DMIF1 – ein Regulator der mitochondrialen F1F0-ATPase in *Dictyostelium discoideum*

Annette Hüttig

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Oskar Nuyken
Prüfer der Dissertation: 1. Hon.-Prof. Dr. Wolfgang Baumeister
2. Univ.-Prof. Dr. Sevil Weinkauf

Die Dissertation wurde am 07.07.2004 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 06.09.2004 angenommen.
Abstract

Mit DMIF1 wurde erstmals in Dictyostelium ein zur Familie der mitochondrialen F1F0-ATPase-Inhibitoren zählendes Homolog gefunden. Diese verhindern die letale ATP-Verarmung durch Hemmung der ATP-Hydrolyse, der Umkehrreaktion der ATP-Synthase, die bei Zusammenbruch des Membranpotentials abläuft. Das helicale, hochgeladene DMIF1-Monomer hat eine N-terminale Targeting-Domäne, die den Transfer des im Zytoplasma gebildeten Precursors in die Mitochondrien bewirkt, wo das reife Protein durch Abspalten der Domäne nach einem modifizierten R-2-Motiv durch die Protease MPP entsteht. Sterische Störung der Targeting-Domäne durch die Fusion an GFP führt zum Transfer in die pericentrosomale Region, wo das ungefaltete Protein in Aggresomen degradiert wird. Die C-terminale Coiled-coil-Domäne dient potentiell der Assemblierung zum inhibitorisch aktiven Dimer, helicale Bereiche der inhibitorischen Region zur Bildung des inaktiven Tetramers. Gemäß Restriktions- und Sequenzanalyse-Daten ist ein bisher nicht charakterisiertes homologes Protein DMIF2 wahrscheinlich.

The DMIF1 protein found in Dictyostelium is homologous to members of the F1F0-ATPase inhibitory protein family. Those inhibitors protect cells from uncontrolled ATP hydrolysis and thus from lethal ATP deprivation. Activation of the hydrolysis pathway, the reversed function of F1F0, is caused by membrane potential breakdown. The helical, highly charged DMIF1 protein monomer contains an N-terminal targeting domain to transfer the precursor, synthesized in the cytoplasm, to mitochondria. In the matrix the targeting domain is cleaved off by a mitochondrial protease MPP following an R-2 processing motif. Sterical blocking of the targeting domain by the reporter protein GFP fused to DMIF1 N-terminus targets the protein to aggresomes in the pericentrosomal region, where the unfolded protein is degraded. The inhibitory active homodimer is built by mutual interaction of the C-terminal Coiled-coil domain, whereas a helical part of the inhibitory domain serves as an interaction region to assemble the inactive homotetramer. According first data from restriction enzyme digestion experiments and DNA sequence analysis a putative inhibitory protein DMIF2, homologous to DMIF1, is presumed.
INHALTSVERZEICHNIS

EINLEITUNG ... 12

1 **Grundlagen** ... 12
 1.1 Mitochondriale F1F0-ATPase – Bau und Funktion .. 12
 1.2 Zielsteuerung, Prozessierung und Faltung mitochondrialer Proteine 17
 1.3 *Dictyostelium discoideum* – ein Modellorganismus .. 23
 1.4 Funktionsanalyse von Proteinen ... 26

ERGEBNISSE .. 28

2 **Aufklärung und Analyse der DNA- und Protein-Sequenz** 28
 2.1 Isolierung der cDNA aus Phagenklonen ... 28
 2.2 Analyse der DNA-Sequenz .. 30
 2.3 Analyse der Proteinsequenz .. 32

3 **Intrazelluläre Lokalisation von DMIF1** ... 38
 3.1 Die Verwendung von GFP als Markerprotein *in vivo* .. 38
 3.2 DMIF1 in fixierten *Dictyostelium discoideum* - Zellen ... 43
 3.3 DMIF1 lokalisiert im Grenzbereich zwischen innerer Membran & Matrix 59

4 **Einfluss von GFP auf Zielsteuerung und Prozessierung** .. 69
 4.1 Hemmung der Abspaltung der Signalsequenz ... 69
 4.2 Analyse des Expressionslevels in GFP-N-DMIF1 und GFP-C-DMIF1 74

5 **Funktionsanalyse von DMIF1 in Dictyostelium** ... 76
 5.1 Inaktivierung von dmif1 durch homologe Rekombination 76
 5.2 Zellbiologische Charakterisierung der Transformanten .. 81
DISKUSSION ...87

6 Sequenz, Motive und Struktur des DMIF1-Proteins ... 87
 6.1 Sequenzähnlichkeit und Funktionshomologie ... 87
 6.2 Proteindomänen und ihre Funktionen ... 89

7 Intrazelluläre Lokalisation ... 100
 7.1 Mitochondriale Lokalisation ... 100
 7.2 Centrosomales Targeting ... 101

8 Inhibitor- Homologe in Dictyostelium ? ... 103

9 Funktion des Inhibitors ... 105
 9.1 Funktion unter Stressbedingungen und in pathologischen Prozessen .. 105
 9.2 Physiologische Funktion des rekombinanten Inhibitors GFP-C-DMIF1 ... 106

MATERIAL UND METHODEN .. 108

10 Material .. 108
 10.1 Biologisches Material ... 108
 10.2 Vektoren, Genbanken, Oligonukleotide, DNA-Fragmente ... 109
 10.3 Enzyme und Kits für die Molekularbiologie ... 111
 10.4 Antikörper ... 112
 10.5 Protease-Inhibitoren ... 113
 10.6 Antibiotika ... 113
 10.7 Reagenzien, Chemikalien .. 113
 10.8 Radiochemikalien ... 115
 10.9 Standards ... 115
 10.10 Medien, Puffer und andere Lösungen ... 116
 10.11 Verbrauchsmaterial .. 119
 10.12 Geräte und Zubehör ... 120

11 Methoden der Zell-Kultivierung ... 123
 11.1 Dictyostelium discoideum ... 123
 11.2 Bakterien ... 125

12 Molekularbiologische Methoden ... 125
 12.1 cDNA-Bank Screening... 125
12.2 Präparation von DNA und RNA ... 129
12.3 Chromatographie von DNA- und RNA-Fragmenten und Transfer auf Trägermembranen 135
12.4 Detektion mit DNA-Sonden ... 137
12.5 Enzymatische Reaktionen 142
12.6 Transformation von Bakterien .. 149
12.7 Transformation von *D. discoideum* und Selektion 153

13 Proteinchemische und -analytische Methoden ... 155
 13.1 Gelelektrophorese .. 155
 13.2 Transfer und Detektion von Proteinen .. 159
 13.3 Expression rekombinanter Proteine in Bakterien und Aufreinigung 162
 13.4 Konzentrationsbestimmung von Proteinen ... 165
 13.5 Aufreinigung von Mitochondrien und Präparation von Vesikeln 166

14 Immunologische und zellbiologische Methoden .. 168
 14.1 Hybridoma-Gewinnung .. 168
 14.2 Testen der Überstände und Klonieren der Hybridomzellen 170
 14.3 Konservierung und Auftauen von Hybridomaklonen 172
 14.4 Bestimmung der AK-Klasse mit Diffusionstest 172
 14.5 Aufreinigung von monoklonalen IgM-Antikörpern 173
 14.6 Bestimmung von Pinozytoseraten .. 174

15 Mikroskopie .. 175
 15.1 Fluoreszenz- und indirekte Immunfluoreszenz-Mikroskopie 175
 15.2 Transmissionselektronenmikroskopie ... 177

16 Computerprogramme .. 181
 16.1 Unter Windows .. 181
 16.2 Unter UNIX ... 181

Literaturverzeichnis ... 182
ABBILDUNGEN UND TABELLEN

Abbildung 1-1 Kopplung von Protonen-Gradienten und ATP-Synthese (Mitchell Hypothese) 13
Abbildung 1-2 Schematischer Aufbau der F1F0-ATPase in Hefe.. 14
Abbildung 1-3 Lokalisation mitochondrialer Targeting-Sequenzen im Protein............................... 19
Abbildung 1-4 Entwicklungszyklus von *Dictyostelium discoideum* ... 24
Abbildung 2-1 Sequenzierungsstrategie. .. 29
Abbildung 2-2 DNA- und abgeleitete Proteinsequenz... 31
Abbildung 2-3 Konservierte Basen in Intronsequenzen... 32
Abbildung 2-4 Sequenzvergleich mit bekannten F1F0-ATPase-Inhibitoren.. 35
Abbildung 2-5 Ladungs- und Strukturprofil.. 37
Abbildung 3-1 GFP am N-Terminus - Konstruktion des Expressionsvektors.................................. 39
Abbildung 3-2 GFP am C-Terminus - Konstruktion des Expressionsvektors.................................. 40
Abbildung 3-3 Mitochondriale Lokalisation von GFP-C-DMIF1... 41
Abbildung 3-4 Centrosomale Lokalisation von GFP-N-DMIF1.. 42
Abbildung 3-5 Lokalisation von GFP-N-DMIF1 in Vesikeln.. 43
Abbildung 3-6 Klonierungsstrategie und Fusionsprodukt GST-DMIF1... 45
Abbildung 3-7 Induktions-Test... 46
Abbildung 3-8 Expression von GST-DMIF1 in *E.coli*.. 47
Abbildung 3-9 Immunreaktion eines anti-DMIF1-mAk im Westernblot... 48
Abbildung 3-10 Konstrukt zum Ak-Mapping... 49
Abbildung 3-11 Induktionstest mit dem verkürzten Protein GST-DMIFΔ3 .. 50
Abbildung 3-12 DMIF1, Tubulin und DNA in vegetativen Wildtypzellen... 53
Abbildung 3-13 DMIF1, Tubulin und Porin in GFP-C-DMIF1-Zellen... 54
Abbildung 3-14 DMIF1 und GFP in GFP-C-DMIF1-Zellen... 55
Abbildung 3-15 DMIF1 und Porin in GFP-N-DMIF1- Zellen.. 56
Abbildung 3-16 DMIF1, Tubulin, GFP und DNA in GFP-N-DMIF1- und GFP-MCS-Zellen............ 58
Abbildung 3-17 Ultradünne Kryoschnitte von Mitochondrien im TEM ... 60
Abbildung 3-18 Gewinnung und Aufbereitung von Mitochondrien aus *Dictyostelium*, inside out Vesikel... 62
Abbildung 3-19 Westernblot zur Mitochondrien-Aufreinigung aus AX2 ... 63
Abbildung 3-20 Immunmarkierung von Vesikeln aus mitochondrialen Membranen......................... 64
Abbildung 3-21 Immunmarkierung von Kryo-Ultradünnschnitten von GFP-N-DMIF1-Zellen im TEM...... 66
Abbildung 3-22 Morphologie von Centrosomen und Mitochondrien.. 67
Abbildung 3-23 Größenverhältnisse von Centrosomen im TEM... 68
Abbildung 3-24 Centrosom in Nachbarschaft zum Golgi-Apparat... 68
ABKÜRZUNGEN, BEGRIFFE, EINHEITEN

2D 2- dimensional
32P radioaktives Phosphor-Isotop 32P
A15P; A8T Actin-15-Promotor; Actin-8-Terminator
AccNr Accession Number
A(M/D/T)P Adenosin-(Mono/Di/Tri)-Phosphat
Ak, mAk Antikörper, monoklonaler Antikörper
ALDH Alkoholdehydrogenase
ALKP alkalische Phosphatase
äm äußere Membran
Amp Ampicillin
APS Ammoniumperoxodisulfat
AS Aminosäure
ASU SMP, mit Ammoniumsulfat und Harnstoff behandelt
AX axenisch
BCA Bicinchoninic Acid
BCIP 5-Brom-4-chlor-3-indolylphosphat)-Toluidin-Salz
BFP blue fluorescent protein
BSA bovine serum albumin
Bsr Blasticidin-Desaminase-Resistenz
cAMP cyclisches AMP
cAR cAMP-Receptor
cDNA copy DNA, circular DNA
CIAP calf intestine alkaline phosphatase
CM Carboxymethyl-
CP190 Centrosomales Protein 190
CPE Chloroplastic Prozessing Enzyme
csA Contact Site A protein
CSPD Disodium 3-((4-methoxyxylspiro{1,2-dioxetane-3,2'-(5'-chboro)tricyclo[3.3.3.1]decan}-4-yl)phenylphosphat
DABCO 1,4-Diazabicyclo[2.2.2]octan
DAPI 4',6-Diamidino-2-phenyindol
d(A/C/G/T/U/N)TP desoxy-(Adenosin/Cytosin/Guanin/Thymidin/Uracil/Nucleotid)Tri-Phosphat
Dd Dictyostellium discoideum
DEAE Diethylaminoethyl
dH2O destilliertes H2O
DIG DIGoxigenin
DL Durchlauf
DMF Dimethylformamid
DMIF1 Dictyostelium mitochondriales IF1
DMSO Dimethylsulfoxid
DNA desoxy ribo nucleic acid
dsDNA Doppelstrang-DNA
DSI Disulfidisomerase
DTE Dithioerythrol
dTMP Thymidin-5’-monophosphat
DTT Dithiotreithol
E Eluat
EB Elution Buffer
EDTA Ethylenediamintetraessigsäure
EGTA Ethylenglycolbis[2-amino-ethylether]-N,N’,N’-tetraessigsäure

dictyostelium discoideum

Dd
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immuno Sorbent Assay</td>
</tr>
<tr>
<td>EM</td>
<td>Elektronenmikroskop</td>
</tr>
<tr>
<td>EP</td>
<td>Electroporation, Electroporationspuffer</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>FRET</td>
<td>Fluoreszenz Energie Transfer</td>
</tr>
<tr>
<td>FS</td>
<td>flankierende Sequenz</td>
</tr>
<tr>
<td>fw</td>
<td>forward</td>
</tr>
<tr>
<td>G418</td>
<td>Geneticin</td>
</tr>
<tr>
<td>GAM</td>
<td>Goat anti Mouse</td>
</tr>
<tr>
<td>GAR</td>
<td>Goat anti Rabbit</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GPI-Anker</td>
<td>Glycosylated Phosphatidylinositol Anker</td>
</tr>
<tr>
<td>GST</td>
<td>Gluthation-S-Transferase</td>
</tr>
<tr>
<td>H&L</td>
<td>Heavy & Light</td>
</tr>
<tr>
<td>HEPES</td>
<td>(N)-2-Hydroxyethylpiperazin-N’-ethansulfonsäure</td>
</tr>
<tr>
<td>HGPtr</td>
<td>Hypoxanthin-Guaninphosphoribosyltransferase</td>
</tr>
<tr>
<td>Hsp</td>
<td>Heat Shock Protein</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G, M</td>
</tr>
<tr>
<td>iM</td>
<td>Innere Membran</td>
</tr>
<tr>
<td>IMP1</td>
<td>Inner/Intermediate Membrane Protease</td>
</tr>
<tr>
<td>IMS</td>
<td>Inter Membrane Space</td>
</tr>
<tr>
<td>IOV</td>
<td>"inside-out" vesicle</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactosid</td>
</tr>
<tr>
<td>K<sub>D</sub></td>
<td>Dissoziationskonstante</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LSM</td>
<td>Laser Scanning Microscope</td>
</tr>
<tr>
<td>mAk</td>
<td>monoklonaler Antikörper</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple Cloning Site</td>
</tr>
<tr>
<td>MES</td>
<td>2-[N-Morpholino]ethansulfonsäure</td>
</tr>
<tr>
<td>MIP</td>
<td>Mitochondrial Inner Membrane Protease</td>
</tr>
<tr>
<td>mito</td>
<td>mitochondrial</td>
</tr>
<tr>
<td>MOPS</td>
<td>γ-[Morpholino]propansulfonsäure</td>
</tr>
<tr>
<td>MPI</td>
<td>Max Planck Institut</td>
</tr>
<tr>
<td>MPP</td>
<td>Matrix (Mitochondrial) Processing Peptidase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MSF</td>
<td>mitochondriale Import-Stimulierungs-Faktor</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondriale DNA</td>
</tr>
<tr>
<td>mHSP</td>
<td>mitochondrial Heat Shock Protein</td>
</tr>
<tr>
<td>MTOC</td>
<td>Microtubule Organizing Center</td>
</tr>
<tr>
<td>mTP</td>
<td>mitochondrial targeting peptide</td>
</tr>
<tr>
<td>N<sub>2</sub><sub>iq</sub></td>
<td>flüssiger Stickstoff</td>
</tr>
<tr>
<td>NA</td>
<td>Normalagar</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamid-Adenin-dinukleotid (reduziert)</td>
</tr>
<tr>
<td>NBT</td>
<td>4-Nitrotetrazolium-Chloridblau-Hydrat</td>
</tr>
<tr>
<td>NCP</td>
<td>Nitrocellulosepuffer</td>
</tr>
<tr>
<td>Neo</td>
<td>Neomycin</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NP40</td>
<td>Nonidet P40</td>
</tr>
<tr>
<td>NTP’s</td>
<td>Ribonucleosid-5'-Triphosphate</td>
</tr>
<tr>
<td>OctylPOE</td>
<td>Octyloligooxyethylen</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>Open Reading Frame</td>
</tr>
</tbody>
</table>
PAG Polyacrylamidgel
pAk polyklonaler Antikörper
PB Phosphatpuffer
PBF Präsequenz-Binde-Faktor
PBG phosphate buffered gelatine
PBS phosphate buffered saline
PBSG phosphate buffered saline mit Glycin
PBST phosphate buffered saline mit Tween
PCR polymerase chain reaction
PDI Proteindisulfidisomerase
PEG Polyethylenglycol
Pen/Strep Penicillin/Streptomycin
\(P_i \) inorganic Phosphate
PIC Protease Inhibitor Cocktail
PIPEC 1,4-Piperazindiethansulfonsäure
PKC Protein Kinase C
PMSF Phenylmethylsulfonylfluorid
polyA DNA-Sequenz aus vielen Adeninresten
PP Phosphatpuffer
ProtA Protein A
\(\Psi \) Membranpotential
PVP Polyvinylpyrrolidon
REMI restriction enzyme mediated integration
rev reverse
RNA ribonucleic acid
RNAse RNA-verdauendes Enzym
RPMI Zellkulturmedium
RPMIoH RPMI ohne HEPES
RSV Right Site Vesicle
RT Raumtemperatur
S65TGFP GFP mit Serin65 in Threonin konvertiert
SAM sheep anti mouse
SD Standard Deviation
SDS Sodium Dodecyl Sulfate
SDS-PAGE SDS-Polyacrylamid-Gelelektrophorese
Seq Sequenz
SMP submitochondrial particle
SSC Standard Saline Citrate
ssDNA single stranded DNA
\(\beta \text{Gal} \) \(\beta \)-Galactosidase
SU, UE Subunit, Untereinheit
tac Promotor im Expressionsvector pGEX5X1
tag Protein-Anhang
TBE Trisborat-EDTA-Puffer
TBS Tris buffered saline
TBSTween Tris buffered saline mit Tween
TCA Tri chloric acid
TE Tris-EDTA-Puffer
TEM Transmissions- Elektronen- Mikroskop
TEMED N,N,N',N'-Tetramethylethylenediamin
TIM Translocase complex of Inner Membrane
\(T_m \) Melting Temperature (Primer Schmelzpunkt)
TOM Translocase complex of Outer Membrane
<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPR</td>
<td>tetratricopeptide repeats</td>
</tr>
<tr>
<td>TRIS</td>
<td>2-Amino-2-hydroxymethyl-1,3-propanediol; (Tris-(hydroxymethyl)-aminomethan)</td>
</tr>
<tr>
<td>TRITC</td>
<td>tetramethyl rhodamine isothiocyanate</td>
</tr>
<tr>
<td>UE, SU</td>
<td>Untereinheit (subunit)</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>UZ</td>
<td>Ultrazentrifuge, Ultrazentrifugation</td>
</tr>
<tr>
<td>vlnr</td>
<td>von links nach rechts</td>
</tr>
<tr>
<td>Vol</td>
<td>Volumen</td>
</tr>
<tr>
<td>vv</td>
<td>Volume per Volume</td>
</tr>
<tr>
<td>W</td>
<td>Waschfraktion</td>
</tr>
<tr>
<td>wv</td>
<td>Weight per Volume</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow Fluorescent Protein</td>
</tr>
</tbody>
</table>
ZUSAMMENFASSUNG

Das in zahlreichen Organismen beschriebene mitochondriale Protein IF1 ist ein in der Kern-DNA kodiertes und im Zytoplasma synthetisiertes Protein, welches durch eine spezifische Erkennungssequenz am aminoterminalen Ende in die Mitochondrien dirigiert wird. Dort reguliert es als Inhibitor der F1F0-ATPase die ATP-Hydrolyse-Aktivität dieses Enzyms. Der Inhibitor gehört zu einer Proteinfamilie, die sequenziell ähnliche und funktionell gleiche Proteine in Organismen verschiedener taxonomischer Klassen vereint.

In dieser Arbeit wurde gezeigt, daß mit DMIF1 ein zu diesen Inhibitoren homologes Protein in Dictyostelium discoideum existiert. Die cDNA des dmif1-Gens, welches auf dem Chromosom 6 kodiert ist und aus zwei Exons und einem Intron besteht, wurde aus einer Phagen-Expressionsgenbank isoliert und sequenziert. DMIF1 ist ein hochgeladenes, α-helicales Protein mit einer mitochondrialen Targeting-Domäne am N-Terminus, einer sich anschließenden Prozessierungsstelle für die Mitochondriale Prozessierungs-Peptidase (MPP), einer inhibitorischen Region und einer Coiled Coil-Domäne am C-Terminus, die für die Bildung eines Homodimers und damit für die inhibitorisch aktive Form wichtig ist. Die Targeting-Domäne wird an der MPP-Prozessierungsstelle abgespalten, wodurch, analog zu anderen Inhibitoren, nach Chaperone-geregelter Faltung ein physiologisch aktives Protein entsteht.

DMIF1 wurde als Fusionsprotein mit Glutathion-S-Transferase in E.coli exprimiert, chromatographisch gereinigt und als Antigen zur Bildung monoklonaler Antikörper in Mäusen eingesetzt. Die Lokalisation des DMIF1-Proteins in den Mitochondrien der Dictyostelium-Zelle wurde immunologisch an fixierten Präparaten unter Verwendung dieser Antikörper bestätigt. Zur Bestimmung der Lokalisation in lebenden Zellen wurde das dmif1-Gen als Fusionsprotein mit GFP in Dictyostelium exprimiert und im konfokalen Laser-Scanning-Mikroskop analysiert. Dabei war die Anordnung des GFP zu DMIF1 von entscheidender Bedeutung für die Lokalisation. Mit GFP am C-Terminus von DMIF1 (GFP-C-DMIF1) zeigte das Fusionsprotein die erwartete Akkumulation in den Mitochondrien, während DMIF1 mit GFP am N-Terminus (GFP-N-DMIF1) neben einer starken Ansammlung im Zytoplasma und in geringer Menge in Vesikeln vor allem ringförmig um das Centrosom, aber nicht in den Mitochondrien zu finden war. Für die korrekte Zielsteuerung in die Mitochondrien ist offenbar die ungestörte räumliche Umgebung der N-terminalen Erkennungssequenz notwendig, welche bei GFP-N-DMIF1 nicht gegeben ist. Der spezifischen Lokalisation von GFP-N-DMIF1 am Centrosom liegt wahrscheinlich ein Degradationsprozeß des Proteins zugrunde, der in Aggresomen, und somit in der centrosomalen Umgebung abläuft.

EINLEITUNG

1 Grundlagen

1.1 Mitochondriale F1F0-ATPase – Bau und Funktion

Der Rezeptor für das in der Arbeit identifizierte inhibitorische Protein ist die mitochondrialen ATP-Synthase. Das in der inneren Membran angesiedelte Enzym besteht aus einer hydrophilen katalytischen Untereinheit F1, die in die Matrix hineinreicht, und einem membrandgebundenen, hydrophoben Protonenkanal F0. Homologe Komplexe sind die CF1F0-ATPase in der Thylakoidmembran der Chloroplasten (Böttcher und Gräber, 2000; Richter et al., 2000) und die F1F0-ATPase in der prokaryotischen Zytoplasmamembran (Groth, 2000).

1.1.1 ATP-Synthase oder ATPase?

Im umgekehrten Modus wirkt das bifunktionale Enzym als Protonenpumpe und hydrolysiert ATP zur Gewinnung der dazu erforderlichen Energie. Deshalb wird die ATP-Synthase auch als H^+-ATPase, F1F0-ATPase oder F1-ATPase bezeichnet, wobei letzterer Begriff auch häufig für die isolierte, katalytisch aktive F1-Untereinheit steht. Diese Reaktion wird bei Zusammenbruch des Ladungsgefälles durch Unterbrechung des geschlossenen Systems nach Membranruption (z.B. durch Behandlung mit Ultraschall), durch die Einwirkung von Entkopplern (z.B. Dinitrophenol macht die Membran für Protonen hochpermeabel, wodurch diese entgegen dem Gradienten in die Matrix gelangen) oder Sauerstoffmangel (z.B. bei Ischämien) induziert. Die ATP-Synthese und die ATP-Hydrolyse sind reversible Prozesse ($\text{ADP} + \text{P}_i + \text{H}^+ \rightleftharpoons \text{ATP} + \text{H}_2\text{O}$). Die Richtung der Reaktion hängt von subtilen lokalen Energie- und Konzentrations-Verhältnissen ab, von der protonenmotori-
schen Kraft ($\Delta G_{\text{H+Transport}}$) einerseits und vom Konzentrationsverhältnis der Reaktanten ADP, P_i und ATP ($\Delta G_{\text{ATP-Synthese}}$) in der Matrix andererseits (Alberts et al., 1994).

1.1.2 Aufbau des Enzymkomplexes und seine Funktion als molekularer Motor

Die Zusammensetzung der F1- und F0-Komponenten aus den verschiedenen Typen von Untereinheiten ist in vielen Organismen weitgehend konserviert. Die Hauptbestandteile des F1-Teils sind die Untereinheiten $\alpha_3\beta_3\gamma_1\delta_1\varepsilon_1$, die des F0-Teils $a_1b_1c_1d_1$ (Abbildung 1-2). Das Enzym besitzt Nukleotidbindestellen in α und β, wobei nur letztere katalytisch agieren (Saraste, 1999). Die dreifach vorkommenden Untereinheiten β sind im Bau identisch, haben aber trotzdem verschiedene Bindungseigenschaften zu ATP, ADP und P_i, die sich zudem im Verlauf einer Syntheserunde verändern. Dies wird durch ihre unterschiedliche räumliche Stellung zur rotierenden γ-Untereinheit hervorgerufen (Nakamoto et al., 2000). Wahrscheinlich ist auch die Interaktion mit jeweils einer von zwei weiteren Untereinheiten δ und ε für dieses Verhalten verantwortlich. Weitere, mit dem Enzymkomplex assoziierte Untereinheiten wie e und g in Rind und Hefe (Belogrudow et al., 1996) sowie i/j in Hefe (Arnold et al., 1999) haben strukturgebende Funktionen.

Der F1F0-Enzym-Komplex arbeitet als molekularer Motor mit zwei verschiedenen Rotoren. Der F0-Rotor, dessen 12 c- Untereinheiten die Rotation gegenüber a durchführen, erhält seinen Antrieb aus der Protonenmotorischen Kraft. Der F1-Rotor, der aus der Untereinheit γ besteht und sich innerhalb des Stator-Zylinders $\alpha 3\beta 3$ dreht, kann die bei der ATP- Hydrolyse freigesetzte Energie in ein Drehmoment umwandeln, dessen Richtung umgekehrt ist zu dem von F0 erzeugten Drehmoment (Oster und Wang, 2000). Diese Rotation konnte im Mikroskop anhand der Bewegung fluoreszenzmarkierter

Die mitochondriale F1F0-ATPase setzt sich nur zu einem sehr geringen Teil aus mitochondrial kodierten Proteine zusammen. Die Lokalisation der einzelnen Gene – im Kern oder Mitochondrien - ist Organismus-spezifisch (für D. discoideum: Ogawa et al., 2000). In Hefe wie in Dictyostelium sind die zu F0 beitragenden Gene ATP6, 8 und 9 mitochondrial kodiert. Die anderen F0- sowie alle F1-Komponenten sind, mit Ausnahme von ATP1 in Dictyostelli-
um, der α-Untereinheit von F1, im Kern kodiert und müssen daher in die Mitochondrien transportiert werden (Kapitel 1.2).

1.1.3 Regulierende Proteine der ATPase – Inhibitoren und Stabilisatoren

Mitochondriale F1F0-ATPase-Inhibitoren, von denen einer in dieser Arbeit beschrieben wird, binden die mitochondriale ATPase bei Abwesenheit eines Protonengradienten, also im ATP-Hydrolyse-Modus, und hemmen so die ATP-Hydrolyse. Dies ist notwendig bei Ausfall der oxidativen Phosphorylierung, um einen für die Zelle gefährlichen ATP-Verlust durch die Hydrolyse-Aktivität des Enzyms und damit eine bis zum Zelltod führende Zellschädigung zu vermeiden (Green und Grover, 2000).

In Hefe existieren mit STF1 und STF2 neben dem Inhibitor INH1 weitere, die ATPase-Aktivität regulierende Proteine. Der auch 9K-Protein genannte Inhibitor STF1 (Matsubara et al., 1983) ist mit 51% identischen bzw. 67% ähnlichen Aminosäuren sehr homolog zu INH1, hat aber eine geringere Affinität zur ATPase. Das 15K-Protein STF2 (Hashimoto et al., 1984; Yoshida et al., 1984 und 1990) unterscheidet sich stärker in Sequenz und 3D-Struktur von INH1 und STF1 (Tagawa et al., 1986). INH1 und STF1 sowie Abschnitte von STF2 haben signifikante Ähnlichkeit mit der ε−-Untereinheit der prokaryotischen F1F0-ATPase, die inhibie-
rend auf die bakterielle F1F0-ATPase wirkt und als der evolutionäre Ausgangspunkt für F1F0-ATPase-Inhibitor- und Regulatorproteine in vielen Organismen gilt. STF2 hat außerdem Ähnlichkeit mit der δ-Untereinheit der bovinen ATPase (Hashimoto et al., 1984; Solaini et al., 1997; Okada et al., 1986). Die Übereinstimmung zwischen den Inhibitoren verschiedener Organismen liegt in einer vergleichbaren Größenordnung wie die zwischen INH1 zu STF1, nur die Säuger-Inhibitoren sind noch stärker konserviert.

STF steht für stabilisierender Faktor. Im Gegensatz zu STF2, dem nur die Stabilisierung des Protein-Komplexes aus INH1 und ATPase, aber keine inhibitorische Wirkung zugeschrieben wird (Hashimoto et al., 1990b), hemmt STF1 die ATPase-Aktivität (Cabezón et al., 2002; Venard et al., 2003). Andere Autoren schließen eine inhibitorische Aktivität von STF1 zwar nicht aus, gehen aber bevorzugt von einer stabilisierenden Funktion von STF1 im Zusammenspiel mit STF2 aus, wobei das Zusammenwirken beider Faktoren effektiver sei als die Wirkung nur eines Faktors (Matsubara et al., 1983; Hashimoto et al., 1984, 1990a, 1990b). Ein kooperatives Verhalten wird auch für die Interaktion aller drei regulatorischen Proteine beschrieben – die gemeinsame Bindung von INH1, STF1 und STF2 an die ATPase beschleunigt die Deaktivierung des Enzyms (Tagawa et al., 1986), wobei dies keine unmittelbare Folge der Bindung des Inhibitors ist, sondern die Konversion des IF1-F1-Komplexes in eine inaktive Form erfordert (Schouppe et al., 1999). Hinsichtlich der Rezeptorstelle an der ATPase unterscheiden sich die inhibitorischen Proteine von dem ausschließlich stabilisierend wirkenden Faktor: STF2 bindet an die F0-Untereinheit, INH1 und STF1 dagegen an F1 (Hashimoto et al., 1987). In Experimenten in vitro wurde gefunden, daß der Hefe-Inhibitor INH1 sowohl an die α- als auch an die β-Untereinheit des Enzyms koppelt (Ichikawa et al., 1996), ebenso der Inhibitor aus Candida utilis (Dianoux und Hoppe, 1987). Bei dem Inhibitor aus Rind ist man unterschiedlicher Auffassung: Klein favorisiert die Bindung ausschließlich an β (Klein et al., 1980), andere an den Zwischenraum von α und β (Mimura et al., 1993; Hashimoto et al., 1995).

1.2 Zielsteuerung, Prozessierung und Faltung mitochondrialer Proteine

1.2.1 Untersuchung von Transportmechanismen

Etwa 99% aller mitochondrialen Proteine sind in der Kern-DNA kodiert und werden an freien Ribosomen im Zytoplasma als Präproteine synthetisiert (Lill et al., 1996). Das bedeutet, daß die Proteine zunächst in einer Vorläuferversion existieren, bestehend aus der für die künftige physiologische Bestimmung notwendigen Sequenz und einer zusätzlichen Targeting-Domäne, der Präsequenz. Die Präproteine durchlaufen von ihrer Synthese bis zur "Reife" einen mehrstufigen Prozeß: Sie werden in die Mitochondrien dirigiert, über die mitocho-

Spezielle Transportwege haben die drei anderen mitochondrialen Kompartimente zum Ziel und werden entweder im Anschluß an den Transport in die Matrix oder unabhängig davon besritten, d.h. unter Umgehung der Matrixpassage.

1.2.2 Targeting – Domäne, Import und Verteilung in Kompartimente

Vor ihrem Einbau in die Mitochondrien-Kompartimente müssen die Präproteine vom Zytosol in die Organellen transportiert werden. Targeting-Sequenzen sind dabei notwendige Signale, die der Zielerkennung beim Zuordnen mitochondrialer Proteine zu ihrem Bestimmungsort dienen. Bei 60% bis 70% der mitochondrialen Proteine findet sich eine solche Targeting-Sequenz an deren N-Terminus, von denen die überwiegende Mehrheit proteolytisch prozessiert wird. Interne Targeting-Sequenzen, also Signale innerhalb der Peptidkette, besitzen die meisten Proteine der TIM- und TOM-Komplexe (Neupert, 1997, Abbildung 1-3).

Abbildung 1-3 Lokalisation mitochondrialer Targeting-Sequenzen im Protein.

(1) **DAS PROTEIN TRÄGT NUR EINE N-TERMINALE TARGETING-SEQUENZ.**
Proteine die in die Matrix transportiert werden sollen, treten unter Ausnutzung des Protonengradienten an den Kontaktstellen von äußerer und innerer Membran bzw. über bestimmte TIM-Proteine vollständig oder partiell in die Matrix ein. An der Matrixseite der inneren Membran interagiert ein Komplex aus einem peripheren TIM-Protein und mt-Hsp70 mit dem Präprotein und leitet dort das sich anschließende Faltungs- und Prozessierungsverfahren ein (Komponenten der “Faltungs- und Degradations-Maschinerie” siehe Kapitel 1.2.3, 1.2.4). Das Ergebnis ist ein reifes, also enzymatisch aktives Protein. Proteine der äußeren Membran und einige Proteine des Intermembranraumes werden direkt vom TOM-Komplex an ihren Bestimmungsort entlassen.

Für ein Protein mit einer N-terminalen Targeting-Sequenz und einer zweiten internen Signal-Sequenz, die sich häufig direkt anschließt, bestehen verschiedene Möglichkeiten der Verteilung, entsprechend der Funktionsweise der zweiten Signal-Sequenz (Abbildung 1-3).

(2) **DAS PROTEIN TRÄGT SOWOHL EINE N-TERMINALE ALS AUCH EINE INTERNE TARGETING-SEQUENZ.**
Diese Präproteine werden zunächst in die Matrix transportiert, wo ihre aminoterminalen Targeting-Domänen abgespalten wird. Daraufhin wird eine zweite Signal-Sequenz freigelegt, die das Protein in die innere Membran oder in den IMS rückdirigierte. Der Export in IM und IMS erfolgt nach vergleichbaren Mustern wie der Export von mitochondrial kodierten Proteinen, die an Ribosomen in der Mitochondrien-Matrix synthetisiert werden.
(3) **DAS PROTEIN TRÄGT EINE N-TERMINALE TARGETING-SEQUENZ UND EINE INTERNE ANKER-SEQUENZ, DIE SELBST NICHT ALS TARGETING-SEQUENZ WIRKT.**

Solche Proteine treten partiell in die innere Membran ein, werden aber durch die hydrophobe Ankersequenz, die an den TIM-Komplex bindet, am Weitertransfer gehindert, was als “Stop-Transfer-Mechanismus” bezeichnet wird. Die N-terminale Targeting-Sequenz wird in der Matrix prozessiert. Wird die Ankersequenz anschließend proteolytisch abgespalten, entsteht ein IMS-Protein (Lill et al., 1996).

(4) **DAS PROTEIN HAT EINE INTERNE SIGNAL-SEQUENZ, ABER KEINE PROZESSIERBARE N-TERMINALE TARGETING-DOMÄNE.**

Diese Proteine benutzen einen verkürzten Weg über den zweiten Typ von TIM-Translokase, der nachgeschaltete Faltungs- und Prozessierungschnitt entfällt und das Protein wird innerhalb der inneren Membran an seinen endgültigen Bestimmungsort verschoben.

1.2.3 Chaperone bei der Translokation und der Faltung von Proteinen

Beim Durchtritt des Präproteins durch die innere Membran und seiner Modifikation in der Matrix spielen Chaperone, Chaperonine und Proteasen eine bedeutende Rolle (Martin, 1997). Ein importiertes Präprotein wird an das mitochondriale Faltungs- und Degradations-System weitergegeben, wo es während der Prozessierung kaskadiert diverse Bindungs- und Dissoziationsschritte über die Chaperone Hsp70, 60 und 10 durchläuft. Nach der Dissoziation des Präproteins vom mt-Hsp70-Komplex wird es durch Hsp60 unter ATP-Verbrauch und Regulation durch Hsp10 in seinen nativen Zustand gebracht. Hsp60 und Hsp10 sind essentiell für die korrekte Proteinfaltung sehr vieler mitochondrialer Proteine (Höhfeld und Hartl, 1994). Beispielsweise sind Defekte in Hsp60 für die falsche Faltung der β-Untereinheit der F1F0-ATPase verantwortlich, und Defekte in Hsp10 führen zur Mißfaltung der α-Untereinheit von MPP.

das Protein bei einem Nukleotid-Austausch an Hsp70 und nachfolgender Ablösung des Chaperones zurückgleitet. Dieses Modell gilt als das wahrscheinlichere.

1.2.4 Matrix-Prozessing-Peptidase (MPP) und proteolytische Spaltstelle

MPP, eine Metalloendoprotease, besteht aus zwei nichtidentischen Untereinheiten, α-MPP und β-MPP, mit einer ungefähren Masse von je 50 kDa (Luciano und Géli, 1996). Das Enzym agiert durch Kooperation der beiden Untereinheiten (Luciano et al., 1997), wobei die Untereinheit α-MPP wahrscheinlich ein durch die Präsequenz gebildetes 3D-Motiv (Anastasi et al., 1993) erkennt und diese Präsequenz der katalytischen Untereinheit β-MPP präsentiert (Kitada et al. 1995). Für die Interaktion zwischen MPP und Präprotein kommen drei Mechanismen in Frage:

1. **DIE ELEKTROSTATISCHE ANZIEHUNG.**

2. **DIE ERKENNUNG SPEZIELLER MOTIVE.**
MPP erkennt Prozessierungsstellen, die an bestimmten, die Schnittstelle umgebenden Positionen Arginin-Reste tragen, nämlich an den Positionen -2, -3 und/oder -10 relativ zur Schnittstelle. In manchen Fällen sind diese Arginine sogar essentiell für die Proteolyse. Der proximal zur Schnittstelle gelegene Argininrest (Positionen –2 oder –3) wird als Interaktionspartner der katalytischen Stelle von β-MPP diskutiert und ist sehr sensibel gegenüber Mutationen. Distal gelegene Arginin-Reste werden zur Erkennung durch die α-MPP-Untereinheit
benutzt. Aber die Existenz eines “R-2” oder “R-3”-Motifs allein erzwinge die Proteolyse noch nicht.

(3) DIE AUSBILDUNG BESTIMMTER SEKUNDÄRSTRUKTUREN.

1.3 Dictyostelium discoideum – ein Modellorganismus

Bei diesem Prozess spielt cAMP sowohl als intrazellulärer als auch als extrazellulärer Botenstoff eine zentrale Rolle (Reymond et al., 1995). *Dictyostelium*-Zellen sind einerseits in der Lage, cAMP mit Hilfe von cAMP-Rezeptoren (cAR) zu detektieren, was in der Zelle eine Signalkaskade induziert, und andererseits cAMP durch ein spezielles Sekretionssystem nach außen abzugeben (Gerisch et al., 1972). Einzelne Zellen beginnen, oszillatorisch cAMP zu sezernieren, wodurch andere Zellen sowohl zur eigenen cAMP-Ausschüttung als auch zur positiv chemotaktischen Wanderung entlang des entstehenden Konzentrations-Gradienten in einem Spiralwellenmuster angeregt werden und Zellaggregate bilden (Gerisch, 1986; Reviews über Chemotaxis: Es und Devreotes, 1999; Parent et al., 1998; Manson und Segall, 1992, Firtel und Chung, 2000; Kriebel et al., 2003). Dafür ist sowohl eine eindeutige Zellpolarität und die Fähigkeit notwendig, auf den Konzentrationsgradienten mit einer gerichteten Bewegung zu reagieren (Chung et al., 2001; Firtel und Meili, 2000).

Das Pseudoplasmodium aus ca. 10⁵ Zellen, die den Zell-Zell-Kontakt über die gesamte Zelloberfläche oder mittels des csA-Glykoproteins bevorzugt über die Zellspitzen (Beug et al., 1973; Coates und Harwood, 2001) herstellen, organisiert sich zu einem wurmartigen Körper. Dieser slug genannte Organismus weist bereits Merkmale der Differenzierung auf: Induziert durch morphogene Faktoren werden zelltypspezifische Gene selektiv exprimiert (Van Driessche et al., 2001; Gerisch, 1987). In den Zellen an der Spitze des slug wird eine Entwicklung zu Prästielzellen und in denen der mittleren und hinteren Bereiche zu Präsporen-

zellen ausgelöst. Der slug durchläuft eine Migrationsphase, in der er sich phototaktisch ori-
etriert, im Licht aufrichtet und schließlich den Sporenträger mit Fußplatte, Stiel und Sporen-
kopf ausbildet. Die Prästielzellen vakuolisieren, ummanteln sich mit Zellulose und sterben
schließlich ab. An dem so stabilisierten Stiel wandern die Präsporenzellen nach oben und
bilden als Überdauerungsform Zellulose-ummantelte, stoffwechselinaktive und gegenüber
ungünstigen Bedingungen, insbesondere gegenüber extremen Temperaturen und Wasser-
mangel, resistente Sporen. Diese können bei Verbesserung der Lage wieder zu vegetativen
Amöben auskeimen.

Aus dem Wildtyp (Freilandisolat NC4, Raper, 1935) wurde durch Mutagenese ein La-
borstamm gezüchtet, der sich auch in flüssigem Nährmedium, d.h. axenisch, kultivieren läßt
– der Stamm AX2 (Watts und Ashworth, 1970). Diese Nahrungsgrundlage und kurze Gene-
rationszeit ermöglichen die einfache Anzucht großer Mengen an Zellmaterial unter definier-
ten Bedingungen, wobei sich nahezu homogene Populationen mit annähernd synchroner
Verhaltensweise der Individuen gewinnen lassen. Für biochemische Untersuchungen steht
somit genügend Material zur Verfügung.

Der Eukaryont Dictyostelium enthält wesentliche partikuläre, membranöse, lösliche
und filamentöse Strukturen einer tierischen Zelle: Kern, Centrosom, Ribosomen, Mitochon-
drien, Vakuolen, Lysosomen, Peroxisomen, Golgi-Apparat, Zytoplasmmembran, ER, Zyto-
plasma, Zytoskelett. Er durchläuft die zellbiologischen Prozesse des Wachstums und der
Differenzierung, der Musterbildung, der Zellteilung, der Endo- und Exozytose, der
Signaltransduktion, der Motilität, der Chemo-, Photo- und Thermotaxis und der Zell-Zell-
Adhäsion. Darin zeigen die Zellen viele Gemeinsamkeiten mit höher entwickelten
Organismen. So ergaben sich bezüglich der Aufnahme von Partikeln (Phagozytose) oder
Flüssigkeiten (Pinozytose) Übereinstimmungen mit Säugerzellen (Maniak et al., 1995,
Hacker et al., 1997). In ihren Bewegungsabläufen und dem chemotaktischen Verhalten
ähneln die Zellen humanen Leukozyten und Makrophagen. Andererseits teilen sie
Eigenschaften mit höheren pflanzlichen Zellen wie die Vakuolisierung der Stielzellen und die
Ausbildung einer die Sporen und Stielzellen umgebenden Zellulosewand bei der
Entwicklung. Das Prinzip der Konservierung der Funktion eines Proteins durch die
Konservierung seiner Aminosäuresequenz läßt sich auch auf D. discoideum anwenden. Aus
den in Dictyostelium erzielten Erkenntnissen lassen sich deshalb allgemeine Prinzipien
ableiten und so auf die Vorgänge in höheren Organismen übertragen.

Diese Tatsachen begründen die zunehmende Bedeutung von D. discoideum als Mo-
dellsystem zur Untersuchung zellbiologischer Vorgänge. Daraus resultierte auch das Be-
dürfenis nach vollständiger Entschlüsselung seines Genoms. Die Sequenzierung des 34 Mb großen, auf 6 Chromosomen zu jeweils etwa 4-7 Mb verteilt (Cox et al., 1990; Loomis und Kuspa, 1997), sehr A-T-reichen (~77%) Genoms wurde im *D. discoideum* Genome Project vorangetrieben und ist mittlerweile abgeschlossen (http://dicty.cmb.nwu.edu).

1.4 Funktionsanalyse von Proteinen

Um solche Proteine *in vivo* sichtbar zu machen, werden fluoreszierende Markerproteine wie das GFP (Green Fluorescent Protein: Prasher et al., 1992) zur Fusion mit dem interessierenden Protein eingesetzt (in *Dictyostelium*: Fey et al., 1995; Maniak et al., 1995). Auf
diese Weise wird derzeit systematisch die intrazelluläre Lokalisation unbekannter Genprodukte aus humanen cDNA-Banken identifiziert (PROLOC: Hoja et al., 2000).

ERGEBNISSE

2 Aufklärung und Analyse der DNA- und Protein-Sequenz

2.1 Isolierung der cDNA aus Phagenklonen

Genbibliotheken, insbesondere Expressionsgenbanken, spielen für das Aufspüren unbekannter Gene eine bedeutende Rolle, so auch in dieser Arbeit für die Isolation des Gens \(\text{dmif1} \) in \(D. \) discoideum. Hier wurden zwei in \(\lambda \text{gt11} \)-Phagen konstruierte cDNA-Genbanken eingesetzt, die sich in einem Fall von poly(A)\(^+\)-RNA aus vegetativen \((t_0)\) AX2-Zellen und im anderen Fall von poly(A)\(^+\)-RNA aus sich entwickelnden \((t_4)\) AX3-Zellen ableiteten (zur Entwicklung von \(\text{Dictyostelium} \) siehe Kapitel 1.1; zur Genbank Kapitel 10.2.2). Die Bezeichnungen AX2 bzw AX3 stehen dabei für axenisch kultivierbare Laborstämme von \(D. \) discoideum. Zu Beginn erfolgte die Durchmusternung der Expressions-Banken mit monoklonalen Antikörpern zur Detektion einiger der exprimierten Proteine. Im weiteren Verlauf wurden die entsprechenden Nukleinsäuresequenzen durch Hybridisierung mit einer DNA-Sonde identifiziert.

Der später zum Screening der Genbank verwendete monoklonale Antikörper mAk 236-173-2 aus der Hybridoma-Fusion 236/237 markiert in fixierten Zellen von \(D. \) discoideum neben perizellulären Höfen auch vesikelartige Strukturen innerhalb der Zellen. Mit dem Ziel, einige mit diesen Strukturen assozierte unbekannte Proteine zu identifizieren, konnten durch das Durchmustern der \(t_0 \)-Bank zunächst drei unabhängige Phagenklone isoliert werden (Klon F10 siehe Abbildung 2-1; Klone F9, F11 nicht gezeigt). Das jeweils im Phagengenom integrierte \(\text{Dictyostelium} \)-cDNA-Fragment wurde nach PCR-Amplifikation mit den Universal-Primern \(\lambda \text{fw} \) und \(\lambda \text{rev} \) sequenziert. Das Fragment F9 mit etwa 400 bp kodiert demnach für das ribosomale Protein S24; das Fragment F11 mit etwa 500 bp für das Enzym NADH-Oxidoreduktase. Beide Fragmente wurden, da beide Proteine bereits bekannt waren, nicht weiter untersucht.

Das mit etwa 600 bp größte Fragment F10 eines unbekannten Proteins hat einen offenen Leserahmen (ORF) zur Kodierung von nominell 112 Aminosäuren. Es ist an beiden Enden durch synthetische Adapter bzw. Polylinker, mit Erkennungssequenzen für EcoRI, NotI und SalI, die durch die Konstruktion der \(\lambda \text{gt11}-t_0 \)-cDNA-Bank eingebaut sind, begrenzt. Nach Entfernung der Polylinker durch Restriktionsverdau mit SalI wurde dieses Fragment radioaktiv mit \([\alpha^{32}\text{P}] \)-dATP nach der „Random-Prime“-Methode markiert. Als Sonde wurde es in weiteren Screenings der \(t_0 \)-Bank und zusätzlich einer \(t_4 \)-Bank zur Suche nach Phagenklonen
mit längeren cDNA-Fragmenten eingesetzt. So konnten weitere 5 unabhängige Klone isoliert werden, von denen einer aus der t₀-Bank (F68), die anderen aus der t₀-Bank (F11/2, F18, F20 und F32) stammen. Die enthaltenen cDNA-Fragmente wurden wiederum mit den Universalprimern λ fw und λ rev sowie einigen internen Primern (p3, p5, p7, p9, p12) sequenziert (Abbildung 2-1).

Ein Teil der Klone stellte sich als defekt heraus, d.h. sie enthalten entweder Leserahmenverschiebungen (F32), sind im ORF unvollständig (F11/2, F20, F32), sind Mischklone (F18, F11/2) oder enthalten Basen austausche innerhalb des ORF (F18).

2.2 Analyse der DNA-Sequenz

<table>
<thead>
<tr>
<th>1</th>
<th>TATATTCTAAAAGAAAATGAGAAAAGAATGTTGTTACTTCGTGGCATTACATTATGAAATAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>ATATATGTTTTCTTTTCTTTTACTCCACACATGAAGCAGCTGTTATTTACTTTTACTTTA</td>
</tr>
<tr>
<td>61</td>
<td>TATATAAGGTTGGCTGAAAAATCAACAGGTGCACACAGATGTGAAGATGCAAATGAAAAATT</td>
</tr>
<tr>
<td>120</td>
<td>ATATTTGCAACCACCTCTTGTAGTTGTCCAGTGTCTCTATCACTCTCTACCCGCTTTAAA</td>
</tr>
<tr>
<td>121</td>
<td>TTAATAACAAACCAAAAATTAATATAATTATTAATTAATTAATCAACAAAAATAAAAATAATGTCAG</td>
</tr>
<tr>
<td>180</td>
<td>ATATATGTTTTGTTTTTATTTTATTTATTTATTTATTTATTTATTTATTTATTTATTTA</td>
</tr>
<tr>
<td>181</td>
<td>CAGTGTCAAGCAACTTTTAAATTAAACTCCTGGCATTGGCCTCCAAAGAGATC</td>
</tr>
<tr>
<td>240</td>
<td>GTGACAGTTTTGAAATTAAATTGAGACTTAGTTAAGCACTCTGTTCAATGATTGCAAGGAG</td>
</tr>
<tr>
<td>241</td>
<td>CATTGCTTCACAGCAACTTTTAAATTAATTAATTAATTAATTAATTAATTAATTAATTAATTA</td>
</tr>
<tr>
<td>300</td>
<td>GATACGGAAAGTCTCCACTACCTTTGTTTTTCTCTCTCTTTCTTTTGAAACTTTACCTCTCTCT</td>
</tr>
<tr>
<td>301</td>
<td>TAAACAAAGAAAGAGGATTTTTTACAGAAGAGATGTTTTTCACTTTTCCTTCTTTTACTTATAG</td>
</tr>
</tbody>
</table>

TATAAAGGTTGGCTGAAAAATCAACAGGTGCACACAGATGTGAAGATGCAAATGAAAAATT
Abbildung 2-2 DNA- und abgeleitete Proteinsequenz: Der für die Proteinsequenz (eingeraht) kodierende Leserahmen (fett) wird durch eine 296 bp lange Intronsequenz (Schlangenlinie) unterbrochen (Exon I: 162 bp, Exon II: 152 bp). Direkt am 5'UTR befindet sich eine, und 60 bp stromabwärts eine zweite potentielle Promotorsequenz (einfach unterstrichen), sowie in der Nähe des 3'-Endes ein Polyadenylierungs-Signal (doppelt unterstrichen), welches Teil des Stopkodons ist. Die cDNA-Klone F10 und F18 besitzen in 3'-Richtung zwei weitere potentielle Polyadenylierungssignale (nicht dargestellt).

Ein 296 bp langes AT-reiches Intron unterteilt den translatierbaren Bereich des DNA-Moleküls in zwei etwa gleich lange Stücke, die Exons I und II. Das Intron beginnt mit den Basen GT und endet mit AG. Dieser Bereich ist in allen Introns 100% konserviert und ist,

2.3 Analyse der Proteinsequenz

2.3.1 Das Genprodukt entspricht einem Inhibitor der mitochondrialen F1F0-ATPase

Die abgeleitete Proteinsequenz wurde mit Sequenzen aus verschiedenen Datenbanken (SwissProt, PIR, YeastDatabase, PDB, SPupdate, CDS) mit Hilfe der Analyseprogramme FASTA und BLASTP (Altschul et al., 1990, 1997) verglichen. Dabei ergaben sich Ähnlichkeiten mit einem mitochondrialen Protein, das inhibitorisch auf die ATPase-Funktion der mitochondrialen F1F0-ATP-Synthase wirkt (Abbildung 2-4).

Der C-Terminus (Abbildung 2-4C) ist mehr oder weniger variabel, enthält aber als grundlegende Struktur eine Coiled Coil- Domäne, die sich aus einer speziellen Abfolge von hydrophoben Aminosäuren nach dem Muster (I,L)6X(I,L)2X(I,L)3X(I,L)6X(I,L)2X(I,L) ergibt.
A N-Terminus (Targeting- Domäne)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Protein</th>
<th>Start Position</th>
<th>Aminosäure-Numerierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.elegans</td>
<td>IATP (88)</td>
<td>1</td>
<td>MSGSCGSGSGAGH</td>
</tr>
<tr>
<td>S.mansonii</td>
<td>IATP (63)</td>
<td>1</td>
<td>MFGSEFEGCGAK</td>
</tr>
<tr>
<td>R.rattus</td>
<td>IF1 (107)</td>
<td>1</td>
<td>MTKSRICESTGLVGWMRLQTRG</td>
</tr>
<tr>
<td>M.musculus</td>
<td>IF1 (106)</td>
<td>1</td>
<td>MAGSALARARFGVGWMRLQTRG</td>
</tr>
<tr>
<td>R.norvegicus</td>
<td>IF1 (107)</td>
<td>1</td>
<td>MAGSALARARFGVGWMRLQTRG</td>
</tr>
<tr>
<td>B.taurus</td>
<td>IF1 (109)</td>
<td>1</td>
<td>MAATLAARTQAVSWAMQQRG</td>
</tr>
<tr>
<td>H.sapiens</td>
<td>IF1 (106)</td>
<td>1</td>
<td>MAVTALAAARTMVGWVRMARG</td>
</tr>
<tr>
<td>P.jadinii</td>
<td>IF1 (63)</td>
<td>1</td>
<td>..........................</td>
</tr>
<tr>
<td>S.cerevisiae</td>
<td>INH1/IA TP (85)</td>
<td>1</td>
<td>MIPBSALASLQGROVAAFP</td>
</tr>
<tr>
<td>D.discoideum</td>
<td>DMIF1 (105)</td>
<td>1</td>
<td>MSSVSKLKLTRASMIAPKRSTAFR</td>
</tr>
</tbody>
</table>

B Inhibitor- Domäne

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Protein</th>
<th>Start Position</th>
<th>Aminosäure-Numerierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.elegans</td>
<td>1-25</td>
<td>---GGGGCSTREAGE---SLRMGMATREYPRROKQQ1DNK--KKL3ADMTOS</td>
<td></td>
</tr>
<tr>
<td>S.mansonii</td>
<td>1-25</td>
<td>---GGGAGCSTREAGE---SLRKREATEPYRRLDNFKL---KKL3ADMTOS</td>
<td></td>
</tr>
<tr>
<td>R.rattus</td>
<td>1-25</td>
<td>GDOSSS---DSGAGCSTREAGE---ASTKREL AREDPHRKKFKQAAAKKHHDEIDHH</td>
<td></td>
</tr>
<tr>
<td>M.musculus</td>
<td>1-25</td>
<td>VDOSSS---MVDTGAGCSTREAGE---ATFKREL AREDPHRKKFKQAAAKKHHDEIDHH</td>
<td></td>
</tr>
<tr>
<td>R.norvegicus</td>
<td>1-25</td>
<td>GDOSSS---DSGAGCSTREAGE---ASTKREL AREDPHRKKFKQAAAKKHHDEIDHH</td>
<td></td>
</tr>
<tr>
<td>B.taurus</td>
<td>1-25</td>
<td>GSEGEDVSRSSAALVTRAGED---KKHHNEI3HH</td>
<td></td>
</tr>
<tr>
<td>H.sapiens</td>
<td>1-25</td>
<td>GDOQSEV---TDVGAGCSTREAGE---ATFKREL AREDPHRKKFKQAAAKKHHDEIIHH</td>
<td></td>
</tr>
<tr>
<td>P.jadinii</td>
<td>1-25</td>
<td>TGATQSTGGDQGCGNATPKR-------SLKQ</td>
<td></td>
</tr>
<tr>
<td>S.cerevisiae</td>
<td>INH1</td>
<td>1-25</td>
<td>SEGSTEGGCQPGNPCDVRPR-------SLKQ</td>
</tr>
<tr>
<td>S.cerevisiae</td>
<td>STF1</td>
<td>1-25</td>
<td>SDGPIGCAGPNGCPDVRPR-------SLKQ</td>
</tr>
<tr>
<td>D.discoideum</td>
<td>1-25</td>
<td>---FGFREGVESEGVFKERDKLRRRAEKKEHTKAA</td>
<td></td>
</tr>
</tbody>
</table>

C C-Terminus (Coiled Coil - Domäne)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Protein</th>
<th>Start Position</th>
<th>Aminosäure-Numerierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.elegans</td>
<td>60-84</td>
<td>QD-----RHEKVL3DEQROQKKLKHEDKGT</td>
<td></td>
</tr>
<tr>
<td>S.mansonii</td>
<td>60-84</td>
<td>SDVEK</td>
<td></td>
</tr>
<tr>
<td>R.rattus</td>
<td>60-84</td>
<td>SK-----EROKCHRHKKTIYLKLNSEH</td>
<td></td>
</tr>
<tr>
<td>M.musculus</td>
<td>60-84</td>
<td>SK-----EROKCHRHKKTIYLNKMH</td>
<td></td>
</tr>
<tr>
<td>R.norvegicus</td>
<td>60-84</td>
<td>SK-----EROKCHRHKKTIYLNQNL</td>
<td></td>
</tr>
<tr>
<td>B.taurus</td>
<td>60-84</td>
<td>AR-----EROKCHRHKKTIYLKQSED</td>
<td></td>
</tr>
<tr>
<td>H.sapiens</td>
<td>60-84</td>
<td>K-----KREKCHRHKKTIYKHKHD</td>
<td></td>
</tr>
<tr>
<td>P.jadinii</td>
<td>60-84</td>
<td>K-----KREKCHRHKKTIYKHKHD</td>
<td></td>
</tr>
<tr>
<td>S.cerevisiae</td>
<td>INH1</td>
<td>60-84</td>
<td>P-----KDEKCHRHKKTIYKHKHD</td>
</tr>
<tr>
<td>S.cerevisiae</td>
<td>STF1</td>
<td>60-84</td>
<td>P-----KDEKCHRHKKTIYKHKHD</td>
</tr>
<tr>
<td>D.discoideum</td>
<td>60-84</td>
<td>GSQTPNASNSSANSSSAAKTKEDKISKLOKELADKK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(A) Säuger</th>
<th>(B) Hefen, Dictyostelium</th>
<th>(C) Rund-/Plattwürmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF1 H. sapiens</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF1 B. taurus</td>
<td>77/72 (106)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IF1 M. musculus</td>
<td>75/70 (105)</td>
<td>70/62 (105)</td>
<td>-</td>
</tr>
<tr>
<td>IF1 R. rattus</td>
<td>81/76 (95)</td>
<td>75/66 (97)</td>
<td>86/85 (105)</td>
</tr>
<tr>
<td>IF1 R. norvegicus</td>
<td>78/74 (106)</td>
<td>74/65 (106)</td>
<td>94/93 (105)</td>
</tr>
<tr>
<td>IATP P. jadinii</td>
<td>62/44 (58)</td>
<td>56/43 (60)</td>
<td>58/47 (58)</td>
</tr>
<tr>
<td>INH1 S. cerevisiae</td>
<td>55/39 (76)</td>
<td>54/39 (60)</td>
<td>57/35 (73)</td>
</tr>
<tr>
<td>STF1 S. cerevisiae</td>
<td>64/52 (46)</td>
<td>57/43 (46)</td>
<td>60/47 (51)</td>
</tr>
<tr>
<td>DMIF1 D. discoideum</td>
<td>50/42 (40)</td>
<td>34/22 (64)</td>
<td>44/33 (39)</td>
</tr>
<tr>
<td>IATP C. elegans</td>
<td>49/38 (84)</td>
<td>48/38 (85)</td>
<td>51/36 (69)</td>
</tr>
<tr>
<td>IATP S. mansoni</td>
<td>68/56 (34)</td>
<td>59/48 (49)</td>
<td>68/59 (34)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(A) Säuger</th>
<th>(B) Hefen, Dictyostelium</th>
<th>(C) Rund-/Plattwürmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF1 H. sapiens</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF1 B. taurus</td>
<td>77/72 (106)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IF1 M. musculus</td>
<td>75/70 (105)</td>
<td>70/62 (105)</td>
<td>-</td>
</tr>
<tr>
<td>IF1 R. rattus</td>
<td>81/76 (95)</td>
<td>75/66 (97)</td>
<td>86/85 (105)</td>
</tr>
<tr>
<td>IF1 R. norvegicus</td>
<td>78/74 (106)</td>
<td>74/65 (106)</td>
<td>94/93 (105)</td>
</tr>
<tr>
<td>IATP P. jadinii</td>
<td>62/44 (58)</td>
<td>56/43 (60)</td>
<td>58/47 (58)</td>
</tr>
<tr>
<td>INH1 S. cerevisiae</td>
<td>55/39 (76)</td>
<td>54/39 (60)</td>
<td>57/35 (73)</td>
</tr>
<tr>
<td>STF1 S. cerevisiae</td>
<td>64/52 (46)</td>
<td>57/43 (46)</td>
<td>60/47 (51)</td>
</tr>
<tr>
<td>DMIF1 D. discoideum</td>
<td>50/42 (40)</td>
<td>34/22 (64)</td>
<td>44/33 (39)</td>
</tr>
<tr>
<td>IATP C. elegans</td>
<td>49/38 (84)</td>
<td>48/38 (85)</td>
<td>51/36 (69)</td>
</tr>
<tr>
<td>IATP S. mansoni</td>
<td>68/56 (34)</td>
<td>59/48 (49)</td>
<td>68/59 (34)</td>
</tr>
</tbody>
</table>

Tabelle 1 Ähnlichkeitsanalyse verschiedener Inhibitor-Proteine mit BESTFIT: Zahlen (in %) vor/nach dem Schrägstrich kennzeichnen die ähnlichen/identischen Aminosäuren, in Klammern die Anzahl der Aminosäuren der verglichenen Sequenzbereiche. Die dem Protein DMIF1 ähnlichsten Inhibitoren aus Mensch und Hefe sind grau unterlegt. Bei Einteilung der Organismen in Gruppen wie (A) Säuger, (B) Hefen und (C) Platt-/Rundwürmer weisen die Vertreter der Säuger mit 70–94% stärkere Ähnlichkeiten untereinander auf als die Mitglieder innerhalb der anderen Gruppen: (B) 47–69%, (C) 71%.

2.3.2 Sequenzcharakteristik und funktionelle Domänen von DMIF1

Das für DMIF1 errechnete Molekulargewicht von 13728 Da wurde nach Herstellung monoklonaler Antikörper gegen DMIF1 (Kapitel 3.2, 14) experimentell im Westernblot mit

Die Durchmusterung der Aminosäureabfolge nach sequenzdeterminierten Motiven ergeben eine potentielle PKC-Phosphorylierungs- (T63) und eine Asn-N-Glykosylierungsstelle (N73). Bisher wurden in bekannten Inhibitorproteinen keine Evidenzen für posttranslationale
Modifikationen wie Glykosylierung oder Phosphorylierung gefunden. Diese Punkte wurden auch für DMIF1 nicht weiter untersucht.

3 Intrazelluläre Lokalisation von DMIF1

3.1 Die Verwendung von GFP als Markerprotein in vivo

Für den Nachweis, daß DMIF1 zu den intrinsischen Inhibitorproteinen der mitochondrialen F1F0-ATPase zu rechnen ist, ist der Datenbank-Vergleich (Kapitel 2.3.1) als einziges Kriterium unzureichend, insbesondere bei Beachtung der maximal 54% Ähnlichkeit. Deshalb sollte die Verteilung von DMIF1 in lebenden Dictyostelium-Zellen als weiteres Merkmal herangezogen werden. Dazu wurde DMIF1 als Fusionsprodukt mit dem fluoreszierenden Markerprotein GFP (Green Fluorescent Protein, Prasher et al., 1992) im AX2-Wildtypstamm exprimiert und über die Eigenfluoreszenz von GFP nach dessen Anregung im konfokalen Laser-Scanning-Mikroskop (LSM) beobachtet.

3.1.1 Konstruktion von Plasmiden und Transformation von AX2-Zellen zur Expression von Fusionsproteinen aus DMIF1 und GFP

Im ersten Fall wurde die durch PCR an Phagenlysat mit den Primern pgfp-N1 (Clal) und pgfp-N2 (Clal) vermehrte dmf1-cDNA in die Clal-Stelle von pDEXRH-N-GFP ligiert und dadurch der Vektor pDEXRH-GFP-N-DMIF1 (Abbildung 3-1B) erhalten. Die richtige Orientierung des Inserts im Vektor wurde durch Amplifikation eines intermediären gfp-dmf1-Fragmentes mit einem gfp-internen (pgfp-11, Nukleotide 636-655 in GFP-Sequenz) und einem dmf1-internen Oligonukleotid (pgfp-N2) anhand der Fragmentlänge von ca 430 bp überprüft und durch die nachfolgende Sequenzierung bestätigt. Das fusionierte Produkt GFP-N-DMIF1 (~ 41 kDa) enthält das etwa 27 kDa große GFP und daran anschließend, verbunden über einen Linker aus 7 Aminosäureresten, das Protein DMIF1 (Abbildung 3-1C).
Für das zweite Konstrukt wurde die dmif1-cDNA ohne Stop-Codon mit den Oligonukleotiden pgfp-C1 und pgfp-C2 amplifiziert und das PCR-Produkt zunächst in einen TA-Vektor zwischenkloniert (Abbildung 3-2A). Dabei wurde der A-Überhang am 3'-Ende des
PCR-Produktes, der durch die Taq-Polymerase erzeugt wird, genutzt. Das Insert wurde durch Restriktionsverdau mit NruI aus dem TA-Vektor isoliert und in die geöffnete und ge-glättete EcoRI-Stelle des Plasmids pDEXRH-C-GFP eingefügt. Der Orientierungstest am fertigen Vektor pDEXRH-GFP-C-DMIF1 (Abbildung 3-2B) erfolgte durch PCR mit den Primern pgfp-69 und pgfp-C1. Zwischen den Proteinen GFP und DMIF1 in GFP-C-DMIF1 befindet sich ein Peptidlinker aus 8 Resten (Abbildung 3-2C).

AX2-Zellen wurden mit den Plasmiden pDEXRH-N-GFP-DMIF1 und pDEXRH-C-GFP-DMIF1 durch Elektroporation (Kapitel 12.7) transformiert und mit Geneticin (G418, 10-20 µg/ml) unter Selektionsdruck gesetzt. Resistente Kolonien der so generierten Transformanten GFP-C-DMIF1 und GFP-N-DMIF1 wurden kloniert. Die Expression des rekombinanten GFP/DMIF1-Proteins wurde im Immunoblot mit dem monoklonalen anti-GFP-Antikörper 264-449-2 (Abbildung 4-2) sowie im Fluoreszenzmikroskop durch Anregung der GFP-Emission überprüft (Abbildung 3-3 bis Abbildung 3-5).

3.1.2 Die Lokalisation in vivo ist abhängig von der Lage von GFP im Fusionsprotein

3.1.2.1 Mitochondrien in GFP-C-DMIF1-Zellen

Wie die Fluoreszenz von GFP-C-DMIF1-transformierten Zellen im Laser Scanning Mikroskop (LSM) zeigt, akkumuliert das rekombinante Protein selektiv in den Mitochondrien (Abbildung 3-3). Dies bestätigt die Erwartung, die sich aufgrund der Sequenzhomologie zu den mitochondrialen F1F0-ATPase-Inhibitorproteinen ergibt.

Abbildung 3-3 Mitochondriale Lokalisation von GFP-C-DMIF1 in vivo. (A) GFP-Fluoreszenz: Darstellung des rekombinanten Proteins GFP-C-DMIF1 durch das fluoreszierende Protein GFP in lebenden, vegetativen GFP-C-DMIF1-Zellen (Klon C4A-13) in Agar-Overlay-Technik. Das GFP-Signal ist auf die Mitochondrien beschränkt. Durch deren schnelle Bewegung wird neben den eigentlichen Organellen auch ihre Bewegungsbahn in Form von Lichtspuren aufgezeichnet. (B) Durchlichtbild: Zellgestalt. (C) Überlagerung von Fluoreszenzsignal (grün) und Durchlichtbild (rot). n Nukleus, v Vakuole. Balken 5 µm.
3.1.2.2 Centrosomen in *GFP-N-DMIF1*-Zellen

Überraschend dagegen war die sehr häufige Lokalisation von GFP-N-DMIF1 nahe des MTOC (microtuble organizing center = Centrosom). GFP war nicht mit den Mitochondrien assoziiert (Abbildung 3-4). Die Struktur am MTOC erscheint im konfokalen LSM hohl, d.h. GFP-N-DMIF1 tritt perizentrisch um die Centrosomen auf.

Eine weitere Erscheinungsform stellen Vesikel dar (Abbildung 3-5). Auffällig ist die starke Akkumulation im Zytoplasma, wo das Protein in der Regel homogen, zuweilen auch netzartig (Abbildung 3-16) verteilt erscheint. Dabei ist nicht geklärt, inwieweit das Signal vom intakten, d.h. vollständigen rekombinanten Protein oder von GFP-haltigen Fragmenten nach einem Abbau herrührt.
3.2 DMIF1 in fixierten *Dictyostelium discoideum* - Zellen

3.2.1 Expression von DMIF1 in *E.coli* und Verwendung als Antigen zur Gewinnung monoklonaler Antikörper gegen DMIF1

Um mögliche Lokalisationsartefakte des rekombinanten Proteins aufgrund des doppelt so großen Molekulargewichtes von GFP gegenüber DMIF1 auszuschließen und festzustellen, welche der beiden durch die GFP-Fluoreszenz gezeigten Lokalisationen tatsächlich durch DMIF1 determiniert wird, sollten Immunmarkierungen am endogenen Protein in fixierten Wildtypzellen (AX2) vorgenommen werden. Dafür waren Antikörper gegen das *Dictyostelium*-Protein DMIF1 erforderlich. Zu deren Erzeugung wurde DMIF1 zunächst als rekombi-
binantes Fusionsprotein mit Glutathion-S-Transferase (GST) in *E.coli* exprimiert (Smith and Johnson, 1988). Nach seiner Aufreinigung wurde das Protein als Antigen zur Immunisierung von Mäusen verwendet (Zur Herstellungsprozedur von Hybridomaklonen, die für die Produktion von monoklonalen Antikörpern erforderlich sind, siehe Kapitel 14). Die gewonnenen Antikörper wurden für Immunmarkierungen auf Zell-, Organell- und Proteinebene eingesetzt.

3.2.1.1 Klonierung von *dmif1*, Transformation von *E.coli* und Selektion

Die kodierende DNA-Sequenz für das Protein DMIF1 mit 318 bp Länge wurde am cDNA-Klon F68 mit den Primern pgst-fw und pgst-rev durch PCR amplifiziert. Durch Nutzung der eingeführten Erkennungssequenzen für BamHI und Xhol wurde das PCR-Produkt in die multiple Klonierungsstelle (MCS) des Bakterien-GST-Expressionsvektors pGEX5X1 kloniert und das Plasmid pGEX-GST-DMIF1 (Abbildung 3-6) erzeugt.

Der in pGEX5X1 enthaltene und unter Kontrolle des *lacI*-Repressors stehende *tac*-Promotor und das *lac*-Operon ermöglichen eine durch IPTG induzierbare hohe Expressionsrate und die Blau-Weiß-Selektion (*α*-Komplementation). Das resultierende Genprodukt enthält Glutathion-S-Transferase (GST: 26 kDa) mit einer sich C-terminal anschließenden Faktor-Xa-Schnittstelle (Erkennungssequenz: I-E-G-R↓X) sowie das über einen kurzen Linker aus 4 Aminosäuren (G-I-Q-K) gekoppelte Protein DMIF1 mit 105 Aminosäureresten (nach Sequenz ca. 14 kDa).

Mit dem Vektor pGEX-GST-DMIF1 wurden die beiden *E.coli*-Stämme JM109 und JM83 transformiert und daraus 7 Klone für einen Expressionstest ausgewählt. Die richtige Basenfolge wurde durch DNA-Sequenzierung mit zwei pGEX-Vektor-Primern ermittelt.
3.2.1.2 Expression von GST-DMIF1 und Aufreinigung des Fusionsproteins

Einer exponentiell wachsenden *E. coli*-Schüttelkultur wurde IPTG zugefügt und somit der tac-Promotor aktiviert. Die Expression des Genproduktes der insgesamt über 4 Stunden induzierten Schüttelkulturen wurde durch stündliche Probennahmen verfolgt. Diese Gesamtzellhomogenat-Proben wurden nach elektrophoretischer Auftrennung für die Detektion im Proteingel mit Coomassie Brilliant Blue gefärbt (Abbildung 3-7 links) bzw. im Westernblot mit polyklonalem Serum gegen GST markiert (Abbildung 3-7 rechts).
Das von dem anti-GST-pAk als Einzelbande bei etwa 40 kDa erkannte Fusionsprotein war dabei mit zunehmender Induktionsdauer immer stärker exprimiert worden. Der *E.coli*-(JM109)-Klon F68-8-30 zeigte diese Tendenz besonders deutlich, weshalb er für die Expression zur Reinigung des GST-DMIF1-Fusionsproteins herangezogen wurde. Außerdem konnte ein degradierender Proteinabbau während der Induktionsdauer ausgeschlossen werden. Die Expression in JM83 erschien weniger effektiv (Daten nicht gezeigt).

Abbildung 3-7: Induktions-Test: Die Induktion von GST-DMIF1 wurde mittels SDS-PAGE (links) und Westernblot (rechts) verfolgt. Das Fusionsprotein konnte mit einem GST-pAk (Connex) auf einer Bandenhöhe bei ~40 kDa nachgewiesen werden und entspricht damit der kalkulierten Größe. Gegenüber der nichtinduzierten Kontrolle (C) zeigt sich bereits nach einer Stunde eine deutliche Steigerung der Expression des rekombinannten Proteins, die im Zeitverlauf weiter zunimmt. SDS-PAGE 12%. Marker See Blue. Auftragung gleicher Zellzahlen (4·10⁷ Zellen pro Spur) bzw. Zelläquivalente.
Das Eluat enthält neben dem gewünschten Produkt mit voller Länge von ~40 kDa erhebliche Mengen an zwei weiteren GST-haltigen Banden (36 und 30 kDa) sowie ein koeluiertes bakterielles dnaK-Protein mit einer Molekularmasse von 70 kDa (Sherman and Goldberg, 1992). Die offensichtlichen Degradationsprodukte erscheinen nicht während der Induktion (t24-Fraktion) sondern erstmals nach der Lyse der Bakterien in der Partikelfraktion. Das bedeutet, daß das Protein nach dem Aufschluß der Zellen einem Abbau unterliegt. Die erwähnte Fraktion wurde durch Zentrifugation der lysierten Zellen als Sediment erhalten und enthält partikuläre Bestandteile (S in Abbildung 3-8). Dem SDS-Gel zufolge befindet sich darin auch ein erheblicher Anteil des rekombinanten Proteins voller Länge. Das spricht dafür, daß dieser Proteinanteil in Einschlußkörpern akkumulierte, die während der Lyse nicht aufgebrochen wurden.

Das aufgereinigte Fusionsprotein GST-DMIF1 wurde als Antigen zur Immunisierung von Mäusen für die anschließende Gewinnung monoklonaler Antikörper verwendet. Außerdem diente es als Antigen zum Test der Antikörper im ELISA.

3.2.2 Charakterisierung der monoklonalen Antikörper gegen DMIF1

Die nachfolgend beschriebenen Experimente befassen sich mit der Reaktion der in den Fusionen 271/272 erhaltenen mAk im Immunoblot und im ELISA, mit der Bestimmung ihrer Subklassen und der im Protein DMIF1 erkannten Epitope. Die Ergebnisse sind in Tabelle 2 zusammengefaßt.
3.2.2.1 Reaktionstest mit den Proteinen DMIF1, GFP-N-DMIF1, GST-DMIF1 und GST

Hybridoma-Klone wurden aus zwei Mäusen erhalten, die mit verschiedenen Methoden immunisiert wurden (siehe Kapitel 14): mit Freund’schem Adjuvans (Fusion 271) und Alugel S (Fusion 272). Die von den Zellen produzierten mAk wurden im Immunoblot und im ELISA auf ihre Reaktion mit DMIF1 getestet. Für den ELISA-Test wurde das rekombinante GST-DMIF1-Protein auf Mikrotiterplatten immobilisiert. Als Kontrollantigen diente ebenso immobilisiertes GST-Protein, das von PD Dr. H. Faix freundlicherweise zur Verfügung gestellt wurde. Es wurden nur Hybridomaklone weiterkultiviert, deren mAk mit GST-DMIF1 aber nicht mit der GST-Kontrolle reagierten. Die Selektion erfolgte hier auf Antikörper, die DMIF1 in seiner (weitgehend) nativen Form erkennen.

Für den denaturierenden Ansatz im Westernblot wurden Membranstreifen mit AX2-Gesamtzell-Lysaten sowie den Lysaten von GFP-N-DMIF1-Transformanten (Klone N1-13, N2-4, N5-3) verwendet. Dazu wurde das Zellmaterial in der SDS-PAGE aufgetrennt und auf Nitrozellulosemembranen geblottet. Hierbei wurde auf mAk-Klone selektioniert, die im AX2-Homogenat-Blotstreifen eine etwa 14 kDa-Bande (Abbildung 3-9) und im GFP-N-DMIF1-Blotstreifen neben der 14 kDa- eine weitere Bande bei ~ 41 kDa zeigten (vgl. Abbildung 4-2). Als tatsächliche DMIF1-Größe wurde in diesen Blots allerdings ~10 kDa ermittelt. Es handelt sich dabei wahrscheinlich um das reife Protein, das um das Signalpeptid am N-Terminus verkürzt ist (siehe Kapitel 4.1). Aus der Fusion 272 konnten 15 unabhängige Klone isoliert werden, während kein Antikörper aus der Fusion 271 eine Reaktion mit DMIF1 zeigte. Die Subklassenbestimmung erfolgte nach dem Diffusionstest nach Ouchterlony (Kapitel 14.4).

Abbildung 3-9 Immunreaktion eines anti-DMIF1-mAk im Westernblot. Denaturiertes AX2-Lysat, detektiert mit mAk 272-208-1. Marker: See Blue, Low Molecular Weight (Pharmacia), Schägger-Gel 16% (Kapitel 13.1.2).

3.2.2.2 Bindestellen der mAk in DMIF1

Welche Epitope im DMIF1-Protein von den Antikörpern erkannt werden, konnte durch Bindungsstudien an einem um 2/3 verkürzten DMIF1-Peptid festgestellt werden (Abbildung 3-10). Ein 208 bp langes DNA-Stück am 3‘-Ende von dmif1 wurde entfernt, indem der Vektor pGEX-GST-DMIF1 (Klon F68-8-30) an der dmif1-internen HindIII-Restriktionsstelle und der Xhol-Klonierungsstelle aufgeschnitten wurde. Das linearisierte Plasmid wurde an den zuvor
geglätteten Enden religiert, was zum Plasmid pGEX-GST-DMIF1Δ3 führte. Das bisher existierende \textit{dmif1}-Stop-Codon TAA wurde wegen der beim Glätten verursachten Verschiebung des Leserasters inaktiviert, so daß das nächste, im ORF liegende Stop-Kodon, nämlich eine pGEX-interne Sequenz (TGA) genutzt werden mußte. Neben der durch die Klonierungsstrategie erwarteten Verkürzung von DMIF1 führte die ORF-Verschiebung zur Expression eines Peptidlinkers am carboxyterminalen Ende aus weiteren 8 Aminosäuren, die nicht der \textit{dmif1}-Sequenz entsprechen sondern vom Vektor abgeleitet sind. Das resultierende Protein GST-DMIF1Δ3 enthält (nach Abzug der zum Enzym GST und der Faktor Xa-Stelle beitragenden Aminosäuren und Berücksichtigung der zusätzlich eingeführten vektoriellen Reste am C-Terminus) nur noch 45 anstelle der ursprünglich 109 DMIF1-Reste, die geschätzte Länge des gesamten Fusionsproteins GST–DMIF1Δ3 beträgt nun etwa 32 kDa.

Abbildung 3-10 Konstrukt zum Ak-Mapping. (A) Im Ausgangsvektor pGEX-GST-DMIF1 wurde \textit{dmif1} (schwarz unterlegt) an seiner internen HindIII-Stelle und der XhoI-Klonierungsstelle geschnitten, die Enden geglättet und religiert. (B) Der nun zu translatierende DNA-Strang enthält neben der kodierenden Sequenz für GST (hellgrau) die um 205 bp verkürzte Sequenz \textit{dmif1}Δ3 (schwarz) und zusätzlich 24 bp aus dem stromabwärts liegenden Teil des Vektors (v, dunkelgrau). Translatierte Bereiche sind durch schwarze Linien mit Größenangaben für das resultierende Protein dargestellt, Ziffern kennzeichnen Basen-Nummerierung im Sequencausschnitt. TAA ist das \textit{dmif1}-interne, TGA das im Vektor enthaltene Stop-Signal. ATG, das Startkodon für \textit{dmif1}, ist funktionslos wegen des zuvor aktivierten GST-Starts.

Bakterienzellen der Stämme JM109 und JM83 wurden mit dem Plasmid transformiert und einem Induktionstest unterworfen (siehe Kapitel 3.2.1.2). Die Klone Δ3-109-7 bis Δ3-109-10 (alle in JM109) waren ausreichend induzierbar (Abbildung 3-11A), zeigten aber ein Expressionsmaximum bereits nach kürzerer Zeit als in den ersten 6 h nach Induktionsbeginn. Bis zum Zeitpunkt t_{21} sank der Spiegel wieder erheblich ab. Das steht im Gegensatz zum Verhalten der Klone, die das vollständige Fusionsprotein GST-DMIF1 produzierten: die
Proteinmenge nahm hier zunächst kontinuierlich zu und blieb bis zum Ende der Induktion relativ konstant. Elektrophoretisch aufgetrennte und geblottete Homogenate von *E.coli*-Zellen, die das C-terminal verkürzte GST-DMIF1Δ3-Protein exprimierten und Homogenate von Zellen, die das vollständige Protein GST-DMIF1 exprimierten, wurden mit den zu testenden monoklonalen Antikörpern inkubiert (Abbildung 3-11B).

Antikörper, die GST-DMIF1Δ3 erkennen, binden demnach in einem Bereich zwischen Amino-Terminus und dem Aminosäurerest E35 (HindIII-Stelle im Gen). Alle anderen, die nur das vollständige Genprodukt GST-DMIF1 binden, erkennen ein Epitop stromabwärts von E35. Während der mAk 272-208-1 beide Proteine erkennt und sein Epitop sich somit am N-Terminus befindet, erkennt der mAk 272-460-6 nur die volle Länge, d.h. sein Epitop befindet sich in C-terminaler Richtung von E35. Die Ponceau S- Färbung wurde zur Beurteilung der
relativen Gesamtprotein-Mengen herangezogen: Trotz ausreichender Menge des Antigens GST-DMIF1∆3 waren die Signale durch anti DMIF1-mAk erheblich schwächer als beim Protein voller Länge.

<table>
<thead>
<tr>
<th>mAk-Nr.</th>
<th>Epitop</th>
<th>Subklasse</th>
<th></th>
<th>ELISA***</th>
<th>Western-Blot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GST-DMIF1</td>
<td>AX2</td>
</tr>
<tr>
<td>272-208-1</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-245-7</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-250-7</td>
<td>?</td>
<td>IgM</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>272-264-1</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-329-4</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-363-22</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-374-1</td>
<td>?</td>
<td>IgG1+IgM</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>272-375-1</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-383-4</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-402-10</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-433-6</td>
<td>N</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-444-2</td>
<td>C</td>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>272-450-16</td>
<td>?</td>
<td>IgG1</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>272-455-8</td>
<td>?</td>
<td>IgG1+IgG2a</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>272-460-6</td>
<td>C</td>
<td>IgG1</td>
<td>+</td>
<td>-</td>
<td>****+</td>
</tr>
</tbody>
</table>

Tabelle 2 Eigenschaften monoklonaler Antikörper aus Fusion 272. Das jeweils im Protein DMIF1 erkannte Epitop in der N- oder C-terminalen Region wurde durch Antikörpermapping (siehe oben), die Subklasse durch den Ouchterlony Diffusionstest (Kapitel 14.4) bestimmt. Die Antikörper wurden im ELISA gegen das aufgereinigte Fusionsprotein GST-DMIF1 und im Western-Blot gegen denaturiertes Gesamtzell-Homogenat aus AX2-, GFP-N-DMIF1- und E.coli-Zellen getestet. * nicht bestimmbar, da Reaktion zu schwach oder DMIF1 nur nativ erkennbar, ** vermutlich Klonemische, *** positives Signal auf GST-DMIF1, negativ auf GST. **** Deutliche Reaktion auf GFP-C-DMIF1. Demnach konnten aus der Fusion nur 2 C-terminal bindende Ak-Klone isoliert werden (grau unterlegt).

3.2.3 Immunmarkierung in fixierten Zellen

3.2.3.1 DMIF1, GFP und Porin in fixierten Wildtyp- und GFP-C-DMIF1- Zellen

Mit den getesteten mAk wurden DMIF1-Markierungen sowohl an Wildtypzellen (AX2) als auch an den GFP-Transformanten GFP-N-DMIF1, GFP-C-DMIF1 und GFP-AX2 (M.Westphal) durchgeführt und mit Hilfe der durch Farbstoff-gekoppelte Sekundär-Antikörper erzeugten Fluoreszenz im LSM untersucht.

Polyklonale Antikörper gegen GFP, die in fixierten AX2-Zellen gar keine Struktur erkennen (Abbildung 3-14 F), binden in GFP-C-DMIF1-Zellen eindeutig und spezifisch an Mitochondrien, die demzufolge das rekombinante Protein bzw. zumindest dessen GFP-Anteil tragen (Abbildung 3-14C). Die gleichen Ak zeigen in GFP-AX2-Zellen eine strukturlose Verteilung im Zytoplasma, was sich mit dem diffusen GFP-Fluoreszenzbild in lebenden wie in fixierten GFP-AX2-Zellen deckt (Daten nicht gezeigt). Mit Ausnahme einer bei starker GFP-Expression häufig auftretenden Akkumulation von GFP im Kern konnte weder eine mitochondrialie noch irgendeine andere typische Anreicherung des reinen GFP beobachtet werden. Demnach ist auszuschließen, daß GFP für die spezifische Anreicherung des rekombinanten Proteins in den Mitochondrien verantwortlich ist.
Abbildung 3-12 DMIF1, Tubulin und DNA in vegetativen Wildtypzellen (A) Mitochondrien (anti DMIF1 mAk 272-208-1). (B) Kerne (DAPI: in DNA interkalierender Farbstoff). (C),(G) Zellgestalt. (D) Überlagerung A, B. (E) Mitochondrien (anti DMIF1 mAk 272-444-2). (F) Mikrotubuli und Centrosom (anti α-Tubulin-Kaninchen-Serum polyklonal/GAR-CY5). (H) Überlagerung E, F. Sekundär-Antikörper: GAM-CY3 wenn nicht anders angegeben. Zellen AX2. LSM/Objektiv 63x/1.2 C-APOCHROMAT-WASSEROBJEKTIV. Balken 5 µm.
Abbildung 3-13 DMIF1, Tubulin und Porin in GFP-DMIF1-Zellen. (A) Mitochondrien (anti DMIF1 mAk 272-402-10/GAM-CY3). (B) Mitochondrien. (C) Mikrotubuli und Centrosom (anti-α-Tubulin pAk/GAR-CY5). (D), (I) Zellgestalt. (E) Überlagerung A,B,C. (F) Mitochondrien, äußere Membran (anti Porin mAk 70-100-1/GAM-CY5). (G) Mitochondrien. (H) Mikrotubuli (anti-α-Tubulin pAk/GAR-CY3). (K) Überlagerung F,G. Zellklon C1-5. LSM/Objektiv 63x/1.2 C-Apochromat-Wasserobjektiv (linke Reihe); 100x/1.3 Neofluar (rechte Reihe). Balken 5 µm.
3.2.3.2 DMIF1, GFP und Porin in fixierten \textit{GFP-N-DMIF1}-Zellen

Auch in \textit{GFP-N-DMIF1}-Zellen werden Mitochondrien von mAk gegen Porin erkannt (Abbildung 3-15A). Mit anti-DMIF1-mAk ist das nur bei sehr schwacher Expression des rekombinanten Proteins möglich (Abbildung 3-15E, linke Zelle), da das Signal sonst wegen der starken Lichtemission im Zytoplasma, hervorgerufen durch die Immunmarkierung des dort akkumulierten rekombinanten Proteins, überstrahlt wird (Abbildung 3-15E, rechte Zelle). Im GFP-Kanal ist an gleicher Stelle kein Mitochondriensignal detektierbar, was zu dem Schluß führt, daß das Fusionsprotein GFP-N-DMIF1 im Gegensatz zum endogenen Protein DMIF1 dort nicht hingelangt.
Abbildung 3-15 DMIF1 und Porin in GFP-N-DMIF1- Zellen. (A) anti-Porin-mAk 70-100-1/GAM-CY5. (B) GFP-Fluoreszenz: Neben zytoplasmatischen Ansammlungen befinden sich 2 punktförmige Objekte in unmittelbarer Kernnähe (vergleiche (C) Phasenkontrast). (D) Überlagerung von A und B. (E) In einer das Fusionsprotein GFP-N-DMIF1 schwach exprimierenden Zelle (links) sind mit dem anti-DMIF1-mAk 272-208-1/GAM-CY3 Mitochondrien detektierbar. Vor einem starken CY3-Fluoreszenzhintergrund im Zytoplasma (rechte Zelle), hervorgerufen durch die gleichzeitige Markierung des endogenen und des rekombinanten DMIF1, sind einzelne Organelle optisch nicht aufzulösen. (F) GFP-Signal: Weder bei schwacher noch starker Expression von GFP-N-DMIF1 können im GFP-Kanal Organelle detektiert werden. (G) Phasenkontrast. (H) Überlagerung von E und F. Zellklone: linke Reihe N1-13, rechte Reihe N5-3. LSM/Objektiv 100x/1.3 Neofluar. Balken 5 µm.
Die in lebenden Zellen als GFP-Fluoreszenz sichtbaren Höfe um die MTOC, die in fixierten Präparaten zu kompakten Einheiten kollabiert sind, werden weder von DMIF1-mAk (Abbildung 3-16A, F) noch von Ak gegen GFP (pAk: Abbildung 3-16H; mAk 264-449-2: Daten nicht gezeigt) erkannt. Das es sich hierbei tatsächlich um Centrosomen und nicht um dort zufällig auftretende Mitochondrien oder andere Organelle handelt, wurde anhand der Markierung der Mikrotubuli mit einem polyklonalen Antiserum gegen α-Tubulin überprüft (Abbildung 3-16C, α/β-Tubulin bilden die Hauptkomponenten von Mikrotubuli, der Ursprung Ak-markierter Tubulinfasern weist auf den Ort des Centrosoms). Die enge räumliche Beziehung der GFP-Signale zum Ausgangspunkt der Mikrotubuli (Abbildung 3-16B, G) sowie die regelmäßige Nähe zum Kern (siehe auch Lebendpräparate in Abbildung 3-4 und Abbildung 3-5) spricht für die Zuordnung der Struktur zu den Centrosomen.

Auch hier bestätigt sich, daß die Darstellung der Mitochondrien mit DMIF1-Ak vor einem intensiven Fluoreszenzhintergrund im Zytoplasma schwierig ist: Bei mäßiger Fluoreszenzintensität sind noch einige distinkte Strukturen zu erkennen (Abbildung 3-16A), bei erhöhtem Signal ist das nicht mehr möglich (Abbildung 3-16F). Dabei ist es unerheblich, ob der verwendete Antikörper eine N-terminale oder C-terminale Domäne von DMIF1 erkennt (Daten nicht gezeigt).

Mitunter bilden GFP-N-DMIF1-Zellen im Zytoplasma DMIF1-immunreaktive netzartige Strukturen (Abbildung 3-16A). Aufgrund dieser Netzstruktur und weil der Transportweg für DMIF1 nach seiner Translation unbekannt war, wurde zunächst ein Zusammenhang mit dem ER vermutet. Deshalb wurden Dictyostelium-Zellen, die einen an GFP gebundenen ER-Marker exprimieren (Laborbezeichnung GFP-MCS; Dumontier et al., 2000; von Dr. H. Faix zur Verfügung gestellt) mit anti-DMIF1-Antikörpern markiert. Erwartungsgemäß zeigen diese Zellen bei der GFP-Anregung ein ER-typisches Netzwerk (Abbildung 3-16M). Die mit anti-DMIF1- mAk in solchen Zellen erzeugten Signale zeigen jedoch kein Netzwerk sondern ein eindeutiges mitochondriales Muster (Abbildung 3-16L).

In weiteren Kontroll-Experimenten wurden monoklonale Antikörper gegen ER-Proteine aus D. discoideum wie Calnexin (mAk 270-390-2, 270-349-1, M. Ecke) und Protein-Disulfid-Isomerase (mAk 159-387-4) zur Markierung von GFP-N-DMIF1-Zellen verwendet. Die Lokalisation der Antikörper konnte wie im vorangegangenen Experiment mit der zelleigenen GFP-Fluoreszenz nicht passend überlagert werden (Daten nicht gezeigt). Daher kann eine Lokalisation sowohl von DMIF1 als auch von GFP-N-DMIF1 im ER ausgeschlossen werden.
Abbildung 3-16 DMIF1, Tubulin, GFP, DNA in GFP-N-DMIF1-GFP-MCS-Zellen.
Anti-DMIF1-mAk erkennen N-Terminus von DMIF1. Sekundär-Ak: GAM-CY3. (A) anti-DMIF1 mAk 272-402-10: diffuse Markierung (F) anti-DMIF1 mAk 272-375-1: diffuse Markierung (L) anti-DMIF1 mAk 272-208-1: Mitochondrien (B), (G) GFP-Signal: Centrosomen (M) GFP-Signal: ER. (C) anti-α-Tubulin pAk/GAR-CY5. (H) anti-GFP-pAk (Clontech)/GAR-CY5 (Negativkontrolle siehe Abbildung 3-14F). (N) DAPI: Kern. (D), (I), (O) Zellgestalt. Überlagerung von A bis C (E), F bis H (K) und L bis N (P). Zellklone: N1-13 linke, mittlere Reihe, GFP-MCS rechts Balken 5 µm.
3.3 DMIF1 lokalisiert im Grenzbereich von innerer Membran und Matrix

3.3.1 Elektronenmikroskopische Untersuchung von Wildtypzellen und GFP/DMIF1-Transformanten

Bisher konnte gezeigt werden, daß DMIF1 in Mitochondrien akkumuliert. Die folgenden Untersuchungen mit dem Transmissions-Elektronenmikroskop (TEM) dienen der Aufklärung der intramitochondrialen Lokalisation des Proteins.

Ultradüne Gefrierschnitte von Wildtyp-Zellen (AX2) und Transformanten (GFP-N-DMIF1: Klon N5-3; GFP-C-DMIF1: Klon C1-5) wurden mit einem monoklonalen IgG-Antikörper gegen DMIF1 (mAk 272-208-1) inkubiert und mit an Protein A gekoppelten Goldpartikeln im TEM sichtbar gemacht (Abbildung 3-17A, C und E, 15.2).

In allen Stämmen sind die Mitochondrien im Inneren markiert. Daß DMIF1 nicht in der äußeren Membran zu finden ist, war schon in Immunfluoreszenzpräparaten erkennbar (Abbildung 3-13) und wird durch Vergleich mit der Markierung von Porin im TEM besonders deutlich: hier sind die Goldpartikel dominierend in der Peripherie der Mitochondrien angereichert (Abbildung 3-17B). Es fällt auf, daß die Anzahl der DMIF1-markierenden Goldpartikel im GFP-C-DMIF1-Stamm erheblich höher ist als im Wildtyp. Das stimmt mit Immunfluoreszenzdaten überein und ist konsistent mit der Tatsache, daß GFP-C-DMIF1-Zellen das rekombinante Protein GFP-C-DMIF1 zusätzlich zum endogenen DMIF1 exprimieren. Besonders deutlich erkennt man eine Anreicherung der Goldpartikel entlang der inneren Membran, was sich im TEM-Bild wie Perlenschnüre darstellt (Abbildung 3-17A und C). Im Gegensatz zum GFP-C-DMIF1-Stamm zeigt der Stamm GFP-N-DMIF1, der das Fusionsprotein auch additiv zum normalen endogenen DMIF1 bildet, eine etwa gleiche Zahl markierender Goldpartikel wie der Wildtyp, was sich ebenfalls mit den Befunden aus der Fluoreszenzmiroskopie deckt. Dort konnte in den Mitochondrien von GFP-N-DMIF1-Zellen nur endogenes DMIF1, nicht aber GFP-N-DMIF1 nachgewiesen werden.
Auch mit polyklonalem Antiserum gegen GFP lassen sich in Zellen von *GFP-C-DMIF1* intramitochondriale Strukturen markieren (Abbildung 3-17D), während das in *GFP-N-DMIF1*-Zellen nicht der Fall ist (Abbildung 3-17F). Dort treten die Goldpartikel nur ganz vereinzelt an der Mitochondrienperipherie auf und akkumulieren vor allem im Zytoplasma, übereinstimmend mit dem GFP-Signal der Fluoreszenzpräparate.

Abbildung 3-17 Ultradünne Kryoschnitte von Mitochondrien im TEM. Immunmarkierung von Mitochondrien in *D. discoideum* - Zellen. (A) DMIF1 in AX2. (B) Porin in AX2. (C) DMIF1 in *GFP-C-DMIF1* (Klon C1-5). Pfeile kennzeichnen den Verlauf eines der Tubuli. (D) GFP in *GFP-C-DMIF1* (Klon C1-5). (E) DMIF1 in *GFP-N-DMIF1* (Klon N5-3). (F) GFP in *GFP-N-DMIF1* (Klon N5-3). Monoklonale Primär-Ak (DMIF1: mAk 272-208-1; Porin: mAk 70-100-1) visualisiert mit Kaninchen-anti-Maus IgG (Sekundär-Ak) und Protein A-Gold; polyklonales Antiserum gegen GFP (Clontech), visualisiert mit Ak Ziege-anti-Kaninchen-Gold. Balken 0.2 µm (Balken in E gilt für alle Bilder außer F).
3.3.2 DMIF1 bindet über seinen Rezeptor an die innere Membran

Auch wenn DMIF1 anscheinend an der inneren Membran lokalisiert ist, fällt die exakte Zuordnung der Markierung zu einem der drei möglichen intramitochondrialen Kompartimente schwer. Das hat vor allem zwei Gründe: *Dictyostelium discoideum* besitzt eine innere Membran vom Tubulus-Typ, deren Tubuli sehr kompakt aneinander lagern, so daß die Zuordnung der Markierung zu Matrix oder innerer Membran elektronenoptisch oft nicht eindeutig ist. Hinzu kommt, daß der Erhaltungszustand subzellulärer Strukturen bei der milden Fixierung, die eine Immunmarkierung an Kryoschnitten erlaubt, nicht optimal ist. Deshalb wurden die folgenden Markierungen an submitochondrialen Vesikeln, die aus aufgereinigten Mitochondrien präpariert waren, mit Hilfe der „Preembedding“-Technik (Kapitel 15.2.3.1) vorgenommen.

3.3.2.1 Präparation von submitochondrialen Vesikeln

Ziel der Präparation ist es, die sehr eng aneinander liegenden Tubuli-Membranen zu separieren und somit die Matrix davon unterscheidbar zu machen, damit eine Aussage über die Lokalisation des DMIF1-Proteins gemacht werden kann.
Der Aufreinigungsweg wurde durch Detektion der Fraktionen im Westernblot mit monoklonalen Antikörpern gegen DMIF1 (Abbildung 3-19A) und die β-Untereinheit der mitochondrialen F0F1-ATPase (Abbildung 3-19B) verfolgt. Im ersten Zentrifugationsschritt wurden die Mitochondrien nahezu quantitativ sedimentiert und im Verlauf der weiteren Aufreinigung von begleitenden Partikeln befreit. Der detektierte Anteil an DMIF1 im Sediment 2 ist auf unaufgebrochene Zellen und die darin enthaltenen Mitochondrien zurückzuführen.

DMIF1 wird fast quantitativ im Sediment 3 gefunden, es handelt sich also überwiegend um intakte Mitochondrien. Das Protein F1-β zeigte erwartungsgemäß ein sehr ähnliches Fraktionierungsverhalten wie DMIF1.
Abbildung 3-19 Westernblot zur Mitochondrien-Aufreinigung aus AX2: Alle während der Aufreinigung gewonnenen Fraktionen wurden als SDS-Proben auf einem 16%igen „Schägger“-Gel elektrophoretisch aufgetrennt und nach Übertragung auf eine Nitrozellulose-Membran mit mAk detektiert: (A) gegen DMIF1 (mAk 272-208-1). (B) gegen die β-Untereinheit von F1F0 aus D.discoideum (mAk 238-190-11). Die Fraktionen S_n repräsentieren die Sedimente 1-3, F 4 die Percollfraktion und Ü_n die zugehörigen Überstände 1-4. Ein Aliquot des Zellsedimentes (Z) wurde nach der Lyse durch die Parr-Bombe entnommen. Als Kontrolle C wurde das Zellpellet aus 7·10^5 Zellen der Transformante GFP-C-DMIF1 (Klon C1-5) aufgetragen. Alle anderen Fraktionen entsprechen 10^6 Zellen bzw. Zelläquivalenten des Wildtyps AX2.
3.3.2.2 Submitochondriale Vesikel ("inside-out" Vesikel) im TEM

Die Bruchstücke von ultraschallbehandelten Mitochondrien wurden vor dem Fixieren mit monoklonalen Antikörpern gegen DMIF1 (Abbildung 3-20A, B), gegen F1-β als Marker der inneren Membran (Abbildung 3-20C) oder gegen Porin als Marker der äußeren Membran inkubiert (Abbildung 3-20D).

Der DMIF1-markierte IOV (Abbildung 3-20A), der augenscheinlich eine Doppelmembran besitzt, zeigt eine deutliche Assoziation von Goldpartikeln an seiner äußeren Membranseite (ehemals innere Membran). Die Markierung befindet sich in Distanz zur Membran, wie auf einem Stiel sitzend. Auch Vesikel mit Einzelmembranen oder nicht zirkulär geschlossene Membranteile zeigen diese Anlagerung an der Peripherie (Abbildung 3-20B). Auch der po-
tentielles Rezeptor für DMIF1, F1-β befindet sich in der vesikelbegrenzenden Membran (Abbildung 3-20C). Im Falle einer Lokalisation von DMIF1 in der Matrix erwartet man eine Anreicherung der Goldpartikel im Lumen von RSV oder gar keine Markierung, da die Matrix bei der Präparation entfernt wird.

Die Markierung der Membranen mit anti-DMIF1-Antikörpern spricht gegen die Lokalisation von DMIF1 in der Matrix. Andererseits erwartet man bei der Bindung an die Lipidmembran hydrophobe Domänen in der Proteinsequenz, die im Protein DMIF1 nicht vorhanden sind. Der beobachtete „Stiel“ ist ein Indiz für die Verbindung von DMIF1 mit der Membran über ein Linkerprotein, zum Beispiel die α- oder β-Untereinheit der F1F0-ATPase als Receptor. DMIF1 bindet wahrscheinlich über einen solchen Rezeptor an die innere Membran.

3.3.3 GFP-N-DMIF1 am Centrosom – ein Artefakt?

Der Nachweis von GFP als Bestandteil von GFP-N-DMIF1 in der centrosomalen Umgebung mittels polyklonalem anti-GFP-Serum blieb ebenfalls ergebnislos (Daten nicht gezeigt) und bestätigt die Daten aus der Fluoreszenzmikroskopie, obwohl in dieser Region eine durch GFP hervorgerufene Fluoreszenz eindeutig beobachtbar war. Eine Anreicherung von GFP-N-DMIF1 in der Centrosomen-Umgebung konnte demnach nicht nachgewiesen werden. Ebensowenig wurde das Protein in den Mitochondrien mit anti-GFP-Serum gefunden (Kapitel 3.3.1, Abbildung 3-17F), stattdessen trat eine deutliche Akkumulation im Cytoplasma auf, was mit der GFP-Fluoreszenz in diesem Kompartiment übereinstimmt. Im Kontrollexperiment mit GFP-C-DMIF1-Zellen wurden wie erwartet mit anti-GFP-Serum innere Bereiche der Mitochondrien markiert (Abbildung 3-17E). Die Markierungsdichte war geringer als mit anti-DMIF1-Ak (Abbildung 3-17C), da letzterer neben dem rekombinanten auch das endogene Protein erkennt. Die Lokalisation von GFP in den Mitochondrien von GFP-C-DMIF1-

Abbildung 3-21 Immunmarkierung von Kryo-Ultradünnschnitten von GFP-N-DMIF1-Zellen im TEM. Doppelmarkierung mit anti-DMIF1 mAk (Durchmesser der Gold-Partikel 1nm) und anti-α-Tubulin-pAk (polyklonales Serum, Durchmesser der Gold-Partikel 15 nm). (A) An der Spitze des Kerns (n nucleus) befindet sich das Centrosom (c), welches von Mikrotubuli umgeben ist. Hier konnte kein GFP-N-DMIF1-Fusionsprotein lokalisierter werden. (B) 3fache Vergrößerung des Ausschnittes in A. (C) Intramitochondriale DMIF1-Markierung (weiße Pfeile), Mikrotubuli an der Peripherie (schwarze Pfeile). (D) 2fache Vergrößerung des Ausschnittes in C und inverse Abbildung zur besseren Darstellung der DMIF1-Markierung. Die Pfeile korrespondieren mit denen im Ausschnitt in C. Balken 0.2 µm.
Zellen bestätigt den Übertritt des rekombinanten Proteins inklusive seines GFP-Anteils vom Zytosol in die Mitochondrien.

Der Bereich um die Centrosomen, der in lebenden GFP-N-DMIF1-Zellen durch GFP sichtbar gemacht wird, erscheint groß im Verhältnis zum eigentlichen MTOC. Auf der Suche nach morphologischen Besonderheiten in diesem Bereich wurden Zellen der Klone N1-13 und N5-3 in Glutaraldehyd/Osmiumtetroxid fixiert, in EPON-Harz eingebettet und mit AX2- und GFP-C-DMIF1-Zellen im TEM verglichen (Abbildung 3-22). Hier ist zunächst der Eindruck einer deutlichen Vergrößerung der Centrosomen sowohl in GFP-N-DMIF1- als auch in GFP-C-DMIF1-Transformanten gegenüber Centrosomen in AX2-Zellen zu gewinnen.

Abbildung 3-22 Morphologie von Centrosomen und Mitochondrien. Zellen von AX2 (A-C), GFP-C-DMIF1 (D-F) und GFP-N-DMIF1 (G-I). EPON-Einbettung. **linke Reihe:** Über- ichtsbild von Zellstrukturen: Kern (n, nucleus) mit Kernkappen (k), Vakuolen (v), Mitochondrien (m), Centrosomen (c). **mittlere Reihe:** Centrosomen befinden sich an einer stielartigen Struktur (s, Pfeile) an der Spitze des Kerns. **rechte Reihe:** Mitochondrien, Balken linke Reihe 1 µm, Balken mittlere und rechte Reihe 0,5 µm.

Entgegen diesem Erscheinungsbild ergab die Auswertung mehrerer TEM-Bilder, daß keine deutlich vergrößerten Centrosomen im Vergleich zur Kontrollgruppe (AX2 und GFP-
AX2) auftreten, weder in GFP-C-DMIF1-Zellen noch in GFP-N-DMIF1-Zellen. Auch andere Zellbestandteile wiesen weder in Struktur noch Größe augenscheinliche Besonderheiten auf (Abbildung 3-23). Problematisch bei dieser semiquantitativen Auswertung sind die unterschiedlichen Schnittebenen durch die Centrosomen und die kleinen Fallzahlen.

Da das GFP-fluoreszente Material nicht direkt in die Centrosomen inkorporiert wird, wie bereits durch Fluoreszenzmi kroskopie nachgewiesen wurde (Kapitel 3.1.2.2), sondern aus der sie umgebenden Region stammt, muß der Fokus für künftige Untersuchungen auf diesem Bereich liegen. In einigen TEM-Präparaten erscheint diese Region elektronendichter als in den Stämmen AX2 und GFP-C-DMIF1 (Abbildung 3-24).

Abbildung 3-23 Größenverhältnisse von Centrosomen im TEM. Zellen von AX2, GFP-AX2, GFP-C-DMIF1 (Klone C1-5 und C1B7), GFP-N-DMIF1 (Klone N1-13 und N5-3). Simultantfixierung in Glutaraldehyd/Osmiumtetroxid und EPON-Einbettung. Vermessung von Centrosomen in 1:20.000 bis 1:100.000 vergrößerten Abbildungen. Anzahl der Objekte: 6x AX2, 2x GFP-AX2, 5x GFP-C-DMIF1 (2x Klon C1-5, 3x Klon C1B7), 11x GFP-N-DMIF1 (9x Klon N1-13, 2x Klon N5-3).

Abbildung 3-24 Centrosom in Nachbarschaft zum Golgi-Apparat. (A) Übersichtsbild einer GFP-N-DMIF1-Zelle (Klon N5-3) c: Centrosom, g Membranstapel des Golgi-Apparat. Balken 3 µm. (B) Vergrößerung des Fensters in A; horizontale Kantenlänge 3 µm.

4 Einfluss von GFP auf Zielsteuerung und Prozessierung

Während das Protein GFP-C-DMIF1 wie das endogene Protein DMIF1 in die Mitochondrien importiert wird, ist dies für das Protein GFP-N-DMIF1 offensichtlich nicht der Fall. Der einzige Unterschied zwischen beiden Proteinen besteht in der Anordnung des GFP. Viele kernkodierte Proteine, die für den Transport in die Mitochondrien bestimmt sind, werden im Zytoplasma synthetisiert und im ungefalteten Zustand zu den Organellen mit Hilfe von Targeting-Sequenzen dirigiert. Diese Sequenzen befinden sich am N-Terminus des Präproteins und werden in vielen Fällen nach dessen Translokation in die Mitochondrien durch sequenz- oder strukturspezifisch wirkende Proteasen wie z.B. die mitochondriale Processing Peptidase (MPP) abgespalten. Durch Faltung mit Hilfe von Chaperonen erhält das reife Protein seine physiologisch aktive Form. Es lag der Verdacht nahe, daß die Funktion im rekombinanten Protein GFP-N-DMIF1 durch die räumliche Nähe der Signalsequenz zu GFP und damit durch eine potentielle sterische Abdeckung der Erkennungsdomäne in zweierlei Hinsicht gestört ist: Entweder in Form einer Beeinträchtigung der Zielsteuerung und/oder durch die Hemmung der anschließenden Prozessierung des Präproteins. Für die Störung der Targeting-Funktion gibt es Daten aus der Fluoreszenz- und der Elektronen-Mikroskopie. Im Fluoreszenzmikroskop sind unter den vielen Mitochondrien von GFP-N-DMIF1-Zellen nach Anregung der GFP-Emission keine grün leuchtenden Mitochondrien detektierbar. Im Zytoplasma von EM-Präparaten sind sehr viele mit Goldpartikeln gekoppelte anti-GFP-Antikörper gebunden, in der Nähe von oder gar in den Mitochondrien jedoch nahezu keine.

Die Beeinträchtigung der Abspaltung der Signalsequenz durch Proteasen ist Gegenstand der im folgenden Kapitel beschriebenen Untersuchungen.

4.1 Hemmung der Abspaltung der Signalsequenz

Bei Abspaltung der Targeting-Domäne sollten aus dem knapp 14 kDa großen Präprotein zwei kleinere Fragmente entstehen. Anhand publizierter IF1-Proteine mit bekannten MPP-Spaltstellen kann auf eine potentielle MPP-Spaltstelle in DMIF1 bei G28 geschlossen werden. Die entstehenden Fragmente haben demnach ein Molekulargewicht von knapp 4 kDa für die Targeting-Domäne und geringfügig mehr als 10 kDa für das reife Protein.

Zellhomogenate von GFP-N-DMIF1, GFP-C-DMIF1, GFP-AX2 und AX2 wurden im Westernblot auf diese Fragmente hin analysiert. Es wurden verschiedene Antikörper gegen DMIF1 eingesetzt, deren Bindedomänen entweder dem ersten Drittel der Proteineinsequenz (Bereich des Signalpeptides) oder dem C-terminalen Rest (Bereich des funktionsfähigen Proteins) zugeordnet werden, sowie Ak gegen GFP. Das erwartete Bandenmuster
(Abbildung 4-1) wurde in mehreren Immunblots mit verschiedenen Antikörperkombinationen verglichen (ein Blot ist in Abbildung 4-2 dargestellt, weitere Daten nicht gezeigt).

Abbildung 4-1 Prozessierung von GFP-N-DMIF1 und GFP-C-DMIF1 - Erwartete Fragmente. (A) Aufbau beider rekombinanten (Prä)Proteine mit hypothetischer MPP-Schnittstelle. E35 bezeichnet die Position der HindIII-Schnittstelle im zugehörigen Gen, die zur Konstruktion des C-terminal verkürzten Proteins GST-DMIF1\textsubscript{∆3} verwendet wurde (Kapitel 3.2.2.2). Ziffern kennzeichnen kalkulierte Fragmentgrößen. (B) Von den verwendeten Antikörpern erkannte Domänen im Protein. Anti-GFP-Ak (GFP-mAk 264-449-2, pAk Clontech), anti-DMIF1-mAk N-terminal bindend (N-Ak), anti-DMIF1-mAk C-terminal bindend (C-Ak). (C) Fragmente nach Prozessieren des DMIF1-Präproteins und zu erwartende Größen. Da alle Transformationen im genetischen Hintergrund von AX2 durchgeführt wurden, trugen alle Zellen sowohl das rekombinante als auch das endogene Protein.
Das reife 10 kDa-Protein scheint in der Tat aus dem 14 kDa-Precursor durch Abspaltung der Targetingsequenz hervorzugehen. Dies ist aus dem Vorliegen von 10 kDa-Fragmenten bei allen Zellstämmen zu schließen, was durch mehrere anti-DMIF1- Antikörper überprüft wurde (Abbildung 4-2A). Das unprozessierte DMIF1-Protein liegt als 14 kDa Referenz-Bande im Coomassie Blau-gefärbten SDS-PAGE vor (Abbildung 4-2C). Es wurde aus der proteolytischen Spaltung von GST-DMIF1 mit Faktor Xa-Protease erhalten. GST-DMIF1 wurde zuvor in E.coli exprimiert und durch Affinitäts-Chromatographie gereinigt (Kapitel

Abbildung 4-2 (A) Prozessierung des Präproteins durch Abspaltung der Targeting-Domäne. Westernblot mit anti-DMIF1- mAk 272-208-1 und pAk-GFP (Clontech) auf Zellhomogenaten von AX2, GFP-AX2, GFP-C-DMIF1 (Klon C1-5) und GFP-N-DMIF1 (Klon N5-3). Sehr schwache Banden in GFP-N-DMIF1-Zellen, die mit anti-GFP-pAk detektiert wurden, sind mit a und mit anti-DMIF1- mAk detektierte Banden mit b bezeichnet. 2-Phasen-SDS-PAGE 8.8%-14% (Kubis und Gros, 1997). Auftragung von Protein in aus äquivalenten Zellzahlen (1·10⁶ Zellen/ Spur). Marker See Blue (Biorad). (B) Elektrophoretische Trennung von 37 kDa- und 41 kDa-Fragmenten durch 2-Phasen-SDS-PAGE 6.6%-8.8%. GFP-C-DMIF1-Klone C1-5, C1B7 und C4-1; GFP-N-DMIF1- Klone N1-13, N2-5 und N5-3. Auftragung der Äquivalente von 2·10⁶ Zellen/Spur, Detektion mit anti-DMIF1-mAk (272-208-1) und anti-GFP-pAk (Clontech). (C) Präprotein (Kapitel 3.2.1.2). Proteolytische Spaltung von GST-DMIF1 (40 kDa) durch FaktorXa an der spezifischen FaktorXa- Spaltstelle in die Spaltprodukte GST (26 kDa) und DMIF1 (14 kDa). t₁₉: 19 Stunden nach Zugabe des Enzmys weitgehende Spaltung (nach 43 Stunden komplette Spaltung, Daten nicht gezeigt). Das 70 kDa-Fragment ist das koeluierte E.coli-Streßprotein DnaK. SDS-PAGE 14%. Marker See Blue (Biorad).
3.2.1.2). Das Präprotein wird in *E.coli* mangels mitochondrialem MPP-Enzym nicht prozessiert. In *Dictyostelium* wird die Targetingdomäne (4 kDa) offenbar abgespalten. Sie ließ sich allerdings mit keinem der vorhandenen Antikörper markieren. Auch gelang der simultane Nachweis von 10 kDa- und 14 kDa-Fragmenten nicht, was bedeutet, daß das DMIF1-Präprotein nach seiner Synthese effektiv prozessiert wird.

Das rekombinante Protein GFP-C-DMIF1 verhält sich ähnlich und ist, wie das endogene Protein, nicht in seiner unreifen Form nachweisbar. Dafür spricht, daß eine Proteinbande der Masse 37 kDa detektierbar war anstelle einer 41 kDa-Bande, die der vollen Länge des unprozessierten Proteins entspräche (Abbildung 4-2A, B). Das ist ebenfalls ein Indiz für eine sehr effektive Proteolyse an der vermuteten Schnittstelle durch mitochondriale Proteasen. Zusätzlich treten zwei, von anti-DMIF1-Antikörpern, aber nicht von anti-GFP-Serum detektierte Banden bei etwa 30 und 20 kDa auf, die nicht durch die Prozessierungs-Hypothese (Abbildung 4-1) erklärt sind. Es wird ein proteolytischer Abbau in der Zelle angenommen.

Bei GFP-N-DMIF1 erscheint die Situation wie folgt: Eine 41 kDa-Bande, die der Größe nach mit dem Fusionsprodukt aus GFP und unprozessierten DMIF1 korrespondiert, konnte sowohl mit Antikörpern gegen DMIF1 als auch gegen GFP detektiert werden, wobei das von GFP-Ak stammende Signal sehr schwach ist. Auch das reife endogene DMIF1-Protein läßt sich durch anti-DMIF1-Ak als 10 kDa-Bande in allen vier untersuchten Stämmen nachweisen. Aus einer erfolgten Prozessierung von GFP-N-DMIF1 an der vorhergesagten Stelle würde auch ein 10 kDa Fragment hervorgehen, welches sich aber nicht vom endogenen Protein unterscheiden ließe. Außerdem wird ein signalschwaches 31 kDa-Fragment als potentielles Spaltprodukt von GFP-Antiserum gebunden (Abbildung 4-2A → a). Eine weitere schwache Bande tritt mit dem anti-DMIF1-Ak bei etwa 25 kDa auf (→ b), die sich nicht in das Prozessierungsschema einordnen läßt, ebenso wie ein signalstarkes Fragment bei 36 kDa. Möglicherweise sind diese Fragmente das Ergebnis von Abbauprozessen, die im Zytosol bei nicht richtig gefalteten oder ungenügend protektierten Proteinen verstärkt stattfinden. Auch in den Mitochondrien finden ständig Protein-Degradationen statt.

Für GFP-N-DMIF1 kann zusammengefaßt werden, daß eine Abspaltung der Targeting-Domäne möglicherweise stattfindet, da neben nicht erklärbaren auch die erwarteten Fragmente gebildet werden. Die auf diese Art prozessierte Proteinmenge ist aber sehr gering. Es kann auch nicht ausgeschlossen werden, daß die erhaltenen Fragmentgrößen zufällig sind und nicht von dieser Prozessierung herrühren. Dafür spricht, daß die Abspaltung der Signalsequenz durch das MPP-Enzym in den Mitochondrien stattfinden muß, dort aber nie GFP nachgewiesen werden konnte. Möglicherweise befindet man sich aufgrund der gerin gen Proteinmenge, die ordnungsgemäß prozessiert wird, an der Nachweisgrenze im Fluoreszenz- oder TEM-Präparat. Was den Hauptanteil an GFP-N-DMIF1 betrifft, sprechen die
Daten gegen eine Prozessierung nach dem beschriebenen Modell. Bezüglich des erhaltenen Fragmentmusters war unerheblich, ob die Antikörper ihre Bindestellen in der N- oder C-terminalen Region des Proteins haben (Kapitel 3.2.2.2), d.h. die als „N-terminal bindend“ deklarierten Ak verhielten sich bei den beschriebenen Immunomarkierungen ebenso wie C-terminal bindende Ak (z.B. mAk 272-208-1). So wurde immer das gleiche Fragmentmuster gefunden. Diese Tatsache läßt sich gemäß Abbildung 4-3) erklären.

Beim Kartieren der Ak wurde neben dem vollständigen Präprotein (M1-K105) ein C-terminal um 70 Aminosäuren verkürztes Protein (M1-E35) verwendet. Dieses Polypeptid enthält neben der MPP-Spaltstelle (G28) weitere 8 Aminosäuren des DMIF1-Proteins in C-terminaler Richtung (bis E35). Dieser Bereich (G28-E35) wird vermutlich von den verwendeten N-terminal bindenden Ak erkannt. Es gibt demzufolge keinen DMIF1-Ak aus der Fusion 272, der tatsächlich die Targetingdomäne erkennt. Das hat folgende Konsequenzen für das kalkulierte Fragmentmuster nach der Prozessierung:

(1) **GFP-N-DMIF1**: Die Targeting-Domäne von GFP-N-DMIF1 (4 kDa) ist nicht und das 31 kDa-Fragment nur mit anti-GFP detektierbar. Das 10 kDa-Spaltprodukt des endogenen und des rekombinanten Proteins ist mit allen anti-DMIF1-Ak erfaßbar.

(2) **GFP-C-DMIF1**: Die Targeting-Domäne von GFP-C-DMIF1 (4 kDa) wird nicht erkannt, das 10 kDa-Fragment und das 37 kDa-Fragment wird dagegen mit allen Ak gegen DMIF1 und GFP und letztere zusätzlich mit anti-GFP-Ak erkannt. Diese Ergebnisse stimmen mit den experimentellen Daten überein.

4.2 Analyse des Expressionslevels von GFP-N-DMIF1 und GFP-C-DMIF1

Die Analyse der DMIF1-Fragmente (Abbildung 4-2) durch SDS-PAGE ergab erheblich geringere Mengen des Proteins GFP-N-DMIF1 als GFP-C-DMIF1, obwohl gleiche Zellzahlen aufgetragen wurden. Der endogene Anteil war in beiden Stämmen annähernd gleich stark vorhanden, was eine wesentliche Beteiligung der Zellgröße an den unterschiedlichen Mengen an rekombinanatem Protein ausschließt. Das Phänomen ist möglicherweise darauf zurückzuführen, daß die zur Transformation verwendeten GFP-Plasmide nicht nur an zufälligen, sondern auch mit zufälligen Kopienzahlen ins Genom integrierten und so zu unterschiedlich starker Expression von GFP-N-DMIF1 bzw. GFP-C-DMIF1 führten. Um zu entscheiden, ob in einer Population das rekombinante Protein entweder von allen Zellen in geringer Menge oder aber von einem Teil der Zellen stark exprimiert wird, sind Westernblotdaten nicht geeignet (Abbildung 4-2B). Dafür wurde über die GFP-Emission im Fluoreszenzmiroskop der Anteil der Zellen in einer Population ermittelt, der das rekombinante Protein enthält und die relative Menge grob abgeschätzt. Fixierte Präparate von je drei unabhängigen **GFP-N-DMIF1-** und **GFP-C-DMIF1**-Klonen wurden ausgezählt und je nach ihrem Fluoreszenzverhalten den 3 groben Kategorien 'stark fluoreszierend', 'schwach fluoreszierend', 'nicht fluoreszierend' zugeordnet (Abbildung 4-4, Tabelle 3).
Während alle *GFP-C-DMIF1*-Zellen fluoreszierten, war das nur bei etwa 70% der *GFP-N-DMIF1*-Zellen der Fall. Bei diesen „Positiven“ war die Fluoreszenz bei 2/3 aller Exemplare sehr schwach (vgl. Abbildung 4-4F).

Tabelle 3 Semiquantifizierung der Expression des rekombinanten Proteins – Analyse anhand der GFP-Fluoreszenz

<table>
<thead>
<tr>
<th>Zellstamm</th>
<th>Klone</th>
<th>GFP-Fluoreszenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>stark</td>
<td>schwach</td>
</tr>
<tr>
<td>GFP-C-DMIF1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-5</td>
<td>83 %</td>
<td>17 %</td>
</tr>
<tr>
<td>C1B7</td>
<td>82 %</td>
<td>18 %</td>
</tr>
<tr>
<td>C4-1</td>
<td>92 %</td>
<td>8 %</td>
</tr>
<tr>
<td>Mittel GFP-C-DMIF1</td>
<td>86 %</td>
<td>14 %</td>
</tr>
<tr>
<td>GFP-N-DMIF1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-13</td>
<td>9 %</td>
<td>50 %</td>
</tr>
<tr>
<td>N2-5</td>
<td>6 %</td>
<td>70 %</td>
</tr>
<tr>
<td>N5-3</td>
<td>4 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Mittel GFP-N-DMIF1</td>
<td>6 %</td>
<td>65 %</td>
</tr>
</tbody>
</table>

Der Anteil schwach, stark oder nicht fluoreszierender Zellen an der Gesamtzellzahl wurde in jeweils 3 unabhängigen Klonen anhand von fixierten Präparaten bestimmt. Dabei wurde die Fluoreszenz ohne Berücksichtigung der Lokalisation abgeschätzt.
5 Funktionsanalyse von DMIF1 in *Dictyostelium*

5.1 Inaktivierung von *dmif1* durch homologe Rekombination

5.1.1 Mit „gene replacement“ wurde keine DMIF1-Minus-Mutante gefunden

Der erste Transformationsversuch von Dictyostelium-Zellen mit dem vollständigen pSP72-DMIF1-Bsr-Vektor erzeugte viele resistente Klone, die gegen DMIF1 gerichteten mAk reagierten jedoch weiterhin mit Homogenaten aus diesen Zellen (Daten nicht gezeigt). Die Integration des Plasmids an einer beliebigen Stelle im Genom kann die Resistenz erklären, Abbildung 5-1 Konstruktion des Replacement Vektors. Die dmif1-DNA (Exons I und II) inklusive des Introns und flankierender Sequenzen (FS) wurde in einem Stück durch PCR an genomischer DNA mit den Primern p181-fw (ClaI) (48 bp vor ATG) bzw. p208-fw (ClaI) (21 bp vor ATG) und p567-rev (XhoI) (21 bp nach TAA-Stop) amplifiziert und über die eingebrachten Schnittstellen in den Klonierungsvektor pSP72 (A) integriert. Aus dem pBsr-Vektor (B) wurde die Bsr-Kassette mit EcoRI und HindIII isoliert und über die internen EcoRI-HindIII-Stellen in dmif1 kloniert (C). Dadurch wurden 19 bp aus der dmif1-Sequenz entfernt, was zu einer Verschiebung des Leserasters führt. Zur Transformation wurden sowohl der komplette zirkuläre als auch der linearisierte Vektor sowie das durch den partiellen Ver- dau des linearen Vektors isolierte Insert (D) verwendet.

Der erste Transformationsversuch von Dictyostelium-Zellen mit dem vollständigen pSP72-DMIF1-Bsr-Vektor erzeugte viele resistente Klone, die gegen DMIF1 gerichteten mAk reagierten jedoch weiterhin mit Homogenaten aus diesen Zellen (Daten nicht gezeigt). Die Integration des Plasmids an einer beliebigen Stelle im Genom kann die Resistenz erklären,

Eine weitere Erklärung, warum keine DMIF1-Null-Mutante entstanden ist, wäre das Vorliegen eines zweiten, homologen Gens. Dieser Frage wurde im folgenden Kapitel nach gegangen.
5.1.2 *dmif1* ist kein single copy Gen

*Abbildung 5-2 Organisation des Gens *dmif1* im Genom von *D. discoideum*. Lage der Restriktionsstellen im Gen. Regionen, die von der c-DNA-Sonde erkannt werden, sind mit "cDNA (F10)" über Pfeilen markiert, der genomische DNA- Bereich (gDNA *dmif1*) umfaßt zusätzlich die Intronregion.*

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Anzahl der Banden</th>
<th>Größe der DNA- Fragmente in kb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theorie</td>
<td>Experiment</td>
</tr>
<tr>
<td>EcoRI</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>HindIII</td>
<td>2</td>
<td>(5)(8)</td>
</tr>
<tr>
<td>Dral</td>
<td>5</td>
<td>2*</td>
</tr>
<tr>
<td>VspI</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HaeIII</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BclI</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Clai</td>
<td>1</td>
<td>2-(3)</td>
</tr>
<tr>
<td>BamHI</td>
<td>1</td>
<td>2-(3)</td>
</tr>
<tr>
<td>Tacl</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PstI</td>
<td>1</td>
<td>1-(2)</td>
</tr>
<tr>
<td>Kpnl</td>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>EcoRV</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Banl</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>AccI</td>
<td>1</td>
<td>1-(2)</td>
</tr>
<tr>
<td>HincIII</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hhal</td>
<td>1</td>
<td>(2)</td>
</tr>
<tr>
<td>Sspl</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle 4 Fragmentmuster im Southernblot. Reihe (A) Verwendete Restriktionsenzyme. (B) Theoretische Fragmentzahl, die sich bei Annahme eines einzelnen Gens ergibt. (C) Experimentelle Daten. (D) Größe der experimentellen Fragmente. Fragmente kleiner als 600 bp wurden im Gel nicht erfaßt. Ziffern in Klammern zeigen schwache Banden an, die anderen sind eindeutig. Drei der durch Dral-Verdau erwarteten fünf Fragmente konnten nicht detektiert werden, vermutlich aufgrund des zu geringen Überlapps mit der Sonde bzw. wegen zu kleiner Fragmentgröße.
5.2 Zellbiologische Charakterisierung der Transformanten

Transformanten, die zusätzlich zum endogenen Protein DMIF1 auch das Fusionsprodukt aus DMIF1 und GFP exprimieren, sogenannte Überexprimierer, wurden hinsichtlich ihres Wachstumsverhaltens, der Makropinozytose und der Kernzahl untersucht. Zellen von AX2, GFP-N-DMIF1 und GFP-C-DMIF1 wurden zunächst in axenischer Schüttelkultur bis zu einer Dichte von ungefähr 5×10^5 Zellen/ml kultiviert und mit AX-Medium auf eine Arbeitsverdünnung von 2×10^4 Zellen/ml eingestellt.

5.2.1 Wachstumsverhalten unter adhärenen Bedingungen

Für die Bestimmung des Wachstumsverhaltens auf Agarplatten mit Bakterien, also unter adhärenen Bedingungen, wurden NA-Agar-Petrischalen mit *E.coli* B/2 bzw. SM- Agar-Petrischalen mit *K. aerogenes* ausgestrichen und nach Pelletierung der Dictyostelium-Zellsuspension und Resuspension mit je 10^4 Zellen in $10\mu l$ durch Punktinokulation beimpft. Die Platten wurden ca. 5 Tage bei 22°C kultiviert. Als Maß für die Wachstumsgeschwindigkeit wurde der Kolonie-Durchmesser bestimmt (Daten von *E.coli*- Platten: Abbildung 5-4).

Alle Stämme zeigten übereinstimmendes Wachstumsverhalten, d.h. sie wuchsen mit vergleichbaren Raten und erreichten den Petrischalenrand zu ähnlichen Zeitpunkten. Außerdem konnten alle Stadien der Entwicklung beobachtet werden. Dies ist auf Agarplatten simultan möglich, da die Bakterien am Kolonierand verbraucht werden und der dadurch verursachte Hungerzustand ein Entwicklungsprogramm induziert (Stadien der Entwicklung siehe Kapitel 1.3). Morphologische Unterschiede der Stämme untereinander wurden in keinem dieser Stadien beobachtet (Bilder nicht gezeigt).

5.2.2 Wachstum in Suspension

Die oben aufgeführten Stämme und zusätzlich als zweiter Kontrollstamm GFP-AX2, ein GFP exprimierender Stamm im genetischen Hintergrund von AX2, wurden in axenischer Schüttelkultur über etwa 7 Tage bis zur stationären Phase gezüchtet und die Zelldichten über den gesamten Zeitraum bestimmt (Abbildung 5-5).

Abbildung 5-5 Wachstum in axenischer Suspension. Von den beiden DMIF1-Transformanten wurden jeweils 3 unabhängige Klone (GFP-C-DMIF1: C1-5, C1B7, C4-1; GFP-N-DMIF1: N1-13, N2-5, N5-3) in Einfachbestimmung zur Ermittlung der Zelldichten herangezogen, die AX2-Kontrolle war eine Doppel- und die GFP-AX2-Kontrolle eine Einfachbestimmung. Die Mittelwerte der Daten sind in Form der Symbole, die Standardfehler als Balken dargestellt.

Im Gegensatz zu den Zellen, die auf einer festen Unterlage kultiviert werden (Kapitel 5.2.1), zeigen in Schüttelkultur vermehrte Zellen Unterschiede im Wachstumsverhalten: GFP-C-DMIF1-Zellen haben eine etwa um 60 % verlängerte Verdopplungszeit, während die
anderen untersuchten Stämme in diesem Punkt dem Wildtyp ähnlich sind. Diese quantitative Aussage ist durch Ermittlung der Generationszeiten t_g aus der exponentiellen Wachstums-phase möglich (Tabelle 5).

<table>
<thead>
<tr>
<th>Stamm</th>
<th>t_x [h]</th>
<th>t_y [h]</th>
<th>∆t [h]</th>
<th>Mittel n_x</th>
<th>Mittel n_y</th>
<th>Generationszeit t_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX2</td>
<td>19</td>
<td>66</td>
<td>47</td>
<td>$1.7 \cdot 10^5$/ml</td>
<td>$5.1 \cdot 10^6$/ml</td>
<td>9.6 h</td>
</tr>
<tr>
<td>GFP-AX2</td>
<td></td>
<td></td>
<td></td>
<td>9 $\cdot 10^4$/ml</td>
<td>3.6 $\cdot 10^5$/ml</td>
<td>8.8 h</td>
</tr>
<tr>
<td>GFP-N-DMIF1</td>
<td></td>
<td></td>
<td></td>
<td>1 $\cdot 10^5$/ml</td>
<td>2.1 $\cdot 10^5$/ml</td>
<td>10.7 h</td>
</tr>
<tr>
<td>GFP-C-DMIF1</td>
<td>19 66 47</td>
<td></td>
<td></td>
<td>$7.1 \cdot 10^4$/ml</td>
<td>$5.9 \cdot 10^5$/ml</td>
<td>15.3 h</td>
</tr>
</tbody>
</table>

Tabelle 5 Bestimmung der Generationszeit aus der exponentiellen Wachstumsphase. n_x, n_y Zelldichte bei t_x, t_y; ∆$t = t_y - t_x$.

5.2.3 Bestimmung der Pinozytoserate

Bei der Messung der Makropinozytoserate wird die Internalisierung des Flüssigphasenmarkers TRITC-Dextran in die Zelle als Funktion der Zeit mit Hilfe eines Spektrofluorimeters bestimmt (Hacker et al., 1997). In Abhängigkeit von der aufgenommenen Menge an TRITC-Dextran verändert sich die intrazelluläre Fluoreszenzintensität und ergibt ein quantifizierbares Maß für die Pinozytose-Aktivität. Die Pinozytoserate wurde an GFP-N-DMIF1- und
GFP-C-DMIF1-Zellen im Vergleich zu AX2 und GFP-AX2 in einem Einzelassay ermittelt.

Normiert auf die Zellzahl zeigen **GFP-N-DMIF1-Zellen** eine leicht erhöhte Pinozytoserate, **GFP-C-DMIF1-Zellen** und **AX2-Zellen** stimmen dagegen überein (Abbildung 5-6 links). Die Bestimmung der Gesamtproteinmenge einer konstanten Zellzahl ermöglicht die Normierung der Daten auf den Proteingehalt (Tabelle 6). Dadurch werden zellgrößenbedingte Unterschiede beseitigt. Mit den Korrekturfaktoren wurden die Fluoreszenz-Signale neu berechnet und daraus die Pinozytoseraten ermittelt mit folgendem Ergebnis (Abbildung 5-6 rechts).

Tabelle 6 Bestimmung des Gesamtproteingehaltes

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Gesamtprotein-Gehalt [µg]</th>
<th>Proteingehalt/Zelle [µg]</th>
<th>Proteingehalt/Zelle Faktor zu AX2</th>
<th>Korrektur-Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX2</td>
<td>633</td>
<td>1,4·10^{-4}</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GFP-C-DMIF1</td>
<td>683</td>
<td>1,5·10^{-4}</td>
<td>1,07</td>
<td>0,93</td>
</tr>
<tr>
<td>GFP-N-DMIF1</td>
<td>1015</td>
<td>2,3·10^{-4}</td>
<td>1,64</td>
<td>0,61</td>
</tr>
<tr>
<td>GFP-AX2</td>
<td>947</td>
<td>2,1·10^{-4}</td>
<td>1,5</td>
<td>0,67</td>
</tr>
</tbody>
</table>

5.2.4 Kernzahl

Die unterschiedlichen Größen von GFP-C-DMIF1- und GFP-N-DMIF1-Zellen könnten aus einer Veränderung im Zellteilungsverhalten herrühren. Die Anzahl der Kerne gibt darüber erste Anhaltspunkte (Abbildung 5-7). Zur Beurteilung wurden je drei unabhängige Klonen der GFP-N-DMIF1- und GFP-C-DMIF1-exprimierenden Stämme (C1-5, C1B7, C4-1; N1-
13, N2-5, N5-3) im Vergleich zu AX2 und GFP-AX2 ausgezählt. Die drei Klone jeder Gruppe stimmten weitgehend überein und wurden deshalb zusammengefaßt.

Abbildung 5-7. Histogramm zur Anzahl der Kerne pro Zelle. GFP-Transformanten GFP-C-DMIF1 und GFP-N-DMIF1 sowie GFP-AX2 im Vergleich zum Wildtyp AX2.

Wildtypzellen haben zumeist 1 bis 2 Kerne pro Zelle (74% : 19%), 3 und mehr Kerne (7%) sind aber keineswegs ungewöhnlich. Für Zellen des GFP-N-DMIF1-Stamms wurde eine vergleichbare Verteilung festgestellt (73% : 23% : 4%). GFP-C-DMIF1-Zellen sind zu 92% einkernig, die restlichen 8% sind zweikernig. Das spricht eher für eine effizientere Cytokinese nach der Kernteilung, im Gegensatz zu ihrer in Kapitel 5.2.2 vermuteten Beeinträchtigung, und erklärt auch die geringeren Zellabmessungen.
DISKUSSION

Mit DMIF1 wird ein in *Dictyostelium discoideum* bisher unbekanntes Protein vorgestellt, das mit einem in mehreren Organismen beschriebenen mitochondrialen F1F0-ATPase-Inhibitor verwandt ist. Die Inhibitoren binden an die F1-Untereinheit der F1F0-ATPase und hemmen die ATP-Hydrolyse-Aktivität des Enzyms.

Einige der charakteristischen Eigenschaften von DMIF1 sind für ATPase-Inhibitoren typisch:

- DMIF1 wird als mitochondriales Protein in einer enzymatisch inaktiven Vorläuferversion (Präprotein), bestehend aus dem physiologisch relevanten Protein und einer Präsequenz synthetisiert. Die Präsequenz enthält Signalinformationen zur Direktion des Proteins in die Mitochondrien (Targeting), das reife Protein eine die ATPase bindende und inhibierende Region. Durch nachfolgende Abspaltung der Präsequenz (Prozessierung) wird das enzymatisch aktive Protein gebildet.
- DMIF1 ist über die ATPase mit der inneren Mitochondrienmembran assoziiert aber nicht selbst membrangebunden.

Andere Eigenschaften von DMIF1 finden sich nur bei einigen oder keinem der bekannten F1F0-ATPase-Inhibitoren:

- Das *dmif1*-Gen ist kein singuläres Gen im *Dictyostelium*-Genom. Diese Eigenschaft teilt DMIF1 mit pflanzlichen aber nicht mit Säugetier-Inhibitoren.
- DMIF1 lokalisiert unter bestimmten Voraussetzungen am Centrosom. Diese Eigenschaft wird bisher erstmalig bei einem ATPase-Inhibitor beobachtet.

6 Sequenz, Motive und Struktur des DMIF1-Proteins

6.1 Sequenzähnlichkeit und Funktionshomologie

Funktionsverwandtschaft von Mitgliedern einer Proteinfamilie basieren auf der Konservierung ihrer Aminosäuresequenzen oder gleicher Molekülgemetrie. Oft liegen gleiche Molekülgemetrien in einer konservierten Aminosäureabfolge begründet, was letztlich durch einen gemeinsamen phylogenetischen Ursprung zu erklären ist. Beispiele für hoch konservierte Proteine sind Aktin und aktinbindende Proteine, die in sehr unterschiedlichen taxono-

Die Aminosäuresequenz von DMIF1 enthält im Vergleich mit bisher bekannten Inhibitoren 22% bis 42% identische bzw. 34% bis 56% ähnliche und substituierbare Reste (Kapitel 2.3.1). Dies allein ist jedoch nicht ausreichend für die Aussage, daß DMIF1 der Familie der mitochondrialen ATPase-Inhibitoren zuzuordnen ist. Die Homologie zu STF1, einem Inhibitor mit einer zusätzlichen stabilisierenden Funktion aus Hefe (Matsubara et al., 1983) und gewisse Ähnlichkeiten mit weiteren, recht heterogenen Proteinen unterstreichen die Problematik. Substituierungsversuche wie oben beschrieben wurden hier nicht durchgeführt. Die Hypothese, daß DMIF1 ein mitochondrialer Inhibitor ist, soll im Folgenden anhand des Molekülaufbaus und der Lokalisation des Proteins belegt werden. Da die besten Übereinstimmungen mit den Inhibitoren aus Hefe und Mensch erreicht werden, zu letzterem aber deutlich weniger Informationen erhältlich sind, werden sich viele der folgenden Ausführungen auf den Hefe-Inhibitor beziehen.
6.2 Proteindomänen und ihre Funktionen

Das DMIF1-Präprotein läßt sich funktionell in seine N-terminale Präsequenz, die soge-
nannte Targetingdomäne, und den C-terminal anschließenden Teil des reifen Proteins unter-
teilen (Abbildung 6-1B). Damit entspricht es dem generellen Bauplan der meisten mitochon-
drialen Proteine. Jeder dieser beiden Proteinabschnitte enthält typische, die Funktion des
Abschnitts bestimmende Strukturen.

Experimentelle Daten zur Gesamtstruktur von DMIF1 sind bisher nicht verfügbar, an-
hand der Aminosäureabfolge können aber unter Verwendung verschiedener Kalkulations-
und Analyseprogramme (MITOPROT: Claros und Vincens, 1996; PSORT: Nakai und Kane-
hisa, 1992; COILS: Lupas et al., 1991; GCG: Devereux et al., 1984) gewisse Annahmen ge-
troffen werden. Demnach besteht DMIF1 aus einer α-Helix mit einem amphiphilen Bereich
am N-Terminus (Abbildung 6-1A). Die dominierende Struktur am C-Terminus ist eine Coiled
Coil - Helix, die aus 4 „Heptad-Repeats“ besteht (COILS, Lupas et al., 1991). Es wird eine
Doppel-Helix, aber kein Helix-Trimer vorhergesagt. (PAIRCOIL: Berger et al., 1995). In
IF1Rind und IF1Ratte wurden ebenso Coiled Coil - Domänen am C-Terminus (H48 bis D84) ge-
funden (Raaij et al., 1996; Lebowitz und Pedersen, 1996). Die genannten Strukturen bedin-
gen die funktionellen Bereiche des Proteins, wie im Folgenden erläutert wird.

Abbildung 6-1 Modell der DMIF1-Struktur. A Kalkulation der Sekundärstruktur mittels
GCG-Analyse (Plotstructure nach Chou-Fasman). Ausgewählte Aminosäure-Positionen sind
gekennzeichnet (M1, D50, L100). B Einteilung der Proteinsequenz in funktionelle Bereiche.
6.2.1 Die Targetingdomäne und Prozessierung des Präproteins

<table>
<thead>
<tr>
<th>Organismus bzw. Gruppe</th>
<th>mTP aus Inhibitor</th>
<th>Sequenz-Länge [aa]</th>
<th>Anteil bestimmter Aminosäuren [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bereich</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>D. discoideum</td>
<td>DMIF1</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>STF1</td>
<td>24</td>
<td>23,5</td>
</tr>
<tr>
<td></td>
<td>allgemein</td>
<td>16 – 68</td>
<td>33 [3]</td>
</tr>
<tr>
<td>Säuger</td>
<td>IF1Rind</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>IF1Ratte</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>IF1Mensch</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>IF1Reis</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>IF2Reis</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IF1Arab</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

Das Programm MITOPROT bewertet die Aminosäure-Zusammensetzung und das Hydrophobizitätsprofil eines Peptides bezüglich seiner Eignung als mitochondrial Targetingsequenz. Anhand dieser Analyse wird der N-terminale Abschnitt von DMIF1 als mitochondrial Targeting-Peptid angesehen (mTp, Tabelle 7). Das mTp-DMIF1 hat eine ähnliche Sequenzlänge und Zusammensetzung wie Präsequenzen von Säuger- oder Hefe-Inhibitoren. Auffällig ist der sonst nur für pflanzliche Präsequenzen typische hohe Gehalt an..
Serin (Sjöling und Glaser, 1998). Säugetiere bevorzugen eher Threonin- als Serin-Reste, und in Hefezellen ist beides in geringerem Umfang vorhanden. Im Gegensatz zur Präsequenz ist das reife Protein DMIF1 den Inhibitoren aus Hefe und Mensch am ähnlichsten, wie im Ergebnisteil gezeigt wurde (Kapitel 2.3.1).

In sämtlichen Säuger-Inhibitoren fehlen diese Prolinreste, und das Hefe-Homolog INH1 besitzt nur Pro-Reste außerhalb der Prozessierungsregion. Die MPP liegt in Säugern und Hefe frei in der Matrix vor, so daß eine Flexibilität des Präproteins wie in höheren Pflanzen nicht erforderlich erscheint. Doch sind bei Inhibitoren aus Sägern Glycinreste verbrei-

Abbildung 6-2 Amphiphilität und Helices in Targeting-Sequenzen von mitochondrialen ATPase-Präproteinen. Während alle mitochondrialen Targeting-Peptide (mTp) deutlich amphiphil sind (Peptid-Sequenzen unten), wird nur von der Alkoholdehydrogenase (ALDH) eine annähernd klassische amphiphile Helix gebildet (Grafiken oben). Basische Reste sind mit $+$ gekennzeichnet. Hydrophobe Reste sind in der Helix-Abbildung grau unterlegt, in den Peptid-Sequenzen mit $*$ markiert.

<table>
<thead>
<tr>
<th>Position</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>+1</th>
<th>+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R - 2 - Motiv</td>
<td></td>
<td>V/A/S</td>
<td>R</td>
<td>X</td>
<td>↓</td>
<td>X</td>
<td>S/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R - 3 - Motiv</td>
<td></td>
<td>V/A/S</td>
<td>R</td>
<td>X</td>
<td>F/Y/L</td>
<td>↓</td>
<td>S/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R - 10 - Motiv</td>
<td>R</td>
<td>X</td>
<td>F/L/I</td>
<td>X</td>
<td>T/S/G</td>
<td>X</td>
<td>V/A/S</td>
<td>R</td>
<td>X</td>
<td>F/Y/L</td>
<td>S/A</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 6-3 Konservierte Motive zur MPP-Prozessierung. Die Spaltstelle ist mit einem Pfeil gekennzeichnet. R steht für Arginin, X bezeichnet beliebige Reste, die übrigen Reste entsprechen ebenfalls der Aminosäure-Nomenklatur.

Die Motive sind eine wichtige aber offenbar nicht ausreichende Voraussetzung für die Proteolyse, da sie auch in nicht prozessierten mitochondrialen Proteinen zu finden sind. Hier könnte der Einfluß der oben erwähnten Aminösäuren oder Tripeptide (Prolin, Glycin, RGP-Linker) auf die Struktur entscheidend sein.

Sowohl der bovine als auch der Hefe-Inhibitor werden gemäß dieser statistischen Analyse nach einem R-3-Motiv prozessiert, wobei das Hefe-mTp ein perfektes, das Rinder-mTp
ein modifiziertes Motiv aufweist. Auch für STF1 ist ein R-3-Motiv beschrieben (Branda und Isaya, 1995). Für DMIF1 wurden alle in Frage kommenden R-Positionen auf Passung zu den Motiven R-2, R-3 und R-10 analysiert (Abbildung 6-4).

<table>
<thead>
<tr>
<th>Position</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>+1</th>
<th>+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus</td>
<td>V/A/S</td>
<td>R</td>
<td>X</td>
<td>↓</td>
<td>X</td>
<td>[S/A]</td>
</tr>
<tr>
<td>DMIF1 R13</td>
<td>L</td>
<td>T</td>
<td>R</td>
<td>A</td>
<td>↓</td>
<td>S</td>
</tr>
<tr>
<td>DMIF1 R22</td>
<td>P</td>
<td>K</td>
<td>R</td>
<td>S</td>
<td>↓</td>
<td>I</td>
</tr>
<tr>
<td>DMIF1 R27</td>
<td>A</td>
<td>F</td>
<td>R</td>
<td>G</td>
<td>↓</td>
<td>D</td>
</tr>
<tr>
<td>DMIF1 R34</td>
<td>K</td>
<td>E</td>
<td>R</td>
<td>E</td>
<td>↓</td>
<td>E</td>
</tr>
</tbody>
</table>

Die Größe der resultierenden Fragmente wurde experimentell mit monoklonalen Anti-körpern gegen DMIF1 im Westernblot überprüft (Kapitel 4.1). Endogenes DMIF1-Protein war dabei in *Dictyostelium*-Zellen nur als prozessiertes Molekül von 10 kDa detektierbar. Das gilt auch für das Fusionsprodukt GFP-C-DMIF1 – hier wurde ein 37 kDa-Fragment gefunden, das durch MPP-Spaltung aus dem Fusions-Präprotein von 41 kDa hervorgeht. Die Größen der experimentell gefundenen Fragmente entsprechen den berechneten Größen. Die in beiden Fällen abgespaltene Targeting-Domäne konnte mit den vorhandenen Antikörpern nicht nachgewiesen werden. Neben den in Kapitel 3.2.2 und 4.1 diskutierten Ursachen spielen vermutlich folgende Eigenschaften von Targeting-Sequenzen eine weitere Rolle:

In den Mitochondrien haben die abgespaltenen basischen Targeting-Peptide eine starke Neigung, in die negativ geladene Membran zu integrieren, was bei der großen Zahl anfallender Moleküle zu einer massiven Überdehnung und schließlich zum Zerreißer der Membran führen würde. Nach der Abspaltung vom Präprotein müssen diese Sequenzen daher sehr schnell degradiert werden, um die Mitochondrien vor mechanischer Zerstörung zu schützen (Ståhl et al., 2000). Mitochondriale Präproteine im Zytosol müssen sehr schnell in die Mitochondrien transportiert werden, um eine Degradierung der dafür anfälligen Präsequenz zu verhindern (Ni et al., 1999). Präsequenzen sind daher weder in den Mitochondrien noch zytosolisch nachweisbar.

Das rekombinante Protein GST-DMIF1 ist in *E. coli* auch gegen eine degradierende Proteolyse stabil. Im Gegensatz dazu wurde eine Proteolyse bei der Expression des C-terminal um 2/3 verkürzten DMIF1-Proteins in Bakterien beobachtet. Für Hefe ist bekannt, daß der C-Terminus des Inhibitors für dessen Stabilität in Mitochondrien unentbehrlich ist, da er durch seinen stabilisierenden Einfluß auf die Konformation des Proteins proteolytische Angriffe von mitochondrialen Proteasen verhindert (Ichikawa et al., 1998). C-terminal verkürzte Inhibitorproteine aus Rind konnten in *E. coli* in messbaren Mengen nur exprimiert werden, wenn am C-Terminus nicht mehr als 28 Reste fehlten, alle kürzeren Fragmente konnten nicht nachgewiesen werden, was auf einen proteolytischen Abbau zurückgeführt wurde (Raaij et al., 1996). Proteolytische Degradation findet bei der Expression des rekombinanten Proteins GFP-N-DMIF1 in *Dictyostelium* statt, wurde aber auch bei GFP-C-DMIF1 gefunden (Kapitel 4.1). Beim GFP-C-DMIF1-Abbau entstehen zwei Proteolyse-Intermediate von ca. 20 und 30 kDa. Aus den Daten ist nicht ableitbar, ob die proteolytische Degradation in den Mitochondrien oder im Zytoplasma erfolgt. Im Falle des GFP-N-DMIF1 muß von einem extramitochondrialen Abbau ausgegangen werden (siehe Kapitel 7.2), der durch die Neigung des Inhibitors, in wäßriger Lösung Aggregate zu bilden gefördert wird (Klein et al., 1982). Für Präsequenzen ist bekannt, daß sie aufgrund ihrer amphiphilen Natur mit ungefalteten Proteinen interagieren und somit deren Aggregation induzieren können (Endo et al., 1995). Das wird als Grund für die Instabilität von Präsequenzen angesehen, die posttranslational durch zytoplasmische Chaperone stabilisiert werden müssen. Das Lokalisationsverhalten von verschiedenen chimären Proteinen zeigt, daß mitochondrial Proteine noch während der Translation in die Mitochondrien dirigiert werden: (Ni et al., 1999). Die Tatsache, daß mitochondrial Präsequenzen sehr proteaseanfällig sind, erfordert Transportzeiten, die sich auf einer vergleichbaren Skala bewegen wie die Synthese des Proteins.

6.2.2 Das „reife“ Protein

DMIF1 ist überwiegend α-helical und in seiner Primärstruktur vergleichbar mit anderen F1F0-ATPase-Inhibitoren, die eine inhibitorisch active Domäne besitzen, mit der auch die Bindung an die ATPase erfolgt. Der Bereich der minimalen Inhibitor-Sequenz, die Gegenstand ausführlicher Untersuchungen am Protein IF1 des Rindes war, wurde von verschiedenen Autoren unterschiedlich weit gefaßt (Review Green und Grover, 2000; Abbildung 6-5).
Anhand N- und C-terminal verkürzter IF1-Fragmente wurde gezeigt, daß der Bereich zwischen den Aminosäuren A14 und K47 des prozessierten Proteins essentiell für seine inhibitorische Aktivität ist und die Aminosäuren S10 bis G13 sowie H48 bis H56 an der Stabilisierung des IF1-ATPase-Komplexes beteiligt sind. N-terminale Deletionen bis G13 haben die Fähigkeit zur Hemmung der ATPase nicht beeinträchtigt, doch erschien die Bindung von IF1 zum Enzym weniger stabil (Raaij et al., 1996). Im Gegensatz dazu fanden andere Autoren, daß die Deletion des N-Terminus bis D17 sogar zum Anstieg der Bindungsaffinität und zum Abfall der Inhibitoraktivität führt (Harris, 1997). Für extrem verkürzte Proteine wie das synthetische Peptid L42-K58 wurde ein vergleichbares Inhibierungsvermögen wie für das Wildtyp-Protein nachgewiesen (Papa et al., 1996; Zanotti et al., 2000).

Anhand N- und C-terminal verkürzter IF1-Fragmente wurde gezeigt, daß der Bereich zwischen den Aminosäuren A14 und K47 des prozessierten Proteins essentiell für seine inhibitorische Aktivität ist und die Aminosäuren S10 bis G13 sowie H48 bis H56 an der Stabilisierung des IF1-ATPase-Komplexes beteiligt sind. N-terminale Deletionen bis G13 haben die Fähigkeit zur Hemmung der ATPase nicht beeinträchtigt, doch erschien die Bindung von IF1 zum Enzym weniger stabil (Raaij et al., 1996). Im Gegensatz dazu fanden andere Autoren, daß die Deletion des N-Terminus bis D17 sogar zum Anstieg der Bindungsaffinität und zum Abfall der Inhibitoraktivität führt (Harris, 1997). Für extrem verkürzte Proteine wie das synthetische Peptid L42-K58 wurde ein vergleichbares Inhibierungsvermögen wie für das Wildtyp-Protein nachgewiesen (Papa et al., 1996; Zanotti et al., 2000).

In IF1 aus Ratte wurde der inhibitorische Bereich mit Hilfe einzelner Peptide aus der IF1-Sequenz untersucht und auf die Region F22-L45 eingegrenzt, die mit einem wesentli-

DMIF₁ ist in dem inhibitorischen Bereich des Hefe-Proteins mit 50% identischen Resten homolog zu INH₁, so daß hier die inhibitorische Domäne oder ein wichtiger Teil davon vermutet werden kann. Weiterhin ist für INH₁ bekannt, daß die C-terminale Region, die bei DMIF₁ eine Coiled Coil-Helix ausbildet, wichtig für die Stabilisierung des INH₁-F₁F₀-Komplexes und seiner Protektion gegen Degradation in vivo ist (Ichikawa et al., 1998). Dieser Bereich dient beim Rinder-Inhibitor seiner Dimerisierung (Cabezón et al., 2000a).

Anzumerken ist, daß für die Feststellung der minimalen Inhibitorsequenz in Rind und Ratte einige der untersuchten Moleküle als rekombinante Proteine in E.coli exprimiert, andere chemisch synthetisiert wurden. Deshalb ist damit zu rechnen, daß wichtige Sekundärstrukturen im einen oder anderen Falle nicht ausgebildet sind. Dies könnte eine Ursache für die unterschiedlichen Ergebnisse der Autoren sein.

Außerdem schien der unterschiedlich gewählte pH-Bereich im Assay von pH 6.7 bis pH 8.0 wesentlich zu sein, da er Einfluß auf das Bindungsverhalten des Inhibitors zum Enzym hat. Das Inhibitor-Molekül nimmt abhängig vom pH-Wert unterschiedliche Konformationen an: Die nativen Inhibitoren aus Rind, Büffel, Ratte und die rekombinanten Proteine IF₁_{Rind} und IF₁_{Ratte} sind bei einem pH-Wert von 8.0 α-helical. Bei Absenken auf pH 6.7 und darunter bleiben der rekombinante Inhibitor aus Ratte und das native Protein IF₁_{Rind} nahezu unverändert α-helical, während der native Büffel-Inhibitor diese Sekundärstruktur komplett verliert (Green und Grover, 2000). Die pH-Abhängigkeit der Konformationsänderung des Hefe-Inhibitors wurde mit Hilfe von NMR-Studien untersucht und die bei niedrigen pH-Werten auftretende Konformation als die aktive, also inhibierende Form nachgewiesen (Fujii et al., 1983). Interessanterweise hat das Protein im niedrigen pH-Bereich eine relativ ungeordnete Struktur, während mit dem Anstieg des pH-Werts die helicale Anordnung zunimmt und dabei die inhibierende Funktion verloren geht. Kürzlich wurde beobachtet, daß sich STF₁, dem auch inhibitorische Wirkungen zugeschrieben werden, entgegengesetzt zu INH₁ verhält, denn STF₁ befindet sich bei basischen pH-Werten (etwa pH 8) in seinem aktiven Zustand (Cabezón et al., 2002).

Lebowitz und Pedersen stellen ein Modell vor, in dem die Inhibitorregion aus 2 Helices besteht, von denen die N-terminale Helix eine inhibitorische, die C-terminale Helix (Coiled Coil-Region) regulatorische Funktion für die Interaktion der beiden Helices miteinander hat (Lebowitz und Pedersen, 1996). Das Zusammenspiel beider Helices ist stark vom pH-Wert
abhängig: Bei hohen Werten interagieren beide derart miteinander, daß die inhibitorische von der regulatorischen Domäne maskiert wird und keine Bindung an F1 erfolgen kann. Die Folge einer pH-Erniedrigung ist die Protonierung von Histidin-Resten, die zur Lockerung der Interaktion führt und letztlich die inhibitorische Region zur Bindung an F1 freigibt. Die Domäne erfährt dabei den partiellen Verlust ihrer helicalen Struktur (Abbildung 6-6). Histidine sind bei Säuger-Inhibitoren häufig, bei anderen Inhibitoren eher selten bis nicht vorhanden. Das Pendant in DMIF1, welches keinen Histidinrest besitzt, ist nicht bekannt.

Abbildung 6-6 Konformationsänderungen im Inhibitor durch pH Verschiebung. v.l.n.r.: 1. Die Inhibitor-Region enthält eine auf die F1F0-ATPase inhibierend wirkende (rot) und eine die Bindung regulierende Domäne (grün). 2. Bei pH 8.0 bildet das Molekül eine sich selbst maskierende Struktur, d.h. die inhibitorische Region ist unzugänglich. 3. Änderung des pH-Wertes auf 6.7 führt zur Auflösung der Bindung zwischen Inhibitor- und Regulatordomäne. Der Übersicht halber ist nur ein Helixpaar gezeigt. 4. Die partielle Auflösung der helicalen Struktur ermöglicht die Bindung der ATPase (blau) an die Inhibitordomäne.

Zusammenfassend ist zu sagen, daß die tatsächlich notwendige(n) Region(en) für die effektive Hemmung der F1F0-ATPase nach wie vor unsicher sind, weil der Einfluß der variablen experimentellen Bedingungen nicht vollständig abgeklärt ist. Legt man aber die weitgefaßte Inhibitor-Domäne von A14 bis K47 zugrunde (Abbildung 2-4, blauer Kasten), so sind in

7 Intrazelluläre Lokalisation

7.1 Mitochondriale Lokalisation

Der Nachweis von DMIF1 in Dictyostelium-Mitochondrien in vivo gelang mit GFP als Reporterprotein am C-Terminus von DMIF1 (GFP-C-DMIF1). Die Immunmarkierung des endogenen DMIF1 bestätigte die Lokalisation sowohl im Fluoreszenz- wie im TEM-Präparat. Dabei hatte die Expressionshöhe keinen Einfluß auf die Spezifität der Lokalisation. Damit wird die mitochondriale Targeting-Funktion der N-terminalen Domäne von DMIF1 untermauert.

Der Nachweis der Assoziation mit der inneren Mitochondrien-Membran im TEM-Präparat gestaltete sich schwieriger, da Dictyostelium-Mitochondrien sehr dicht gepackte Tubuli besitzen. Mit der Präparation von "inside-out" Vesikeln (Kapitel 3.3.2.1), die der Entzerrung der Strukturen diente, wurden die Vorteile von zwei Präparationstechniken vereinigt: die Möglichkeit der Immunmarkierung wie im Kryopräparat unter Beibehaltung morphologischer Feinheiten wie im EPON-Präparat.

7.2 Centrosomales Targeting

Das Protein GFP-N-DMIF1 ist an den Centrosomen, im Zytoplasma und in kleinerem Umfang in Vesikeln nachweisbar, jedoch nicht in den Mitochondrien. Die centrosomale Lokalisation wurde anhand der Co-Lokalisation der GFP-Fluoreszenz mit dem MTOC gezeigt und wurde weder bei dem endogenen DMIF1 noch bei GFP-C-DMIF1 beobachtet, welche erwartungsgemäß in die Mitochondrien transportiert werden. Daraus wird gefolgert, daß der Transfer des Inhibitors in die Mitochondrien nur bei ungestörter Umgebung seiner Targeting-Domäne möglich ist (Kapitel 3.1.2.2; 3.2.3.2; 4.1). Die Kopplung von GFP an den N-Terminus von DMIF1 hemmt diese Funktion komplett.

- CENTROSOMALE TARGETING SEQUENZEN. Auf der Suche nach potentiellen centrosomalen Targetingsequenzen konnten in DMIF1 einige Bereiche festgestellt werden, die mit Sequenzabschnitten centrosomaler Proteine wie z.B. CP190 und γ-Tubulin partiell überein-
stimmen. Diese Bereiche befinden sich im mittleren bis C-terminalen Bereich von DMIF1 und würden wahrscheinlich durch ein N-terminal gekoppeltes Reporterprotein wie GFP nicht beeinträchtigt. Die Sequenzhomologien sind jedoch nicht sehr ausgeprägt. Ihre Funktion als centrosomale Targetingsequenz wird daher nicht als wahrscheinlich angesehen.

- **Protein- Sekundärstruktur.** Coiled Coil- Bereiche in centrosomalen Proteinen werden für deren Lokalisation am Centrosom verantwortlich gemacht, indem sie damit Komplexe mit anderen centrosomalen Proteinen bilden, die Coiled Coil- Domänen tragen (Chen et al., 2003; Ohta et al, 2002). Da DMIF1 eine ausgeprägte Coiled Coil- Struktur aufweist, ist ein solcher Mechanismus prinzipiell vorstellbar, ohne daß DMIF1 die Funktion eines centrosomalen Proteins hat.

- **Target für centrosomale Kinasen.** Das Centrosom enthält eine Reihe von Kinasen, die den centrosomalen Umbau während des Zellzyklus kontrollieren (Mayor et al., 1999). Substrate dieser Kinasen sind centrosomale Proteine mit entsprechenden Phosphorylierungsstellen. Die DMIF1-Sequenz hat sowohl eine potentielle PKC-Bindestelle als auch eine potentielle Tyrosin-Phosphorylierungsstelle. Dennoch erscheint es wenig stichhaltig, daß DMIF1 an eine centrosomale Kinase bindet, insbesondere weil die aus der Sequenz abgeleiteten Phosphorylierungsstellen hypothetisch sind.

GFP-N-DMIF1 sammelt sich wahrscheinlich in Aggresomen an, worauf die spezifische Lokalisation in der centrosomalen Region hinweist. Warum das Protein immunologisch nicht in der Centrosomenregion nachgewiesen werden konnte, läßt sich aus einer speziellen Struktur des Aggresoms ableiten: In tierischen Zellen ist ein Aggresom nach Um-
verteilung intermediärer Filamente von einem Vimentin-Proteinkäfig umgeben, welcher dem Aggresom eine kompakte Struktur verleiht. Wenn auch in *Dictyostelium* keine Intermediärfilamente vorhanden sind, könnte eine ähnliche, aus anderen Proteinen gebildete Struktur existieren, die die Bindung von Antikörpern sterisch unterbindet.

8 **Inhibitor-Homologe in *Dictyostelium***

In den meisten Organismen und in allen untersuchten Säugern ist bisher nur jeweils ein ATPase-Inhibitor-Protein identifiziert worden. Bei den in der Ratte neben IF1 gefundenen Sequenzen handelt es sich lediglich um Pseudogene, also keine funktionellen Gene (Samuel et al., 1995). In Hefe sind dagegen mit INH1 und STF1 zwei Inhibitoren und mit STF2 und STF3 zusätzlich zwei regulierende Faktoren bekannt, wodurch das Hefe-System als das bisher komplexeste erscheint. In Reis (Nakazono et al., 2000) und *Arabidopsis thaliana* (Bevan et al., 2000; Nakamura et al., 2000, Genbank NCBI) sind mit IF1 und IF2 Isoformen in höheren pflanzlichen Zellen beschrieben.

Anhand der Inaktivierungsexperimente und Southern-Blot-Analysen wurde bereits postuliert, daß in *Dictyostelium* mindestens zwei verwandte Inhibitorproteine existieren (Kapitel 5.1). Die mittlerweile abgeschlossene Sequenzierung des *Dictyostelium*-Genoms (www.dictybase.org) ermöglicht es, die entsprechenden homologen Gene zu identifizieren. Zum einen läßt sich aus der Sequenzdatenbank ableiten, daß das vollständige Gen *dmif1* auf Chromosom 6 kodiert ist. Auf dem selben Chromosom an anderen Positionen finden sich zusätzlich kurze Sequenzen der regulatorischen Elemente des 5'UTR-Bereichs, der Targeting-Domäne und des Introns. Daneben liegen auf den Chromosomen 1, 2 und 3 Bereiche der inhibitorischen Region, auf den Chromosomen 2 und 5 Abschnitte der pH-sensitiven Domäne sowie der regulatorischen Elemente der 5'UTR-Region und auf dem Chromosom 3 Teile der 3'UTR-Region.

Außerdem ergab die Durchmusterung der Datenbank mit Hilfe der DMIF1-Aminosäuresequenz auf Chromosom 2 ein homologes Protein mit 99 Aminosäureresten, welches 32% identische Reste wie DMIF1 hat, und auch mit den beiden Inhibitoren aus Hefe verwandt ist (32% zu INH1 und 42% zu STF1 identisch). Der N-Terminus enthält die typischen Elemente einer mitochondrialen Targetingsequenz, also viele basische, einige hydrophobe und keine sauren Reste (Abbildung 8-1 A). Die Analyse des N-Terminus mit MITOPROT (Claros und Vincens, 1996) zeigt die Importierbarkeit in Mitochondrien an, das Programm PSORT/GAVEL (PSORT: Nakai und Kanehisa, 1992, GAVEL: Gavel und von Heijne, 1990) identifiziert eine Prozessierungsschnittstelle nach dem Aminosäurerest S34 gemäß einem R-2-Motiv. Der inhibitorische Bereich weist die gleichen konservierten Aminosäure-
muster auf wie in DMIF1 und anderen Inhibitoren (im Beispiel INH1 aus Hefe, Abbildung 8-1 B). Die Analyse der Proteinssequenz mit der Programmgruppe PROTScale (Hydrophobizitätsprofil nach Kyte & Dolittle, Alpha-Helix-Bereiche nach Chou & Fasman) ergab ähnliche strukturelle Eigenschaften wie sie in DMIF1 vorkommen. Das 11 kDa-Protein hat mit pI 11 einen ähnlichen theoretischen isoelektrischen Punkt wie DMIF1.

Das Gen besteht aus einem 162 bp langen Exon, gefolgt von einem Intron mit 357 bp und einem zweiten Exon 2 mit 155 bp. Damit weist auch die chromosomale Struktur des Gens eine große Ähnlichkeit mit der Struktur von dmif1 auf. Es wird daher vorgeschlagen, das homologe Gen als dmif2 zu benennen.

<table>
<thead>
<tr>
<th>A) Targeting-Domäne</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMIF1</td>
</tr>
<tr>
<td>DMIF2</td>
</tr>
<tr>
<td>STF1</td>
</tr>
<tr>
<td>INH1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B) Inhibitor-Domäne</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMIF1</td>
</tr>
<tr>
<td>DMIF2</td>
</tr>
<tr>
<td>STF1</td>
</tr>
<tr>
<td>INH1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C) Carboxy-Terminus</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMIF1</td>
</tr>
<tr>
<td>DMIF2</td>
</tr>
<tr>
<td>STF2</td>
</tr>
<tr>
<td>INH1</td>
</tr>
</tbody>
</table>

Abbildung 8-1 Sequenzvergleich von DMIF1 mit seinem Homolog DMIF2 sowie dem Hefe-Inhibitor INH1. (A) Die Targeting Domäne ist gekennzeichnet durch viele basische (Lysin und Arginin, blau), hydrophobe (Leucin und Isoleucin, rot) sowie Serin- und Threonin-Reste (schwarz, fett). (B) Inhibitor-Domäne: Konservierte Reste sind weiß auf schwarz dargestellt, homologe Austausche grau hinterlegt. (C) In der C-terminalen Region treten keine klaren Homologien zwischen allen drei Proteinen auf. Alignment mit LALIGN (adaptiert nach Huang und Miller, 1991).

Southernblot mit der dmif1-DNA-Sonde mehr Banden detektiert wurden, als für das ursprünglich angenommene single copy-Gen zu erwarten war.

9 Funktion des Inhibitors

9.1 Funktion unter Streßbedingungen und in pathologischen Prozessen

tor die Aufgabe, die Zelle bis zur Verbesserung der Situation in einem ATP-konservierenden Zustand zu halten.

In der Human-Pathologie spielen diese Punkte eine Rolle. Die meisten Erkenntnisse über die Bedeutung von IF1 in pathologischen Prozesse hat man aus der Untersuchung von myokardialen Ischämien gewonnen, bei denen zwischen Sauerstoffbedarf und Sauerstoffversorgung ein Ungleichgewicht besteht (Green und Grover, 2000, Rouslin et al., 1995a, b; Rouslin und Broge 1993, 1994, 1996a, b). Der Inhibitor bindet anscheinend bei erniedrigten pH-Werten, wie sie bei der Ischämie auftreten, stärker an die ATPase. Außerdem ist er stärker exprimiert (Gaballo et al., 2002). Beides bewahrt die Zelle offenbar unter ischämischen Bedingungen vor zu hohen ATP-Verlusten.

9.2 Physiologische Funktion des rekombinanten Inhibitors GFP-C-DMIF1

Inwiefern GFP-C-DMIF1, das ordnungsgemäß in die Mitochondrien geleitet und dort auch prozessiert wird, physiologisch aktiv wie DMIF1 ist, kann derzeit nicht beurteilt werden. Unter der Voraussetzung, daß dem F1F0-ATPase-Inhibitor die Regulation der ATPase-Funktion zukommt, kommen drei Modelle in Betracht.

(A). GFP-C-DMIF1 IST FUNKTIONELL NICHT VON DMIF1 UNTERScheidbar. Unter norma-
len Bedingungen sollte ein Inhibitor-Überangebot keinen Einfluß auf das Wachstumsverhal-

(B). GFP-C-DMIF1 BINDET AN DAS ENZYM, IST SELBST ABER NICHT INHIBITORISCH AKTIV. Wegen der räumlichen Nähe der inhibierenden Domäne zu GFP am C-Terminus ist auch diese Variante naheliegend. Damit werden freie Bindeplätze für ein endogenes Inhibitor-Molekül blockiert und die ATP-Hydrolyse würde ungehindert ablaufen, in der energetischen Auszehrung der Zelle gipfellnd.

MATERIAL UND METHODEN

10 Material

10.1 Biologisches Material

10.1.1 Bakterienstämme

- *Escherichia coli* JM83
 Vieira und Messing, 1982
- *Escherichia coli* JM105
 Yanisch-Perron et al., 1985
- *Escherichia coli* JM109
 Yanisch-Perron et al., 1985
- *Escherichia coli* RY1090^− (Y1090r^−)
 Young und Davis, 1983
- *Escherichia coli* TOPO10F^′OneShot™
 Invitrogen
- *Escherichia coli* B/r
- *Escherichia coli* B/2
- *Enterobacter (Klebsiella) aerogenes*
 Ushiba und Magasanik, 1952
 Newell et al., 1969
 Williams, 1978

10.1.2 *Dictyostelium discoideum*-Stämme

- AX2 (Klon 214)
 Raper, 1935
 Clarke und Kayman, 1987
 Watts und Ashworth, 1970
- GFP-N-DMIF1
 diese Arbeit
- GFP-C-DMIF1
 diese Arbeit
- GFP-MCS
 Dumontier et al., 2000*
- GFP-AX2
 M. Westphal, MPI für Biochemie

10.1.3 Myeloma-Zellinie (Maus)

- PAIßAg81
 Trembicki und Dietert, 1985
10.2 Vektoren, Genbanken, Oligonukleotide, DNA-Fragmente

10.2.1 Vektoren

Plasmide
- pCR®-TOPO-TA (Invitrogen)
- pCR®-TOPO-DMIF1 (diese Arbeit)
- pGEM-T (Promega)
- pIC20R, pIC20H (Marsh *et al.*, 1984)
- pDEXRH (Faix *et al.*, 1992)
- pDEXRH-GFP, pDEXRH-GFP-N-DMIF1, pDEXRH-GFP-C-DMIF1 (diese Arbeit)
- pDEXCH (Westphal *et al.*, 1997)
- pDEXCH-DMIF1-G418 (diese Arbeit)
- pBsr2 (Sutoh, 1993)
- pSP72 (Promega)
- pSP72-DMIF1-Bsr (diese Arbeit)
- pGEX5X1 (GST Gene Fusion System) (Pharmacia Biotech Inc.)
- pGEX-GST-DMIF1 (diese Arbeit)
- pGEX-GST-DMIF1Δ3 (diese Arbeit)

Bacterio-Phagen
- λgt11 (Young und Davis, 1983)

10.2.2 λgt11-cDNA-Expressionsgenbanken

hergestellt aus
- poly(A)+-RNA aus AX2 (t0) (Graham *et al.*, 1988)
 [bereitgestellt von Dr. A. Kaplan (St. Louis University School of Medicine, St. Louis)]
- poly(A)+-RNA aus AX3 (t4) (Clontech Laboratories Inc., Palo Alto CA)
 [bereitgestellt von Dr. P. Devreotes (J. Hopkins University School of Medicine, Baltimore, MD)]

10.2.3 Oligonukleotide

Sequenzier- und Klonierungsprimer
- SP6-promoter-primer: 5’ GAT TTA GGT GAC ACT ATA GAA CCA
- T7-promoter-primer: 5’ TAA TAC GAC TCA CTA TAG GGA GA
- M13fw: 5’ GTA AAA CGA CGG CCA G
- M13rev: 5’ CAG GAA ACA GCT ATG AC
- λfw (BamHI): 5’ GCT GGA TCC ATA TGG GGA TTG GTG GCG
Primer für Expressionskonstrukte der GFP-Fusionsproteine:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgfp-C1(NruI) START</td>
<td>5′ GCG TCG CGA AAA ATG TCC AGC AGT GTC AGC AAA C</td>
</tr>
<tr>
<td>pgfp-C2(NruI) STOP</td>
<td>5′ GCG TCG CGA TTT TTT TTT TTA AAT CGG CAA GTT C</td>
</tr>
<tr>
<td>pgfp-N1(ClaI) START</td>
<td>5′ GCG ATC GAT AAA ATG TCC AGC AGT GTC AGC</td>
</tr>
<tr>
<td>pgfp-N2(ClaI) STOP</td>
<td>5′ GCG ATC GAT TTT TTT TTT TAA ATC GTC AGC AAGTTC</td>
</tr>
</tbody>
</table>

Primer für Expressionskonstrukte der GST-Fusionsproteine:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgst-fw(BamHI) START</td>
<td>5′ GCG GGA TCC AAA AAA ATG TCC AGC GCA GTG TCA GC</td>
</tr>
<tr>
<td>pgst-rev(XhoI) STOP</td>
<td>5′ GCG CTC GAG TTA TTT TTT TAA ATC GGC AAG TTC</td>
</tr>
</tbody>
</table>
Primer zur Konstruktion des Knockouts:

\[
p_{181}\text{-fw (ClaI)} \quad 5' \text{GCG CAT CGA TTA CAA ACC AAA ATA ATT AAT TAA TTA ATT AAT TCA AC}
\]

\[
p_{208}\text{-fw (ClaI)} \quad 5' \text{GCG CAT CGA TTT AAT TCA ACA AAT AAA AAT AAT GTC C}
\]

\[
p_{567}\text{-rev (XhoI)} \quad 5' \text{GCG CCT CGA GTA AAA ACA CAG GGA TTT TGA TTT ATT TTT TTA AAT CGG C}
\]

\[
p_{71}\text{-del-rev (ClaI)} \quad 5' \text{GCG CAT CGA TTT AAT TAT CAA AAA AAA AAA AAA AAA A}
\]

\[
p_{208}\text{-fw (Bgl II)} \quad 5' \text{GCG CAG ATC TTT AAT TCA ACA AAT AAA AAT AAT GTC C}
\]

\[
p_{181}\text{-fw (Bgl II)} \quad 5' \text{GCG CAG ATC TTA CAA ACC AAA ATA ATT AAT TAA TTA ATT AAT TCA AC}
\]

10.2.4 DNA-Fragmente

F10 siehe Kapitel 2.1, Phagentotallysat: Labor-Nr. F68-7 bzw. daraus gewonnene cDNA: Labor-Nr. F68-8 als Template für PCR)

10.3 Enzyme und Kits für die Molekularbiologie

10.3.1 Enzyme

Alkal. Phosphatase aus Kälberdarm (CIAP) 1U/µl Boehringer Mannheim
DNA-Polymerase I Boehringer Mannheim
Klenow-Fragment der DNA-Polymerase I Boehringer Mannheim
Lysozym Sigma
Proteinase K Sigma
DNase I Sigma
RNase A QIAGEN, Sigma
T4-DNA-Ligase 1U/µl Boehringer Mannheim
T4-DNA-Ligase („Ready To Go“) Pharmacia Sweden
Taq-DNA-Polymerase (AmpliTaq®) 5U/µl Perkin Elmer, Eurogentec
Taq-DNA-Polymerase 5U/µl Amersham
T4-DNA-Polymerase Boehringer Mannheim
Restriktionsendonukleasen Boehringer Mannheim, Amersham, New England Biolabs

10.3.2 Kits

Gel-Extraction-Kit (QIAquick) QIAGEN
PCR-Purification-Kit (QIAquick) QIAGEN
Plasmid-Mini-Kit (QIAprepMiniprep) QIAGEN
QIAGEN Plasmid-Midi-Kit QIAGEN
QIAGEN Plasmid-Maxi-Kit QIAGEN
TOPO-TA-Cloning-Kit Invitrogen
Random-Primer-Labeling-Kit (Prime-It® II)
DIG-DNA-Labeling- und Detection-Kit
pGEM®-T-Vector System

10.4 Antikörper

10.4.1 Primärantikörper

10.4.1.1 Monoklonale murine Antikörper

anti-DMIF1-Antikörper (Fusion 272)
mAk 236-173-2
diese Arbeit
M. Ecke, MPI

anti-F1F0ATPase β-chain (mAk 238-196-11)
A. Popp, MPI

anti-GFP-IgG (mAk 264-449-2)
U. Hacker, MPI

anti-Porin (mAk 70-100-1)
Troll et al. 1992

anti-GST (mAk 268-44-6)
C. Clougherty, MPI

anti-Calnexin (mAk270-390-2, 270-349-1)
M. Ecke, MPI

anti-Proteindisulfidisomerase (mAk 221-135-1)
Monnat et al., 1997

10.4.1.2 Polyklonale Seren

anti-α-Tubulin-IgG (pAk Kaninchen)
anti-GFP-IgG (pAk Kaninchen)
anti-GST (pAk Ratte)
Clontech
Connex

10.4.2 Sekundärantikörper

10.4.2.1 Enzym-gekoppelte Antikörper

Ziege-anti-Maus (GAM)/ Meerettich-Peroxidase
Biorad

Ziege-anti-Maus-IgG (GAM)/alkal. Phosphatase
Dianova

Ziege-anti-Maus-IgM (GAM)/alkal. Phosphatase
Dianova

Ziege-anti-Maus-IgM (GAM)/alkal. Phosphatase
Calbiochem

10.4.2.2 Radioaktiv markierte Antikörper

125I-Schaf-anti-Maus-IgG (SAM)
Amersham

10.4.2.3 Sekundär-Antikörper – Fluoreszenz-markiert:

Ziege-anti-Maus (GAM)-IgG/TRITC
Dianova, Calbiochem

Ziege-anti-Kaninchen (GAR)-IgG/TRITC

Ziege-anti-Maus (GAM)-IgG/CY3

Ziege-anti-Kaninchen (GAR)-IgG/CY3

Ziege-anti-Maus (GAM)-IgG/CY5

Ziege-anti-Kaninchen (GAR)-IgG/CY5

10.4.3 Ak für Ouchterlony-Test

Ziege-anti-Maus (GAM) Isotypisierungsreagenzien
Sigma
(IgG1, IgG2a, IgG2b, IgG3, IgM, IgA)

10.5 Protease-Inhibitoren

Antipain-Hydrochlorid Sigma
Benzamidin-Hydrochlorid Sigma
Bestatin-Hydrochlorid Sigma
Leupeptin-Hemisulfatsalz Sigma
Pefabloc Roth
Pepstatin A Sigma
Trasylol (Aprotinin) Bayer

10.6 Antibiotika

Ampicillin Sigma
Blasticidin S Calbiochem
Kanamycin Sigma
Geneticin (G 418) Sigma
Penicillin/Streptomycin 10000 IU/ml Boehringer Ingelheim

10.7 Reagenzien, Chemikalien

Soweit nicht anders angegeben, stammten die verwendeten Laborchemikalien von Merck und hatten den Reinheitsgrad p.a..

Aceton Riedel-de-Haën
Agar Agar Biomatik
Agarose (Seakem GTG) Biozym
Agarose (Seakem ME) Biozym
Agarose niedriger Schmelzpunkt (Typ VII) Sigma
Alu-Gel S Serva
AquaPhenol Appligene
β-Mercaptoethanol Merck, SIGMA
Bacto-Agar Difco
Bacto-Pepton Difco
Bacto-Trypton Difco, Oxoid
BCA Protein Assay Reagent Kit Pierce
BCIP (5-Brom-4-chlor-3-indolylphosphat)-Toluidin-Salz Roth
Benzamidinhydrochlorid BioRad
Bradford-Testreagens Merck
Bromphenolblau Biomol
Caesiumchlorid Sigma
4-Chlor-1-Naphtol Sigma
Chloroform (Trichlormethan) Riedel-de-Haën
cAMP Sigma
CM-Cellulose Whatman
Coomassie-Brilliant-Blau G 250 Serva
Coomassie-Brilliant-Blau R 250 Serva
CSPD® (Disodium 3-(4-methoxyspiro{1,2-dioxetane-3,2'-(5'-chloro)tricyclo[3.3.3.1]decan}-4-yl)phenylphosphat Boehringer Mannheim (DIG-Kit)
DABCO, 97 % Janssen Chimica
DAPI Sigma
DEAE-(Diethylaminoethyl)-Cellulose DE52 Whatman
di-Natrium-Pyrophosphat Sigma
DMSO (Dimethylsulfoxid) Serva
dNTPs Boehringer Mannheim
DTT (1,4-Dithiothreitol) Sigma
EDTA (Ethylendinitriotetraessigsäure) Merck
EGTA (Ethylenglycol-bis[2-amino-ethylether]-
N,N,N',N'-tetraessigsäure) Sigma
Epon 812 Electron Microscopy Science
Essigsäure Riedel-de-Haën
Ethanol Riedel-de-Haën
Ethidiumbromid Sigma
Ficoll 400 Pharmacia
Fischgelatine Sigma
Formaldehyd, min. 37 % Merck
Formamid Merck
Freund'sches Adjuvans, inkomplett Behringwerke
Freund'sches Adjuvans, komplett Behringwerke
Gelatine Sigma
Gelvatol 20-30 Sigma
Glutaraldehyd Sigma
Glycerin, 99,5 % Sigma, Merck
Glycin (electrophoresis grade) ICN
Hefeextrakt Oxoid
HEPES (N-2-Hydroxyethylpiperazin-
N'-ethansulfonsäure) Biomol
IPTG Loewe Biochemica
Isoamylalkohol Merck
Isobutanol Riedel-de-Haën
Isopropanol Riedel-de-Haën
Maltose Merck
MES (2-[N-Morpholino]ethansulfonsäure) Serva
MOPS (γ-[Morpholino]propansulfonsäure) Biomol
Methanol Riedel-de-Haën
Mineralöl (heavy white oil) Sigma
Natriumcitrat Merck
NBT (4-Nitrotetrazolium-Chloridblau-Hydrat) Sigma
N-Lauryl-Sarcosin Sigma
Nonidet-P40(NP-40, Ethylphenylpolyethylen glycol) Sigma, Fluka
Nukleotide Sigma, Boehringer
NZamin A Aldag
OctylPOE (Octylooligoxyethylen) Bachem Biochemica
Paraformaldehyd Merck
PEG, Mn = 4000 g/mol Polysciences
Pertussis-Toxin Schweizer Serum- und Impfinstitut
Phenol Merck
Phenolröt Sigma
Pikrinsäure Merck
PIPES (1,4-Piperazindithansulfonsäure) Sigma, Serva
Poncetin S Serva
Proteogel (30 % Acrylamid/0,8 % Bisacrylamid) National Diagnostics
Rapid-Hyb-Puffer Amersham
Repel-Silan Pharmacia, LKB
Rinderserumalbumin Fraktion V Sigma
Saccharose (RNase frei) BRL
SDS (Natriumdodecylsulfat) Roth
Sephadex G-75 Pharmacia
Silicagel (Kieselgel 6-16 mesh) Fisons Scientific Equipment
Siliconpasta Wacker
TCA (Trichloressigsäure) Riedel-de-Haën
TEMED (N,N,N',N'-Tetramethyl-ethyldiamin) Serva
Tris ICN, Riedel-de-Haën
TRITC-Dextran Sigma
Triton X-100 (Octylphenylpoly [ethylenglycolether]) BioRad
Trypanblau Merck
Tween 20 (Polyoxyethylensorbitanmonolaurat) Sigma
X-Gal (5-Brom-4-chlor-3-indoly1-ß-D-galactopyranosid) Polysciences

10.8 Radiochemikalien

$[\alpha^{32P}]$-dATP (10mCi/ml = 370 Mbq/ml) Amersham
$[\gamma$-$\text{Na}^{125}]$-IMS 30 (100mCi/ml) Amersham

10.9 Standards

10.9.1 DNA-Größen-Marker

1 kb-Leiter Gibco BRL
75, 134, 154, 201, 220, 298, 344, 396
506/517, 1018, 1636, 2036, 3054,4072
5090, 6108, 7126, 8144, 9162, 10180
11198, 12216 bp

100 bp-Leiter Gibco BRL
100, 200, 300, 400, 500, 600, 700, 800
900, 1.000, 1.100, 1.200, 1.300, 1.400
1.500, 2.072 bp

DIG-DNA-Längenstandard III Boehringer Mannheim
564, 831, 947, 1375, 1584, 1904, 2027
3530, 4268, 4973, 5148, 21226 bp

10.9.2 Protein-Größen-Marker

SeeBlue™-Pre-Stained Standard (gefärbt) BioRad
Myosin 250 kDa
BSA 98
Glutamindehydrogenase 64
Alkoholdehydrogenase 50
Carboanhydrase 36
Myoglobin 30
Lysozym 16
Aprotinin 6
Insulin, β-Kette 4
“Low” Protein-Standard BioRad
Phosphorylase b 92.5 kDa
Serumalbumin 66.2
Ovalbumin 45
Carboanhydrase 31
Trypsininhibitor 21.5
Lysozym 14.4

Color Marker Ultralow (gefärbt) Sigma
Triosephosphatisomerase 26.6 kDa (28 kDa, orange)
Myoglobin 17 kDa (18 kDa, violett)
α-Lactalbumin 14.2 kDa (15.6 kDa, rot)
Aprotinin 6.5 kDa (7.6 kDa, blau)
Insulin β-Kette 3.496 kDa (3.55 kDa, blau)
Bradykinin 1.06 kDa (1.1 kDa, blau)
(in Klammern apparentes MolGewicht in Tricine-Puffer-System)

Ultralow Molecular Weight Peptide Marker Pharmacia
16.9, 14.4, 10.7, 8.2, 6.2, 2.5 kDa

10.10 Medien, Puffer und andere Lösungen

10.10.1 Medien für die D.-discoideum-Kultur

AX2-Flüssigkulturmedium, pH 6.7
(Watts und Ashworth, 1970)
- 14,3 g Pepton
- 7,15 g Hefeextrakt
- 18 g Maltose
- 0,616 g Na₂HPO₄ x 2 H₂O
- 0,486 g KH₂PO₄
mit H₂O auf 1 l auffüllen.

Soerensen-Phosphatpuffer 17mM, pH 6.0
(Malchow et al., 1972)
- 2 mM Na₂HPO₄
- 15 mM KH₂PO₄

Phosphatagar-Platten, pH 6.0
- 12 g Agar Agar
- mit Soerensen-Puffer auf 1 l auffüllen.
SM-Agarplatten, pH 6.5
9 g Agar Agar
10 g Pepton
10 g Glucose
1 g Hefeextrakt
1 g MgSO₄ x 7 H₂O
2.2 g KH₂PO₄
1.3 g K₂HPO₄ x 3 H₂O
mit H₂O auf 1 l auffüllen.

Normalagar-Platten (NA), pH 6.0
15 g Bacto-Agar
1 g Pepton
1 g Glucose x 1 H₂O
mit Soerensen-Puffer auf 1 l auffüllen.

10.10.2 Medien für die Bakterienkultur

(Leniatis et al., 1989)
LB-Medium, pH 7.4
10 g Bacto-Trypton
5 g Hefeextrakt
5 g NaCl
auf 1 l mit H₂O auffüllen.

Der pH-Wert von 7,4 wird mit 1 N NaOH eingestellt. Bei Bedarf wurde mit 50 µg/ml Ampicillin supplementiert.

LB-Agarplatten, pH 7.4
1.5% (w/v) Agar-Agar
50 µg/ml Ampicillin
in LB-Medium

Für Blau/Weiß-Selektion von E.coli-Transformanten wurden pro Platte 50 µl einer 0.1 M IPTG-Lösung und 50 µl einer X-Gal-Lösung (2 % in DMF) ausplattiert.

Standard I-Nährbouillon
25 g Standard I-Nährbouillon (Merck)
auf 1 l mit H₂O auffüllen

SOC-Medium
2% Trypton
0,5% Hefeextrakt
10 mM NaCl
2,5 mM KCl
10 mM MgCl₂
10 mM MgSO₄
20 mM Glucose

10.10.3 Medien für die Hybridom-Zellkultur

Medium
RPMI-1640-Medium
SOC-Medium
Gibco BRL
Gibco BRL
Medienzusätze

Aminopterin Sigma
FCS (fötales Kälberserum) Gibco BRL
L-Glutamin-Lösung, 200 mM Gibco BRL
Hypoxanthin Merck
Kanamycin-Lösung, 10 mg/ml Gibco BRL
Thymidin Sigma
Bri Clone Bio Research Ireland

Normalmedium
1 % fötales Kälberserum
2 mM Glutamin
10 µM 2-Mercaptoethanol
0,01 % Kanamycin
in RPMI 1640

3 x HAT-Medium
300 µM Hypoxanthin
1,2 µM Aminopterin
48 µM Thymidin
in Normalmedium

HT-Medium
100 µM Hypoxanthin
16 µM Thymidin
in Normalmedium

Einfriermedium
20 % fötales Kälberserum
12 % DMSO
10 µM β-Mercaptoethanol
in RPMI 1640/L-Glutamin/HEPES

10.10.4 Puffer und andere Lösungen

Hier nicht verzeichnete Puffer und Lösungen sind bei den jeweiligen Methoden angegeben.

10x NCP (TBS-Tween), pH 7.4
100 mM Tris-HCl
1,5 M NaCl
0,5 % (v/v) Tween 20
0,2 % NaN₃

1x PBS, pH 7.2 / 8.0
65 mM Na₂HPO₄
35 mM KH₂PO₄
150 mM NaCl
0.1% NaN₃

1x TE-Puffer, pH 8.0
10 mM Tris-HCl
1 mM EDTA

10x TBE (Tris/Borat/EDTA-Puffer), pH 8.3
0,9 M Tris
0,9 M Borsäure
25 mM EDTA

10x Loening-(Tris-Phosphat)-Puffer, pH 7.8
360 mM Tris/Phosphorsäure
300 mM Na₂HPO₄
10 mM EDTA
20x SSC
0,3 M Natriumcitrat
3 M NaCl

2x KGB-Puffer, pH 7.6
200 mM Kaliumglutamat
50 mM Trisacetat
20 mM Magnesiumacetat
100 µg/ml BSA
1 mM 2-Mercaptoethanol
sterilfiltriert bei 4°C oder
aliquotiert bei –20°C

10x One-Phor-All-Puffer (Pharmacia), pH 7.5
100 mM Trisacetat
100 mM Magnesiumacetat
500 mM Kaliumacetat

Homogenisationspuffer, pH 8.0
30 mM Tris-HCl
4 mM EGTA
2 mM EDTA
2 mM DTT
30 % (w/v) Saccharose
10 mM Benzamidin
0,5 mM Pefabloc

10.11 Verbrauchsmaterial

3MM Chromatografie-Papier
3MM Filterpapier
Cellophan-Folien, Dryease und Rahmen
DE81-Papier
Deckgläschen, Ø 12 mm
Deckgläschen, Ø 18 mm
Deckgläschen, 5 x 5 cm
Deckgläschen mit Raster, Ø 12 mm
Dialyseschläuche
Einfrierröhrchen, 1,8 ml
Elektroporationsküvetten, 2 mm
Faltenfilter 595 1/2, Ø 385 mm
Film Fuji Neopan, 400 ASA (schwarz/weiß)
Film Ilford Pan F, 50 ASA (schwarz/weiß)
Filme Fujicolor, 400 ASA (farbig)
Hamilton-Spritze
Kanülen, 0,9/0,8 x 40 mm, 0,6 x 30 mm
Kulturplatten, 24 Loch, Ø 16 mm
Mikrokapillaren, Ø außen 1 mm, innen 0,58 mm
Mikrokonzentrator, Centrikon 10, 30, 100
Mikrokonzentrator, Centriprep 10, 30, 100
Mikrokonzentrator, Macrosep 3, 30, 50, 100
Mikrokonzentrator, Microsep 3, 30, 50, 100
Mikrotiterplatten, 96 Loch
Mikrotiterplatten, 96 Loch, F-Boden
Nitrocellulose-Membran BA 85, 0,45µm
Nitrocellulose-Rundfilter BA 85, 0,45µm, Ø 82mm
Nitrocellulose-Rundfilter HA, 0,45 µm, Ø 47mm
10.12 Geräte und Zubehör

Zentrifugen:
- Airfuge
- Ultrazentrifuge L3-50
- Sorvall RC-5B Superspeed
- Rotanta/K; Rotanta/R
- Tischzentrifuge 5415 C
- Biofuge 13 (15?)
- Speed-Vac Concentrator
- Centrikon T-1065 Ultrazentrifuge
- TGA-65 Ultrazentrifuge
- Rotixa/KS
- Tischzentrifuge Universal

Airfuge-Rotor

Rotoren:
- Beckman

Sterifilter Millex GS, 0.22 µm
- Millipore

Sterifilter Millex HA, 0.45 µm
- Millipore

Sterifilter Nalgene flaschen, 0,2 µm, 500 ml
- Nalgene

Zellkulturschalen, 5 ml
- Falcon

Zellkulturschalen, 50 ml
- Greiner

Protein-A-Sepharose CL-4B
- Pharmacia

Protein-A-Sepharose CL-4B
- Pharmacia

Quick Spin® Columns
- Boehringer Mannheim

Reaktionsgefäße, 0.5 ml (PCR)
- AGS, Sarstedt

Reaktionsgefäße, 0.4, 1.5 und 2 ml
- Eppendorf

Röntgenfilm X-omat AR-5, 35 x 43 cm
- Kodak

Röntgenfilm X-omat S-1, 18 x 43 cm
- Kodak

Sephacryl S-300
- Pharmacia

Sephadex-G-50-Säulchen
- Boehringer Mannheim

Skalpellklingen Typ 11
- Bayha

Spritzen 5, 10, 50ml
- Braun Melsungen

Sterilfilter Millex-HA, 0,45 µm
- Millipore

Sterilfilter Millex GS, 0.22 µm
- Millipore

Sterilfiltrierflaschen, 0,2 µm, 500 ml
- Nalgene

Zellkulturschalen, 5 ml
- Falcon

Zellkulturschalen, 50 ml
- Greiner

10.12 Geräte und Zubehör
<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorvall A6.9</td>
<td>Du Pont, Kontron</td>
</tr>
<tr>
<td>Sorvall A6.14</td>
<td>Kontron</td>
</tr>
<tr>
<td>Sorvall SS-34</td>
<td>Du Pont Instruments</td>
</tr>
<tr>
<td>Sorvall HB-4</td>
<td>Du Pont</td>
</tr>
<tr>
<td>TFT 65.13</td>
<td>Kontron</td>
</tr>
<tr>
<td>TFT 50.38</td>
<td>Kontron</td>
</tr>
<tr>
<td>A8.24</td>
<td>Kontron</td>
</tr>
<tr>
<td>SW41 Ti</td>
<td>Beckman</td>
</tr>
<tr>
<td>TST60</td>
<td>Kontron</td>
</tr>
<tr>
<td>TFT 45.94</td>
<td>Kontron</td>
</tr>
<tr>
<td>VTi50</td>
<td>Beckman</td>
</tr>
<tr>
<td>VTi65</td>
<td>Beckman</td>
</tr>
<tr>
<td>A6.9</td>
<td>Kontron</td>
</tr>
<tr>
<td>A6.14</td>
<td>Kontron</td>
</tr>
</tbody>
</table>

Zentrifugenröhrchen:
- Airfuge-Röhrchen, 5 x 20 mm: Beckman
- Kunststoff-Röhrchen, 10 und 30 ml (UZ): Kontron
- Corex-Glasröhrchen, 15 und 30 ml (Sorvall): Du Pont
- Kunststoff-Röhrchen, 30 ml (Sorvall): Sorvall Instruments
- Plastikbecher für A6.9-Rotor, 400 ml: Sorvall Instruments

Mikroskope:
- Fluoreszenzmikroskop Axiophot: Zeiss
- Fluoreszenzmikroskop Axiovert 135TV (invers): Zeiss
- Makroskop M420 und M3Z: Leika
- Mikroskop Axiovert 25 (invers): Zeiss
- Mikroskop Diavert (invers): Leitz
- Konfokales Mikroskop LSM 410: Zeiss

Kameras:
- Fotokamera 167MT (Lichtmikroskop): Contax
- Fotokamera KR-CM: Ricoh
- Fotokamera (Immunfluoreszenz): Zeiss
- Fotokamera Vario-Orthomat (Makroskop): Leitz
- Polaroid MP-4 Land Camera: Polaroid
- Videokamera: Zeiss
- Digitalkamera

Sonstige Geräte:
- Brutschrank: Balzers
- "Cell-cracker" mit Stahlkugeln: Wheaton
- Dounce-Homogenisator: Bio-Rad
- Electrophoresis Power Supply ECPS 3000/150: Pharmacia
- Elektrophoresekammern: Werkstatt MPI für Biochemie
- Elektroporationsgerät Gene Pulser: Bio-Rad
- Filmkassetten: Rego
- Fluoreszenzspektrometer SFM 25: Kontron
- Fraktionenkollektor Frac-100: Pharmacia
- Fraktionenkollektor Redirac2112: LKB
- Fraktionenkollektor Microcol TDC80: Gilson
- Fraktionenkollektor RediFrac: Pharmacia
- French Pressure Cell: American Instrument Company
<table>
<thead>
<tr>
<th>Artikel/Artikel</th>
<th>Hersteller/Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelgießapparatur</td>
<td>Werkstatt</td>
</tr>
<tr>
<td>Glas-Säule mit Fritte, Ø 1,25 cm, Höhe 10 cm</td>
<td>BioRad</td>
</tr>
<tr>
<td>Glas-Säule mit Fritte, Ø 1,5 cm, Höhe 10 cm</td>
<td>Biorad</td>
</tr>
<tr>
<td>Glas-Säule mit Fritte, Ø 2,75 cm, Höhe 30 cm</td>
<td>BioRad</td>
</tr>
<tr>
<td>Gradientenmischer</td>
<td>MPI für Biochemie</td>
</tr>
<tr>
<td>Heizblock für Reaktionsgefäße</td>
<td>Stork-Tronik</td>
</tr>
<tr>
<td>Hybridisierungsöfen</td>
<td>Hybaid</td>
</tr>
<tr>
<td>Hybridisierungsröhrchen</td>
<td>Hybaid</td>
</tr>
<tr>
<td>Kultur-Schüttler</td>
<td>Adolf-Kühner AG</td>
</tr>
<tr>
<td>Labor-Schüttler 3015</td>
<td>GFL</td>
</tr>
<tr>
<td>Laborwaage</td>
<td></td>
</tr>
<tr>
<td>Mixer 5432</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Neubauer Zählkammer</td>
<td>Brand</td>
</tr>
<tr>
<td>Parr-Bombe</td>
<td>Parr Instrument Company</td>
</tr>
<tr>
<td>Peristaltische Pumpe Microperpex S 2232</td>
<td>LKB</td>
</tr>
<tr>
<td>Peristaltische Pumpe P-1</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>Phosphoimager Fujix BAS 1000 und Zubehör</td>
<td>Fuji</td>
</tr>
<tr>
<td>Photometer PCP 6121</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Entwicklermaschine M35 X-omat</td>
<td>Kodak</td>
</tr>
<tr>
<td>Pipetten 2, 10, 20, 200 und 1000 µl</td>
<td>Gilson</td>
</tr>
<tr>
<td>Plattengießmaschine</td>
<td>TEC-NO-MAT</td>
</tr>
<tr>
<td>Quarzküvetten Infrasil</td>
<td>Hellma</td>
</tr>
<tr>
<td>Quarzküvetten QS</td>
<td>Hellma</td>
</tr>
<tr>
<td>Roll-Inkubator für E.coli-Kultivierung in Röhren</td>
<td>MPI für Biochemie</td>
</tr>
<tr>
<td>Rührer/Heizplatte Ikamag RCT</td>
<td>Ika</td>
</tr>
<tr>
<td>Schreiber P-40</td>
<td>Epson</td>
</tr>
<tr>
<td>Schreiber REC-1</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>SemiDry-Blotkammern</td>
<td>Keutz</td>
</tr>
<tr>
<td>Spektralphotometer Ultrospec III mit</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>Spektralphotometer Uvikon 820</td>
<td>Kontron</td>
</tr>
<tr>
<td>Sterilwerkbank</td>
<td></td>
</tr>
<tr>
<td>Stromversorgungsgerät 2301 Macrodrive 1</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>Szintillationszähler Tri-carb 4550</td>
<td>Packard</td>
</tr>
<tr>
<td>Trockenschrank</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Ultraschall-Stab-Sonifier B-12</td>
<td>Branson</td>
</tr>
<tr>
<td>Ultraschall-Wasserbad</td>
<td>Branson</td>
</tr>
<tr>
<td>UV-Detektor UV-1</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>UV-Monitor UV-1</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>UV-Transilluminator UVT 2040 (302 nm)</td>
<td>Herolab</td>
</tr>
<tr>
<td>UV-Auflichtilluminator MinUVIS(254 nm, 366 nm)</td>
<td>Desaga</td>
</tr>
<tr>
<td>DNA-Thermal-Cycler 480</td>
<td>Perkin Elmer</td>
</tr>
<tr>
<td>UV-Transilluminator TF-35M (312 nm)</td>
<td>Bioblock</td>
</tr>
<tr>
<td>Verstärkerfolien Quanta III-T</td>
<td>Du Pont</td>
</tr>
<tr>
<td>Videorecorder AG6720</td>
<td>Panasonic</td>
</tr>
<tr>
<td>Video-Scanner Elscript 400</td>
<td>Hirschmann</td>
</tr>
<tr>
<td>Vortex-Mixer</td>
<td>Cenco</td>
</tr>
<tr>
<td>Wasserbäder</td>
<td>Köttermann</td>
</tr>
</tbody>
</table>
11 Methoden der Zell-Kultivierung

11.1 Dictyostelium discoideum

11.1.1 Anzucht in axenischem Medium

Die Kultur in axenischem Medium kann außerdem in Petrischalen oder 24-Loch-Kulturplatten (Costarplatten) erfolgen, wodurch die Zellen die Möglichkeit der Anheftung an die Kunststoffoberfläche des Gefäßbodens haben. Beim Animpfen von auf einem Bakterienrasen gewachsenen Kolonien wird dem Medium 1 % Penicillin/Streptomycinlösung zugesetzt.

11.1.2 Wachstum in Bakteriensuspensionskultur

11.1.3 Anzucht auf Agarplatten

11.1.4 Entwicklung in Suspension

11.1.5 Sporengewinnung und Konservierung

Axenisch gewachsene, zweimal mit eiskaltem Soerensen-Phosphatpuffer gewaschene *D.-discoideum*-Zellen werden in einer Dichte von 2·10⁷/ml in Soerensen-Phosphatpuffer resuspendiert und je 5 ml dieser Suspension auf eine Phosphatagarplatte pipettiert (≈10⁸ Zellen). Man läßt die Zellen 20 min absetzen, gießt den überstehenden Phosphatpuffer vorsichtig ab und läßt die Platten 30 min im sterilen Luftstrom trocknen. Nach 2 bis 3tägiger Inkubation bei 23°C werden die gebildeten Sporenköpfcchen in den Deckel der Petrischale geklopf, in 3 bis 5 ml eiskaltem Phosphatpuffer aufgenommen und die Sporen gezählt. Die Suspension wird auf 10⁷ Sporen pro ml eingestellt, in 1-ml-Aliquots in flüssigem Stickstoff tiefgefroren und bei -80°C oder flüssigem Stickstoff aufbewahrt. Vegetative Zellen (2 bis 4·10⁶ Zellen pro ml) können in eiskaltem AX-Medium, daß 5% DMSO und bei Bedarf 1% Penicillin/Streptomycin enthält, eingefroren werden. Dazu werden die Zellen in 1ml- Aliquots 3 h in
Einfrierköpfe über flüssigem Stickstoff gekühlt (Temperaturerniedrigung um 1°C pro Minute) und schließlich in flüssigem Stickstoff eingefroren und gelagert.

11.2 Bakterien

11.2.1 Anzucht in Flüssigmedium

11.2.2 Anzucht auf Agarplatten

12 Molekularbiologische Methoden

12.1 cDNA-Bank Screening

An Expressions-Genbanken von Dictyostelium können sowohl durch Immunoscreening mit monoklonalen Antikörpern (Young und Davis, 1983a und 1985) als auch Screening mit Digoxigenin- (Boehringer) und radioaktiv markierten DNA-Sonden (Benton und Davis, 1977) Phagenklone für interessierende Gene in vegetativen (t0) und in sich entwickelnden (t4) Zellen isoliert werden. Die beschriebene Prozedur wird zwei- bis dreimal bis zur Isolierung von sauberen Einzelklonen wiederholt.
12.1.1 λgt11 Bank, Puffer und Lösungen

λgt11 cDNA-Bank AX2 t₀
5.8·10¹⁰ pfu/ml (plaque forming unit)

λgt11 cDNA-Bank AX3 t₄
5·10⁹ pfu/ml

NZYM-Medium, pH 7.4
10 g Nzamin A
5 g NaCl
5 g Hefeextrakt
2 g MgSO₄·7 H₂O
800 ml H₂O
pH mit NaOH einstellen
auf 1l mit Wasser auffüllen

NZYM-Agarplatten, pH 7.4
0.9 % (w/v) Agar-Agar
NZYM-Medium
autoklavieren
50 µg/ml Ampicillin
Petrischalen, 120 x 120 x 17 mm

Top-Agarose, pH 7.4
0.7% (w/v) Agarose
In NZYM-Medium

SM-Puffer, pH 7.4
5g NaCl
2g MgSO₄·7 H₂O
50 ml 1M Tris-HCl
5 ml 2% Gelatine
mit H₂O auf 1 l auffüllen
autoklavieren

Denaturierungslösung
0.5 M NaOH
1.5 M NaCl

Neutralisierungslösung 1, pH 7.5
0.5 M Tris-HCl
3 M NaCl
(für radioactive Markierung von Plaque lifts und Southern mit DIG)

Neutralisierungslösung 2, pH 7.5
1 M Tris-HCl
1.5 M NaCl
(für DIG-Markierung von Plaque lifts)

Äquilibrierungslösung (20x SSC), pH 7.0
0.3 M Na-Citrat
3 M NaCl

12.1.2 Vorbereitung der Bakterien

100 ml NZYM-Medium mit 40 µg/ml Ampicillin und 0.4% (v/v) Maltose (Stocklösung 20%) werden mit 10 µl einer konservierten Glycerin-Stammkultur von E.coli- RY1090° beimpft und über Nacht unter Schütteln mit 270 Upm bei 37°C bis zur OD₆₀₀ = 2 vermehrt. Für eine schnellere Anzucht können auch 1 ml Bakterien in 100 ml Medium 3 bis 4 Stunden bei 37°C kultiviert werden. Die Zellen werden 10 min bei 4°C mit 4000 Upm (Hettich-Zentrifuge) sedimentiert und in 25 ml kaltem sterile 10 mM MgSO₄ resuspendiert. Die Bakterien sind
ca. 2 Wochen bei 4°C haltbar. Weitere Kulturen können aus zuvor angelegten Agarplatten gezogen werden, die ca. 4 Wochen bei Lagerung im Kühlschrank verwendbar sind. Dazu werden MgSO₄-freie LB-Platten (50 µg/ml Ampicillin) mit 5 µl der Bakterien-Stock-Kultur beimpft und bei 37°C über Nacht vermehrt. Von diesen Arbeits-Platten werden einzelne Kolonien in Schüttelkulturen überimpft und wie oben beschrieben verarbeitet.

12.1.3 Ausplattieren der Phagen und Bakterien

Für eine Platte werden 300 µl *E.coli* RY1090 mit 3 µl Phagen der Originalgenbank (t₅-, t₄-Bank) einer geeigneten Verdünnung in SM-Puffer (Endkonzentration der Verdünnung 10⁴pfu/µl = 1:500 t₅-Bank, 1:5800 t₄-Bank) gemischt und durch 30 min Inkubieren bei RT infiziert. Dabei nutzen die Phagen die durch Magnesium stabilisierten Maltoserezeptoren der Bakterien als Andockstellen. Die Topagarose wird in der Mikrowelle aufgekocht und in sterilen Reagenzgläsern zu 9 ml-Aliquots im Wasserbad auf maximal 52°C gehalten. Die Bakterien mit den anhaftenden Phagen (die Suspension enthält 3⋅10⁴ pfu) werden in der Topagarose verdünnt, durch kurzes Vortexen gut gemischt und sofort auf die im sterilen Luftstrom getrockneten und auf 42°C vorgewärmten NZYM-Agarplatten verteilt. Nach einer Erstarungszeit von 15 min werden die Platten bei 42°C 3 bis 5 h bis zum Erscheinen der klaren Plaques im Bakterienrasen inkubiert. Ein temperatursensitiver Repressor der Genexpression in λgt11 sorgt für den lytischen Verlauf durch seine eigene Inaktivierung bei 42°C. Für das Immunoscreening sollten die Plaques sehr dicht sein, sich aber weitgehend nicht berühren, während für die Hybridisierung mit einer DNA-Sonde die Bakterien nahezu vollständig lysiert werden können, da diese Detektionsmethode erheblich feiner ist.

12.1.4 „Plaque lifts“ für das „Immunoscreening“

12.1.5 „Plaque lifts“ für die Detektion mit DNA-Sonden

Zur Detektion mittels radioaktiv markierter DNA-Sonden werden die Filter, nach Markierung ihrer Lage, prozessiert, d.h. 5 min denaturiert, 15 min neutralisiert und 10 min in 2x SSC äquilibriert. Die luftgetrockneten Filter werden zur Immobilisierung der DNA 30 min bei 80°C (15 min, 120°C) gebacken. Markierung der Sonden, Hybridisierung und Detektion erfolgen wie unter 12.4.1 beschrieben.

Plaque lifts, die zur Hybridisierung mit DIG-markierten Sonden bestimmt sind, werden nach kurzem Trocknen auf Whatmanfilterpapier auf, mit entsprechenden Puffern getränkten, Lagen von Filterpapier 15 min denaturiert, 15 min neutralisiert und mindestens 10 min äquilibriert. Nach vollständiger Trocknung der Nylon-Membranen (für DIG-Detektion kann keine Nitrocellulose verwendet werden) wird die DNA durch 30 min Backen bei 80°C oder 5 min UV-Bestrahlung an das Trägermaterial gebunden und mit sich selbst vernetzt. Das DIG-Verfahren ist in 12.4.2 beschrieben.

In beiden Fällen werden die Phagenplatten bis zur Detektion der Filter lichtgeschützt bei 4°C gelagert.

12.1.6 Isolierung von positiven λgt11-cDNA-Klonen

Positive Klone werden beim ersten Screening durch Ausstechen des sie enthaltenden und umgebenden Agars mit dem hinteren Ende, bei weiteren Aufreinigungsschritten mit dem spitzen Ende steriler Pasteurpipetten isoliert und in Eppendorfraktionsgefäße (1.5 ml) mit 1 ml SM-Puffer/ 10 µl Chloroform überführt. Die Phagen diffundieren bei 4°C innerhalb von 12 bis 24 Stunden in die flüssige Phase. Chloroform tötet die Bakterien ab, ohne die Phagen zu beeinträchtigen.

Zum Anreichern und Säubern der Klone wird die Lösung, die die Phagen enthält mit SM-Puffer 1:100 verdünnt und 100 µl RY1090 mit 1.5 µl dieser Verdünnung infiziert (weitere Prozedur siehe 12.1.3 bis 12.1.5, aber auf Petrischalen Ø 90 mm, Nitrocellulose-Rundfilter Ø 82 mm oder Nylonmembran Ø 82 mm). Das Picken und Vermehren der Phagen erfolgt solange, bis die Phagen „sauber“ sind, d.h. bis keine negativen Plaques mehr auf der Platte zu finden sind. Nach diesem Prozeß entspricht ein Plaque einem Klon, der einzeln isoliert wird.
12.1.7 Amplifizierung reiner Phagenkloane, Herstellung von Totallysaten

Von einem einzelnen Klon in SM-Puffer werden 30 µl zur Infektion von 300 µl Bakterien entnommen und auf einer großen Platte bis zur vollständigen Lyse vermehrt. Zur Gewinnung der Phagen durch Diffusion werden 20 ml SM-Puffer auf die Agarplatte pipettiert und über Nacht bei 4°C inkubiert. Die Lösung wird in Falcon-Röhrchen 10 min bei 4000 Upm (Hettich-Zentrifuge) zentrifugiert und der Überstand sterilfiltriert und nach Entnahme eines Aliqots von 1 ml unter Zusatz von 10 µl Chloroform/ml im Kühlschrank gelagert. Dieses Totallysat ist eines der Ausgangsmaterialien für die PCR zur Amplifizierung und Sequenzierung der enthaltenen cDNA.

12.1.8 Bestimmung des Titers der Phagenbank

Vor Verwendung der cDNA-Bank muß der Titer der Bank festgestellt werden, um statistisch jeden Klon der Bank mindestens einmal zu testen, ohne die Bank zu dicht auszubringen. Die Prozedur ist weitgehend die gleiche wie für das Screening beschrieben, es werden aber verschiedene Verdünnungen getestet und die entstehenden Plaques in Einheiten von pfu (plaque forming units) ausgezählt. Die ideale Dichte beim Ausbringen der vorliegenden Banken auf Agarplatten liegt bei 200 pfu /cm².

12.2 Präparation von DNA und RNA

12.2.1 Allgemeine Puffer aus QIAGEN Kits

<table>
<thead>
<tr>
<th>Puffer Name</th>
<th>pH</th>
<th>Inhaltsstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (Resuspensionspuffer)</td>
<td>8.0</td>
<td>50 mM TRIS-HCl 10 mM EDTA 100 µg/ml RNase A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nach Zugabe von RNase A bei 4°C</td>
</tr>
<tr>
<td>P2 (Lysispuffer)</td>
<td></td>
<td>200 mM NaOH 1% SDS</td>
</tr>
<tr>
<td>N3 (Neutralisierungspuffer)</td>
<td></td>
<td>enthält chaotropes Salz</td>
</tr>
<tr>
<td>PB</td>
<td></td>
<td>enthält chaotropes Salz</td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td>enthält chaotropes Salz</td>
</tr>
<tr>
<td>EB (Elutionspuffer)</td>
<td>8.5</td>
<td>10 mM TRIS-HCl</td>
</tr>
</tbody>
</table>
aus "QIAquick Gel Extraction Kit" (zur Isolierung von DNA-Fragmenten aus Agarose-Gelen)
PE und EB wie oben

QX1 (9/95-1/97), QG (ab 7/97) chaotropes Salz

aus „QIAGEN Plasmid Maxi Kit“ (für Plasmid DNA Maxipräparation)
P1, P2 und EB wie oben

P3 (Neutralisierungspuffer), pH 5.5 3 M K-Acetat

QBT, pH 7.0 750 mM NaCl
10 mM MOPS
15% Ethanol

QC, pH 7.0 1 M NaCl
50 mM MOPS
15% Ethanol

QF, pH 8.2 1.25 M NaCl
50 mM MOPS
15% Ethanol

12.2.2 Präparation von Phagen-DNA

L1, pH 7.5 10 mM EDTA
100 mM TRIS-HCl
300 mM NaCl
autoklavieren, kurz vor Gebrauch dazu:
20 mg/ml RNAse A
6 mg/ml DNAse I
0.2 mg/ml BSA

L2 30% PEG (6000)
3 M NaCl

L3, pH 7.5 25 mM EDTA
100 mM TRIS-HCl
100 mM NaCl

L4 4% SDS

L5, pH 4.8 2.55 M K-Acetat
Puffer L1 bis L5 autoklavieren

Eine sicherere Methode als die Aufbewahrung von Totallysaten ist die Konservierung
aufgereinigter Phagen-DNA. Die Isolierung von DNA aus λ-Phagen erfolgt nach der QIA-
GEN-Methode und beruht auf der Fällung mit PEG 6000 aus einem Flüssiglysat (Maniatis et
al 1989). Dazu werden 7 bis 20 ml RY1090 mit 20 µl des Totallysates 30 min bei RT infiziert,
in 300 ml auf 37°C vorgewärmtes NZYM-Medium überführt und unter Schütteln mit 270 Upm
40 min inkubiert. Die Lyse wird bei 42°C induziert und ca. 3 h bis zum Auftreten von Flocken lysierter Zellen durchgeführt. Die Suspension wird 10 min mit 5000 Upm in der Sorvall-Zentrifuge zentrifugiert, der Überstand in ein sauberes Zentrifugen-Röhrchen gefüllt und auf 37 °C vorgewärmt. Nach Addition von 550 µl L1 (die enthaltenen Enzyme RNase und DNAse dienen dem Verdau der Wirts-DNA) wird der Ansatz im Wasserbad 1 h bei 37 °C inkubi-
ert, anschließend mit 1/5 Vol (70 ml) eiskaltem L2 versetzt und 1 h auf Eis oder über Nacht bei 4°C inkubiert. Das PEG-Präzipitat, das intakte Phagen enthält, wird durch 10 min Zentri-
fugieren bei 4°C mit 10000 x g in der Sorvall-Zentrifuge vom Überstand getrennt, in 10 ml L3-Puffer unter gründlichem Abspülen der Wände des Zentrifugenröhrchens resuspendiert und in ein kleineres Röhrchen überführt. Es werden 10 ml L4 (SDS lysiert Phagen) dazupi-
pettiert und alles bei 70°C für 20 min unter gelegentlichem vorsichtigem Schwenken inkubi-
ert. Nach 15 min Abkühlen auf Eis werden 10 ml L5 zugefügt und 30-60 min bei 4°C mit 15000 x g in der Sorvall-Zentrifuge zentrifugiert. Der Überstand enthält die Phagen-DNA, die unter Verwendung der QIAGEN-Puffer und -Säulen isoliert wird: Auf eine mit 30 ml QBT äquilibrierende DEAE-Anionenaustauscher-Säule (QIAGEN-tip 500) wird die Lösung aufgetra-
gen, 2mal mit je 30 ml QC gewaschen und mit 15 ml QF in Corex-Röhrchen (Glas) eluiert. Die DNA wird mit 0.7 Vol. Isopropanol bei RT präzipitiert, 30 min bei 4°C mit 10000 x g in der Sorvall-Zentrifuge vom Überstand getrennt und mit eiskaltem 70% Ethanol gewaschen. Das Pellet wird nach 30 min Trocknen an Luft in 300 µl 10 mM TRIS oder TE (beide pH 8.0) über Nacht bei 4°C gelöst und bei –20°C gelagert. Die Konzentration und Reinheit der DNA-
Lösung wird photometrisch durch Bestimmung der Absorbtion (siehe 12.2.6) ermittelt.

12.2.3 Präparation von Plasmid-DNA aus E.coli nach der QIAGEN Methode

Die Isolierung von kleinen Mengen Plasmid-DNA (bis 20µg dsDNA) aus *E.coli* erfolgt nach dem „QIAprep Spin Miniprep Kit Protokoll“ und basiert auf dem alkalischen Aufschluß-
verfahren (Birnboim und Doly, 1979; Birnboim, 1983) und der Adsorption von DNA an Silica-
Gel in Gegenwart hoher Salzkonzentrationen (Vogelstein und Gillespie, 1979). Diese Metho-
de wurde regelmäßig zur schnellen Überprüfung des Klonierungserfolges nach Transforma-
tion eines Ligationsansatzes verwendet und eignet sich für eine große Anzahl paralleler An-
sätze. Größere Mengen Plasmid-DNA (bis zu 500µg) werden mit Hilfe des “Plasmid-Maxi-
Kits” von QIAGEN isoliert. Die Lyse der Bakterien und die Abtrennung der Proteine erfolgt im Wesentlichen nach dem Protokoll für die “Mini”-Präparation. Die Präparation wird nach An-
gaben des Herstellers durchgeführt (QIAGEN Plasmid-Kit-Protokoll, 1997).
12.2.3.1 „Mini-Präparation“

Bakterien werden von Einzelkolonien auf Agarplatten mittels Zahnstocher in 3 ml LB-Medium (50 µg/ml Ampicillin) überimpft und in einem Roller-Schüttler mindestens 12 h bei 37°C vermehrt. In einem Eppendorfreaktionsgefäss werden die Zellen aus 1.5 ml dieser Kultur in der Eppendorf-Tischzentrifuge mit 10.000 x g sedimentiert und in 250 µl P1 resuspendiert. Nach Lyse der Bakterien durch die Einwirkung von P2 unter Schwenken des Gefäßes (250 µl P2, 4 bis 5 min bei RT) wird die Aufschlussreaktion durch Hinzufügen von 350 µl N3 gestoppt und durch den hohen Salzgehalt die optimalen Bedingungen für eine effektive Bindung der Plasmid-DNA an das Säulenmaterial eingestellt. Während die Plasmid-DNA renaturiert wird, führt die hohe Salzkonzentration von N3 zusätzlich zur Sedimentation denaturierter Proteine, chromosomaler DNA, Zelltrümmer und SDS. Diese Bestandteile werden beim Zentrifugieren der Suspension in der Tischzentrifuge (10.000 x g, 10 min) abgetrennt. Der klare Überstand wird auf eine Silica-Gel-Säule (QIAprep Spin Column), die spezifisch DNA bindet, appliziert und alle anderen Bestandteile (Salze, Lösungsmittel, RNA, zelluläre Proteinreste) werden jeweils durch kurze Zentrifugaitionsschritte zwischen den Waschschritten (PB-, PE-Puffer) entfernt. Endonucleasen, die DNA degradieren können und in Bakterienstämmen der JM-Serie enthalten sind, werden effizient durch einen einzigen Waschschritt mit 500 µl PB beseitigt. Vor der Elution der DNA mit 50 µl Wasser oder dem Niedrigsalzpuffer EB werden die großen Salzmengen durch Applikation von 750 µl PE und Zentrifugation der Säule bis zur Trockne ausgespült.

12.2.3.2 „Maxi-Präparation“

Aus 100 ml ("high copy"-Plasmide) bzw. 500 ml ("low copy"-Plasmide) Kulturvolumen werden die Bakterien durch 15 min Zentrifugieren bei 6.000 x g in der Hettich-Zentrifuge pelletiert. Das Sediment wird in 10 ml P1 resuspendiert und die Zellen durch Zugabe von 10 ml P2 und 5 min Inkubation bei RT lysiert. Die Proteine, Zellbruchstücke, genomische DNA und SDS werden durch weitere Zugabe von 10 ml eiskalter Lösung P3 und 20 min Inkubation auf Eis gefällt. Das Präzipitat wird beim Zentrifugieren (30 min, 4°C, 20.000 x g =13.000 Upm im Sorvall SS34 Rotor) aus der Lösung entfernt und der Überstand durch einen Faltenfilter auf eine mit 10 ml QBT-Puffer äquilibrierte Silica-Gel-Säule (QIAGEN tip 500) geladen. Die Säule wird zweimal mit je 30 ml QC-Puffer gewaschen und die DNA mit 15 ml QF-Puffer eluiert, mit 0,7 Vol. Isopropanol (RT) gefällt und 30 min bei 15.000 x g, 4°C (Sorvall-Zentrifuge, SS34-Rotor) pelletiert. Das Pellet wird mit Ethanol (70 %, RT) gewaschen, getrocknet (speed vac concentrator), in 200 bis 400 µl EB aufgenommen und bei -20°C gelagert. Die Konzentrationsbestimmung erfolgt über OD-Messung (siehe 12.2.6).
12.2.4 Präparation chromosomaler DNA aus *D. discoideum*

Dictyostelium-Zellen besitzen einen hohen Gehalt an Kohlenhydraten und RNA, so daß chromosomale DNA aus angereicherten Zellkernen isoliert wird (Noegel *et al.*, 1985).

12.2.4.1 Puffer und Lösungen

NP40-Lysispuffer, pH 7.5
- 30 mM HEPES
- 10 mM Mg-Acetat
- 10 mM NaCl
- 10 % Saccharose
- 2 % NP40

EDTA-Sarcosyl-Lösung, pH 8.4
- 200 mM EDTA
- 2% Na-Lauryl-Sarcosinat

TE-Puffer, pH 8.0
- 10 mM TRIS-HCl
- 1 mM EDTA

SDS-Lysispuffer
- 0,7 % SDS in TE-Puffer

Proteinase-K-Lösung
- 25 mg/ml in H₂O.
 - zur Aktivierung vor Gebrauch
 - 30 min bei 37°C inkubieren

12.2.4.2 Gewinnung reiner Kerne

Axenisch kultivierte Zellen (siehe 11.1.1) werden geerntet (5·10⁸ bis 5·10⁹ Zellen), zweimal in eiskaltem, bidestilliertem Wasser gewaschen und in einem geeigneten Volumen (10 bis 100 ml) eiskaltem NP40-Lysispuffer resuspendiert (→ 5·10⁷ Zellen/ml). Im Gegensatz zu den Zellen lysieren die Zellkerne unter diesen Bedingungen nicht und die Vollständigkeit der Zell-Lyse wird nach 5-10 min im Lichtmikroskop überprüft. Die Kerne werden in Corex-Röhren 10 min bei 4°C mit 6.000 x g (8.000 Upm im SS34- oder HB4-Rotor) abzentrifugiert und der Überstand vorsichtig mit einer Pasteurpipette abgezogen.

12.2.4.3 Kern-Lyse

A: Das Kernpellet wird in 1 ml NP40-Lysispuffer aufgenommen. Diese Suspension wird tropfenweise zu 6 ml einer 60°C warmen EDTA-Sarcosyl-Lösung gegeben, auf 8 ml aufgefüllt und mindestens 1 h bei 60°C inkubiert.

B: Das Kernpellet wird in 6 ml SDS-Lysispuffer resuspendiert, mit 60 µl Proteinase-K-Lösung supplementiert, 1 bis 3 h bei 60°C lysiert und mit TE auf 12 ml aufgefüllt.
12.2.4.4 Extraktion und Aufreinigung der DNA mit Phenol/Chloroform

12.2.4.5 Aufreinigung über Gradienten-Zentrifugation mit Cäsiumchlorid

Die aufgereinigten und lysierten Kerne (aus der Präparation A) werden mit CsCl zu einer Endkonzentration 0.9 g/ml (hier 7. 56 g) und Ethidiumbromid zur Endkonzentration 10mg/ml (hier 400 µl) versetzt und verteilt auf Plastik-Zentrifugenröhrchen (Quickseals) 10 bis 18 h bei 15°C in einem Vertikalrotor (VT165) mit 50.000 Upm zur Bildung des Cäsiumchlorid-Gradienten zentrifugiert. Die durch Ethidiumbromidfärbung sichtbare DNA-Bande wird nach Aufschneiden der Verschlußklappe durch seitliches Anstechen des Zentrifugenröhrchens mit einer Einmalspritze (Kanüle ∅ 0.9 mm) isoliert, das Ethidiumbromid durch Isopropanol-Extraktion (mit gesättigter NaCl-Lösung äquilibriert) aus der Lösung entfernt und die saubere DNA mit 2 Vol. H2O versetzt. Aus dieser Lösung kann die DNA mit 2 Vol. Ethanol gefällt und mit einem Glashäkchen ausgedreht werden. Es folgen Reinigung mit 70% Ethanol, Entwässerung (Ethanol absolut), Lufttrocknung und Lösung der DNA in TE-Puffer über Nacht. Lagerung bei 4°C.

12.2.5 Fragmentisolierung aus DNA-Gelen nach dem QIAGEN-Verfahren

DNA-Fragmente können nach Auftrennung im Agarose-Gel (12.3.1) nach dem QIAGEN Protokoll (QIAquick Spin Handbook/ Gel Extraction Kit Protokoll) isoliert werden. Das die interessierende Bande enthaltende Agarosstück wird mit einer sterilen Skalpellklinge aus dem Gel herausgeschnitten und in einem Eppendorfröhrchen mit drei Volumenteilen QX1-Puffer 10 min bei 50°C aufgelöst (das Volumen der Gelscheibe bestimmt man unter
der Annahme einer Dichte von 1 g/l durch Abwiegen). Der Puffer QX1 enthält ein chaotropes Reagens (Nal oder NaClO₄), das die Bindung der DNA an Silica-Gel-Oberflächen durch Modifizierung der Struktur von Wasser optimiert (Vogelstein und Gillespie, 1979; Hamaguchi und Geiduscheck, 1962). Nach Addition von 1 Gelvolumen Isopropanol wird die Lösung auf ein Silica-Gel-Säulchen appliziert und nicht bindende Anteile durch kurze Zentrifugation (1 min, 14.000 Upm, Eppendorf-Tischzentrifuge) und Waschen der Säulenmatrix mit 750 µl PE-Puffer entfernt. Vor der Elution der DNA mit 30 bis 50 µl EB (12.2.1) werden letzte Ethanolreste beim Trockenzentrifugieren entfernt.

12.2.6 Bestimmung der Konzentration von DNA und RNA in einer Lösung

Die Konzentration und Reinheit von Nukleinsäure-Lösungen (DNA, RNA, Oligonukleotide) wird in Quarzkuvetten über ihre Lichtabsorption (optische Dichte OD) im Spektralphotometer bestimmt. Nukleinsäuren absorbieren aufgrund ihrer Basen bei einer Wellenlänge λ zwischen 250 bis 270 nm und bei 260 nm maximal, wobei bei einer Schichtdicke von 1 cm der OD₂₆₀ = 1 etwa 50 µg/ml dsDNA oder 37 µg/ml ssDNA oder RNA bzw. 20 µg/ml Oligonukleotide (siehe 12.5.2) entspricht. Proteine haben ihr Absorbtionsmaximum bei 280 nm, welches auf dem Gehalt an Tyrosin- und Tryptophan-Resten beruht, wobei hier 1 OD₂₈₀ ungefähr 1.8 mg/ml Protein entspricht. Der Quotient OD₂₆₀/OD₂₈₀ gibt Auskunft über die Reinheit einer Nukleinsäure-Präparation:

\[
\frac{OD_{260}}{OD_{280}} = 1.8 \text{ bis } 1.95 \quad \text{ (sehr reine dsDNA-Lösungen)}
\]
\[
\frac{OD_{260}}{OD_{280}} = 1.9 \text{ bis } 2.0 \quad \text{ (sehr reine RNA-, ssDNA-Lösungen)}
\]

12.3 Chromatographie von DNA- und RNA-Fragmenten und Transfer auf Trägermembranen

12.3.1 DNA-Agarose-Gelelektrophorese

Agarose wird in 1x Loening- oder 1x TBE-Puffer unter Kochen gelöst und nach Zugabe von Ethidiumbromidlösung (Stocklösung 10 mg/ml) in Flachbettgelapparaturen verschiedener Größe gegossen (alternativ werden die Gele ohne Ethidiumbromid gegossen und nach der Elektrophorese in einem Ethidiumbromidbad [1 µg/ml Ethidiumbromid in H₂O] 10 bis 60
min gefärbt und in H₂O entfärbt). Die DNA-Proben werden mit einem geeignetem Volumen Probenpuffer (i.d.R. 0.5 Vol.) versetzt und in die Taschen des erstarrten Gels geladen. Für kleine Gele (ca. 10 x 8 cm) werden etwa 100 bis 300 ng DNA pro Tasche, für ein präparatives Gel (ca. 15 x 20 cm, z.B. für genomischen Southernblot) 5 µg DNA pro Tasche aufgetrennt. Als Größenstandard dienen die in 10.9.1 aufgeführten Marker. Die Elektrophorese erfolgt in 1x TBE- oder 1x Loening-Puffer bei 5 bis 10 V/cm. Das Gel wird auf einem UV-Illuminator (302 nm) fotografiert.

Agarose-Gel
- 0.7 bis 2 % Agarose (w/v)
- in 1x TBE- (oder 1x Loening-) Puffer
- 0.1 bis 0.3 µg/ml Ethidiumbromid

DNA-Probenpuffer
- 50 % Saccharose (w/v)
- 0.5 % SDS
- 0.2 % Bromphenolblau

12.3.2 Southern-Transfer

Gel: Das zu blottende Agarose-Gel wird zur späteren Auswertung unter UV-Licht, bei Bedarf (insbesondere bei dem radioaktiven Verfahren, bei dem der normale DNA-Standard im Röntgenfilm nicht erkennbar ist) mit einem Längenmarker fotografiert und anschließend bei RT unter moderatem Schütteln wie folgt prozessiert:

1. zweimal 15 min Denaturieren und Fragmentieren
2. Spülen in sterilem destilliertem H₂O
3. zweimal 15 min Neutralisieren (Lösung1)
4. Spülen in sterilem destilliertem H₂O
5. 5 min Äquilibrieren in 20x SSC.

Membran: Die Nylonmembran wird vor Verwendung in 20x SSC äquilibriert.

Southern-Aufbau: Das Gel wird auf eine Schicht aus 3 Lagen mit 20x SSC getränktem Whatmanpapier gelegt, die über einen weiteren Whatman-Schal in Kontakt mit der in einer Wanne befindlichen 20x SSC-Lösung steht. Die äquilibrierte Nylonmembran wird auf das Gel luftblasenfrei aufgelegt und mit einer zweiten Schicht Whatman-Papierlagen sowie einem 10 cm hohen Stapel trockener Saugpapiere bedeckt. Dieser Aufbau wird mit einem Gewicht beschwert und der „schwerkraftunterstützte“ Transfer (Chomczynski, 1992) ca. 16
bis 20 h durchgeführt. Nach dem Abnehmen und Verpackung der Membran in Frischhaltefolie wird die DNA durch 5 min Bestrahlung mit UV (302 nm) kovalent an die Trägeroberfläche gebunden. Nach kurzem Spülen in 2x SSC und Trocknung an Luft ist die Membran bis zur Verwendung trocken bei –20°C (für DIG-Detektion bei 4°C) zu lagern.

12.4 Detektion mit DNA-Sonden

12.4.1 Markierung von DNA-Fragmenten mit radioaktive Sonden

12.4.1.1 32P-Markierung von DNA-Sonden

Puffer, Materialien (im Prime It® II Random Primer Labeling Kit enthalten)

<table>
<thead>
<tr>
<th>Puffer, Materialien</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x dATP-Reaktionspuffer</td>
<td>0.1 mM dTTP</td>
</tr>
<tr>
<td></td>
<td>0.1 mM dCTP</td>
</tr>
<tr>
<td></td>
<td>0.1 mM dGTP</td>
</tr>
<tr>
<td>Oligonukleotidgemisch*</td>
<td>Random Primer (Nonamere = 9mer)</td>
</tr>
<tr>
<td></td>
<td>27 OD-Einheiten/ml</td>
</tr>
<tr>
<td></td>
<td>in gepufferter wäßriger Lösung</td>
</tr>
<tr>
<td>Exo'-Klenow-Fragment*</td>
<td>5U/µl in gepufferter Glycerinlösung</td>
</tr>
<tr>
<td>$[\alpha$-32P]-dATP</td>
<td>10mCi/ml = 370 Mbq/ml</td>
</tr>
<tr>
<td>Sephadex-G50-Gelfiltrations-Säulchen</td>
<td>QuickSpin™Columns (Boehringer Mannheim)</td>
</tr>
</tbody>
</table>

In einem Eppendorf-Röhrchen werden 25ng DNA in 24µl H$_2$O mit 10µl des Oligonukleotidgemisches in einem Wasserbad 5min bei 100°C denaturiert und nach Abkühlen auf RT kurz abzentrifugiert. Nach Zugabe von 10µl 5x dATP-Reaktionspuffer, 5µl radioaktiv markiertem dATP (3000 Ci/mmol) und 1µl Exo'-Klenow-Enzym wird die Synthesereaktion 10min bei 37°C im Heizblock durchgeführt. Die nicht eingebauten Nukleotide werden durch Auftragen des Ansatzes auf Gelfiltrations-Säulchen und 2min Zentrifugation in der Hettich-Zentrifuge mit 1200 Upm von der markierten DNA abgetrennt. Im Durchfluß befindet sich die
Sonde, die entweder bei –20°C gelagert oder direkt in der nachfolgenden Hybridisierungs-Reaktion eingesetzt wird.

12.4.1.2 Hybridisierung mit 32P-markierten Sonden

Hybridisierungspuffer

"Rapid-Hyb"-Puffer (Amersham)

2x SSC-Waschpuffer

2x SSC
0.1% SDS

30 % Formamidwaschpuffer

30% Formamid
120 mM Na-Phosphat (pH 6.8)
2 mM EDTA (pH 7.2)
0.2 % SDS
1 % Sarcosyl
in 2x SSC

50 % Formamidwaschpuffer

50% Formamid
120 mM Na-Phosphat (pH 6.8)
2 mM EDTA (pH 7.2)
0.2 % SDS
1 % Sarcosyl
in 2x SSC

Die gemäß Protokoll für Plaque lifts (Kapitel 12.1.5) bzw. für Southernblots (Kapitel 12.3.2) vorbereitete Nylonmembran wird in Hybridisierungsröhren mit „Rapid-Hyb“-Puffer 20min bei 60-65°C im Hybridisierungsofen vorinkubiert. Die Sonde (Kapitel 12.4.1.1) wird zur Verwendung in 500 µl „Rapid-Hyb“-Puffer verdünnt, 5 min im Heizblock bei 95°C denaturiert und nach sofortiger Abkühlung auf Eis direkt in den Hybridisierungspuffer zu der vorhybridierten Membran gegeben. Die Endkonzentration der Sonde sollte bei etwa 2ng/ml liegen (dazu wird die gesamte markierte DNA aus einer 25 ng-Labeling-Reaktion in 20 ml Rapid-hyb-Puffer verdünnt). Die Hybridisierungsreaktion wird über Nacht bei 60°C durchgeführt. Anschließend wird die DNA-haltige Lösung entfernt (wird bei –20°C aufbewahrt und vor Wiederverwendung erneut denaturiert), der Blot zweimal 15 min in 2x SSC-Waschpuffer bei RT und 1 h in 30 % Formamidwaschpuffer bei 37°C unter Schütteln in einer Schale gewaschen (für stringenteres Waschen kann anstelle des 30 %igen der 50 %ige Formamidwaschpuffer oder 1 bis 0.1x SSC/0.1% SDS bei 42°C verwendet werden). Die Membran wird zwischen zwei Whatman-Papieren getrocknet und ein Röntgenfilm in einer Kassette mit Verstärkerfolie bei -70°C exponiert.

DNA-Blots können nach einer Hybridisierung wiederverwendet werden, indem man die Sonden durch 1-3-minütiges Kochen der Membran in 1 mM EDTA/0,1 % SDS-Lösung denaturiert ("abschmilzt").
12.4.2 Markierung von DNA-Fragmenten mit nichtradioaktiven Sonden

12.4.2.1 Puffer und Lösungen

für Markierung der Sonde

Hexanukleotid-Mixtur, pH 7.2
1.56 mg/ml „Random“ Hexanukleotide
500 mM Tris-HCl
100 mM MgCl₂
1 mM Dithioerythrol (DTE)
1 mg/ml BSA

DNT „labeling“ Mixtur, pH 6.5
1 mM dATP
1 mM dCTP
1 mM dGTP
1 mM dTTP
0.35 mM DIG-dUTP (alkali-labil)

Klenow Enzym
2U/µl (DNA Polymerase I-Fragment) aus *E. coli*

unmarkierte Kontroll-DNA
200 mg/ml pBR328-EcoRI-linearisiert

Stop-Lösung, pH 8.0
200 mM EDTA in H₂O

DIG-markierte DNA (Kontrolle)
5 µg/ml pBR328-DIG in 25 µg/ml DNA

DNA-Verdünnungspuffer, pH 8.0
10 mM Tris-HCl
50 µg/ml DNA aus Hering-Spermien

für Hybridisierung

Hybridisierungspuffer
5x SSC
0.02 % SDS
2 % Block-Stocklösung (10%)
50 % Formamid (deionisiert); [50g Ionenaustauscherharz (AG501-X8, Biorad)
500 ml Formamid
30 min Rühren (RT), Filtrieren]
0.1 % N-lauroylsarcosin:
[10% (w/v) in sterilem H₂O filtriert (0.2-0.45 µm)]
2x SSC-Waschpuffer
2x SSC
0.1% SDS

0.5x SSC-Waschpuffer
0.5x SSC
0.1% SDS

für Detektion

Maleinsäurepuffer, pH 7.5
100 mM Maleinsäure
150 mM NaCl
autoklavieren

Maleinsäure-Wasch-Puffer, pH 7.5
0.3% (v/v) TWEEN®20
in Maleinsäurepuffer

Blockierungs-Stocklösung, pH 7.5
10% (w/v) Block-Reagenz
(Boehringer Mannheim)
in Maleinsäurepuffer
unter Rühren bei 60°C lösen,
danach autoklavieren, bei 4°C lagern

Blockierungspuffer, pH 7.5
1 % (v/v) Block-Stocklösung (10%)
1:10 in Maleinsäurepuffer verdünnte

anti-DIG-ALKP
anti-DIG-Antikörper (Fab-Fragment)
alkalische Phosphatase konjugiert

Detektionspuffer, pH 9.5
100 mM Tris-HCl
100 mM NaCl

CSPD®
25mM

12.4.2.2 Inkorporation von Digoxigenin (DIG) in DNA-Sonden

Die Matritzen- oder eine entsprechende Kontroll-DNA (Gesamtmenge 10ng bis 3µg) werden in H₂O auf ein Volumen von 15µl verdünnt (0.5 bis 200 ng/µl), 10 min im Wasserbad bei 100°C denaturiert und sofort auf Eis abgekühlt. Der Lösung werden 2 µl Hexanukleotide (10x Gemisch Random Primer), 2 µl 10x dNTP-Mixtur und 1 µl Klenow Enzym (Endkonzentration 100 U/ml) zugegeben. Die Labeling-Reaktion findet bei 37°C mindestens 1 bis 20 h statt und wird durch Zugabe von 2 µl 200 mM EDTA-Lösung gestoppt. Die Ausbeute ist von der eingesetzten DNA-Menge und der Reaktionszeit abhängig (Tabelle 8).
<table>
<thead>
<tr>
<th>Matritzen-DNA</th>
<th>DIG-DNA nach 1h</th>
<th>DIG-DNA nach 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ng</td>
<td>15 ng</td>
<td>50 ng</td>
</tr>
<tr>
<td>30 ng</td>
<td>30 ng</td>
<td>120 ng</td>
</tr>
<tr>
<td>100 ng</td>
<td>60 ng</td>
<td>260 ng</td>
</tr>
<tr>
<td>300 ng</td>
<td>120 ng</td>
<td>500 ng</td>
</tr>
<tr>
<td>1000 ng</td>
<td>260 ng</td>
<td>780 ng</td>
</tr>
<tr>
<td>3000 ng</td>
<td>530 ng</td>
<td>890 ng</td>
</tr>
</tbody>
</table>

Tabelle 8 DIG-Markierungsausbeute in Abhängigkeit von der Ausgangsmenge DNA und der Inkubationszeit

Die Markierungseffizienz muß vor Verwendung der Sonde (zur Vermeidung von unspezifischen oder fehlenden Markierungen) in einem direkten Detektions-Assay mittels Dot-blot folgendermaßen getestet werden. Aus der DIG-markierten Kontroll-DNA wird durch schrittweises Verdünnen mit DNA-Verdünnungspuffer jeweils im Verhältnis 1:10 eine Verdünnungsreihe (1ng/µl bis 0.01 pg/µl) hergestellt. Die Konzentration der markierten experimentellen DNA wird aus der eingesetzten DNA-Menge und der Reaktionszeit unter Zuhilfenahme der Tabelle 8 geschätzt und eine Verdünnung zu ungefähr 1ng/µl hergestellt. Aus dieser Vorverdünnung wird die oben beschriebene Verdünnungsreihe erstellt. Je 1µl jeder Kontrollprobe werden in einer Reihe, die korrespondierenden Verdünnungen der experimentellen Proben in einer zweiten Reihe auf ein Stück Nylonmembran pipettiert und die DNA nach kurzem Trocknen der Membran an Luft durch 5 min UV-Bestrahlung oder 30 min Bakken bei 120°C immobilisiert. Die Membran wird anschließend genauso behandelt wie im Kapitel Detektion beschrieben. Die entstehenden Signale auf einem Röntgenfilm können in ihrer Intensität (Durchmesser der Spots) direkt verglichen und daraus die DIG-Konzentration der markierten Probe abgeschätzt werden.

12.4.2.3 Hybridisierung

Die Puffer und Temperaturen sind so gewählt, daß man von stringenten Hybridisierungs- und Waschbedingungen ausgehen kann. Die vorbereitete Nylon-Membran (siehe 12.3.2 und 12.1.5) wird zum Abblocken ihrer unspezifischen Nukleinsäure-Bindungsstellen mit 20 ml Hybridisierungspuffer pro 100 cm² bei 42°C mindestens 2 h in Hybridisierungsröhren vorhybridisiert. Die DIG-markierte DNA-Sonde wird verdünnt auf 5 bis 25 mg/ml in Hybridisierungspuffer (50% Formamid, auf 42°C vorgewärmt) auf die Membran gegeben. Die Hybridisierung erfolgt über Nacht bei 42°C im Hybridisierungsofen. Nach dem Abgießen der Hybridisierungslösung wird ungebundenes Material durch Spülen der Membran wie folgt entfernt: zweimal je 5 min bei RT in 2x SSC-Waschpuffer und zweimal je 15 min 68°C in 0.5x
SSC-Waschpuffer (für höchststringentes Waschen der Membran wird 0.1x SSC/0.1% SDS-Waschlösung verwendet).

Die Sonde ist bei –20°C etwa 1 Jahr lagerfähig und kann für weitere Hybridisierungen wiederverwendet werden. Dazu muß sie vor Gebrauch durch 10 min Erhitzen auf 68°C denaturiert werden.

12.4.2.4 Detektion

Die Membran wird zunächst kurz mit Waschpuffer, danach 30 min mit Blockpuffer und weitere 30 min mit anti-DIG-ALKP, 1:10.000 (für Bestimmung der DIG-Markierungseffizienz der Sonde 1:5000) in Blockpuffer verdünnt, bei RT behandelt. Ungebundenes Material wird mit Maleinsäure-Waschpuffer (zweimal 15 min, RT) entfernt. Nach Äquilibrieren der Membran in Detektionspuffer (2min) wird sie naß in Plastikfolien verpackt und nach Applikation des Substrates (CSPD, 1:100 verdünnt in Detektionspuffer, 0.5 ml/100cm²) eingeschweißt und 15 min bei 37°C aktiviert. Durch Auflegen eines Röntgenfilms werden die ausgesendeten Lichtsignale detektiert. Bei Erreichen des Reaktionsgleichgewichtes (nach ca 7 bis 8 h Inkubation bei RT) genügt eine Exposition von 15 min für eine ideale Signaldetektion bei geringstem Hintergrund. Die Detektion ist insgesamt ca 2 Tage möglich.

Die alkali-labile DIG-Sonde kann von der Membran nach kurzem Spülen in H₂O zur Entfernung des Substrates 10 min mit 0.2 M NaOH/0.1% SDS-Lösung bei 37°C entfernt werden. Der Blot wird anschließend in 2x SSC geschwenkt. Die erneute Hybridisierung beginnt mit dem Vorhybridisierungsschritt.

12.5 Enzymatische Reaktionen

12.5.1 Polymerase-Kettenreaktion (PCR)

12.5.1.1 Standard-Reaktion

Die Polymerase-Kettenreaktion (Polymerase Chain Reaction, PCR) ist eine Methode zur *in vitro*-Amplifikation beliebiger DNA-Abschnitte von bis zu 20 kb Länge zwischen zwei Regionen bekannter Sequenz (Saiki *et al.*, 1985). Durch Anwendung eines vielfach wiederholten Reaktionszyklus bestehend aus Denaturierung, Primerhybridisierung ("Annealing") und DNA-Polymerisierung (Elongation) wird eine doppelsträngige DNA-Matritze (Plasmide, λgt11-Phagen, lineare DNA-Stücke aus Restriktionsreaktionen u.s.w.) unter Verwendung spezifischer "Primer" (Oligonukleotide mit bekannter Sequenz, die aus getrennt liegenden Abschnitten dieser Vorlage abgeleitet werden), Desoxyribonukleotiden in Gegenwart der hitzebeständigen *Taq*-DNA-Polymerase (Chien *et al.*, 1976) vervielfältigt. Bei entsprechendem
Design der Primer können in die neu synthetisierte DNA beliebige Sequenzen z.B. für Schnittstellen eingeführt werden. Die Taq-DNA-Polymerase hängt außerdem einzelne Deoxyadenosinreste am 3'-Ende des PCR-Produktes an. Diese Überhänge wie auch die Schnittstellen können zur Klonierung herangezogen werden (siehe 12.5.6).

Puffer/Reagenzien

<table>
<thead>
<tr>
<th>Puffer/Reagenzien</th>
<th>10x PCR-Puffer (Perkin Elmer), pH 8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mM Tris-HCl</td>
</tr>
<tr>
<td></td>
<td>500 mM KCl</td>
</tr>
<tr>
<td></td>
<td>15 mM MgCl₂</td>
</tr>
<tr>
<td></td>
<td>0.01% (w/v) Gelatine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puffer/Reagenzien</th>
<th>10x PCR-Puffer (Amersham), pH 8.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>260 mM Tris-HCl</td>
</tr>
<tr>
<td></td>
<td>26 mM MgCl₂</td>
</tr>
</tbody>
</table>

10 mM dNTP’s	2.5 mM dATP
	2.5 mM dCTP
	2.5 mM dGTP
	2.5 mM dTTP in H₂O

Oligonukleotid-Primer

<table>
<thead>
<tr>
<th>Oligonukleotid-Primer</th>
<th>100 pmol/µl in H₂O</th>
</tr>
</thead>
</table>

Enzyme

<table>
<thead>
<tr>
<th>Taq-DNA-Polymerase (Amersham)</th>
<th>5U/µl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in 20 mM Tris-HCl (pH 8.0)</td>
</tr>
<tr>
<td></td>
<td>100 mM KCl</td>
</tr>
<tr>
<td></td>
<td>1 mM DTT</td>
</tr>
<tr>
<td></td>
<td>0.1 mM EDTA</td>
</tr>
<tr>
<td></td>
<td>50 % Glycerol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AmpliTaq®-DNA-Polymerase (Perkin Elmer)</th>
<th>5U/µl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in 20 mM Tris-HCl (pH 8.0)</td>
</tr>
<tr>
<td></td>
<td>100 mM KCl</td>
</tr>
<tr>
<td></td>
<td>0.1 mM EDTA</td>
</tr>
<tr>
<td></td>
<td>1 mM DTT</td>
</tr>
<tr>
<td></td>
<td>50 % Glycerol</td>
</tr>
<tr>
<td></td>
<td>0.5 % TWEEN 20°</td>
</tr>
<tr>
<td></td>
<td>0.5 % NP40®</td>
</tr>
</tbody>
</table>

Reaktionsansatz (100 µl)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phagen-Lysat</td>
</tr>
<tr>
<td></td>
<td>1 µM</td>
</tr>
<tr>
<td></td>
<td>800 µM</td>
</tr>
<tr>
<td></td>
<td>1x PCR-Reaktions-Puffer</td>
</tr>
<tr>
<td></td>
<td>5U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menge bzw. Endkonzentration</th>
<th>1-10 µl DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 µl Primer A (100 pmol/µl)</td>
</tr>
<tr>
<td></td>
<td>1 µl Primer B (100 pmol/µl)</td>
</tr>
<tr>
<td></td>
<td>8 µl dNTP’s (10 mM)</td>
</tr>
<tr>
<td></td>
<td>10 µl 10x PCR-Reaktions-Puffer</td>
</tr>
<tr>
<td></td>
<td>1 µl Taq-DNA-Polymerase</td>
</tr>
<tr>
<td></td>
<td>69-78 µl H₂O</td>
</tr>
</tbody>
</table>
Reaktionsbedingungen

Der Ansatz wird in 0.5 ml Reaktionsgefäßen zur Vermeidung der Evaporation von Flüssigkeit mit Mineralöl überschichtet und in einem PCR-„Thermocycler“ (Perkin Elmer Cetus) folgendem Zyklus unterworfen:

1. Zyklus
 5 min, 94°C (Denaturieren)
 1 min, 50 bis 60°C (Annealing)
 2.5 min 65 oder 72°C (Elongation)

2.-31. Zyklus
 1 min 94°C
 1 min 50 bis 60°C
 2.5 min 65 oder 72°C

32. Zyklus
 1 min 94°C
 1 min 50 bis 60°C
 5 bis 10 min 65 oder 72°C

$$T_M = 4 \cdot (\Sigma G;C) + 2 \cdot (\Sigma A;T)$$

Die Dauer der Polymerisation hängt von der Länge des zu amplifizierenden Fragments ab (Faustregel: 1 kb/min). Der letzte Elongationsschritt wird zum sicheren Auffüllen einzelnsträngig verbliebener DNA-Stücke verlängert (5 min, für TA-Klonierung 7 bis 10 min).

12.5.1.2 Inverse PCR

Prinzip

Zur Amplifikation von Sequenzabschnitten, die nicht zwischen zwei bekannten, von den Primern begrenzten, Regionen sondern außerhalb dieses Bereichs liegen, wird das Standardverfahren der PCR abgewandelt zur sogenannten inversen PCR (Triglia et al., 1988, Ochman et al., 1989). Hier wird die DNA-Matritze nicht komplett und in ihrer linearen Form, sondern in Form kleinerer ringförmiger Moleküle eingesetzt. Dazu wird die chromosomale DNA mit einem geeigneten Restrikionsenzym vollständig in Stücke von maximal 1 kb Größe hydrolysier und dabei so stark verdünnt, daß statistisch bevorzugt ein Ringschluß der DNA stattfindet (die 5'- und 3'-Enden jeweils eines Moleküls werden religiert). Diese zir-
kuläre DNA wird in die PCR eingesetzt. Zur Feststellung geeigneter Restriktionsenzyme und der Primer ist eine vorhergehende Identifizierung der entstehenden Gen-Fragmente durch Southernblot-Analyse mit Sonden aus bekannten Genabschnitten notwendig.

Herstellung des Templates

Etwa 8-10 µg genomische proteinfreie DNA (Herstellung siehe 12.2.4) wird zunächst 3-4 Stunden mit dem ausgewählten Enzym (ca. 40 Units) in einem Reaktionsvolumen von 100 µl und nach Zugabe von zusätzlich 20 Units und Verdünnung des Ansatzes mit Puffer und Wasser auf 200 µl eine weitere Stunde verdaut (siehe 12.5.3). Der Ansatz wird 1.5 h bei 37°C einer RNAse-Behandlung unterzogen (10 ng RNAse A, SIGMA). Das phenolextrahierte, mit Ethanol gefällte, getrocknete Pellet der so aufgereinigten DNA (12.2.4.4) wird in 200 µl Tris-HCl (pH 7.4) aufgenommen und komplett in die Ligationsreaktion für mindestens 24 h mit 10 bis 15 µl T4-Ligase (1U/µl, Boehringer), unter Zusatz von 1mM ATP eingesetzt.

PCR-Reaktion

Die zirkulären Stücke werden nach Aufreinigung (Phenolisieren, Fällen, Lösung in 100µl Tris-HCl, pH 7.4, 12.2.4.4) als Template in der nachfolgenden PCR eingesetzt. Die Primer werden so konzipiert, daß einer nahe am 5'-Ende bindet und Gen-aufwärts gerichtet ist, der zweite am 3'-Ende die entgegengesetzte Richtung vorgibt und bei linearer DNA die Richtung der Polymerisation auseinanderlaufend wäre und kein PCR-Produkt entstehen würde. Durch den Ringschluß werden nun nicht wie in der linearen PCR die Bereiche zwischen den Primern sondern die flankierenden unbekannten Abschnitte amplifiziert. Die PCR-Reaktion selbst wird wie im Standardverfahren durchgeführt und die üblichen Konzentrationen der verwendeten Lösungen (Primer, Template u.s.w.) eingesetzt.

12.5.2 Oligonukleotide

12.5.3 Verdau mit Restriktionsenzymen

12.5.4 DNA-Dephosphorylierung am 5’-Ende

Zur Vermeidung der Rezirkularisierung eines linearisierten Vektors wird die Phosphatgruppe am 5’-Ende mit alkalischer Phosphatase aus Kälberdarm (CIAP) entfernt (Maniatis et al., 1989). Nach dem Restriktionsverdau des Vektors (12.5.3) und seiner anschließenden Aufreinigung über ein Silica-Gel-Säulchen („QIAquick Spin Column“, 12.5.7) wird die gewonnene DNA-Lösung in einem Gesamtvolumen von 100 µl mit 1/10 Vol 10x CIAP-Puffer, 2U CIAP und H₂O bei 37°C zunächst 30 min und nach Zugabe von weiteren 2U Enzym nochmal 30 min im Heizblock inkubiert. Das Enzym wird entweder 10 min bei 65°C inaktiviert und die DNA durch Phenolisieren und Fällen (12.2.4.4) extrahiert oder gleich über einen Chromatographieschritt an einer QIAquick Spin-Säule abgetrennt (12.5.7).

10x CIAP-Puffer (Boehringer Mannheim)
0.5 M Tris-HCl (pH 8.5)
1 mM EDTA

CIAP 1U/µl (Boehringer Mannheim)
25 mM Tris-HCl (pH 7.6)
1 mM MgCl₂
0.1 mM ZnCl₂
50% (w/v) Glycerol

12.5.5 Überführung von überhängenden 5’-Enden in glatte Enden

Reaktionsansatz 50 µl
30 µl Vektor-DNA (ca. 5-10µg)
5 µl 10 x „Filling-In“-Puffer (USB)
0.1 mM dNTP-Lösung (2 µl 10 mM Stock = à 2.5 mM)
2 µl Klenow-Enzym (2U/µl)
11 µl H₂O
Der Ansatz wird zunächst 30min bei RT und anschließend 15min bei 37°C inkubiert. Die Reaktion wird durch Zugabe von 1/10 Vol 200 mM EDTA-Lösung gestoppt und die DNA über eine Silica-Gel-Säule (QIAquick) abgetrennt.

12.5.6 Ligation

12.5.6.1 Ligation mit T4-Ligase

Mit der DNA-Ligase-Reaktion werden DNA-Fragmente und linearisierte Vektoren, die entweder glatte oder kompatible kohäsive Enden besitzen, unter Bildung von Phosphodiesterbindungen miteinander verknüpft. Bei Verwendung der T4-DNA-Ligase und des Ligationspuffers von Boehringer Mannheim wird die Reaktion über Nacht bei 8-16°C durchgeführt. Die einzusetzenden DNA-Mengen werden in einem Agarose-Gel (12.3.1) oder durch Bestimmung der OD (12.2.6) so abgeschätzt, daß das molare Verhältnis von Vektor- zu Insert-DNA etwa 1 : 3 beträgt.

Reaktionsansatz 20 µl

1 µl Vektor-DNA (ca. 100 ng)
10 µl DNA (ca. 300 ng Insert-DNA)
2 µl 10 x Ligationspuffer (Boehringer Mannheim)
2 µl T4-DNA-Ligase (1 U/µl, Boehringer Mannheim)
2 µl 5mM ATP
3 µl H₂O

10 x Ligationspuffer, pH 7.5

660 mM Tris-HCl
50 mM MgCl₂
10 mM Dithioerythrit (DTE)
10 mM ATP

12.5.6.2 TA-Klonierung

Prinzip

Man nutzt die vom Template unabhängige terminale Transferaseaktivität der Taq-Polymerase aus, die an den 3'-Enden des PCR-Produktes einen einzeln Deoxyadenosinrest anhängt. Das Plasmid besitzt den dazu komplementären Deoxythymidin-Überhang am 3'-Ende und kann so effizient mit dem Insert ligiert werden. Die Methode wird entsprechend TA-Klonierung genannt.

Klonierung in pGEM-T (Promega)

Bei Verwendung des Promega-Klonierungs-Systems werden der mitgelieferte Reaktionspuffer und eine spezielle T4-Ligase, der jegliche Exonukleaseaktivität fehlt, eingesetzt. Nach der Inkubation von 3 h bei 15°C kann ein Aliquot von 2 µl für einen ersten Transforma-
tionsversuch direkt verwendet werden. Zur Sicherheit wird die Reaktion mit dem restlichen Ansatz über Nacht bei 4°C fortgesetzt und bis zur Verwendung bei –20°C gelagert.

Reaktionsansatz 10 µl
- 1 µl pGEM T-Vektor (50 ng, Promega)
- X µl PCR- oder A-tailing-Produkt (oder Kontroll-Insert)
- 1 µl 10x T4-DNA-Ligase-Puffer (Promega)
- 1 µl T4-DNA-Ligase (1U/µl, Promega)
- X µl dH2O

10x Ligationspuffer, pH 7.5
- 300 mM Tris-HCl
- 100 mM MgCl2
- 100 mM DTT
- 10 mM ATP

Ligation mit Topoisomerase (TOPO-TA-Klonierung)

Bei der TOPO-TA-Reaktion finden die Ligationsreaktion und Transformation (12.6.2.2) unmittelbar hintereinander statt. Anstelle der üblichen T4-Ligase zur Verbindung der DNA-Enden von Vektor und Insert wird Topoisomerase als Enzym verwendet.

TOPO-Reaktionsansatz 5µl
- 0.5 bis 2 µl DNA (5-20 ng frisches PCR-Produkt oder nach A-Tailing)
- 1 µl TOPO-pCR®-Vektor (enthält Topoisomerase)
- X µl H2O bis Gesamtvolumen

Der Ansatz für die TOPO-Klonierungsreaktion wird nach Mischen 5 min bei RT inkubiert und bis zur unmittelbar folgenden Transformation (12.6.2.2) auf Eis aufbewahrt.

A-Tailing-Reaktion (Protokoll Promega pGEM®-T-Vektor-System, modifiziert):

Direkt nach der Amplifikation (12.5.1):

Der komplette PCR-Reaktionsansatz (100 µl) wird zur Denaturierung der DNA 20 min bei 95°C im Heizblock erhitzt. Nach Zugabe von dATP (2 mM Stock, Endkonzentration 0.5 mM) und 10 Einheiten Taq-Polymerase/100 µl Ansatz wird der Ansatz 15 min bei 70°C inkubiert und bis zur Verwendung in der Ligation auf Eis gestellt.
nach Aufreinigung des PCR-Produktes (12.5.7):

1 bis 2 µl des aufgereinigten PCR-Fragments werden mit 1 µl 10xPCR-Reaktionspuffer, 1 µl 25 mM MgCl₂, dATP bis zur Endkonzentration von 0.2 mM, 5 Einheiten Taq-DNA-Polymerase versetzt und mit deionisiertem Wasser auf 10 µl aufgefüllt. Nach Denaturierung bei 95°C wird der Ansatz für 15 bis 30 min auf 70 °C gehalten.

12.5.7 Reinigung von DNA-Fragmenten aus PCR, Dephosphorylierungs-, Verdaun- und Ligationsansätzen

12.5.8 DNA-Sequenzierung

Sequenzierungen von Plasmid-DNA wurden von der Firma TopLab (Martinsried) mit einem Sequenzierautomaten durchgeführt (Dideoxy-Kettenabbruch-Methode, Sanger et al., 1977).

12.6 Transformation von Bakterien

12.6.1 Herstellung transformationskompetenter E.coli

Die am häufigsten angewandten Verfahren, um E.coli-Zellen transformationskompetent für die Aufnahme von Plasmid-DNA durch Hitzeschock zu machen, sind die CaCl₂-Methode (Mandel und Higa, 1970; Dagert und Ehrlich, 1979) und die Mehrionentechnik (Hannah, 1983). Der Vorteil der ersten Methode ist die leichtere Durchführbarkeit, die Mehrionen-Methode liefert dagegen höhere Ausbeuten an transformierbaren Zellen. Die CaCl₂-Methode wurde nur einmal für den E.coli-Stamm JM109 verwendet und aufgrund unbefriedig-
gender Transformationskompetenz der Bakterien bei nachfolgenden Präparationen (JM83, JM105 und JM109) durch das Mehrionenprotokoll ersetzt.

12.6.1.1 Calziumchlorid-Methode

Eine frisch aus eingefrorenen Zellen angeimpfte Übernachtkultur des gewünschten E. coli-Stamms in LB-Medium (3 ml, 37°C) wird in 200 ml LB-Medium verdünnt (1:70) und auf dem Schnellschüttler (≥ 270 Upm, 37°C) bis zu einer OD\textsubscript{585 nm} von 0.2 bis 0.4 kultiviert. Die Suspension wird in Falcon-Röhrchen auf Eis vorgekühlt, die Bakterien in der Sorvall-Zentrifuge 5 Minuten bei 4°C und 4000 Upm pelletiert, in 0.25 Vol. (= 50 ml) eiskaltem 100 mM CaCl\textsubscript{2}-Puffer/ 20% Glycerin resuspendiert und 1 Stunde auf Eis inkubiert. Der Vorgang wird wiederholt, allerdings wird das Resuspensionsvolumen auf 0.025 Vol. (5 ml) erniedrigt. Nach einer weiteren Stunde auf Eis können die Zellen entweder direkt in einer Transformation eingesetzt oder in 200 bis 400 µl-Aliquots in flüssigem Stickstoff schockgefroren und bei –80°C gelagert werden.

12.6.1.2 Mehrionentechnik

5 ml Minimalmedium (25 µg/ml Kanamycin) werden mit einer Stammkultur des E. coli-Stamms beimpft und über Nacht bei 37°C im Roller-Schüttler inkubiert. Mit 1 ml dieser Übernachtkultur werden 100 ml LB-Medium (25 µg/ml Kanamycin) angeimpft und weiter geschüttelt, bis eine OD\textsubscript{550} von 0.3 bis 0.4 erreicht ist. Die Zellen werden in 50-ml-Falcon-Röhrchen überführt und sofort auf Eis abgekühlt, durch 5 min Zentrifugation bei 4000 Upm (Hettich-Zentrifuge) pelletiert und in 0.15 Vol. eiskaltem TfBII-Puffer aufgenommen. Diese Suspension wird für 10 bis 15 min auf Eis inkubiert und danach abzentrifugiert. Das Zellsediment wird in 0.05 Vol. TfBII-Puffer aufgenommen und für mindestens 15 min auf Eis inkubiert. Die nun kompetenten Zellen werden entweder sofort transformiert oder in 200 bis 400 µl-Aliquots in flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

M9-Minimalmedium

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH\textsubscript{2}PO\textsubscript{4}</td>
<td>6 g</td>
</tr>
<tr>
<td>KH\textsubscript{2}PO\textsubscript{4}</td>
<td>3 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.5 g</td>
</tr>
<tr>
<td>NH\textsubscript{4}Cl</td>
<td>1 g</td>
</tr>
<tr>
<td>pH 7.4 einstellen, autoklavieren Lösungen (steril filtriert) zugeben:</td>
<td></td>
</tr>
<tr>
<td>2 ml 1 M MgSO\textsubscript{4}</td>
<td></td>
</tr>
<tr>
<td>0.1 ml 1 M CaCl\textsubscript{2}</td>
<td></td>
</tr>
<tr>
<td>10 ml 20 % Glucose</td>
<td></td>
</tr>
<tr>
<td>1 ml 1 % Thiamin</td>
<td></td>
</tr>
</tbody>
</table>

TfBI-Puffer, pH 5.8

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Acetat</td>
<td>30 mM</td>
</tr>
<tr>
<td>RbCl</td>
<td>100 mM</td>
</tr>
<tr>
<td>MnCl\textsubscript{2} x 2H\textsubscript{2}O</td>
<td>50 mM</td>
</tr>
</tbody>
</table>
10 mM CaCl$_2$ x 2H$_2$O
15 % (v/v) Glycerin
mit 0.2 M Essigsäure auf pH 5.8

TfBII-Puffer, pH 7.0
10 mM MOPS
10 mM RbCl
75 mM CaCl$_2$ x 2H$_2$O
15 % (v/v) Glycerin
mit KOH auf pH 7.0

Beide Lösungen werden steril filtriert und bei 4°C aufbewahrt.

12.6.2 Transformation von *E.coli* mittels Hitzeschock und Selektion

12.6.2.1 Standard-Transformation

10µl des Ligationsansatzes oder die entsprechende Menge eines Kontroll-Plasmids und 100µl kompetente Bakterien werden gemischt und 30min auf Eis inkubiert. Nach 45 bis 90s Hitzeschock bei 42°C wird der Ansatz 2min auf Eis abgekühlt, mit 800µl bis 1ml SOC oder LB (RT) verdünnt und 45 bis 60min bei 37°C gerollt. LB-Platten (50µg/ml Ampicillin) werden mit den transformierten Zellen beimpft und bei 37°C mindestens 12h bebrütet.

12.6.2.2 Transformation von TOPO-TA-ligierten Vektoren

50µl *E.coli* TOP10F"One Shot"-Zellen und 2µl 0,5M β-Mercaptoethanol-Lösung werden unter vorsichtigem Rühren gemischt und nach Zugabe von 2µl TOPO-Klonierungs-Reaktion 30 min auf Eis inkubiert. Danach werden die Zellen 30s bei 42°C hitzegeschockt und sofort für 2 min auf Eis gelagert. Der Ansatz wird mit 250µl SOC-Medium (RT) verdünnt und 30 min bei 37°C unter Schütteln inkubiert. Je 50 bis 100µl des Transformtionsansatzes werden auf LB/Amp-Platten ausgespatelt und mindestens 12h bei 37°C bebrütet.

12.6.2.3 Blau-Weiß-Selektionierung

Bei Transformationen mit Vektoren, die eine Selektion über Blau-Weiß-Färbung der Kolonien ermöglichen (pGEX5X1, TOPO-pCR® und pGEM T), wurden pro Platte 50 µl einer 100 mM IPTG-Lösung (sterilfiltriert) sowie 50 µl einer X-Gal-Lösung (2 % in Dimethylformamid, sterilfiltriert) ausgesetzt und darauf die Bakteriensuspension ausgespatelt. Nach Inkubation bei 37°C über Nacht sollen sich blaue und weiße Bakterienkolonien gebildet haben. Letztere enthalten die erfolgreich mit dem Insert-tragenden Plasmid transformierten Zellen.

Dem Verfahren der „Blau-Weiß-Selektion“ liegt das Hydrolaseverhalten der β-Galactosidase, die vom Gen *lacZ* kodiert wird, zugrunde (Ibelgaufs, 1993). Das Enzym spaltet β-D-Galactoside in Galactose und die entsprechende Alkohol-Verbindung. Das physiolog-

12.6.3 Kolonie-Blotting von E.coli-Kolonien zur DNA-Hybridisierung

Für die Suche eines E.coli-Klons mit dem gewünschten rekombinanten Vektor aus einer Transformation, von der eine geringe Effizienz erwartet wird, wird eine größere Anzahl von Kolonien auf einen Nitrocellulosefilter transferiert, dort alkalisch lysiert und der gesuchte rekombinante Vektor durch Hybridisierung mit einer geeigneten Sonde identifiziert.

Mittels steriler Zahnstocher werden zufällig gewählte E.coli-Kolonien auf eine Musterplatte und deren Du plikat überimpft und über Nacht bei 37°C inkubiert. Der Transfer erfolgt durch Auflegen eines passenden Nitrocellulosefilters auf die Oberfläche der Agarplatte, bis der Filter mit Feuchtigkeit getränkt ist. Der Filter wird nun mit den anhaftenden Kolonien nach oben nacheinander auf Whatman-Papiere gelegt, die mit folgenden Lösungen getränkt sind: 1. 0,5 M NaOH/1,5 M NaCl für 5 min (Denaturieren)

2. 0,5 M Tris-HCl, pH 8,0/1,5 M NaCl für 5 min (Neutralisieren)

3. 2 x SSC 2 x für 5 min (Umpuffern).

Der Filter wird zwischen zwei Whatman-Papieren getrocknet und 2 h bei 80°C inkubiert, um die DNA kovalent mit der Nitrocellulose zu verbinden. Zur Detektion werden die Filter wie in Kapitel 12.4 beschrieben weiterbehandelt.
12.6.3.1 Konservierung von transformierten Bakterien

Zur langfristigen Aufbewahrung der Klone wurden je 180 µl Zellen in LB-Medium mit 820 µl autoklaviertem Glycerin (87% v/v in H₂O) versetzt, in flüssigem Stickstoff schockgefroren und bei –80°C gelagert.

12.7 Transformation von D. discoideum und Selektion

12.7.1 Vorbereitung der D.-discoideum-Zellen und Elektroporation

Während der einzelnen Schritte wird steril gearbeitet und der Ansatz auf Eis gekühlt. Zellen von D.-discoideum werden bis zu einer Dichte von 2 bis 3·10⁶/ml kultiviert, 20 min auf Eis gehalten und abzentrifugiert. Die Zellen werden je einmal mit eiskaltem Soerensen-Phosphatpuffer und Elektroporationspuffer gewaschen und in Elektroporationspuffer zu einer Dichte von etwa 5·10⁷ Zellen/ml aufgenommen. In eine zuvor bei –20°C eingefrorene Elektroporationsküvette (4 mm), die entweder keine (Kontrolle für spätere Selektion) oder 20 bzw. 40 µg Plasmid-DNA in maximal 200 µl Elektroporationspuffer enthält, werden luftblasenfrei 0.8 ml (= 4·10⁷ Zellen) dieser Zellsuspension gegeben und durch sehr kurzes Mixen auf dem Vortex-Mixer mit dem Plasmid vermischt. Die Elektroporation im „Gene Pulser“ erfolgt bei einer Kapazität von 3 µF und einer Spannung von 0.9 kV. Die gemessene Zeitkonstante ist durch den Salzgehalt des Elektroporationspuffer in gewissen Grenzen vorgegeben und sollte bei 0.5 bis 0.6 s liegen. Die Küvette mit den Zellen wird für 10 Minuten auf Eis gekühlt und dann auf 3 Petrischalen verteilt, indem 1 Volumen des Transformationsansatzes in je einen vorgelegten eiskalten Tropfen CaMg (1/4 Volumen) übergeführt wird. Nach einer Regenerationsphase von 15 min bei RT, die dem Schließen der perforierten Zellmembran dient, werden die Zellen mit je 10 ml AX-Medium pro Platte aufgewirbelt und 24 h bei 23°C inkubiert. Die Konzentration der Zellen ist so gewählt, daß sie in diesem Zeitraum zu einer konfluenten Kultur heranwachsen können.

10 mM K-Phosphat, pH 6.1
10 mM K₂HPO₄ x 3 H₂O (Lösung1)
10 mM KH₂PO₄ (Lösung 2)
Lösung 1 und 2 bis pH 6.1 titrieren

Elektroporationspuffer (EP), pH 6.1
10 mM K-Phosphat:
50 mM Saccharose

CaMg-(Recovery)-Puffer
1 mM CaCl₂
1 mM MgCl₂
12.7.2 Selektion der Transformanten

12.7.3 Klonierung und Untersuchung der Transformanten

Für den Fall der Eliminierung der Plasmide wurden die Original-Transformationsplatten als Reserve bei 4°C aufbewahrt. Bei dem Gen-Unterbrechungs-Konstrukt sollte eine Elimination der integrierten Vektorsequenz ohne Absterben des Klons nicht möglich sein.

Zur weiteren Analyse wurden vom Rand einzelner Kolonien Zellen in Costarplatten in AX-Medium mit 1% Penicillin/Streptomycin überimpft und erneut unter Selektionsdruck gesetzt. Von resistenten Klonen wurden lebende Zellen im Fluoreszenzmikroskop oder als Gesamthomogenat in 3x SDS-Probenpuffer gekocht im Immunoblot (Kapitel 13.2.3) untersucht. Zusätzlich wurden Klone auf je 2 weitere SM-Platten mit \textit{K. aerogenes} für die Untersuchung im Protein-Kolonieblot (Kapitel 13.2.2) und als Reserve mit sterilen Zahnstochern angeimpft.
13 Proteinchemische und - analytische Methoden

13.1 Gelelektrophorese

Für die chromatographische Auftrennung von Proteinen von Zell- oder Proteinproben wird das Verfahren der Gelelektrophorese angewendet. Im Gegensatz zu DNA- oder RNA-Gelen, die in der Regel aus Agarose hergestellt werden, wird hier Polyacrylamid für feinere Porengrößen und damit für bessere Auftrennung verwendet.

13.1.1 SDS-Tris-Glycin-Gel-Elektrophorese (SDS-PAGE) nach Laemmli

Für die diskontinuierliche Sodium-Dodecyl-Sulfate-Polyacrylamid-Gel-Elektrophorese (Laemmli, 1970) werden Trenngele (Standardgele 15x 11x 0,1 cm, "Minigele" 10x 8x 0,05 cm) mit konstanter Polyacrylamid-Konzentration (10, 12, und 14 %ig) und 3%-ige Sammelgele gegossen. Während Standardgele einzeln gegossen werden, sind Minigele in einer 10er-Gießkammer mit konstanter Polyacrylamid-Konzentration polymerisiert worden. In Ethanol gereinigte, mit Spacern auf Abstand gehaltene flach aufeinanderliegende Glasplatten werden mit 1%-Agarose abgedichtet, mit der Trenngel-Lösung befüllt und mit Wasser gesättigter Isobutanol-Lösung überschichtet. Nach abgeschlossener Polymerisation wurde die Alkohlschicht vollständig ausgespült, die Sammelgel-Lösung aufgefüllt und mit eingesetzten Probenauftragskämmen auspolymerisiert.

Die Proben werden in 1/3 Vol. 3x SDS-Proben-Puffer 5 min bei 100°C im Wasserbad denaturiert und auf Eis abgekühlt. Auf Minigele werden ca. 5·10^5, auf Standardgele ca. 1·10^6 Zellen bzw. Zelläquivalente, vom Proteinmarker i.d.R. 10 µl pro Tasche aufgetragen. Die Auftrennung in Minigelen erfolgt mit ca. 20 mA für 1 bis 2 Stunden, in Standardgelen bei 600V/6mA über Nacht.

Trenngel-Puffer, pH 8.8
1.5 M Tris-HCl
0.4 % SDS

Sammelgel-Puffer, pH 6.8
0.5 M Tris-HCl
0.4 % SDS

Trenngel-Lösung, pH 8.8
375 mM Tris-HCl
0.1 % SDS
10 bis 14 % Acryl/Bisacrylamid (30:1, Protogel)
1 mM EDTA
0.2 % APS (v/v)
0.02 % TEMED (v/v)

Sammelgel-Lösung, pH 6.8
125 mM Tris-HCl
0.1 % SDS
3 % Acryl/Bisacrylamid
1 mM EDTA
0.3 % APS
0.05 % (v/v) TEMED

10x Laufpuffer, pH 8.3
250 mM Tris
1.9 M Glycin
1 % SDS

3 x SDS-Probenpuffer, pH 6.8
62.5 mM Tris-HCl, pH 6.8
2.3 % SDS
10 % (v/v) Glycerin
6 % (v/v) β-Mercaptoethanol
0.001 % Bromphenolblau (nach pH-Einstellung)

Die Proteine wurden entweder durch Coomassie-Brillant-Blau unspezifisch im Gel angefärbt (Kapitel 13.1.4) oder nach Elektrotransfer auf Nitrozellulose-Membranen immunologisch detektiert (Kapitel 13.2).

13.1.2 Tris-Tricine-Gele (Schägger)

Puffer und Lösungen:

<table>
<thead>
<tr>
<th>Lösung A</th>
<th>Protogel (Acryl/Bisacrylamid 30:1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösung B (Gelpuffer), pH 8.5</td>
<td>3 M Tris-HCl</td>
</tr>
<tr>
<td></td>
<td>0.3 % SDS</td>
</tr>
<tr>
<td>10x Anodenpuffer, pH 8.9</td>
<td>2 M Tris-HCl</td>
</tr>
</tbody>
</table>
10x Kathodenpuffer
1 M Tris
1 M Tricine
1 % SDS

Pipettierschema für 1 Gel:

<table>
<thead>
<tr>
<th></th>
<th>Trenngel 16%</th>
<th>Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösung A</td>
<td>16 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>Lösung B</td>
<td>10 ml</td>
<td>4 ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>4 ml</td>
<td>7 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>15 bis 20 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>APS 10%</td>
<td>200 µl</td>
<td>100 µl</td>
</tr>
</tbody>
</table>

Laufbedingungen: das Trenngel wird mit 0.1% SDS oder Lösung B (1:2 verdünnt) über- schichtet, Lauf entweder 3 h mit 30 V, und über Nacht mit 60V, RT oder Einlauf mit 30 V, dann 6 h mit 45 mA (90-100V)

13.1.3 2-Phasen-SDS-Gele

Gelpuffer A, pH 8.8
1.5 M Tris-HCl
0.4 % SDS

Gelpuffer B, pH 6.8
0.5 M Tris-HCl
0.4 % SDS

Gelpuffer C, pH 8.8
2 M Tris-HCl

Abbildung 13-1 Aufbau eines 2-Phasen-Gels
(nach Kubis und Gros, 1997)
Pipettierschema für 1 Gel (Variante A):

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Komponenten</th>
<th>Sammelgel 1</th>
<th>Trenngel 1</th>
<th>Sammelgel 2</th>
<th>Trenngel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 6.8</td>
<td>3.5 %</td>
<td>6.6 %</td>
<td>6.6 %</td>
<td>8.8 %</td>
<td></td>
</tr>
<tr>
<td>pH 8.8</td>
<td>10 ml</td>
<td>10 ml</td>
<td>10 ml</td>
<td>50 ml</td>
<td></td>
</tr>
<tr>
<td>Gelpuffer A, pH 8.8</td>
<td>3.1 ml</td>
<td>-</td>
<td>3.7 ml</td>
<td>-</td>
<td>18.3 ml</td>
</tr>
<tr>
<td>Gelpuffer B, pH 6.8</td>
<td>1.2 ml</td>
<td>2.2 ml</td>
<td>2.2 ml</td>
<td>14.7 ml</td>
<td></td>
</tr>
<tr>
<td>30 % Bis-Acrylamid</td>
<td>1.2 ml</td>
<td>2.2 ml</td>
<td>2.2 ml</td>
<td>14.7 ml</td>
<td></td>
</tr>
<tr>
<td>Glycerin 87 %</td>
<td>-</td>
<td>550 µl</td>
<td>1.7 ml</td>
<td>14.1 ml</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>5.5 ml</td>
<td>3.5 ml</td>
<td>2.3 ml</td>
<td>2.7 ml</td>
<td></td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>100 µl</td>
<td>-</td>
<td>100 µl</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
<td>7 µl</td>
<td>7 µl</td>
<td>35 µl</td>
<td></td>
</tr>
<tr>
<td>APS 10%</td>
<td>60 µl</td>
<td>40 µl</td>
<td>60 µl</td>
<td>200 µl</td>
<td></td>
</tr>
</tbody>
</table>

Pipettierschema für 1 Gel für kleine Fragmente (Variante B):

<table>
<thead>
<tr>
<th>Eigenschaften</th>
<th>Komponenten</th>
<th>Sammelgel 1</th>
<th>Trenngel 1</th>
<th>Sammelgel 2</th>
<th>Trenngel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 6.8</td>
<td>3.5 %</td>
<td>8.8 %</td>
<td>8.8 %</td>
<td>14 %</td>
<td></td>
</tr>
<tr>
<td>pH 8.8</td>
<td>10 ml</td>
<td>10 ml</td>
<td>10 ml</td>
<td>50 ml</td>
<td></td>
</tr>
<tr>
<td>Gelpuffer A, pH 8.8</td>
<td>3.1 ml</td>
<td>-</td>
<td>3.7 ml</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gelpuffer B, pH 6.8</td>
<td>1.2 ml</td>
<td>2.9 ml</td>
<td>2.9 ml</td>
<td>23.3 ml</td>
<td></td>
</tr>
<tr>
<td>Gelpuffer C, pH 8.8</td>
<td>1.2 ml</td>
<td>2.9 ml</td>
<td>2.9 ml</td>
<td>23.3 ml</td>
<td></td>
</tr>
<tr>
<td>30 % Bis-Acrylamid</td>
<td>1.2 ml</td>
<td>2.9 ml</td>
<td>2.9 ml</td>
<td>23.3 ml</td>
<td></td>
</tr>
<tr>
<td>Glycerin 87 %</td>
<td>-</td>
<td>550 µl</td>
<td>1.7 ml</td>
<td>12.9 ml</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>5.5 ml</td>
<td>2.8 ml</td>
<td>1.6 ml</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>100 µl</td>
<td>-</td>
<td>100 µl</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
<td>7 µl</td>
<td>7 µl</td>
<td>35 µl</td>
<td></td>
</tr>
<tr>
<td>APS 10%</td>
<td>60 µl</td>
<td>40 µl</td>
<td>60 µl</td>
<td>200 µl</td>
<td></td>
</tr>
</tbody>
</table>

13.1.4 Anfärbung von Proteinen im Gel mit Coomassie-Blau

In der Regel erfolgt der Nachweis von Proteinen in SDS-Gelen durch Färbung mit einer 0.25%igen Coomassie-Brillant-Blau-Lösung für 10 bis 60 min. Anschließend wird das
Gel für 30 min bis mehrere Stunden in Entfärbelösung geschüttelt, um den Farbstoff aus dem Gel-Hintergrund zu entfernen.

Färbelösung
- 0.25 % Coomassie-Blue R250
- 50 % Methanol
- 10 % Eisessig
- die Lösung durch einen Faltenfilter filtrieren

Entfärbelösung
- 10 % Methanol
- 10 % Eisessig

13.1.5 Trocknen von Gelen

Gefärbte Gele können zur Aufbewahrung getrocknet werden, indem sie 2 x 20 min in 25 % Ethanol/ 5 % Glycerin äquilibriert und über Nacht zwischen zwei Folien im Rahmen eingespannt werden.

13.2 Transfer und Detektion von Proteinen

13.2.1 Transfer aus Gelen

Transfer-Puffer
- 48 mM Tris
- 39 mM Glycin
- 0,04 % SDS
- 20 % (v/v) Methanol

13.2.2 Kolonie-Dot-Blotting von D.-discoideum-Kolonien zur Protein-Detektion

durch Einfrieren der Filter auf eine mit Trockeneis gekühlte Aluminiumplatte (Kolonien nach oben) lysiert. Die Filter werden anschließend bei RT 2 bis 4 h mit 1x NCP unter mehrmali-
gem Pufferwechsel gewaschen, zur Denaturierung der Proteine 5 min in 0,1 % SDS-Lösung
bei 80°C inkubiert und nochmals mit 1xNCP gewaschen. Für Immunmarkierungen werden
die Filter wie unter 13.2.4 beschrieben weiterbehandelt.

13.2.3 Färben von Protein-Blots

Nach dem Blotten aus Gelen oder als Dot-Blot lassen sich die auf die Nitrozellulose-
Membran transferierten Proteine vor der Antikörperinkubation direkt und reversibel mit Pon-
ceau-Rot (Sigma) anfärben. Dazu werden die Blots ca. 5 min in der Färbelösung ge-
schwenkt und der schwach gebundene Farbstoff mit H2O wieder abgespült, bis Protein-
Banden sichtbar werden. Zur vollständigen Entfärbung werden die Filter in 1x NCP-Puffer
geschüttelt.

10x Ponceau-Rot-Färbelösung

2 % Ponceau S
30 % TCA

13.2.4 Immundetektion im Western

Die Immunmarkierung dient dem spezifischen Nachweis von Proteinen auf einer Trä-
germembran (i.d.R. Nitrozellulose), die darauf durch Transfer aus Gelen (13.2.1) oder durch
direktes Abklopfen von Dictyostelium- (13.2.2) bzw. Bakterien-Zellen (12.1.4) immobilisiert
wurden. Die Detektion erfolgt durch Farbstoffbildung oder radioaktiv.

Puffer und Lösungen

10 x NCP (TBS-Tween), pH 7.4

100 mM Tris-HCl
1,5 M NaCl
0,5 % (v/v) Tween 20
0,2 % NaN3

2x Blocking-Puffer

8 % BSA
0.2 % NaN3
in 1x NCP

NCP-Antikörper-Puffer

4 % BSA
0.1 % NaN3
in 1x NCP
1x Carbonatpuffer, pH 10.2
- 100 mM (10.6 g/l) Na₂CO₃
- 800 ml H₂O
 - pH mit HCl auf 10.2 einstellen
 - mit H₂O auf 1 l auffüllen

BCIP-(Alk.-Phosphatase-Substrat)-Lösung
- 0.2 mg/ml BCIP in Carbonatpuffer

NBT- Nachfärb-Lösung
- 0.33 mg/ml in Carbonatpuffer

10x TBS, pH 7.4
- 60.6 g/l Tris-HCl
- 87.6 g/l NaCl, ohne NaN₃!

TBS-Antikörperpuffer, pH 7.4
- 5 % BSA
 - in 1x TBS

Peroxidase-Substrat-Lösung (frisch!)
- Substrat: 4-Chlor-1-Naphtol (Sigma)
- 2 ml 0.3 % (3 mg/ml) Substrat in Methanol
- 10 ml 1x TBS
- 10 µl H₂O₂ (direkt vor Gebrauch)

Nachweis durch Alkalische Phosphatase-Reaktion mit BCIP/NBT

Die Membran wird 3x 10min in 1x NCP gewaschen und für mindestens weitere 30 min in 1x Blocking-Puffer abgeblockt. Anschließend wird die Membran mit dem Primär-Antikörper (unverdünnter Hybridoma-Kulturmedium-Überstand oder aufgereinigter Antikörper in 4% BSA/NCP, ca. 10 bis 20 µg/ml) 2 h bis über Nacht auf einem Schüttler bei RT inkubiert. Ungebundene Antikörper werden durch 3x 10 min Waschen in 1x NCP entfernt. Der an Alkalische-Phosphatase-gekoppelte Sekundär-Antikörper (Verdünnung in Antikörperpuffer gemäß Herstellervorschrift) wird mindestens 2 h bei RT unter Schütteln zugegeben. Nach 3x 10 min Waschen in 1x NCP wird mit 5 min mit 1x Carbonat-Puffer umgepuffert, um das für die Enzymaktivität der Alkalischen Phosphatase notwendige alkalische Millieu zu schaffen. Das Substrat BCIP wird bis zur Bildung des Farbkomplexes (5,5’-Dibrom-4,4’-dichlorindigo) 15 bis 60 min umgesetzt. Die Farbreaktion wird mit H₂O gestoppt. Falls das Signal zu schwach ist, kann mit NBT 30 bis 60 min nachgefärbt werden. Die Blots werden getrocknet und lichtgeschützt gelagert.
Nachweis durch Peroxidase-Reaktion

Die Membran wird nach dem Blotten und 15 min Waschen in 1x NCP für 15 min in 1x TBS umgepuffert und mit 5% BSA in 1x TBS mindestens 1 h blockiert. Der Primärantikörper (direkter Kulturüberstand oder Verdünnung in TBS-Ak-Puffer) wird für 2 h bis über Nacht inkubiert. Überschüssige Lösung wird anschließend durch 3x Waschen in 1x TBS entfernt. Die Membran wird mindestens 2 h mit Meerettich-Peroxidase-gekoppeltem Sekundär-Antikörper (1:1000 verdünnt) inkubiert und danach 6x 5 min mit 1x TBS gewaschen. Die Entwicklung des Farbstoffs erfolgt mit frisch angesetzter Substrat-Lösung.

Radioaktiver Nachweis

Die Inkubation von NCP-äquilibrierten und geblockten Membranen mit diesem Ak erfolgte für 2 h, anschließend wurden die Blots in NCP gewaschen und in Folie eingeschweißt. In Filmkassetten mit Verstärkerfolie wurden die Signale bei –80°C auf Röntgenfilmen (X-omat AR-5) detektiert.

13.3 Expression rekombinanter Proteine in Bakterien und Aufreinigung

13.3.1 Expression von β-Gal-Fusionsproteinen in E.coli RY1090

Bei der Konstruktion der λgt11-Phagenbank wurden die „fremden“ Dictyostelium-Sequenzen in das lacZ-Gen kloniert, so daß die „Fremdproteine“, in dem vorliegenden Fall DMIF1, als Teil eines β-Galactosidase-Fusionsproteins in RY1090 exprimiert werden. Die Induktion erfolgt durch die Aktivierung des lac-Promoters mit IPTG bei 37°C über Nacht (vgl. Kapitel 12.1).

13.3.2 Präparation von GST- DMIF1 – Das Fusionsprotein als Antigen zur Immunisierung von Mäusen

13.3.2.1 Induktionstest in E.coli der JM-Serie

| Nährmedium Starterkultur | 3 ml LB-Medium |
Nährmedium Hauptkultur

<table>
<thead>
<tr>
<th>10 ml LB-Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µg/ml Ampicillin</td>
</tr>
<tr>
<td>2 % Glucose</td>
</tr>
</tbody>
</table>

Zum Animpfen einer Starterkultur wurde ein steriler Zahnstocher in den gefrorenen E.coli-Zellkuchen einer bei –80°C gelagerten Glycerin-Kultur (12.6.3.1) eingestochen, in ein Reagenzglas mit vorgelegtem Nährmedium überführt und im Rollerinkubator bei 37 °C über Nacht kultiviert. 500 µl der Starterkultur wurden in ein Erlenmeyerkölben in Hauptkultur-Medium verdünnt und mit 260 Upm bei 37 °C amplifiziert. Das Wachstum wurde über OD-Messungen (λ = 600nm) kontrolliert und sollte bei 0.8 bis 0.9 liegen.

Die Induktion erfolgte mit IPTG in einer Endkonzentration von 0.1 mM bei 30°C und 37°C. Zur Analyse in der SDS-PAGE erfolgte stündliche Probennahme von 0 bis 4 h. Je 500 µl der Bakteriensuspension wurden 30s mit 14.000 Upm in einer Eppendorf-Tischzentrifuge sedimentiert, der Überstand abgesaugt, das Pellet N₂-liq-schockgefroren und 3 min im Wasserbad bei 100°C in 50 µl 3x SDS-Probenpuffer denaturiert. Die Induktion von GST-DMIF1Δ3 und Probennahme zum Kartieren der Antikörper (Kapitel 14) fand analog statt.

13.3.2.2 Expression von GST-DMIF1 zur Aufreinigung

Eine 200 ml- Vorkultur wurde von einer frischen E.coli-Agarplatte mittels Zahnstocher beimpft und über Nacht bei 30°C und 270 Upm im Erlenmeyerkolben angezogen. Die Bakterien der daraus angesetzten 2- Liter-Hauptkultur (in 5 Kolben à 400 ml) wurden bis zur OD 0.9 bei 30°C und 270 Upm vermehrt und anschließend 3h mit 0.1 mM IPTG induziert. Die Zellen wurden 20min mit 8000xg bei 4°C sedimentiert, einmal mit 1/20Vol. 1x PBS (eiskalt) gewaschen, und das nach Absaugen des Überstandes in N₂-liq schockgefroren und bei –80°C gelagert.
Ein zweiter Ansatz erfolgte mit einer 3.3- Liter-Kultur aus einer 300 ml-Startkultur und Induktion mit 0.1 mM IPTG über 24h bei 30°C und 270 Upm. Die gewaschenen Pellets wurden ebenso in N$_2$ 10 schockgefroren und bei –80°C gelagert.

13.3.2.3 Zellaufschluß von *E.coli* in der “French Pressure Cell”

Bei der “French Pressure Cell” handelt sich um eine hydraulische Presse, die mit ihrem Kolben in einen Stahlzylinder, der mit einer sehr dichten Bakteriensuspension (ca. 2·1010 Zellen/ml) gefüllt ist, drückt und dabei einen Überdruck von mehr als 107 Pa erzeugt. Am gegenüberliegenden Ende des Kolbeneintritts befindet sich ein Auslaßröhrchen mit einem Durchmesser von 3 mm. Bei dessen Öffnung treten die Bakterien durch diese aus und erleiden dabei einen plötzlichen massiven Druckabfall, der die Zellen zum Platzen bringt.

Alle folgenden Schritte finden zum Schutz vor proteolytischen Abbau bei 4°C oder, wenn möglich, auf Eis statt. Die Pellets werden in jeweils 110 ml 1xPBS resuspendiert und in den vorgekühlten Stahlzylinder gefüllt, dieser wird verschlossen und der Kolben bei geöffnetem Auslaßventil so lange nach oben bewegt, bis die Zelle weitgehend frei von Luft ist. Nun wird das Ventil geschlossen, der Stahlzylinder in der Hydraulikpresse fixiert und ein Druck von 1,2 x 107 Pa (1200 psig) eingestellt. Dann wird sehr vorsichtig das Auslaßventil so weit geöffnet, daß das Bacterienlysat langsam in ein auf Eis stehendes 50-ml-Röhrchen tropft. Der Vorgang wird in 3 Volumen-Ansätzen je 3x wiederholt. Zur Vervollständigung des Aufschlusses wird TritonX100 (1% Endkonzentration) zugegeben und 30 min bei 4°C geschwenkt. Ungespaltene Zellen und Zell-Bruchstücke werden durch 10 min Zentrifugieren mit 12.000xg (A6.14-Rotor) bei 4°C entfernt. Der geklärte Überstand, der die löslichen Proteine enthält, wird weiterverarbeitet. Von Überstand und Pellet werden Aliquots in SDS-Probenpuffer aufgenommen und auf einem SDS-Minigel analysiert.

13.3.3 Affinitätschromatographie an Glutathion-Sepharose

Für die Aufreinigung des GST-DMIF1-Proteins aus dem geklärten Überstand des Zellaufschlusses (13.3.2.3) wird Glutathion-Sepharose 4B (Pharmacia) als Gelbett-Matrix vorbereitet (Protokoll Pharmacia, 1993). Die 75% (v/v) Glutathion-Sepharose4B-Dispersion wird gut gemischt, ein entsprechendes Volumen entnommen (hier 2 ml für 3 Liter Kulturvolumen: 0.5 ml Gelbettvolumen/Liter Kulturvolumen; 1.33 ml Dispersion/ml Gelbettvolumen) und bei 500xg 5min abzentrifugiert, um den 20% Ethanol enthaltenden Konservierungspuffer zu entfernen. Die Matrix wird einmal mit 15 ml 1x PBS gewaschen und erneut sedimentiert. In frischem PBS resuspendiert wird eine kleine Chromatographie-Säule (Biorad) luftblasenfrei befüllt und mit 5 bis 10 Gelbett-Volumina PBS äquilibriert.
Der Überstand wird mit 0.5ml/min auf die vorbereitete Glutathion-Sepharose-Säule aufgetragen, über Nacht zirkulieren gelassen und mit PBS gewaschen. Das Produkt wird mit 25 mM reduziertem Glutathion in 50 mM Tris-HCl, pH 8.8 mit 0.5ml/min in 3ml-Fraktionen eluiert. Vom geladenen Überstand, dem Durchlauf durch die Säule, der Waschfraktion und jeder Elutionsfraktion werden Proben zur Analyse auf einem SDS-Gel genommen.

Die GST-DMIF1- haltigen Fraktionen 2 bis 12 werden vereinigt (ca. 33ml), mit Centriprep 3K-Zentrifugations-Filtrierröhrchen etwa 3fach anконцентрирован и gegen physiologische Kochsalz-Lösung (0.9% NaCl) über 3 Tage bei 4°C dialysiert. In dieser Form wurde es zur Immunisierung von Mäusen verwendet (14.1).

Das Gelbett läßt sich durch einen weiteren Überschuß an 25 mM reduziertem Glutathion strippen und wiederverwenden.

13.3.4 Abspaltung des GST- tags

Das Reporteren GST läßt sich aus dem Fusionsprotein an der eingeführten Faktor-Xa-Spaltstelle abtrennen (Protokoll Pharmacia, 1993). Als Ausgangsmaterial dient dialysiertes aufgereinigtes GST-DMIF1-Protein (13.3.3). Dabei sind zwischen 1/50 bis 1/100 der zu spaltenden Proteinmenge an FaktorXa einzusetzen, d.h. etwa 10µg FaktorXa/mg Protein.

FaktorXa-Spaltpuffer, pH 7.5
- 50 mM Tris-HCl
- 150 mM NaCl

Reaktionsansatz 5 ml
- 3.5 ml GST-DMIF1 (4.9 mg)
- 5 µl FaktorXa in Spaltpuffer (50 µg)
- 1.5 ml Spaltpuffer
- 0.5 mg CaCl₂·2H₂O

Der Ansatz wird in eine 5 ml-Spritze aufgezogen und bei 4°C langsam rotieren gelassen. Wesentliche Mengen des Fusionsproteins sind nach 19 h nahezu, und nach 43h vollständig gespalten.

13.4 Konzentrationsbestimmung von Proteinen

13.4.1 Mit BSA-Standard

Die Protein-Konzentration wird anhand einer BSA-Verdünnungsreihe im Coomassiegefärbten Gel bestimmt. Dazu werden die Bandenintensitäten nach Augenmaß verglichen. Allerdings handelt es sich um eine sehr grobe Methode, die einerseits das unterschiedliche
Färbeverhalten des Coomassie-Blau-Farbstoffs von verschiedenen Proteinen und die ebenso subjektive Wahrnehmung des Beobachters einschließt, andererseits nur auf gereinigte Proteinproben anwendbar ist.

13.4.2 Nach Bradford

13.4.3 BCA-Protein-Assay

Beim BCA-Protein-Assay (Pierce) wird die Reduktion von Cu²⁺ → Cu¹⁺ in alkalischem Millieu und die anschließende chlorimetrisch meßbare Umsetzung mit Bicinchoninic-Säure (BCA) zu einem rot gefärbten (BCA)₂-Cu⁺¹-Chelat-Komplex ausgenutzt (Smith et al 1985). Er zeigt bei 562 nm starke Absorption. Auch hier dient BSA als Standard zur Bildung einer Eichgeraden. Der Meßbereich liegt zwischen 5-2000µg/ml.

Arbeitsverdünnung
50Vol. Reagenz A
1 Vol. Reagenz B

Reaktionsansatz
100 μl Proteinprobe (z.B. Lysat aus 10⁶ Zellen, oder Standardverdünnung, Puffer)
2 ml Arbeitsverdünnung (50:1)

Nach dem Mischen werden die Proben und Standards 30 min bei 37°C inkubiert, dann auf RT gekühlt und im Photometer bei 562nm gegen eine Wasser-Referenz vermessen.

13.5 Aufreinigung von Mitochondrien und Präparation von Vesikeln

Zunächst werden Mitochondrien aus einer Dictyostelium-Zellkultur präpariert (Troll, et al., 1992) und anschließend einer Ultraschallbehandlung unterzogen (Owen und Kaback,

Alle Schritte finden bei 4°C bzw. auf Eis statt. 2500ml Zellen einer exponentiell gewachsenen axenischen AX2-Kultur werden bei einer Dichte von 5·10⁶ Zellen/ml geerntet und nach 2x Waschen in Soerensen-Phosphatpuffer durch Resuspension in S-Puffer (s.u.) zu 2·10⁸ Zellen/ml verdichtet. In der Parr-Bombe werden die Zellen durch plötzliche Entspannung eines zuvor angelegten Überdruckes (1000 psi) lysiert. Fraktionierende Zentrifugationen bei 4°C ermöglichen die Präparation der Mitochondrien aus dem Zell-Lysat nach folgendem Schema:

1. **Schritt**: Zellpartikel und Bruchstücke werden durch 20 min Zentrifugation mit 27.000xg von löslichen Bestandteilen abgetrennt. Das Pellet wird mit dem gleichen Volumen des abgenommenen Überstandes S-Puffer resuspendiert.

2. **Schritt**: Bei 400xg (5 min) werden aus dem resuspendierten Pellet ungespaltene Zellen von kleineren Partikeln separiert. Der Überstand wird abgenommen und enthält neben anderen Organellen die Mitochondrien.

3. **Schritt**: Die Mitochondrien werden aus dem Überstand durch 10 min Zentrifugation bei 16.000xg sedimentiert und so von weiteren kleineren Bruchstücken und Membranteilen, die im Überstand bleiben, abgetrennt.

4. **Schritt**: 33 ml Percoll (30% (v/v) in S-Puffer) werden in Quick Seal Röhrchen (Beckman) vorgelegt und 2 ml der Mitochondriensuspension auf die Oberfläche gegeben. Die Röhrchen werden zugeschweißt und in der UZ mit 100.000xg 1h zentrifugiert (VTi-50 Ausschwenk-Rotor, 35.000Upm). Die Mitochondrien werden im Percollgradienten in einer Dichte-Fraktion angereichert.

5. **Schritt**: Ultraschallbehandlung: 2 min mit Branson Standard-Mikrospitze bei Stufe 4, Leistungsabgabe 20%, auf Eis.

Von sämtlichen Fraktionen wurden Proben für die Analyse im SDS-PAGE genommen (13.2). Die Vesikel-Suspension wurde im TEM analysiert.
14 Immunologische und zellbiologische Methoden

14.1 Hybridoma-Gewinnung

14.1.1 Prinzip

14.1.2 Immunisierung von Balb/c-Mäusen

Zur Herstellung von Antikörpern gegen DMIF1 wurden 2 weibliche, 4-6 Wochen alte Balb/c-Mäuse mit 50-150 µg GST-DMIF1 in PBS, dialysiert gegen physiologische Kochsalzlösung (13.3.3) unter Zusatz verschiedener Adjuvanten (Alugel S und Pertussis-Toxin) von C. Heizer, Dr. Gerisch und Dr. Faix (alle MPI für Biochemie, Abt. Zellbiologie) intraperitoneal immunisiert. Die gewählte Antigenmenge sollte zwischen 10 µg und 500 µg pro Immunisierung liegen (Baumgarten et al., 1990, Harlow und Lane, 1988).
Immunisierungsprotokoll

<table>
<thead>
<tr>
<th>Maus 1 (Fusion272)</th>
<th>50 µg GST-DMIF1 in 100 µl Puffer + 20 µl Alugel S [Al(OH)₃]</th>
</tr>
</thead>
<tbody>
<tr>
<td>am 1. Tag:</td>
<td>50 µg GST-DMIF1 in 100 µl Puffer + 20 µl Alugel S [Al(OH)₃]</td>
</tr>
<tr>
<td>am 15. Tag:</td>
<td>75 µg GST-DMIF1 in 100 µl Puffer + 50 µl Pertussis-Toxin</td>
</tr>
<tr>
<td>am 29. Tag:</td>
<td>100 µg GST-DMIF1 in 100 µl Puffer + 20 µl Alugel S</td>
</tr>
<tr>
<td>am 46. Tag:</td>
<td>120 µg GST-DMIF1 in 143 µl Puffer + 50 µl Pertussis-Toxin</td>
</tr>
<tr>
<td>am 57. Tag:</td>
<td>100 µg GST-DMIF1 in 100 µl Puffer + 20 µl Alugel S</td>
</tr>
<tr>
<td>am 58. Tag:</td>
<td>150 µg GST-DMIF1 in 150 µl Puffer ohne Adjuvans</td>
</tr>
<tr>
<td>am 60. Tag:</td>
<td>Milzentnahme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maus 2 (Fusion271)</th>
<th>100 µg GST-DMIF1 in 100 µl Puffer +100 µl komplettes Freund’sches Adjuvans</th>
</tr>
</thead>
<tbody>
<tr>
<td>am 1. Tag:</td>
<td>100 µg GST-DMIF1 in 100 µl Puffer +100 µl komplettles Freund’sches Adjuvans</td>
</tr>
<tr>
<td>am 58. Tag:</td>
<td>100 µg GST-DMIF1 in 100 µl Puffer + 100 µl inkomplettles Freund’sches Adjuvans</td>
</tr>
<tr>
<td>am 60. Tag:</td>
<td>Milzentnahme</td>
</tr>
</tbody>
</table>

14.1.3 **Präparation von B-Lymphozyten**

14.1.4 **Fusion von B-Lymphozyten und Myelomzellen**

Für die Fusion mit den Milzzellen beider Mäuse wurde der Myelomstamm PA1b₂Ag81 verwendet. Milzzellen und Myelomzellen sollen im Verhältnis von 2:1 fusioniert werden, d.h. jeweils die Zellen einer Milz (entspicht etwa 10⁶ Lymphozyten) in 5ml RPMIoH-Medium und 5·10⁷ Myelomzellen in 5ml RPMI-Medium werden gemischt. Dieser Ansatz wird auf zwei 50-ml-Röhrchen verteilt, zentrifugiert (1500 Upm, 5 min, 4°C) und mit 5 ml RPMI-Medium gewaschen. Die Zellen werden dann in ein 37°C-Wasserbad überführt, mit einer Pasteurpipette aufgewirbelt und mit 0,5 ml einer PEG-Lösung (1 g PEG, M, = 4000 g/mol, in 5 ml 0,9%iger
NaCl-Lösung, steril filtriert) versetzt. Die Zellsuspension wird nochmals mit einer Pasteurpette leicht gemischt und dann 1 min im Wasserbad (37°C) leicht geschüttelt. Nach der Inkubation von 1 min bei RT werden dann innerhalb von 5 min tropfenweise und unter leichtem Schütteln der Röhrchens im Wasserbad 10 ml RPMI0H-Medium zupipettiert. Die Suspension wird zentrifugiert, das Sediment in 125 ml Normalmedium + 5 % Bri Clone aufgenommen und auf 10 Costarplatten verteilt (0,5 ml pro Loch). In jedes dieser Löcher wurden am Tag zuvor 0,5 ml einer Makrophagensuspension pipettiert.

Die Platten werden bei 37°C, 5 % CO2 und 95,5 % Luftefeuchtigkeit inkubiert. 24 Stunden nach der Fusion werden pro Loch 0,5 ml des 3 x HAT-Selektionsmediums + 5 % Bri Clone zugegeben. Das Medium wird dreimal wöchentlich gewechselt, wobei nach 14 Tagen HAT-Medium durch HT-Medium ersetzt wird und nach einem weiteren Mediumwechsel Normalmedium verwendet wird.

14.1.5 Herstellung der Makrophagensuspension

Zur Isolierung von Makrophagen als Feederzellen für die frischen Hybridoma-Zellen werden 10ml Normalmedium unter sterilen Bedingungen in die Bauchhöhle einer durch Gneysdislokation getöteten Maus injiziert und zur Lösung der Makrophagen in das Medium geschwenkt. Das Medium wird wieder entnommen und der ganze Vorgang mit frischem Medium 2x wiederholt. Die Makrophagen werden abzentrifugiert (1000Upm, 5min, 4°C, Hettich-Zentrifuge), 2x mit Normalmedium gewaschen und in 125ml Normalmedium + 5% Bri Clone aufgenommen. Diese Makrophagensuspension ist bei 4°C 3 Tage lang verwendbar.

14.2 Testen der Überstände und Klonieren der Hybridomzellen

14.2.1 Western-Test

Sobald Klone sichtbar werden und sich das Medium gelblich verfärbt (Umschlag des zugesetzten pH-Indikators wegen Ansäuerung des Mediums aufgrund von Stoffwechselprodukten), werden die Überstände der einzelnen Löcher auf Antikörper getestet. Dazu werden Westernblot-Teststreifen, die AX2-Zellhomogenat einerseits und Homogenat der Transformante GFP-N-DMIF1 enthalten mit den Kulturüberständen über Nacht inkubiert und am folgenden Tag mit Alkalische-Phosphatase-gekoppelten Zweitantikörper (Ziege-anti-Maus) und anschließender BCIP-Reaktion detektiert (13.2.4). Hybridomzellen, die eine etwa 14kDa-Bande im AX2-Blot und eine 14kDa sowie eine etwa 40kDa-Bande im GFP-N-DMIF1-Blot zeigen, werden kloniert. Als weiteres Auswahlkriterium dient der ELISA-Test (14.2.2).

Zur Klonierung werden die Zellen aufgewirbelt und mit Normalmedium verdünnt. Aus dieser Suspension werden dann mit einer fein ausgezogenen Pasteurpipette kleine Tropfen
in die Löcher einer Mikrotiterplatte (96-Loch-Platte) pipettiert. Löcher, die Tropfen mit nur einer Zelle enthalten, werden mit 2-3 Tropfen einer Makrophagensuspension und der gleichen Menge an Normalmedium aufgefüllt. Nach 5-10 Tagen werden die klonierten Zellen, die sich vermehrt haben, nochmals im Western und ELISA getestet. Hierzu werden die Nitrocellulosestreifen auf Parafilm gelegt, mit dem Hybridomüberstand überschichtet und in einer feuchten Kammer inkubiert. Klone, die erneut ein positives Signal ergeben, werden wieder auf Costarplatten überimpft und anschließend in Gewebekulturflaschen (5-ml-, dann 50-ml) übertragen und der Mediumüberstand als antikörperhaltige Lösung gesammelt.

14.2.2 ELISA-Screening (Enzyme Linked Immuno Sorbent Assay)

Hybridomaüberstände sowohl aus den ersten Anzuchtlöchern als auch aus beiden Klonierungsrunden wurden auf die Anwesenheit anti-DMIF1-spezifischer Antikörper mit dem ELISA überprüft. Dabei wurden alle Überstände parallel gegen GST-DMIF1- und GST-Antigen getestet, um GST-reaktive Ak, die auch in GST-DMIF1 reagieren werden, aber DMIF1-unspezifisch sind, herauszufiltern.

Platten
96-Loch-Mikrotiterplatten, F-Boden (Greiner)

1 l Vollers Puffer, pH 9.2
zur Beschichtung von Mikrotiterplatten
1.59 g Na₂CO₃
0.2 g NaN₃
2.93 g NaHCO₃

1 x PBS, pH 7.4 (für 1 l)
137 mM (8 g) NaCl
2.7 mM (0.2 g) KCl
8.1 mM (1.15 g) Na₂HPO₄
1.5 mM (0.2 g) KH₂PO₄

Waschpuffer PBST, pH 7.4
0.04% (v/v) Tween 20
in 1 x PBS

Blockpuffer, pH 7.4
1% (w/v) BSA
in 1 x PBS

Sekundärer Antikörper
Ziege-anti-Maus-Peroxidase (Biorad)

Substratpuffer, pH 6.8
0.02 M Na₂HPO₄
Beim direkten (Antigen-Capture) ELISA werden die Antigene am Boden von Mikrotiterplatten immobilisiert. Dazu werden pro Loch 100 µl einer 40µg/ml-Verdünnung von aufgereinigtem GST-DMIF1 und GST in Vollers-Puffer pipettiert und über Nacht bei 4°C inkubiert. Die Platten werden 4 bis 5x mit je 100 µl PBST gewaschen und 2h bei RT mit PBS/1% BSA geblockt. Der Puffer wurde aus den ELISA-Platten geschlagen, die nun bis zum Gebrauch bei –20°C gelagert werden können.

Alle Schritte des Assays finden bei RT statt. Von den entnommenen Hybridomaüberständen werden je 100µl/Loch 90 min bei RT inkubiert. Eine Pufferprobe, die mit beiden Ak detektiert wird, dient neben einem Ansatz ohne Hybridomaüberstand, aber mit Sekundär-Ak als Negativkontrolle. Danach wird 4 bis 5x mit PBST gewaschen und mit je 100µl Peroxidase-gekoppeltem Sekundärantikörper pro Loch für 90 min inkubiert. Nach erneutem Waschen werden 100µl Substrat/Loch dazugegeben, für weitere 20 bis 30 min inkubiert und die Reaktion mit je 100µl 1M NaOH /Loch gestoppt. Die Extinktion wird im ELISA-Reader bei 492 nm gemessen.

14.3 Konservierung und Auftauen von Hybridomaklonen

Zur Kryo-Konservierung der einzelnen Klone werden die Zellen einer confluent bewachsenen 50 ml-Kulturflasche, deren Medium einen Tag zuvor ohne Abklopfen der Zellen gewechselt wurde, geerntet. Dazu werden die Zellen abgeklopf, und 5 min in der Hettich-Zentrifuge mit 1500 Upm bei 4°C sedimentiert. Der Überstand wird abgesaugt und das Pellet in 5 ml eiskaltem Einfriermedium resuspendiert. Die Zelldichte sollte etwa 5·10⁶ /ml betragen. Die Zellsuspension wird steril in 5, auf Eis gehaltene Einfrierröhrchen (1.8 ml, Nunc) verteilt. Die Ampullen werden in Einfrierköpfe in die Atmosphäre von N₂ liq gestellt, in denen die Temperaturabnahme um 1°C pro Minute gewährleistet ist.

Um eingefrorene Zellen wieder anzuziehen, wird eine Ampulle im Wasserbad (37°C) aufgetaut und der Inhalt in 10 ml Normalmedium übergeführt. Nach Zentrifugation (1000 Upm, 10 min) wird das Medium abgegossen, die Zellen werden erneut in 10 ml Normalmedium aufgenommen und auf zwei 50-ml-Kulturflaschen verteilt.

14.4 Bestimmung der AK-Klasse mit Diffusionstest

Mit dem Radialdiffusionstest (Ouchterlony, 1962) hat man eine potente Methode zur Verfügung, die Immunglobulinklasse und die Subklasse monoklonaler Antikörper zu

Auf einen Objekträger wird ein Tropfen einer 2% Agaroselösung in PBS mit einem Pinsel zügig verteilt. aufgetragen. Nach Erstarrung dieser Schicht wird eine weitere Schicht Agarose (1.5% in PBS pH 7.4, 2% PEG4000) aufgetragen und nach dem Erkalten hexagonale Löcher von $\varnothing 2\text{mm}$ hineingestanzt. In das zentrale Loch werden sukzessive 10 bis 30 µl des zu testenden Serums (Hybridomaüberstand), in die 6 peripheren Vertiefungen je 5 µl Antiserum bekannter Immunglobinklasse (IgA, IgG1, IgG2a, IgG2b, IgG3, IgM) gefüllt und 1 bis 3 Tage bei RT in der feuchten Kammer inkubiert. Nur das gegen die Immunglobulklasse des Testserums gerichtete Antiserum bildet den als weiße Präzipitatlinien sichtbaren Komplex. Die im Trockenschrank (bei 80°C mit aufgelegtem feuchten Whatman-Papierstreifen) getrockneten Objektträger lassen sich in Coomassie-Blau-Lösung färben und somit die Präzipitate nachkontrastieren. Danach werden die Gläser erneut getrocknet.

14.5 Aufreinigung von monoklonalen IgM-Antikörpern

Der im Genbank-Screening verwendete mAk 236-173-2 wurde mittels Anti-Maus-IgM-Agarose (Sigma) aus Hybridomaüberstand aufgereinigt. Ein kovalent an Agarosebeads gekoppelter (Cyanogenbromid- Aktivierung) µ-Ketten-spezifischer Maus-IgG bildet die Matrix für die Affinitäts-Chromatographie.

Phosphatpuffer (PB), pH 7.2	100 mM Na$_2$HPO$_4$
Elutionspuffer (EB), pH 2.4	100 mM Glycin
Neutralisationspuffer, pH 9	2 M Tris
Dialysepuffer, pH 8.9	100 mM Tris
In eine 0.7x10mm Säule (Biorad) wird PB vorgelegt, 1 ml der Agarose-Dispersion luftblasenfrei zugegeben, mit PB überschichtet und die Säule mit weiteren 50 ml PB (1ml/min) äquilibriert. 100 ml des 5 min mit 1000Upm zentrifugierte Hybridoma-Überstandes werden aufgetragen und 24h mit 0.5ml/min über die Säule zirkuliert.

Nach Waschen der Matrix mit 100ml PB (0.5ml/min) werden mit EB 30 Fraktionen von 1ml eluiert. In die Reagenzgläser wurden jeweils 50 µl Neutralisationspuffer vorgelegt, um das sehr saure Millieu des EB möglichst schnell abzupuffern. Die gepoolte Fraktion wird mit HCl auf pH 7 eingestellt und gegen über Nacht dialysiert. Die Konzentration wird mittels OD-Messung (280nm) und Bradford-Assay (13.4.2) bestimmt.

14.6 Bestimmung von Pinozytoseraten

Zur Quantifizierung der Pinozytoseaktivität (Hacker et al., 1997) wurde die Aufnahme des Flüssigphasenmarkers TRITC-Dextran durch *D. discoideum*-Zellen fluorimetrisch erfaßt. Axenisch gewachsene Zellen (2 bis 5·10^6 Zellen/ml) wurden auf eine Dichte von 5·10^6 Zellen/ml in AX-Medium eingestellt. 10 ml dieser Zellsuspension wurden in silanisierten 25ml-Kölbcchen (Vorbehandlung der Kolben mit Repel-Silan und nachfolgendes Spülen mit Ethanol und Wasser soll ein Haften der Zellen an der Glaswand verhindern) bei 150 Upm und 22°C geschüttelt. Zum Zeitpunkt t₀ wurden 20 mg TRITC-Dextran (vorgelöst in AX-Medium) zur Zellsuspension gegeben und kurz gemischt. Zu bestimmten Zeitpunkten wurde 1 ml der Zellsuspension zu 100 µl Trypanblau-Lösung pipettiert. Es wurde kurz gevortext, die Zellen abzentrifugiert (2 min, 800xg, RT) und der Überstand bis zum Zellpellet vorsichtig abgesaugt. Das Pellet wurde einmal mit 1 ml Soerensen-Phosphatpuffer (RT) gewaschen, in 1 ml Soerensen-Phosphatpuffer (RT) resuspendiert, kurz gevortext und die Fluoreszenzintensität (574nm) in einer Fluorimeter-Quarzküvette mit dem Fluoreszenz-Spektrometer SFM 25 (Kontron) nach Anregung (544 nm) gemessen. Die Messung erfolgte nach 0, 15, 30, 45, 60, 75, 90, 105, 120 und 135 min. Von allen Proben wurden Aliquots zur Proteinbestimmung (13.4.3) entnommen.

Trypanblau-Lösung, pH 4.4 (Hed, 1986)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>150 mM (0.087 g)</td>
</tr>
<tr>
<td>Natriumcitrat</td>
<td>25 mM (0.058 g)</td>
</tr>
<tr>
<td>Trypanblau</td>
<td>0,2 % (0.02 g)</td>
</tr>
</tbody>
</table>

in 10 ml Wasser 30 min rühren
filtrieren durch einen Faltenfilter
und einen Sterilfilter, 0.45µm
15 Mikroskopie

15.1 Fluoreszenz- und indirekte Immunfluoreszenz-Mikroskopie

15.1.1 Fixierung von *D.-discoideum*-Zellen in Picrinsäure- Formaldehyd

Puffer und Lösungen

10x PBS, pH 7.4
- 1370 mM NaCl
- 27 mM KCl
- 81 mM Na₂HPO₄ oder Na₂HPO₄·2H₂O
- 15 mM KH₂PO₄

PBS/Glycin
- 100 mM Glycin in 1x PBS

PBG
- 0.5 % BSA
- 0.05 % Fischgelatine (Sigma, 45 %)
 in 1x PBS
 sterilfiltriert bei –20°C

PIVES-Puffer, pH 6
- 20 mM PIPES (Sigma)

Picrinsäure, gesättigt, pH 6
- 3g Picrinsäure in 1l H₂O, 80°C über Nacht
 abkühlen, pH einstellen

Picrinsäure-Paraformaldehyd-Fixativ
- 0.4g Paraformaldehyd
- 7 ml H₂O, 40°C, mit 2-4 Tropfen 2M NaOH bis
 zum Auflösen titrieren
- 10 ml 20mM PIPES
- 3 ml gesättigte Picrinsäure

Einbettmedium
- 20 g Polyvinylalkohol, Mr 30000-70000 g/mol, werden in 80 ml PBS durch 16-stündiges
 Rühren aufgelöst. Nach Zugabe von 40 ml Glycerin (99,5 %) und erneutem 16-stündigen
 Rühren wird bei 15.000 g 15 min zentrifugiert, der Überstand mit 25 µg/ml Antibleichmittel
 DABCO versetzt, aliquotiert und bei -20°C eingefroren.
Fixierungsverfahren

15.1.2 Immunfluoreszenz-Markierung

In einer feuchten Kammer folgen Wasch- und Inkubationsschritte, bei denen die Gläser mit einer Pasteurpipette mit dem entsprechenden Puffern oder Antikörperlösungen über- schichtet und mit einer Wasserstrahlpumpe wieder abgesaugt werden. Gläser werden 2x 5min mit PBS/Glycin und 2x 15min mit PBG gespült.

Die Inkubation mit dem ersten Antikörper (150 bis 300 μl Kulturüberstand oder 10-20 μg/ml aufgereinigter Antikörper in PBG; zentrifugiert) erfolgt für 3h oder über Nacht bei RT in der geschlossenen feuchten Kammer. Es folgen 6x 5min Waschen mit PBG und Inkubation mit dem Sekundärantikörper (zentrifugiert) für 1 bis 2h. Anfärbung von DNA erfolgt durch 15-minütige Inkubation mit DAPI in PBG (1:1000). Dann wird 2 x 5 min mit PBG und 3 x 5 min mit PBS gewaschen, das Deckgläschen kurz in H₂O gespült und sofort mit den Zellen nach unten auf einen Tropfen Einbettmedium auf einem Objektträger gelegt. Die Präparate werden bei 4°C gelagert. Sie können sowohl im Fluoreszenzmikroskop (Zeiss Axiohot) als auch im konkokalen Laserscanningmikroskop ausgewertet werden.

15.1.3 Konfokale Fluoreszenzmikroskopie

Objektive

<table>
<thead>
<tr>
<th>63x / 1.2 C-Apochromat</th>
<th>Wasserobjektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x / 1.4 Apochromat</td>
<td>Öl</td>
</tr>
</tbody>
</table>
Individuelles Scannen

<table>
<thead>
<tr>
<th>Farbstoff</th>
<th>Laser</th>
<th>Dichroid</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY3</td>
<td>HeNe 543</td>
<td>FT 560</td>
<td>LP 590-610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LP 570</td>
</tr>
<tr>
<td>CY5</td>
<td>HeNe 633</td>
<td>NT80/20-543</td>
<td>RG 665</td>
</tr>
<tr>
<td>TRITC</td>
<td>He Ne 543</td>
<td>FT 560</td>
<td>LP 570</td>
</tr>
<tr>
<td>GFP</td>
<td>Ar 488</td>
<td>FT 510</td>
<td>BP 510-565</td>
</tr>
<tr>
<td>DAPI</td>
<td>Ar 364</td>
<td>FT 395</td>
<td>BP 400-435</td>
</tr>
</tbody>
</table>

Simultanes Scannen zweier Farbstoffe

<table>
<thead>
<tr>
<th>Farbstoff</th>
<th>Laser</th>
<th>Dichroid</th>
<th>Zweiter Splitter</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY3</td>
<td>Ar 488</td>
<td>FT 488/543</td>
<td>FT 560</td>
<td>LP 570</td>
</tr>
<tr>
<td>GFP</td>
<td></td>
<td></td>
<td></td>
<td>BP 575-640*</td>
</tr>
<tr>
<td>CY5</td>
<td>Ar 488</td>
<td>NT 80/20-543</td>
<td>FT 560</td>
<td>BP 510-525</td>
</tr>
<tr>
<td>GFP</td>
<td></td>
<td></td>
<td></td>
<td>RG 665</td>
</tr>
<tr>
<td>CY3</td>
<td>HeNe 543</td>
<td>NT 80/20-543</td>
<td>FT 665</td>
<td>BP 510-525*</td>
</tr>
<tr>
<td>CY5</td>
<td>HeNe 543</td>
<td>NT 80/20-543</td>
<td>FT 665</td>
<td>BP 575-640</td>
</tr>
</tbody>
</table>

15.2 Transmissionselektronenmikroskopie

15.2.1 Fixierung und Immunmarkierung von Kryopräparaten

Lösungen

2x Fixativ
4% Paraformaldehyd
in Picrinsäure (siehe 15.1.1)
Gelatine-Lösung (10%)
5% 2.3 M Saccharose
5% 20x Soerensen- Phosphatpuffer
90% H₂O
10% Gelatine

Saccharose-Lösung
1.8 M Saccharose (Merck)
500 ml PBS

PVP/ Saccharose
Polyvinylpyrrolidon, 15% (w/v)
500 ml Saccharose-Lösung
75 g PVP-10 (Sigma)
bei –20°C lagern

PBS, pH 7.4
8,1 mM Na₂HPO₄
1,5 mM KH₂PO₄
137 mM NaCl
2,7 mM KCl

PBS/Glycin (PBSG)
100mM Glycin in PBS

PBSG-Gelatine (2%)
2% Gelatine (w/v) in PBS/Glycin

Methylcellulose-Uranylacetat-Lösung
0.8 ml 2% Methylcellulose
0.2 ml 3% Uranylacetat in H₂O
0.1 ml H₂O

Paraformaldehyd-Picrinsäure-Fixierung
Zellen aus Schüttel- oder Plattenkulturen werden mit doppelt konzentriertem Fixativ (Endkonzentration 2% Paraformaldehyd) unter Schütteln 15min fixiert und 5min in der Eppendorf- Tischzentrifuge pelletiert. Das Zellsediment wird zweimal in 10mM PIPES (siehe 15.1.1) und einmal in PBSG gewaschen und bei 8000 Upm abzentrifugiert. Das Pellet wird mit dem gleichen Volumen Gelatine-Lösung (Endkonzentration 2%) bei 40°C gut gemischt und 30 min auf Eis gehärtet. Es folgt eine 1 bis 2ständige Nachfixierung mit 1% Paraformaldehyd (in PBS ohne Picrinsäure). Die Pellets werden in PBSG gewaschen und in kleine Blöcke geschnitten. Die Stückchen werden über Nacht in 15% PVP/1.8M Saccharose absinken gelassen und am darauffolgenden Tag auf Metallstöpseln in flüssigem Stickstoff.
schockgefroren. Alternativ können diese Blöckchen für den alsbaldigen Gebrauch im Kühl-
schrank aufbewahrt werden.

Kryoprozessierung und Immunmarkierung

Von den Kryoblöckchen werden mit einem Mikrotom 60 bis 70 nm dicke Schnitte ange-
fertigt und auf trägerfilmbeschichteten (Formvar) Nickelnetzen immobilisiert. Die Netze werden 10 min auf PBSG schwimmend äquilibriert, in PBSG gewaschen und 10 min auf eine PBSG-Gelatine-Lösung (2%) gelegt. Nach erneutem Waschen mit PBSG wird der Primäran-
tikörper, verdünnt in PBSG/1% BSA, entweder über Nacht im Kühlschrank, oder 1h bei RT inkubiert. Nach Waschen in PBSG wird mit 1:200 in PBSG/1% BSA verdünntem Sekundä-
rantikörper (Kaninchen-anti-Maus- IgG) überschichtet und die Grids nach weiterem Was-
sehen in PBSG auf eine ProteinA-Gold-Lösung (1:50 in PBSG/1% BSA) gelegt. Es folgen gründliche Waschschritte zuerst mit PBSG und danach mit H₂O. Die Nachfixierung wird mit einer 2% Glutaraldehyd-Lösung (in H₂O) durchgeführt, der nach Waschen in H₂O eine 15-
minütige Behandlung mit Methylcellulose-Uranylacetat-Lösung zur Nachkontrastierung folgt. Die Flüssigkeit wird abgestreift und die Grids getrocknet.

Entgegen den Einzelmarkierungen, die mit ProtA-Gold detektiert werden, muß für Doppelmarkierungen auf Gold-konjugierte Zweitantikörper zurückgegriffen werden. Deren Markierungseffizienz ist zwar geringer, es werden aber auch Kreuzreaktionen zwischen den Sekundärantikörpern mit den „falschen“ Primärantikörpern vermieden. Dabei wird zuerst der anti-DMIF1-mAk über Nacht inkubiert und dann mit Gold-konjugiertem Ziege-anti-Maus-
Sekundärantikörper abgesättigt. Danach kann mit dem nächsten Primärantikörper anti-α-
Tubulin-pAk (2h) und anschließend mit Gold-gekoppeltem Ziege-anti-Kaninchen-Ak markiert werden.

15.2.2 Fixierung und Einbettung in EPON

Lösungen

- **2x Fixativ**
 - 4% Glutaraldehyd
 - 2% Osmiumtetroxid (OsO₄)
 - in PBS pH 7.2

- **Uranylacetat-Fixativ**
 - 1% Uranylacetat in H₂O
Simultanfixierung in Glutaraldehyd-Osmiumtetroxid

Wenn nicht anders angegeben, finden alle Schritte bei RT statt. *Dictyostelium*-Zellen werden entweder direkt aus Schüttelkulturen oder, abgespült von AX-Medium enthaltenden Petrischalen, in Suspension fixiert. Dazu werden die Zellen und das doppelt-konzentrierte Fixativ (Endkonzentration 2% Glutaraldehyd, 1% Osmiumtetroxid) zu gleichen Teilen gemischt, 10 min geschwenkt und anschließend 1h auf Eis gestellt. Die Zellen werden 2x mit PBS und 2x mit H₂O gewaschen, 1h mit Uranylacetet nachkontrastiert und wiederum 3x mit H₂O gewaschen. Mit Ethanol- Lösungen verschiedener Konzentrationen findet eine schrittweise Dehydrierung der Proben wie folgt statt:

- je 15 min in 30 % – 50 % – 70 % – 80 % Ethanol
- 30 min in 100 % Ethanol
- 30 min in Propylenoxid

15.2.3 Immunmarkierung an EPON-Präparaten

Aus isolierten Mitochondrien präparierte Vesikel (13.5) werden immunmarkiert und anschließend in EPON-Harz eingebettet. Damit verbindet man den Vorteil der genauerer Wiedergabe der Strukturen durch das EPON-Verfahren (die bei gewöhnlicher Kryoeinbettung oft diffus werden) mit der spezifischen Markierbarkeit dieser Strukturen.

15.2.3.1 „Preembedding Labeling“ Verfahren

Je 200 µl der Vesikel-Suspension werden mit folgenden Hybridomaüberständen 1h bei RT inkubiert: anti-DMIF1 (mAk 272-208-1; 2µl), anti-Porin (mAk 70-100-1; 200µl) und anti-F1F0-β-Untereinheit (mAk 238-190-11; 200µl). Die Zellen werden 2min bei RT mit 10.000Upm in der Eppendorf-Tischzentrifuge sedimentiert, mit 20mM Tris-HCl (pH 8.0) gewaschen und die Pellets für 1h bei RT mit dem polyklonalen Sekundärantikörper (Kaninchchen-anti-Maus) inkubiert. Nach einem Waschschritt mit 20mM Tris-HCl (pH 8.0) erfolgt die Markierung mit ProtA-Gold für eine weitere Stunde. Danach werden die Präparate mit Glutaraldehyd/Osmiumtetroxid analog (15.2.2) fixiert und eingebettet.
16 Computerprogramme

16.1 Unter Windows

<table>
<thead>
<tr>
<th>Programme</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word 97 und Word 2000</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Sigma-Plot 5.0</td>
<td>Jandel Scientific</td>
</tr>
<tr>
<td>Corel-Draw 8 und 9</td>
<td>Corel</td>
</tr>
<tr>
<td>Photoshop 4.0, 5.0</td>
<td>Adobe Systems</td>
</tr>
<tr>
<td>iGrafx image 1.0</td>
<td>Micrografx</td>
</tr>
<tr>
<td>PC-Bas 2.0 (Phosphoimager)</td>
<td>Raytest</td>
</tr>
<tr>
<td>Ovid Client (Literatursuche)</td>
<td>Ovid Technologies</td>
</tr>
<tr>
<td>DAVS (Bildverarbeitung)</td>
<td>Richard Albrecht (MPI für Biochemie, Abt. Zellbiologie)</td>
</tr>
</tbody>
</table>

16.2 Unter UNIX

<table>
<thead>
<tr>
<th>Programme</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCG Sequence Analysis Package</td>
<td>University of Wisconsin, Genetics Computer Group (Devereux et al., 1984)</td>
</tr>
</tbody>
</table>
LITERATURVERZEICHNIS

Bevan et al., 2000; Genbank NCBI

Dictyostelium discoideum Genome Project: http://dicty.cmb.nwu.edu/Dicty/genomseq.htm

fragments to high specific activity. Anal. Biochem. 132, 6-13

molds Polyspondylium pallidum and Dictyostelium discoideum. Gene 165, 127-130

chemoattractant gradients. Bioassays 22(7), 603-615.

the protein inhibitor of mitochondrial adenosine triphophatase. Proc. Natl. Acad. Sci. USA 78,
7403-7407.

Fixation with Postosmizations. Histochemie 19, 162-164

formational change of ATPase inhibitor from yeast mitochondria. A proton magnetic resonance
study. J. Biochem. 93, 189-196.

Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J.C., Contamin, S., de Thillot, V., Just, I.,
of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c re-
lease. EMBO J. 19 (23), 6361-6370.

Garcia-Mata, R., Zsuzsa B., Sorscher, E.J. and Sztul, E.S. (1999). Characterization and dynamics of

4(1), 33-37.

13, 392-395.

Gerisch, G. (1986). Dictyostelium discoideum - A eukaryotic microorganism that develops by cell ag-
gregation from a unicellular to a multicellular stage. Cellular and molecular aspects of develop-
mental biology / Course 4

Gerisch, G. (1987). Cyclic AMP and other signals controlling cell development and differentiation in

Gerisch, G., Malchow, D., Riedel, V., Beug, H. (1972). Cell communication by chemical signals and the
regulation of cyclic AMP in the development of the microorganism Dictyostelium discoideum

Nakamura et al., 2000, Genbank NCBI

Ogura et al., 2001, Genbank NCBI

Pharmacia: Isolation and Subfractionation of Rat Liver Mitochondria (Percoll-Protokoll).

Wintero et al., 1999, Genbank NCBI

Wood et al., 1999, Genbank NCBI

DANKSAGUNG

Zum Gelingen dieser Arbeit haben viele Menschen beigetragen, ich möchte mich an dieser Stelle herzlich dafür bedanken.

Herrn Prof. Dr. Gerisch danke ich für das freie, herausfordernde Thema und sein kontinuierliches Interesse am Fortgang der Arbeit. Seine stete fachliche Unterstützung, Diskussionsbereitschaft und wertvollen Hinweise während der Bearbeitung des Themas und insbesondere in der Phase des Zusammenschreibens haben die Arbeit sehr vorangebracht. Durch die gewährte selbständige Arbeitsmöglichkeit konnte ich meinen praktischen wie theoretischen Erfahrungshorizont wesentlich erweitern. Desweiteren bedanke ich mich für die Bereitstellung des Arbeitsplatzes, die sehr guten Arbeitsbedingungen in der Abteilung und nicht zuletzt für die finanzielle Absicherung, um die Experimente abschließen zu können.

Herrn Prof. Dr. Baumeister möchte ich herzlich für seine Betreuung danken und für die Vertretung der Arbeit vor der Fakultät für Chemie der TU München. Dies hat den erfolgreichen Abschluß der Arbeit letztlich ermöglicht.

Vielen Dank auch an die Mitglieder meiner Prüfungskommission - Herr Prof. Dr. Nuyken, Herr Prof. Dr. Baumeister, Frau Prof. Dr. Weinkauf - für das kurzfristige Zustandekommen des Prüfungstermins, trotz übervoller Terminkalender.

Elke Thedinga hat mich überzeugt, daß umgestülpte Mitochondrien eigentlich viel spannender sind, sie hat mir gezeigt wie man das Letzte aus Elektrophorese-Gelen herausholt und wie man sonst emotional überlebt. Zusammen mit Ulrike Hacker sind die Pinozytose-Assays entstanden, die eine gewisse sportliche Ertüchtigung darstellten, andere Mitglieder der Abteilung zeitweise akut in Kollisionsgefahr brach-

Mein besonderer Dank gilt David - er hat meinen größten Respekt dafür, wie selbständig er schon sehr früh zurechtgekommen ist. Auch meinen Eltern gebührt in diesem Zusammenhang großer Dank für ihre jederzeit spontan abrufbare Einsatzbereitschaft und Unterstützung.