dopands are critical.
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1.4 An introductory approach to plasma models

While the previous sections emphasised the need for a modelling of low pressure discharges, in
the following an example will be given how such models can be implemented. As introduction
a very simple model was chosen on purpose. The results as well as the limitations of such
a simple approach will be discussed. This section is intended to give a general overview of
particle based plasma models. The reader who is interested in details is referred to [13], [12].

As an introductory example let us consider an ensemble of electrons which move under the
influence of an alternating electric field. This might happen in an inductively coupled plasma
(ICP). Our goal is to understand the heating mechanisms of the setup.

It is well known that the so-called collisional heating [63] is an important heating mechanism
for low pressure discharges. Electrons are accelerated in an alternating electric field and undergo
collisions with neutral particles. Due to the mass ratio, in the case of elastic collisions the
electron loses only a small fraction of its kinetic energy, which means that on average with each
collision directed velocity (the electron drift velocity) is converted into randomly distributed
velocity (thermal energy).

1.4.1 A simple Monte Carlo model

The most straightforward approach to study a plasma is to consider the discharge as an ensemble
of charged particles which move under the influence of electric fields. The time evolution
of the system can easily be calculated by solving the equation of motion for each particle.
This so-called Monte Carlo (MC) approach has the advantage to be easy to code compared to
mathematically more demanding algorithms which are based on continuum models and partial
differential equations. The simplicity of the underlying algorithms in combination with the
close relationship to the corresponding physical reality, is the reason why various authors used
Monte Carlo based models for the simulation of low pressure plasmas [12], [13], [120], [106],
[82] for a variety of different applications.

For simplicity, it will be assumed that the electric field of the test problem is time varying
but constant in configuration space. It is be given by:

~E(t) = ~ex · E cos(ωt). (1.1)

The negative charge of the electrons is compensated by an equal amount of positive ions
(quasineutrality) so that no space charge exists, and only the RF-field has to be considered.

In order to study the conductivity of the model problem, the transport of the carriers in the
alternating field is going to be discussed. The angular frequency ω of the alternating field is
assumed to be high enough so that the movement of the ions due to their mass can be neglected.
Then the conductivity is only caused by the electrons.

In typical low pressure discharges the degree of ionisation will not exceed 10−3. This means
that the electrons are a minority compared to the number of neutral particles, and electrons will
frequently undergo collisions, especially with neutral particles. To demonstrate this, we restrict
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ourselves to the noble gas argon, for which the corresponding cross sections are very well known
from various theoretical and experimental works (c. f. Tbl. 4.3).

Now, all the parts can be assembled to give the simplest example of a low pressure plasma
model. For each electron of the considered ensemble we have to solve the equation of motion:

d2~r

dt2
= −

e

me

~E(t), (1.2)

where e denotes the elementary charge and me the electron mass, and ~r the position of the
electron in the configuration space. As the actual position is of minor interest, an alternative
formulation of (1.2) introduces the electron’s velocity

~v =
d~r

dt
.

The velocity change in time is then given by:

d~v

dt
= −

e

me

~E(t). (1.3)

We assumed that the electric field ~E has a non-vanishing component only in x-direction, so
(1.3) can be reduced to give a scalar equation:

dvx
dt

= −
e

me
E cos(t). (1.4)

In order to formulate a computer implementation of the problem, a discretised version is
required. A compromise between accuracy and simplicity is a trapezoidal integration rule:

vx(t+∆t) = vx(t)−∆t
e

me
E cos(t+

∆t

2
). (1.5)

Finally, collision processes have to be considered. The probability pc that an electron hits a
neutral particle while it travels a distance ∆s is given by:

pc = ∆sσ(v)nN , (1.6)

where nN is the volume density of the scatterers (in this case neutral argon atoms) and σ(v)
the velocity-dependent collision cross section. It has to be mentioned that (1.6) is only valid for
sufficiently small values of ∆s so that pc is significantly smaller than unity. The corresponding
time step ∆t must therefore be chosen small enough to ensure that particles move less than their
mean free path distance during one time step. At the first glance this looks like a restriction, but
as we have to choose a time step which is much smaller than the RF-cycle, the probability of a
collision during one time step becomes sufficiently small.

So far, we did not discuss the details of a collision. The electron might be scattered elas-
tically and only lose a small fraction of its kinetic energy or it might cause an excitation or
ionisation of the neutral particles (if it has sufficient kinetic energy). Such an inelastic collision
consumes the corresponding kinetic energy and will slow down the electron.
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In case of an elastic collision, the relative energy loss can be approximated by a simple
textbook formula [95]:

∆E

E
=

2me

mN

(1− cos(χ)) , (1.7)

where mN denotes the mass of the neutral scatterer, and χ is the angle between the initial
direction of the electron and its direction after the scattering.

1.4.2 Results

The results presented in this section are based on the model described in Sect. 1.4.1. The time
evolution of the ensemble of initially randomly distributed electrons was calculated over several
hundred RF-cycles. After this time, the ensemble reached a periodic behaviour. This state will
be called converged solution. Calculations were carried out for an argon discharge operating at
a neutral gas pressure of 1Pa and a temperature of 300K. An RF-frequency of fRF = 27MHz
and an amplitude of E = 50V/m was chosen according to the frequency which is widely
used in plasma processing applications. As an initial condition of the ensemble a Maxwellian
energy distribution with an electron temperature of kTe = 3 eV was used. The whole ensemble
consisted of 2 · 106 electrons.

The intention was to study the oscillation of the electrons in the alternating electric field; so
in Fig.1.2, the velocity of the electrons versus time is plotted for the first few RF-cycles. At first
glance, the result does not look surprising. Both, the electric field and the electron velocity are
sinusoidal, and a phase shift of approximately π/2 between field and velocity can be observed.
With exception of the first cycle the electron velocity shows approximately periodic behaviour,
but some statistic variations (for example, see the overshoot of velocity in RF-cycle 4) are also
visible.

The simulation was started with a Maxwellian electron energy distribution function (EEDF).
An arbitrary electron temperature of kTe = 3 eV had been chosen. It cannot be expected, that
this start value is identical with the energy distribution of a converged simulation. Right from the
beginning of the simulation, the average velocity of the electrons shows a periodic behaviour, no
significant relaxation process occurs. There are two possible explanations for this unexpected
periodicity:

- The average drift of the electrons reacts insensitive on changes of the EEDF.

- A change in the EEDF is such a slow process that an influence on the electron drift cannot
be observed during the first few RF-cycles.

In order to demonstrate a change in the mean energy of the ensemble, the plot of the average
kinetic energy during the first 25 RF-cycles is shown in Fig. 1.3 .

At the beginning of the simulation (during the first ten RF-cycles), the ensemble loses an
amount of about 10 percent of its kinetic energy. The average energy reaches a minimum
and then starts to increase slightly. The change in the mean energy is relatively small, i.e.
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Figure 1.2: Electron velocity (full line, right axis) and electric field (dotted line, left axis) versus
time for the first 10 RF-cycles. Results were calculated using a zero-dimensional Monte Carlo
model for argon at 1 Pa and 300 K.

less than 10 percent of the start value. The reason for the energy loss during the first RF-
cycles are collision processes. A Maxwellian electron energy distribution was used as a start
distribution of the ensemble when the simulation was started. Compared with a converged
solution, the Maxwellian distribution overestimates the number of electrons with energies above
the ionisation and excitation threshold. Inelastic collisions like excitation and ionisation cause a
loss of those high-energy electrons and cause a depletion in the high-energy region of the EEDF.
After the first ten RF-cycles the high-energy part of the distribution is depleted. The change of
the distribution function is shown in Fig. 1.4 in detail and will be discussed later.

The energy loss and the contribution of the different kinds of collision processes are also
shown in Fig. 1.3 (logarithmic scale, right hand axis). The dominating energy loss mechanism
are excitation processes. Ionisation causes a significant energy loss only right at the beginning
of the simulation, where the high-energy region of the EEDF is still populated. The rapidly de-
creasing number of ionisation and excitation events indicates that the depletion is a fast process
and that the time of ten RF-cycles is sufficiently long to reach a stable state.

The energy loss contributed by elastic collisions is mainly caused by the large number of
slow electrons and therefore does not react sensitively on the depletion of the high-energy region
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Figure 1.3: Averaged kinetic energy (linear scale, left hand axis) of the ensemble versus nor-
malised time. The full line is the average kinetic energy of the ensemble. Dotted and dashed
lines represent the energy loss ∆E per RF-cycle and electron due to elastic collisions, excitation
and ionisation (logarithmic scale, right axis).

of the EEDF. Therefore, the elastic energy loss remains almost constant.
Another result shown in Fig. 1.3 is of interest: The change of average kinetic energy caused

by the RF-oscillations (the periodic ripple) is less than one percent of the absolute value. This
corresponds with a directed (drift) velocity of the electron which is much smaller than the
average thermal velocity. The drift velocity of the electrons has a maximum value of 3 ·104 m/s
which is only a small fraction of the average thermal velocity vth ≈ 1.2 · 106m/s. This means
that the RF-field only causes a small modulation of the whole ensemble.

The change of the electron energy distribution function and its variation over the first few
RF-cycles is shown in Fig. 1.4, where energy distributions are given at various simulation times.
The simulation starts with a Maxwellian, i.e. linear distribution function on a logarithmic scale.
Already after one RF-cycle, a significant part of the high-energy electrons vanished because
they were scattered into the low energy part of the EEDF.

With increasing simulation time the high energy region depletes to form a Druyvesteyn
like distribution function as it is also known from experiment. While this depletion process
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Figure 1.4: EEDFs for various simulation times.

is finished after ten RF-cycles, the whole system is not yet in equilibrium. A calculation over
several hundred RF-cycles shows that a stable state is finally reached after approximately 100
cycles.

The overpopulation in the low energy region of the EEDF is characteristic for this final solu-
tion is (E < 2 eV). This overpopulation is caused by inelastic collisions (excitation, ionisation)
which scatter fast electrons in a region of low energy. Measurements as well as calculations
based on a numerical solution of the Boltzmann equation [51] show the same behaviour. Due
to the pronounced Ramsauer minimum in the elastic scattering cross section of argon (c.f. Fig
4.4), a scattering of low-energy electrons is a rare process which means that slow electrons are
trapped in the low-energy region, which corresponds with an overpopulation of the EEDF.

1.4.3 Discussion

The computationally simple approach to describe the movement of electrons in an alternating
electric field by integrating the equation of motion for each particle revealed a surprising amount
of results. Let us summarise the most important points:
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- A relatively low peak amplitude of E = 50V/m ensures the heating of the ensemble.

- The drift of the electrons is almost negligible compared with the random movement.

- The most significant energy loss is caused by excitations. Elastic collisions and ionisation
play a minor role.

- Starting from an idealised (Maxwellian) distribution, the EEDF is subjected to a rapid
change during the first few RF-cycles, but it takes a number of several hundred RF-cycles
to obtain a converged solution.

- The shape of the final EEDF with its characteristic depletion in the high-energy region
and overpopulation in the low-energy region agrees qualitatively well with experimental
data.

- To resolve statistically rare events like ionisation, a large number of simulation particles
is necessary. Only a few electrons exist, which have sufficient energy to perform an
ionisation. This correlates with the noise in high-energy regions of the EEDF which is
typical for MC.

- The minority of highly energetic electrons does not have a significant influence on the
average velocity of the whole ensemble. The conductivity of the ensemble is insensitive
with respect to changes in the high energy region.

- This result can be generalised: Phenomena like drift or diffusion are dominated by the
majority of particles with low energy, the so-called bulk of the EEDF. A bulk temperature
might be introduced to provide a measure of the mean energy of those electrons.

On the other hand, the limitations of this simple approach have also become clear. An
ensemble of 2 · 106 particles was necessary in order to get a reasonable resolution of the high-
energy part of the EEDF and to get rid of excessive noise on all extracted signals. To reach a
converged state, several hundred RF-cycles were necessary, each cycle had to be resolved by
100 steps which means that for the whole simulation 1010 times the equation of motion had to
be solved.

The suggested model does not provide any spatial information, it is zero-dimensional. This
approach might be justified for relatively large regions with a uniform electric field, but in order
to understand real world applications, it would be desirable to have a two-dimensional model.
As the computational effort for a zero dimensional case is already remarkably high, a gener-
alisation to one or two dimensions will require an increase in the efficiency of the algorithm.
However, during the last decades, users of Monte Carlo models have developed tools to increase
the efficiency like the nullcollison method [96] or the particle splitting [37] in order to enhance
the resolution in the high-energy regions of the EEDF.

Another problem is the noise caused by the underlying statistic processes like collisions.
In the presented case, noisy signals are just a disfigurement, while in more complicated ap-
plications noise in distribution functions can cause real problems like self oscillations [13].
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Sophisticated numerical techniques, like filtering in the frequency domain are then required to
avoid such artefacts.
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Chapter 2

Theory

The main advantages of Monte Carlo models are the comparably low effort for coding and the
close relationship to the physical reality. On the other hand they have certain disadvantages. As
they try to describe transport processes by directly solving the equation of motion for each single
particle, it might take too long for calculating a converged solution, even for simple problems.
In addition to the great demand for computing power, the statistical noise which is characteristic
for MC calculations, can cause problems especially when coupled systems including Poisson’s
equation have to be solved. These are the main reasons why many authors dealing with plasma
transport problems have chosen an approach based on partial differential equations rather than
on a single kinetic description of particles.

In this chapter a model class based on the Boltzmann equation and its moments, the so-
called hydrodynamic models will be derived and explained. Those models are also known in
the literature as fluid dynamic models.

2.1 Hydrodynamic models

As the derivation of hydrodynamic or fluid models is always based on a number of simplifying
assumptions, a great variety of similar, but nevertheless slightly different models exists which
have been used in order to simulate transport processes in low pressure discharges. In most
publications dealing with the application of hydrodynamic models the used equations are as-
sumed to be valid without further explanation. Textbooks in which a thorough discussion and
derivation of the model equations is performed like [95], [33] do not show results for realistic
discharges.

It is the intention of the section to give a brief overview of the theoretical background of
fluid dynamic models and the necessary assumptions. Starting from a very general approach,
the main simplifications will be discussed especially with the aim to find an appropriate model
system for low pressure plasmas.
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2.1.1 The Boltzmann equation and its moments

Transport problems (including accelerating forces and collisions) can be treated by solving the
fundamental equation dating back to Ludwig Boltzmann:

∂f

∂t
+ ~w ·

∂f

∂~r
+

q

m

(

~E + ~w × ~B
)

·
∂f

∂ ~w
=
δf

δt

∣

∣

∣

∣

∣

c

(2.1)

It describes the time evolution of the particle density f(~r, ~w, t) in the 6-dimensional config-
uration-velocity (phase) space. The particles are assumed to have the mass m and the charge
q. Acceleration of charged particles by electric ( ~E) or magnetic ( ~B) fields is then given by
q/m

(

~E + ~w × ~B
)

. Generation or destruction of particles (by impact ionisation, recombination

or chemical reactions) as well as collision processes are included in the collision operator δf
δt

∣

∣

∣

c
.

For a detailed discussion and derivation of this equation see [18], for example.
A combination of the Boltzmann equation for each particle species with the Poisson’s equa-

tion leads to the most rigorous description of low pressure plasmas from a physical point of
view.

Unfortunately, finding a solution for the resulting system is only possible for simple test ex-
amples. The numerical effort for more general cases is too high to get solutions in an acceptable
time using state of the art computers.

A way to reduce the six degrees of freedom is to multiply (2.1) with a set of test functions
and to integrate over the velocity space. This operation leads to conservation equations known
as the moments of the Boltzmann equation. A detailed discussion can be found in various
textbooks [99], [33], [95], [63].

The advantage of this procedure is that in the most general case, there remain only the
three spatial degrees of freedom. A solution of the so-called hydrodynamic equations can be
calculated using an appropriate discretisation scheme. From the field of computational fluid
dynamics various techniques (upwinding schemes) are known which are specially designed for
hyperbolic transport equations [77], [55], [78].

While the use of a set of conservation equations makes it possible to get an approximated
solution of the Boltzmann equation in an acceptable time, the method has certain disadvantages:

- A finite number of moment equations must be used. At some point the series has to be
truncated. In order to do this, some assumptions about the distribution function in the
velocity space must be made.

- A combination of the moment equations for a variety of different particle species can
result in a system which is numerically stiff. It might be impossible or could take an
unacceptable amount of time to find a solution.

In contrast to the technical problem to find a numerical solution, from a scientific point
of view, the fact that assumptions about the distribution function have to be made, are the
most serious drawback. Since collision cross sections for ionisation and excitation of heavy
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particles in the plasma have discrete threshold energies, they tend to influence the electron
energy distribution (EEDF) strongly in energy regions close to the threshold energy.

The depletion in the high-energy tail of the distribution is qualitatively demonstrated in Sect.
1.4.1. A variety of theoretical as well as experimental works exists [109], [52], [17], [51], [8],
where the deviation from a Maxwellian distribution is discussed for low pressure applications.

A typical Langmuir probe measurement demonstrating the non Maxwellian shape of an
EEDF is shown in Fig. 2.1. The measurement was carried out in an argon discharge operating
at a pressure of 0.1Pa. The figure shows the second derivative of the measured current-voltage
characteristic. This quantity is directly proportional to the electron energy distribution function
[105].
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Figure 2.1: Electron energy distribution function measured by a Langmuir probe in a low pres-
sure (0.1 Pa) argon discharge. For low energies the distribution function can be approximated
by a Maxwellian (exponential) EEDF while for energies higher than 10 eV the measurement
shows significant differences compared with the Maxwellian EEDF. This is due to a depletion
of the tail of the EEDF caused by excitation and ionisation cross sections.

The obviously visible depletion in the high energy region demonstrates the limited range in
which a Maxwellian energy distribution is an acceptable assumption. This illustrates an impor-
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tant point of criticism which might be raised against fluid dynamic models. Ionisation processes
which are essential for the existence of the plasma only depend on the energy distribution of
electrons over the ionisation threshold. On the other hand, the number of those energetic elec-
trons is influenced by ionisation and excitation processes.

A common simplification is to neglect the depletion and to assume an Maxwellian energy
distribution and a local electron temperature Te(~r). This electron temperature can be calculated
using an energy conservation equation. The effects of such a simplifying assumption will be
discussed in the experimental section of this work.

Another approach to attack the problem of the unknown shape of EEDFs is the use of hybrid
models, i.e. a combination of a fluid model with a Monte Carlo model [98], [28], [116]. As
has been demonstrated in Sect. 1.4.1, the conductivity of the ensemble is dominated by the
large number of low energy electrons. Generally, this is also valid for transport processes like
diffusion or heat conduction. In order to describe these transport processes, the assumption of
a Maxwellian EEDF might be sufficiently accurate. On the other hand, the rates for ionisation
and excitation processes are crucially influenced by the typical depletion of the high energy tail
of the EEDF. Information about this part can be obtained by Monte Carlo calculations or the
approximate direct solution of the Boltzmann equation.

Conservation equations for mass and momentum have already been used in pioneering pub-
lications dealing with gaseous electronics, like [92] and [107]. The conservation laws, which
can be derived from the Boltzmann equation by multiplying it with appropriate functions and
integrating over the velocity space, have been known for many decades [19]. An application
for charged species was demonstrated in [99]. Driven by technological advance and increasing
computing power, a rapid development took part in the last decade where many calculations
have been carried out in order to understand or optimise applications of industrial relevance. A
general overview of the historic evolution of plasma models can be found in [56].

Models based on the moments of the Boltzmann equation are called fluid dynamic models.
As the series of conservation equations can (theoretically) consist of an arbitrary number of
equations for each species in the plasma, the question should be answered: How many equations
are necessary? Furthermore, one has to decide how to close the series with an appropriate
assumption of the energy distribution function. While the use of higher order approximations
should lead to a more precise approximation of the physical reality, this has certain drawbacks.

The resulting system could be numerically unstable or it might be difficult to find an as-
sumption of the distribution function to close the series of equations. Besides, for each equation
an integral over the collision term has to be evaluated. This change of mass, momentum, energy
etc must be known for each species.

For most applications, a reasonable compromise between effort and accuracy is a model
consisting of not more than three conservation equations. Comparative studies of glow dis-
charges are given in [43], [62] or [74], for example.

2.1.2 Conservation of mass

The integration of (2.1) over the velocity space without a weighting function leads directly to
the conservation of mass:
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∂n

∂t
+∇ · (n~v) = G−R. (2.2)

Here n = n(~r, t) denotes the particle density per volume which can be obtained from
f(~r, ~w, t) by integration over the velocity space:

n(~r, t) =
∫

+∞
∫

−∞

∫

f(~r, ~w, t) dwxdwydwz. (2.3)

The average drift velocity of the particles v(~r, t) can be calculated by multiplying f with ~w
and integrating over the whole velocity space:

v(~r, t) =
1

n(~r, t)

∫

+∞
∫

−∞

∫

~w f(~r, ~w, t) dwxdwydwz. (2.4)

The generation or destruction of particles by impact ionisation, recombination or chemical
reactions are given byG−R. Here G represents all the processes that lead to a generation while
R is the particle loss.

2.1.3 Conservation of momentum

In a similar way, a conservation equation for momentum can be derived. Again (2.1) is mul-
tiplied with a weight function, in this case a product of the particle mass m and the velocity
vector ~w. In the following, the influence of magnetic fields will be neglected. The integration
over the whole velocity space then gives:

∂

∂t
(nm~v) +∇ ·Ψ− qn ~E =

∫

+∞
∫

−∞

∫

m~w
δf

δt

∣

∣

∣

∣

∣

c

dwxdwydwz. (2.5)

A change in momentum is caused either by diffusion processes given by the divergence of
the pressure tensor Ψ, by the acceleration in the electric field ~E or by collision processes. The
components of the pressure tensor Ψ might be calculated carrying out the following integration
over the whole velocity space:

Ψij =
∫

+∞
∫

−∞

∫

mfwiwj dwxdwydwz. (2.6)

In this general form the drift of the particles with the mean velocity ~v is considered as well as
their random movement. In order to separate the drift from the random movement, the velocity
~w might be divided into a sum of average velocity ~v and thermal velocity ~u:

~w = ~v + ~u,

and the components of Ψ take the form
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Ψij = mnvivj +m
∫

+∞
∫

−∞

∫

f(~u+ ~v)uiuj duxduyduz. (2.7)

In cases in which the distribution function is isotropic, in (2.7) the integral over the random
velocity has only non vanishing values in its trace. If the ensemble of particles has a non-zero
drift velocity ~v, an isotropic distribution function can be used, which is is centred around ~v:

f(~r, ~w, t) = f0(~r, |~w − ~v| , t) = f0(~r, |~u| , t). (2.8)

Due to symmetry considerations the off-trace components vanish and all the components on
the trace take the same value. A local particle temperature T (~r, t) can be defined so that the
mean random kinetic energy of all particles at the same location can be expressed by T :

1

n

∫

+∞
∫

−∞

∫

m |~u|2

2
f0(~r, |~u| , t) duxduyduz =:

3

2
kT (~r, t). (2.9)

With this definition the integral expression in (2.7) takes the form:

Ψij = mnvivj + δijnkT, (2.10)

where δij is the Kronecker symbol. In addition, a scalar partial pressure p can be defined by

p = nkT, (2.11)

which leads us finally to the following form of the conservation of momentum:

∂

∂t
(nm~v) +∇ · (nm~v~v) +∇p− qn ~E =

∫

+∞
∫

−∞

∫

m~w
δf

δt

∣

∣

∣

∣

∣

c

dwxdwydwz. (2.12)

At this point, it should be emphasised that the time derivative of the momentum ∂mn~v/∂t
depends on the particle density n. It might be useful to eliminate the particle density in order to
get an equation to describe the time evolution of the velocity ~v independently of the density n.

This can be achieved by some algebraic operations and the use of the conservation of mass,
which leads to the following formulation:

nm

(

∂~v

∂t
+ ~v · ∇~v

)

= qn ~E−∇ (nkT )−mn~v (G−R)−
∫

+∞
∫

−∞

∫

m~w
δf

δt

∣

∣

∣

∣

∣

c

dwxdwydwz. (2.13)

2.1.4 Conservation of energy

The average kinetic energy ε of the particles is a scalar quantity and given by
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ε =
1

n

∫

+∞
∫

−∞

∫

m |~w|2

2
f(~w) dwxdwydwz. (2.14)

Using ε as a weight function and carrying out the integration of (2.1) over the whole velocity
space, we can derive a conservation equation for the particle energy:

∂(nε)

∂t
+∇ · ~Γ = qn ~E~v + Ph − Pc. (2.15)

The time derivative of the energy per volume is given by the divergence of the energy flux
~Γ and the acceleration in the electric field ~E. Heating terms are considered by Ph, the energy
loss because of collisions by Pc.

In this formulation ε includes kinetic energy caused by the drift of the particles as well as by
the random movement. A separation of energy εd associated with the drift of the particles and
energy εr given by random movement might be useful:

ε = εd + εr with εd =
m

2
|~v|2 and εr =

3

2
kT. (2.16)

The total energy flux vector ~Γ can then be expressed by

~Γ = ~q + n~v (εd + εr) +mψ~v, (2.17)

where the vector ~q represents the heat flux given by

~q =
∫

+∞
∫

−∞

∫

f(~u)~u |~u|2 duxduyduz, (2.18)

and the pressure tensor ψ is defined by

ψij = m
∫

+∞
∫

−∞

∫

f(~u+ ~v)uiuj duxduyduz. (2.19)

In the case of an isotropic distribution function f , the pressure tensor ψ has only diagonal
components which all have the same value nkT , and the heat flux vector ~q vanishes. Therefore
the energy flux vector ~Γ finally takes the form:

~Γ =
5

2
nkT~v + nεd~v (2.20)

2.2 Application of hydrodynamic models for low pressure plas-
mas

The discussed conservation equations for mass, momentum, and energy are theoretically valid
for all species which are present in a plasma discharge (electrons, ions and neutrals). Unfortu-
nately, a direct implementation, especially for more dimensional problems, leads to numerical
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instabilities and an unacceptably high demand for computational power. Some authors report
that discretisation schemes, well known from classical fluid dynamics, are not applicable to
plasma simulations [7]. Therefore, it is desireable to find simplifications which reduce the nu-
merical instabilities and/or the complexity of the problem.

One dimensional glow discharge simulations, which use three moments for electrons and
two-moments for ions, have already been performed 10 years ago [71], [43]. For two-dimensional
setups, it seems to be useful to neglect the momentum balance for electrons. The electron flux
is directly calculated from the partial pressure gradient, the electric fields, and the electron mo-
bility (drift diffusion approximation).

In the following part of this section the different possibilities for a complete set of model
equations will be discussed. Especially, the case of inductively coupled discharges will be
considered. The underlying simplifications and assumptions will be discussed.

2.2.1 General properties of low pressure plasma

The conservation equations for mass, momentum, and energy are valid in a very general sense.
To assemble a stable and efficient model for low pressure discharges, it might be useful to
consider some typical properties of low pressure plasmas.

Typically, low pressure discharges show a degree of ionisation in the range of 10−6 - 10−2.
Most particles in the discharge are neutral and only a small amount of charged particles ex-
ists. Nevertheless, the properties of this mixture of neutrals, electrons, and ions are crucially
influenced by the presence of those charged species. Especially, chemical reactions like the pro-
duction of free radicals is driven by energetic electrons. Also species can be produced which
are chemically not stable. Another key feature is the low temperature of the neutral particles.
Electric energy can be transferred to the electrons while the neutral gas remains almost cold.
This is a key feature, being exploited in manufacturing microelectronics where substrate materi-
als tend to be temperature sensitive. Last but not least, the anisotropic etching processes should
be mentioned which essentially depend on the directed flux of positive ions towards surfaces.
Modern integrated circuits containing high aspect ratio features like trench capacitors, as used
for DRAM fabrication, are based on this effect.

While the properties of a low pressure plasma are determined by the presence of all kinds of
charged carriers (electrons, positive and negative ions), it must be emphasised that the properties
of electrons, positive ions, and negative ions are totally different.

When electric or magnetic RF-fields are applied, electrons are the charged species which
is heated most effectively. The reason is their large ratio of charge to mass. In the discharge
bulk the negative charge of the electrons in the plasma is approximately compensated by an
equal amount of positive ions1. The ions in the plasma are not in thermal equilibrium with the
electrons. Consider the following properties:

The mass ratio of mi/me = 1840 for hydrogen ions and mi/me = 72700 for argon ions.

1This is commonly known as quasineutrality. In the presence of negative ions this means that the charge density
of positive and negative carriers locally adds to zero.
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When we assume an average energy of electrons and ions in the same order of magnitude2,
the mean velocity of electrons is therefore much larger. The mass ratio is also the reason why
electrons show a much higher mobility and contribution to the electrical conductivity of the
plasma.

Electrons can be heated selectively, because an exchange of energy for the case of an elastic
collision of an electron with a neutral atom or an ion is very inefficient due to the mass ratio.
Collisions cause a deflection of the scattered electron but do not lead to a significant loss of
energy. The opposite happens when the energy of the electron is sufficiently high to cause an
excitation or ionisation. In this case the electron loses most of its kinetic energy.

As electrons on average are much faster than ions, statistically more electrons will be ab-
sorbed by the walls surrounding the plasma. This actually happens directly after the ignition of
the discharge and leads to an accumulation of negative charge on the walls. In a steady state,
electron and ion fluxes (time averaged) have to be equal. This is achieved by a coupling of
the diffusion processes of fast electrons and slow ions. This mechanism is known as ambipolar
diffusion, which means that an electrostatic potential exists which accelerates the diffusion of
positive ions and slows down fast electrons in order to match the ion current. Electrons are
confined by the potential, positive ions are driven. The potential well in which the electrons are
confined causes a reflection of low energetic electrons and acts as an energy selective barrier.
Electrons cannot leave the discharge before they acquired sufficient energy to overcome the po-
tential barrier. Those electrons with less energy stay in the discharge and keep being reflected
by the sheath regions.

Generally, ions might be considered to be the passive species of the plasma. The electric
field in the whole plasma, including the sheath region, drives the transport of positive ions to
the walls. Because ion mass is typically in the same order of magnitude as the mass of the
corresponding neutral particles, they can very effectively exchange momentum by collision
processes with neutrals (c.f. section 4.2).

The active species in the plasma are the electrons. They are responsible for ionisation pro-
cesses in the bulk of the discharge. They are able to gain energy from externally applied electric
and/or magnetic fields and to transfer this energy to the ions by the mechanism of ambipolar dif-
fusion. The greatest part of the plasma’s electrical conductivity is caused by the high mobility
of the electrons.

The mentioned differences must be considered in an appropriate system of model equations.
A physically rigorous model has to reflect the fundamental differences of electrons and ions. In
the following, the mathematical and numerical aspects will be discussed.

2.2.2 Conservation of mass

The most fundamental conservation equation derived from (2.1) is the conservation equation of
mass (2.2). It is valid for any species in the plasma and expresses the fact that matter cannot be
destroyed or generated. However, processes like ionisation, dissociation or recombination force

2Under typical conditions, ion energy is even much smaller than electron energy as ions thermalize very effec-
tively with the cold neutrals [63].
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a particle to undergo transition from one species to another. These generating or destructive
processes have to be considered.

In the following, the plasma is assumed to consist of neutrals, electrons, and positive ions.
Multiple charged ions will be neglected. In the case of electrons and positive ions the conserva-
tion of mass reads:

∂ne

∂t
+∇ · (ne~ve) = G− R, (2.21)

∂ni

∂t
+∇ · (ni~vi) = G− R. (2.22)

Here, ne, ni denote electron and positive ion density, respectively, and ~ve, ~vi the correspond-
ing drift velocities. The generation of particles by impact ionisation produces an ion-electron
pair which has to be considered in both of the conservation equations. The generation rate G
is defined as the number of generated ion-electron pairs per time. In contrast to generation,
recombination leads to a pairwise destruction of electrons and ions. A recombination rate R
describes the particle loss per volume and time.

A conservation equation might also be used for neutral particles:

∂nN

∂t
+∇ · (nN~vN) = R−G. (2.23)

Note that on the right hand side the term R − G has the opposite sign to those in (2.21)
and (2.22). Every generation of an ion-electron pair is a destruction and every recombination a
production of a neutral particle.

The equations (2.21)-(2.23) describe the time evolution of a particle density. A change of
density can be caused by a particle generation or destruction given by R and G and by a particle
accumulation or depletion by transport processes given by ∇ · (n~v). It is common to define a
vector quantity ~j := n~v for the particle flux. Using this definition, (2.21), (2.22) read:

∂ne

∂t
+∇ · ~je = G− R, (2.24)

∂ni

∂t
+∇ · ~ji = G− R. (2.25)

2.2.3 Conservation of momentum

The conservation equation for mass describes the time evolution of the particle density. It
depends on the average particle drift velocity ~v defined in (2.4). The time evolution of this
quantity is given by (2.5). Acceleration of charged particles by an electric field as well as diffu-
sion caused by density gradients are considered. Knowledge of a tensor quantity Ψ describing
the momentum flux would be required to evaluate this equation. A common simplification is
to assume an isotropic energy distribution which causes the off-diagonal elements of Ψ to be
zero. When we introduce a particle temperature T , the divergence of Ψ can be expressed as the
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gradient of the scalar partial pressure p given by p = nkT . Under these assumptions, and in the
case of positive single charged ions equation (2.5) gives:

nimi

(

∂~vi
∂t

+ ~vi · ∇~vi

)

= nie ~E −∇ (nikTi)− ~Pmi − nimi~vi(G− R). (2.26)

As ions tend to thermalize effectively with neutrals by frequent charge exchange collisions,
it might be assumed that the ion temperature is in the order of the neutral gas temperature.
Therefore, for low pressure discharges, where the neutral gas temperature, is in the order of
room temperature the influence of ∇ (nikTi) can often be neglected. The mentioned charge
exchange collisions with neutrals represent the dominant term in ~Pmi which describes a loss of
momentum. ~Pmi can be expressed as follows, assuming that the momentum loss is proportional
to the ion drift velocity:

~Pmi = nimi~viνmi, (2.27)

with νmi denoting the momentum loss frequency. As collisions become more frequent with in-
creasing ion velocity, νmi has to be considered as velocity dependent. In Chapter 4 experimental
data and approximate analytical expressions will be presented.

As already mentioned in Sect. 2.2.1, the situation for electrons turns out to be fundamentally
different. Formally, the conservation of momentum is very similar to (2.26):

neme

(

∂ ~ve
∂t

+ ~ve · ∇~ve

)

= −nee ~E −∇ (nekTe)− ~Pme − neme~ve(G− R). (2.28)

The momentum loss by collisions again might be expressed by a product of mass, velocity
and collision frequency:

~Pme = neme~veνme. (2.29)

Contrary to ions whose drift velocity normally exceeds their thermal velocity, electron drift
velocities are typically much smaller than their thermal velocity (c.f Sect. 1.4). The momentum
exchange frequency for electrons νme is an averaged value which generally depends on the
density of the neutral particles, the corresponding momentum exchange cross section, and the
EEDF. For details see Chapter 4.

Comparing the momentum conservation equations of ions (2.26) and of electrons (2.28), a
few but important differences have to be discussed: As the electron mass is at least three orders
of magnitude smaller than the ion mass, the left hand side of (2.28) becomes very small and
might eventually be neglected. On the other hand, the product of the electron temperature Te

and the Boltzmann constant k is in the order of a few electron volts for typical low pressure
discharges. Therefore, the ∇ (nekTe) term becomes one of the most important contributions to
the right hand side. Please note that due to the negative charge of electrons, the sign of the term,
which describes the influence of the electric field, is exactly the opposite of that in (2.26). This
expresses the fact that electrons are retarded where ions are accelerated or vice versa.
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(2.29) shows that the contribution of collisions is small because the collision term is propor-
tional to the electron mass me. The discussion of the different contributions in (2.28) revealed
the fact that only two terms, namely the gradient of the partial pressure ∇ (nekTe), and the
momentum change in an electric field −nee ~E have a significant influence. Neglecting the left
hand side as well as the term neme~ve(G−R) and re-arranging the resulting expression, we get:

neme~veνme = −nee ~E −∇ (nekTe) , (2.30)

wherefrom the electron flux can easily be calculated:

~je = ne~ve =
−nee ~E −∇ (nekTe)

meνme
. (2.31)

This formula is known as the drift diffusion approximation of the electron flux. The electron
flux is driven by an electric field (causing drift) and by a concentration gradient (causing diffu-
sion). The replacment of the general expression (2.26) by (2.31) has numerical advantages. The
drift diffusion approximation has been used in the field of semiconductor device simulation for
decades and various numerical techniques have been developed to solve the resulting system.
For a brief review see [5], [30].

It has to be emphasised that neglecting the left hand side of (2.28) might be an assumption
which is not valid in all cases. In (2.31) the current vector is dependent on the local electric
field and on the density and temperature gradient. This means that there is a local equilibrium
of momentum gain and loss. As a consequence, particles cannot transport the momentum which
they gained in one location to another location.

A comparison of both model approaches will be presented in Chapter 5 of this work . The
important effects caused by electron inertia will be discussed in more detail there.

Recall that the drift diffusion model was derived by neglecting the inertia term in the mo-
mentum conservation equation. For electrons, due to their little mass, this assumption might be
valid in a wide range of applications. In the case of ions, this can cause problems. However,
many authors like [6], [35], [116], [65], [28] used the drift diffusion approach also for ions. In
the plasma bulk drift-diffusion might be a good approximation, in the sheath regions it is defi-
nitely not, as especially in high density applications the sheath thickness is many times smaller
than the ion mean free path. This means that collisions of ions and neutrals in the sheath are
rare and most ions pass the sheath without a collision. The average velocity of ions is therefore
mainly determined by the potential drop between the sheath edge and the actual position in the
sheath. The use of the drift diffusion approximation would express the actual speed only as a
function of the local electric field and the concentration gradient.

In other works a compromise of drift diffusion approximation and a full momentum con-
servation equation was chosen by the introduction of a so-called effective electric field [84],
[65]. This approach considers inertia terms in those cases where the driving electric field shows
variations in time, but does not properly describe the transport of momentum.

In the case of negative ions the situation is different. The electric field tends to concentrate
negative ions in the bulk of the discharge, and their thermal energy is normally small compared
to the voltage drop in sheath regions. A significant amount of negative ions exists only in the
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bulk of the discharge. The use of a drift diffusion model makes sense because the electric field
is low enough in the bulk region.

2.2.4 Conservation of energy

As the discussion of the equation of motion (2.12) showed, the different specific properties
of electrons and ions have to be considered in order to set up an appropriate model for low
pressure discharges. In the case of energy transport, ions and electrons show fundamentally
different behaviour, again.

Ions might be considered as the passive species of plasma, an electric field pointing from the
plasma centre towards the walls forces them to leave the discharge. They thermalize effectively
with the neutral gas background by charge exchange collisions. Due to their limited thermal
energy, they cannot move in opposite direction of the electric field lines. Therefore, the energy
as well as the momentum transport are only performed in the direction of the electric field. A
good analogy in real life is a waterfall. Water coming from the top of the fall is accelerated by
the force of gravity. The molecules are accelerated, but not heated, they eventually thermalize
with the ambient air. Finally, at some point the waterfall hits the ground. A transport of matter
and energy is only possible from top to bottom. Changing the level where the fall ends does not
significantly affect the upper part of the fall.

During the discussion of (2.12) it was already shown that the effect of ion temperature may
be neglected as the contribution of the ion temperature given by ∇nikTi is small. The series of
moments can be truncated after the equation of motion. A constant temperature, for example,
equal to the neutral gas temperature is a possiblity. Using an energy conservation equation for
positive ions in order to calculate a local ion temperature is possible but does not have significant
influence on the equation of motion and does therefore not have any influence on the transport.
For these reasons, a local ion temperature has not been considered in this work.

The situation is fundamentally different for electrons. They are the active species of the
plasma and possess a high thermal velocity. The same potential distribution which accelerates
the positive ions towards the walls causes a confinement of electrons. While an electron stays
in the plasma, frequent reflections at the potential well occur. The thermal (random) movement
exceeds the drift velocity and a transport of momentum is possible in any direction. When
electrons are heated locally (for example in a magnetic RF field), they will be able to transfer
this energy by heat conduction to other parts of the discharge. This transport of energy can be
expressed in a general form using (2.15).

As the thermal (random) energy εr dominates the kinetic energy εd (associated with the drift
energy) a simplified version of (2.15) can be used:

∂(nεr)

∂t
+∇ · ~Γ = qne

~E~v + Ph − Pc. (2.32)

The corresponding heat flux vector ~Γ can be divided into a convective part and a heat flux
which is driven by a temperature gradient:
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Γe =
5

2
~jekTe −

5nekTe
2meνee

∇kTe. (2.33)

The collision frequency νee between electrons and neutral particles determines the thermal
conductivity and, therefore, the heat flux driven by a temperature gradient. As the underlying
theory is beyond the scope of this work, for the derivation of (2.33) is referred to [95], [33].

It should be mentioned that in the case of low pressure, i.e. when the mean free path of
electrons is at least in the order of the discharge dimension, the thermal conductivity becomes
so large that no significant temperature differences exist in the discharge. In this case it is a
good approximation to assume the electron temperature is constant. This does not only sim-
plify the resulting system of coupled equations, but is also a possibility to model low pressure
discharges, irrespective of the mode of heating. If the temperature in the plasma can be assumed
to be constant, it does not matter where and how the plasma is heated. In this case, the model
equation for a DC discharge, a CCP or an ICP are the same. The only remaining task is to find
the eigenvalue of this constant electron temperature which corresponds to the geometry of the
discharge. In the one-dimensional case this issue as well as the question of boundary conditions
have been thoroughly discussed in [110], [112], [114] and [115].

2.3 Energy transfer to the plasma

2.3.1 Heating of the discharge

The existence of a technical plasma depends on the power which is coupled into the discharge.
Energy transfer can be achieved by applying static or time varying electric fields. In the case
the discharge is inductively driven, energy transfer is caused by an alternating current in a coil
producing an induced electric field. Typically, the coil is mounted outside the actual discharge
vessel, which means that the plasma does not come into contact with it. The discharge can be
considered to be electrodeless.

The time varying magnetic field, resulting from a current in the antenna coil, causes in-
duction of an electric field. Assuming an azimuthal symmetry of the setup, the field lines of
this electric field are ring shaped and parallel to all the surfaces. This means that no RF-driven
acceleration towards the boundaries of the discharge occurs like in capacitively coupled dis-
charges. Therefore, the RF-current causes a heating of the plasma but does not attract charged
particles towards the electrodes. Inductive discharges do not show self bias voltages and drastic
acceleration of ions in the sheath regions as capacitive discharges do.

In direct comparison with CCPs, the concept of inductive coupling leads to electron densities
which can be more than one order of magnitude higher for an equal input power and neutral
gas pressure. However, the energy transfer to the plasma is limited when the plasma’s electrical
conductivity exceeds a certain level. The resulting eddy currents in the plasma will then induce
a magnetic field in the opposite direction to the field of the coil. This limits the energy transfer
to the plasma and is known as the skin effect.
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Figure 2.2: Energy flux diagram of ICPs.

The mentioned mechanism is shown in Fig. 2.2 in a schematic way. Power is transferred to
the plasma by a coil current which induces an electric field. The electric field causes a heating
of the electrons in the discharge and an increase of the electron temperature. This enhances the
production of electron-ion pairs by impact ionisation. The electron density rises and leads to
a higher electrical conductivity. The eddy currents increase and this finally causes a reduction
of the net induced electric field in the discharge. At this point the loop is closed, the energy
transfer to the plasma is reduced. Finally, the discharge reaches an equilibrium in which density
and temperature remain constant.

Another important detail can be understood by the application of this very general model:
Experimental evidence indicates, that under typical process conditions, the density distribution
in ICP discharges remains constant once the discharge has reached a stable state 3. A constant

3Long time probe measurements prove that electron density can keep changing during the first minutes of
the discharge operation. This indicates that thermal time constants can have significant influence on discharge
parameters. It is also known[45] that in the presence of negative ions and under certain operating conditions,
discharges can show a permanently unstable behaviour. For further considerations such cases are going to be
neglected.
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electron density distribution only can exist when the generation of electron-ion pairs by electron
impact ionisation is exactly balanced by the transport processes, which transfer the charged
particles to the walls4. The assumption of stability, i.e. a not time varying state, implicitly
determines the volume generation of electron-ion pairs and therefore the electron temperature.
Under idealised conditions one might assume the existence of one eigenvalue of the electron
temperature. This problem will be discussed in detail in Sect. 5.1.2.

2.3.2 Electrodynamic model

While the previous chapter dealt with the heating in a very general way, an appropriate elec-
trodynamic model for inductively coupled discharges must express the heating of the plasma
in dependence of the geometry parameters and the coil currents. Fig. 2.3 shows a schematic
sectional drawing of an inductively coupled discharge.

The ICP discharge consists of a reactor chamber, in this example made of stainless steel (D),
a dielectric window (B), and a set of coils (E). To prevent radiation of RF to the environment,
a shielding (F) is mounted above the coils. This shielding can be assumed to be perfectly
conducting, and it serves as the outer boundary of a simulation domain. The permeability of all
materials can be assumed to be that of the free space µ0.

An alternating current~jext in the coils which is driven by an external RF-generator induces a
time varying magnetic field in the discharge chamber. The resulting induced electric field heats
the plasma. In order to calculate the value of the electric field, the conductivity of the different
materials has to be considered. The calculation of the field distribution can be significantly
simplified when the whole setup is considered to be rotational symmetric. We therefore neglect
the influence of the connections between the ring-shaped coils and the RF-power supply.

An electrodynamic model can be derived from Maxwell’s equations. The starting point are
Ampere’s law and Faraday’s law:

∇× ~E = −
∂ ~B

∂t
, (2.34)

∇× ~H = ~j +
∂ ~D

∂t
. (2.35)

Assuming time-harmonic dependence for all quantities of the form exp(iωt), the time deriva-
tives can be replaced by multiplication with a factor of iω. Using the constitutive relations
~D = εrε0 ~E and ~B = µ0

~H , one gets from the equations (2.34), (2.35):

∇× ~E = −iω~B, (2.36)

∇×
1

µ0

~B = ~j + iωεrε0~E. (2.37)

4For typical low pressure plasmas volume recombination of positive ions and electrons can be neglected.
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Figure 2.3: Simplified sectional drawing of an ICP discharge. The simulation domain can be
divided into areas with different properties: (A) region outside the discharge, σ = 0. (B)
dielectric window made of quartz glass, nonconducting εr ≈ 4, σ = 0. (C) discharge volume
filled with plasma. εr = 1, σ > 0. (D) discharge chamber made of stainless steel, εr = 1,
σ � 0. (E) coils, ~j = ~jext. (F) Shielding σ −→ ∞

By some algebraic operations, a differential equation for the electric field ~E can be derived,
combining (2.36) and (2.37):

∇∇ · ~E −∆~E = −iωµ0

(

~j + iωεrε0~E
)

. (2.38)

If no space charge exists, Coulomb’s law reads:

∇ · ~E = 0. (2.39)

The plasma might be considered as quasi neutral, therefore the term ∇∇· ~E vanishes. Using
the vacuum speed of light c0 = (ε0µ0)

−1/2, (2.38) takes the form:

∆~E +
εrω

2

c20
= iωµ0

~j. (2.40)

So far, no simplifying assumptions were made except that the existence of space charge was
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neglected, and that all the time dependent quantities vary with the frequency ω. The case of
sheath regions, where a space charge exists, will be discussed in Sect. 2.3.3.

Before an actual solution of (2.40) can be calculated, a few more manipulations are neces-
sary. It is a common approach to introduce a complex conductivity σ in order to express the
current density ~j by the electric field ~E:

~j = σ~E. (2.41)

In the plasma the electrons’ inertia causes a phase shift between the electric field and the
electron current. The phase shift depends on the RF-frequency and on the number of collisions,
which cause a deflection of the electrons. Various textbooks describe this in detail, e.g. [95]. In
the plasma region a complex conductivity

σ =
nee

2

me (νme + iω)
(2.42)

can be defined, which includes the phase shift caused by an elastic electronic-neutral col-
lision rate νme. Different authors describing the heating of inductive discharges [44] used this
approximation for the plasma conductivity while in other works it was pointed out that in a
certain range of parameters more effort has to be spent [64]. A more sophisticated conductivity
model will be discussed in Sect. 4.3.1 in detail.

Using equation (2.41), for most parts of the simulation domain an equation can be derived
from (2.40), which only contains ~E. Only the coil region is problematic. However, this problem
can be solved by introducing an externally driven coil current. Therefore, σ is set to zero in the
coil region and a source term ~j

ext
for externally driven currents is included. This finally leads

to:

∆~E +

(

εrω
2

c20
− iωµ0~σ

)

~E = iωµ0
~j
ext
. (2.43)

This differential equation for the electric field ~E might be interpreted as a wave equation

∆~E + k2~E = iωµ0
~j
ext

(2.44)

with

k2 = εr
ω2

c20
− iωµ0σ. (2.45)

In order to solve it, appropriate boundary conditions are required. We have to consider
regions (see Fig. 2.3) with different material properties:

- (A) air: σ = 0, εr = 1.

- (B) quartz window: σ = 0, εr ≈ 4.

- (C) plasma: |σ| > 0, εr = 1.
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- (D) conducting wall: σ >> 0, εr = 1.

- (E) coils: ~j = ~jext.

- (F) shielding: σ −→ ∞.

Assuming an azimuthal symmetry of the problem, only the azimuthal component EΘ of the
electric RF-field has a nonzero value. The resulting scalar differential equation for the RF-field
then reads:

∆EΘ + k2EΘ = iωµ0jΘ. (2.46)

The main reason for developing an electrodynamic model of the plasma was to calculate the
power transferred to the plasma by ohmic heating. The power Ph per volume transferred from
the electric field is then given by:

Ph = <{σ} |EΘ|
2 . (2.47)

2.3.3 RF-fields versus electrostatic fields

At this point a few summarising remarks can be helpful. Assuming azimuthal symmetry and
sinusoidal time variations (angular frequency ω), a scalar equation (2.46) could be derived from
which the azimuthal electric field EΘ can be calculated. The source for this electric field is
an externally driven coil current distribution j

Θ
. This current distribution has to be known and

will in general be determined by the conductivity of the coils, the frequency ω, and the size of
the coils (skin effect). However, in a sufficient distance from the coils the integral value has
significant a influence rather than the distribution of the current. For example, a homogeneous
current distribution might be used for the coil regions.

The reduction of the general wave equation (2.43) to a scalar equation (2.46) was based
on the assumption of rotational symmetry. For real applications this is in many cases a good
approximation and has obvious advantages. As mentioned before, the coil current j

Θ
as well

as the resulting electric field EΘ are parallel to the walls of the discharge chamber. This means
that acceleration of the electrons (or ions) in the RF-field is always parallel to the walls, too.
This is a key feature of inductively driven (electrodeless) discharges. The RF-field causes no
acceleration towards any electrode. Therefore, a decoupling of the RF-heating and the transport
processes becomes possible.

While the time varying electric RF-field EΘ causes a periodic acceleration of charged parti-
cles in the Θ-direction, space charges will cause an (electrostatic) field in the r- and z-direction.
In order to calculate this field, Poisson’s equation can be used:

∆Φ =
e

ε0
(ne − ni). (2.48)

The electrostatic field ~E, which is related to the potential Φ, is given by:
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~E = −∇Φ. (2.49)

Please note that ~E has real components and is in any case perpendicular to the RF induced
complex electric field denoted by EΘ. In a system model both fields can be calculated totally
independently.
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Chapter 3

Implementation

In the previous chapter, a system of equations describing the general time evolution of parti-
cle densities and velocities in a low pressure discharge was presented. For actually obtaining
numerical solutions of this system, a discretisation strategy as well as the boundary conditions
have to be known.

Furthermore, all collision processes leading to particle generation, recombination, change
of particle momentum or energy have been discussed on a very general level, so far. In this
chapter a discretisation strategy, especially designed for the conservative nature of the trans-
port equations, will be presented. Also, important collision processes including ionisation, and
elastic scattering of electrons, will be discussed in detail.

3.1 Application of hydrodynamic models

The applicability of conservation equations on low pressure plasma transport processes has al-
ready been recongnised in the pioneering works of Schottky [92] or Tonks and Langmuir [107].
But particularly since the numerical treatment of differential equations had become possible,
numerous authors published works about low pressure plasmas. One of the early examples is
the publication of Allen, Boyd, and Reynolds [1] which deals with the collection of positive
ions by a negatively biased Langmuir probe. Many of the early works dealt especially with
the development of theories describing electrical probes, in order to have an instrument with
which quantitative plasma diagnostic could be performed. So Bernstein and Rabinowitz [11],
who presented a more generalised ion collection theory assuming monoenergetic ions. Due to
a further increase in available computing power in 1966, Laframboise [58] could calculate ion
and electron currents under the assumption of a Maxwellian energy distribution. The reader
who is interested in the development of probe models and their evolution is referred to the book
of Swift and Schwar [105].

Parallel to the development of probe models, conservation equations were used to describe
general transport processes in low pressure discharges. One of the early examples is the work of
Self [94], published in 1967. This work and alter ones like [110] presented steady state results
for electron and ion densities in positive columns of glow discharges.
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The interest in hydrodynamic models increased with the industrial use of RF-discharges
for semiconductor etching processes. Examples are the works of Graves [35], Boeuf [14] or
Barnes, Colter and Elta [6]. The step from a steady state solution towards a dynamic problem
did not only cause a higher demand of computational power. The question of numerical sta-
bility became important. Stable numerical techniques, well known from simulation of fluids,
turned out not to be applicable for low pressure discharges [7]. Other approaches like staggered
mesh discretisations [77] had to be developed. Another example is the use of discretisation
techniques, as they are known from semiconductor device simulation [71]. For similarities and
differences of the transport processes in semiconductor and low pressure plasma see Sect. 3.2.1.

In the case of dynamic models, the question of boundary conditions is not a trivial problem.
The great variety of different possibilites proposed by different authors shows that no obvious
optimum set of boundary conditions exists. For a more detailed discussion see Sect. 3.3.

The next step was the introduction of two-dimensional models in the early 1990s. Authors
presenting calculations for capacitively driven RF-discharges were confronted with an enor-
mous increase in the required computing time as well as with a number of additional problems:

- Sheath regions contribute significantly to the heating of the discharge. In order to under-
stand the energy transfer to the plasma, these regions have to be resolved by the model.

- Electrons produced by secondary emission processes at electrodes are accelerated by
sheath voltages of several ten volts. Due to their energy above the ionisation threshold,
they cause a overproportionally high number of impact ionisations. A fluid description
based on an average electron temperature might not be appropriate to describe this ability
[104].

These problems led to the development of hybrid models, which combine a fluid description
with Monte Carlo models for electron kinetics [117], [28], [70].

Parallel to more sophisticated models for capacitively driven discharges, high density plasma
sources like ICPs were developed. Theoretical models were presented in the early 1990s in
[117], [116], [102], [103]. Other publications focussed on heating mechanisms of the discharge,
like [121], [41], [44], rather than on modelling the transport processes.

Due to the high electron and ion density in ICP sources, the sheath dimension is more
than one order of magnitude smaller than in comparable CCP discharges. In none of the men-
tioned works the sheath region was actually resolved by the discretisation. Stewart et. al [102]
were aware of this fact, but deliberately avoided a resolution of the sheath region. A possible
workaround is the combination of an (analytic) sheath model [69] with a bulk model for the
discharge [75]. The problem of plasma sheath transition is closely related to the discretisation
strategy. Most of the authors who presented calculated results for ICP discharges used drift-
diffusion models in order to describe the ion transport in the discharge. This is not surprising as
a drift-diffusion approach is typically more stable and easier to implement than a combination
of the mass and the momentum conservation equations. On the other hand, a reliable calculation
of ion densities and energies in sheath regions has to consider the inertia of the ions. Compar-
ing the development which took part in the 1980s with the advance in modelling of discharges
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in the 1990s it is remarkable that the authors who describe one-dimensional models like [6],
[111], and [71] were very concerned about the validity of the used equations and an appropriate
discretisation schemes. The authors of the 1990s who studied two-dimensional models appear
to be less careful.

Parallel to the increasing complexity of the plasma transport models, the interest in plasma
chemical processes increased. As technical applications typically use a mixture of different re-
active or noble gases, it would be desirable to combine models describing the chemical reactions
in the discharge with transport models for charged particles. A review of articles about plasma
chemical models and possible combinations with particle transport models is given in [50].
In the recent years a large number of works was published dealing with modelling of plasma
chemical processes. A few selected examples are [98] [68], [24], [20], [15]. With the increased
computing power, the complexity caused by a large number of species is a minor problem com-
pared with the question of the reliability of the used reaction rates as well as collision cross
sections. An experimental validation of the (absolute) species concentrations in the discharge
turns out to be a very demanding task [9], [3]. This is the reason why many publications only
present theoretical results which remain without validation. The lack of experimental results
is the reason for the fact that the state of the art in plasma modelling keeps changing rapidly.
Frequently, effects which had not been considered so far turn out to be of crucial importance.
Examples are the concentrations of the excited species [66], [73], the heating of the neutral gas
at the discharge surfaces [61] or kinetic effects with influence on the discharge heating [93],
[108].

3.2 Discretisation

3.2.1 Semiconductor models

Generally, the transport processes in a plasma, the drift and the diffusion of different charges
are very similar to the transport processes in a semiconductor. As semiconductor device simu-
lation is meanwhile a well-established tool, numerous methods have been investigated in order
to find numerical solutions of the model equations. The equations used in semiconductor de-
vice simulation are also derived from the Boltzmann equation (2.1) and are almost identical to
the conservation equations presented in Sect. 2.1.1. This similarity was recognised in works
like [71], [14] or [76], where numerical techniques from device simulations were used to per-
form calculations for low pressure discharges. In this work, a discretisation is used which has
been proposed and used for semiconductor device simulation. Algorithms developed for device
simulation may also be applicable for low pressure discharges, but a few important differences
between plasma and semiconductor should be underlined:

- In semiconductors only two charged species, electrons and holes exist. In plasmas nu-
merous species of charged particles can exist.

- Electrons and holes in a semiconductor have effective masses which are in the same order
of magnitude. In plasmas the mass of ions is at least three orders of magnitude larger than
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the electron mass.

- In semiconductors collisions with substrate atoms are very frequent due to the high den-
sity of the substrate material. This leads to a very short mean path length. In a plasma
the collision rate depends on the pressure of the neutral gas background and might be as
large as or even lager than the discharge geometry.

- The typical charge density in a semiconductor is much higher than in a plasma. Therefore,
the space charge regions have very small geometric extensions (in the order of several
microns). In capacitively coupled plasmas, the thickness of a space charge region can be
in the order of centimetres.

- In semiconductors a recombination of carriers takes place also inside the device while in
a low pressure plasma the process of volume recombination can often be neglected.

Due to these essential differences, especially, the resulting system of differential equations is
much more stiff in the case of plasma simulation. The main reason is the mass ratio of electrons
and ions, which causes the electron processes to be several orders of magnitudes faster than the
ion processes. The used numerical schemes must be able to cope with this problem.

3.2.2 Finite box schemes

In order to perform a simulation of the transport processes (in computational fluid dynamics or
semiconductor simulation), discretisation schemes known as finite volume schemes have widely
been used. They are based on an integral formulation of the conservation equations which can
easily be derived by applying the theorem of Gauss to the conservation equations [77]. As a
result, the time variation of the conserved quantity in a control volume can be expressed by the
flux across the surface of the control volume. A practical problem is to calculate the flux across
the boundaries when the densities or the velocities are only known at discrete locations. The
so-called finite box approach [30], which will be described in the following provides an elegant
solution for this problem.

The simulation domain is divided into several volumes which are called finite boxes. A
node is associated with each volume, and for each node quantities like the electron and the ion
density, the velocities or the electric potential are considered to be known. The flux across the
boundary of these boxes has to be calculated from the values of the physical quantities at the
nodes. Fig. 3.1 illustrates how appropriate boxes can be constructed.

As each node is associated exactly with one box, the number of conservation equations
equals the number of unknown variables. For boundary boxes the flux of the conserved quantity
across the boundary has to be known. The question of boundary conditions will be discussed in
detail, in the following section.

In order to illustrate the numerical scheme in detail let us consider the conservation of ion
mass (2.22):

∂ni

∂t
+∇ · (ni~vi) = G− R. (3.1)
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Figure 3.1: Finite box discretisation: The shaded area ”Box 0” represents a volume whose
boundaries are defined by the normal bisectors to lines connecting the different nodes. The box
is surrounded by its neighbouring boxes ”Box 1”-”Box 5”, whose geometry is defined by the
same principle. The whole simulation domain can be decomposed into non overlapping boxes,
by choosing appropriate locations for the nodes. Fluxes across boundaries can be approximated
by the use of the physical quantities at the two nodes which are associated with every boundary
of the box. For calculating fluxes vectors ~A01 - ~A05 are introduced, which are normal to the
boundaries of ”Box 0” and represent the area of each boundary.

This equation is integrated over the volume of a finite box denoted as ”Box 0” as shown in
Fig. 3.1. Using the theorem of Gauss, one obtains the weak formulation of the conservation
equation:

∫∫

V0

∫

∂ni

∂t
dV +

∫∫

A0

ni~vi · d ~A =
∫∫

V0

∫

(G−R) dV. (3.2)

Here V0 is the volume of ”Box 0” and A0 its surface. So far the differential form of (2.22)
was only transformed to a weak formulation. To get a discretised version, we have to express the
integrals by the node values of the physical quantities. The central node of the box is assumed
to represent the average of all quantities inside the box, therefore the following approximations
are used:
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∫∫

V0

∫ ∂ni

∂t
dV ≈ V0 ·

∂ni0

∂t
, (3.3)

∫∫

V0

∫

(G− R) dV ≈ V0 (G0 − R0). (3.4)

Note that all the quantities with index 0 represent the quantities located at ”Node 0”. To
complete the discrete formulation, the surface integral of the particle flux has to be discretised.
A set of surface vectors ~A01 - ~A05 is introduced (see Fig. 3.1).

These vectors are the outward pointing normals to all boundaries of ”Box 0”. The length of
each vector is given by the area of each boundary. When we introduce the averaged fluxes ~j01 -
~j05 for all boundaries, the integral flux over all boundaries of ”Box 0” is:

∫∫

A0

ni~vi · d ~A =
5
∑

k=1

~A0k ·~j0k (3.5)

In a last step, the averaged fluxes across the different boundaries of a cell have to be ex-
pressed by the node values of ni and ~vi. A simple possibility is to express the flux as the linear
average of the flux at two neighbouring nodes:

~j01 ≈
1

2
(~vi0 · ni0 + ~vi1 · ni1) ,

... (3.6)

~j05 ≈
1

2
(~vi0 · ni0 + ~vi5 · ni5) .

The advantage of the presented scheme is its easy implementation. Only the node values
of all the variables, the neighbour nodes and the vectors representing the surface normals for
each box boundary have to be known. Very general geometries and local refinement can be re-
alised by this approach. On the other hand, the computational effort to calculate the appropriate
locations for the different nodes (grid generation) may be significant.

In the case the grid is regular, the boxes have rectangular shape. With each box four neigh-
bouring nodes are associated and the finite box scheme exactly provides the same approximation
for the differential operators as a finite difference scheme does.

3.2.3 Upwind schemes

It has been known for decades that in the field of classical fluid dynamics numerical represen-
tations of hyperbolic systems tend to show numerical instabilities if they are not discretised in
a proper way [77], [78], [55].

A common method to overcome these problems are the so-called “upwind schemes” [81]
which use a discretisation (one sided spatial differences) in the opposite direction to the fluid
flow. A mathematical analysis explaining the stability of upwind schemes e.g. can be found in
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[100]. In order to apply the method to a finite volume discretisation, slight modifications are
necessary. In the following, the basic idea of flux splitting algorithms will be explained and
used to derive an efficient implementation for a finite volume discretisation.

A basic stability analysis for conservation equations is based on a vectorial notation of the
system of equations. Let us assume that we want to carry out the analysis for the conservation
of mass and momentum. Only one particle species shall be considered whose temperature
is known. In a planar, one-dimensional case, the conservation equations for mass (2.2) and
momentum (2.5) can be written in a vector notation:

∂U

∂t
+
∂F

∂x
= S. (3.7)

Let us now introduce a density vector U and a flux vector F, given by

U =

(

n
nv

)

, F =

(

nv
nv2 + nkT/m

)

, (3.8)

as well as a vector S, which includes the source terms for the mass and the momentum

S =

(

G−R
q
m
nE − nvν

)

. (3.9)

The partial pressure gradient which is on the right hand side of (2.5) is included in this
formulation as part of the left hand side in the flux vector F. In order to express the spatial
derivative of the flux vector F by the spatial derivative of the density vector U, a matrix A with
the following property is introduced:

∂F

∂x
= A

∂U

∂x
. (3.10)

In general, A will depend on U and can be calculated for the given example by taking the
Jacobian of F with respect to U:

A =
∂F

∂U
=

(

0 1
(kT/m− v2) 2v

)

. (3.11)

The whole system now can be rewritten by

∂U

∂t
+A

∂U

∂x
= S. (3.12)

A might be diagonalised by means of it’s eigenvalues and eigenvectors:

A = QΛQ−1 =

(

1 1
(v + vc) (v − vc)

)

·

(

v + vc 0
0 v − vc

)

·
1

2vc

(

(vc − v) 1
(v + vc) −1

)

,

(3.13)
where vc represents the sound velocity given by
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vc =

√

kT

m
(3.14)

An elementary stability analysis as given in [100] shows that a corresponding finite dif-
ference representation is only stable when the direction of the one-sided spatial differences is
chosen in dependence of the sign of the eigenvalues. For example, if we consider a region of
supersonic flow (v > vc), both eigenvalues v + vc as well as v − vc are positive. This means a
finite difference scheme is stable if backward differences are used.

Assuming subsonic flow (0 ≤ v < vc), the matrix Λ contains one positive and one negative
eigenvalue. In order to obtain a stable finite difference representation, a mixture of backward
and forward differences is required. In [100] Steger and Warming propose to carry out a splitting
of Λ into a matrix Λ+ which contains the positive eigenvalues and Λ− which contains the
negative eigenvalues. Unfortunately, such an approach tends to create numerical instabilities
when a subsonic region and a supersonic region meet. That is the case, for example, in the
sheath region of a capacitively driven plasma.

This problem can be overcome by a more general approach, i.e. a splitting of Λ into a
sum of matrices which contain only positive and only negative values. Such a splitting is then
described by:

Λ = Λ++Λ− =

(

1

2
(v + vc) + v0 0

0 1

2
(v − vc) + v0

)

+

(

1

2
(v + vc)− v0 0

0 1

2
(v − vc)− v0

)

,

(3.15)
having introduced a parameter v0, which has to satisfy the inequality

v0 >
1

2
(|v|+ vc). (3.16)

After inserting the splitting in (3.13), one is able to define the matrices A+ and A−, which
are associated with Λ+ and Λ−:

A = QΛQ−1 = A = Q
(

Λ+ +Λ−

)

Q−1 = A+ +A−. (3.17)

Based on the splitting proposed in (3.15), this leads to

A+ =

(

v0
1

2
1

2
(v2c − v2) v + v0

)

and A− =

(

−v0
1

2
1

2
(v2c − v2) v − v0

)

. (3.18)

A numerically stable scheme is now obtained when forward and backward differences are
used in combination with the splitting of A in A+ and A−. For simplicity, let us assume a
discretisation by equally spaced values which are located ∆x from each other. When we use a
fully implicit time discretisation and a time step ∆t, the discretised version of (3.12) then takes
the form:

46



1

∆t

(

Un+1
j −Un

j

)

+
1

∆x
A+

(

Un+1
j −Un+1

j−1

)

+
1

∆x
A−

(

Un+1
j+1 −Un+1

j

)

= S. (3.19)

Here, j is the index denoting the position in space and n the index for the discretised time.
The actual consequences of the splitting can be seen when the explicit expression for U, A+

and A− are used. Recall that the density vector U was defined by

U =

(

n
nv

)

=:

(

n
j

)

, (3.20)

where j = nv represents the particle flux. The splitting of (3.19) into two scalar equations
leads to:

1

∆t

(

nn+1
j − nn

j

)

+
1

∆x

(

v0
(

nn+1
j − nn+1

j−1

)

+
1

2

(

jn+1
j − jn+1

j−1

)

)

+
1

∆x

(

−v0
(

nn+1
j+1 − nn+1

j

)

+
1

2

(

jn+1
j+1 − jn+1

j

)

)

= G− R, (3.21)

1

∆t

(

jn+1
j − jnj

)

+
1

∆x

(

1

2

(

v2c −
(

vn+1
j

)2
)

(

nn+1
j − nn+1

j−1

)

+ (vn+1
j + v0)

(

jn+1
j − jn+1

j−1

)

)

+
1

∆x

(

1

2

(

v2c −
(

vn+1
j

)2
)

(

nn+1
j+1 − nn+1

j

)

+ (vn+1
j − v0)

(

jn+1
j+1 − jn+1

j

)

)

=
q

m
nE − nvn+1

j ν. (3.22)

After the rearrangement of the terms in (3.21), the direct effect of the flux splitting becomes
visible. The discrete form of the conservation of mass leads to:

1

∆t

(

nn+1
j − nn

j

)

+
1

2∆x

(

jn+1
j+1 − jn+1

j−1

)

−
v0
∆x

(

nn+1
j+1 − 2nn+1

j + nn+1
j−1

)

= G− R. (3.23)

While the second term on the left hand side represents a centred difference approximation of
the spatial flux derivative, −v0/∆x

(

nn+1
j+1 − 2nn+1

j + nn+1
j−1

)

could be understood as a finite dif-
ference approximation of the second derivative of the density, weighted with a factor of −v0∆x.
The quantity v0, which had been introduced in order to guarantee the numerical stability of the
algorithm, directly controls the influence of the second derivative. This represents the diver-
gence of a diffusion driven flux with a diffusion constant of v0∆x. This knowledge is useful,
when a finite volume discretisation is discussed.

The effect that second derivatives can be used to stabilise numerical schemes for first order
equations is well known and has been discussed thoroughly in the literature [55]. However,
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the underlying stability analysis in case of finite differences gives an indication how much
numerical damping is necessary. The choice of an appropriate control parameter v0 will be
discussed later.

In a similar way the conservation of momentum (3.22) can be simplified:

1

∆t

(

jn+1
j − jnj

)

+
(

v2c −
(

vn+1
j

)2
)

1

2∆x

(

nn+1
j+1 − nn+1

j−1

)

+
2vn+1

j

2∆x

(

jn+1
j+1 − jn+1

j−1

)

−
v0
∆x

(

jn+1
j−1 − 2jn+1

j − jn+1
j−1

)

=
q

m
nE − nvν. (3.24)

Like the conservation equation of mass (3.23), the conservation of momentum (3.24) con-
tains the centred difference approximations of density and particle flux gradients corresponding
to the differential form given in (2.5). Numerical viscosity or damping is introduced by a second
derivative of the particle flux weighted with −v0∆x.

The presented derivation was based on a finite difference discretisation, but the results given
by (3.23) and (3.24) can easily be applied to finite volume schemes.

The question has to be answered, what value of v0 will have to be chosen to achieve a
compromise between numerical stability and the introduced numerical viscosity. The condition
which limits the range from which v0 can be chosen is given in (3.16). A possible choice for v0
is:

v0 =
√

v2c + v2. (3.25)

This is also the value of v0 used for all the results presented in the following.

3.3 Boundary conditions

In order to find a unique solution for a complete system of hydrodynamic and electrodynamic
equations, correct boundary conditions have to be stated. For the electrostatic potential and
electric field boundary conditions are obvious. The situation for particle densities and velocities
is more complicated. In this section the physical principles from which boundary conditions
can be derived are discussed, as well as an overview which boundary conditions have been used
by other authors is presented. Finally, a set of the conditions adapted to the chosen finite volume
discretisation, which is used in this work will be proposed. Furthermore, a short review of the
boundary conditions used by other authors in dependence of applied discretisations completes
this section.
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3.3.1 Electrodynamic model, Poisson equation

It is a relatively easy task to find the conditions for Poisson’s equation and for the electrody-
namic conservation equation, which describes the induced electric field in an ICP discharge.
Good conductors are known to cause the induced electric field to vanish at their surface. Typi-
cally, ICP reactor chambers are built of conducting material or the whole setup is surrounded by
a conducting outer shielding in order to prevent the radiation of RF. As a consequence for the
electrodynamic model the condition EΘ = 0 can be used implying that the simulation domain
is bounded by a perfectly conducting surface.

Dirichlet boundary conditions can be used for the electrostatic potential Φ if the surface is
electrically conducting. The potential on the whole surface is either set to zero for grounded
walls or to the corresponding bias voltage in the case of an applied DC-bias voltage. A mixed
boundary condition combining the surface charge and the potential and the local electric field
is commonly used for insulating surfaces. For the electrostatic field ~E no boundary condi-
tions are required because ~E = −∇Φ is not an independent variable and can be calculated by
differentiation from Φ.

3.3.2 A “simple” test problem

Generally, boundary conditions are required to select one and only one possibility from an
infinite variety of correct solutions in the simulation domain. The criteria of this choice should
reflect the physical reality. In typical low pressure discharges, most charged particles produced
by ionisation (electrons or positive ions) after e certain time hit the wall, are absorbed by the
surface and neutralised. Volume recombination as a particle sink often can be neglected. Wall
recombination is the only process leading to a destruction of charged particles. Therefore,
boundary conditions have to express the perfect absorption of incident particles.

The following “simple” test problem shows that the choice of physically meaningful bound-
ary conditions in the case of transport problems is not necessarily a trivial task:

In a sheath region the potential drop repels almost all electrons. The only charges which are
present are positive ions. Furthermore, the generation of charges in the sheath region shall be
neglected, and only the stationary case is considered. The ion flux through the sheath can then
be considered as constant and position independent i.e. ni(x)vi(x) ≡ J0. The ions shall undergo
no collisions, neither elastic nor inelastic, while passing the sheath. The ions are assumed to be
monoenergetic and the local ion velocity is expressed directly by the local electric potential Φ:

vi =

√

−
2eΦ

mi
. (3.26)

These are the basic assumptions from which the well known Child-Langmuir law can be
derived [63]. In the sheath region the electric potential has to fulfill the Poisson equation. This
means in a one-dimensional case:

d2Φ

dx2
= −

e

ε0
ni =

J0
√

−2eΦ
mi

. (3.27)
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An obvious solution for the potential Φ is proportional to x
4

3 which gives for the ion velocity
and density in the sheath region:

vi ∼ x
2

3 , (3.28)

ni ∼ x−
2

3 . (3.29)

The assumptions under which this result was derived are obviously a drastic simplification of
a realistic setup. Ion friction, for example, caused by charge exchange collisions was neglected.
An ion velocity which is only determined by the local potential Φ is not realistic in any case. For
time varying problems the assumption of a constant, time independent J0 is also not acceptable.
However, the space dependence of ni and vi reveals some interesting details:

The ion density decreases with increasing x, depending on the voltage drop in the sheath
region. Even if the density drop might be quite large for large voltages across the sheath the
density drops never down to zero, neither does the density gradient vanish. This result shows
that at the location of the boundary the classical boundary condition types, like von Neumann
or Dirichlet conditions, are not applicable. Nevertheless, a large number of authors who dealt
with transport problems in low pressure plasmas used these boundary conditions.

3.3.3 Transport equations for ions

The simple example in the previous section illustrates the basic difficulty one is confronted with
looking for physically meaningful boundary conditions for ions leaving the discharge. A simple
choice like the assumption of a vanishing density or density gradient is obviously incorrect. The
speed and the density at the location of the boundary are rather determined by the acceleration
and the ion generation in the discharge volume than by the boundary itself which does hardly af-
fect the volume processes. This is a typical situation for supersonic flow, i.e. when the ion drift
velocity exceeds the sound speed given by vc =

√

kTi/mi. Therefore, the question of boundary
conditions is strongly related to the stability analysis of the transport equations discussed in
the last section. Typically, in a large part of the discharge, thermal energies of ions are low in
comparison with their large drift velocities. Subsonic parts exist in the discharge center where
the ions have not yet been accelerated sufficiently. In most applications1 ions hit the discharge
boundaries with supersonic speed. The fact that in supersonic regions only an upwind discreti-
sation ensures numerical stability means that for a supersonic outflow of particles no boundary
conditions must be stated. The particle density and velocity are completely determined by the
acceleration of particles in the discharge volume. This approach is well known in the field of
fluid dynamics [78], [55], but one should be aware that the underlying analysis is based on the
conservation equations for mass as well for momentum.

It is in accordance with previous works in the field of plasma physics that for ions leav-
ing the plasma no boundary conditions at the border of the simulation domain must be stated.

1An example where ions do not hit the surface with supersonic speed is a small electrical (Langmuir) probe,
which is positively biased and therefore repels positive ions.
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Performing a rigorous analysis for the one-dimensional, stationary case as performed by Valen-
tini [111] it can be shown that the coupled system of the conservation equations of mass and
momentum contains an internal singularity at the point where the particles travel exactly with
their accoustic speed. Removing this internal singularity delivers an additional constraint which
guarantees a unique solution. An implementation is everything but trivial as the spatial position
of the internal singularity is unknown. The application of shooting algorithms [81] is a possible
workaround. Unfortunately, the whole analysis was carried out for static situations, the results
cannot be directly exploited for the dynamic case.

In the literature, a great variety of possible approaches has been discussed. A large number
of works have been published treating dynamic simulations of low pressure RF-discharges, and
a selection of boundary conditions has been proposed. The situation is complicated because
there are various possibilities to discretise the system of equations. Some authors like [7] and
[119] used staggered meshes, which means that velocities and densities are only known at dif-
ferent points. Other authors like Passchier [76] used weak formulations obtained by integration
of the conservation equations. Another important difference is the variety of the underlying
models. In a minority of publications like [71], [103] conservation equations for mass as well
as for momentum were used, while the majority applies a drift diffusion approximation. For
the latter, the effect of supersonic outflow cannot be exploited so that boundary conditions have
to be stated which express the fact that ion density drops significantly in the proximity of the
boundaries. Very popular is to set the ion density zero at the boundary [84], [28], another com-
mon possiblity is to use v. Neumann boundary conditions i. e. to set the normal derivative of
ion density zero [7], [76],[35].

However, the use of a zero ion density at the boundary does not necessarily produce vanish-
ing ion densities in the proximity of the walls: The fact that wrong boundary conditions have
almost no influence on the solution is proudly presented in [84].

3.3.4 Transport equations for electrons

The situation turns out to be even more complicated in the case of electrons. Under most
conditions they remain in the subsonic region even if leaving the discharge. In this case mass as
well as momentum conservation equation have to be used. Boundary conditions must be stated
for density as well as for velocity.

In case of extreme acceleration, for example in the proximity of a small capacitively driven
electrode, the electrons might reach supersonic speed. Finding a boundary condition which
covers both regimes turns out to be a difficult task.

As almost all authors used the drift diffusion approximation for electrons 2, only a bound-
ary condition for the electron density is required. Typically, the drop of electron density in
the sheath region is much more pronounced3 than the drop of ion density. An obvious ap-
proximation would be a boundary condition which assumes a vanishing electron density at the

2In this case the electron density is the only independent variable. The electron flux can be expressed by the
density (gradient) and the local electric filed.

3several orders of magnitude
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boundary.
On the other hand, in capacitively driven discharges the retarding potential in the sheath

vanishes for a short part of the RF-cycle, so electrons can reach the boundary. During this time
a non negligible electron density must exist at the boundary. A simple approach to consider the
electron transport towards the wall is to perform a simple kinetic analysis. The assumption of
an electron velocity distribution which is zero in one half of the phase space, provides a relation
between electron density and flux (velocity):

∣

∣

∣

~je
∣

∣

∣ = ne ·

√

kTe
2πme

. (3.30)

This approach can serve as a boundary condition as it provides a relation between the elec-
tron flux and the electron density at the boundary. This combination of the absolute value of
electron density with its gradient can be used as a natural boundary condition for a drift diffusion
model.

Another possibility to use (3.30) is the derivation of an outflow velocity with which the elec-
trons hit the surface. This velocity can be used for the conservation of momentum in an electron
model using conservation of mass as well as conservation of momentum. While this approach
was used in [74], many authors preferred to set the electron density zero at the boundary.

For the electron energy conservation v. Neumann boundary conditions can be used for
electron temperature, as most electrons can be assumed to be reflected in the sheath regions of
the discharge and electronic heat conduction to the wall can therefore be neglected.

3.3.5 Boundary conditions for finite volume schemes

In the previous sections the boundary condition used by other authors have been discussed. The
boundary conditions used for all calculations in this work will be discussed in the following. In
many of the cited publications rather a finite difference approach had been chosen than a finite
volume scheme. For the case of a finite volume discretisation two possibilities exist how the
boundary region is discretised. They are shown in Fig. 3.2. In the first case a) the boundary
cell consists of a half cell where the corresponding node is located on the cell boundary in the
second case b) boundary cells and volume cells are identical, the corresponding node is located
in the center of the cell.

Finite volume schemes are based on the fact that for each node (i. e. point where physical
quantities are assumed to be known) a corresponding volume exists in which for each physical
quantity a conservation equation is fulfilled. In case a) an obvious choice is to replace the con-
servation equation for the boundary volume by an explicit assignment for the boundary node
value, i.e. a Dirichlet boundary condition. An alternative possibility is to use a conservation
equation also for the boundary cell and to neglect the fact that the corresponding node is not lo-
cated in the cell center. In this case, the flux across the boundary has to be expressed explicitely
by the variables of the boundary node.

In case b) the boundary node is not exactly located on the boundary. For Dirichlet conditions
it might be a disadvantage that location of the node and the boundary are different. For example,
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Figure 3.2: Finite volume/box discretisation: Two possibilities to discretise the boundary re-
gion. Filled circles denote nodes, i.e. points where the physical quantitities are assumed to be
known, the rectangles surrounding the nodes are the corresponding boxes.

the potential Φ of the boundary might be known, but there exists no node on the boundary. For
conservation equations of mass and momentum a volume integrated form might be used. For
this purpose, particle as well as momentum flux across the outer boundary are required.

For all the calculations presented in this work, the discretisation scheme according to a) has
been chosen.

3.3.5.1 Electron boundary conditions

With regard to the electron transport, two cases have to be distinguished:
In the drift diffusion model the only variable is the electron density. A simple kinetic ap-

proach provides an equation (3.30),which expresses the electron flux at the boundary as a func-
tion of electron temperature and density. For the boundary cell, in analogy to the volume cells,
a conservation equation for mass is used with the only difference that the outflux towards the
walls is given by (3.30).

In the case of a two-moment model, (3.30) is used to derive a velocity

veB =

√

kTe
2πme

, (3.31)

which is used as a Dirichlet boundary condition for the electron velocity. As in the sheath
region generation of ions and electron pairs by impact ionisation can be neglected, it might be
assumed that the particle flux is constant in the sheath. From the assumption of a vanishing flux
derivative, a mixed boundary condition for the electron density can be derived:

d

dx
neve = 0 ⇒ n′

eve + nev
′

e = 0 ⇒ n′

e + ne
v′e
ve

= 0, (3.32)

where veB denotes the component normal to the boundary of the electron velocity ~ve. The
primes indicate a spatial derivative in the direction normal to the boundary.
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3.3.5.2 Ion boundary conditions

Using the assumption of a flux conservation in the sheath region, a boundary condition for ion
density can be formulated, in complete analogy:

d

dx
nivi = 0 ⇒ n′

ivi + niv
′

i = 0 ⇒ n′

i + ni
v′i
vi

= 0 (3.33)

In case of the ion velocity, one is confronted with the problem that the ion outflow takes
place with supersonic velocity. The speed with which the ions leave the discharge depends on
the (time dependent) potential drop in the sheath region, on the number of charge exchange
collisions in the sheath, as well as on the ion mass. Most authors, who realised the existence of
this difficulty, used an extrapolation from the interior to determine the outflow velocity [103],
[76]. This may be understood as setting the second derivative of the density to zero. An alter-
native approach which has been succesfully tested in this work is the use of a mixed boundary
condition:

viB − α(v′iB)v
′

iB = 0. (3.34)

Here viB is the normal component of the ion velocity directed to the surface, and v ′iB its
spatial derviative. The choice of a nonlinear function α(v ′iB) is a quite “technical” problem. A
possible choice is the following function:

α(v′iB) = vc + γ exp(δv′iB), (3.35)

where vc denotes the ion accoustic speed. Values of γ = 1m/s and δ = 10−5 s lead to mean-
ingful results in a wide range of parameters.
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Chapter 4

Input data

So far collision processes have been treated on a very general level, i.e. as a contribution to
the right hand sides of the conservation equations for mass, momentum and energy. In order
to describe the change of mass, momentum or energy, effective collision frequencies or rates
were introduced. In this section, a more detailed discussion of these terms will follow. As
already discussed in Sect. 2.2, the behaviour of electrons and ions is fundamentally different,
with the consequence that different types of collision processes have a dominant influence on
the transport properties.

In the case of ions especially the charge exchange with neutral particles causes a significant
loss of momentum and slows down the ambipolar diffusion process. For the electrons, a variety
of different collision mechanisms is of importance:

Elastic collisions are responsible for momentum loss and limit the electric as well as the
heat conductivity. Inelastic collisions cause a significant energy loss in the plasma volume and
are responsible for impact ionisation, excitation and dissociation of neutrals.

In this chapter, the various types of collisions will be discussed, and the effective rates
needed to assemble the right hand side of the conservation equations, will be derived. Refer-
ences to the underlying experimental data will be given.

4.1 Impact ionisation

In the conservation equations for mass (2.2), (2.21), (2.22) the right hand side is given by
the difference of the generation and recombination of particles per time G − R. While the
recombination given by R in the plasma volume can often be neglected1, the generation or
impact ionisation rate G is the dominant term.

As the generation of ion-electron pairs is caused by energetic electrons, the total number of
generated charged particles is proportional to the number density of electrons ne. Furthermore,
the generation rate is proportional to nN , the number density of the neutral particles which can
be ionised.

1Due to a degree of ionisation in the order of 10−3, electron-ion collisions resulting in recombination are rare
in the low pressure regime.
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The energy distribution of electrons is of crucial importance. As impact ionisation requires
a threshold energy in the order of some electron volts, only electrons with sufficient energy can
cause ionisation. In a general form, the generation of ion electron pairs is given by:

G = nN

∞
∫

E=Eiz

σ (E)

√

2E

me
f(E) dE (4.1)

Here σ(E) denotes the energy dependent ionisation cross section, Eiz is the minimum ki-
netic energy an electron needs to cause an ionisation. As the electron energy distributions tend
to decrease significantly with increasing energy (exponentially in case of Maxwellian distribu-
tions), the energy region close to the ionisation threshold energy Eiz dominates the generation
by impact ionisation.

A commonly used simplification to avoid the integration over the exact energy dependent
ionisation cross section is the use of a step function for the cross section:

σ (E) =
{

0 E < Eiz

σT E ≥ Eiz

(4.2)

For a Maxwellian EEDF the integration can now be carried out analytically and the ionisa-
tion rate G is then given by:

G = ne nNσT

√

8

π

√

kTe
me

(

1 +
Eiz

kTe

)

exp
(

−
Eiz

kTe

)

. (4.3)

A further simplification is to neglect the temperature dependence of Eiz/(kTe) and to mod-
ify σT . This approach was, for example, chosen in [102] and leads to

G = nNneσT

√

8

π

√

kTe
me

exp
(

−
Eiz

kTe

)

. (4.4)

In Fig. 4.1 ionisation rates were calculated, using data given by different authors. In case of
an argon plasma with a neutral gas pressure of 1Pa and a neutral gas temperature of 300K, ion-
isation rates were determined for an electron temperature in the range of 10000−100000K. The
full line shows the ionisation rate obtained by carrying out the integration over a Maxwellian
distribution and using an energy dependent ionisation cross section given by [60]. The dashed
curve is the corresponding approximation, calculated from (4.4), with the ionisation cross sec-
tion σT = 3.0 · 10−20 m2 as given in [102]. The correlation of both curves shows that (4.4) is
an excellent approximation of the form given by (4.1). The dot-dashed curve is based on (4.3),
with σT = 2.0 · 10−20 m2 as used in [71], the dotted curve is based on the data given in [76].

Generally, the ionisation rate shows a rapid increase over several decades in regions of low
electron temperatures (Te < 40000K). This is the region of main interest, as for many low
pressure applications electron temperature is in this range. At higher electron temperatures
(Te > 60000K) the ionisation rates tend to saturate, also the differences between the different
approximations decrease, too.

As already was pointed out by Schottky in 1924, the geometry of a low pressure discharge
and the ambipolar diffusion coefficient determine the value of the ionisation rate [92]. His
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Figure 4.1: Ionisation rate for argon at 1Pa, 300K in dependence of the electron temperature
Te. The results were calculated using cross sections or approximations given in [60], [102], [76]
and [71]

calculations were based on a simplified diffusion model, neglecting the ion momentum and
assuming particle density to vanish at the discharge walls.

The steep increase of the ionisation rate with the electron temperature is the reason why also
a more sophisticated system model including conservation equation for mass, momentum and
energy will be insensitive to the choice of σT . Regardless, whether the data from [60], [102], or
[71] are used, the corresponding simulation result for the electron temperature will be similar.

Only the approach used by Passchier and Goedheer differs significantly, as it is based on
the assumption that a minimum mean electron energy of 5.3 eV is required for impact ionisa-
tion processes. This means that electron temperature for any discharge has to be higher than
41000K, an assumption that will not be used in this work.

In Fig. 4.2 ionisation cross sections for helium, neon, argon, krypton, and xenon are shown
for the energy range from 10 − 50 eV. While for argon and helium the integration over a
Maxwellian energy distribution can be approximated with sufficient accuracy by using (4.4) or
(4.3), for other noble gases a more sophisticated approximation has to be chosen. According
to [10], an approximation of the electron dependent ionisation rate by a power series provides
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Figure 4.2: Ionisation cross sections for noble gases calculated from approximations given in
[10], [60], [39]
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sufficiently accurate results:

G (Te) = ne nN exp
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Eiz

kTe

)

√
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(

log10

(

kTe
Eiz

))n

(4.5)

The corresponding coefficients for various noble gases are given in Tbl. 4.1.

Eiz[eV] a0 [s
−1] a1 [s

−1] a2 [s
−1] a3 [s

−1] a4 [s
−1] a5 [s

−1]

Helium 24.6 1.464E-14 -2.301E-15 -1.574E-14 -2.099E-14 -1.439E-14 -4.395E-15
Neon 21.6 2.343E-14 -1.787E-14 -6.509E-14 -1.881E-13 -1.368E-13 -3.296E-14
Argon 15.8 9.472E-14 1.491E-15 -5.929E-14 1.797E-14 1.296E-14 -9.720E-15

Krypton 14.0 1.202E-13 -8.174E-15 -4.906E-14 -5.803E-14 1.748E-14 2.430E-14
Xenon 12.1 1.472E-13 -9.180E-16 -1.098E-13 3.231E-14 9.499E-14 3.237E-14

Table 4.1: Coefficients to calculate the ionisation rate for noble gases using (4.5). The underly-
ing ionisation cross sections are given in [10], [60] and [39].
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4.2 Ion momentum loss

Ions tend to very effectively lose momentum by collisions with neutral particles, particularly
with their parent gas. The dominant mechanism is a charge exchange process resulting in a fast
neutral particle and an ion, which keeps the thermal velocity of the initially neutral particle. The
momentum loss of the ions has a crucial influence on the transport processes in the discharge
and will be discussed in detail in Chapter 5.
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Figure 4.3: Ion momentum loss rate νi versus ion drift velocity for argon and helium at 1Pa,
300K. The diamonds represent experimental data shown in [27], the full lines a semiempirical
fit (4.6).

Various authors presented data from which the momentum loss rate νi, used in (2.26), can
be calculated. A collection of data for a great variety of ions and background gases is given
in [27]. The experimental data generally show a velocity dependence of the momentum loss
rate which should be considered by an accurate transport model. For this purpose, a velocity
dependent momentum loss rate νi(v) is used for all following calculations. Experimental data
generally show an increase in the ion-neutral collision rate with an increasing drift velocity. At
higher velocity, the measurements indicate a direct proportionality of drift velocity and collision
frequency2. Deviations from this proportionality become visible only in the region of very low

2This indicates that the charge exchange cross section is velocity independent. The number of collisions for
this case is proportional to the travelled distance which is proportional to the drift velocity.
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velocity. An empirical approach to express this velocity dependence in a parameterised form:

νi(v) = nN ·
√

a0 + a1v2 (4.6)

In Fig. 4.3 experimental data [27] and a polynomial fit are shown for the case of argon and
helium. Polynomial approximation fit the experimental values with similar accuracy for other
noble gases. The corresponding values of the coefficients are given in Tbl. 4.2.

a0 [m
6 s−2] a1 [m

4]

Helium 7.5 10−31 1.25 10−37

Neon 2.0 10−31 1.9 10−37

Argon 3.5 10−31 1.0 10−36

Krypton 2.6 10−31 1.1 10−36

Xenon 2.4 10−31 2.5 10−36

Table 4.2: Coefficients to express the velocity dependent momentum loss frequency of noble
gas ions in their parent gases by (4.6). Underlying experimental data are given in [27],[26]

Unfortunately, the ion velocities occurring in low pressure discharges can exceed the range,
for which mobilities have been measured, by one order of magnitude. This means that for sheath
regions the ion friction can only be derived from extrapolated data. In Chapter 5 a sensitivity
analysis will be presented which demonstrates how sensitive hydrodynamic transport models
depend on the parameters of Tbl. 4.2. However, the ion velocities in the discharge bulk are
normally in the experimental range and can be considered as reliable.

4.3 Elastic electron-neutral collisions

The most dominant mechanism, causing a loss of electron momentum, are elastic electron-
neutral collisions. Please note that an elastic electron-neutral collision does only cause a very
small change of the electron’s energy while a significant part of the momentum might be lost.
From an experimental point of view, the momentum exchange cross sections can be directly
determined with various methods [95], and a great variety of data was published especially for
noble gases. A compilation of sources for cross section data is given in Tbl. 4.3.

Electron-neutral collisions have influence on the right hand side of the equations the electron
momentum conservation (2.28), the heat flux (2.33). Also the plasma’s electrical conductivity
(2.42), (4.7) is influenced.

Please note that electron neutral collisions in the aforementioned equations were represented
by effective electron neutral frequencies νme and νee, which in a more general form will depend
on the electron energy distribution and the energy dependence of the corresponding collision
cross section. In the following the source terms for the different equations will be discussed
separately. The momentum exchange cross section shows a strong dependence on the energy of
the incident electron for some gases.
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total momentum exchange differential

Helium [90], [89], [31], [21] [57], [83], [34]
Neon [88], [31] [83], [36]
Argon [79], [80], [72], [31] [32], [83], [36], [79], [80]

Krypton [59], [42], [80], [31], [29], [23] [83], [36], [80], [22], [29]
Xenon [59], [42], [67], [31] [83], [36]

Table 4.3: Electron-neutral momentum exchange cross sections for elastic scattering of elec-
trons in noble gases.

A prominent example is argon with a very pronounced Ramsauer minimum at an energy of
0.15 eV and a variation over two decades for higher energies. Krypton and xenon show this
behaviour, too. For helium and neon, no Ramsauer minimum exists, the momentum exchange
cross section rises monotonically until a maximum is reached (at 2 eV for helium, at 20 eV for
neon). This maximum and the decrease of the cross section with higher energies is a character-
istic behaviour for argon, krypton, and xenon, too. This decrease of the momentum exchange
cross section with increasing electron energy has consequences for the transport properties in
the corresponding gas and will be discussed in detail in the following.

4.3.1 Electric RF-conductivity

The plasma’s electrical conductivity is of interest in order to understand the mechanism of
collisional heating in the discharge. As the power transferred to the electrons is proportional
to the real part of the complex conductivity σ, it is desirable to understand how σ depends on
parameters like electron temperature and neutral gas density. Unfortunately, a simple approach
(2.42) based on a scalar effective collision frequency νme does not provide a sufficiently accurate
value for the conductivity in the whole parameter range of interest.

It is well known [64] that influence of electron temperature, neutral gas density, and the
EEDF have to be considered for neutral gases which show a energy dependent momentum
exchange cross section. An example is the noble gas argon for which the collision rate is known
to be strongly energy dependent. A general form of the plasma’s conductivity considering the
energy dependence for electron-neutral momentum exchange, can be derived from a two term
expansion of the Boltzmann equation [95], [33]. Then the conductivity is given by

σ = −
4π

3

nee
2

me

∞
∫

v=0

(

ν(v)v3

ω2 + ν2(v)
− i

ωv3

ω2 + ν2(v)

)

∂f0
∂v

dv, (4.7)

where ν(v) = σ(v)nNv denotes the velocity dependent momentum exchange frequency
for electron neutral collisions and f0(v) the normalised isotropic part of the electron energy
distribution function EEDF. For any value of the angular RF-frequency ω, two independent
scalar parameters (real and imaginary part) are needed in order to express σ.
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Figure 4.4: Momentum exchange cross sections for various noble gases in dependence of elec-
tron energy. Data for He from [21], for Ne from [88], for Ar from [31], for Kr from [59], [23]
and for Xe from [31]

As in some cases the deviations from the simple expression of conductivity (2.42) may be
small, in [64] a correction, which suggests the introduction of an effective RF-frequency ωeff

and of an effective collision frequency νeff was proposed:

σ =
nee

2

me (νeff + iωeff )
(4.8)

With the two independent variables ωeff and νeff , the real and imaginary part of σ can
take arbitrary, independent values. However, in case of small deviations from (2.42) it can be
expected that ωeff almost equals the angular frequency ωRF , and νeff is a measure for the mean
electron neutral collision frequency.

Especially for argon, the energy dependence of the momentum cross section is responsible
for the fact that ωeff and νeff vary significantly with the mean electron temperature and the
neutral particle density.

In Figs. 4.5, 4.6 the dependence of ωeff/ωRF and νeff/ωRF are shown for a wide range
of parameters. A numerical compilation of the same data is given in Appendix A in Tbl. A.1
and Tbl. A.2. The results have been calculated by carrying out the integration in (4.7) under
the assumption of a Maxwellian distribution. For all calculations a neutral gas temperature of
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Figure 4.5: Normalised effective momentum transfer frequency νeff/ωRF for argon for a pres-
sure range from 0.1 Pa to 100 Pa and an electron temperature from 2 − 5.2 eV. A neutral gas
temperature of TN = 300K, ωRF = 2π · 27MHz was assumed.

TN = 300K was assumed.
The behaviour of the effective collision frequency νeff is characterised by a general increase

with neutral gas pressure. This corresponds to an increasing number of collisions. However,
a proportionality is only observed for neutral gas pressures below 1 Pa. Deviations from a di-
rect proportionality become visible especially in the pressure regime over 20 Pa in case of low
electron temperature (2 eV). The general dependence of νeff on the mean electron tempera-
ture Te can be explained by a higher average velocity with increasing temperature. For higher
temperatures, collision events become more frequent, which results in an increase of νeff .

The dependence of the effective RF-frequency ωeff is more complicated (see Fig. 4.6). In
the region of low pressure (pN < 1Pa), ωeff/ωRF equals almost unity. In combination with
an approximately direct proportionality of νeff to the neutral gas pressure, this indicates that
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Figure 4.6: Normalised effective RF frequency ωeff/ωRF for argon for a pressure range from
0.1 Pa to 100 Pa and an electron temperature from 2 − 5.2 eV. A neutral gas temperature of
TN = 300K, ωRF = 2π · 27MHz was assumed.

the simple conductivity formula (2.42) is applicable in that range. However, with increasing
pressure, ωeff/ωRF increases significantly. At a pressure of PN = 10Pa, a correction factor of
approximately 1.5 has to be used. The temperature behaviour of ωeff/ωRF shows intersecting
curves in Fig. 4.6 for various electron temperatures. This is caused by the complicated shape of
the underlying electron-neutral momentum exchange cross section. Generally, with an increas-
ing neutral gas pressure, the ratio ωeff/ωRF increases, but the curvature appears to depend on
the assumed electron temperature. For details see Tbl. A.2.

The fact that ωeff almost equals ω for pressure values lower than 1 Pa, indicates that (2.42) is
a suitable approximation in this range. However, it is not obvious what the direct consequences
are, when (2.42) is not applicable.

In order to interpret the influence on discharge heating for higher pressure values, the real
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part of the corresponding conductivity σ must be examined. From (4.8) follows directly:

σ = νeff
nee

2

me

(

ν2eff + ω2
eff

) − iω
nee

2

me

(

ν2eff + ω2
eff

) , (4.9)

and therefore for the real part of the conductivity

<{σ} ∼
νeff

ν2eff + ω2
eff

∼
νeff/ωRF

(νeff/ωRF )2 + (ωeff/ωRF )2
. (4.10)

Please note that for νeff < ωRF , i.e. low pressure values, a direct proportionality can be
expected, while for high pressure i.e. νeff > ωeff an indirect proportionality to νeff can be
expected.

The dependence of the normalised real part of the conductivity is shown in Fig 4.7 as well
as in Tbl. A.3 for different values of the neutral gas pressure and the electron temperature. The
corresponding variation of νeff and ωeff is considered according to the data in Tbl. A.1 and
Tbl. A.2.

For low pressure values (pN < 1Pa) the real part of the conductivity shows in fact the
expected almost linear increase with the pressure, reaches a maximum and finally decreases. At
low electron energies, the position of the maximum moves towards higher neutral gas pressures
and is, for the whole parameter range, located between 3Pa and 5Pa. This means that in case
of argon, in this pressure range energy, can be most effectively transferred to the plasma by an
alternating field. The dependence on the electron temperature appears to be weak.

4.3.2 Electron momentum loss

In the electron momentum conservation (2.28), the momentum loss caused by elastic collisions
turns out to have minor influence compared to the dominant terms which are the partial pressure
gradient ∇nekTe and the momentum change in the electric field nee ~E. A coupled system of
hydrodynamic conservation equations shows the tendency to react almost not on changes in
the electron’s momentum loss term. The physical reason for that is the random velocity of the
electrons, which greatly exceeds the directed (drift) velocity.

However, an effective momentum loss frequency can be derived in dependence of the elec-
tron temperature. For this purpose (4.7) might be evaluated for the limiting case of ω −→ 0.
The DC conductivity of the plasma is then given by:

σDC = −
4π

3

nee
2

me

∞
∫

v=0

v3

ν(v)

∂f0
∂v

dv. (4.11)

Using ν(v) = nNσ(v)v and the conservation equation of the momentum (2.28) for the
stationary case under the assumption of a vanishing partial pressure gradient, we can derive the
electron-neutral momentum loss frequency νme:

1

νme

= −
4π

3

∞
∫

v=0

v2

σ(v)nN

∂f0
∂v

dv. (4.12)
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Figure 4.7: Normalised real part of the complex conductivity, defined in (4.10) for argon, in a
pressure range from 0.1 Pa to 100 Pa and at an electron temperature from 2 eV to 5.2 eV. A
neutral gas temperature of TN = 300K, ωRF = 2π · 27Mhz was assumed.

The value of the momentum loss frequency νme therefore depends on the momentum ex-
change cross section σ(v) and on the electron energy distribution function. Under the assump-
tion of a Maxwellian EEDF,3 the momentum loss frequency can then be calculated in depen-
dence of electron temperature. The density of the neutral particles determines the velocity
dependent collision frequency ν(v), therefore the averaged momentum loss frequency νme is
directly proportional to the neutral particle’s density. The results normalised to the neutral par-
ticle density are shown in Fig. 4.8.

The shape of the elastic electron-neutral momentum exchange cross section, in combina-

3As the integral is dominated by low energy electrons in the bulk of the EEDF, the assumption of a Maxwellian
EEDF is a good approximation. As the number of energetic electrons is generally very low, the well known
depletion of the high energy tail has minor influence on the momentum loss frequency.
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Figure 4.8: Normalised momentum loss frequency νme/nN for various noble gases in depen-
dence of the electron temperature Te.

tion with the increasing number of electron neutral collisions at higher electron temperatures,
leads to an increasing momentum loss frequency for all considered gases in the low energy
regime. The decrease of the electron-neutral momentum exchange cross section for energies
higher than 10 eV is especially pronounced for He and Xe, which means that the momentum
loss frequency shows a maximum and a decrease at higher electron temperatures. The only
noble gas which shows a monotonical increase in the momentum loss frequency is neon. This
behaviour is caused by an electron-neutral momentum exchange cross section which increases
monotonically in the energy range between 0 and 20 eV.

4.3.3 Heat conduction

While the momentum loss caused by electron-neutral collisions has minor influence on the mo-
mentum conservation, the situation is fundamentally different for the heat flux equation which
describes the transport of thermal energy driven by temperature gradients. The thermal conduc-
tivity is indirectly proportional to the frequency of electron-neutral collisions νee. In a general
form νee can be derived from a two-term expansion of Boltzmann’s equation [33]:
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1

νee
=

Te
me

4π

3

∞
∫

v=0

v4

σ(v)nN
f0 dv. (4.13)

However, in case of a Maxwellian energy distribution, the collision frequencies for momen-
tum loss and energy transport are equal [33], i.e.

νee = νem. (4.14)
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Chapter 5

1-D Results

In order to compare the different model systems and to perform a sensitivity analysis for various
model parameters, in this section one-dimensional calculations will be presented. The restric-
tion to only one spatial dimension has the advantage that the influence of each model parameter
can be identified more easily than this in case of a more-dimensional model. Also, a quantita-
tive comparison of different model approaches can be easily performed and delivers meaningful
results.

In this chapter, especially the question will be discussed how the simplifications proposed in
Sect. 2.2 influence simulation results. Different possible model systems will also be discussed
and compared.

5.1 Static solutions of the hydrodynamic equations

To understand the basic correlations between the model parameters and the simulation results,
the simple case of static solutions is going to be discussed, in this section. In the following
section, the more complicated case of time-varying problems will be treated.

5.1.1 Drift diffusion approximation versus momentum conservation equa-
tion

Based on the conservation equations for mass and momentum in Sect. 2.2, two possibilities have
been proposed for describing the electron transport in low pressure plasmas: The more general
approach is based on a system of mass and momentum conservation, while in a simplified
version the momentum conservation is neglected and the electron flux is directly expressed by
the electron density gradient and by the electric field (drift diffusion approximation). For the
one-dimensional (planar) case, the corresponding equations take the form:

Two-moment model for electrons:

∂ne

∂t
+

∂

∂x
(neve) = G− R, (5.1)
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∂

∂t
(neve) +

∂

∂x

(

nev
2
e + nekTe

)

= −
eneE

me
− neveνme. (5.2)

one-moment model for electrons (drift-diffusion approximation):

∂ne

∂t
+
∂je
∂x

= G− R, (5.3)

with

je = −
eneE

meνme
−

1

meνme

∂

∂x
(nekTe) . (5.4)

In order to obtain a complete model, the transport processes of ions have to be considered,
too. As discussed in Sect. 2.2, in case of positive ions, a two-moment model is a good choice
in the discharge bulk as well as in the sheath regions:

Two-moment model for positive ions:

∂ni

∂t
+

∂

∂x
(nivi) = G− R, (5.5)

∂

∂t
(nivi) +

∂

∂x

(

niv
2
i + nikTi

)

=
qniE

mi
− niviνmi(vi), (5.6)

where qi denotes the charge per ion.

One-moment model for negative ions (drift diffusion approximation):

Negative ions are repelled by the ambipolar electric field and can therefore be expected to
accumulate in the bulk of the discharge. This means that their behaviour is fundamentally
different from these of the positive ions, which are driven towards the wall by the ambipolar
electric field. The concentration in the bulk, i.e. in a region with electric fields which are small
compared with the field in the sheath, means that inertia plays a minor role for neagtive ions.
Therefore, the conservation of mass in combination with a drift diffusion approximation might
be a sufficiently accurate description:

∂ni

∂t
+
∂ji
∂x

= G− R, (5.7)

with

ji =
qiniE

miνmi

−
1

miνmi

∂

∂x
(nikTi) . (5.8)

To complete the system, the electric interaction of the different charged particles has to be
considered. It proves to be useful to introduce a scalar potential Φ, which can be calculated from
Poisson’s equation. In a general formulation including Ni different ion species, the potential
can be calculated from
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Poisson’s equation:

d2Φ

dx2
=

1

ε0



ene −
Ni
∑

i=1

qini



 . (5.9)

The electric field is given by the spatial derivative of Φ:

E = −
dΦ

dx
. (5.10)

5.1.2 The eigenvalue of the electron temperature

Using the equations (5.1), (5.2), (5.5), (5.6) and (5.9), (5.10) a self-consistent system of equa-
tions is given which can be solved numerically. Please keep in mind that for this purpose not
only values like mi, νmi, and Ti have to be provided, but that also the important electron tem-
perature Te has to be known.

Many authors solved this problem by adding a conservation equation for the electron energy
(2.32) to the system. In case of low pressure (electron mean free path in the order of discharge
dimension or even larger), this additional equation does not provide much surprising informa-
tion. The good heat conductivity of the plasma (inversely proportional to the electron-neutral
collision frequency) is the reason why the electron temperature profile in the whole discharge
is very flat and almost constant, even if the heating of the discharge takes place only locally.

In this case it makes sense to replace the flat temperature profile by a constant value and to
abstain from the use of an energy conservation. But which value for the electron temperature
should be chosen? The electron temperature does not only influence the transport properties of
the electrons, but is also a crucial parameter determining the generation of electrons and positive
ions by impact ionisation1.

The choice of a value for Te, which is too high, will result in a permanent increase of the
electron and ion density, a value which is too low, will result in a decrease of the electron and ion
density. In a general way, this question had already been discussed for the heating of inductively
driven discharges in Sect. 2.3. If we assume a spatially constant electron temperature profile, for
a given geometry only one value for Te results in a stable (not time-varying) density distribution.

This fact was already recognised in 1924 by Walter Schottky, who calculated the volume
production of charged particles in a positive column [92], using a simple diffusion equation
to describe the particle transport. However, even with more sophisticated models like a set of
hydrodynamic equations the underlying principle remains valid: If the discharge dimension and
parameters like collision frequencies are given, there exists one and only one2 eigenvalue for
the electron temperature, which guarantees a constant electron and ion density in the discharge.
The eigenvalue represents the ability of the discharge to transport particles (generated in the
volume) to the walls.

1Under the assumption of a Maxwellian energy distribution, the temperature dependence of the impact ionisa-
tion rate is dominated by an exponential term. An approximation is given in (4.3).

2A mathematically rigorous proof for the existence and uniqueness of an eigenvalue is possible in case of a
diffusion driven transport with Dirichlet boundary conditions [92]. For more sophisticated model systems including
different charged species, only experimental mathematics indicate that a unique solution might exist.
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This fact must not be underestimated, please recall the discussion about particle generation
in Sect. 4.1. Simplified models for impact ionisation in dependence of the electron tempera-
ture show a rapid increase of particle production in a small temperature range. As discharges
typically operate in this region, the eigenvalue for the electron temperature is dominated by the
particle production term G rather than by the ∇nekTe term, which represents the transport by
diffusion.

A point of criticism commonly raised against hydrodynamic models is the underlying as-
sumption of a Maxwellian energy distribution. Experimental as well as theoretical works indi-
cate that such an assumption is more or less wrong for the high energy region of EEDFs (c.f
Sect. 2.1). The use of a hydrodynamic model in combination with a generation rate based
on a Maxwellian EEDF, would therefore lead to wrong simulation results. On the other hand,
the existence of a unique eigenvalue for the particle generation in a fixed discharge geometry
relativates this point of criticism.

In order to deliver a steady state solution, the simulator has to calculate an electron temper-
ature. This eigenvalue is determined by the discharge geometry and the ability of the ions to be
driven to the walls. The generation rate G(Te) has minor influence as long as the generation in
the region of interest is a steep function (c.f. Fig. 4.1). This is the case for all noble gases.

The use of a constant electron temperature instead of an electron energy conservation equa-
tion has an additional advantage: The average or peak electron density in the discharge repre-
sents a degree of freedom which can be chosen arbitrarily. In a numerical representation this
means that one equation, determining the average or peak electron density, has to be added to
the system. The global electron temperature Te is calculated from this equation. Please note
that independent of the number of discretisation points, only one equation is needed to perform
a control of Te, while in case of an energy conservation for each discretisation point the energy
transport equation has to be solved.

A final consequence of the assumption of a distict electron temperature eigenvalue should
be mentioned: The restriction to one eigenvalue for the electron temperature, instead of a tem-
perature profile, has the advantage that the overall particle generation in the discharge is directly
correlated with this eigenvalue. The general (volume averaged) ability of a discharge to produce
charged particles can be estimated using the electron temperature eigenvalue as an indicator.

5.1.3 The most simple demonstration example

To illustrate the typical properties of a hydrodynamic model, the most simple setup is going to be
discussed. In Fig. 5.1 the results of a one-dimensional, planar noble gas discharge are presented.
The results might be understood as a cross section of a planar low pressure inductively coupled
discharge. The limiting boundaries of the discharge had a distance of 5 cm.

Only one species of ions (positive argon ions) was considered, for ions as well as for elec-
trons a two-moment model, i.e. the conservation equations for mass and momentum, was used.
Volume recombination was neglected (R = 0) while for the generation of electron-ion pairs
by impact ionisation the approximation (4.3) was used. A neutral gas pressure of 1 Pa and a
neutral gas temperature of 300 K were assumed. For the average electron density a value of
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1015 m−3 was chosen, the corresponding eigenvalue for the electron temperature had the value
of Te = 35516K.
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Figure 5.1: Electron density (dotted line, left scale), ion density (full line, left scale) and plasma
potential (dashed line, right scale) in a planar argon discharge, PN = 1Pa. The eigenvalue for
the electron temperature had the value Te = 35516K. Densities were normalised to the average
electron density of ne0 = 1015 m−3.

The results of a numerical solution under the given conditions show axisymmetric profiles
for the electron density, the ion density, and for the plasma potential. The relative low average
electron density of ne0 = 1015 m−3 = 109 cm−3 is the reason why both sheath regions are
clearly visible and why they have an extension of approximately 5 mm. The sheath regions are
characterised by a rapid drop of the plasma potential and a significant difference between the
electron and the ion density. The transition from sheath to bulk is continuous, so it is hard to
identify a position which could be defined as sheath edge3.

The plasma potential shows a peak value of 20 V, about 3 V are needed to ensure the am-
bipolar transport of ions through the bulk, the remaining 17 V drop in the sheath region. In the
bulk region the densities of electrons and ions decrease monotonically towards the walls and

3Various publications exist [87], [85], [86] which deal with plasma sheaths. In the field of sheath theory it is
common to define the position of the sheath edge at the point, where the ion velocity equals the so-called Bohm
velocity i.e. vi =

√

kTe/mi. This definition is valid in a wide range of parameters but becomes meaningless in
the case of extremely high ion friction, where the ions do not reach the Bohm velocity [113].
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are almost equal. In the sheath regions a significant difference between the carrier densities is
visible. The electron density drops almost down to zero while the ion density at the location of
the wall equals approximately 15% of the value in the discharge centre.

In the following sections, parameter variations of this demonstration example will be shown.
All the results will assume the same geometry and argon as the operating gas.

5.1.4 Influence of average electron density

In the demonstration example of the previous section, a quite low value of ne0 = 1015 m−3 was
chosen deliberately for the average electron density in order to make the transition of sheath
and bulk visible. From basic theory of plasmas it is known that the so-called Debye length lD,
for single charged plasmas defined by

lD =

√

ε0kTe
nee2

, (5.11)

is a measure of the extension of the sheath.
Using the eigenvalue of Te = 35516K and the average electron density of ne = 1015 m−3

one obtains a value of lD = 0.41mm for the Debye length. The regions where the electron and
ion density differ significantly, i.e. the sheath regions, have an extension of 4-5 mm (see. Fig.
5.1). This means that in the chosen example the sheath thickness is approximately 10 Debye
lengths.

Especially, for inductively driven high density sources, the assumed value of the electron
density is unrealisticly low, and therefore, in this section, more realistic values will be discussed.
As the Debye length is indirectly proportional to the square root of the electron density, one
might assume that the sheath thickness shows the same behaviour.

In fact the sheath thickness is approximately inversely proportional to the square root of
the average electron density. Sheath region for average electron densities in the range of
ne0 = 1015 − 1017 m−3 are shown in Fig. 5.2. As an experimental background one might
assume a variation in discharge power which causes this density variation. In order to make
the results comparable, the densities were normalised to the average electron density, denoted
ne0. With an increasing ne0 the sheath size shrinks as expected. The percentage of the dis-
charge volume, which is occupied by the two sheath layers, slightly affects the transport prop-
erties of the discharge. This can be seen by comparing the corresponding eigenvalues for the
electron temperature which are a good measure for the overall particle production: In case of
ne0 = 1015m−3, where the sheath regions cover approximately 20% of the discharge volume,
an electron temperature of Te = 35516K had been calculated, while in case of ne0 = 1017 m−3 a
value of Te = 34236K is obtained. This reflects the fact that for ne0 = 1017 m−3 the bulk region
of the discharge is about 20% larger. However, for most technical applications the influence of
the average electron density on the effective discharge volume might be neglected.

A last result corresponding with the various sheath extensions should be discussed: With
the sheath thickness also the value of the ion density at the outer boundary of the simulation
domain decreases. This can be understood by comparing the outflow velocities with which the
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Figure 5.2: Electron (dashed lines) and ion (full lines) density normalised to the average electron
density ne0 for various values of ne0. Calculations were carried out for argon PN = 1Pa,
TN = 300K.

ions leave the discharge. For the most extended sheath (ne0 = 1015 m−3), the ion velocity vi has
a value of 7100m/s, while for the sheath which is ten times thinner (ne0 = 1017 m−3), vi takes
a value of 9100m/s.

Obviously, the reason for this significant difference is the momentum loss, caused by ion-
neutral collisions in the sheath region. This might surprise as the neutral gas background pres-
sure of pN = 1Pa can be considered as low, i.e. the electron mean free path for elastic collisions
is significantly bigger than the discharge extension of 5 cm.

5.1.5 Influence of neutral gas pressure

As the previous section already indicated, ion neutral collisions have a significant influence even
in a low pressure regime. To obtain quantitative information about the importance of ion-neutral
collisions, the effect of neutral gas pressure will be discussed in this section. The influence of the
neutral gas pressure on the simulation result is caused by three different effects. As the impact
ionisation rate is directly proportional to the density of the neutral particles, at higher pressure a
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lower electron temperature is required to cause the same amount of ion-electron pair production.
Furthermore, with an increasing neutral particle density, the ion-neutral collisions become more
frequent and slow down the ambipolar diffusion process. These are the reasons why at a higher
pressure a lower electron temperature can be expected. As the ambipolar diffusion process is
driven by the electron partial pressure given by ∇nekTe, the electron temperature has also an
influence on the overall transport properties of the discharge.
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Figure 5.3: Pressure dependence of the electron temperature eigenvalue (dashed lines, left axis)
and the ion velocity at the boundary (full lines, right axis). The results are shown for average
electron densities ne0 in the range from ne0 = 1016 − 1019 m−3

These effects are illustrated in Fig. 5.3. A pressure variation over three decades causes a
significant variation of the electron temperature eigenvalue from 15550 K to 77955 K. With
increasing pressure, the eigenvalue of the electron temperature decreases monotonically. This
correlates with a decrease in velocity with which ions reach the walls. At all the considered
values of the average electron density (ne0 = 1015 − 1019 m−3), the electron temperature eigen-
value shows only slight variations. A significant influence of the average electron density on
the speed with which the ions leave the discharge can be observed. The results are also shown
in Fig. 5.3. The velocity shows the expected decrease with an increasing neutral gas pressure,
and also a strong dependence on the average electron density ne0. For a low neutral gas pres-
sure (pN = 0.1Pa), the dependence of the ion speed on the average electron density appears
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to be weak. The reason is the low number of ion-neutral collisions in the sheath. With an in-
creasing neutral gas pressure, collisions become more frequent, too. The momentum loss in the
sheath region is also proportional to the sheath extension which depends on the average electron
density ne0. In case of the highest considered average electron density (ne0 = 1019 m−3), the
smallest amount of momentum is lost in the sheath. Remarkably, the strongest dependence of
the ion velocity on the average electron density occurs in an intermediate pressure range around
20 Pa.
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Figure 5.4: Plasma potential in the discharge centre and ion flux to the walls in a pressure range
pN = 0.1− 100Pa at an average electron density of ne0 = 1016 − 1019 m−3.

The general decrease of the ion velocity with increasing neutral gas pressure correlates with
a decreasing ion flux as shown in Fig. 5.4. At all the considered average electron densities
the pressure dependent ion flux to the walls of the discharge shows identical behaviour, i.e. a
monotonic decrease with increasing neutral gas pressure. Comparing the ion fluxes at a neutral
gas pressure of pN = 0.1Pa and pN = 100Pa, one can see that they differ more than one order
of magnitude. An important consequence for the general energy conservation of the discharge
can be derived from this result: For the case of low pressures, most of the RF-power is used for
the production of ions, while for high pressure, the ion friction predominantly transfers energy
to the neutral gas. This is in accordance with spectroscopic measurements [91] which determine
the neutral gas temperature in dependence of neutral gas density.

The situation turns out to be more complicated, when we consider the plasma potential in
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the centre of the discharge. As expected, the plasma potential decreases as well as the electron
temperature in the pressure range pN = 0.1 − 10Pa. At about pN = 20Pa a minimum is
reached, at higher neutral gas pressure the plasma potential rises while the corresponding elec-
tron temperature, as shown in Fig. 5.3, decreases. This behaviour can be understood, when we
consider the plasma potential shape at neutral gas pressure values of pN = 1, 20 and 100Pa, as
shown in Fig. 5.5 (b).
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Figure 5.5: Plasma potential and ion drift velocity versus position for neutral gas pressures of
pN = 1, 20 and 100Pa and an average electron density ne0 = 1016 m−3.

The shape of Φ(x) is of interest rather than the absolute value in the discharge centre at
x = 0. For pN = 1, 20Pa the potential profile shows a flat shape that corresponds to a potential
difference of only a few volts between discharge the centre and the sheath edge. This potential
difference increases with the pressure, e.g. at pN = 100Pa a potential difference of almost ten
volts is required to ensure ion transport from the discharge centre towards the sheath edge. The
increase in the centre potential as shown in Fig. 5.4, can therefore be attributed to a signifi-
cant ion friction in the discharge bulk which can only be compensated by an extra amount of
ambipolar electric field. The losses caused by friction terms are the reason for the significantly
different ion velocity profiles, as shown in Fig. 5.5 (a). In case of pN = 1Pa a significant
acceleration towards the walls takes place in the discharge bulk, at higher pressure values the
ambipolar diffusion process is slowed down resulting in a very flat velocity profile. It should
be mentioned that at pressure values of more than 50 Pa, the assumption of a constant electron
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temperature in the whole discharge is no longer valid (for the assumed discharge size). The
presented results are intended to give an overview what the consequences of pressure variations
over a wide range of parameters.

5.1.6 Sensitivity analysis

While in Sect. 5.1.5 the consequences of a variation of the neutral gas pressure were discussed,
the question remains which model parameters were the reason for the pressure dependence. The
energy with which the ions hit the walls decreases drastically with an increasing pressure. The
reason is the momentum loss caused by ion-neutral collisions.

In order to understand the dependence of simulation results on input parameters, a sensitivity
analysis was performed. As the strong influence of the neutral gas pressure on the ion flux and
velocity indicates, the friction terms for ions are the most interesting parameters. The velocity
dependence of the ion-neutral collision rate was considered by using an empirical parametrisa-
tion of the collision frequency, as given in (4.6). It can be expected, that the coefficient a0 has
dominant influence in regions of low ion drift velocity, while a1 dominates in regions of a high
drift velocity. To make the influence of the different model input parameters comparable, a set
of relative and dimensionless sensitivity variables was defined:

ST0 =
a0
Te

∂Te
∂a0

, (5.12)

ST1 =
a1
Te

∂Te
∂a1

, (5.13)

Sj0 =
a0
ji

∂ji
∂a0

, (5.14)

Sj1 =
a1
ji

∂ji
∂a1

, (5.15)

where a0, a1 are the parameters which determine the velocity dependence of the ion-neutral
collision rate, and Te is the eigenvalue for the electron temperature. The defined sensitivities
are a measure how strong the overall impact ionisation4 of a model discharge depend on the
parameters a0 and a1.

Results for the discussed argon model discharge are shown in Fig. 5.6 (a). The dimension-
less sensitivities ST0, ST1, Sj0 and Sj1 have been calculated for a neutral gas pressure in a range
from 0.1 − 100Pa and for different average electron densities ne0. As already discussed in
Sect. 5.1.4, the average electron density determines the extension of the sheath regions, but has
generally only little effect on the electron temperature eigenvalue. So, ST0 and ST1 show also
only a slight variation for various average electron density values. However, the pressure vari-
ation shows a transition between two different regimes. In case of low pressure (for the chosen

4Please consider the strong dependence of the particle generation rate on the electron temperature as shown in
Fig. 4.1.
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Figure 5.6: Normalised sensitivities ST0, ST1, Sj0, Sj1 for average electron densities in the
range ne0 = 1016 − 1019 m−3 and in dependence of neutral gas pressure pN .

discharge geometry of 5 cm in the pressure range pN < 3Pa), ST1 is dominating. This is not
surprising as the underlying parameter a1 has influence especially for high ion drift velocities.
With increasing neutral gas pressure, the ion drift velocities shrink, so the parameter a0 becomes
dominant for pN > 3Pa. The dependence of the ion flux shows similar behaviour. In Fig. 5.6
(b) the values of Sj0 and Sj1 are shown. The influence of the average electron density appears
to be small, and for low pressure values the coefficient of a1 dominates, while at higher neutral
gas pressure the coefficient a0 dominates. While the pressure dependence of Sj0 and Sj1 has a
qualitatively similar shape like ST0 and ST1, the relative sensitivities Sj0 and Sj1 are one order
of magnitude larger. This expresses the fact that particle production by impact ionisation does
react much more sensitive on changes in the ion friction terms than the corresponding electron
temperature eigenvalue. This is another aspect of the steep dependence of the impact ionisation
rate on electron temperature as shown in Fig. 4.1.

While for the ion flux and the electron temperature the dependence on the average electron
density in the discharge is weak, a strong influence on energy and velocity of ions leaving the
discharge has already been discussed (c.f. section 5.1.4). In analogy to the (5.12) - (5.15),
sensitivities for ion velocity can be defined:

Sv0 =
1

via0

∂vi
∂a0

, (5.16)
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Sv1 =
1

via1

∂vi
∂a1

. (5.17)
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Figure 5.7: Normalised sensitivities Sv0 and Sv1 for average electron densities in the range
ne0 = 1016 − 1019 m−3 and in dependence of the neutral gas pressure pN .

The varying sheath extensions have strong influence on Sv0 and Sv1, as Fig. 5.7 illustrates.
For low pressure and all the considered average electron densities the sensitivity values are low.
Over the whole pressure range from 0.1 − 100Pa, and for all considered average electron
densities, a1 dominates over a0. The influence of the sheath extension is clearly visible as
the sensitivity values are generally larger in case of more extended sheath regions, i.e. lower
average electron density ne0.

5.2 Dynamic solutions of the hydrodynamic equations

The previous section has focused on the basics of particle transport, and the idealised case of
a quasi static discharge was treated. However, a number of applications exists where such an
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approach might be sufficiently accurate. Examples are positive columns of glow discharges,
microwave or inductively driven discharges if they can be considered as one-dimensional.

However, in many cases of RF-discharges, a capacitive component exists which causes an
electron oscillation driven by the RF. In this section, such cases shall be investigated.

In the previous section, ions have turned out to have a dominating influence on the transport
properties. The neutral gas pressure starts to become important as soon as the collision term
dominates the ion inertia.

Most results obtained for the static case remain valid for the ions in the dynamic case. Ion
inertia, especially in the discharge bulk, is so dominating, that no dependence on the driving
RF-frequency can be observed5. The transport behaviour with its dependence on the neutral gas
pressure is almost the same as in the static case.

The species which reacts sensitive to the presence of RF are the electrons. An applied RF-
voltage causes them to oscillate in the field, and extended sheath regions develop.

In the previous section, the differences between a model which uses only one and a model
which uses two conservation equations, deliberately have not been discussed. In fact, static
calculations simulation results are almost identical in case of drift diffusion and a two-moment
model based on (5.1), (5.2). Electron neutral collisions included in the model by the parameter
νme have almost no influence on the results for the static case.

The situation turns out to be different in the dynamic case, i.e. when electric fields exist
which vary with the RF-frequency of the discharge. Electron inertia can have an influence so
that the drift-diffusion approximation and the two-moment model show visible differences. In
this section, both model approaches will be compared. While the existence of static solutions
depends on static boundary conditions, it was assumed for the following calculations that a
sinusoidal voltage is applied to the (conducting) boundaries of the discharge. As a consequence,
the corresponding solutions are time dependent but periodical.

The concept of a given average electron density and a corresponding eigenvalue for the
electron temperature has to be partially given up as a strict implementation would cause drastic
changes in the eigenvalue over one RF-period. However, in a time averaged sense it is still
possible to provide an (spatially and over one RF-period) averaged electron density and to
calculate a corresponding eigenvalue for electron temperature.

Whether electron inertia has to be considered or whether a drift diffusion approach provides
a sufficiently accurate model, depends on the specific application. One example, where electron
inertia plays an important role, is the so-called SEERS6 effect [48], [47]. The nonlinearities
of the sheath regions of capacitively coupled plasmas in combination with the electron inertia
in the discharge bulk generate oscillations in the plasma. These oscillations might be used for
calculating discharge parameters like electron density or collision frequencies. In Sect. 5.2.3 an
example will be presented, demonstrating that such an effect can only be understood by using
an appropriate model.

5This is not strictly true in case of sheath regions. Especially for light ions, a modulation of the ion current is
possible and has been predicted, for example in [97] and [74].

6Self Excited Electron Resonance Spectroscopy
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5.2.1 Comparison of drift diffusion and two-moment model

Inertia terms become important in the case of strong alternating fields which force the electrons
to oscillate. This is typically the case in capacitively coupled discharges. The average extension
of the sheath regions is much larger than in the static case. The sheath thickness is oscillating
with the driving RF frequency. However, the discharge bulk remains almost quasi neutral. Typ-
ical for RF-discharges is also the high potential drop between the bulk and the walls bounding
the discharge. For technological purposes, this is often a desired effect, as the potential differ-
ence causes a directed bombardment by positive ions of all the surfaces which are exposed to
the plasma.

In order to perform a direct comparison of drift diffusion model and two-moment model,
a homogeneous electron temperature is assumed to exist in the whole simulation region. The
corresponding eigenvalue for this temperature is determined by the assumption of an invariant
period averaged electron density.
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Figure 5.8: Comparison of static simulation results with dynamic calculations using a drift
diffusion and a two-moment model for an argon discharge, operating at 1 Pa. Dashed, dotted
and long dashed lines represent electron densities, the full lines the corresponding ion densities.
fRF = 27MHz, ARF = 200V

The calculations were carried out for an argon discharge, operating at 1 Pa, the potential of
the right boundary was assumed to be zero while the potential of the left boundary varied with
a sinusoidal time dependency: Φ(t) = ARF sin (2πfRF t). The amplitude of the RF-oscillation
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was set to a value of ARF = 200V and the common RF-frequency of ω = 27MHz was used.
The results for the different models are shown in Fig. 5.8. For comparison, the electron and ion
density in case of a static calculation, i.e. without applied RF-voltage, as well as electron and
ion density for the dynamic model are shown. The electron and ion densities in the dynamic
case are shown for a time, when the phase of the RF is zero, i.e. fRF · t ∈ {0, 1, 2, 3, ...}.

All the shown results are calculated in case of an average electron density of ne0 = 1015 m−3.
As the sheath regions are much larger for the dynamic case (i.e. with applied RF-voltage), the
peak electron densities differ significantly. However, the two different dynamic models only
show very small differences.
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Figure 5.9: Potential distributions for two-moment and drift diffusion model. The left figure
shows the spatial potential distribution in the discharge at different phases, the right figure
displays the time dependence of the potential in the discharge centre.

When we compare the potential distributions, the essential differences between the drift dif-
fusion and two-moment model become visible. In 5.9 (a) the potential in the discharge for three
selected RF-voltages is shown. It is remarkable that the two-moment approach generally shows
a slightly higher potential than the corresponding drift diffusion calculation. Furthermore, in the
bulk region of the discharge the potential is almost flat in the case of the drift diffusion model,
while in some cases the two-moment model predicts a potential gradient. The reason herefore
is the electron inertia. In order to accelerate the bulk electrons, a certain amount of the electric
field, i.e. potential gradient, is required. With a changing sign of the RF-voltage the direction
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of this gradient also changes, as indicated by the curves for Φ = 199 V and Φ = −180 V.
The modulation of the potential in the centre of the discharge i.e. the plasma potential Φpl

is shown in Fig. 5.9 (b). If the potential of the driven electrode is positive, the plasma potential
follows with an offset voltage in the order of a few ten volts. If the electrode potential turns
negative, a significant voltage drop develops. It is remarkable that the plasma potential in the
discharge center is not sinusoidal. Deviations from a sinusoidal voltage are pronounced for the
case of the two-moment model but also visible for the drift diffusion model. A slight phase shift
between driving RF-frequency and the plasma potential is also visible for both models.

However, the overall differences between the two model approaches can be considered to be
small. The effect of inertia terms is visible, but does not cause the two models to differ drasti-
cally. This is true for a wide range of average electron densities, therefore no further parameter
variations are carried out. Instead, some further consequences of the sheath nonlinearity will be
discussed.

5.2.2 Asymmetric discharges, self bias

In many cases a CCP discharge consists of a small electrode which is usually driven by RF
while the counterelectrode (the walls of the reactor chamber) is larger in size. Typically, the
RF-generator and the driven electrode are connected by a capacitor so that no DC current from
the electrode flows to the plasma. During operation, a negative charge accumulates on the
electrode exposed to the plasma, which is known as the so-called self bias. A more detailed
description and scaling laws relating the self bias voltage to the area ratio of the electrodes, can
be found in [63].

The self bias is a desired effect, particularly for applications (e.g. dry etching) depending
on energetic, directed ions hitting the substrate surface. The self bias voltage is the reason why
ions are accelerated towards the electrode, while electrons are repelled for most of the time of
an RF-cycle. Only for a very short part of the RF-cycle, the potential barrier is reduced so much
that electrons can reach the electrode. As the electronic thermal velocity of the electrons is
typically about two orders of magnitude larger than the velocity of ions leaving the discharge,
the short period, when electrons can reach the electrode, is sufficiently long to compensate the
permanent ion flux. As already discussed in the previous subsection, the RF causes a periodic
change in the plasma potential (see Fig. 5.9). On the other hand, to what extent the driven
electrode is able to modulate the plasma potential, depends on the geometry, i.e. on the area
ratio of the electrode to the counterelectrode.

A possibility to use a one-dimensional model in order to investigate this effect is to assume
a cylindrical or spherical geometry. In a realistic setup the discharge would consist of a cylin-
drical volume in which a driven electrode with a certain diameter is inserted. The length of the
discharge should be significantly larger than the diameter of the outer boundary. An alternative
possiblity is the use of a spherical geometry as proposed in [63]. In that case, both electrodes
are assumed to be spherical, the small driven electrode is included in a larger grounded shell.

The calculated values of the plasma potential in equal distance from both electrodes for a
cylindrical setup with three different radii re of the inner electrode are shown in Fig. 5.10. In all
the cases, the outer electrode had a radius of 10 cm. Results are presented for inner electrodes
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Figure 5.10: Plasma potential versus time for asymmetric RF-discharges. The results are shown
for argon, pN = 1Pa, ARF = 500V, fRF = 27MHz.

with a radius of 1 cm, 2 cm and 5 cm. The inner electrode was driven while the outer electrode
was grounded. It is not surprising that the modulation of the plasma potential Φpl increases with
the area of the driven electrode. The maximum value rather than the minimum are influenced
by the area of the driven electrode. By subtracting the maximum value of the plasma potential
from the amplitude ARF , which drives the discharge, one obtains an approximate value of the
bias voltage. Vbias = 245V for re = 1 cm, Vbias = 360V for re = 2 cm and Vbias = 395V
for re = 5 cm. Higher bias voltages for smaller driven electrodes are in accordance with well
known theories about self bias voltages [63].

Another remarkable detail is the occurance of high frequency oscillations which are es-
pecially pronounced for small driven electrodes, i.e. for highly asymmetric discharges. Such
variations are particularly pronounced in asymmetric discharges which operate in a low pressure
regime and at high RF voltages. Those oscillations can in fact be measured and used to perform
non-invasive diagnostics of the discharge. This will be the topic of the following section.
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5.2.3 Self Excited Electron Resonance Spectroscopy (SEERS)

In recent years, the manufacturers of semiconductors have showed an increasing interest in
process monitoring and control. Different diagnostic methods have been tested [101] under
real process conditions and can be expected to be part of plasma processing equipment in the
future. For the manufacturer, it is desirable to know the electron density in the process plasma
while the process must not be influenced by the diagnostic system. For this reason, the use
of Langmuir probes is considered to be inapplicable for the highly sensitive semiconductor
processing equipment. Furthermore, coating or etching plasmas make the operation of a probe
in real process plasmas difficult. The risk of contamination is another commonly used argument
against probes in semiconductor applications.

It is possible to determine average electron density with passive and non invasive systems.
This can be achieved by the detection of higher harmonics generated by the plasma itself. In
capacitively driven and non symmetric discharges, a combination of a nonlinear sheath charac-
teristic and electron inertia in the bulk, generate a sequence of higher harmonics which can be
measured by using a passive sensor integrated in the chamber wall. A commercially available
system7 exploits these effects and offers process monitoring.

The underlying theory is based on a lumped circuit model of the discharge consisting of
diodes, capacitors, inductors and resistors. The values for the lumped elements have to be
derived from geometry data using semiempirical relations.

A more physically rigorous approach is the use of a hydrodynamic model to describe the
sheath-bulk interaction. In this section corresponding results will be presented.

As already shown in the previous section, the capacitive operation of a discharge causes
a time-dependent modulation of the plasma potential. Under certain conditions the plasma
potential might show even oscillations with a frequency which is higher than the RF-frequency
powering the discharge. This correlates with a modulation of the electric field at any surface
exposed to the plasma. A change in time of the electric field causes a displacement current. The
net current to all electrodes in the plasma is a superposition of electron, ion, and displacement
current. While the ion current contributes an almost constant offset, electrodes reach the wall
only at the very short period where the potential difference between plasma and wall is small
enough. A numerical analysis or a simple estimation reveal that the displacement current is the
dominant component.

A direct measurement of the displacement current is possible by using a passive sensor
consisting of a conducting area in contact with the plasma connected to a shunt resistor. As the
displacement current is the time derivative of the electric field, high frequency components are
amplified proportionally to their frequency. Higher harmonics become clearly visible.

Basically, SEERS (Self Excited Electron Resonance Spectroscopy) might be understood,
using a simple model based on splitting the discharge into bulk and sheath regions. Generally,
the sheath regions show a capacitive behaviour as a voltage change causes electrons to leave or
to re-enter the sheath region and drives a current. The bulk shows inductive behaviour because
an applied voltage causes a change in current. The connection of bulk and sheath forms a circuit
with the ability to oscillate.

7HERCULES, a system based on high frequency electron resonance current low pressure spectroscopy.
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From a modelling point of view, the use of a two-moment model is a must to solve this
problem. The electron inertia in the bulk plays an important role and therefore has to be included
in the model. Experimental evidence shows that electron resonances are most pronounced in
asymmetric systems, i.e. in discharges where one electrode is (much) smaller than its counter
electrode. In order to achieve an asymmetry in analogy to the results presented in the previous
section, a one-dimensional model for a cylindrical geometry can be used.
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Figure 5.11: Calculated current (left scale) flowing to the grounded electrode of an asymmetric
13.56 MHz argon discharge. Neutral gas pressure was pN = 1Pa, the driven inner electrode
had a radius of ri = 1cm the grounded outer electrode a radius of ra = 10 cm. The sinusoidal
voltage VRF , driving the discharge, is shown as dotted line (right scale).

The current to the grounded outer wall of the discharge in case of an argon discharge op-
erating at a neutral pressure of pN = 1Pa, is shown in Fig. 5.11. The total current consists
of three components: An ion current which appears to be almost constant, an electron cur-
rent which only reaches the electrode when the sheath is almost collapsed, and a dominating
displacement current. The displacement current shows a periodic structure (RF-period of the
driving frequency) as well as higher order harmonics.

Electrons only contribute to the total current when the RF-voltage VRF , applied to the inner
electrode is sufficiently negative. The electron current appears to be slightly different for rising
and for falling VRF . The electron flux on time average is balanced by an ion flux which for
the chosen scale appears to be almost constant. However, the potential variations in the sheath
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region cause a slight modulation of this ion current in the order of of few percent. Because
the displacement current is almost equal to the total current in the largest part of the RF-cycle,
it is not displayed separately in Fig. 5.11. The displacement current shows clearly visible
oscillations which occur once VRF has passed this maximum, i.e. when they are triggered by a
reversal of the displacement current.

The oscillations appear to be damped and one can expect a pressure dependence which
means that a higher damping occurs with an increasing neutral gas pressure.
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Figure 5.12: Calculated total current flowing to the grounded electrode of an asymmetric 13.56
MHz RF discharge. Results are shown for an argon discharge, operating at neutral gas pressure
in the range pN = 1Pa − 10Pa. For better distinction, the curves for 2 Pa, 5 Pa, 10 Pa are
shifted 2, 4, and 6 A/m2, respectively.

A pressure variation leads to results as shown in Fig. 5.12. Under the asspumtion of con-
stant electron density, the total current was plotted versus time. The pressure variation predom-
inantely affects the damping of the oscillations while the frequency remains constant. This is
especially remarkable as a variation of the neutral gas pressure has a strong influence on the
eigenvalue of the electron temperature (c.f. Sect. 5.1.5).

The damping of electron resonances is an important example, where the electron-neutral
momentum transfer frequency νe has a clearly visible influence. Normally, the ion-neutral
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collisions determine the efficiency of an ambiplor diffusion process, while due to the small
electron mass the electronic friction can be neglected. In case of electron resonances which
typically occur with frequencies of several ten MHz, the damping caused by electron-neutral
collisions, is the dominant effect. As the discussed oscillations are a pure electronic effect8,
damping can only be caused by electronic collision processes. Performing non-invasive plasma
diagnostics by monitoring the displacement current, the damping can be used to calculate the
frequency of the momentum exchange between electrons and neutrals. Experimental evidence
shows that the derived quantity tends to react sensitively on changes in the process conditions
[101].

However, the quantity with dominant influence on important process parameters like ion
fluxes or the production of chemically active species is the electron density.
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Figure 5.13: Calculated current flowing to the grounded electrode of an asymmetric 13.56 MHz
argon discharge. Results are shown for an argon discharge, operating at neutral gas pressure
of pN = 1Pa. The average electron density ne0 in the discharge was varied in the range
1014 m−3 − 1016 m−3.

The average electron density in the discharge bulk is also a measure for the number of

8Typically, the plasma frequency of ions is at least one order of magnitude lower, which means that ions do
almost not react to the changes of the electric field.
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electrons in the sheath regions of the discharge. The sheath regions show a capacitive behaviour,
i.e. a change in voltage results in a current, which is proportional to the number of electrons in
the sheath region. Considering the sheath capacitance to be dependent on the electron density
and keeping in mind that electron resonances are generated in an LC-tank circuit, the frequency
of those resonances depends on the average electron density in the discharge.

A change in the electron density has two effects: The inductance of the bulk is inversely
proportional to the electron density, i.e. a larger electron density means smaller inductance.
On the other hand a larger electron density causes a smaller Debey length, and therefore an
increased sheath capacitance. Because the Debey length is proportional to the square root of
the electron density, the influence of the electron density on the bulk inductance dominates. A
higher electron density means a higher resonance frequency.

This dependency is illustrated in Fig. 5.13, where the total current flowing to the grounded
wall is shown for different average electron densities in the discharge. In all presented calcula-
tions a neutral gas pressure of 1Pa was assumed.

In case of an average electron density of ne0 = 1016 m−3, approximately six full cycles
can be identified, while for an average density which is one order of magnitude lower (ne0 =
1015 m−3) only three cyles are visible. In the case of an extremely low average electron density
ne0 = 1014m−3 = 108 cm−3, the resulting electron resonance frequency is so low that only one
cycle can be identified.

The results, shown in Fig. 5.13, illustrate the merits as well as the limitations of electron
resonances. The damping of the electron resonances appear to be independent of the electron
density, and to depend only on the neutral gas pressure.

A value of ne0 = 1014 m−3 = 108 cm−3 seems to be the low detection limit. The frequency
of the self excited electron resonances is so low that only one cycle can be identified at a back-
ground pressure of pN = 1Pa. On the other hand this is not a serious disadvantage. Electron
density and neutral gas pressure in a capacitive discharges, used for semiconductor production
processes, are typically in an order of magnitude, which makes an evaluation of resonances in
the displacement current possible.
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Chapter 6

2-D Results

Various possibilities of the application of hydrodynamic transport models have been discussed
in the previous chapter. In order to separate different effects and to discuss the influence of the
inherent parameters, one-dimensional models are the optimal choice. Unfortunately, for realis-
tic applications like process plasmas, where especially the question of discharge homogeneity
is of interest, the use of one-dimensional models is not adequate.

As the especially for dynamic calculations, even for a simple looking one-dimensional prob-
lem the computational effort can be quite high, calculations in the two-dimensional case are only
possible with optimised and efficient models. One possibility is the use of the drift diffusion
model for electrons, because it tends to be much more stable in combination with larger time
steps. The number of discretisation points is a critical quantity. A static calculation for a two-
dimensional mesh with about 5000 grid points on-state-of-the-art personal computers may be
performed in a few hours. Static means that, instead of time-dependent quantities, period av-
eraged quantities are calculated. The number of 5000 grid points is not exceptionally high, for
more complicated geometries are even more points required.

In this chapter, calculations and experimental data measured in inductively coupled dis-
charges, will be presented. It will be shown how modelling can contribute to reactor design and
how the chamber design influences key parameters like homogeneity and ion flux. As a model
system for all following calculations, the equations (2.22), (2.24), (2.26), (2.31), (2.32), (2.46),
and (2.48) are used.

One of the fundamental issues in ICP design is the geometry of the RF-antenna. The induced
electric field, which is radiated from the antenna, decreases rapidly with increasing distance
from the coil. Heating in this type of discharge only takes place in small zones localised in the
proximity of the coil. That is the reason why, except for the case of very low pressure1, an at
least two-dimensional model is required, in order to calculate a realistic electron temperature
distribution.

1At low pressures, the high electronic heat conductivity is the reason why the electron temperature is almost
homogeneous.
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6.1 Antenna design

A typical planar, cylindrical ICP chamber with three coils and the corresponding strength of the
induced electric field is shown Fig. 6.1. The induced electric field shows maximum values at
the location of the coils and decreases rapidly with increasing distance from the coils. In the
setup shown here this has the consequence that a heating of the plasma only takes place in a
region directly below the quartz window. The chosen input power of 200W represents a typical
value of ICP discharges. In the following, the question of discharge power will be discussed in
more detail.

+0.0

+215.6

+431.3

+646.9

+862.6
V/cm
E induced

z

r

coils

A B

D

C

E [V/m]

quartz window

E

1 2 3

Figure 6.1: Cross section of a cylindrical ICP chamber with three coils and the corresponding
induced electric field lines. The chamber has a diameter of 20 cm and a height of 4 cm. The
field distribution shown is valid at an argon pressure of 5 Pa and at a discharge power of 200 W.
The corresponding current flowing in each of the three coils was 6.6 A.

The dashed lines represent cutlines for which data will be presented in the following.

6.1.1 Influence of coil geometry

Starting point for all the following results is the field distribution in the unperturbed case, i.e.
without a conducting plasma in the reactor chamber. In order to find out what the contribution
of each single coil is, we start our considerations by calculating the induced electric field which
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is produced by each of the three coils. This quantity in dependence of the axial coordinate z is
presented in Fig. 6.2. Data are shown for axial cuts along the cutlines A,B, and C (c.f Fig. 6.1).
In all the cases the maximum of the field is located at z = 40mm, i.e. on the border of the quartz
window. For each cutline the dominant contribution to the field stems from the coil which is
located directly above. However, a geometry effect is visible: Comparing the contribution of
coil “3” to the field at cutline A with the contribution of coil “1” to the field at cutline “C”, one
can see that the induced field depends on the diameter of the coil. The influence of coil “1”, the
coil with the smallest diameter, is about 50% less than the influence of coil “3” which is twice
as large.
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Figure 6.2: Normalised induced electric field EΘ in dependence of the axial position z. (A)
shows the field intensity along the cutline A (c.f. Fig. 6.1) in case that coil “1”,“2” or “3” are
driven. (B), (C) show the same result for the cutlines B and C.

The attenuation of the field intensity with increasing distance from the coils appears to be
unavoidable. The homogeneity of the field distribution in radial direction is more important.
The variation of the induced electric field in radial direction is shown in Fig. 6.3.

The field of each coil shows a maximum whose position is correlated with the position of the
corresponding coil. Due to rotational symmetry, the field vanishes on the axis of the chamber
(r = 0). The assumption of a conducting outer boundary causes a zero field at R = 100mm.
If all three coils work instantaneously, the superposition produces a field distribution which is
shown as full line.

The similarity of the total field distribution and of the up scaled field distribution of coil “2”
is remarkable. The field distribution, generated by a superposition of the three parts, is only
slightly wider than the induced electric field, produced by coil “2” on its own. This reflects one
of the fundamental problems with the design of antennas: The field distribution produced by a
set of coils which are driven with the same current, is often not significantly more homogeneous
than the field distribution which is caused by a single coil. In any case, the induced field on the
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Figure 6.3: Induced electric field EΘ along cutline D in case of a separate operation of the coils
“1”, “2”, “3” and for the case of simultaneous operation “1+2+3” (full line). For simultaneous
operation an in-series connection was assumed, i.e. equal current in all coils. The bars close to
the r-axis indicate the position of the coils.

axis of symmetry as well as at the outer boundary vanishes.
This means that a heating can only take place in a torus shaped region. For any rotationally

symmetric chamber, a zone close to the axis exists, where no induced electric field exists, and
therefore no discharge heating takes place. Depending on the chamber geometry, the non heated
zone will have influence on the density distribution and might result in a torus shape electron
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density distribution, as will be shown in the following section.
The presented results of the induced electric field agree qualitatively well with the measure-

ments performed by Hopwood [41].

6.1.2 Experimental validation

In order to find a correlation between the induced electric field and the electron density, experi-
ments with separately powered coils were carried out in the chamber shown in Fig. 6.1.

Langmuir probe measurements along the line, denoted as D, provided information about the
electron density variation in radial direction.

0 20 40 60 80 100
r [mm]

0

2e+17

4e+17

6e+17

8e+17

1e+18

n e 
[m

−
3 ]

0 20 40 60 80 100
r [mm]

0

2e+17

4e+17

6e+17

8e+17

n e 
[m

−
3 ]

0 20 40 60 80 100
r [mm]

0

2e+17

4e+17

6e+17

8e+17

n e 
[m

−
3 ]

Figure 6.4: Experimental and theoretical radial electron density profiles of a planar ICP dis-
charge (see Fig. 6.1) operating in argon at pN = 10Pa, TN = 300K. The three coils were
powered separately, the bars indicate the coil positions.

The calculated and measured results are shown in Fig. 6.4. The neutral gas pressure of 10
Pa was chosen because at this pressure for the given chamber dimensions a correlation of the
coil position and the electron density becomes visible. The electron densities for each of the
three coils show pronounced maxima whose positions on the r-axis are located close to the coils.
Simulation and experiment are in good agreement. The applied hydrodynamic model seems to
be capable of predicting the local density distribution.

6.1.3 Skin effect

In a general case, the field distribution will significantly depend on the electrical conductivity
of the plasma in the chamber. This conductivity is proportional to the electron density (c.f Sect.
2.3). Assuming a proportionality between input power and electron density this means that for
low input power, i.e. low electron density, the field distribution in the chamber will be approx-
imately equal with the undisturbed distribution. At a high input power, a high conductivity
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reduces the skin depth, and an induced electric field only exists in a thin layer below the quartz
window.

The field distributions which illustrate the skin effect for an argon discharge operating at 5
Pa and with variable input power, are shown in Fig. 6.5. In that case each coil was driven with
the same current. The coil current was adjusted so that the total power transferred to the plasma
equals 100, 400, 1600 or 6400W.

400W100W

6400W1600W

Figure 6.5: Induced electric fields at different values for the discharge power. Calculations were
carried out for an argon discharge operating at a neutral gas pressure of pN = 5Pa and a neutral
gas temperature of TN = 300K.

The calculations show that with increasing input power the intensity distribution of the in-
duced electric field changes drastically. While for an input power of 100 W the resulting elec-
tron density allows the induced electric field to fill the upper half of the reactor chamber, in
the case of higher electron density the conductivity is the reason why eddy currents, flowing in
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the plasma, compensate the induced electric field almost completely. An area with significant
field strength remains only in a very thin layer directly below the quartz window. The shielding
caused by the conductivity of the plasma might be understood as a well known effect in the field
of high frequency electronics, the so-called skin effect.

The skin effect effectively limits the electron density which can be produced by ICP dis-
charges. Once the electron density exceeds a certain level, the discharge protects itself from
further heating. The typical maximum electron density is in the order of 1013 cm−3.

6.2 Influence of neutral gas pressure

In Sect. 5.1.5 the dependence on the neutral gas pressure has been investigated thoroughly.
Especially the slowdown of the ambipolar transport process by an increasing number of ion-
neutral collisions had been discussed.

When we use a two-dimensional model including an electron energy conservation equation,
an additional aspect gains importance. The discussion of the induced electric field distribu-
tion revealed the fact that discharge heating only takes place in relatively small regions in the
proximity to the antenna. The energy which is transferred to the electrons in this region is redis-
tributed in the whole discharge chamber, and (elastic) electron neutral collisions (friction) are
the reasons why a certain electron temperature gradient is required to enable the energy transfer.
The electronic heat conductivity (c.f. Sect. 4.3.3), on the other hand, is indirectly proportional
to the number of neutral particles, which means that, for higher pressure, the heating zones of
the discharge are the regions with the highest mean electron energy, too. The critical pressure
value, at which such inhomogeneities start to develop, is dependent on the dimensions of the
considered discharge.

6.2.1 Pressure variation in a planar chamber

For the reactor chamber given in Fig. 6.1, the critical pressure is in the order of 10 Pa. The ex-
perimental and theoretical data, presented in Fig. 6.4, illustrate the existence of inhomogeneous
density distributions.

In order to investigate the pressure dependence of the density distribution, measurements
were carried out for neutral gas pressure values of 0.5, 2 and 5 Pa.

At a neutral gas pressure of pN = 0.5Pa, the simulation and the measurement show a profile
with an electron density maximum in the centre of the discharge at r = 0 (c.f Fig 6.6 (a)). In the
pressure range between pN = 2Pa and pN = 5Pa, a transition occurs and the maximum in the
proximity of the coil develops. The electron density distribution takes the shape of a torus. The
torus shape becomes even more pronounced at higher pressure values, as Fig. 6.4 (b) indicates.

The formation of a torus shaped electron density distribution at higher neutral gas pressure
is not surprising bearing in mind the radial variation of the induced electric field as shown
in Fig. 6.3. The local maximum of the induced field correlates with local heating and local
production of electron ion pairs by impact ionisation. One might conclude that this is valid for
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Figure 6.6: Experimental and theoretical radial electron density profiles for a planar ICP
discharge operating in argon at different neutral gas pressure values: (a) pN = 0.5Pa, (b)
pN = 2Pa and (c) pN = 5Pa. Coil “2” was powered.

any chamber geometry but this generalisation should be avoided. Reasons will be given in the
following section.

6.3 Influence of the reactor geometry

The previous sections focused on the question, how do different antenna configurations and
a change in the working pressure determine the electron density distribution in the discharge
chamber? Generally, in case of “low” pressure, the coil geometry does not have significant
influence on the electron density distribution. The thermal conductivity of the electrons causes
a redistribution of the energy, which is transferred to the discharge and produces a relatively
homogeneous electron temperature profile2. The working pressure is in this regime in many
process applications3. However, the question whether a certain pressure value can be considered
to be low depends on the chamber dimension.

The high thermal conductivity at low pressure is the reason for the fact that in this regime
characteristic plasma parameters like electron density and electron temperature can hardly be
influenced by the geometry of the coils. The electron density distribution is determined by the
reactor geometry rather than by the antenna design. Regarding the design of inductively coupled
plasmas, two different cases can be distinguished:

- In a low pressure regime the coil configuration has a minor influence on the electron den-

2Here, the use of a discrete electron eigenvalue like in the case of one-dimensional hydrodynamic plasma
models would be possible in this case.

3For example, etch processes try to minimise the number of ion-neutral collisions in the sheath region to obtain
an ion impact perpendicular to the wafer surface. This is achieved by a working pressure in the sub-Pascal pressure
range.
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sity and temperature distribution in the reactor chamber. Homogeneity is predominantly
influenced by the geometry of the chamber.

- In a high pressure regime a correlation between the coil position and the density as well
as the temperature distribution exist. The discharge homogeneity is partly influenced by
the coil position as well as by the discharge geometry.

6.3.1 Influence of aspect ratio

A good example which can be used to illustrate the effect of geometry and neutral gas pressure
is the planar discharge which was discussed in the previous sections. The torus shaped region
of high electron density, indicated by simulation and experiment at a neutral gas pressure of
pN ≥ 5.0Pa is a typical phenomenon in planar chambers with an aspect ratio similar to the
discussed example shown in Fig. 6.1. A number of other authors reported the same phenomenon
[116], [53].

One might assume that the existence of the plasma torus is correlated with the distribution
of the induced electric field as shown in Fig 6.3, but the geometry of the chamber, particularly
the aspect ratio, play an important role. In the example discussed above, the chamber can be
considered as “flat”. With a height of 4 cm and a diameter of 20 cm, most of the ions generated
in the discharge will be absorbed by the top or bottom boundaries, i.e. ambipolar diffusion
causes a particle transport, predominantly in z-direction. The situation turns out to be different
in the case of “higher” chambers.

Theoretical data for a ratio of height to diameter of H/2R = 100mm/150mm are shown in
Fig. 6.7. The calculated electron temperatures in the case of an argon discharge, which operates
at a neutral gas pressure of pN = 1.0Pa (left plot) and pN = 5.0Pa (right plot) can be seen.
The discharge is driven by a set of three coils through which an equal current flows. In both
cases the RF-power transferred to the discharge was chosen as PRF = 80W.

The resulting electron temperature distribution shows a maximum close to the quartz win-
dow because this is the region, where the largest part of the RF-power is deposited. The electron
temperature shows a decrease towards all conducting boundaries of the discharge and towards
the axis of symmetry of the cylindrical setup. This behaviour could be expected as in these
regions almost no heating takes place. If pN = 1.0Pa, the temperature difference between the
hottest spot close to the quartz window and the coldest region close to the lower boundary of the
chamber is about 3500K. At pN = 5.0Pa, this temperature difference takes a value of 6500K.
With respect to the temperature dependence of the ionisation rate of argon (c.f. Fig. 4.1), this
temperature difference cannot be considered to be small. Ionisation will predominantly take
place in the hot zone close to the quartz window. For the given chamber size this indicates that
at a pressure of about pN = 5.0Pa the discharge is localised closer to the quartz window.

This is confirmed by the corresponding contour plot of the electron density, as shown in Fig.
6.8. At a neutral gas pressure of pN = 1.0Pa, the discharge is almost symmetric in z-direction
while for pN = 5.0Pa the density distribution moves upwards in the direction of the quartz
window, where the heating of the discharge takes place. Further simulations for higher neutral
gas pressure values show that the maximum of the electron density remains on the axis r = 0.
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Figure 6.7: Contour plots of the electron temperature in K for a cylindrical ICP discharge
operating in argon at pN = 1.0Pa (left plot) and pN = 5.0Pa (right plot). Calculations are
based on a chamber height of H = 100mm, a diameter of 2R = 150mm and a neutral gas
temperature of TN = 300K.

In no case, a torus like electron density distribution with an off-axis maximum develops. This
is an example how geometric data, like the chamber aspect ratio, have a significant influence on
the resulting density distribution in the discharge.

6.3.2 Experimental validation

The theoretical results in the previous section have predicted a localisation of the discharge
close to the quartz window for high neutral gas pressure. They also indicate that a torus shaped
electron density profile does not occur in the chosen chamber geometry. However, it would be
desirable to check with what accuracy the model is in agreement with experimental data.

In Fig. 6.9, electron density measurements 4 and the corresponding simulations of the dis-
charge, shown in Fig 6.7, are presented. Measurements were carried out in z-direction (z-
profile, r = 0) and in r-direction (r-profile, z = 50mm).

As only one Langmuir probe was available, the measurements in radial and axial direction
were carried out sequentially. The discharge conditions seem to be not exactly the same, this

4This and all following experiments were carried out at the University of Augsburg, Germany. The ICP cham-
ber was especially designed for plasma diagnostics in combination with chemical erosion experiments. Due to 5
flanges, radial as well as axial measurements were possible. Special thanks to H. Paulin and U. Fantz for coopera-
tion.
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Figure 6.8: Contour plots of electron density [m−3] for a cylindrical ICP discharge operating
in argon at pN = 1.0Pa (left plot) and pN = 5.0Pa (right plot) for a neutral gas temperature
TN = 300K.

is the reason why the peak values of the electron densities differ slightly. In order to be able
to compare the measured values to the simulations, the RF-power needed as simulation input
parameter was adjusted to match the measured electron peak densities. The resulting electron
density profiles are in good agreement with the measurement.

Especially the asymmetry in z-direction predicted by the simulation is in excellent agree-
ment with the measurement. The maximum of the electron density has clearly shifted towards
the quartz window indicating a correlation with the hot zone (c.f Fig 6.7), where most of the
impact ionisation takes place.

In radial direction, the simulation as well as the measurement show a monotonic decrease
indicating that the maximum of the electron density is located at r = 0, i.e. on the axis of the
rotational symmetric discharge.

The given results calculated for argon are comparable to data of other noble gases because
the underlying effects like decreasing thermal conductivity at an increasing neutral gas pressure
are similar.

Using helium as a discharge gas, one can expect a concentration of the discharge close
to the quartz window at an increasing neutral gas pressure. On the other hand, the different
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Figure 6.9: Measured and simulated electron density in an argon ICP discharge, operating at 5
Pa. The dashed line shows theoretical data for the profile in r-direction, the squares the corre-
sponding measurement. The dotted line represents simulated data in z-direction, the triangles
the corresponding measurement. Discharge power, used for the simulation, was adjusted to
match the peak value of the measurement.

electron-neutral momentum transfer frequencies for argon and helium, as shown in Fig. 4.8,
are the reason for the fact that the concentration of the discharge in the heating zone starts at
higher pressure for helium than for argon. A collection of data illustrating this effect is given
in Fig. 6.10. In order to achieve a comparability of the different profiles, simulated as well
as calculated profiles were normalised to their maximum. Measured and calculated z-profiles
show a fairly good agreement over the whole pressure range. Especially, the shift of the electron
density maximum towards high z-values, i.e. in proximity to the quartz window, occurring with
a rising neutral gas pressure, is in excellent agreement with the hydrodynamic model.

6.4 Input power and discharge efficiency

In the previous sections different examples for electron density distributions in ICP discharges
have been presented. In order to achieve comparability of the model with the experiment, the
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Figure 6.10: Measured and simulated electron density in a Helium discharge, operating in a
pressure range from 5− 50Pa. The data were normalised to the corresponding maximum.

model input parameter for the RF-power had been adjusted. At first glance this might look like
using an additional degree of freedom to get a nice agreement of simulation and experiment. As
will be shown in the following, the input parameter RF-power is more like a “knob to adjust”
the results.
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In order to assemble a complete set of boundary conditions, not only neutral gas pressure,
temperature, generation rates, and collision frequencies have to be known, but also the coil
current as input parameterfor the electrodynamic model are needed. The coil current, in com-
bination with the electron density distribution in the plasma, is a measure for the power which
causes a heating of the discharge. This power is a certain fraction of the power delivered by the
RF-generator. To find a correlation between generator power and electron density is everything
but trivial. Consider the following experimental experiences:

- ICP discharges typically show a warming-up-behaviour. Time-resolved measurements
of the average electron density in the chamber typically vary significantly directly after
ignition of the plasma. It takes several minutes up to hours until a steady state is reached.
The variations in density can be several 10 percent of the final density value.

- Only a certain percentage of the RF-generator power can actually be transferred to the
discharge. Power losses caused by the ohmic resistance of the coils or by eddy currents
in the grounding walls or shieldings are the reason why the efficiency typically is in the
order of several ten percent. The efficiency is strongly influenced by the electron density
in the reactor and therefore is indirectly depending on adjustable external parameters like
neutral gas pressure [40].

- Most process chambers are coated. Sputtering, redeposition, and surface chemistry are
the reasons why very slow time constants (in the order of hours) can influence the dis-
charge conditions. Long term measurements reveal a change in the plasma parameters
which, for example, can be monitored by energy and mass spectrometry [4].

One has to confess that the power delivered to a discharge by the RF-generator is not a
quantity which makes exact characterisation of the discharge possible. Depending on the pro-
cess conditions, coil currents as well as the discharge efficiency could change in time while the
RF-generator power remains constant.

In order to perform a simulation, some measure of the power transferred to the discharge
must be known. The use of the RF-generator power instead of the coil current as an input
parameter is a correct boundary condition from the model’s point of view. But eventually only a
small percentage5 of the generator power will actually contribute to the heating of the discharge.
The use of the experimental value for the generator power would therefore lead to average
electron densities which are too high.

An alternative possibility, to achieve the comparability of experiment and the simulation,
would be to measure the actual antenna coil current and to use it as an input parameter for the
simulation. Unfortunately, the current values in the resonance circuit formed by the matching
network and the antenna (in extreme cases more than 100 A and several 1000 V), make it a
very demanding task to measure the coil currents in ICP systems. Despite the experimental dif-
ficulties, there exist publications where corresponding measurements are presented [40]. While
such investigations provide valuable insights into the range of typical discharge efficiencies,

5Experimental investigations show that typical discharge efficiencies vary between 20 and 90 percent [63], [40].
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the use of measured coil currents does not necessarily guarantee a well posed simulation setup.
Calculations show that in a wide range of discharge power values the corresponding coil cur-
rents are almost equal (c.f. Fig. 6.11). The use of an experimental value with a certain range of
accuracy could result in a disastrous deviation of the discharge power. The reason for this very
high sensitivity is the following:

The current flowing through the antenna causes an induced electric field which heats the
plasma in the reactor. The power transferred to the plasma is directly proportional to the induced
currents in the plasma. These currents, on the other hand, are proportional to the conductivity
and therefore proportional to the electron density (c.f. Fig. 2.2). So finally, the power consumed
by the plasma is proportional to its average density6. For a given coil current, the power used
for heating of the discharge is ambiguous and depends on the electron density distribution in
the chamber.
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Figure 6.11: Peak electron density (a) and calculated heating power (b) versus coil current for
a planar argon ICP discharge, operating at neutral gas pressure values of 0.5, 5 and 50 Pa

In Fig. 6.11, the dependence of discharge heating power on the coil current is displayed for
the case of a planar cylindrical ICP discharge (c. f. Fig. 6.1). In dependence of the coil current

6A proportionality exists in good approximation in the case of electron densities which are so low that the skin
effect can be neglected.

106



Icoil, the corresponding peak value of the electron density 6.11 (a) as well as the integral value
of the power absorbed by the discharge 6.11 (b) have been calculated for an argon discharge
operation in the neutral gas pressure range from PN = 0.5− 50Pa. Please note the logarithmic
scales, which have been used for the total power transferred to the plasma as well as for the
peak electron density.

At all the considered pressure values in the range from 0.5 − 50Pa, the discharge power
shows a very steep increase at low coil currents. In fact there exists a threshold current (for the
given geometry with an antenna consisting of three coils about 3 − 5A) which is required to
sustain the discharge. The minimum current is slightly depending on the neutral gas pressure,
so for higher neutral gas pressures, it becomes lower. In the region close to this threshold
current, the power shows a steep increase with the over one and a half orders of magnitude if
PN = 5, 50Pa.

At higher power values the resulting higher average electron density in combination with
the skin effect is the reason why significantly more coil current is needed a further increase
the discharge power. In real applications this region is often never reached and discharges are
typically operating in the region close above the threshold current.

The corresponding peak electron density in the discharge shows a very similar behaviour
to the discharge power. For a low discharge power, i.e. in the current region just below the
threshold current, the peak density rises as steep as the discharge power, while for higher coil
currents a similar saturation like that of the discharge power is visible. The pressure dependence
of the peak electron density is remarkable. As has been discussed in the previous sections, the
discharge can be expected to become more concentrated in the region which is situated close
to the antenna in case of a neutral gas pressure of pN = 50Pa. This concentration leads to the
development of a distinct maximum, while in other regions of the discharge the electron density
is significantly lower. At the low pressure of pN = 0.5Pa, the whole discharge chamber is filled
with plasma, which leads to a peak electron density, which is significantly lower for the same
coil current values.

Summarising the results of this section, the following points can be mentioned:

- Experimental evidence shows that only a part of the RF-generator power does contribute
to the heating of the discharge. The efficiency depends on process parameters like neutral
gas pressure and coil geometry.

- A minimum coil current exists which is necessary to sustain the discharge. In the region
directly above this minimum coil current (i. e. at low discharge power values) the power
coupled to the discharge is extremely dependent on the coil current.

- At low pressures the required coil current which corresponds with a certain value of the
discharge power is higher than that at higher pressures. This correlates with efficiency
measurements [40] which show lower efficiencies for lower neutral gas pressures.

- Neither the RF-generator power nor the coil current are parameters which can guarantee
accurate accordance of simulation and experiment over a wide range of parameters.
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The discussed effects are the reason why in this work, where experimental data have been
compared with calculated results, the discharge power (i.e. this part of the RF-generator power
which effectively heats the discharge) was adjusted to match the measured electron density in
one point.

6.5 A design study

Especially the comparison of simulated results with experimental data presented in the previous
sections indicates that hydrodynamic models are able to deliver reliable data about particle
density distributions as well as transport processes in ICP discharges. While the models have
been “tested” in a wide range of parameters so far, in this section the question will be treated how
hydrodynamic models might be used in order to optimise design of process reactor chambers.
The following issues are important especially for the designer of the chamber:

- Homogeneity: For many processes, it is essential to have homogeneous process condi-
tions over the whole substrate area. It is a key feature of the chamber design, to ensure
this property.

- Scalability: Especially, when considering the semiconductor fabrication with its conti-
nously increasing wafer diameters, one has to answer the question whether an upscaling
of existing process equipment will be possible.

- External parameters: In many cases the requirements of the process will limit the range
in which process parameters can be chosen.7 However, it would be desirable to know how
typical properties like the average electron density and the ion flux depend (qualitatively)
on the external parameters, and over which range a proper discharge operation can be
expected.

A simulation might provide some valuable insights or even answers to all the questions
mentioned above. In this section will be demonstrated how simulation might contribute to the
design of an optimised process chamber.

6.5.1 A model problem

Consider the following problem: An ICP discharge chamber has to be designed for the purpose
of providing an ion flux to a substrate which should be as homogeneous as possible. The
substrate has a diameter of about 20 cm, special requirements of the process8 make it necessary
that the operating pressure of the discharge is in the sub-Pascal region. The question is how to
find a reactor and antenna geometry which provide the desired properties.

7Etching processes depend on a minimum number of ion collisions in the sheath region and are therefore
typically operating in the sub-Pascal pressure range.

8Especially in dry etch processes it is important to minimise the number of ion-neutral collisions in the sheath
region in order to get an ion flux as perpendicular as possible to the wafer surface.
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6.5.2 General considerations

The experimental and theoretical data presented in the previous section deal with chambers
which had the geometry of a cylinder. If the height of the cylinder is significantly smaller than
its diameter (c.f. Fig. 6.1), the resulting electron density distribution has been shown to become
torus-like if the neutral gas pressures is in the order of several ten Pascals. In the sub-Pascal
pressure range a density profile in radial direction can be expected which has approximately the
shape of a Bessel function. The density decreases monotonically from a maximum value on the
axis of the cylinder towards zero at the outer boundary. This monotonic decrease of the electron
density9 is the reason why the ion flux which hits the top or bottom boundary also shows a
monotonic decrease with increasing distance from the axis of the chamber. Only in a compar-
atively small region in the discharge centre the ion flux can be expected to be approximately
constant.

This reflects the key difficulty in finding an optimised reactor geometry for the given model
problem. Cylinder-shaped chambers typically show a decrease of electron and ion density with
increasing distance from the axis. The physical reason is the presence of the outer wall which
acts as a particle sink and causes electron and ion density to be very low in its proximity. A
workaround which seems to be obvious at first glance is an increased diameter of the discharge.
By moving the outer wall as far as possible from the substrate, its negative influence can be di-
minished. On the other hand a discharge chamber with three times the diameter of the substrate
means that a big volume is filled with plasma and does not directly contribute to the process.
Nevertheless, the RF-generator, matching network as well as antenna must be able to transfer a
sufficient amount of plasma to the discharge. For this reason it would be desirable to keep the
“dead” volume in the discharge as small as possible.

6.5.3 An optimised chamber geometry

A remedy is to give up the concept of a chamber which is of cylindrical shape. Please recall what
the reason for the inhomogeneity of electron density is: Every wall of the discharge chamber
acts as a particle sink. This is true for the plane bottom and top of the chamber as well as for
the cylindrical outer boundary. It is possible to reduce the negative influence of this chamber
wall by increasing the chamber diameter. A possiblity to do this without creating excessive
discharge volume is shown in Fig 6.12.

The optimised chamber is cylindrically symmetric and consists of a a pot-shaped dielectric
window, which is inserted in a (conducting) reactor housing of cylindrical shape. As a conse-
quence the chamber consists of a flat, cylindrical region (region B) directly above the substrate.
In the outer part, the region above the substrate is surrounded by a ring-shaped outer volume
(region A). The distance to the substrate and the dielectric window is so small in this region that
a strong particle flux towards both of those discharge boundaries can be expected. Generally,
the homogeneity of the discharge parameters like electron density or ion flux towards the wall
will depend on the geometry parameters denoted as a, b, c, and d.

9Assuming quasi-neutrality in the discharge bulk, the ion density has the same shape.
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Figure 6.12: Optimised ICP chamber geometry to enhance the homogeneity in the region above
a substrate to be processed.

How sensitively an electron density profile in the reactor chamber depends on the choice of
the geometry parameters, and whether homogeneous plasma conditions over the substrate can
be achieved, is shown in Fig. 6.13.

A variation of the geometry parameter b in Fig. 6.12 of approximately 25 percent causes
significant changes in the discharge parameters. The given data were calculated along a cutline
in radial direction in a distance of 20mm from the bottom of the chamber (denoted as cutline
“C” in Fig. 6.12).

Part a) of Fig. 6.13 shows the electron temperature variation in radial direction. Generally,
the variation of electron temperature is small compared with its absolute value. A slight rise
in the temperature in the proximity of the antenna can be observed, but the absolute change is
less than two percent of the maximum value. The dependence on the geometry parameter b is
interesting. For the highest value of b the average electron temperature takes its lowest value.
This result is just another aspect of the results presented in Sect. 5.1.2. The eigenvalue of the
electron temperature is depending on the discharge volume as well as the discharge geometry.
A larger discharge volume (or a larger chamber height) correlates with a lower value of the
electron temperature. This is also in accordance with the electron density values shown in Fig.
6.13 b). All the calculations were performed under the assumption that a discharge power of
100W was transferred to the plasma. A larger discharge volume (caused by a larger value of b),

110



0 50 100 150 200
r [mm]

0

1e+16

2e+16

3e+16

4e+16

n e 
[m

−
3 ]

b = 90 mm
b = 85 mm
b = 80 mm
b = 75 mm
b = 70 mm

36000

36500

37000

37500

38000

38500

39000

T
 [K

]

a)

b)

Figure 6.13: Electron temperature Te a) and electron density ne b) calculated for an argon
discharge, operating at pN = 0.5Pa. Results are shown for a radial cut (cutline “C” in Fig.
6.12). Geometry parameters: a = 150mm, c = 100mm, d = 200mm, b was varied in the
range from 70− 90mm.

therefore, corresponds to a higher value of the electron density ne because in this case diffusion
processes are slower. This is in accordance with the electron temperature profiles as shown in
6.13.

The main result of the presented study is the change of the electron density profiles. At the
largest considered value of b = 90mm, the chamber geometry can be considered as “almost
cylindrical”. The resulting electron density profile is monotonically decreasing. At the smallest
considered chamber height of b = 70mm, the electron density profile shows a clearly visible
off axis maximum at the position of r = 120mm This maximum exists because the ambipolar
diffusion process in the “small” gap between the chamber bottom and the quartz window causes
a very effective transport of particles to the walls, leading to a reduction of the electron density
in the discharge center.

The desired homogeneity lies in between the two discussed extremes. If b = 85 mm,
the electron density profile is in fact almost perfectly flat over a radial distance of 90 mm. If
b = 85 mm the variation is also acceptably small. The high sensitivity of the profile flatness in
dependence of b is remarkable. If b = 90mm, the electron density drops about ten percent in a
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distance of 100 mm from the axis of symmetry. This drop can be totally compensated by a five
percent change of b.

This result underlines the importance of numerical modelling in order to get an optimised
chamber geometry. On the other hand, it would be desirable to have some rules of thumb to
understand the underlying scaling laws. It would also be interesting to answer the question why
a certain set of geometry parameters caused a result which was sufficiently homogeneous. This
is the topic of the following section.

6.6 Rules of thumb for ICP design

The numerical results shown in the last section underlined that desired quantities like homo-
geneity might be optimised by using a sophisticated chamber geometry. On the other hand it
would be desirable to have a set of “rules of thumb” which allow an approximate prediction
of results without having to perform intensive numerical modelling. It is the purpose of this
section to suggest a few of these essential correlations which might be useful to the designer of
a reactor chamber.

6.6.1 Low pressure versus high pressure

The question, how low a pressure would have to be that one can speak of “low pressure” is
somewhat rhetoric. The discharge dimensions as well as the used process gases make it difficult
to give an answer which is generally valid. Consider the quantities which depend directly on
the operating pressure of a discharge:

- the ion-electron production by impact ionisation (c.f. Sect. 4.1),

- the ion neutral collision rate (c.f. Sect. 4.2),

- the electronic thermal conductivity (c.f. Sect. 4.3.3).

What does “low pressure” actually mean? Let us consider some typical discharge appli-
cations to find an answer. We have to distinguish several effects, all related to the number of
neutral particles per volume:

A typical technical problem is the occurance of ion-neutral collisions in sheath regions
which should be avoided in plasma etching applications. The probability of a collision is pro-
portional to the number of neutral atoms per volume, i.e. to the neutral gas pressure and to the
extension of the sheath region which depends indirectly proportional on the square root of the
electron density in the source (c.f. Sect. 5.1.4). In order to avoid those collisions, two obvious
solutions exist: The use of a low neutral gas pressure and/or a high density plasma source. For
this reason in fact typical etching applications operate in the sub-Pascal region.

The second influence of the pressure concerns the overall ion-electron production in the
discharge. A higher neutral gas pressure is correlated with a lower electron temperature (c.f.
Sect. 5.1.5) as the number of atoms which can be ionised is proportional to the pressure. On
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the other hand, the friction of ions in the discharge bulk generally reduces the ability of the
discharge to transport charged particles to the wall, which leads to reduced particle fluxes. The
absolute value of the flux is geometry dependent. The particle flux is approximately directed
towards the nearest surface. The average distance to the nearest surface is rather a measure to
characterise a discharge than its volume. The question what is ment by “low pressure”, is rather
a question of the ration of mean ion free path to a average distance from the nearest wall.

The last aspect concerns again the electrons in the discharge. Their thermal conductivity
is indirectly proportional to the neutral gas pressure. The question, which pressure values will
lead to an inhomogeneous temperature distribution, is rather a question of the electron mean
free path compared to the extensions of the discharge. As the example in Sect. 6.5.3 shows,
a pressure of 0.5Pa for a discharge diameter of 0.5m might still be considered to be low. Is
this not the case (see. Sect. 6.2.1), an inhomogeneous electron temperature distribution can
develop, which causes an inhomogeneous electron density distribution.

6.6.2 Antenna geometry

On one hand, the question of discharge homogeneity is related to the operating pressure. If
the pressure should be high enough to cause significant inhomogeneities in the electron tem-
perature, the chosen coil geometry will have influence on the density distribution. On the other
hand, when “low” pressure leads to a homogeneous temperature distribution, the antenna de-
sign has minor influence on the density distribution. For reasons of efficiency, the distance of
antenna and plasma should be as small as possible. As calculations of the induced electric field
(c.f. Sect. 6.1.1) as well as measurements [41],[40] indicate, the induced electric field decreases
exponentially with the distance from the antenna. In order to ensure a discharge operation for
large distances between coil and plasma, high RF-currents are required, leading to ohmic and
other losses and reducing the net discharge efficiency. In any case the antenna design is a prob-
lem of trade-off. A possibility to reduce the necessary current, is to enlarge the number of coils
or coil turns. But the coil inductance in combination with a capacitor included in the match-
ing network must form a tank circuit with a resonance frequency which is approximately equal
to the driving RF. A large antenna inductance means small values for the capacitor and high
voltages on one end of the coil, both of which are undesirable effects. A small coil inductance,
on the other hand, means that large currents are required. The cross section of the coil and it’s
total area have influence on the capacitive coupling. A large coil area means also an effective
capacitive coupling.

6.6.3 Discharge geometry

Maybe the most difficult task in designing a reactor is the choice of an adequate discharge
geometry.

The example discussed in Sect. 6.5.3 demonstrated the change of discharge parameters
caused by a variation of a geometry parameter. In this section an explanation of this sensitivity
will be given. In a deliberate simplification the chamber geometry as shown in Fig. 6.12, can be
assumed to consist of two separate parts, denoted as “region A” and “region B”. In the case of
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Figure 6.14: Particle exchange in different parts of the discharge in dependence of geometry
parameters.

“low pressure” the electron temperature will be approximately equal in both regions, however,
in dependence on the volume of the two regions, a particle flux from one region to the other
may occur. Consider the case illustrated in Fig. 6.14 a): The central region of the discharge is
flat, i.e. the average distance to the nearest wall is significantly smaller than that in region “A”.
As a consequence, the whole region “B” acts as a particle sink, i.e. more charged particles are
transported to the walls than are produced by impact ionisation. The difference is balanced by a
particle flux from region “A”. In this region more particles are produced than can be transported
to the walls so that the surplus amount is transferred to region “B”. The calculated electron
density profiles shown in Fig. 6.13 in the case of b = 70mm confirm the given explanation.
Electron density takes its maximum at r = 110mm, i. e. in region “A”. A density gradient
directed towards the axis of rotational symmetry drives a particle flux, causing a transfer of
particles produced in region “B”.

The opposite happens, when the height of region “B” is increased so much that the average
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distance to the nearest wall gets larger than in region “A”. As a consequence the regions “A”
and “B” exchange their roles, region “B” now acts as a generation zone and surplus ions and
electrons are transferred to region “A”. This case is illustrated in Fig. 6.14 b). The corresponding
electron density profile is shown in Fig. 6.13 for b = 90mm. The electron density gradient at
any point is directed outward and, therefore, drives a particle flux from the discharge centre to
the outer parts.

Having understood the consequences of chosing a high or low value for the parameter b,
which controls the height of the central discharge region “B”, it is not surprising that interme-
diate values of b cause a almost perfectly homogeneous electron density profile in the centre
of the discharge. If the particle production in region “A” as well as in region “B” equals the
wall recombination, no (intergral) exchange of particles between the two regions will occur.
This means that also no electron density gradient is required to drive such an exchange process
which results in a density profile that is flat in radial direction. This is exactly what is needed
for a maximum of homogeneity.

The result can be generalised: A discharge may be decomposed in separate regions acting
as generation zones or particle sinks. A particle sink or recombination zone denote a part of
the discharge in which more particles are driven to the walls (where recombination takes place)
than are actally produced in the considered volume. Under stationary conditions, the electron
temperature will have adjusted to a value which ensures that the overall particle generation bal-
ances the wall recombination (for the whole discharge). If certain regions of the discharge show
a small average distance to the nearest wall (or the ratio of surface to volume is large compared
with other parts of the discharge) these regions will serve as particle sinks (or recombination
zones). A density gradient will exist, where a recombination zone is connected with a genera-
tion zone. If such a density gradient must be avoided (as in the example discussed above), the
size of generation or recombination zones has to be altered.

So far, the given design criteria have been explained for a low pressure example. Low
pressure has the advantage that the coil configuration has only minor influence on discharge
homogeneity and that the electron temperature can be considered to be constant in the whole
discharge. In case of higher pressures, the application of design rules becomes more difficult.

If the neutral gas pressure is so high that significant electron temperature differences exist
in the discharge, one might be no longer able to decide whether a certain part of the discharge
does act as generation or as a recombination zone. Generation takes place where the induced
electric field produces the most energetic electrons. This automatically defines the source re-
gion. Another aspect which complicates the chamber design for high pressures are significant
changes in the density distribution, which might be caused by small variations of the neutral
gas pressure or the temperature. In high pressure discharges density distributions do generally
depend on the chamber geometry as well as on the coil configuration.
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Chapter 7

Conclusion

Goal of the presented thesis is to review briefly the theoretical background from which hy-
drodynamic models for low pressure low temperature plasmas can be derived. The resulting
conservation equations are discussed, especially with respect to their numerical solution. The
question of approximations which speed up numerical algorithms or make them more stable is
treated in detail.

In a second part, the applicability of hydrodynamic models to low pressure, low temperature
plasmas is shown. Different kinds of discharges are investigated theoretically. For the case of
inductively coupled noble gas discharges theoretical data is compared with experimental values.

Excellent agreement with experimental data obtained from Langmuir probe measurements
in inductively coupled discharges showed that a hydrodynamic model system can serve as an
ideal tool for reactor design. The good agreement of density measurements with theoretical
data in a wide pressure range at different positions is an indicator that a hydrodynamic model
system can provide reliable predictive results.

The model system is able to resolve transport processes in the bulk of the discharge as well
as in the sheath region. Ion inertia is considered throughout the whole plasma, which means
that two-dimensional sheat regions are described by the model. By using such a hydrodynamic
model it is possible to calculate quantities like ion fluxes or energies for all surfaces exposed to
the plasma. Those quantities can be determined only with high experimental effort. A further
example is the overall discharge efficiency which can be determined by using a combination of
a hydrodynamic model calibrated with data from Langmuir probe measurements.

In a final section, it was demonstrated how hydrodynamic plasma simulations can be used
to design optimised reactor geometries. It could be shown, how geometry parameters like the
chamber height and diameter have crucial influence on electron density in the discharge cham-
ber. The electron density is a good measure for the ion flux to the surface, which is a quantity
of technological interest. Further it could be shown, how the chamber can be optimised with re-
spect to the homogeneity by chosing a certain chamber geometry. Additional chamber volume
can, if carefully chosen, contribute to almost perfect density profiles in the chamber center.
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Appendix A

Tables

2.0 eV 2.4 eV 2.8 eV 3.2 eV 3.6 eV 4.0 eV 4.4 eV 4.8 eV 5.2 eV

0.10 Pa 0.019 0.023 0.026 0.028 0.030 0.032 0.032 0.033 0.033
0.15 Pa 0.028 0.033 0.038 0.042 0.044 0.046 0.048 0.049 0.049
0.22 Pa 0.040 0.049 0.056 0.061 0.065 0.068 0.070 0.071 0.072
0.32 Pa 0.059 0.072 0.082 0.090 0.096 0.100 0.102 0.104 0.106
0.46 Pa 0.086 0.105 0.120 0.131 0.140 0.146 0.150 0.153 0.155
0.68 Pa 0.126 0.153 0.175 0.192 0.205 0.214 0.220 0.224 0.227

1.0 Pa 0.182 0.222 0.254 0.279 0.298 0.311 0.321 0.327 0.331
1.5 Pa 0.258 0.317 0.365 0.402 0.430 0.451 0.465 0.475 0.482
2.2 Pa 0.360 0.443 0.514 0.571 0.614 0.646 0.669 0.686 0.696
3.2 Pa 0.490 0.607 0.710 0.795 0.863 0.914 0.952 0.980 0.998
4.6 Pa 0.655 0.815 0.962 1.09 1.19 1.28 1.34 1.39 1.42
6.8 Pa 0.864 1.08 1.29 1.47 1.63 1.76 1.86 1.94 2.00
10 Pa 1.14 1.43 1.71 1.97 2.20 2.40 2.57 2.70 2.80
15 Pa 1.49 1.88 2.27 2.64 2.98 3.27 3.53 3.74 3.91
22 Pa 1.97 2.50 3.02 3.54 4.02 4.46 4.84 5.17 5.44
32 Pa 2.62 3.33 4.06 4.78 5.47 6.10 6.67 7.16 7.57
46 Pa 3.53 4.50 5.50 6.52 7.48 8.40 9.23 9.96 10.6
68 Pa 4.79 6.14 7.53 8.96 10.3 11.7 12.9 14.0 14.9

100 Pa 6.56 8.45 10.4 12.4 14.4 16.3 18.1 19.7 21.1

Table A.1: Normalised effective momentum transfer frequency νeff/ωRF for argon for a pres-
sure range from 0.1 Pa to 100 Pa and an electron temperature from 2 − 5.2 eV. A neutral gas
temperature of TN = 300K, ωRF = 2π · 27Mhz was assumed.
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2.0 eV 2.4 eV 2.8 eV 3.2 eV 3.6 eV 4.0 eV 4.4 eV 4.8 eV 5.2 eV

0.10 Pa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.15 Pa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.22 Pa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.32 Pa 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.46 Pa 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00
0.68 Pa 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

1.0 Pa 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01
1.5 Pa 1.04 1.05 1.05 1.05 1.04 1.04 1.04 1.03 1.03
2.2 Pa 1.08 1.09 1.09 1.09 1.08 1.08 1.07 1.06 1.06
3.2 Pa 1.13 1.16 1.16 1.16 1.15 1.14 1.13 1.12 1.10
4.6 Pa 1.21 1.25 1.27 1.27 1.26 1.24 1.22 1.20 1.18
6.8 Pa 1.31 1.37 1.41 1.42 1.41 1.39 1.36 1.33 1.30
10 Pa 1.44 1.52 1.58 1.61 1.61 1.59 1.55 1.51 1.47
15 Pa 1.59 1.71 1.80 1.85 1.86 1.84 1.80 1.75 1.70
22 Pa 1.78 1.94 2.06 2.14 2.17 2.16 2.12 2.07 2.00
32 Pa 2.00 2.21 2.37 2.48 2.54 2.55 2.51 2.46 2.37
46 Pa 2.27 2.53 2.74 2.89 2.99 3.01 2.98 2.93 2.83
68 Pa 2.60 2.92 3.19 3.38 3.51 3.56 3.55 3.49 3.38

100 Pa 3.01 3.40 3.73 3.98 4.15 4.23 4.23 4.17 4.04

Table A.2: Normalised effective RF frequency ωeff/ωRF for argon for a pressure range from
0.1 Pa to 100 Pa and an electron temperature from 2 − 5.2 eV. A neutral gas temperature of
TN = 300K, ωRF = 2π · 27Mhz was assumed.
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2.0 eV 2.4 eV 2.8 eV 3.2 eV 3.6 eV 4.0 eV 4.4 eV 4.8 eV 5.2 eV

0.10 Pa 0.019 0.023 0.026 0.028 0.030 0.032 0.032 0.033 0.033
0.15 Pa 0.027 0.033 0.038 0.042 0.044 0.046 0.047 0.048 0.049
0.22 Pa 0.040 0.049 0.056 0.061 0.065 0.068 0.069 0.071 0.072
0.32 Pa 0.059 0.071 0.081 0.089 0.094 0.098 0.101 0.103 0.104
0.46 Pa 0.085 0.103 0.117 0.128 0.136 0.142 0.146 0.149 0.150
0.68 Pa 0.121 0.146 0.166 0.181 0.193 0.201 0.206 0.210 0.213

1.0 Pa 0.169 0.202 0.228 0.248 0.263 0.274 0.282 0.287 0.291
1.5 Pa 0.224 0.264 0.296 0.319 0.338 0.351 0.361 0.368 0.373
2.2 Pa 0.279 0.320 0.352 0.377 0.395 0.409 0.420 0.428 0.435
3.2 Pa 0.321 0.357 0.382 0.401 0.416 0.427 0.437 0.444 0.450
4.6 Pa 0.346 0.367 0.380 0.389 0.396 0.402 0.408 0.412 0.416
6.8 Pa 0.350 0.355 0.354 0.353 0.351 0.350 0.350 0.351 0.352
10 Pa 0.338 0.327 0.315 0.305 0.296 0.290 0.285 0.282 0.280
15 Pa 0.313 0.291 0.271 0.255 0.242 0.232 0.225 0.219 0.215
22 Pa 0.279 0.250 0.226 0.207 0.193 0.182 0.173 0.167 0.162
32 Pa 0.241 0.208 0.184 0.165 0.150 0.140 0.131 0.125 0.120
46 Pa 0.200 0.169 0.146 0.128 0.115 0.105 0.098 0.092 0.088
68 Pa 0.161 0.133 0.113 0.098 0.087 0.078 0.072 0.067 0.064

100 Pa 0.126 0.102 0.085 0.073 0.064 0.057 0.052 0.049 0.046

Table A.3: Normalised real part of the complex conductivity defined in (4.10) for argon in
a pressure range from 0.1 Pa to 100 Pa and an electron temperature from 2 eV to 5.2 eV. A
neutral gas temperature of TN = 300K, ωRF = 2π · 27Mhz was assumed.
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[82] Z. M. Raspopović, S. Sakadzic, S. A. Bzenic, and Z. L Petrovic. Benchmark calculations
for monte carlo simulations of electron transport. IEEE Trans. Plasma Sci., 27(5):1241–
1248, 1999.

[83] D. D. Reid and J. M. Wahedra. Low-energy differential scattering of electrons and
positrons from noble gases. Phys. Rev. A, 50(6):4859–4867, 1994.

[84] A. D. Richards, B. E. Thompson, and H. H. Sawin. Continuum modeling of argon radio
frequnecy glow discharges. Appl. Phys. Lett, 50(9):492–494, 1987.

125



[85] K.-U. Riemann. Bohm criterion and ion-acoustic sound barrier. Phys. Fluids B,
3(12):3331–3338, 1991.

[86] K.-U. Riemann. The Bohm criterion and sheath formation. J. Phys. D, 24(4):493–518,
1991.

[87] K.-U. Riemann. The Bohm criterion and boundary conditions for a multicomponent
system. IEEE Trans. Plasma Sci., 23(4):709–716, 1995.

[88] A. G. Robertson. The momentum transfer cross section for low energy electrons in neon.
J. Phys. B: Atom. Molec. Phys., 5:648–664, 1972.

[89] H. P. Saha. Accurate ab initio calculation on the low-energy elastic scattering of electrons
from helium. Phys. Rev. A, 40(6):2976–2990, 1989.

[90] H. P. Saha. Ab initio calculation of scattering length and cross sections at very low
energies for electron-helium scattering. Phys. Rev. A, 48(2):1163–1170, 1993.

[91] P. Scheubert, U. Fantz, P. Awakowicz, and H. Paulin. Experimental and theoretical char-
acterization of an inductively coupled plasma source. accepted J. Appl. Phys., 2001.

[92] W. Schottky. Diffusionstheorie der positiven Säule. Phys. Zeitschr., 25:635, 1924.
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