Adaptive Initiation of AutoPas Tuning
Phases for Efficient Particle Simulations

Bachelor’s Thesis in Informatics

Niklas Ladurner

Technische Universitat Miinchen

School of Computation, Information and Technology - Informatics

Chair of Scientific Computing in Computer Science

Munich, September 15t", 2025

Adaptive Initiation of AutoPas Tuning
Phases for Efficient Particle Simulations

Adaptive Einleitung von Tuning-Phasen fir
effiziente Partikelsimulation in AutoPas

Bachelor’s Thesis in Informatics

Niklas Ladurner

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Chair of Scientific Computing in Computer Science

Advisor: Manish Kumar Mishra, M.Sc. (hons)

Chair of Scientific Computing in Computer Science

Date: 15.09.2025

Technische Universitat Miinchen
School of Computation, Information and Technology - Informatics

Chair of Scientific Computing in Computer Science

Munich, September 15t", 2025

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, September 15t 2025 Niklas Ladurner

Acknowledgements

I would like to express my deepest gratitude to my advisor Manish Mishra. His guid-
ance, patience, and insightful explanations during our meetings were invaluable in
helping me understand AutoPas and its wide array of complex features. His contin-
uous encouragement and his in-depth analysis of preliminary results pushed me to
refine my ideas and improve the quality of this thesis.

Additionally, I would like to thank all my friends who kindly took the time to proofread
parts of this work and provide thoughtful feedback. Their constructive criticism and
suggestions helped shape this thesis into what it is now.

The evaluation of our proposed mechanisms could not have been performed without
sizeable processing capabilities. Thus, for supporting this thesis by providing comput-
ing time on its Linux-Cluster, I gratefully acknowledge the Leibniz Supercomputing
Centre.

Lastly, I want to thank José Areia and all contributors to the IPLeiria-Thesis* template,
which was adapted and used in this work.

I https://github.com/joseareia/ipleiria-thesis

https://github.com/joseareia/ipleiria-thesis

Abstract

Particle simulations have established themselves as an indispensable tool in scientific
research, and are used across a wide range of applications ranging from biophysics
to materials science. The efficiency of such simulations is strongly influenced by the
choice of computational strategies and their corresponding parameters. However, de-
termining the optimal algorithmic configuration often requires expert knowledge and
is highly dependent on the specific scenario studied.

AutoPas is a particle simulation library that addresses this issue by dynamically ad-
justing the algorithms employed in the simulation at runtime, based on live simulation
data. This enables researchers to interact with AutoPas through a simple black-box
interface, without requiring extensive knowledge in setting up optimal simulation pa-
rameters. To achieve this dynamic reconfiguration, AutoPas reevaluates the optimal
algorithmic settings in tuning phases, initiated at fixed intervals. This thesis proposes
four novel methods for determining ideal points for the dynamic initiation of tuning
phases, based on data collected during the simulation itself.

Experimental results demonstrate that our approach reduces simulation runtime by up
to 47 % compared to fixed tuning intervals with exhaustive search, whilst still selecting
suitable configurations. Moreover, our implementation is lightweight, introducing on
average only 0.9 % overhead per iteration. The newly introduced methods are shown
to be particularly well suited for MPI-parallel applications.

iii

Zusammenfassung

Partikelsimulationen haben sich ldngst als unverzichtbare Hilfsmittel in der Wissen-
schaft etabliert und kommen in zahlreichen Bereichen, von der Biophysik bis hin zu den
Materialwissenschaften, zum Einsatz. Die Effizienz solcher Simulationen wird stark
von der Wahl der verwendeten Simulationsmethoden und den entsprechenden Para-
metern beeinflusst. Die Bestimmung der optimalen Konfiguration erfordert jedoch oft
Expertenwissen und hdngt vom jeweiligen untersuchten Szenario ab.

AutoPas ist eine Programmbibliothek fiir Partikelsimulationen, die dieses Problem zu
l6sen versucht, indem die in der Simulation verwendeten Algorithmen zur Laufzeit
auf Grundlage von Live-Simulationsdaten dynamisch angepasst werden. Dadurch kén-
nen Endanwender {iber eine einfache Black-Box-Schnittstelle mit AutoPas interagieren,
ohne iiber umfangreiche Kenntnisse zur Einrichtung optimaler Simulationsparameter
verfligen zu miissen. Um diese dynamische Neukonfiguration zu erzielen, ermittelt Au-
toPas in festgelegten Intervallen die beste algorithmische Konfiguration erneut. Die vor-
liegende Arbeit stellt vier neue Methoden vor, um basierend auf im Verlauf der Simu-
lation gesammelten Daten ideale Auslosungszeitpunkte dieser Tuning-Phasen bestim-
men.

Die gesammelten Performanzergebnisse zeigen, dass unser Ansatz die Simulationslauf-
zeit im Vergleich zu statischen Tuning-Intervallen mit vollstindiger Suche des Parame-
terraums um bis zu 47 % reduziert, wobei dennoch geeignete Konfigurationen ausge-
wihlt werden. Dariiber hinaus verursacht unsere Implementierung nur einen zusétzli-
chen Laufzeit-Overhead von durchschnittlich 0.9 % pro Iteration. Die neu entwickelten
Strategien zeigen sich als besonders effektiv in MPI-parallelisierten Anwendungen.

Contents

List of Figures
List of Tables
1 Introduction
1.1 Motivation e
1.2 Molecular Dynamics
1.2.1 Newton’s Lawsof Motion
1.2.2 Lennard-Jones Potential
1.2.3 Stormer-Verlet Algorithm
2 AutoPas
21 Background
2.2 Configuration Parameters
221 Containers e e
222 Traversals
2.2.3 Additional Parameters
2.3 Tuning Strategies L.
3 Implementation
3.1 Considerations o i i i e e
3.1.1 Computational Overhead
3.1.2 Available Simulation Statistics
3.1.3 Detecting Scenario Change
3.14 Interaction with Tuning Strategies
3.2 Time-Based Triggers
321 SimpleTrigger
3.2.2 Single-Iteration Averaging Trigger
3.2.3 Interval Averaging Trigger
3.2.4 Linear Regression Trigger
4 Evaluation
4.1 Benchmarking Scenarios,
411 Equilibrium oo oo
412 Exploding Liquid
413 HeatingSphere
4.2 Evaluation Metrics e

4.3 Default Trigger Parameters

Results

Xi

XV

= W W N P

—_
O O O 0 oo NI

—_

13
13
13
14
14
14
15
15
15
16

19
19
19
19
20
21
21

23

vii

51 ExperimentalSetup o oL 23
5.2 Choice of Simulation Statistics 23
53 Computational Overhead, 24
54 BenchmarkingResults 25
541 Equilibrium 0 o oo 25

54.2 Exploding Liquid 28

543 HeatingSphere L 31

55 Hybrid Triggers 35
6 Conclusion 37
Bibliography 39

viii

1.1
1.2

2.1

2.2

2.3

3.1

3.2

4.1

4.2
4.3

51

52

5.3

List of Figures

Real-world applications of MD simulations.
An illustration of the 12-6 L] potential well, with the minimum of —¢ at

Fmin = OV2, zero-crossing at ¢ and cutoff radius r.. The figure is based
on Lenhardetal. [17].

An illustration of selected neighbor identification algorithms used for con-
tainers in AutoPas. Particles for which distance calculations are performed
are marked with a diagonal line pattern, dashed arrows lead to particles
outside the cutoff radius. This figure is based on Gratletal. [10].
Comparison between the Array of Structures (AoS) and Structure of Arrays
(SoA) memory layouts. The 7()s correspond to the position vector of the ith
particle.
Impact of the cell size factor on the number of distance calculations. The
dotted line represents the cutoff radius, superfluous distance calculations
are marked by dashed arrows. 0000

Comparison for A = 1.5 and n = 5 between the TimeBasedSimpleTrig-
ger (left) and TimeBasedAverageTrigger (right) strategies. A new tuning
phase is initiated in both cases, however the TimeBasedAverageTrigger is
less susceptible to thedipint;—;. L.
Comparison for A = 1.5 and n = 11 between the TimeBasedSplitTrigger
(left) and TimeBasedRegressionTrigger (right) strategies.

Evolution of the simulation state in the equilibrium scenario. The coloring
indicates the forces acting upon a particle, and is given in reduced units.
Note that the overall forces decrease as the equilibrium is reached, even
though the specific timestamps depicted might suggest otherwise.
Evolution of the simulation state in the exploding-liquid scenario.
Evolution of the simulation state in the heating-sphere scenario.

Rebuild and non-rebuild times in the equilibrium (left) and heating-sphere
(right) scenario. The configurations used were VLC-C08-N3L-AoS-CSF1 and
LC-C04-NoN3L-AoS-CSF1 respectively. The rebuild times do not contribute
any new information regarding scenario change..
Performance comparisons between the various trigger strategies: Relative
and absolute iteration overhead in the heating-sphere scenario (left) and av-
erage runtime decrease obtained through optimizations in the equilibrium
scenario (right). L L
Examples of trigger behavior in the equilibrium scenario.

10

11

15

17

20
20
21

24

Xi

54

5.5

5.6
5.7

5.8

59
5.10

5.11

5.12

Xii

Trigger behavior in the equilibrium scenario, the numbers in the legends
refer to the number of samples n considered. The line in the background
represents the baseline run. Note the logarithmic scale in the plots on the
righthandside.
Ranking of configurations selected by the best run in the equilibrium sce-
nario for each trigger strategy (left) and selected configurations in the base-
linerun (right).
Examples of trigger behavior in the exploding-liquid scenario.
Trigger behavior in the exploding-liquid scenario, the numbers in the leg-
ends refer to the number of samples n considered. The line in the back-
ground represents the baselinerun.
Ranking of configurations selected by the best run in the exploding-liquid
scenario for each trigger strategy (left) and selected configurations in the
baseline run (right).
Examples of trigger behavior in the heating-sphere scenario.
Trigger behavior in the heating-sphere scenario, the numbers in the legends
refer to the number of samples n considered. The line in the background
represents the baseline run. Note the logarithmic scale in the plots on the
righthandside.
Ranking of configurations selected by the best run in the heating-sphere
scenario for each trigger strategy (left) and selected configurations in the
baseline run (right). L L.
Iteration runtime (left) and the maximum particle density (right) for the

heating-sphere scenario with single configuration VL-List_Iter-NoN3L-AoS.

The iteration runtime does not indicate scenario change, but the maxDensity
statistic shows the transformation of the simulation state.

27

28
29

30

31
32

33

34

List of Tables

5.1 Suggested default parameters for the equilibrium scenario. 28
5.2 Suggested default parameters for the exploding-liquid scenario. 30
5.3 Suggested default parameters for the heating-sphere scenario.. 33

XV

Introduction

This chapter introduces the fundamental concepts necessary to understand Molecular
Dynamics (MD) simulations. We begin with a discussion of the motivation behind
the general n-body problem and the goals of this thesis in Section 1.1. Afterwards,
the components of a simple MD simulation loop are presented in Section 1.2. These
include Newton’s laws of motion for providing the equations of particle trajectories, the
Lennard-Jones potential as a model for pairwise interactions, and the Stormer-Verlet
algorithms as numerical schemes for integrating the equations of motion.

1.1 Motivation

The n-body problem is a foundational challenge of classical physics. It concerns the
interaction and movement of bodies, for example, the trajectories of masses in the solar
system. At such astronomic scales, general relativity additionally introduces a high de-
gree of complexity. Yet, even in classical Newtonian physics, the systems of equations
tend to no longer be solvable by analytic means if n > 2 bodies are involved, except for
certain special cases. Hence, numerical algorithms have become essential in finding
approximate solutions. [2]

With the advent of computer-based simulation, the feasibility of finding such numerical
solutions to a n-body problem has increased significantly. Over the past few decades,
advances in high-performance computing (HPC) have further increased both scale
and efficiency of such simulations, allowing for the modeling of large systems at un-
precedented resolution. In 2017, for instance, the TianNu project simulated 2.97 x 10'2
particles on the Tianhe-2 supercomputer [6]. These days, particle simulations have
established themselves as indispensable tools across a wide range of scientific fields.
Applications reach from drug design [14] to plasma physics [25] and materials science
[21]. Two such applications are illustrated in Figure 1.1.

One example of a software framework enabling n-body simulations is the AutoPas
library [9]. Its internal mechanisms will be discussed in detail in Chapter 2; for the
motivation of this thesis it suffices to know, that AutoPas seeks to dynamically select
optimal algorithmic configurations without requiring expert knowledge during setup
(“autotuning”).

2 1. Introduction

(a) Simulation of a lipid bilayer, repre- (b) Simulation of crystal growth in
sentative for cell membranes. [24] metallic glass during annealing. [5]

Figure 1.1: Real-world applications of MD simulations.

To achieve this, so-called tuning phases are initiated at fixed intervals. During each
tuning phase, different configurations are sampled for a predetermined number of it-
erations, after which the best performing configuration is selected to simulate the re-
maining iterations until the next tuning phase. Naturally, these static intervals do not
necessarily align with the points at which it would be most advantageous to switch con-
figurations. Consider a scenario, in which the optimal configuration changes rapidly
in the beginning, but stabilizes and settles into an equilibrium later on. Having one
uniform static interval, it would be either too short — resulting in unnecessary tun-
ing phases during equilibrium, or too long — resulting in suboptimal performance in
the early phase. This thesis proposes a method to solve this problem by dynamically
initiating tuning phases based on live simulation data.

1.2 Molecular Dynamics

Molecular Dynamics (MD) simulation is one method of solving the classical n-body
problem on the molecular level. On that scale, the interactions between atoms are sub-
ject to the of laws quantum mechanics, in particular the Schrodinger equation. That
equation, however, is unsuitable for the simulation of larger systems due to its com-
plexity as it is a partial differential equation.

Therefore, simplifications such as the Born-Oppenheimer approximation have to be
employed. This approximation is based on the fact that the nuclei of atoms have much
greater mass than the electrons surrounding them. Under the additional assumption,
that the nuclei can be considered as static, relative to the movements of the electrons,
we can separate the Schrodinger equation into two parts coupled by an interaction
potential. Using further simplifications, we obtain (1.1), which directly corresponds
to the classical laws of motion as stated by Newton (cf. Section 1.2.1). In this equation,
pi(t), a;(t), m;, V(pi(t)) are the position, acceleration, mass and potential acting on a
particle 7 at time t. [4, 12, 26]

mjai(t) = =Vp,V(p(t)) (1.1)

The simplest interatomic potentials one could apply here describe the interactions be-
tween only two particles, such as the Gravitational, Lennard-Jones or Coulomb poten-
tials [12]. Considering the formula presented in (1.1), the main MD simulation loop
is rather simple. One iteration of said loop consists of calculating the forces between

1.2. Molecular Dynamics 3

particles and integrating the equations of motion. These two steps are repeated until
an equilibrium is reached, at which point any desired measurements can be taken. [7]

1.2.1 Newton's Laws of Motion

As referred to before, Newton’s laws of motion can be applied to MD simulation in

approximating particle behavior. These well-known laws of classical mechanics are as
follows. [20]

I. Every object perseveres in its state of rest, or of uniform motion in a right line, unless it
is compelled to change that state by forces impressed thereon.
In other words, if the net force on any body is zero, its velocity is constant.
II. The alteration of motion is ever proportional to the motive force impressed; and is made
in the direction of the right line in which that force is impressed.
In other words, F = m - a.
III. To every action there is always opposed an equal reaction: or, the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.
In other words, if one body exerts force F, on another body, than the latter exerts
force F, = —F, on the first body.

The second law is particularly significant, as it allows to compute the trajectories of
particles based on the forces acting upon them. The third law, while secondary in
dynamics, is useful especially regarding optimizations: for pairwise interactions, any
force needs to be evaluated only once, since the second particle experiences a force of
the same magnitude in opposed direction. [10]

1.2.2 Lennard-Jones Potential

Simulating all pairwise interactions between atoms has complexity O (n?). To reduce
this complexity, most MD simulations restrict themselves to short-range interactions.
As the forces of these interactions are negligible if the interacting particles are far apart,
a cutoff-radius r. can be introduced, beyond which the forces can be assumed negligi-
ble. This significantly reduces the computational complexity, as only the interactions
between close neighbors have to be computed. Under optimal conditions, the number
of interaction computations can be reduced to O(n). [10]

The Lennard-Jones (L]) potential is one such short-range interaction potential that acts
on pairs of particles. It is based on empirical data and provides a sufficiently good ap-
proximation, such that macroscopic effects can be derived from simulating interactions
at a molecular level. It is most frequently used in the form of the 12-6 potential as de-
fined in (1.2). [17]

- (1.2)

Viy(r) = 48[(%)12) (g)6

In this equation, r is the distance between the two particles, ¢ the interaction strength
and o the distance at which the potential signs change (zero-crossing). The parameters
¢ and o are dependent on the simulation context, e.g., the material which ought to be
simulated. The potential function is illustrated in Figure 1.2. [17, 27]

4 1. Introduction

Repulsion Attraction
/_/H
T T
2e } :
S | |
= !
3 e
s 0 ‘
[aXR \/ ‘
—el N | :
| | |

|
"min 1.50 20 2.50 30
Distance r between Particles

Figure 1.2: An illustration of the 12-6 L] potential well, with the minimum of —¢ at 7in = 0 P,
zero-crossing at ¢ and cutoff radius r.. The figure is based on Lenhard et al. [17].

1.2.3 Stérmer-Verlet Algorithm

Using L] potentials and Newton’s laws of motion, we can construct a system of ordi-
nary differential equations. Solving them analytically is practically infeasible for large
systems, therefore numeric methods have to be used in approximating a solution, as
stated before.

The Stormer-Verlet algorithm is one such numeric method for solving these systems.
With p;(t), vi(t), a;i(t), m;, Fi(t) as the position, velocity, acceleration, mass and force act-
ing on a particle i at time f, we can derive the algorithm by the summation of Taylor
expansions. First, we deduce the position of particle i at time t+0t, as in (1.3). Secondly,
we take a backwards step to t — 6t, as in (1.4).

pilt + 5t) = pi(t) + Stpy(t) + %6t2iji(t) + éét%‘i(t) +O(5tY) (1.3)
pi(t — 6t) = pi(t) — 5tpi(t) + %&%i(t) - éét?’b’i(t) +0(5t") (1.4)

By adding both (1.3) and (1.4) and reordering terms, we conclude (1.5).

pi(t + 0t) = 2pi(t) — pi(t — 6t) + 6t%p;i(t) + O(6t%) (1.5)

As the second derivative of the position p;(t) is the acceleration a;(f), we can express
(1.5) as (1.6). Where, by Newton’s second law, a;(t) = Fi;—(lt)

pi(t + 6t) = 2pi(t) — pi(t — 6t) + 6t2a;(t) + O(5t%) (1.6)

Using this result, we could already calculate the velocities of the individual particles.
However, there are some drawbacks, e.g., high error propagation [8]. A more exact
and efficient approach, sometimes referred to as the Velocity-Verlet algorithm, can be
derived similarly. For that, considering (1.7), we can rearrange and substitute into (1.5)
to conclude (1.8) and finally (1.9).

pi(t + 6t) — pi(t — Ot)

557 ~ pi(t — Ot) = pi(t + 0t) — 20tv,(t) (1.7)

vi(t) =

1.2. Molecular Dynamics 5

pi(t + 0t) = pi(t) + otv,(t) + %ﬂai(t) +0(6th) (1.8)

vi(t +0t) = vi(t) + %[ai(t) +a;(t + ot)] + O(5t%) (1.9)

Because of the aforementioned improved properties of this method, it is often preferred
in MD simulations. [8, 13, 16]

AutoPas

This chapter examines the particle simulation library AutoPas and provides an overview
of its architecture and features. In Section 2.1, the concept of autotuning is introduced,
together with the md-flexible application. The various algorithmic configuration pa-
rameters available are introduced thereafter in Section 2.2. Additionally, Section 2.3

shortly outlines the different tuning strategies for the selection of the optimal combina-
tion of these parameters.

The contents of this chapter are mainly drawn from the works introducing AutoPas,
specifically the publications by Gratl et al. [9, 10, 11] and Seckler et al. [23], as well as
the AutoPas documentation [3].

2.1 Background

AutoPas is an open-source C++ library that facilitates short-range MD simulations. The
feature that sets AutoPas apart from other particle simulation software such as 1s1-
mardyn!, LAMMPS?, or GROMACS?, is the autotuning algorithm.

The mentioned simulation programs are highly specialized on specific applications and
therefore focus on optimizing the algorithms used in these environments. In contrast,
AutoPas aims to provide optimal simulation conditions across a wider range of sce-
narios by implementing a broad set of algorithms and dynamically switching between
them at runtime. This removes the need for expert knowledge in simulation setup and
allows for a simple interface by which the AutoPas library can be viewed as a black-box.

As referred to earlier, this autotuning approach is currently implemented as follows:
In each iteration that is a multiple of a predefined tuning-interval, a tuning phase
is initiated. In these tuning phases, a number of configurations are selected to be sam-
pled; these configurations each represent a distinct combination of algorithmic settings
(c.f. Section 2.2). All configurations are sampled, i.e., executed for a set number of iter-
ations, after which the measurements are condensed into a single value, referred to as

https://www.lsl-mardyn.de/
Zhttps://www.lammps . org/
3 https://www.gromacs.org/

https://www.ls1-mardyn.de/
https://www.lammps.org/
https://www.gromacs.org/

8 2. AutoPas

“evidence.” This evidence is used to rank the sampled configurations based on a tun-
ing metric, either runtime or energy consumption. The best configuration is selected
to compute the subsequent iterations until the beginning of the next tuning phase.

As AutoPas is only a library, we require an application that interacts with it and pro-
vides a front end to allow for our particle simulations. In this work, we will use the
md-flexible application, provided together with AutoPas. Based on the 12-6 L] po-
tential and Stormer-Verlet time integration, md-flexible facilitates MD simulations
with integrated parallelization, distributed memory computation, load balancing, and
highly configurable scenario generators.

2.2 Configuration Parameters

As outlined in Section 2.1, AutoPas is designed to allow for dynamic adaptation of the
algorithmic configuration used in computing the actual simulation steps. The relevant
parameters are categorized and described in the following.

2.2.1 Containers

Containers in AutoPas are classes responsible for particle management and neighbor
identification. They store the actual particle data in a specific memory layout and allow
for the efficient lookup of neighbors, i.e. particles inside the cutoff radius r.. Grouped
by neighbor identification algorithm, there are currently four different types of contain-
ers.

Direct Sum The simplest algorithm is Direct Sum: It calculates the distances
between the current particle and all other particles, discards those
which lie outside of 7., and proceeds with the force calculations
on the remaining particles. As this method has complexity O (n?),
it is only suitable for small scenarios.

Linked Cells The Linked Cell approach divides the simulation space up into
cells along a regular grid. Each particle is then assigned to the
cell corresponding to its location in space. Considering a cell size
greater or equal to 7, only neighboring cells have to be considered
in the force calculations. For homogeneous particle distributions,
this reduces the complexity to O(n). Additionally, particles close
to each other in simulation space are close in memory, which re-
sults in cache-friendly behavior and allows for vectorization.

Verlet Lists One drawback of the Linked Cells algorithm is the high number
of particles that lie inside neighboring cells, but outside the cut-
off radius. They are discarded in the force computation, but still
require distance computations. The Verlet List algorithm solves
this issue by introducing a neighbor list of interaction partners
for each particle. As rebuilding these lists is expensive, not only
neighbors inside the cutoff radius are stored, but also particles
that might move into interaction range. This is achieved by ex-
tending the radius by a so-called Verlet skin. As particles move,
these neighbor lists have to be rebuilt periodically, relying on other
neighbor identification algorithms such as Linked Cells. Further-
more, Verlet Lists have a large memory footprint (one list per par-

2.2. Configuration Parameters 9

o o
2 0 Ol o 0 Ol o
o Qe | O O LR Ts | o
? 7 C e ?
o | % ox | [%
rere tet | i |0 ° o4 2o
S .8 vl © L8| ©
e o g % o o O'l-o Jo o
(a) Direct Sum (b) Linked Cells (c) Verlet Lists

Figure 2.1: An illustration of selected neighbor identification algorithms used for containers in
AutoPas. Particles for which distance calculations are performed are marked with a diagonal
line pattern, dashed arrows lead to particles outside the cutoff radius. This figure is based on
Gratl et al. [10].

ticle) and do not provide the advantageous memory properties of
Linked Cells.

Verlet Cluster Lists To reduce the overall number of lists in the Verlet List approach,
multiple particles can be clustered together, effectively combin-
ing their individual neighbor lists to a single one for the whole
cluster. This is possible due to the fact that neighboring particles
are likely to share multiple of their neighbors. The clustering is
based on a subdivision of the simulation domain into a Cartesian
grid (x/y) which, extruded along the third dimension (z), forms
several towers. Inside each of these towers, particles are grouped
into clusters of size M, ordered by their position along the z-axis.
Instead of an exact combination of all cutoff radii, a simple bound-
ing box is constructed around each cluster. Thus, Verlet Cluster
Lists not only reduce the total number of neighbor lists, but also al-
low for vectorization, as clusters are groupings of spatially close
particles. On the other hand, the number of particles for which
distance calculations have to be performed increases.

2.2.2 Traversals

Containers provide an efficient way to identify neighbors of a particle — to efficiently
compute the interactions themselves however, the traversal, i.e. the order in which par-
ticles are iterated over, is also important. Traversals are relevant for the performance
mostly due to memory and cache access patterns. Different container types require
traversals, tailored to the data structures used in storing the neighbors. A limited se-
lection of these traversals will be explained hereafter.

C01 Base Step The c01 base step is not a traversal strategy on its own, but defines the
cells in which interaction computations must be performed for any
given particle. It is implemented for the Linked Cells and Verlet List
Cells containers as 1c_c01 and vlc_c01 respectively. As the simplest
base step, it computes all interactions with the neighboring cells of
the particle’s base cell.

C18 Base Step Similarly, c18 computes interactions only on its forward neighbors,
potentially halving the number of calculations that have to be per-
formed. This base step is enabled by Newton’s third law (cf. Sec-

10 2. AutoPas

tion 1.2.1), where only one of the interacting particles needs to com-
pute the interaction force. However, some form of synchronization
must be employed, as to avoid race conditions on force updates. This
limits the extent to which parallelization is possible.

VL List Iteration The VL List Iteration is the only traversal strategy available for Ver-
let Lists. All lists are processed in parallel, within a given list the
particles are traversed in sequential order.

2.2.3 Additional Parameters

Moreover, there are a number of additional configuration parameters that do not fall
into the aforementioned groups. They are given below.

Data Layout The data layout option concerns the layout of the particle structures
in memory. As each particle has multiple attributes associated to it,
all particles together can be laid out either as an Array of Structures
(AoS) or a Structure of Arrays (SoA). In the AoS layout, all particles
are stored after each other; in the SoA layout, each attribute type is
stored in a separate array, with each entry holding the value for a
specific particle. Figure 2.2 illustrates both principles.

Newton3 As mentioned in Section 1.2.1, Newton’s third law states that F, = —F,
for two bodies a, b exerting forces on each other. This allows for op-
timizing pairwise interactions, as only one force has to be computed.
However, this approach is not always beneficial as it may limit par-
allelization — once the force is evaluated, both particles must be up-
dated at once.

Cell Size Factor The cell size factor (CSF) parameter specifies the side length of the
cells in relation to the interaction cutoff radius r.. It can reduce the
number of particles for which distances have to be calculated, as a
smaller cell side length better approximates the spherical nature of
the cutoff radius. This behavior is illustrated in Figure 2.3.

Particle 1 Particle 2 Particle 3

AoS e r;n D[@ rff) @ | |0 rf’) e
rff) r;i) rii)

SoA D], 0] - ry) rf) rf) S PCIPCIPC

Figure 2.2: Comparison between the Array of Structures (AoS) and Structure of Arrays (SoA)
memory layouts. The 7()s correspond to the position vector of the ith particle.

2.3 Tuning Strategies

AutoPas provides a variety of different tuning strategies. These are used in sampling
and selecting the new optimal configuration in the tuning phases of the autotuner. As
they are not particularly relevant to the topics discussed in this thesis, only selected
strategies are presented.

2.3. Tuning Strategies 11

o} o)
o) Ol o o) ol 5
e}
Q| ... B |o© ol|5 |o
A g e e e
@* N N 'é": O : '@
:“@A T I O o @A I O o
AR R ERNENE
'S » o O O 0 o O

(a) Cell Size Factor 1.0 (b) Cell Size Factor 0.5

Figure 2.3: Impact of the cell size factor on the number of distance calculations. The dotted line
represents the cutoff radius, superfluous distance calculations are marked by dashed arrows.

FullSearch

RandomSearch

PredictiveTuning

The default tuning strategy is an exhaustive search over all possi-
ble configurations, i.e., all combinations of parameters. The opti-
mal configuration is thereby guaranteed to be trialed at some point.
However, the space of all possible configurations grows exponen-
tially in the number of parameters, of which many configurations
may be highly suboptimal. Other tuning strategies are therefore
more suitable for most scenarios.

The random search tuning strategy randomly selects a given num-
ber of configurations which are then sampled. This can greatly re-
duce the number of configurations to test, but may not select the
optimal configuration.

The predictive tuning strategy reduces the number of configura-
tions that are sampled during tuning phases by only testing con-
figurations that are expected to perform well. To predict which
configurations might be optimal, the results from previous tuning
iterations are used to extrapolate performance in the current tun-
ing phase. The strategy allows to specify the degree of accuracy, i.e.
how many full-search tuning phases are required before the ex-
trapolation takes place. Predictive tuning is typically used with the
slow-config-filter, which blocks configurations that show ex-
tremely poor performance from all successive tuning phases. [22]

Implementation

To decide on when a new tuning phase should be initiated, we analyze simulation data
gathered at runtime. The decision is then made by an algorithm we will refer to as
a “trigger strategy”. Depending on the scenario and statistics provided by the simu-
lation, different methods of finding trigger points may be optimal. In this chapter we
therefore present the strategies we investigated. Section 3.1 lays out some key points to
consider, independent of any specific tuning strategy. In Section 3.2 we subsequently
introduce the strategies we will evaluate in this thesis and their respective mathemati-
cal background.

3.1 Considerations

When developing trigger strategies, several aspects must be taken into account. These
include the additional computational costs introduced, the types of simulation statis-
tics used, and the criteria by which relevant changes in the simulation scenario are
detected. Moreover, the chosen trigger mechanisms do not operate in isolation but in-
teract with tuning strategies. This section outlines these considerations in more detail.

3.1.1 Computational Overhead

Our trigger strategies introduce additional computations, as we have to make decisions
based on data that can only be collected at runtime. Therefore, the overhead must be
kept as small as possible, otherwise gains made by triggering less tuning phases might
easily be outweighed by the additional computations in each iteration. Furthermore,
it may lead to feedback of our method to itself, as our strategies may affect iteration
runtime which in turn alters the trigger behavior.

3.1.2 Available Simulation Statistics

AutoPas tracks a number of live simulation statistics; this thesis primarily focuses on
runtime measurements of the individual iterations. In addition to these runtime statis-
tics, the LiveInfo system reports parameters such as the estimated number of neighbor
interactions, the number of empty cells or the standard deviation of the number of par-
ticles in cells. [19]

13

14 3. Implementation

The iteration runtimes themselves are again differentiated into multiple parameters:
the time spent on computing interactions, traversing remainders and rebuilding neigh-
bor lists. In this work, we will consider the sum of all these times with the exception
of the rebuilding measurements. This choice will be justified by collected data in Sec-
tion 5.2.

3.1.3 Detecting Scenario Change

After deciding on which simulation statistic to base the triggering strategies on, one
needs to define a notion of “scenario change.” We consider two categories in which to
classify this change:

Parameter Space Change can occur either in a single or in a combination of multiple
parameters (hybrid). The hybrid approach has higher complexity
and computational cost, but could be better in scenarios which do
not indicate change in the single observed parameter. E.g., a config-
uration might become suboptimal without any increase in iteration
runtime —but a different configuration might be better suited after,
e.g., a change in density of the particle distribution.

Type of Variation Depending on the parameters used, change can be indicated by two
forms of variation. The first is an increase in the parameter value,
the second a change in magnitude: i.e., if the parameter value devi-
ates to much from its starting point in either direction.

In this work, we will investigate strategies which are based on a single parameter (iter-
ation runtime) and trigger at parameter increase.

3.1.4 Interaction with Tuning Strategies

As introduced in Section 2.3, AutoPas offers various tuning strategies. Depending on
the specific simulation scenario, one strategy might be more efficient. Therefore, to
keep results comparable between scenarios, all experiments were executed using the
full-search strategy. As this strategy is expected to sample more suboptimal config-
urations than others, the effect of tuning iterations on the whole simulation runtime is
higher. Using more tailored tuning strategies, the improvements as presented in this
thesis might not be as visible.

3.2 Time-Based Triggers

The simplest approach in detecting whether the current configuration might have be-
come suboptimal, is to observe changes in iteration runtime. As a specific configuration
becomes less suitable due to changes in simulation state, one would expect the runtime
to increase, as e.g. suboptimal containers lead to unfavorable access patterns. There-
fore, the primary focus of this thesis lies on runtime-based strategies in finding trigger
points.

The frequency at which new tuning phases are initiated, is indirectly determined by
the user through the trigger-factor configuration parameter; hereafter denoted as A.
For triggers based on a larger sample set, the parameter trigger-n-samples, denoted
as n, is additionally used.

3.2. Time-Based Triggers 15

3.2.1 Simple Trigger

The most simplistic implementation of a time-based trigger considers only the runtimes

of the current and immediately preceding iteration. In other words, if t; > A-t;_1, anew

tuning phase is triggered. This trigger is implemented as the TimeBasedSimpleTrig-
ger.

In scenarios with a low average number of neighbors, the rebuilding of neighbor lists
takes longer than the interaction computations. Considering that the rebuilding only
happens in iterations that are a multiple of rebuild-frequency, this would lead to the
initiation of a new tuning phase in each rebuild iteration, as the rebuild iteration greatly
outweighs the non-rebuild iteration. This is one of the reasons why we do not consider
rebuild times in the input of our trigger strategies.

3.2.2 Single-Iteration Averaging Trigger

The simple strategy described in Section 3.2.1 is quite unstable. Because of external fac-
tors such as hardware heterogeneity, the iteration runtimes are subject to noise. This
leads to variability between two successive iterations that is not due to any transfor-
mation in the scenario, which is detrimental to the idea of runtime-based detection
of scenario change. To diminish the effects of random noise, we extend our sampling
interval and average the runtime over multiple samples. This is implemented as the
TimeBasedAverageTrigger, which differs from the TimeBasedSimpleTrigger in that
the comparison is performed with respect to the moving average of the last n runtime
samples, as in (3.1). Figure 3.1 illustrates a comparison between the TimeBasedSim-
pleTrigger and TimeBasedAverageTrigger.

1 i-1
iz)t (31)

k=i-n

New Tuning Phase New Tuning Phase
/—H /—H

: ‘ T T T
o D tx D t

i,,,,i L,i Aty — an[ti—n/ ti*l]
P --- Aavg[ti_p, ti_1]

Iteration Runtime
Iteration Runtime

I

Figure 3.1: Comparison for A = 1.5 and n = 5 between the TimeBasedSimpleTrigger (left) and
TimeBasedAverageTrigger (right) strategies. A new tuning phase is initiated in both cases,
however the TimeBasedAverageTrigger is less susceptible to the dip in t;_;.

I

i-1 i i-n i-1 i

Tteration Iteration

3.2.3 Interval Averaging Trigger

Considering that we expect scenario changes to happen gradually, the runtime might
not increase drastically in a single iteration, but rather across a series of subsequent

16 3. Implementation

iterations. As the previous two triggers only compare to the current iteration’s run-
time, they are suboptimal under such circumstances. Taking this effect into account,
the TimeBasedSplitTrigger splits the measurements of the last n iterations and the
current iteration into two intervals A, B as defined in (3.2). A new tuning phase is then
initiated if avg(B) > A - avg(A).

A=t tij], Bi= [t], = H 32

3.2.4 Linear Regression Trigger

The TimeBasedRegressionTrigger is conceptually similar to the TimeBasedSplitTrig-
ger, although with one major difference. Instead of comparing the current interval of
runtimes to a previous one, the comparison is based on an estimate of the future run-
time based on data of the current interval. This difference is shown in Figure 3.2.

The general idea is to fit a simple linear regression, adapted to our use case, on the last
n runtime samples and the current iteration’s runtime. Using simple linear regression
we obtain a slope estimator 31, by which we can predict the runtime of the next interval.

In the following, t is the runtime at iteration k, i the current iteration and tavg, Kavg

the average runtime and iteration respectively. The slope estimator f3; in the standard
simple linear regression model is defined as (3.3) [1].

Zizi_n (k - kavg)(tk - tavg)
Zzzi_n(k - kavg)2

an 1’l+1 Z tk, an +1 Z (34)

k=i-n k=i-n

B1 = (3.3)

where

The value of the estimator ﬁo, i.e., the intercept at y = 0, is not of interest. Similarly, as
the samples are taken in discrete steps of one iteration, the values of k can be shifted
to the interval [0, n + 1]. Considering this, the model can be transformed to (3.5).

1
~ A~ ZZ:O (k - g((:;l:l)))(ti—n+k - tavg) 1 n
prochr= — g Lkl tay) (39)
n nn
Zk:o(k - 2(n+1)) k=0

where
C, = g, Cy = Z(k C1)? = M (3.6)

The transformed estimator ﬁ’l can thus be interpreted as the projected increase in run-
time per iteration. This, however, is not a practical metric to compare with a user-set
configuration parameter, as it heavily depends on the scenario and would require ad-
vance knowledge of the range of iteration runtimes. Therefore, we use a normalization
function, such that a slope of 3norm = 1.0 is equal to “no runtime increase.” Addi-
tionally, the normalization should ensure that ﬁnorm can be compared to a factor A that
matches the other triggering methods. Given these restrictions, we can derive one such

3.2. Time-Based Triggers 17

normalization in the following manner: Starting off t;, we extrapolate the iteration run-
times for the next interval based on . With that, we compute the area of the triangle
representing the additional runtime we expect in the next interval (3.7).

AA = @ﬁ& (3-7)

Then, we use t; as the baseline and add A, for the comparison to the current interval,
which results in (3.8).

(n+ Dt +Ap 2 (n+ 1)Atayg (3.8)

Which can be reordered to the final normalized value (3.9).

; _ 2t; + (n + 1)B!

norm

3.9
T (3.9)

In particular, we have:

(i) Prorm = 1 if there is no projected change in iteration runtime.
(ii) ﬁnorm > 1 if there is a projected increase in iteration runtime.
(iii) ﬁnorm < 1if there is a projected decrease in iteration runtime.
(iv) ﬁnorm = 2 if there the runtime of the next interval is projected to be double the
current interval’s runtime.

New Tuning Phase New Tuning Phase
/—/H /—/%
I T I T
of (L] & — w0 of B % :
8 —_ an(A) — M E - tavg - - N’ t
:‘é — avg(B) | _ -*E — o Biti
é === Aan(A) | é T /\tavg .
o = o [T femmmmmmmmmmm e
2 S -
b= © #
~ H ~ 1
sl Nt
i-n i—j i i-n i—j i
Iteration Iteration

Figure 3.2: Comparison for A = 1.5 and n = 11 between the TimeBasedSplitTrigger (left) and
TimeBasedRegressionTrigger (right) strategies.

Evaluation

This chapter presents the scenarios and criteria employed in the evaluation of our im-
plementation. Section 4.1 introduces a series of benchmarking scenarios, which have
been chosen to reflect distinct simulation characteristics that may appear in real-world
applications. Subsequently, Section 4.2 defines the evaluation metrics applied to the
benchmarks. These metrics are intended to provide comparability between simulation
runs with dynamically initiated tuning intervals and to the baseline runs with tuning
at fixed frequency. Finally, Section 4.3 will shortly outline how default values for the
newly introduced trigger parameters can be obtained.

4.1 Benchmarking Scenarios

As to not limit our analysis to one specific simulation setting, we use a selection of
benchmarking scenarios that represent different basic particle structures. The heating-
sphere and exploding-liquid scenarios are based on the configuration files given by
Newcome et al. [19], adapted and parametrized for use in this thesis. The other sce-
narios are are taken from the AutoPas md-flexible applicationl.

4.1.1 Equilibrium

In the equilibrium scenario (Figure 4.1), particles are packed tightly into a cube, with
periodic boundary conditions imposed on the simulation space. Periodic boundary
conditions ensure that particles exiting the simulation domain on one side are rein-
serted on the opposite side. First, the particles interactions with each other loosens
up the grid structure, but ultimately an equilibrium is reached in which no significant
changes in particle positions occur anymore. After that initial relaxation, no further
scenario change expected. Therefore, no additional tuning phases should be needed in
the equilibrium phase, as the optimal configuration is not expected to change.

4.1.2 Exploding Liquid

Similarly to the equilibrium scenario, the exploding-liquid scenario (Figure 4.2) starts
off with the particles packed into a cuboid, with periodic boundaries imposed on the

I https://github.com/AutoPas/AutoPas/tree/master/examples/md-flexible/input

19

https://github.com/AutoPas/AutoPas/tree/master/examples/md-flexible/input

20 4. Evaluation

F’(-

(a) Iteration 0 (b) Tteration 10 000 (c) Tteration 50 000

Figure 4.1: Evolution of the simulation state in the equilibrium scenario. The coloring indicates
the forces acting upon a particle, and is given in reduced units. Note that the overall forces
decrease as the equilibrium is reached, even though the specific timestamps depicted might
suggest otherwise.

simulation space. The cuboid explodes in y-direction and collides with the boundary.
This leads to multiple waves of particles with decreasing intensity, until the simulation
finally settles into an equilibrium state, with particles spread out over the whole do-
main. If a single autotuning instance is used for the whole domain, the rapid changes
in particle positions and heterogeneous particle distribution make finding an optimal
configuration very hard. However, if the domain is split up into multiple independent
AutoPas instances on different MPI nodes, each autotuning instance can independently
find an optimal configuration for its part of the domain. Using this, the simulation do-
main can be split up into regions with high particle density and velocities and regions
with little to no particles.

0 10 20 30 40 50

(a) Iteration 0 (b) Iteration 3000 (c) Iteration 11000 (d) Iteration 31000

Figure 4.2: Evolution of the simulation state in the exploding-liquid scenario.

4.1.3 Heating Sphere

The heating-sphere scenario (Figure 4.3) starts off with a dense, small sphere of parti-
cles. In contrast to the previously introduced scenarios, reflective boundary conditions

4.2. Evaluation Metrics 21

are applied. Over the course of the simulation, the temperature rises from 0.1 to 100
with a change of AT* = 0.1 every 100 iterations. Additionally, Brownian motion is
applied, i.e., random fluctuations in particle positions [18]. The sphere expands with
the increasing temperature and particles slowly radiate outwards. In the late phase of
the simulation, particles are spread out across the whole domain. Between the initial,
compacted state and the equilibrated state, the optimal configuration changes.

0 10 20 30 40 50

(a) Iteration 0 (b) Iteration 4000 (c) Tteration 23000 (d) Iteration 60 000

Figure 4.3: Evolution of the simulation state in the heating-sphere scenario.

4.2 Evaluation Metrics

To compare results between our dynamic initiation of tuning phases and the currently
implemented static approach, we use multiple metrics. The primary goal is to reduce
the total simulation runtime for a range of typical scenarios; it is therefore our first
metric. As tuning phases spend time in quite suboptimal configurations, a reduction
in total runtime is the expected result if our approach reduces the number of tuning
phases without computing too many iterations using a suboptimal configuration.

The metric of total runtime is not particularly fine-grained, however, as it only takes
into account entire simulation runs. To achieve a more detailed benchmark, we also
consider the number of iterations that were computed using the optimal configuration.
As an approximate baseline, we use simulation runs with short, fixed tuning intervals.
Based on this approximation we can then rank the configuration our implementation
chose in terms of optimality.

Finally, we also consider the number of tuning phases initiated or, more precisely, the
number of tuning iterations over the course of the whole simulation. Otherwise, we
could not differentiate whether any achieved speedup is due to our trigger strategies
or the fact that not triggering any tuning phases at all was more efficient for a given
scenario.

4.3 Default Trigger Parameters

All presented trigger strategies are based on a user-set trigger factor A. The averaging,
split and regression triggers additionally take into account the number of samples to
inspect, denoted as n. For any dynamic tuning trigger to be useful, reasonable default
values for these parameters are needed, as the performance of the whole simulation is

22 4. Evaluation

dependent on the trigger’s behavior. Furthermore, optimal values for these parameters
may depend on the scenario, trigger strategy or both. Reasonable default values can be
found by comparing a range of combinations (A;, 1;) for any given scenario and trigger
strategy.

Results

The data collected as part of the evaluation of the introduced trigger strategies is pre-
sented and discussed in this section. The hardware and software setup are given in
Section 5.1, as to allow for reproducibility of our results. Sections 5.2 and 5.3 discuss
some implementation choices based on collected data. The main benchmark results in-
cluding achieved speedups and default trigger parameters are presented in Section 5.4,
grouped by scenario. Finally, Section 5.5 shows statistics collected through the Live-
Info system, as to motivate hybrid triggers.

5.1 Experimental Setup

The measurements collected for analysis were obtained on the CooIMUC4 Linux-Cluster
of the Leibniz-Rechenzentrum!. The nodes in the cm4 cluster consist of processors in
the Sapphire Rapids family (Intel® Xeon® Platinum 8480+) with 2.1 GiB of memory
per logical CPU and 488 GiB per node [15]. For benchmarking purposes, the AutoPas
library and md-flexible were compiled with Spack GCC 13.2.0 and Intel MP12021.12.0
on commit bc47d1ea7e8598afcf58bd35fc531439aalc7dda.

The scripts used to generate the Slurm jobs and configuration files can be found in the
repository of this thesis?.

5.2 Choice of Simulation Statistics

As referred to before in Section 3.1.2, all trigger strategies are based on the iteration
runtimes excluding rebuild times. This choice can be justified by inspecting runtime
data we collected: As shown in Figure 5.1, the rebuild times change little over all it-
erations simulated with a particular configuration. Their inclusion therefore does not
provide any new information, but rather smooths out the overall measurements and
thus decreases the effectivity at which a scenario change can be detected.

Additionally, rebuild iterations only happen at rebuild-frequency. This can lead to
stability problems in trigger strategies used with a low number of samples, as the few

Lhttps://www.1lrz.de/
Zhttps://github.com/ladnik/bachelor-thesis

23

https://www.lrz.de/
https://github.com/ladnik/bachelor-thesis

24 5. Results

rebuild iterations greatly outweigh all non-rebuild iterations.

Equilibrium Heating Sphere
«106 Rebuild and Non-Rebuild Times S «105 Rebuild and Non-Rebuild Times

J—
v}

—
=1

=
o
o

ot

=
=
e~

o
NS
w

NS}

Iteration Runtime in ns
Iteration Runtime in ns

o
—

0.0 = y " y " y " 0+— " " " " "
5000 7500 10000 12500 15000 17500 20000 28000 30000 32000 34000 36000 38000
[teration [teration
Rebuild Time ¢ Runtime excl. Rebuild Rebuild Time ¢ Runtime excl. Rebuild

Figure 5.1: Rebuild and non-rebuild times in the equilibrium (left) and heating-sphere (right)
scenario. The configurations used were VLC-C08-N3L-A0S-CSF1 and LC-C04-NoN3L-AoS-CSF1
respectively. The rebuild times do not contribute any new information regarding scenario
change.

5.3 Computational Overhead

The implemented tuning strategies analyze data at runtime and therefore need addi-
tional computations in each iteration. The performance impact of these should be neg-
ligible in comparison to the simulation steps, as otherwise any performance gains due
to fewer tuning phases are nullified. To quantify the overhead our strategies introduce,
runs without any tuning iterations are compared, such that any changes in runtime that
may occur due to different tuning phase initiation points are removed. This is achieved
by using a single predefined configuration, such that no tuning takes place.

Figure 5.2 (left) shows the overhead obtained in that manner for the heating-sphere sce-
nario using LC-C04-N3L-AoS-CSF1 and n = 500. To better illustrate the measurements,
all values are given as relative and absolute increase in average baseline runtime per
iteration. At most, an overhead of 1.9 % per iteration is seen, which can be considered in-
significant. Note however, that the overhead is an absolute increase; depending on the
scenario, time spent computing interactions varies, therefore the relative values change.
It should also be considered, that the absolute difference between the static baseline
and the dynamic runs lay in the range of 1 to 7s over the complete run. Hardware het-
erogeneity might make up a significant part of this difference — which would directly
influence the measured relative and absolute overhead. Nonetheless, the results may
give some indication on which strategies are more compute-intensive than others. In
particular, usage of the TimeBasedSimpleTrigger does incur nearly no runtime penalty
(0.084 %), whereas the more complex trigger strategies have a correspondingly larger
impact.

To exemplify the importance of optimizing the trigger routines, Figure 5.2 (right) illus-
trates the runtime differences between naive and optimized triggers in the equilibrium
scenario. The naive version recalculates the average over all samples each iteration,
whereas the optimized version uses a ring buffer and running summation to reduce
computational cost. Note that, particularly in the averaging trigger, the speedup ex-

5.4. Benchmarking Results 25

perienced is not only due to a lowering of computational overhead, but also due to a
lower number of tuning iterations. This can be explained by the feedback of the trigger
strategies, as they also influence iteration runtime.

2 ‘ -
Overhead —] [Unoptimized
100 600l ,

[/] Optimized

[t
ot

1400

50 1200 -

. "L

0
Simple Avg Split Reg Avg Split Reg

It. Overhead in %
o
(e} 'U! —
T
It. Overhead in ps

Total Runtime in s

Trigger Strategy Trigger Strategy

Figure 5.2: Performance comparisons between the various trigger strategies: Relative and ab-
solute iteration overhead in the heating-sphere scenario (left) and average runtime decrease
obtained through optimizations in the equilibrium scenario (right).

5.4 Benchmarking Results

The relative speedups presented in the following line charts were computed by the
formula given in (5.1), where tpaseline represents the runtime with tuning phases at
fixed intervals and #4ynamic the runtime of our implementation.

G = lbascline _ (5.1)

tdynamic

For all plots showing the selected configurations for a given run, the blue scatter dots
represent the runtime of that particular iteration. The colored background identifies
the used configuration: same configurations map to the same color in a given plot.
Gaps along the x-axis occur where tuning iterations have been logged — as their run-
time is not relevant for our purposes and would distort the actual runtime plot, they
are not reported here. The gray dashed lines indicate the start of a new tuning phase.

5.4.1 Equilibrium
Selected Runs

Figure 5.3 shows two of the experimental runs in detail. On the left hand side, a Time-
BasedAverageTrigger with A = 1.25, n = 1000 reliably detects scenario change. Two
tuning phases are started in the initial phase, where overall iteration runtime increases.
After the second tuning phase, a better configuration is found. As there is no further
indication that the simulation state changes, the remaining iterations are performed us-
ing the same configuration. As was explained in Section 4.1.1, it is indeed the case that
no further configuration change is needed. In this run therefore, the presented trigger
was beneficial.

On the right hand side, a worst-case outcome is shown. The TimeBasedSimpleTrigger
used in that run triggered too many new tuning phases, which lead to an increase
in total simulation runtime compared to the baseline run. The main reason for the

26 5. Results

overreaction lies in the implementation of the trigger: as long as the runtime of one
iteration is greater than the one of its predecessor by a factor of A or more, a tuning
phase is initiated. The few outliers in the equilibrium scenario that were averaged out
in the previous example, are detrimental to this trigger strategy.

Equilibrium with TimeBased Average Equilibrium with TimeBasedSimple
x10° A = 1.25, n = 1000 %100 A=1925
1.4 1.44
Z 1.2 2129
i k=
© 1.0 o 1.0 . L
= = Lo N Es
£ 0l £ 0l 1N
g 0.8 E 0.8 :
~ [ast
= 0.6 = 0.6
2 i : 2 |
= 0.4 > i = 044 yEr ' e L SRR RE N ‘ ‘
Eal 7 W A
0.2 0.2
0.0 — 0.0 - - —
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
[teration [teration
® VLC-CO8-N3L-AoS-CSF1 ® VLC-C01-NoN3L-AoS-CSF1 ® VLC-C01-NoN3L-AoS-CSF1 ® VLC-CO08-N3L-AoS-CSF1

® LC-CO1-NoN3L-AoS-CSF1
(a) Good scenario change detection. (b) Too many unnecessary tuning phases.

Figure 5.3: Examples of trigger behavior in the equilibrium scenario.

Speedup and Default Parameters

As can be seen in Figure 5.4, a trigger factor of A = 1.5 leads to increased speedup
compared to A = 1.25 in the majority of trigger strategies. This is however mainly due
to the nature of the equilibrium scenario: After the initial relaxation, the optimal con-
figuration is not expected to change. Therefore, not initiating any new tuning phases
will lead to a decrease in total simulation runtime, which is why larger values for A
perform better, as they reduce trigger sensitivity. A factor chosen too large however,
diminishes this effect again, as the changes in the initial phase are not accounted for.
That the speedup is indeed a result of the decreased number of tuning iterations can
be verified in the right-hand side plots; for the baseline run with static tuning intervals,
22.6 % of iterations were spent in tuning phases. Conversely, for strategies initiating
too many new tuning intervals, i.e., with more tuning iterations than the baseline run,
the simulation runtime increases.

Additionally, triggers with a larger sample size will typically trigger less frequently,
as more of the variability in iteration runtime is smoothed out. However, for a too
large number of samples such as n > 1000, the speedup may decrease, as the com-
putational overhead is directly proportional to the number of samples. This is partic-
ularly noteworthy for scenarios with fewer particles, where the computation of inter-
actions takes shorter time. Therefore, the relative overhead of our strategies is larger,
which would explain the lower speedup seen in the regression triggers: Compared to
the TimeBasedAverageTrigger, at roughly the same number of tuning iterations, the
speedup achieved is significantly lower.

Interestingly, the TimeBasedSplitTrigger with n = 250 triggered significantly more
tuning iterations for A = 1.75 than for A = 1.5. The rather small sample size increases
the sensitivity towards noise in the input data — which is why outside influences by the
underlying hardware could explain the difference between the two runs. This holds

5.4. Benchmarking Results

27

particularly if one considers that our equilibrium scenario consists of few particles with
which interactions must be computed, resulting in low iteration runtimes.

The collected data suggests default parameters as presented in Table 5.1.

o 40
IS
g 20
o} 0
2.
»n =20
—-40

W
(an)

Speedup %
S

0
ES
o, 10
=
gl
()
]
& 0

----- Avg-1000
Avg-250

Simple
-- Avg-500

|
1.5
Trigger Factor A

1.75

e RS

! ! ‘
1.25 1.5 L.75
Trigger Factor A
----- Reg-2000 - - Reg-1500

Reg-1000 - - Reg-500
T T
:.9“'.,.
' ‘ ‘
1.25 1.5 1.75
Trigger Factor A

X 100
wn
o
A=
e
s
é) 10
)
g
§
= 1
X 100
n
o
=
-+—
s
é) 10
)
g
g
B 1
X 100
n
c
A
e
s
é) 10
o0
g
g
B 1

Simple -- Avg-500
Avg-250 - Avg-1000

F I \:
| .-.-....'..---""---‘.....-.-......T.:.:.:-T..—..n.‘
1.25 1.5 1.75
Trigger Factor A

Split-1000 - - Split-500 — Split-250
F T T I
| | |
1.25 1.5 1.75
Trigger Factor A
----- Reg-2000 - - Reg-1500

Reg-1000 - - Reg-500
= T !
‘ b —
1.25 1.5 1.75
Trigger Factor A

Figure 5.4: Trigger behavior in the equilibrium scenario, the numbers in the legends refer to
the number of samples #n considered. The line in the background represents the baseline run.
Note the logarithmic scale in the plots on the right hand side.

Optimality

Our second evaluation metric, as stated in Section 4.2, concerns the quality of the cho-
sen configurations. For efficient computation, we expect the configuration at any non-
tuning iteration to be one of the best choices. As can be seen in Figure 5.5, this is
achieved across all strategies except the simple trigger, with all configurations being
one of the top three choices for that specific iteration. It should be noted, that the rank-
ing of optimal configurations is only an approximation, as it is based on the baseline

28 5. Results

Trigger Trigger factor A’ Number of samples 1
TimeBasedSimple not recommended -
TimeBasedAverage 1.75 500
TimeBasedSplit 1.5 1000
TimeBasedRegression 1.5 500

Table 5.1: Suggested default parameters for the equilibrium scenario.

run and therefore restricted to the resolution of that run’s tuning-interval. The best
performing strategy regarding optimality appears to be the TimeBasedAverageTrig-
ger, for which 92 % of all non-tuning iterations were computed using the same config-
uration as in the baseline run. Except for the TimeBasedSimpleTrigger, all strategies
computed the full simulation length with configurations among the top 3 choices of
the static run.

B Best []Second-Best
[IThird-Best[:] Other

x109 Equilibrium

T
00F =2 P 1

—

,_
o

,_

0.8

o

Selected Configuration in %
I3
(s}
T
!
Iteration Runtime in ns

o = = =

- 0.0 . — -
Simple Avg Split Reg 0 25000 50000 75000 100000 125000 150000

Iteration

Trigger Strategy ® VLC-COS-N3L-AcS-CSF1 @ VLC-COL-NoN3L-AoS-CSF1

Figure 5.5: Ranking of configurations selected by the best run in the equilibrium scenario for
each trigger strategy (left) and selected configurations in the baseline run (right).

5.4.2 Exploding Liquid
Selected Runs

The exploding-liquid scenario was executed on 6 MPI processes, with the simulation
domain subdivided along the y-axis. As a result, different ranks encounter the “par-
ticle wave” at different points in time, as it spreads outward from the center (cf. Sec-
tion 4.1.2). This effect can be seen in Figure 5.6, where the plot showing rank 2 (in the
center of the domain, plot on the right hand side) experiences high iteration runtimes
at the beginning of the simulation. Rank 0 (edge of the domain, plot on the left hand
side), however, shows this influx of particles not until iteration 50 000.

The figure on the left shows an optimal response to the peak in iteration runtime by the
TimeBasedSplitTrigger. The initial configuration remains optimal until the particles
enter this part of the domain, after which two tuning phases are triggered. The first
trigger at iteration 52814 is not needed, as due to the rapid increase in iteration run-
time, a second one at iteration 55 088 is tripped. This additional tuning phase could be
prevented by using a bigger factor A, the effect on total simulation runtime would how-

5.4. Benchmarking Results 29

ever be limited. The second half of the simulation again has one optimal configuration,
which is well reflected in the trigger’s behavior.

The second plot on the right does not necessarily illustrate bad trigger behavior, but
rather a limitation of our approach. After the initial expansion, the subdomain of rank
2 significantly transforms at iteration 25000, with a different configuration possibly
being better suited. However, our triggers only consider increases in input data. A
more appropriate method in such cases would be to consider changes in magnitude
(cf. Section 3.1.3), i.e., any deviation from the current average.

Exploding Liquid with TimeBasedSplit Exploding Liquid with TimeBasedSplit
107 A= 1.5, n=1000, Rank 0 107 A= 1.5, n =1000, Rank 2

2.00 2.00

,_.
13

—
~1
ot

-

Iteration Runtime in ns

: PP
0 25000 50000 75000 100000 125000 150000 0 25000 50000 75000 100000 125000 150000
[teration [teration

® [C-C04-NoN3L-AoS-CSF1 ® [C-C04 HCP-N3L-SoA-CSF1 ® [C-C04 HCP-N3L-SoA-CSF1
® LC-C04-N3L-AoS-CSF1

(a) Good scenario change detection. (b) No reconfiguration after peak.

Figure 5.6: Examples of trigger behavior in the exploding-liquid scenario.

Speedup and Default Parameters

Although the exploding-liquid scenario is more complex than the equilibrium scenario,
there is still a performance gain in all trigger strategies: The highest speedup is reached
by the TimeBasedAverageTrigger, with a reduction in total simulation time of 20 %.
This is less than was reached in the equilibrium scenario, but still significant. In gen-
eral, the results look very similar to those of the previous scenario, with some notable
exceptions. For example, the TimeBasedSimpleTrigger reaches positive speedup for
larger values of A. Considering that in most ranks, the configuration change happens
at the initial inflow of particles into the subdomain, as simple trigger is sufficient. With
A = 1.25 however, the trigger appears to be too sensitive, which again leads to an ex-
cessive number of tuning phases.

The TimeBasedSplitTrigger displays opposite behavior; for larger values of A, the
speedup is greater, as triggering too few tuning phases leads to a large number of it-
erations being computed using a suboptimal configuration. Similarly, triggers with a
larger sample size tend to smooth out the changes in iteration runtime and thus have
a delayed reaction to the rapid transformation of the domain. The TimeBasedRegres-
sionTrigger again leads to lower speedups than averaging or split triggers at optimal
configuration. However, the difference is minor and can thus be attributed to the higher
overhead of this strategy.

The collected data suggests default parameters as presented in Table 5.2.

30 5. Results
Simple - Avg-1000 Simple - Avg-1000
-- Avg-500 — Avg-250 -- Avg-500 — Avg-250
\ \ X 60T \]
20 e a 0
o\o "":';";-f-:._'..:..'.:..T..‘..:.‘.:.:..:.- g
o, 10 Lo R £ 40 -
=] =7 =
b - £
g 0 =20 - -
Q. ol
197} S
_10 | N E R R R R A m oL e
| | | ﬁ 0 L | \ | i
1.25 1.5 1.75 1.25 1.5 1.75
Trigger Factor A Trigger Factor A
----- Split-1000 - - Split-500 — Split-250 - Split-1000 - - Split-500 — Split-250
T T T c>\O T T T
| B n
e 15 § |
g“ _____.'--'--.‘...'-_\\\ g
'93 10 e = 10| 8
& g
= e ——— e =
S | \ = 0L . | L]
1.25 1.5 1.75 1.25 1.5 1.75
Trigger Factor A Trigger Factor A
-- Reg-1500 — Reg-1000 - - Reg-500 -- Reg-1500 — Reg-1000 - - Reg-500
T T T O\O T T T
2] —
?‘j 0 = 20 o =
& £ e
s ===
\ | | 2 0k | L
1.25 1.5 1.75 1.25 1.5 1.75
Trigger Factor A Trigger Factor A

Figure 5.7: Trigger behavior in the exploding-liquid scenario, the numbers in the legends refer
to the number of samples n considered. The line in the background represents the baseline
run.

Trigger Trigger factor A Number of samples n
TimeBasedSimple 1.75 -
TimeBasedAverage 1.25 1000
TimeBasedSplit 1.25 250
TimeBasedRegression 1.75 1000

Table 5.2: Suggested default parameters for the exploding-liquid scenario.

5.4. Benchmarking Results 31

Optimality

The configuration fit is best for the TimeBasedSimpleTrigger, TimeBasedAverageTrig-
ger and TimeBasedRegressionTrigger: As shown in Figure 5.8, these strategies select,
on average, the best configuration for 95 % of all non-tuning iterations. The strategy
that appears to have the worst fit is the TimeBasedSplitTrigger — note, however, that
it used the fourth best configuration in 81 % of iterations.

It should also be mentioned, that these statistics are based on rank 0 across all runs.
Therefore, the problem of missing reconfiguration after a drop in iteration runtime, as
discussed previously, is not reflected in the results.

B Best []Second-Best
[IThird-Best[:] Other

g
=]
S

x 107 Exploding Liquid Rank 0
T T]

T
100 e =2 @m0 ==

1
ot

,_A
ot

—_
o
S

—_

=
ot

=
15
S

Iteration Runtime in ns

0,_ I — e |

=
o
&

‘ o 2 -
0.00
Reg 0 25000 50000 75000 100000 125000 150000

Selected Configuration in %
)
T
|

\ \ ‘
Simple Avg Split Iteration
Trigger Strategy ® LCSLICED BALN3L-A0S-CSF1 @ LC-CO4N3L-AoS-CSF1

® [C-C04_HCP-N3L-SoA-CSF1

Figure 5.8: Ranking of configurations selected by the best run in the exploding-liquid scenario
for each trigger strategy (left) and selected configurations in the baseline run (right).

5.4.3 Heating Sphere
Selected Runs

Figure 5.9 again displays two sample runs to illustrate optimal and unsatisfactory re-
sults. The left figure shows a reduction in the number of tuning phases initiated by
the TimeBasedAverageTrigger. After the last tuning phase, the configuration does not
change from the previous one — that tuning phase was therefore unnecessary. Com-
pared to the equilibrium scenario, the iteration runtimes form a broad band, which
indicates a high variance. The absolute ranges of these variations lie in the range of
1x10°to 5 x 10° ns, in contrast to a spread of 1 X 10° ns in the equilibrium scenario. Ad-
ditionally, more outliers are seen, which might worsen the performance of the strate-
gies susceptible to oscillations; one of them is the TimeBasedAverageTrigger depicted.
Without any clear indication of an increase in runtime, new tuning phases are initiated,
since a single outlier larger than the last n samples by a factor of A can trigger the strat-
egy. Interestingly, most outliers do not have a significant impact due to the averaging
approach. As shown in the plot, the use of the averaging trigger results in fewer tuning
phases than in the baseline run, which in turn explains the speedup measured.

Worse results can be seen in the TimeBasedRegressionTrigger, pictured on the right
hand side. After multiple tuning phases, the same configuration is selected, which
again indicates unnecessary triggering. The regression approach is suboptimal in the

32 5. Results

heating-sphere scenario, due to the high variance in iteration runtimes described be-
fore: Outliers can skew the slope derived by the least-squares method, which leads to
aincorrect prediction of the runtime in the next interval, triggering our strategy. Hence,
a slowdown compared to the baseline run is observed. This suggests that the regres-
sion based trigger may not be used in scenarios that behave similarly. To address this
issue, the linear least squares estimation in the regression approach could be replaced
with a more robust method like the Theil-Sen estimator [28].

Heating Sphere with TimeBasedAverage Heating Sphere with TimeBasedRegression
%107 A =125 n =500 %107 A =1.25, n = 1500

2.00

,,
=1
=
— N
-~ 2
o S

—
o
S

H
o
S

(=3
o
= RN

=} =}

@ -

=} <t
~crerta mem—.

Iteration Runtime in ns
1 o
h C o C C
Iteration Runtime in ns
2

@

o
3
13

e gy | I ST

0.00 ' o BRENREEEESE
S0 10000 20000 30000 40000 50000 60000 U0 10000 20000 30000 40000 50000 60000

Iteration Iteration

LC-C04_HCP-N3L-AoS-CSF1 ® LC-C04-N3L-AoS-CSF1 ® VL-LITER-NoN3L-AoS-CSF1 ® VL-LITER-NoN3L-AoS-CSF0.5
® VL-LITER-NoN3L-AoS-CSF0.5 ® VL-LITER-NoN3L-AoS-CSF1 ® LC-C04-N3L-AoS-CSF1 ® LC-C04-NoN3L-AoS-CSF1
® LC-C04_ HCP-NoN3L-AoS-CSF1 ® VLC-SLICED-N3L-AoS-CSF0.5
VLC-SLICED-N3L-A0S-CSF1

(a) Reduced number of tuning phases. (b) Too many unnecessary tuning phases.

Figure 5.9: Examples of trigger behavior in the heating-sphere scenario.

Speedup and Default Parameters

The high variance in iteration runtimes directly influences the behavior of our trig-
ger strategies, as shown in Figure 5.10. The strategies which should be unstable due
to these variations are the TimeBasedAverageTrigger, TimeBasedSimpleTrigger and
TimeBasedRegressionTrigger. However, results only show poor performance of the
latter two. The simple trigger under-performs the static approach by up to —41 % with
a highly unfavorable 99 % of all iterations being tuning iterations. Similarly, the re-
gression approach leads to runtime increases across almost all tested combinations of
(A, n).

The TimeBasedAverageTrigger, however, performs exceptionally well, with speedups
of up to 40 %, proportional to the decreased number of tuning iterations. Rather coun-
terintuitively, this outcome could be accounted for precisely by the prevalence of out-
liers: If there occur enough outliers within the trigger’s sample interval, they raise the
average runtime, which in turn reduces the impact of any current outlier.

In summary, it can be said that our approach is not suitable for the heating-sphere
scenario. Considering that there is no clear indication of scenario change in runtime

(cf. Section 5.5), this was expected.

The collected data suggests default parameters as presented in Table 5.3.

5.4. Benchmarking Results

33

Simple - Avg-1000 Simple - Avg-1000
-- Avg-500 — Avg-250 -- Avg-500 — Avg-250
R 100 -
40 “““"“..:..‘.T B P 00; | 1
S T Treeeiinna | E i]
& © [-
5 0 § 10| S
3 = i]
& -20 |- 2 %0 B b
— - B c H i
40 | | | ﬁ 1 | | |
1.25 1.5 1.75 1.25 1.5 1.75
Trigger Factor A Trigger Factor A
----- Split-1000 - - Split-500 — Split-250 - Split-1000 - - Split-500 — Split-250
T T T O\O 100 FT T I
30 * 8 F E
R S - i
Q. 20 [n = . |
[}
5 8 10p - .
}é 10 o e el = T E
80 [RN]
(%-‘ 0 E |
E | -
-1 | | | 1 | | |
0 1.25 1.5 1.75 a 1.25 1.5 1.75
Trigger Factor A Trigger Factor A
-- Reg-1500 — Reg-1000 - - Reg-500 -- Reg-1500 — Reg-1000 - - Reg-500
T T T O\o 100 F T T T E
n - |
ES 0 _5 . |
o] i i
"g _§ 10 | E
8 90l il - oo g :
& £ |]
z -]
| | | 1 | | |
1.25 1.5 1.75 a 1.25 1.5 1.75
Trigger Factor A Trigger Factor A

Figure 5.10: Trigger behavior in the heating-sphere scenario, the numbers in the legends refer
to the number of samples n considered. The line in the background represents the baseline run.
Note the logarithmic scale in the plots on the right hand side.

Trigger Trigger factor A Number of samples 1
TimeBasedSimple not recommended -
TimeBasedAverage 1.5 500
TimeBasedSplit 1.5 250

TimeBasedRegression notrecommended

Table 5.3: Suggested default parameters for the heating-sphere scenario.

34 5. Results

Optimality

Figure 5.11 shows the configuration selected by the best performing run for each trigger.
The values again are given for all non-tuning iterations, compared to the configurations
selected in the baseline run. Note that, e.g., the simple trigger displays better config-
uration fit than the averaging trigger; this is primarily due to tuning iterations being
ignored. Additionally, not triggering a new tuning phase has a higher runtime impact
than computing iterations with suboptimal configuration fit.

It can be seen that, particularly for the strategies triggering fewer tuning phases, i.e.,
the TimeBasedAverageTrigger and TimeBasedSplitTrigger, the configuration fit is
suboptimal. For both, on average 25 % of all non-tuning iterations were computed using
a configuration that was not in the top 3 choices of the baseline run.

B Best [J]Second-Best
[Third-Best[: Other

xS ‘ ‘ ‘ ‘ %107 Heating Sphere
g 2.00
= 100 | g 10
g £1.75
= o
= l 150
E g
5D é 1.25
g 50 + B /~ 1.00
g =
S o5
U % 0.75
B Zos0) g B G
9 0.25 L '
) 0L - - 0.0 R
wn . . 0 10000 20000 30000 40000 50000 60000
Simple Avg Split Reg Iteration
Trigger Strategy ® VL-LITER-NoN3L-A0S-CSF1 @ LC-C04-NoN3L-AoS-CSF1
® LC-C04-N3L-A0S-CSF1 ® VL-LITER-NoN3L-A0S-CSF0.5

Figure 5.11: Ranking of configurations selected by the best run in the heating-sphere scenario
for each trigger strategy (left) and selected configurations in the baseline run (right).

5.5. Hybrid Triggers 35

5.5 Hybrid Triggers

Time-based approaches may not be suitable for scenarios in which iteration runtime
alone is not good enough indicator for scenario change. This was seen, e.g., in the
heating-sphere scenario. Since AutoPas provides additional live simulation statistics
through its LiveInfo interface, these could be used in combination with iteration run-
times to find better strategies in detecting scenario change. As a motivation of this
approach, Figure 5.12 shows an exemplary run for the heating-sphere scenario. Us-
ing static containers, the initial optimal configuration is VL-List_Iter-NoN3L-AoS, and
changes to LC-C04-N3L-AoS-CSF1 later on [19]. Although a better configuration is avail-
able, the iteration runtimes do not change. However, the maxDensity statistic indicates
the shift towards a different simulation state; considering that the particles are packed
closely in the initial phase and expand outwards, this decrease in particle density is
consistent with expectations. The maxDensity statistic would therefore be a reasonable
trigger input.

%107 Heating Sphere 102 Heating Sphere

)

=)

=]
=~
<

=

o

ot
@
=1
St

[
OIS
S S

N

o

=

<t
—
-y
St

Iteration Runtime in ns
- -
& 5

Maximum Particle Density

e
~
I3

"
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Iteration Iteration

® VL-LITER-NoN3L-AoS-CSF1

Figure 5.12: Iteration runtime (left) and the maximum particle density (right) for the heating-
sphere scenario with single configuration VL-List_Iter-NoN3L-AoS. The iteration runtime
does not indicate scenario change, but the maxDensity statistic shows the transformation of
the simulation state.

Conclusion

In this thesis, four novel methods for the dynamic initiation of new tuning phases in
AutoPas were introduced. Additionally, reasonable default values for the correspond-
ing control parameters were derived empirically. It was shown that our trigger strate-
gies can decrease simulation runtime across most typical scenarios when using full-
search as the tuning strategy. Especially in settings with low variance in iteration
runtime, all strategies except the naive approach reduce the number of tuning phases
without any significant decrease in optimality of the selected configurations. The most
promising candidates were shown to be the strategies based on sample averages, due
to their resilience to noise in the live input data. These strategies lead to speedups of
up to 47 % under optimal conditions. The regression strategy investigated was more
susceptible to the aforementioned fluctuations in the input data, but nonetheless out-
performed static tuning.

As new tuning strategies are introduced, however, the dynamic initiation of tuning
intervals will likely become less relevant for single-process applications. In particular,
tuning strategies based on machine learning lead to cheap tuning phases [19], which
in turn significantly diminishes the achievable speedups. One application in which a
dynamic approach as ours might still be of use, is in MPI-parallel setups: As each rank
runs its own AutoPas instance, it can trigger tuning phases independently from other
ranks. In scenarios with heterogeneous particle distribution over the whole domain,
the best configuration for a specific rank is likely to change separate from other parts
of the domain. Thus, our proposed method may still be advantageous.

Possible future work may explore the analysis of additional live simulation statistics,
either as single parameter or hybrid strategies. The introduction of new triggering algo-
rithms providing more stability, such as linear regression using the Theil-Sen estimator,
should be considered. More advanced methods such as digital filters have to be imple-
mented efficiently, as not to inflate per-iteration overhead. Another interesting subject
for further research could be the combination of static and dynamic tuning intervals;
at fixed, but much shorter intervals, a dynamic trigger would evaluate whether to start
a new tuning phase or not.

In summary, the dynamic initiation of tuning phases has been shown to be lightweight
method of decreasing unnecessary tuning phases, whilst still ensuring good config-
uration fit. Using more efficient tuning strategies reduces the performance gains in
single-process applications, but some benefits remain in MPI-parallel settings.

37

[10]

Bibliography

Bovas Abraham and Johannes Ledolter. Introduction to Regression Modeling. Bel-
mont, CA: Duxbury Press, 2006.

V. Arnold, V. Kozlov, and A. Neishtadt. “Mathematical aspects of classical and
celestial mechanics. 2nd printing of the 2nd ed. 1993”. Trans. by A. lacob. In: Itogi
Nauki i Tekhniki Seriia Sovremennye Problemy Matematiki (Jan. 1985).

AutoPas. AutoPas Doxygen Documentation. Accessed: 2025-08-28. 2025. urL: https:
//autopas.github.io/doxygen_documentation/git-master/.

M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”. In: Annalen
der Physik 389.20 (1927), pp. 457-484. por: https://doi.org/10.1002/andp .
19273892002.

Tobias Brink. “Heterogeneities in Metallic Glasses: Atomistic Computer Simula-
tions on the Structure and Mechanical Properties of Copper-Zirconium Alloys
and Composites”. PhD thesis. Darmstadt: Technische Universitiat Darmstadt, 2017.

J. D. Emberson et al. “Cosmological neutrino simulations at extreme scale”. In:
Research in Astronomy and Astrophysics 17.8 (Aug. 2017), p. 085. 1ssn: 1674-4527.
por: 10.1088/1674-4527/17/8/85.

Daan Frenkel and Berend Smit. “Chapter 4 - Molecular Dynamics Simulations”.
In: Understanding Molecular Simulation (Second Edition). Ed. by Daan Frenkel and
Berend Smit. Second Edition. San Diego: Academic Press, 2002, pp. 63-107. 1sBN:
978-0-12-267351-1. por: https://doi.org/10.1016/B978-012267351-1/50006-
7.

Alexander Fulst and Christian Schwermann. Molekulardynamiksimulation. Accessed:
2025-08-23. 2013. urL: https://www.uni-muenster .de/Physik.TP/archive/
fileadmin/lehre/TheorieAKkM/ws13/Fulst-Schwermann.pdf.

Fabio Alexander Gratl et al. “AutoPas: Auto-Tuning for Particle Simulations”. In:
2019 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, May 2019. 1sBn: 9781728135106. por: 10 . 1109/ ipdpsw . 2019.
00125.

Fabio Alexander Gratl et al. “N Ways to Simulate Short-Range Particle Systems:
Automated Algorithm Selection with the Node-Level Library AutoPas”. In: Com-
puter Physics Communications 273 (2021), p. 108262. por: 10.1016/j.cpc.2021.
108262.

39

https://autopas.github.io/doxygen_documentation/git-master/
https://autopas.github.io/doxygen_documentation/git-master/
https://doi.org/https://doi.org/10.1002/andp.19273892002
https://doi.org/https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1088/1674-4527/17/8/85
https://doi.org/https://doi.org/10.1016/B978-012267351-1/50006-7
https://doi.org/https://doi.org/10.1016/B978-012267351-1/50006-7
https://www.uni-muenster.de/Physik.TP/archive/fileadmin/lehre/TheorieAKkM/ws13/Fulst-Schwermann.pdf
https://www.uni-muenster.de/Physik.TP/archive/fileadmin/lehre/TheorieAKkM/ws13/Fulst-Schwermann.pdf
https://doi.org/10.1109/ipdpsw.2019.00125
https://doi.org/10.1109/ipdpsw.2019.00125
https://doi.org/10.1016/j.cpc.2021.108262
https://doi.org/10.1016/j.cpc.2021.108262

40

6. Conclusion

[11]

[12]

[14]

[15]

[16]

[21]

[22]

[23]

Fabio Alexander Gratl-Gafiner. “AutoPas: Automated Dynamic Algorithm Selec-
tion for HPC Particle Simulations”. PhD thesis. Technische Universitdt Miinchen,
2025. urL: https://mediatum.ub.tum.de/1765326.

Michael Griebel, Gerhard Zumbusch, and Stephan Knapek. Numerical Simulation
in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Vol. 5.
Texts in Computational Science and Engineering. Springer Berlin Heidelberg,
2007. 1sBN: 978-3-540-68094-9. por: 10.1007/978-3-540-68095-6.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. “Geometric numerical in-
tegration illustrated by the Stormer—Verlet method”. In: Acta Numerica 12 (2003),
pp- 399-450. por: 10.1017/50962492902000144.

Scott A. Hollingsworth and Ron O. Dror. “Molecular Dynamics Simulation for
All”. In: Neuron 99.6 (2018), pp. 1129-1143. por: 10.1016/j .neuron.2018.08.
011.

Leibniz Supercomputing Centre. Job Processing on the Linux-Cluster. Accessed:
2025-09-01. 2025. URL: https://doku.lrz.de/job-processing-on-the-1linux-
cluster-10745970.html.

Benedict Leimkuhler and Sebastian Reich. “Geometric integrators”. In: Simulat-
ing Hamiltonian Dynamics. Cambridge Monographs on Applied and Computa-
tional Mathematics. Cambridge University Press, 2005, pp. 70-104.

Johannes Lenhard, Simon Stephan, and Hans Hasse. “On the History of the
Lennard-Jones Potential”. In: Annalen der Physik 536.6 (2024), p. 2400115. por:
https://doi.org/10.1002/andp.202400115.

Peter Morters and Yuval Peres. Brownian motion. Vol. 30. Cambridge University
Press, 2010.

Samuel James Newcome et al. “Algorithm Selection in Short-Range Molecular
Dynamics Simulations”. In: (May 2025). por: 10 . 48550 / ARXIV . 2505 . 03438.
arXiv: 2505.03438 [cs.CE].

Isaac Newton. Mathematical Principles of Natural Philosophy. Ed. by Florian Cajori.
Trans. by Andrew Motte. First English translation 1729; revised edition. Berkeley:
University of California Press, 1934.

Eric J.R. Parteli and Thorsten Poschel. “Particle-based simulation of powder ap-
plication in additive manufacturing”. In: Powder Technology 288 (2016), pp. 96—
102. 1ssn: 0032-5910. por: https://doi.org/10.1016/j.powtec.2015.10.035.

Julian Mark Pelloth. “Implementing a predictive tuning strategy in AutoPas us-
ing extrapolation”. MA thesis. Technical University of Munich, Sept. 2020.

Steffen Seckler et al. “AutoPas in Is1 mardyn: Massively parallel particle simula-
tions with node-level auto-tuning”. In: Journal of Computational Science 50 (2021),
p. 101296. por: 10.1016/j . jocs.2020.101296.

Sergey Vassiliev. Running Molecular Dynamics on Alliance clusters with AMBER.
https://computecanada.github.io/molmodsim-amber-md-lesson/figures/.
Workshop material developed and delivered by Compute Canada. Accessed:
2025-09-08. 2025.

https://mediatum.ub.tum.de/1765326
https://doi.org/10.1007/978-3-540-68095-6
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1016/j.neuron.2018.08.011
https://doi.org/10.1016/j.neuron.2018.08.011
https://doku.lrz.de/job-processing-on-the-linux-cluster-10745970.html
https://doku.lrz.de/job-processing-on-the-linux-cluster-10745970.html
https://doi.org/https://doi.org/10.1002/andp.202400115
https://doi.org/10.48550/ARXIV.2505.03438
https://arxiv.org/abs/2505.03438
https://doi.org/https://doi.org/10.1016/j.powtec.2015.10.035
https://doi.org/10.1016/j.jocs.2020.101296
https://computecanada.github.io/molmodsim-amber-md-lesson/figures/

6. Conclusion 41

[25]

[26]

J P Verboncoeur. “Particle simulation of plasmas: review and advances”. In: Plasma
Physics and Controlled Fusion 47.5A (Apr. 2005), A231. por: 10.1088/0741-3335/
47/5A/017.

Troy Van Voorhis. XII. The Born—Oppenheimer Approximation. MIT OpenCourse-
Ware, Introductory Quantum Mechanics I (5.73), Fall 2005. Lecture notes, Section
XII (The Born—-Oppenheimer Approximation). 2005. urL: https : //ocw . mit .
edu/ courses /5 - 73 - introductory - quantum - mechanics - i - fall - 2005 /
bf19£723£60f6baebal2abcb6b97£6£5_secl2.pdf.

Xipeng Wang et al. “The Lennard-Jones potential: when (not) to use it”. In: Phys.
Chem. Chem. Phys. 22 (19 2020), pp. 10624-10633. por: 10.1039/C9CP05445F.

Rand Wilcox. “Chapter 10 - Robust Regression”. In: Introduction to Robust Estima-
tion and Hypothesis Testing (Third Edition). Ed. by Rand Wilcox. Third Edition. Sta-
tistical Modeling and Decision Science. Boston: Academic Press, 2012, pp. 471-
532. 1sBN: 978-0-12-386983-8. por: https://doi.org/10.1016/B978-0-12-
386983-8.00010-X.

https://doi.org/10.1088/0741-3335/47/5A/017
https://doi.org/10.1088/0741-3335/47/5A/017
https://ocw.mit.edu/courses/5-73-introductory-quantum-mechanics-i-fall-2005/bf19f723f60f6baeba12abcb6b97f6f5_sec12.pdf
https://ocw.mit.edu/courses/5-73-introductory-quantum-mechanics-i-fall-2005/bf19f723f60f6baeba12abcb6b97f6f5_sec12.pdf
https://ocw.mit.edu/courses/5-73-introductory-quantum-mechanics-i-fall-2005/bf19f723f60f6baeba12abcb6b97f6f5_sec12.pdf
https://doi.org/10.1039/C9CP05445F
https://doi.org/https://doi.org/10.1016/B978-0-12-386983-8.00010-X
https://doi.org/https://doi.org/10.1016/B978-0-12-386983-8.00010-X

	Abstract
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Motivation
	1.2. Molecular Dynamics
	1.2.1. Newton's Laws of Motion
	1.2.2. Lennard-Jones Potential
	1.2.3. Störmer-Verlet Algorithm

	2. AutoPas
	2.1. Background
	2.2. Configuration Parameters
	2.2.1. Containers
	2.2.2. Traversals
	2.2.3. Additional Parameters

	2.3. Tuning Strategies

	3. Implementation
	3.1. Considerations
	3.1.1. Computational Overhead
	3.1.2. Available Simulation Statistics
	3.1.3. Detecting Scenario Change
	3.1.4. Interaction with Tuning Strategies

	3.2. Time-Based Triggers
	3.2.1. Simple Trigger
	3.2.2. Single-Iteration Averaging Trigger
	3.2.3. Interval Averaging Trigger
	3.2.4. Linear Regression Trigger

	4. Evaluation
	4.1. Benchmarking Scenarios
	4.1.1. Equilibrium
	4.1.2. Exploding Liquid
	4.1.3. Heating Sphere

	4.2. Evaluation Metrics
	4.3. Default Trigger Parameters

	5. Results
	5.1. Experimental Setup
	5.2. Choice of Simulation Statistics
	5.3. Computational Overhead
	5.4. Benchmarking Results
	5.4.1. Equilibrium
	5.4.2. Exploding Liquid
	5.4.3. Heating Sphere

	5.5. Hybrid Triggers

	6. Conclusion
	Bibliography

