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ABSTRACT
The shoulder joint is one of the functionally and anatomically most sophisticated articular systems in the human body. Both com-
plex movement patterns and the stabilization of the highly mobile joint rely on intricate three-dimensional interactions among 
various components. Continuum-based finite element models can capture such complexity and are thus particularly relevant in 
shoulder biomechanics. Considering their role as active joint stabilizers and force generators, skeletal muscles require special 
attention regarding their constitutive description. In this contribution, we propose a constitutive description to model active 
skeletal muscle within complex musculoskeletal systems, focusing on a novel continuum shoulder model. Based on a thorough 
review of existing material models, we select an active stress, an active strain, and a generalized active strain approach and com-
bine the most promising and relevant features in a novel material model. We discuss the four models considering physiological, 
mathematical, and computational aspects, including the applied activation concepts, biophysical principles of force generation, 
and arising numerical challenges. To establish a basis for numerical comparison, we identify the material parameters based on 
experimental stress–strain data obtained under multiple active and passive loading conditions. Using the example of a fusiform 
muscle, we investigate force generation, deformation, and kinematics during active isometric and free contractions. Eventually, 
we demonstrate the applicability of the proposed material model in a novel continuum mechanical model of the human shoulder, 
exploring the role of rotator cuff contraction in joint stabilization.

1   |   Introduction

As one of the functionally and anatomically most complex 
articular systems in the human body, the shoulder joint com-
bines mobility and stability in a unique musculoskeletal sys-
tem. The anatomical structure of the involved glenohumeral 
joint allows for an extensive range of motion [1], while pas-
sive and active soft tissues ensure the joint's integrity through 
static and dynamic mechanisms [2]. Muscles, especially the 

rotator cuff and the deltoid, perform multiple essential func-
tions. First, muscles actively stabilize the glenohumeral joint's 
bony structures through concavity compression [2, 3] and 
scapulohumeral balance [4, 5]. Second, muscles act as torque 
generators and enable complex movement patterns through 
their sophisticated interplay [6, 7]. Maintaining this deli-
cate balance between mobility and stability is essential for 
proper shoulder function, yet it is easily disrupted by injury 
or pathological conditions [8, 9]. Despite the high incidence of 
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shoulder disorders in clinical practice [10, 11], understanding 
of the underlying biomechanics remains limited. Developing 
objective, reliable diagnostic procedures and effective, moni-
torable treatments thus presents a major challenge for medical 
professionals and biomedical engineers.

Computational musculoskeletal models offer great potential to 
study the shoulder's biomechanics and physiology, investigate 
pathological conditions and (patient-specific) treatments, and 
accelerate developments of medical devices such as surgical 
tools, implants, or rehabilitation equipment for physical ther-
apy. While numerous reduced-dimensional multi-body models 
exist [12], research on comprehensive three-dimensional con-
tinuum mechanical models remains limited. Especially in a 
joint as complex as the shoulder, three-dimensional interactions 
between the geometrically complex components, sophisticated 
muscle fiber architectures [13], and directional material prop-
erties  [14] are central to the shoulder's physiology. Here, con-
tinuum mechanical models can offer critical insights beyond 
those offered by reduced-dimensional approaches and help to 
further improve these highly efficient and desirable reduced-
dimensional models.

Considering their role as active joint stabilizers and force gener-
ators, skeletal muscles deserve special attention regarding their 
constitutive description. Current shoulder models either apply 
purely passive material models neglecting the muscle's active 
properties or use active stress material models [15, 16] that gen-
erate internal forces and contractile deformations in response to 
a prescribed external stimulation.

Research on the constitutive modeling of active skeletal muscle 
is though fairly advanced. There exist various active constitutive 
models differing in the applied mathematical concept, rheologi-
cal properties, modeled scales, and considered active force gen-
eration mechanisms.

Whether the active stress muscle material models [15, 16] used 
in existing shoulder models are the most suitable approach has 
not yet been investigated. The question of which material model 
best characterizes the shoulder's skeletal muscles at an appro-
priate level of detail while being computationally efficient and 
robust for such a large-scale application remains open.

In this article, we aim to identify a suitable material model 
for modeling the active skeletal muscle components in a full 
three-dimensional continuum mechanical model of the human 
shoulder. To achieve this, we comprehensively review existing 
approaches, conduct a detailed study of three selected material 
models, and ultimately integrate the most promising and rele-
vant properties into a modified material model suitable for our 
application scenario.

In Section 2, we provide an overview of current musculoskeletal 
models for the human shoulder and conduct a thorough review of 
existing constitutive descriptions for active skeletal muscle. We 
place particular focus on constitutive descriptions applicable to 
continuum mechanical musculoskeletal simulations, although 
our research extends beyond this scope. From the reviewed ma-
terial models, we select three hyperelastic material models for 
further investigation in Section 3: the active stress approach by 

Blemker et al. [15], which has already been applied to models of 
the human shoulder and knee; the microstructurally inspired 
generalized active strain approach by Weickenmeier et al. [17]; 
and the mathematically well-posed active strain approach by 
Giantesio et  al. [18]. Aiming to combine these models' most 
promising and relevant properties, we suggest a modified consti-
tutive model tailored for application in complex musculoskeletal 
systems. We compare the four introduced skeletal muscle mod-
els considering physiological, mathematical, and computational 
aspects. We discuss the concepts of modeling active material 
behavior from a mathematical and physiological perspective, 
address analytical and numerical problems arising from the 
mathematical formulations, and analyze the included biophys-
ical principles of force generation in terms of physiological cor-
rectness and relevance considering the modeling of the human 
shoulder. To establish a basis for a numerical comparison, we 
fit the material parameters to a common set of experimentally 
obtained stress–strain data from the literature in Section  4. 
Contrary to the original publications, we consider multiple ac-
tive and passive loading conditions, as a single load case is gen-
erally insufficient to uniquely determine the material response. 
In Section 5.1, we investigate force generation, deformation, and 
kinematics during active isometric and free contractions using a 
fusiform muscle geometry as a simple example. Eventually, we 
demonstrate the applicability of the suggested material model 
in simulations of two complex problems. By the example of a 
two-component muscle–bone model, we introduce an approach 
for incorporating complex activation patterns within the mate-
rial model in Section 5.2. In Section 5.3, we present a full con-
tinuum mechanical model of the human shoulder, utilizing the 
proposed material model for the muscular components. We em-
ploy the model to simulate the concavity compression effect, a 
crucial stabilizing mechanism in the shoulder, where the active 
rotator cuff muscles pull the humeral head toward the glenoid 
fossa. Section 6 summarizes our key findings and discusses fu-
ture perspectives.

2   |   Literature Review

2.1   |   Musculoskeletal Models of the Human 
Shoulder

Computational models of the human shoulder can be primarily 
categorized into multi-body and continuum mechanical finite 
element models.

Reduced-dimensional multi-body models are based on rigid 
body dynamics and assume the body segments, that is, the 
bones, as non-deforming rigid bodies. Muscles connect those 
rigid segments and are modeled as one-dimensional line actu-
ators. For muscles with a broad attachment area, multiple actu-
ators can be defined. Often, these approaches apply wrapping 
methods to geometrically constrain the muscle force path and 
prevent penetration between muscle and bone [19, 20].

Because muscles are assumed to be simplified one-dimensional 
objects that deform independently of each other, multi-body 
models fail to capture a wide range of phenomena, such as 
contact or sliding interactions between the joint components, 
three-dimensional (non-uniform) deformations and stress 
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distributions, or complex fiber arrangements and tendon mor-
phologies. Despite these disadvantages, multi-body models have 
been successfully applied in research and technology. Areas of 
application include investigations of movement actuation [21], 
muscle force and moment arm estimations [22, 23], and the sim-
ulation of neuromuscular control of prostheses [24] and surgi-
cal procedures [25]. A comprehensive overview of multi-body 
models of the shoulder and upper extremity can be found in 
[12, 26–28].

In contrast, continuum mechanical models discretize muscles 
and other deformable structures in a full three-dimensional 
fashion. These models can thus resolve internal stress and 
strain distributions and can account for contact and three-
dimensional interactions between geometrically complex 
parts. Further, implementations involving sophisticated 
muscle fiber arrangements [29–31] and tendon morphologies 
[16, 32], complex (nonhomogeneous) constitutive behavior 
[15, 16, 33], and spatially varying muscle activation can be re-
alized [34, 35]. Of course, such models come with additional 
challenges that, for example, include an increased computa-
tional cost and a higher complexity regarding the geometric 
design, discretization, methods of contact modeling, and solu-
tion techniques.

While reduced-dimensional multi-body human shoulder mod-
els are common in the literature, only a few continuum-based 
models of the entire human shoulder exist. We conducted a thor-
ough review of existing continuum mechanical shoulder models 
and in the following briefly summarize our findings.

To provide an overview, Table 1 lists the reviewed models along 
with their distinctive features. The number of incorporated ana-
tomical components varies, ranging from basic models incorpo-
rating only the most fundamental joint muscles to comprehensive 
models encompassing the entire upper limb musculature. Bones 
are commonly considered rigid bodies or, in some cases, inte-
grated into the finite element (FE) discretization and assigned 
a comparably high material stiffness. Muscles are typically dis-
cretized using three-dimensional tetrahedral or hexahedral ele-
ments, except for the surface-based two-dimensional modeling 
approach in [36].

The majority of reviewed models neglect the active contractile 
behavior of muscle tissue [37–41]. Instead, they solely account 
for the passive response and prescribe external forces or dis-
placements to generate movement. Typically, those models 
employ hyperelastic, transversely isotropic, nonlinear material 
models to account for the passive muscle characteristics. The 
work in [42] employs a linear elastic passive material model and 
defines one-dimensional tensile stress states in the initial con-
dition to simulate muscle contraction. More recent publications 
assign active constitutive laws to the muscular components such 
that the prescribed activation controls the motion. The most 
common approach is the active stress material model from [15], 
which has been applied in [22, 23, 43, 44]. Although it is not ex-
plicitly detailed in the text how active and passive contributions 
are combined, we presume that the model in [16] employs an 
active stress approach by adding an active stress contribution 
from [45] to a passive material model based on [46] and [47]. To 
the best of our knowledge, these two are so far the only active 

muscle material models applied in the context of continuum me-
chanical modeling of the human shoulder.

2.2   |   Constitutive Modeling of Active 
Skeletal Muscle

Research regarding the three-dimensional constitutive model-
ing of skeletal muscle tissue is fairly advanced, and there exists 
a variety of elaborate material models for both the passive char-
acteristics and the active contractile behavior. Typically, skele-
tal muscle is modeled with nonlinear, hyperelastic constitutive 
laws, for example, [15, 18, 48, 49]. Some authors, such as [50–54], 
choose viscoelastic approaches to incorporate rate-dependent 
properties. Hypervisco-poroelastic constitutive approaches are 
presented, for example, in [55, 56]. Due to the high water con-
tent, the tissue is mostly assumed to behave as a (nearly) incom-
pressible material. Depending on the information incorporated, 
the constitutive models can be classified as purely phenom-
enological or multi-scale. A common approach is to first con-
sider the passive material behavior and then include the active 
characteristics.

2.2.1   |   Passive Constitutive Models

2.2.1.1   |   Fiber and Matrix Contributions.  From a histo-
logical point of view, the muscle's passive behavior is governed 
by the extracellular matrix (ECM) and the passive contribution 
of the embedded muscle fibers. As the fibers are arranged in par-
allel bundles, most material laws assume a transversely isotro-
pic fiber orientation in an isotropic tissue matrix.

Purely phenomenological models fit the constitutive behavior 
through mathematical formulations reflecting the experimen-
tally observed behavior. Typically, the modeling of hyperelastic 
behavior starts with the definition of a strain-energy function Ψ. 
In accordance with the histological composition of muscle tis-
sue, a common approach is to additively split the strain-energy 
function Ψp (where the index p points to the passive contribu-
tion) into the two respective parts, Ψp

fiber
 and Ψp

matrix
.

The most popular choice for Ψp

matrix
 is an isotropic Mooney–Rivlin 

constitutive law, as in [34, 43, 56–65]. Other approaches apply 
Ogden-type material models [16, 66], exponential Humphrey-
type constitutive laws [67–72], quadratic polynomial functions 
[73–75], or simpler Neo-Hooke [49, 76–78] and Saint-Venant–
Kirchhoff relations [79]. In [80, 81], the extracellular matrix ma-
terial is modeled by a rubber-like nonlinear stress–strain relation 
based on measurable physical muscle parameters. The work of 
Blemker et al. [15, 32, 82, 83] proposes a transversely isotropic 
model, accounting explicitly for the extracellular matrix resis-
tance to a long-fiber shear and cross-fiber shear by two strain-
energy components. Building on prior work [78], a sophisticated 
model for the extracellular matrix featuring two preferred fiber 
directions for the included collagen fibers is presented in [84].

The passive muscle fiber stress contribution Ψp

fiber
 usually depends 

non-linearly on the current fiber stretch. Common choices include 
exponential functions, for example, in [16, 49, 64, 76, 78, 85, 86] or 
polynomial functions, for example, in [33, 87]. Another popular 
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option is a piecewise-defined, experimentally-based function 
[88] as seen in [15, 57]. The authors in [65] assume fibers are ori-
ented in an ellipsoidal distribution, which allows for a direction-
dependent modulation of fiber stiffness.

Ehret et al. [48], and others in succession [17, 18, 89], circumvent 
an additive split into the matrix and fiber contributions by intro-
ducing a coupled exponential-type model. A similar concept is 
applied in [90].

In contrast to what is called here purely phenomenological 
models, multi-scale models exploit the hierarchical structure of 
skeletal muscle and incorporate micromechanical features. A 
common approach is to create representative volume elements 
for, for example, the fiber muscle cells and the extracellular ma-
trix. Through homogenization techniques, the microstructural 
information is projected to the macro scale and incorporated 
into a constitutive law on the continuum level. Such approaches 
are found, for example, in [91–95].

A special concept is presented in [96], where skeletal muscle is 
modeled as an elastically linked system of two independently 
meshed domains for the fiber and matrix constituents.

2.2.2   |   Active Constitutive Models

2.2.2.1   |   Active Stress, Active Strain, Generalized Active 
Strain, and Mixed Approaches.  To include the fibers' 
active contractile properties, two concepts—the active stress 
and the active strain approach—are commonly applied. Next to 
that, there exist so-called generalized active strain approaches 
and mixed approaches combining the two concepts. For a 
detailed explanation, see [97–100].

The active stress approach adds an active stress term to the pas-
sive stress component such that the stress tensor (here given 
as the second Piola–Kirchhoff stress tensor) reads S = Sp + Sa. 
Often, the active fiber stress depends on an activation param-
eter that scales the maximal isometric active muscle force. In 
a rheological model, the active stress approach is represented 
by a parallel arrangement of a passive, elastic spring and an 
active element, see Figure 1a. Examples of such hyperelastic, 
viscoelastic and poro-visco-hyperelastic material models are 
[15, 34, 35, 61, 62, 76, 80, 86, 87, 101, 102], [53, 54, 77, 103, 104] 
and [55, 56], respectively. The main advantage of this concept 
is due to experimental practice and a straightforward inter-
pretation of the active stress contribution [17, 48, 105]. In clas-
sical experiments on muscle tissue, both the muscle's force 

response in the passive resting state and the activated contrac-
tile state is tested. The characteristics of the resting state can 
then be attributed to the passive stress component, while the 
difference between the passive and the total activated stress–
strain curve governs the active stress term [105]. Generally, 
the active stress tensor is considered a non-conservative con-
tribution as it is not derived from the potential energy [99]. 
The active stress approach may thus violate the principle of 
energy conservation, possibly leading to numerical instabili-
ties or non-physical predictions.

Opposed to that, the concept of active strain relies on a multipli-
cative decomposition of the deformation gradient into F = FaFe. 
While the active contribution Fa maps the reference configura-
tion onto a stress-free intermediate configuration, the elastic 
contribution Fe maps from the intermediate configuration onto 
the current configuration. Since elastic energy is stored solely 
through Fe, the strain-energy function is expressed in terms of Fe 
rather than F. Active contractile characteristics are commonly 
incorporated through an activation parameter in the formula-
tion of Fa. A representative rheological model consists of a pas-
sive, elastic spring in series with an active element, as shown 
in Figure 1b. Hyperelastic and viscoelastic constitutive laws fol-
lowing the active strain approach can be found in [18, 77, 105] 
and [50, 51], respectively. Due to the mathematical construction 
of the active strain approach, the strain-energy function inherits 
its mathematical properties from the underlying passive strain-
energy function [99]. This includes properties such as frame 
invariance and rank-one ellipticity, which ensure that there 
is a guaranteed solution to the associated equilibrium equa-
tions [99]. These considerations do not apply for the active stress 
approach. In contrast to the active stress approach, the active 
contribution Fa is not an experimentally observable quantity but 
rather more complex in its interpretation.

A generalized active strain concept was originally presented 
in [48] and later adapted in [17] and [89]. Active properties are 
included by increasing the invariant accounting for the passive 
longitudinal fiber characteristics Ip by an active contribution 
Ia, such that the combined invariant is I = Ip + Ia. According 
to [97], this is equal to applying the multiplicative decomposi-
tion of the deformation gradient to a part of the strain-energy 
function. A rheological representation is shown in Figure  1c. 
Advantage lies in the more physiological representation of the 
muscle tissue. On the cellular level, a sarcomere includes both 
an active component (actin–myosin complex) and a passive com-
ponent (titin filaments) arranged in series [106]. Modeling mus-
cle as a parallel arrangement of the serially arranged sarcomere 
components and an elastic component representing the passive 

FIGURE 1    |    Rheological models illustrating the different concepts of muscular activation as in [97].
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connective tissue provides a more accurate representation of 
tissue characteristics than a pure active stress or active strain 
approach [48, 97].

Mixed approaches combine the principles of active stress and 
active strain approaches. These models include three compo-
nents: a passive stress component Sp, represented by the parallel 
spring in Figure 1d, an active stress component Sa, represented 
by the parallel active element, and an active-strain-based com-
ponent that depends exclusively on the partial deformation 
gradient Fe and is represented by the serial arrangement of the 
spring and active element. As for the active strain approach, Fe 
is derived from the multiplicative decomposition of the defor-
mation gradient F = FaFe. Examples of such mixed approaches 
are [107, 108]. Mixed approaches are motivated by the com-
monly accepted physiological hypothesis that skeletal muscle 
tissue employs redundant pathways for stress transmission. 
The active stress approach assumes there is no elastic coupling 
between muscle fibers and the extracellular matrix, and the ac-
tive stresses are directly transmitted by the muscle fibers. In 
contrast, the active strain approach assumes that stresses are 
transmitted through the extracellular matrix. By combining 
both approaches, mixed models thus aim to more accurately 
reflect the dual mechanisms of active stress transmission in 
skeletal muscle.

The approaches in [67, 68, 85] and similarly in [69–72] are ex-
pansions of the classic so-called Hill-type model to three di-
mensions. In this case, the total muscle force is—equivalently 
to the generalized active strain approach—estimated by adding 
the forces from a passive spring and the serial arrangement of a 
passive spring and a contractile active element.

2.2.3   |   Activation Characteristics

2.2.3.1   |   Influences on Muscular Activation and Force 
Generation.  A muscle's potential for force production is 
governed by various factors, such as its geometry, histolog-
ical composition, neural activity, its current state of motion 
and deformation, and its contraction history. While geomet-
ric factors, such as size and fiber architecture, are considered 
in the geometric representation of the finite element model, 
histology-, activity-, and motion-related factors are commonly 
included in the material description. In any of the concepts pre-
sented above, the active contribution, be it Sa, Fa or Ia, involves 
the computation of an activation quantity accounting for a vary-
ing number of those effects.

Experimentally observable force-stretch, force-velocity, and 
force-stimulation-frequency dependencies are commonly in-
cluded in a phenomenological fashion.

Thereof, the force-stretch dependency is considered in most 
publications. Popular choices for its mathematical description 
include (piecewise-defined) exponential [16, 33, 73], linear 
[61, 87], or parabolic [15, 34, 57, 75, 79] formulations. Besides 
that, sigmoid functions [77, 86, 101] and a normalized Weibull 
distribution [48, 70] were proposed in the literature. A detailed 
review and assessment of existing mathematical models describ-
ing the force-stretch dependency is provided in [109].

Less common is the additional inclusion of a force-velocity de-
pendency. Often, a hyperbolic relation based on the work in [110] 
and [111] is chosen [48, 61, 64, 80, 101, 112]. Other authors pres-
ent exponential and arcus-tangent functions; see [63, 70, 72, 73] 
and [85].

The simplest approach to account for the neural activity (or, in 
other words, the stimulation frequency) is to linearly scale the 
active contribution with an activation factor; see, for example, 
[15, 62, 74, 75, 79]. To simulate temporal variations of muscular 
activation, for example, the successive build-up of a fused te-
tanic contraction state, some authors include a time-dependent 
activation function [64, 68–73, 85]. More sophisticated formu-
lations such as [61, 77, 80, 101, 112] resolve the time-dependent 
activation level on the scale of milliseconds by a superposition of 
single muscle twitches. An additional composition into different 
fiber types, as proposed by Ehret et al. [48], featuring different 
twitch force amplitudes and frequencies, is accounted for by a 
weighted sum of the contributions. The work of [16] employs a 
model that describes active muscle tension in terms of relative 
calcium ion concentration. Since calcium concentration and 
neural excitation intensity are correlated, the authors prescribe 
normalized activation directly as model input.

Despite experimental evidence (see [89] for a summary), 
history-dependent effects such as force depression and force 
enhancement are less commonly included in the constitutive 
description. To include these effects, the authors in [89] pro-
pose an extension of the constitutive law in [48] by a so-called 
dynamic function. This function accounts for a dynamic 
force–velocity dependency and the effects of force depression 
and force enhancement by evaluating a differential equation. 
Opposed to this phenomenological approach, the work in [87] 
accounts for force enhancement effects on the micro-scale. At 
the sarcomere level, force enhancement is primarily governed 
by actin–titin interactions. To incorporate these interactions, 
they combine their multi-scale chemo-electro-mechanical 
model with a “sticky-spring” mechanism for actin–titin inter-
actions [113].

Other multi-scale approaches link the macroscopic constitutive 
model to detailed mathematical descriptions of electrical, bio-
physical, and chemical processes at the microscopic level (see 
[114] for a comprehensive review).

Monodomain or bidomain equations are frequently used to 
model the action potential propagation along a muscle fiber, as 
seen in, for example, [34, 35, 66, 115, 116] and [117, 118], respec-
tively. An approach integrating the mechanism of electrome-
chanical delay, that is, the time difference between the muscle's 
stimulation and a measurable produced force, is further pro-
posed in [66]. The authors of [119] incorporate an electric field 
that triggers mechanical activation once the electric potential 
exceeds a certain threshold. A phenomenological model of 
motor-unit recruitment driven by neural activity is coupled to 
the continuum level in [58, 118].

Chemical processes such as calcium-concentration-driven mus-
cle activation and calcium activation dynamics, that is, the re-
lease of calcium from the sarcoplasmic reticulum, are added, 
for example, in [34, 35, 76, 115] and [34, 35, 76]. To describe the 
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de- and attachment of cross-bridges during muscle contraction 
on a molecular level, partial differential equations based on the 
Huxley sliding filament theory are applied in [76, 120]. One of 
the most detailed descriptions of the electrophysiological be-
havior of a half-sarcomere on the cellular level is presented in 
[121], and is coupled to continuum mechanical constitutive laws 
in [34, 35, 58, 118]. It models the entire pathway from electri-
cal excitation to muscle cell contraction through differential 
equations, thereby including electrochemical models of the 
membrane electrophysiology, calcium (activation) dynamics, 
cross-bridge dynamics, and fatigue.

Besides the basic modeling of physiologically realistic behavior 
of healthy skeletal muscle, the study of specific (pathological) 
biological processes is an ongoing research topic. Examples in-
clude models for damage [122], fatigue [34, 35], and age-related 
loss of activation [123].

3   |   Material Models for Active Skeletal Muscle

The choice of an appropriate material model is essential to 
obtain physiologically realistic kinematics and stress results. 
Based on the literature review in the previous section, we select 
three material models for a detailed investigation. In addition, 
we propose a fourth modified material model that combines the 
most promising features of the three models from the literature 
into a skeletal muscle material model specifically tailored for ap-
plication to human shoulder modeling.

Following a very brief introduction to the basic continuum me-
chanical quantities in Section 3.1, Section 3.2 summarizes the 
four investigated models and highlights the modifications made 
in our work. In Section  3.3, we compare the approaches and 
critically analyze the respective advantages and disadvantages 
before providing an interim discussion in Section 3.4.

3.1   |   Continuum Mechanical Basics

In nonlinear continuum mechanics, the deformation gradient 
F =

dx

dX
, with the Jacobi determinant J = det F, serves as the pri-

mary measure of deformation. x and X denote the coordinates 
of a material point in current and reference configuration, re-
spectively. The right Cauchy–Green tensor C is an important 
quantity to calculate the strains with regard to the reference 
configuration and is defined as

Following a multiplicative decomposition of the deformation 
gradient into isochoric and volumetric parts, the modified right 
Cauchy–Green tensor C = J−2∕3C, which describes the isocho-
ric contribution, is introduced. All modified, that is, isochoric, 
quantities are indicated by (∙) in this work.

Hyperelastic material laws postulate the existence of a strain-
energy function Ψ(C). To account for the fiber direction in a trans-
versely isotropic material model, a structural tensor M can be 
incorporated into the strain-energy function, such that Ψ(C,M). 
Assuming the fiber direction in reference configuration as the 

unit vector m, the structural tensor is computed to M =m⊗m. 
The stretch in fiber direction is

The second Piola–Kirchhoff stress tensor S is derived from the 
strain-energy function as

while the first Piola–Kirchhoff stress tensor P results from the 
push-forward operation

Solving a continuum mechanical problem with the finite ele-
ment method, usually requires the linearization of the consti-
tutive equation. Therefore, the forth-order elasticity tensor ℂ 
is computed to

3.2   |   Selected Material Models

We evaluate three hyperelastic and nearly incompressible 
material models from the literature based on either the ac-
tive strain, active stress, or the generalized active strain 
approach. In accordance with the anatomical predominant 
unidirectional fiber alignment on the local scale, all of the se-
lected material models assume a transversely isotropic fiber 
distribution with respect to this preferred fiber direction. 
Blemker et  al.'s active stress model [15], here named ASE, 
is chosen due to its successful application to several single 
muscles [32, 82, 124, 125] and muscle tissue parts [83] but 
also comprehensive models of the human shoulder [22, 23] 
and the human knee [126]. Weickenmeier et al.'s model [17], 
termed GASA, is selected because it incorporates muscle ac-
tivation through a novel generalized active strain approach 
and allows for seamless integration of micromechanical 
data. Giantesio et al.'s model [18], abbreviated ASA, is a vari-
ant of the aforementioned GASA-model but uses an active 
strain approach to include activation in a mathematically 
well-posed manner.

In addition to these three models, we introduce a fourth mate-
rial model, the GASAM-model, which combines the optimal fea-
tures of the previously mentioned models for our application to 
complex musculoskeletal systems.

Figure 2 provides a schematic overview of the constitutive laws. 
Table  2 summarizes material parameters and abbreviations 
used in the following.

3.2.1   |   Active Stress Approach (ASE)

Blemker et al. [15] present a purely phenomenological material 
model with a fiber-stretch-dependent activation, named ASE in 
this work. Following the concept of active stress, activation is 

(1)C = F⊤F

(2)� =
√
C:M

(3)S = 2
�Ψ
�C

(4)P = FS

(5)ℂ = 4
�2Ψ

�C2
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modeled by adding an active stress contribution to the passive 
stress. Near-incompressibility is achieved through a decoupled 
strain-energy function involving a purely isochoric part Ψiso and 
a purely volumetric part Ψvol.

The isochoric part is formulated with respect to the modified 
invariants

(6)I1 = trC, I4 = C:M = �
2
, I5 = C

2
:M

FIGURE 2    |    Schematic overview of the investigated constitutive laws for active skeletal muscle tissue.

TABLE 2    |    Overview of the material parameters for the ASE-, ASA-, and GASA-models in Blemker et al. [15] (used in this work in a variant, i.e., 
in combination with the Neo-Hooke material model [127]), Giantesio et al. [18] and Weickenmeier et al. [17], respectively. Additionally, the table 
includes the material parameters for the herein-proposed GASAM-model.

Passive material parameters

ASE ASA, GASA, and GASAM

G1 Along fiber shear modulus � Parameter related to along fiber properties

G2 Transverse fiber shear modulus � Parameter related to transverse fiber properties

D1 Magnitude of passive along fiber tension � Stiffness parameter

D2 Exponential growth rate of passive along fiber tension �0 Weighting factor for isotropic tissue constituent

K Bulk modulus � Incompressibility parameter

� Neo-Hookean shear modulus

Active material parameters

ASE ASA and GASA GASAM

�aopt Optimal fiber stretch �opt Optimal fiber stretch �opt Optimal fiber stretch

�∗ Minimum linear fiber stretch �min Minimum fiber stretch �min Minimum fiber stretch

�max Maximum isometric stress Na Number of activated MUs per 
reference cross-section area

Popt Maximum active 
nominal stress

a Amplitude of time-
dependent activation

Fi Twitch force of MU i

c Frequency of time-
dependent activation

Ti Twitch contraction time of MU i c Frequency of time-
dependent activation

Ii Interstimulus interval of MU i

�i Fraction of MU i

Note: For brevity, motor units are abbreviated as MU. A MU of type i  is denoted MU i .
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and the strain invariants

Considering the bulk modulus K, the along fiber shear modu-
lus G1, and the transverse fiber shear modulus G2, the proposed 
strain-energy function reads

It involves the contributions Ψlfs and Ψtfs accounting distinc-
tively for shear along and transverse to the fiber direction. The 
term Ψtot

f  can be attributed to active and passive tension and 
compression along the fiber direction (Ψa

f  and Ψp

f
, respectively). 

With the total Cauchy fiber stress �tot
f

, Ψtot
f  is implicitly given by 

the equation

Accounting for the active stress, �tot
f

 comprises an active part �a
f
 

and a passive part �a
f
. Considering the maximal isometric fiber 

stress �max, we compute �tot
f

 to

The amplitude a scales the active contribution. In contrast to 
the original formulation in [15], we introduce an additional 
time-dependent function f tanht . By this integration, we can es-
tablish a time-dependent activation profile comparable to one 
in the GASA-model introduced in the upcoming Section 3.2.2. 
To mimic the successive build-up of twitch forces up to a fused 
tetanized level, we choose the tanh-function

with the frequency c and activation start time t0. Setting f tanht = 1 
results in the original material model in [15]. The functions f a

�
 

and f p
�

 in Equation (10) account for the experimentally observed 
active and passive force-stretch-dependencies, respectively. 
Assuming the maximal isometric fiber stress �max occurs at the 
optimal fiber stretch �aopt, the active stretch-dependency is given 
as in the original publication as

Different from the original formulation, we assume that passive 
fibers solely produce a stress response in all tensile states, that 
is, when 𝜆 > 1 and not as originally when 𝜆 > 𝜆aopt. Considering 
the minimum linear fiber stretch �∗ and the parameters D1 and 
D2, the passive stretch-dependency reads

with

Since �aopt is now only involved in the computation of f a
�

, the ac-
tive and passive behavior is decoupled and the material parame-
ters can be fitted to the two scenarios independently.

We provide the derivation of the second Piola–Kirchhoff stress 
tensor in Section  A.1.1 of Appendix  A for the reader's conve-
nience, as these equations have not been published so far. The 
presented equations reflect the additive composition of a passive 
and an active stress component, as it is characteristic of the active 
stress concept. Details about the elasticity tensor derivation are 
given in Section S1.1 of the supporting information.

Remark 1.  For passive compression along the fiber direction 
(that is, 𝜆 < 1), f p

�
 and in succession �tot

f
 become zero. If shear 

contributions vanish as well, the entire stress response is zero 
(see also the remark in [90]). From a modeling perspective, 
this can be attributed to the fact that the material neglects the 
compressive stiffness of the fiber surrounding tissue. Instead, 
it solely incorporates components directly associated with the 
muscle fibers. To account for the influence of the fiber surround-
ing tissue and circumvent numerical difficulties arising from 
the lack of stiffness in plain compressive states, this work pairs 
the material model with the isometric Neo-Hookean material 
model in [127] with the strain-energy function Ψnh

(
I1
)
.

Remark 2.  The stress computation exhibits singularities in 
case the argument � of acosh in the invariant B2 in Equation (7) 
becomes � = 1. To calculate the stress, the derivative of B2 with 
respect to I4 is formed and accounted for in the auxiliary vari-
able A2 = I

−1∕2

4
acosh(�)√
�2 − 1

 (see Equation  (A4)). The zero in the de-

nominator thus leads to a singularity for the case that � = 1 . In 
an analytical setting, we can compute the limit, such that 
A2 = 𝜃1 lim

�����⃗
I
−1∕2

4
acosh(𝜃)√
𝜃2 − 1

= I
−1∕2

4 . In a numerical evaluation, the 

singularity can be circumvented by adding a very small contri-
bution ϵ to � such that � = 1 + ϵ. This behavior can be attributed 
to the chosen invariants, initially published by Criscione et al. 
[128]. As previously noted by Bleiler et al. [93], the derivative of 
the invariant B2 becomes singular in case of vanishing shears.

3.2.2   |   Generalized Active Strain Approach (GASA)

The generalized active strain approach by Weickenmeier et al. [17], 
here named GASA, is based on the fully incompressible model 

(7)B1 =

���� I5

I
2

4

− 1 and B2 = acosh

⎛⎜⎜⎜⎝

I1I4 − I5

2
�
I4

⎞⎟⎟⎟⎠

(8)
Ψ = Ψiso + Ψvol = G1B

2
1

⏟⏟⏟
Ψlfs

+ G2B
2
2

⏟⏟⏟
Ψtfs

+ Ψtot
f +

K

2
ln(J)2

⏟⏞⏟⏞⏟
Ψvol

(9)
�Ψtot

f

��
=

�tot
f

�

(10)
�tot
f

= �max
�

�aopt
aftanht f a�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
�a
f

+ �max �f
p

�
⏟⏞⏟⏞⏟

�
p

f

(11)f tanht = f tanht (t) = tanh
(
c
(
t − t0

))

(12)f a𝜉 = f a𝜉
�
𝜆
�
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

9

�
𝜆

𝜆aopt
−0.4

�2

if 𝜆≤0.6𝜆aopt

1−4

�
1−

𝜆

𝜆aopt

�2

if 0.6𝜆aopt<𝜆<1.4𝜆aopt

9

�
𝜆

𝜆aopt
−1.6

�2

if 𝜆≥1.4𝜆aopt

(13)f
p

𝜉
= f

p

𝜉

�
𝜆
�
=

⎧
⎪⎪⎨⎪⎪⎩

D3𝜆+D4 if 𝜆≥𝜆∗

D1

�
eD2(𝜆−1) −1

�
if 𝜆∗>𝜆>1

0 if 1≥𝜆

(14)D3 = D1D2e
D2(�∗−1) and D4 = D1

(
eD2(�∗−1) − 1

)
− �∗D3
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for passive and active muscle presented by Ehret et al. in [48, 80]. 
On this basis, Weickenmeier et al. [17] propose two compressible 
constitutive descriptions that model the muscle tissue as nearly 
incompressible. The so-called coupled approach circumvents the 
commonly applied additive volumetric-isochoric split of the strain-
energy function. Since it has been proven to be advantageous in 
maintaining incompressible behavior, we employ this coupled ap-
proach in our forthcoming studies. In contrast to the active stress 
and active strain concept, activation is achieved through the mod-
ification of an invariant.

The proposed strain-energy function incorporates the material 
parameters �, �, and �, and the incompressibility parameter �. 
The weighting parameters �0 and �p, related by �0 + �p = 1, de-
scribe the percentage contribution of the extracellular matrix 
and the muscle fibers, respectively. While the structural tensor 
M accounts for the muscle fiber alignment, the isotropic matrix 
contribution is included in the structural tensor L̃ =

�0

3
I + �pM. 

Considering the activation parameter �a, the two general invari-
ants Ĩ  (with its passive and active parts Ĩp and Ĩa, respectively) 
and J̃  are introduced as

Based on those quantities, the strain-energy function is de-
fined as

For the computation of the activation parameter �a, two as-
sumptions are made: first, the model nominal stress response 
to a uniaxial deformation along the fiber direction matches the 
experimentally measured total nominal stress, and second, this 
measured total nominal stress can be additively decomposed 
into passive and active contributions. Based on these consider-
ations, �a can be explicitly expressed in terms of the active nom-
inal stress Pa. Assuming W0(�

∗) is the principal branch of the 
Lambert W  function, given as the solution of the inverse func-
tion � =W (�∗)eW (�∗), the activation parameter is obtained as

Ĩp (and its derivative with respect to �, Ĩ
′

p), denotes the passive 
part of the first generalized invariant Ĩ  for uniaxial tension and 
are given in Equation (A5).

The active nominal stress Pa accounts for the force-stretch-
dependency through f� and for the force-velocity-dependency 
through fv. It further incorporates the term Poptf twitcht  in which 
Popt is the peak level of the active nominal stress, and f twitcht  
is a dimensionless, normalized, time-dependent function, 
such that

The total active force created by nMU muscle motor units of type i 
is calculated as the sum of the force responses Fit at time t weighted 

by the corresponding fraction in the muscle �i. Poptf twitcht  then re-
sults from multiplication with the number of activated muscle 
units per unit reference cross-section area Na according to

Fit results from superposition of single twitches characterized by 
the experimentally observed microstructural quantities Ti, Fi, 
and Ii. The twitch contraction time Ti defines the time until the 
peak twitch force Fi in the ascending phase of a single twitch 
response is reached [129, 130]. Ii denotes the interstimulus inter-
val. For a detailed explanation of the computation of Fit, we refer 
to the original publication [48].

The stretch-dependency f� is chosen as a function represent-
ing experimentally observed behavior. It depends on �min, the 
minimal fiber stretch at which myofilaments still overlap and 
�opt, the fiber stretch associated to the maximal twitch force. Its 
mathematical description reads

For comparative reasons, the velocity-dependency fv is neglected 
in this work and set to fv = 1.

The derivation of the second Piola–Kirchhoff stress tensor has 
been published in [17]. For the reader's convenience, we provide 
the equation using our notation in Section A.1.2 of Appendix A. 
Similarly, the equations for the elasticity tensor are presented in 
Section S1.2 of the supporting information.

3.2.3   |   Active Strain Approach (ASA)

Based on the same incompressible model [48] as the compress-
ible GASA-approach [17] introduced in the previous section, 
Giantesio et  al. [18] propose an active strain approach, here 
termed ASA. A common approach to enforce the incompress-
ibility condition, that is, J = 1, is to add an additional contribu-
tion to the strain energy function that penalizes deviations from 
J = 1. To this end, we incorporate a volumetric penalty term 
similar to the coupled formulation in [17].

The active strain approach relies on a multiplicative decom-
position of the deformation gradient F into an elastic part Fe, 
associated with the elastic deformation and an active part Fa, re-
sulting from an internal active deformation, such that F = FeFa. 
Considering the activation parameter �a, the active deformation 
gradient is defined as

The strain-energy function is expressed in terms of the elastic 
Cauchy-Green strain tensor Ce = Fe

TFe instead of C. With the 
elastic general invariants

(15)
Ĩ = Ĩp+ Ĩa with Ĩp=C: L̃ and Ĩa=C:

(
�aM

)
, and J̃ = cof(C): L̃

(16)

Ψ =
�

4

[
1

�

(
e
�
(
Ĩ−1

)
− 1

)
+
1

�

(
e
�
(
J̃−1

)
− 1

)
+
1

�
(det (C)−� − 1)

]

(17)

�a =

⎧⎪⎨⎪⎩

0 if Pa=0

W0(�
∗)

��2
−
1

2�
Ĩ
�

p else
with �∗ = Pa

2��
�
e

�

2

�
2−2Ĩp+�Ĩ

�

p

�
+

�
2
�Ĩ

�

pe
�

2
�Ĩ

�

p

(18)Pa = Poptf
twitch
t f� fv

(19)Poptf
twitch
t = Na

nMU∑
i= 1

�iF
i
t

(20)

f𝜉 = f𝜉(𝜆) =

⎧⎪⎨⎪⎩

𝜆−𝜆min
𝜆opt−𝜆min

exp

�
2𝜆min −𝜆−𝜆opt

��
𝜆−𝜆opt

�

2
�
𝜆min −𝜆opt

�2 if 𝜆>𝜆min

0 if 𝜆⩽𝜆min

(21)Fa =
�
1 − �a

�
M +

1√
1 − �a

(I −M) with det
�
Fa

�
= 1

(22)Ĩe = Ce: L̃ and J̃e = cof
(
Ce

)
: L̃

 20407947, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.70036, W
iley O

nline L
ibrary on [30/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



11 of 41

the strain energy function thus reads

The computation of the activation parameter �a relies on the same 
two assumptions as mentioned for the GASA-model. Consequently, 
�a is implicitly given as the solution of the equation

The generalized elastic invariants for uniaxial tension, Ĩe and 
J̃e, are provided in Equation  (A7), while their passive coun-
terparts, Ĩp and J̃p, are given in Equation  (A5). The stretch- 
and time-dependencies included in the above equation are 
formulated in the same fashion as for the GASA-model, and 
are given in Equation  (20) and (19), respectively. We apply a 
standard Newton–Raphson algorithm to determine �a from 
Equation (24).

Again, as a service to the reader, we present the derivation of 
the second Piola–Kirchhoff stress tensor in Section  A.1.3 of 
Appendix  A. Further, the derivation of the elasticity tensor is 
provided in Section S1.3 of the supporting information.

Remark.  Since in the passive case Fa = I, and thus Fe = F and 
Ce = C, the GASA- and ASA-model coincide in absence of any 
activation. In the active case, the nominal stress in the fiber di-
rection due to uniaxial loading along the fibers Ptot is identical. 
We recall, that both models determine the activation parameter 
�a such that the equation Ptot

(
�a

)
= Pact + Ppas is fulfilled. Since 

Ppas and Pact coincide, Ptot must also be equivalent.

3.2.4   |   A Modified Constitutive Description of Active 
Muscle Designed for Complex Musculoskeletal Models 
(GASAM)

Aiming to combine the optimal properties of the three material 
models proposed in the literature for our application, we intro-
duce a fourth material model, referred to as the GASAM-model. 
While the advantages of our modified model will be discussed 
in much detail in Section 3.3, we here present the constitutive 
equations. The GASA-model from [17] serves as a basis. We per-
form two modifications:

•	 We add the additional term S�a
, which takes into account 

the derivative �Ψ
��a

��a

�C
, to S in Equation (A6). A positive side 

effect of this modification is that �a can now be given by an 
explicit and computationally less expensive equation. For a 
detailed explanation, we refer to [18].

•	 Instead of the elaborate calculation of Poptf twitcht  via the su-
perposition of the twitch forces, we use the smooth function 
Poptf

tanh
t . Popt is now prescribed as a material parameter and 

specifies the amplitude of the tanh-function.

The term S�a
 is computed from the strain-energy function in 

Equation (16) to

With the explicit formulation of the activation level in [18],

the derivative reads

The additional contribution ℂ�a
 to the elasticity tensor is pro-

vided in Section S1.4 of the supporting information. For a visual 
comparison between our modified model and the three models 
selected from the literature, we refer to Figure 2.

3.3   |   Comparison of the Selected Approaches

In the following, we analyze the presented material models and 
compare them considering the models' ability to represent physi-
ological reality, their mathematical properties, resulting numeri-
cal challenges, and aspects of computational efficiency. Our goal 
is to assess the strengths and weaknesses of each model and, 
based on these theoretical aspects, provide a rationale for our 
preference for the modified material model.

3.3.1   |   Activation Concept

3.3.1.1   |   Physiological Representation and Mathematical 
Properties.  In Section 2.2, we discussed the different activa-
tion concepts and assessed how well the models reflect physiolog-
ical reality (consider the rheological representations in Figure 1). 
Comparing the four models against this background, the gen-
eralized active strain models (GASA and GASAM) stand out as 
the physiologically most plausible. They comprehensively rep-
resent the tissue structure and its mechanical properties, incor-
porating both serial elastic properties of the sarcomeres (titin 
filaments [106]) and the parallel elastic properties of the connec-
tive tissue [48, 97, 131]. The active stress model (ASE) accounts 
for the connective tissue's elasticity but neglects the sarcomeres' 
serial elasticity, while the active strain approach (ASA) captures 
the sarcomeres' active and passive elastic characteristics but dis-
regards the connective tissues parallel contribution.

We have further outlined the mathematical properties associated 
with the different activation concepts in Section 2.2. As typical for 
the active strain approach, the ASA-model's active strain-energy 
function, preserves the elliptic properties of the underlying passive 
strain-energy function, thereby ensuring well-posedness of the as-
sociated balance equations (see [18] for a full discussion). For the 
ASE-model, the active stress is not derived from a potential, as it be-
comes evident through the implicit definition of Ψtot

f . Although we 
did not examine the model's elliptic properties in detail, we empha-
size that the well-posedness of the equilibrium problem is not given 
by construction, but depends on the specific active stress tensor.

(23)

Ψ = Ψe + Ψvol =
�

4

[
1

�

(
e
�
(
Ĩe−1

)
− 1

)
+
1

�

(
e
�
(
J̃e−1

)
− 1
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+

�

4�

[
det (C)−� − 1

]
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�
e
�
(
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�
e
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(
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)
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(25)S�a
= 2

�Ψ
��a

��a

�C
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e
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��a

��
M

(26)

�a =
1

��2
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�
e
�
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1−Ĩp
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Poptf

tanh
t

�
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��a
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3.3.1.2   |   Passive Material Model.  Examining the pas-
sive material models, we find differences in the construction 
of the model equations and the parametric control of model prop-
erties. The ASE-model separates the contributions for different 
loading modes, with the parameters G1, G2, and �max distinctively 
addressing along fiber shear, transverse fiber shear and along 
fiber tension. In our variant, the Neo-Hookean contribution 
accounts for the isotropic ECM stiffness through the param-
eter �. Conversely, the GASA-, ASA-, and GASAM-model 
exhibit a more convoluted structure, where the parameters �, 
�, and � describe the combined properties of anisotropic fibers 
and isotropic ECM. For the GASA-, ASA-, and GASAM-model, 
the degree of anisotropy can be easily controlled through �0. 
The ASE-model links the anisotropic invariant I4 with several 
parameters, making it more challenging to control the level 
of anisotropy.

It could be argued that splitting the stress response into compo-
nents associated with distinct loading modes (ASE-model) sim-
plifies fitting the model stress to experimental measurements. 
However, as further discussed in Section 4, fitting the combined 
stress response (GASA-, ASA-, and GASAM-model) has also 
proven to be straightforward. Against this background, we do 
not prefer one material model over the other.

3.3.2   |   Activation Level

3.3.2.1   |   Implicit or Explicit Computation.  In 
the ASA-model, computing the activation parameter �a involves 
solving an implicit equation, introducing additional numeri-
cal challenges associated with the iterative solver, including 
the selection of step size and initial guess, as well as possible 
convergence problems. While we have not conducted specific 
tests to precisely determine its impact on the computation 
effort, we expect and experienced this to perform worse than an 
explicit computation. As �a is implicitly defined, its derivatives 
are approximated using central differences. Selecting an appro-
priate step size for the central differences scheme thus presents 
a manageable yet additional challenge.

For the GASA-model, the activation parameter �a is explicitly 
given. However, its computation involves the principal branch of 
the Lambert W function, W0, which is defined implicitly. Here, 
the same considerations as above apply.

The GASAM-model includes the additional stress contribution 
2 �Ψ

��a

��a

�C
, which leads to a fully explicit expression for �a. This 

explicit computation of the activation level avoids potential diffi-
culties associated with the application of iterative solvers and is 
computationally more efficient. Similarly, the ASE-model for-
mulae contain no additional implicit equations, and the same 
advantages are applicable.

3.3.2.2   |   Force-Stretch-Dependencies.  A closer look 
at the active force-stretch-dependencies f� and f a

�
 in Figure  3 

reveals some numerically problematic and physiologically unre-
alistic features. Due to the non-smooth definition of the GASA-, 
ASA-, and GASAM-model's stretch-dependency f� in Equa-
tion  (20), f� and, in conclusion, also the stress response is 
not continuously differentiable at � = �min. While this could 
potentially lead to numerical difficulties, such as convergence 
problems of the implicit solver when transitioning the critical 
point � = �min, we did not experience such issues. In contrast, 
the ASE-model's stretch-dependency f a

�
 in Equation (12) is con-

tinuously differentiable in the entire stretch regime. For values 
𝜆 < 0.4𝜆aopt and 𝜆 > 1.6𝜆aopt, the stretch-dependency f a

�
, however, 

shows an unphysiological rise. The convergence to zero values 
for large fiber stretches and the absence of an active contribution 
for values below a certain minimal stretch is thus better cap-
tured by the GASA-, ASA-, and GASAM-model's f�. We further 
note that f a

�
 is symmetric with respect to �opt, whereas f� can 

represent non-symmetric force-stretch relations.

For both f� and f a
�

, the parameter �opt represents the fiber stretch 
related to the maximal isometric active stress. In f�, the param-
eter �min describes the minimal fiber stretch at which muscle 
activity is observed—an experimentally measurable and inter-
pretable quantity. In contrast, with f a

�
, this value is preset to 

0.4�opt, which limits the options for adjusting the minimal ac-
tively contracting fiber length.

Apart from the active stretch-dependency f a
�

, the ASE-model 
considers the passive stretch-dependency f p

�
 (see Equation (13)) 

depicted in Figure 4. Similarly, this function is not continuously 
differentiable at � = 1. We further note that the parameter �∗ is a 
pure phenomenological quantity with no physiological meaning.

3.3.2.3   |   Time-Dependent Activation Functions. Figure 5 
compares the time-dependent activation functions f twitcht  
and f tanht . While the superposition of individual twitch forces 
in the computation of f twitcht  for the ASA- and GASA-model is 
crucial for observing the time-dependent evolution of active 
forces at a millisecond scale, it can be disregarded for our appli-
cation. Still, we acknowledge the use of physical, experimentally 
measurable, and well-interpretable microstructural parame-
ters in f twitcht . Due to its lower computational expense, we opt 
for the tanh time-dependency f tanht  proposed for the ASE-model 
and adopted in the GASAM-model for this application.

3.3.2.4   |   Consistency of Stress Tensor Derivation.  Com-
paring the stress terms of the ASA- and GASA-model in Equa-
tions  (A9) and (A6), we notice that the ASA-model's stress 
response considers the dependence of the activation parameter �a 
on the stretch � in the stress derivation through the term 
S2 = 2

�Ψe

��a

��a

�C
. As already pointed out in [18, 108], the GASA-model 

FIGURE 3    |    Active force-stretch dependencies f� in Equation  (20) 
and f a

�
 in Equation (12).
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neglects this dependency. Our GASAM-model explicitly accounts 
for this dependency through the term S�a

 defined in Equation (25). 
Whether these terms should be included will be discussed below, 
considering mathematical and physiological aspects.

All four models are based on the assumption that muscle tissue 
behaves as a hyperelastic material. Within the mathematical 
framework of hyperelasticity, stresses are derived from an under-
lying strain energy potential (expressed through the strain en-
ergy density function). Given this fundamental assumption, it is 
mathematically consistent to include the additional stress term 
S2 and S�a

. Neglecting these terms compromises the hyperelas-
tic model's internal consistency and its inherent mathematical 
properties.

From a physiological perspective, the interpretation of S2 and S�a
 

is less clear. S2 and S�a
 account for the dependence of the activa-

tion parameter �a on the stretch �, or more generally speaking, 
the dependence of the active muscle force on the deformation. 
Active muscle force is generated by cross-bridge formation be-
tween actin and myosin filaments. Modeling muscle as purely 
hyperelastic implies that these cross-bridges store elastic energy. 
As long as the cross-bridges remain intact, this assumption can 
be considered valid (see [132] for details on the elastic properties 
of the myosin head). Once actin and myosin filaments detach 
and slide past each other, elastic energy storage is no longer pos-
sible. Maintaining the cross-bridge linkage requires metabolic 
energy (ATP), which a purely mechanical hyperelastic model 
cannot account for.

Neglecting the terms S2 and S�a
 means that in the strain energy 

density function, the activation parameter �a is regarded as con-
stant and, as such, deformation-independent. As a result, the ac-
tive muscle contribution is treated as not storing elastic energy. 
Physiologically, this would imply that the intact cross-bridges 
are considered inelastic. Even though the cross-bridge elasticity 
and the metabolic energy required to sustain the linkage could 
balance each other out, we do not have enough certainty to con-
clude that.

Consequently, we opt to incorporate the terms S2 and S�a
 (as 

done for the GASAM-model) such that the model remains 
mathematically consistent within the assumption of hyper-
elasticity. Still, neglecting the metabolic energy contributions 
remains a limitation that a purely hyperelastic model cannot 
overcome.

3.3.2.5   |   Numerical Treatment of Singularities.  Circum-
venting the singularities in the computation of the ASE-model 
invariant's derivative, mentioned in Section 3.2.1, involves add-
ing a small numerical contribution. While this is considered to 
not affect the solution to a considerable extent, it is not particu-
larly elegant.

3.4   |   Discussion

In the following, we provide an interim summary outlin-
ing our rationale for favoring the GASAM-model based on 
the theoretical aspects discussed and address the remaining 
limitations.

We believe the GASAM-model strikes a balanced trade-off be-
tween physiological plausibility, mathematical consistency, and 
computational efficiency. We consider the employed generalized 
active strain approach physiologically more plausible than the 
active stress and active strain approaches used by the ASE- and 
ASA-models. Unlike the GASA-model, the GASAM-model ex-
plicitly includes the term S�a

, ensuring the deviation is consis-
tent with the underlying assumption of hyperelasticity. Further, 
the GASAM-model offers an explicit expression for the activa-
tion parameter, which is computationally less costly and avoids 
the challenges associated with the implicit computations seen in 
the GASA- and ASA-models. Compared with the GASA-model, 
the GASAM-model uses the computationally cheaper yet suffi-
ciently accurate time-dependency f tanht . Additionally, the force-
stretch dependency f� correctly captures the decay of active 
force at large stretches and its absence below a minimal stretch 
(unlike the function f a

�
 used by the ASE-model). Finally, minor 

numerical issues, such as the singularities observed in the ASE-
model, are not a concern.

Despite the advantages of the proposed GASAM-model, some 
limitations remain. As we focused on purely hyperelastic 
approaches, we neglected viscous phenomena and history-
dependent activation properties, such as force enhancement 
and depression. Depending on the particular problem, these 
effects can be of significant influence and may need to be in-
corporated into the model (see, e.g., [89]). Additionally, met-
abolic processes associated with muscular activation are not 
captured by a purely hyperelastic modeling approach. Mixed 

FIGURE 4    |    Adapted passive force-stretch-dependency f
p
�

 in 
Equation (13). The original f p

�
 in [32] is zero for � ≤ �aopt.

FIGURE 5    |    Time-dependent activation functions f twitcht  in 
Equation (19) and f tanht  in Equation (11).
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active-stress active-strain approaches were not investigated, 
though they may offer a more physiological description of 
the dual mechanisms of active stress transmission in skeletal 
muscle.

4   |   Material Parameter Identification

The material parameters provided in the original publications 
were determined based on experimental data that differed 
across the publications. To establish a basis for comparison be-
tween the four materials, we fit their parameters to a common 
set of experimental stress–strain data. One load case is generally 
not enough to uniquely determine the material response. Unlike 
the original publications, we thus consider multiple active and 
passive load conditions to determine a unique set of parameters 
representing the experimentally observed data. To this end, we 
compute the analytical stress as a function of a given deforma-
tion and use this function to fit the material parameters to the 
experimental stress–strain curves. The material models are im-
plemented into the solid finite element framework of the com-
prehensive and well-tested open-source research simulation 
code 4C (implemented in C++) [133]. For verification purposes, 
we compare the numerically calculated stress responses with 
the analytical solutions.

4.1   |   Experimental Data and Associated 
Load Cases

The experimental data serving as a basis for the subsequent fit-
ting of the material parameters was selected according to the 
following criteria. If available, we preferably chose human spec-
imen data. Since we are interested in the continuum mechan-
ical characteristics rather than the behavior of isolated fibers, 
we only consider muscle tissue sample data for the fitting. To 
ensure the comparability of experimental results across differ-
ent load cases, we use data obtained at comparable quasi-static 
strain rates (< 0 .05 s−1).

In total, data corresponding to six different load cases is incor-
porated into the fitting. Table  3 gives an overview of the load 
cases and their abbreviations, the respective literature reference, 

and whether the data was obtained in the active or passive mus-
cle state. While the passive muscle material behavior is fitted to 
data representing all six load cases, the active response is fitted 
solely to data obtained from uniaxial tension along the fiber di-
rection. To the best of our knowledge, unfortunately, there is no 
published data testing the active muscle response in load cases 
different from uniaxial tension.

With the muscle fibers aligned in the e3-direction, the deforma-
tion gradients corresponding to the aforementioned load cases 
are listed in Table 4.

Remark.  The experimental data used in this study orig-
inates from different publications with variations in, for ex-
ample, the experimental test setup, the tested species, or the 
specimen size and constitution (intact muscle [134] vs. tis-
sue samples [14, 135, 136]). Although we have made efforts 
to select comparable data, the experimental data may exhibit 
inconsistencies compared with a dataset where all load sce-
narios were investigated under a unified experimental setup. 
While such a dataset would offer greater consistency, to the 
best of our knowledge, it is unfortunately unavailable. Given 
these variations, we are cautious about drawing overly strong 
conclusions considering the alignment of the model responses 
with the experimental data and focus on comparing the model 
responses to one another.

4.2   |   Analytical Stress–Strain Responses

As noted in [17] and [15], the compressible and incompress-
ible formulation of the material models described in Section 3 
coincide for the case that the incompressibility parameters 
� and K , respectively, approach infinity. In contrast to the 
nearly incompressible formulations presented in Section  3, 
for an analytical interpretation, we consider the fully incom-
pressible formulations as also given in [18] for the ASA-model 
and in [48] for the GASA-model. The fully incompressible 
formulation of the ASE-model is obtained as the isochoric 
contribution with the unmodified strain measures and in-
variants. In the simulation, we then apply appropriate in-
compressibility parameters K  and � to recover the close-to 
incompressible state.

TABLE 3    |    Experimental data used in the parameter fitting: Load case, muscle state, abbreviation, and reference.

Abbreviation Load case State Reference

UTCAF Uniaxial tension and compression along fiber direction Active [134]

Passive [135], mean of supraspinatus 
and deltoid measurements

UTCTF Uniaxial tension and compression 
transversal to fiber direction

Passive [14]

SAF Simple shear along fiber direction

PSAF Pure shear along fiber direction Passive [136], mean of measurements 
of differently sized samplesPSTF Pure shear transversal to fiber direction

PSTIF Pure shear transversal to isometrically constrained fibers
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With the deformation gradients F for the six load cases in 
Table  4, we derive the first Piola–Kirchhoff stress P in the 
respective load direction. The analytical expressions are pro-
vided in Table  A2 in Appendix A. Analyzing the equations 
highlights the importance of using multiple load modes for the 
fitting of the passive material parameters. As an example, fit-
ting the ASE-model to experimental data solely obtained from 
UTCAF would result in arbitrary values of the parameters G1 
and G2, as those do not appear in the corresponding equation 
in Table A2.

4.3   |   Parameter Identification Through a 
Least-Squares Fit

We fit the material parameters of these analytical stress–strain 
responses to the experimental data in Table 3 by solving a least-
squares minimization problem. For this purpose, we employ 
the Trust Region Reflective algorithm [137] implemented in the 
scipy.optimize.least_squares method from the Python SciPy li-
brary (version 1.7.2) [138]. For the interested reader, bounds and 
initial guesses for the optimization parameters are provided in 
Section S2 of the supporting information.

Since the experimental data for the active load case UTCAFact 
was obtained under isometric conditions at a tetanic activation 
level [134], the time-dependent activation functions f twitcht  and 
f tanht  are set to 1. This also means that the parameters involved in 
the computation of f twitcht  and f tanht  cannot be determined from 
the experimentally determined stress–strain curves. Still, the 
active parameters Ii, Fi, Ti, and �i in f twitcht  are physically measur-
able micromechanical quantities whose values we adopt from 
[48]. To create a comparable time-dependent activation function 
f tanht , its parameter c, governing the time-dependent rise of the 
activation, is set to match the slope of f twitcht . Figure 5 shows the 
two normalized functions.

4.4   |   Results

Table 5 lists the parameter values obtained from the fitting and 
the literature. The experimental data and the analytical and 
computational results are shown in Figures 6 and 7 for the pas-
sive and active load cases, respectively. Table A3 in Appendix A 
lists the computed error measures.

As expected, the nearly incompressible formulations used in 
the simulation coincide with the analytical incompressible re-
sponses for the chosen incompressibility parameters. Further, 
as designed, the passive responses for the GASA-, ASA-, and 
GASAM-model coincide.

4.4.1   |   Goodness of Fit

As mentioned, we keep the evaluation of the goodness of fit con-
cise and refer to Section A2.2 of Appendix A for a full quantita-
tive analysis of the models' alignment with experimental data.

Qualitatively, all material models approximate the experimen-
tal data reasonably well. An exception is the UTCTF load case T
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in tension. Contrary to the experimental data, which suggests a 
stiffness increase for rising stretches, the fitted stress responses 
flatten. Quantitatively, the accuracy of different models in rep-
resenting the experimental data varies depending on the specific 
load scenario and stress–strain range.

4.4.2   |   Differences Between the Model Stress Responses

Where no experimental data was available, the stress responses 
of the different material models are—to no surprise—different. 
Although qualitatively, the model responses are comparable, 
quantitatively there are major differences.

First, we evaluate the results for passive muscle. For compres-
sive states of UTCTF and tensile states of PSTIF, the ASE-model 
behaves slightly stiffer than the other models. The opposite is 
true for compressive states of UTCAF. Differences between the 
material models for tensile states of PSAF and PSTF are minor.

Considering the active muscle behavior, we observe signifi-
cant differences between the computational material model re-
sponses for PSTIF, SAF, and compressive states of UTCTF. In 
all three cases, the ASE-model behaves the least stiff, followed 
by the ASA-model. Contrarily, deviations between the material 
model responses are comparably small for UTCTF in tension, 
PSAF, and PSTF.

TABLE 5    |    Material model parameters fitted to the experimental data listed in Table 3.

ASE GASA and ASA GASAM

G1 0.1000 kPa � 2.3796 — � 2.3796 —

G2 0.0500 kPa � 0.5161 — � 0.5161 —

D1 3.6055 — � 27.1072 kPa � 27.1072 kPa

D2 4.4883 — �0 0.6388 — �0 0.6388 —

K 10,000 kPa � 1000 — � 1000 —

�opt 1.2264 — �opt 1.1806 — �opt 1.1806 —

�∗ 1.4000 — �min 0.5680 — �min 0.5680 —

�max 1.1450 kPa Na 0.4619 mm−2 Popt 64.6809 kPa

a 69.5471 — Fi 2.5, 4.4, 76.8 0.001 N c 34.4017 —

c 34.4017 — Ti 0.02, 0.011, 0.011 s

� 10 kPa Ii 0.004, 0.004, 0.004 s

�i 0.05, 0.29, 0.66 —

Note: Ii, Fi, Ti, and �i are considered fixed and adopted from [48]. c is set to match the slope of f twitcht .

FIGURE 6    |    Passive stress-stretch responses with fitted parameters for six different load cases alongside the experimental data listed in Table 3. 
Results of the analytical equations are plotted alongside the numerical results. The obtained curves overlap because the results are nearly identical.
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4.5   |   Discussion

Recalling that the experimental data originate from multiple 
publications with potential variations in the experimental condi-
tions, we consider all models to provide reasonable quantitative 
approximations. While all models fail to capture the increase in 
stiffness with rising stretches for the passive UTCTF load case 
in tension reported by [14], it is worth noting that other exper-
imental sources report a decrease in stiffness with increasing 
stretches [139, 140], which would align more closely with the 
model predictions.

Differences between the ASE-model response and the other three 
are partly explained by the non-matching passive material model 
responses. Deviations between the GASAM- and GASA-model 
are caused by the additional stress term S�a

. Since all active ma-
terial parameters can be uniquely fitted through the UTCAF load 
case, we rule out the possibility that the differences are due to 
random, undetermined parameters. Instead, the remaining dif-
ferences are attributed to the use of different activation concepts. 
Specifically for the active SAF load case, the results presented 
in [98] support our hypothesis. The authors report that active 
stress and active strain concepts yield different results in shear, 
even when both fit uniaxial tension data. Consistent with our 
findings, they observe that the active stress model predicts lower 
stresses than the active strain model.

Considering the ability to represent the experimental data, 
we rate no single material model universally superior to the 
others. Further experimental evidence is necessary to deter-
mine which model more accurately represents reality. The ver-
ification of the passive material response could be extended 
by experimental data from additional load cases, such as pla-
nar biaxial loading [141]. While multiple load cases for the 

passive muscle were considered, only uniaxial compression/
tension tests were used for the active muscle. Experimental 
measurements of transverse and shear stress-stretch responses 
for active muscle tissue would provide further insights into 
which material model yields the physiologically most accurate 
predictions.

5   |   Numerical Examples

To demonstrate the applicability of the material models to bio-
mechanically relevant scenarios—in particular human shoul-
der biomechanics—and investigate the material behavior using 
the fitted parameters, we consider three numerical examples: 
A simple fusiform muscle, a two-component model consisting 
of one bone and one muscle, and a full human shoulder model. 
Simulations are again conducted using 4C [133].

5.1   |   Fusiform Muscle Contraction

5.1.1   |   Geometry and Mesh

In the first step, we consider the geometry of a fusiform mus-
cle with length lf in the e3-direction and a circular cross-section 
with varying radius r as depicted in Figure 8a. The outer con-
tour along the e3-axis is described by spline curves through 
the points (r, l) =

(
rmin , 0

)
, 
(
1

2

(
rmax − rmin

)
, 1
4
lf

)
, and 

(
rmax ,

1

2
lf

)
 

such that the muscle's radius increases from rmin at the ends 
to rmax at its center. We choose lf = 100 mm, rmin = 10 mm, 
and rmax = 20 mm. With reported mean cross-section areas of 
438 mm2 [142], 370 mm2 [143], and 294 mm2 − 360 mm2 [144], 
and lengths of 115 mm2 [145], those measures approximately 
represent an average-sized teres minor muscle.

FIGURE 7    |    Active stress-stretch responses with fitted parameters for six different load cases. For the sake of a better visibility, the plotting reso-
lution is chosen such that only the twitch maxima are depicted for the ASA- and GASA-model. Since in the active case only experimental data from 
uniaxial tension in the fiber direction was used for the parameter identification, the remaining load cases show solely the numerically obtained 
stress–strain response.
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We use Cubit 13.2 [146] to create linear hexahedral element 
meshes with three different refinement levels n = 1, 2 , 4 as 
specified in Table  6 and shown in Figure  8c. To prevent the 
occurrence of locking phenomena, we apply the F-bar element 
technology [147].

Similar to [148], we compute the normalized elementwise fiber 
direction m as the solution of the Laplacian problem ΔΦ = 0 on 
the muscle domain Ω with Dirichlet boundary conditions Φ = Φ̂ 
prescribed on the outer muscle boundary surface �ΩM (excluding 
the origin and insertion surfaces �ΩO and �ΩI). Φ̂ is determined 
using a rule-based approach, according to which the fiber vectors 
describe a continuous path from �ΩO to �ΩI and are tangential to 
�ΩM. Figure 8b shows the resulting fiber directions m.

5.1.2   |   Simulation Scenarios

We simulate two physiologically relevant scenarios: an iso-
metric contraction and a free concentric contraction. In an 
isometric contraction, activation leads to a change in tension 
while the muscle length remains constant. Isometric con-
tractions are responsible for holding tasks and support in 
the musculoskeletal system and therefore play a crucial role 
in stabilizing the shoulder joint. In a free concentric contrac-
tion, the produced active forces cause a muscle shortening 

since no external forces act against the contraction direction. 
Concentric contractions thus generate motion.

In the isometric contraction scenario, we apply Dirichlet bound-
ary conditions to fix both lateral ends to zero displacement in 
all three coordinate directions. For the free contraction, we fix 
the origin surface to zero displacement in all three directions. 
To mimic the attachment of muscle-tendon complexes to bone 
(here, we only model the muscle), we ensure no relative dis-
placement occurs between the insertion surface nodes. Hence, 
on the insertion surface, we prescribe zero Dirichlet conditions 
in the e1- and e2-directions and multipoint constraints in the e3-
direction. The zero Dirichlet conditions ensure that the inser-
tion surface nodes remain fixed in-plane, while the multipoint 
constraints ensure that the insertion surface nodes displace uni-
formly in contraction direction.

For both contraction scenarios, activation is prescribed by the 
introduced time-dependent activation functions f twitcht  and 
f tanht , as illustrated in Figure 5 and defined in Equations (19) 
and (11).

We restrict the analysis to the quasi-static case and neglect in-
ertia effects. The simulations are repeated for the three mesh 
refinement levels in Table 6 and the four material models intro-
duced in Section 3 with the parameters in Table 5.

TABLE 6    |    Mesh quantities of the fusiform muscle geometry for different refinement levels.

Refinement level n

Number of elements Number of nodes

Circumferential Longitudinal Total Total

1 24 20 1920 2289

2 48 40 15,360 16,769

4 96 80 122,880 128,385

Note: The number of elements in the circumferential direction is counted along the intersection �ΩO ∩ �ΩM.

FIGURE 8    |    Fusiform muscle geometry, mesh, and fibers.
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To determine an appropriate incompressibility parameter value 
for the simulation of the larger scale problems presented in the 
subsequent sections, we repeat the simulations for different 
parameter values. Further explanations and the results of our 
study are presented in Section A.3.3 of Appendix A.

5.1.3   |   Simulation Results

As discussed in more detail in Section A.3.2 of Appendix A, the 
results for the three mesh refinements exhibit no significant 
qualitative differences and only slight variations in quantity. We 
thus focus our evaluation on the results obtained with mesh re-
finement n = 4.

First, we compare quantities on the global level. For the isomet-
ric contraction, the muscle force F33 is computed as the surface 
integral of the Cauchy stress �33 over the central cross-section 
area at l = 5 cm in the current configuration. For the free con-
traction, the stretch ratio ϵ serves as a measure of the percentage 
change in length and is evaluated as ϵ = 1 −

Δlf

lf
. Results are dis-

played in Figure 9 over time t .

Second, we analyze local deformations and stress distributions. 
We evaluate the fiber stretch �, the Cauchy stress in fiber di-
rection �m, and, as a measure for the combined stress, the von 
Mises stress �v. For the isometric contraction, results are visu-
alized in the final deformed configuration (� in Figure 10, �m in 
Figure 11, and �v in Figure S1 of the supporting information). 
Results of the free contraction are shown at three selected points 
in time (� in Figure 12, �m in Figure 13 and �v in Figure S2 of 
the supporting information). Since the conclusion drawn from 
the investigation of �v and �m align, we focus on a thorough ex-
amination of �m.

5.1.3.1   |   Isometric Contraction.  The iso-
metric muscle force F33 increases over time up to 
the tetanic force maximum (see Figure 9). Between the inves-
tigated material models, the computed force maxima max F33 
are close to equal (max FASE

33
= 333 mN, max FASA

33
= 342 mN, 

max FGASA
33

= 341 mN, and max FGASAM
33

= 340 mN). The high-
est force maximum max FASA

33
 varies by 2. 55 % from the low-

est force maximum max FASE
33

. For the ASA- and GASA-model, 
the separate force peaks caused by the superposition 

of the individual twitches in f twitcht  are clearly visible. Due to 
the use of the smooth function f a

�
, the force increases continuously 

for the ASE- and GASAM-models. A detailed look at the stress dis-
tribution in the radial direction (in the center cross-section), reveals 
that �m is more evenly distributed for the ASE- and ASA-models, 
while the GASA- and GASAM-models reveal a larger radial 
gradient (see Figure  11). A closer inspection of �m over 
the entire continuum in Figure  A1 in Appendix A confirms 
those small deviations.

In the following, we provide a brief explanation as to why the 
muscle forces F33 coincide while the distributions of the stress 
�m vary. Due to the e1-e2-symmetry, the central cross-section 
at l = 5 cm does not deform in e3-direction and fibers remain 
aligned in e3-direction. Consequently, �33 equals �m, and F33 
equals the force acting in fiber direction (i.e., the total muscle 
force). According to the force-stretch dependency, �m depends on 
the fiber stretch �. �, in turn, is not solely determined by the ma-
terial model's active and passive stiffness in fiber direction but 
is rather a result of the complex three-dimensional deformation 
state. Because the material models exhibit different stiffnesses 
to shear and deformations transverse to the fiber direction, the 
distribution of �m differs, even though stiffnesses in compres-
sion and tension along the fiber direction coincide (see Figure 7a 
in the relevant stretch ratio range ϵ = 0.7 to 1.3). Since the in-
compressibility assumption limits the transverse expansion, 
and the isometric constraint restricts the overall deformation in 
the e3-direction, in this case, differences in the deformation and 
stress distribution are not very pronounced. Integrated over the 
cross-section, the remaining differences in �m balance out such 
that the calculated forces are close to equal. For other load cases, 
where shear or deformation transverse to the fiber direction is 
more pronounced, the muscle force may vary considerably more 
among the models.

The local distribution of fiber stretches and stresses in the axial 
direction does not differ noticeably between the four models (see 
Figures 10 and 11, respectively). In all cases, the muscle center 
is compressed (𝜆 < 1), while the origin and insertion regions, 
where the deformation is constrained by Dirichlet conditions, 
are stretched (𝜆 > 1). The observed stress �m is positive in the en-
tire continuum, with values increasing toward the lateral ends. 
It may seem counterintuitive that although we observe compres-
sive and tensile deformation states, �m is always positive. Yet 

FIGURE 9    |    Simulated muscle force F33 and stretch ratio � for an isometric and a free contraction of the fusiform muscle (n = 4).
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this is easily explained: In contrast to a purely passive material, 
compression and tension are not specifically related to stresses 
smaller and larger than zero. Instead, the active contribution 
shifts the root of the stress–strain curve toward stretches 𝜆 < 1 
(see Figure 7a). Accordingly, positive stress may occur even for 
compressive stretches.

5.1.3.2   |   Free Contraction.  During the free contraction, 
as expected, the deviation from the reference stretch ratio ϵ = 1 
increases with increasing activation, that is, the muscle short-
ens (see Figure 9). For the ASA-, GASA-, and GASAM-models, 
the total shortening is close to equal (considering 
the minimal stretch ratios min ϵGASA = 0.71, min ϵASA = 0.70 , 
and min ϵGASAM = 0.71). In comparison, we observe a higher 
shortening for the ASE-model with a minimal stretch ratio 
min ϵASE = 0.68.

To explain this observation, we consider two factors: dif-
ferent minimal active fiber stretches and different passive 
resistances in compression. First, the models use different 
force-stretch dependencies associated with different minimal 
fiber stretches �min. For 𝜆 < 𝜆min, the generated active contri-
bution is zero. While for the GASA-, ASA-, and GASAM-model 
�min = 0.5680, this value is 0.4�ASEopt = 0.4906 for the ASE-model. 

Hence, the ASE-model generates active stresses even for lower 
fiber stretches such that a larger muscle contraction is to be 
expected. Second, the ASE-model exhibits a lower passive re-
sistance against compression in fiber direction (see Figure 6a). 
Both these effects accumulate in the active stress response (see 
Figure 7a). Consider the free contraction of a simple unit cube. 
In the absence of body forces and external loads, the system is in 
static equilibrium when it is in its stress-free state. Considering 
the stress-stretch response for UTCAF in Figure 7a, the ASE-
model reaches a stress-free configuration when � ≈ 0.68 while 
this is the case for � ≈ 0.71 for the GASA-, ASA-, and GASAM-
models. Of course, stress states are more complex for the three-
dimensional fusiform muscle geometry, but this simple analogy 
explains the observed differences in total shortening well.

In three dimensions we observe the expected compression 
along the fiber direction (𝜆 < 1 in the entire continuum) and the 
related transverse expansion. Qualitatively, the distribution of 
� and �m is similar for all material models (see Figures 12 and 
13). As for the isometric contraction, we observe slight varia-
tions that can be attributed to different stiffnesses in shear and 
compression transverse to the fiber direction. Quantitatively, 
� and �m are lower for the ASE-model, for the reasons already 
explained.

FIGURE 11    |    Cauchy stress in fiber direction �m in the central cross-section (top) and in the axial cross-section (bottom) of the fusiform muscle 
(n = 4) for an isometric contraction in the tetanized state at t = 0. 15 s. The initial configuration is displayed in gray. Only half the symmetric muscle 
is visualized.

FIGURE 10    |    Fiber stretch � in the axial cross-section of the fusiform muscle (n = 4) for an isometric contraction in the tetanized state at t = 0. 15 s. 
The initial configuration is displayed in gray. Only half the symmetric muscle is visualized.

 20407947, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.70036, W
iley O

nline L
ibrary on [30/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



21 of 41

5.1.4   |   Discussion

In principle, all material models, including the proposed 
GASAM-model, are suitable for simulating physiologically plau-
sible muscle contractions.

However, we observe variations in the local deformations 
and stress distributions across the models. Depending on the 
specific application, these variations may be negligible, for 
instance, if solely the movement of an adjacent bone is of in-
terest, which is determined by the global muscle contraction. 

In more complex scenarios, such as a biomechanical analysis 
of the shoulder joint, this is likely not the case. Here, the local 
material characteristics certainly affect the interactions be-
tween the involved components, and complex geometries may 
amplify the variations.

Without additional experimental data, particularly regarding 
the active stiffness (e.g., transverse to the fiber direction or due 
to shear load), it is impossible to identify the material model 
that provides the most accurate predictions. Revisiting the the-
oretical and modeling arguments presented in Section 3.4, we 

FIGURE 13    |    Cauchy stress in fiber direction �m for a free contraction of the fusiform muscle (n = 4) at selected times. Results are visualized on 
the surface (top) and in the axial cross-section (bottom) in comparison to the initial configuration (gray).

FIGURE 12    |    Fiber stretch � for a free contraction of the fusiform muscle (n = 4) at selected times. Results are visualized on the surface (top) and 
in the axial cross-section (bottom) in comparison to the initial configuration (gray).
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conclude that, at this stage, the GASAM-model remains the 
most favorable option for our application.

5.2   |   Spatiotemporally Varying Activation 
and Contact Interactions in a Muscle–Bone Model

As an intermediate step toward applying the modified and im-
proved GASAM-material model in a full continuum-mechanical 
model of the human shoulder, we first consider a simplified 
model involving two components: the humerus bone and the 
deltoid muscle. The deltoid serves as the prime mover during 
arm abduction, thereby lifting the humerus away from the body. 
Inspired by this scenario, we simulate the deltoid's contraction 
while accounting for the contact interaction between the two 
components.

5.2.1   |   Geometry and Mesh

Our model is based on the humerus and deltoid geometries 
(data version 4.3) provided by the BodyParts3D database [149]. 
Further smoothing operations and geometry adaptations are 
performed using Materialise 3-matic [150]. Both parts are 
meshed separately using Gmsh (version 2.12.0) [151]. We con-
vert the obtained linear tetrahedral elements to quadratic tet-
rahedrons with a custom Python script, resulting in a total of 
195,189 nodes and 127,019 elements. To compute the muscle 
fiber directions m, we follow the same approach as described for 
the fusiform muscle example.

5.2.2   |   Simulation Scenario

To simulate the ball-and-socket-type glenohumeral joint, we fix 
the center node of the humeral head in space. We fix the deltoid's 
origin surface nodes and apply tied constraints to connect the 
deltoid's insertion surface nodes to the humerus. Considering 
potential contact between the deltoid's and humerus' outer sur-
faces, we apply a penalty regularization strategy for constraint 
enforcement.

The humerus bone is modeled using a linear St. Venant-
Kirchhoff relation with Young's modulus Eb = 0. 1 GPa, consis-
tent with values reported in the literature (see [152, 153]). For 
the deltoid muscle, we use the GASAM-model and the parame-
ters specified in Table 5 (except � = 10).

During a physiological muscle contraction, activation is generally 
not uniform throughout the muscle, but varies in different loca-
tions (spatially) and over time (temporally) [154–156]. To model 
such complex activation patterns, we replace the time-dependent 
activation f tanht (t) by a discrete function f(e, t) = s that defines an 
activation scaling factor s for each element e and discrete time t. 
Prescribing these activation scaling factors for each element and 
simulated time step allows us to model spatiotemporally varying 
activation.

As a proof of concept, we generated an artificial spatiotempo-
rally varying activation pattern. Figure  14a shows the scaling 

factors applied in this scenario at four distinct points in time. 
While activation increases over time, the region of maximal ac-
tivation progresses from the spinal deltoid toward the acromial 
deltoid.

As with the fusiform muscle example, we perform a quasi-static 
simulation and neglect inertia effects.

5.2.3   |   Simulation Results

As a measure for the combined strain, we evaluate the von 
Mises strains ϵv. The results are shown in Figure 14b in the de-
formed configurations corresponding to the activation patterns 
presented in Figure 14a. Over time, increasing activation in the 
spinal part of the deltoid causes the muscle to contract, result-
ing in the humerus being lifted in the spinal direction. A closer 
inspection reveals that rising activation in the deltoid's acromial 
region also induces a slight rotation of the humerus toward the 
acromial part. As expected, areas with higher activation experi-
ence greater strains.

Through the abduction of the humerus in the spinal direction, 
the clavicular part of the deltoid is pulled toward the humeral 
head. At t = 0. 325 s, the muscle and the bone first make contact. 
Figure  14c illustrates the resulting normal contact stresses at 
t = 0. 5 s when the contact area is at its maximum.

5.2.4   |   Discussion

This example demonstrates a first application of the modified 
material model in a simple musculoskeletal system, which also 
accounts for contact interactions between the components. In 
contrast to the spatially uniform activation up to a fused tetanus 
described in the original publications, we present an approach 
to incorporate complex activation patterns—as observed in real-
ity—into the material model. While the activation prescribed in 
this study is yet an artificial pattern, future work can integrate 
real-life EMG activation measurements to enable physiologi-
cally representative simulations.

5.3   |   Dynamic Stabilization of the Shoulder 
Through Rotator Cuff Contraction

As initially outlined, our primary goal is to identify a constitu-
tive law suitable for modeling muscle tissue in a continuum me-
chanical shoulder model. To demonstrate the applicability of the 
adapted GASAM-model in such a scenario, we present a third 
numerical example. For this purpose, we use a self-created FE 
model comprising the skeletal structure and the essential mus-
cles surrounding the glenohumeral joint.

As motivation for our simulation, we consider the concavity 
compression mechanism of the glenohumeral joint. Concavity 
compression is a dynamic stabilizing mechanism in which the 
active rotator cuff muscles tightly compress the humeral head 
against the glenoid fossa, thereby increasing resistance against 
translating forces [157–160]. In the following, we simulate such 
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a contraction of the rotator cuff and the resulting contact be-
tween the glenoid fossa and the humeral head.

5.3.1   |   Geometry and Mesh

The Visible Human Project [161] provides an image data set of 
cross-sectional cryosections of a human male and female ca-
daver. We select the male data set for the manual segmentation 
with Materialise Mimics/3-matic [150] as individual compo-
nents appear more clearly distinguishable.

Our segmented model includes the shoulder joint's bones (hu-
merus, clavicula, and scapula), the cartilaginous glenoid labrum, 
the three-part deltoid muscle (deltoideus spinalis, acromialis, 
and clavicularis), and the rotator cuff muscles, that is, the teres 
minor, infraspinatus, supraspinatus, and subscapularis. In this 
example, we omit the clavicula and treat the three-part del-
toid as one continuum, by connecting the individual parts via 
shared nodes.

All anatomical parts are meshed separately with Gmsh (version 
2.12.0) [151]. Scapula and labrum are meshed as one entity and 
thus coupled via shared nodes. We convert the created linear 
tetrahedral elements to quadratic tetrahedrons using a cus-
tom Python script. In total our model comprises 659,901 nodes 
and 448,858 elements. As for the fusiform muscle example, we 

compute the normalized muscle fiber directions m as the solu-
tion of the Laplacian problem. Figure 15 depicts the model and 
the computed fiber directions.

5.3.2   |   Constitutive Descriptions

Muscles are modeled with the GASAM-material and the pa-
rameters identified in Section 4. By scaling the time-dependent 
activation function f tanht  by 0.05, we prescribe the rotator cuff's 
activation to 5 % of the tetanic level. The activation is spatially 
uniform across the muscle. The deltoid remains passive. For 
the stiff bones, we use a Young's modulus Eb within the ranges 
reported in the literature [152, 153]. To model the much softer 
labrum, we apply a lower Young's modulus Ec (see [162]). The 
mass densities � are chosen to align with literature values (see 
[163] for muscle, and [164] for the labrum). The bone mass den-
sity is computed based on literature data available for the hu-
merus as described in detail in Section  A.4.1 of Appendix  A. 
Table 7 provides a summary of the defined constitutive descrip-
tions and parameters.

5.3.3   |   Boundary, Contact, and Meshtying Conditions

To fix the structure in space, zero Dirichlet boundary conditions 
are prescribed to the inner nodes of the scapula volume and the 

FIGURE 14    |    Simulation results at selected points in time for a spatiotemporally varying activation in a two-component model of the humerus 
bone and deltoid muscle. (a) The activation scaling factor is prescribed element-wise. Starting from the spinal part of the deltoid (right), the activation 
increases over time and moves toward the acromial part (center). (b) The simulated contraction of the deltoid causes an abduction of the humerus 
in the spinal direction (c) As the humerus is abducted in the spinal direction, the clavicular part of the deltoid is drawn toward the humeral head, 
leading to contact between the muscle and bone.
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muscle's origin surfaces (where they connect to scapula and 
clavicula).

The FE meshes of the individual muscles are tied to the FE 
meshes of the humerus at the respective insertion surfaces via 
tied constraints. In contrast to coupling via shared nodes, this 
approach allows connecting dissimilar meshes, such that the 
mesh size of each anatomical part can be chosen individually 
and is not constricted to the mesh size of adjoining parts.

To prevent penetration and account for three-dimensional 
interactions between individual components, we prescribe 
frictionless contact (Karush–Kuhn–Tucker conditions) for mus-
cle–bone, muscle–muscle, and bone–bone surface pairs. For 
simplification reasons, contact between the individual rotator 
cuff muscles is neglected. Contact and tied constraints are en-
forced using a penalty regularization approach.

A comprehensive description of the surfaces defined for the ap-
plication of the boundary conditions is provided in Figure A4 
and Table A4 in Appendix A. Surfaces fixed by Dirichlet condi-
tions are summarized in Table A5, and meshtying and contact 
surface pairs in Tables A6 and A7, respectively.

5.3.4   |   Solution Strategy

We apply the Generalized-alpha time integration method in combi-
nation with a standard Newton–Raphson scheme to solve the non-
linear structural dynamics problem. The resulting linear system 
of equations is solved iteratively using the Generalized Minimal 
RESidual method (GMRES) in combination with an algebraic 
multigrid preconditioner, implemented in the software packages 
Trilinos Belos [165] and Trilinos MueLu [166, 167], respectively.

We simulate 160 time steps with a step size of 2.5 × 10−4 s on 
64 Intel Xeon E5-2630 v3 processors (12 cores, 2.5 GHz, 64 GB 
RAM) of our Linux cluster.

5.3.5   |   Simulation Results

The total computation time amounts to 45 h. The evaluation of 
the implemented material routines takes 13 s. Approximately 
59 % of the total time is spent on the contact search. Given that 
the code is still under development and has not yet been opti-
mized, there is significant potential to improve performance 
and drastically reduce computation time.

FIGURE 15    |    Shoulder model with fiber directions indicated by white arrows. The geometry is meshed with quadratic tetrahedral elements and 
comprises 659,901 nodes and 448,858 elements in total. The clavicula is not simulated in this example and is hence displayed unmeshed.

TABLE 7    |    Material models and parameters defined for the concavity compression simulation.

Part Material Parameters

Bones St. Venant–Kirchhoff Eb = 0. 1 GPa, �b = 0 .76 g∕cm3

Labrum St. Venant–Kirchhoff Ec = 5 MPa, �c = 1. 2 g∕cm3

Rotator cuff Active GASAM-model Table 5, Popt = 3. 234 kPa, � = 10, �m = 1. 06 g∕cm3

Deltoid Passive GASAM-model Table 5, Popt = 0 kPa, � = 10, �m = 1. 06 g∕cm3
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Figure 16 shows the simulated displacements at selected points 
in time. As expected, the rotator cuff's activation causes the 
muscles to contract. As a result, the humeral head is pulled to-
ward the glenoid fossa, and the joint space closes.

As a measure for the three-dimensional stress distribution, we 
evaluate the von Mises stress �v in Figure 17. Over time, stresses 
in the activated rotator cuff increase. Since the rotator cuff de-
forms only slightly, we conclude that the resulting stresses are 
primarily caused by muscular activation. Contrarily, stresses in 
the passive deltoid muscle exclusively develop due to its defor-
mation and thus are close to zero.

Initial contact between the humeral head and the glenoid fossa 
is made at t = 0. 024 s. With ongoing time and a steadily growing 

pulling force of the rotator cuff, the contact area A and the 
normal contact stresses �nc increase, as depicted in Figure 18. 
Consequently, the normal contact force Fnc, evaluated as the in-
tegral of �nc over A, rises as well, see Figure 19. Interestingly, 
Figure 18 further shows that the contact area is not central in 
the glenoid fossa as one might expect but instead shifted to the 
posterior part.

5.3.6   |   Discussion

Due to a lack of suitable validation data, we here refrain from 
conducting an in-depth quantitative analysis. Our presented re-
sults are qualitatively plausible and showcase the applicability 
of the modified GASAM-material model within a large-scale 

FIGURE 16    |    Displacement magnitude at selected points in time for the simulation of rotator cuff activation in a model of the human shoulder. For 
visualization purposes, the deltoid muscle is displayed transparently. The rotator cuff muscle contraction pulls the humeral head medially toward the 
glenoid fossa such that the joint space closes.

FIGURE 17    |    Von Mises stresses �v at selected points in time for the simulation of rotator cuff activation in a model of the human shoulder. For 
visualization purposes, the deltoid muscle is displayed transparently. (a, b) Increasing rotator cuff activation causes increasing stress in the muscle 
continuum. (c) Once the glenohumeral joint space closes, contact stresses develop between the glenoid fossa and the humeral head.

 20407947, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.70036, W
iley O

nline L
ibrary on [30/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26 of 41 International Journal for Numerical Methods in Biomedical Engineering, 2025

continuum-mechanical shoulder model. However, a few points 
merit further discussion.

As mentioned, the contact area is shifted to the posterior part 
of the glenoid fossa. One possible explanation is that the acti-
vation of the posterior rotator cuff muscles (teres minor and in-
fraspinatus)—and thus the generated active force—may have 
been overestimated, while the activation of the anterior rotator 
cuff muscle (subscapularis) may have been underestimated. In 
our model, we uniformly activate the rotator cuff muscles with 
the same activation level, which may not fully reflect the ac-
tual physiological conditions. Incorporating spatiotemporally 
varying activation patterns (as already demonstrated for the 
muscle–bone model in Section  5.2) based on real-life (EMG) 
measurements would enhance the accuracy of the predictions. 
Another possible explanation is that passive structures, such as 
ligaments or the joint capsule, are not included in the current 
shoulder model. These structures help maintain the proper posi-
tioning of the humeral head within the glenoid fossa and could 
prevent the observed posterior shift. Including these passive 
components in the model is an essential next step to enhance 
the reliability of our predictions.

We applied the proposed active muscle material model in a 
simulation of the shoulder model with relatively modest (con-
tractile) deformation and movement. Further investigations 
are imperative to ascertain if the material model (with the 
identified parameters) is suited to simulate broader ranges of 
motion in a physiologically plausible manner. A comparison 
of the resulting three-dimensional deformations and stresses 
against dynamically acquired image data (e.g., dynamic MRI, 
shear wave elastography measurements) can help uncover po-
tential drawbacks.

The presented continuum shoulder model already incorpo-
rates various physiologically relevant anatomical components, 
contact interactions, and material properties. However, there 
is potential for even further improvement in achieving a more 
accurate and realistic representation of the shoulder complex. 
Possible enhancements include the incorporation of tendons 
and ligaments, image data-based fiber architectures, and more 
sophisticated boundary conditions (e.g., to account for scapu-
lothoracic gliding). Further improvements involve accounting 
for the involved muscles' inherent pre-stress or pre-stretch states 
and incorporating frictional contact properties between the 
components.

6   |   Conclusions

The objective of this work was to identify a constitutive model 
that accurately represents both active and passive muscle char-
acteristics within continuum-mechanical models for complex 
musculoskeletal systems, particularly for the human shoulder. 
Therefore, we conducted a comprehensive review of active skel-
etal muscle constitutive laws and identified the commonly used 
activation concepts: active stress, active strain, generalized ac-
tive strain, and mixed active-stress active-strain.

Corresponding to the first three concepts, we selected three 
material models (ASE, GASA, and ASA) from the reviewed lit-
erature and proposed a fourth material model (GASAM), com-
bining their most promising features. In a thorough comparison, 
we identified differences considering both the active and the 
passive material characteristics, including the applied force-
stretch- and time-activation dependencies, the computational 
efficiency of the activation level computation, the mathematical 
properties of the underlying activation concepts, and the as-
sumed coupling of passive and active mechanics. Based on this 
analysis, we found the GASAM-model to offer the best balance 
between physiological plausibility, mathematical consistency, 
and computational efficiency, making it a strong candidate for 
musculoskeletal simulations. The employed generalized active 
strain approach provides a physiologically plausible representa-
tion of muscle tissue, the stress deviation is consistent with the 
hyperelastic assumption, the explicit computation of the activa-
tion level enhances computational efficiency, and the applied 
force-stretch dependency aligns with empirical data throughout 
the entire stretch regime.

As a basis for a numerical comparison, we fitted the stress re-
sponses to experimental data obtained under one active and six 
passive load conditions. Depending on the load case, one or the 

FIGURE 19    |    Evolution of the normal contact force Fnc and the as-
sociated contact area A between glenoid fossa and humeral head over 
time.

FIGURE 18    |    Normal contact stresses �nc visualized on the glenoid fossa surface. After initial contact with the humeral head at t = 0. 024 s, the 
contact area and normal contact stress increase due to the continuous contraction and associated pulling force of the rotator cuff.
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other material model approximated the experimental data bet-
ter, but overall, the approximations were equally satisfying. Our 
analysis underscored the importance of considering multiple 
load cases to uniquely determine the material parameters and 
the need for further experimental data on active muscle tissue.

We applied the material models to simulate fusiform muscle ac-
tivation in an isometric and a free concentric contraction case. 
Our results show that the different activation concepts affect 
shearing and deformation transversal to the fiber direction, even 
though the material characteristics along the fiber direction may 
coincide. We presented an approach to include complex spatio-
temporally varying activation patterns in the proposed GASAM-
model and simulate the abduction of the humerus bone by the 
deltoid muscle within a simplified two-component muscle–bone 
model. Providing first insights into the concavity compression 
mechanism of the glenohumeral joint, we finally demonstrated 
the application of the GASAM-model in an example simulation 
of rotator cuff activation within a continuum mechanical model 
of the human shoulder.

Incorporating spatiotemporally varying activation patterns 
based on real-life EMG measurements into the proposed active 
material muscle model and extending the presented shoulder 
model by additional passive structures represent key future di-
rections for achieving physiologically reliable predictions.
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Appendix A

A.1   |   Stress Tensor Deviations and Supplementary Equations

A.1.1   |   Active Stress Approach (ASE)

The second Piola–Kirchhoff stress tensor is assembled similarly to the strain-energy function in Equation (8) into an isochoric and a volumetric 
contribution as

Using the fictitious second Piola–Kirchhoff stress S = 2
�Ψiso(C)

�C
 and the projection tensor ℙ = 𝕀 −

1

3
C−1 ⊗ C, the contributions are computed to

Following the active stress approach, S involves an active and a passive contribution according to

with the pre-factors

and the helper quantities

A.1.2   |   Generalized Active Strain Approach (GASA)

The passive first generalized invariant for uniaxial tension and its derivative w.r.t. the fiber stretch read

The second Piola–Kirchhoff stress is derived from Equation (16) as

A.1.3   |   Active Strain Approach (ASA)

The generalized elastic invariants for uniaxial tension are

with their passive counterparts Ĩp = Ĩe(�, 0) and J̃p = J̃e(�, 0).

The elastic second Piola–Kirchhoff stress Se results from the elastic deformation Fe and is thus computed based on Equation (23) as

The second Piola–Kirchhoff stress S comprises the derivatives of the elastic and the volumetric part of the strain-energy function with respect to C. 
Since the included activation level �a depends on the fiber stretch and is a function of C, the term S2 complements the conventional contribution S1. 
With the volumetric stress Svol the stress tensor reads

The respective contributions therein are derived as

(A1)S = Siso + Svol

(A2)Siso = J−2∕3ℙ: S and Svol = K ln(J)C−1

(A3)S = Sa + Sp = �a4M +
(
�1I + �p

4
M + �5

(
MC

T
+ C

T
M
))

�1 = 2G2A2I4, �a4 =
�a
f
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4
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3
+ 2G2A2

(
I1 − A1

)
+

�p
f

I4
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2
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I1I4 − I5
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(
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)
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Equation (A11) comprises the derivatives

Considering the implicit definition of �a in Equation (24), ��a

��
 in Equation (A13) can be approximated by a central finite differences scheme.

A.2   |   Parameter Identification

A.2.1   |   Boundary Conditions and Analytical Stress Responses for Investigated Load Scenarios

A.2.2   |   Quantitative Analysis of Goodness of Fit Between Model Predictions and Experimental Data

Error Measures

To quantify the deviation of the fitted analytical stress–strain response from the experimental data, we compute three error measures. Based on the 
L∞ norm, we first define the relative error �∞ to assess the maximum absolute deviation between the model prediction x and the observed experi-
mental data x∗ as

With the L1 norm providing a metric for the total absolute deviation between x and x∗, we second evaluate the relative error �1 as

Since we minimized the sum of squared distances between experimental observation and model prediction, we third compute the L2 norm-based 
relative error �2 according to

(A11)S2 = −2

(
S1:

(
CFa

−1 �Fa
��a

))
��a

�C
= −

1

�

(
S1:

(
CFa

−1 �Fa
��a

))
M

(A12)Svol = −
�

2
det (C)−�C−1

(A13)

�Fa
��a

= −M −
1

2

(
1−�a

)− 3

2 (I −M) and
��a

�C
=

��a

��
��
�C

=
1

2�

��a

��
M

(A14)�∞ =
L∞(x − x∗)

L∞(x
∗)

with L∞(x̃) = ‖ x̃‖∞ = max
i

� x̃i �

(A15)�1 =
L1(x − x∗)

L1(x
∗)

with L1(x̃) = ‖ x̃‖1 =
�
i

� x̃i �

TABLE A1    |    Load cases and associated Dirichlet boundary conditions applied in the simulation of the unit cubes during the material parameter 
fitting.

UTCAF UTCTF SAF

PSAF PSTF PSTIF

Note: The constraints are applied as indicated by the sketched support joints. Blue arrows indicate the direction of the prescribed displacement û = d
(
�f − 1

)
 and 

û = d�f (only for SAF) enforcing the deformation F in Table 4. Red arrows illustrate the muscle fiber direction.
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TABLE A2    |    Analytical expressions of the first Piola–Kirchhoff stress for the load cases defined in Table 3.

Active muscle state

UTCAF: Load in fiber direction in e3-direction

PASE
33

= �1f �
tot
f

(
�f
)
+ �

(
�f − �2f

)

PASA
33

= −
�

6

[(
�0

(
2 + �3f �

3
)
− 3

)
�f�

3e
�
(
Ĩe−1

)
−
(
�0

(
2 + �3�3f

)
− 3

)
�3f �e

�
(
J̃e−1

)](
� +

��a

��
�f

)

with � = 1 − �a, Ĩe = �2f �
(
2

3
�0

(
�3f − �3

)
+ �

)
, and J̃e = �2f �

1
(
2

3
�0

(
�3f − �3

)
+ �3

)

PGASA
33

= −
�

6

[(
�0

(
2 + �3f

)
− 3

(
1 + �a

))
�fe

�
(
Ĩ−1

)
−
(
�0

(
1 + 2�3f

)
− 3�3f

)
e
�
(
J̃−1

)]

with Ĩ = �2f

(
2

3
�0

(
�3f − 1

)
+ 1 + �a

)
, and J̃ = �2f

(
2

3
�0

(
�3f − 1

)
+ 1

)

PGASAM
33

= PGASA
33

+
�

4
�2f e

�
(
Ĩ−1

)
��a

��

Passive muscle state

UTCTF: Load transversal to the fiber direction in e1-direction

PASE
11

= 3�1fG2 acosh
(
1

2
�f

1

2

(
�1f + �2f

))
sgn

(
�3f − 1

)
−

1

2
�1f �

tot
f

(
�f

1

2

)
+ ��f

(
1 − �3f

)

P

ASA
GASA
GASAM

11
=

�

6
�0

(
1 − �3f

)(
�fe

�
(
Ĩ−1

)
+ e

�
(
J̃−1

))

with Ĩp = �1f

(
1

3
�0

(
�3f − 1

)
+ 1

)
, and J̃p = �f

(
1

3
�0

(
�3f − 1

)
+ 1

)

SAF: Load in fiber direction in e3-direction, fixed e2-direction

PASE
33

= 2�fG1 + �f�

P

ASA
GASA
GASAM

33
=

�

6
�f

[
�0e

�
(
Ĩ−1

)
−
(
2�0 − 3

)(
�2
f
+ 1

)
e
�
(
J̃−1

)]

with Ĩp =
1

3
�0�

2
f
+ 1, and J̃p =

(
1 − 2

3
�0

)
�2
f
+ 1

PSAF: Load in fiber direction in e3-direction, fixed e2-direction

PASE
33

= 2G2

(
1 − �1f

)
+ �1f �

tot
f

(
�f
)
+ ��f

(
1 − �4f

)

P

ASA
GASA
GASAM

33
= −

�

6
�f

[(
�0

(
2 + �4f

)
− 3

)
e�(Ĩ−1) −

(
�0

(
1 + 2�4f

)
− 3�4f

)
e�(J̃−1)

]

with Ĩp = �2f

(
1

3
�0

(
�4f + �2f − 2

)
+ 1

)
, and J̃p = �2f

(
1

3
�0

(
�4f + �2f − 2

)
+ 1

)

PSTF: Load transversal to the fiber direction in e1-direction, fixed e2-direction

PASE
11

= 2G2 acosh
(
1

2

(
�1f + �f

))
�1f sgn

(
�2f − 1

)
− �1f �

tot
f

(
�1f
)
+ ��f

(
1 − �4f

)

P

ASA
GASA
GASAM

11
=

�

6
�f

[(
�0

(
1 + 2�4f

)
− 3�4f

)
e
�
(
Ĩ−1

)
−
(
�0

(
2 + �4f

)
− 3

)
e
�
(
J̃−1

)]

with Ĩp = �2f

(
1

3
�0

(
�4f + �2f − 2

)
+ 1

)
, and J̃p = �2f

(
1

3
�0

(
�4f + �2f − 2

)
+ 1

)

PSTIF: Load transversal to the fiber direction in e1-direction, fixed e3-direction

PASE
11

= 4�1fG2 acosh
(
1

2

(
�2f + �2f

))
sgn

(
�4f − 1

)
+ ��f

(
1 − �4f

)

P

ASA
GASA
GASAM

11
=

�

6
�f�0

(
1 − �4f

)(
e
�
(
Ĩ−1

)
+ e

�
(
J̃−1

))
 with Ĩp and J̃p as for the PSTF case

Note: The ASE-terms include the Neo-Hookean contribution. The passive muscle response is obtained by setting the respective activation parameters to zero. In that 
case, the stress responses of the ASA-, GASA-, and GASAM-model coincide, and the elastic invariants Ĩe and J̃e (ASA) are equal to the passive invariants Ĩp and J̃p 
(GASA, GASAM).
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To assess how well the material models capture the experimental data for moderate fiber stretches, we additionally compute the error measures 
restricted to the stretch range 0.65 ≤ �f ≤ 1.35.

Goodness of Fit

The goodness of fit differs both between the material models and among the load cases.

The experimental observations for the passive load cases UTCAF, PSAF, and PSTF are well approximated with all material models, with �1 ≤ 0.30. 
For UTCAF, the fit is exceptionally good, with �1 ≤ 0.12 in the passive case and �1 ≤ 0.06 in the active case. For those three load cases, we observed 
no considerable differences when comparing the material models considering the error measures. A minor exception is the �∞ error: Compared with 
the GASA-, ASA-, and GASAM-models, the ASE-model exhibits a larger �∞ error for PSAF and a smaller �∞ error for PSTF.

For UTCTF, SAF, and PSTIF, the deviations between the experimental data and the fitted responses are more pronounced. For UTCTF, the errors 
obtained for the ASE-model (e.g., �1 = 0.26) suggest a slightly better fit compared with the other material models (�1 = 0.39). While the GASA/ASA/
GASAM-model better approximates stresses due to small stretches, the ASE-model matches stresses in the high stretch regime more closely. This 
becomes more evident when comparing the errors computed for the restricted stretch range 0.65 ≤ �f ≤ 1.35. Compared with the errors computed 
using all data, the GASA/ASA/GASAM-model errors decrease, while the ASE-model errors increase. The fitted responses for SAF deviate the stron-
gest from the experimental observations. Although the ASE-model provides a better overall approximation than the other three models, errors are 
still moderately high (e.g., �1 = 0.50). For PSTIF, the GASA/ASA/GASAM-model delivers a good fit with errors below 0.26. In contrast, errors of the 
ASE-model response are considerably higher (e.g., �1 = 0.77).

As mentioned before, for the load cases PSAF, PSTF, and PSTIF, we averaged the experimental measurements from differently sized samples and 
used these averages in the fitting procedure. We note that compared with the original data in [136] and the associated standard deviations, our fitted 
material response remains within the experimentally determined range.

Analyzing the total relative errors reveals that the ASE-model offers a superior fit in terms of �∞ and �2, while the GASA-, ASA-, and GASAM-models 
perform better in terms of �1. With �1 providing a measure of the average deviations and �2 penalizing extreme deviations more heavily, we find that 
the GASA-, ASA-, and GASAM-models better capture the overall trend but exhibit larger outliers. When considering only the restricted stretch range, 
�2 is also lower for the GASA-, ASA-, and GASAM-models than for the ASE-model. �∞ remains high due to the deviations in UTCTF. We thus con-
clude that the GASA-, ASA-, and GASAM-models offer a better overall approximation in moderate stress–strain ranges.

A.3   |   Fusiform Muscle Contraction

A.3.1   |   Stress Distribution Over the Muscle Continuum

A.3.2   |   Influence of the Mesh Resolution

As mesh resolution can significantly impact the prediction, we repeated the fusiform muscle simulations for a series of mesh refinements n = 1 , 2 , 4. 
Figure A2 investigates the influence of n on the isometric muscle force F33 and the stretch ratio ϵ for the free contraction. The quantities are evaluated 
for the final configuration at t = 0. 15 s.

F33 slightly decreases with increasing n. However, the influence remains below a maximal deviation of 1 .79 % between the results for n = 1 and 
n = 4 using the ASE-material model. Deviations of ϵ are close to zero. The ASA-model exhibits the most significant though minor deviation (0. 09 % 
between the results for n = 1 and n = 4).

(A16)�2 =
L2(x − x∗)

L2(x
∗)

with L2(x̃) = ‖ x̃‖2 =
��

i

x̃2
i

TABLE A3    |    Relative errors (�∞, �1, and �2) between the experimental data and the fitted analytical model stress responses for different load cases.

Load case

�
∞

�1 �2

ASE GASA, ASA, GASAM ASE GASA, ASA, GASAM ASE GASA, ASA, GASAM

UTCAFact 0.14 0.15 (0.08) 0.06 (0.07) 0.05 (0.06) 0.07 (0.08) 0.06

UTCAF 0.10 (0.11) 0.09 (0.11) 0.11 (0.14) 0.12 (0.15) 0.11 (0.13) 0.11 (0.14)

UTCTF 0.17 (0.23) 0.56 (0.48) 0.26 (0.35) 0.39 (0.31) 0.24 (0.32) 0.47 (0.39)

PSAF 0.24 0.15 0.26 0.29 0.22 0.24

PSTF 0.16 0.28 0.13 0.15 0.13 0.17

PSTIF 0.33 0.19 0.77 0.26 0.58 0.21

SAF 0.27 0.47 0.50 0.72 0.41 0.62

Total error 1.42 (1.48) 1.92 (1.77) 2.10 (2.22) 1.99 (1.94) 1.78 (1.88) 1.90 (1.83)

Note: Errors computed excluding data corresponding to stretches 𝜆f < 0.65 and 𝜆f > 1.35 are additionally provided in parentheses if they differ from the errors 
computed using all data. The total errors are obtained by summing the errors across all load cases.
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A.3.3   |   Influence of the Incompressibility

Solving the linear system of equations arising from the FEM discretization requires an iterative scheme for large-size problems. The convergence 
rate of such iterative solvers strongly depends on the conditioning of the coefficient matrix A. A strictly enforced incompressibility (achieved through 
a high incompressibility parameter value) can worsen the system's conditioning and thus be difficult to prescribe. In contrast, an insufficiently high 
incompressibility parameter inadequately approximates the material's incompressible characteristics, leading to a change in volume.

To analyze the influence of the incompressibility parameter (� for the ASA-, GASA-, and GASAM-model, and K for the ASE-model) and determine 
an appropriate value for the simulation of a larger scale problem, we repeat the simulations for the fusiform muscle. Since mesh refinement has no 
notable effect on the volume change, we restrict the investigation to simulations with mesh refinement n = 1. The incompressibility parameter is 
varied by the scaling factor s such that � = s ⋅ �ref with �ref = 1000, and K = s ⋅ Kref with Kref = 10 MPa.

We evaluate the percentage volume change ΔV =
V −V0
V0

 in the final configuration at t = 0. 15 s. As a measure for the conditioning of the linear system 

matrix A, we approximate its condition number k(A) = |||
evmax (A)

evmin (A)

||| by the ratio of maximal to minimal eigenvalues ev. The closer k is to 1 , the better the 

conditioning and, consequently, the better the convergence rate of the iterative solver.

Figure A3 shows the computed quantities for the free and isometric contraction simulation. As expected, a lower incompressibility penalty leads to 
higher absolute volume changes, but lower condition numbers. Since we consider an absolute volume change of |ΔV | = 5 % acceptable, we regard 
K = 0. 1 ⋅ 10 MPa = 1 MPa, �ASA = 0.003 ⋅ 1000 = 3 , and �GASA = �GASAM = 0.01 ⋅ 1000 = 10 as sufficient for large-scale simulations.

FIGURE A1    |    Distribution of Cauchy stresses in fiber direction �m over the entire domain of the fusiform muscle (n = 4) for an isometric contrac-
tion in the tetanized state at t = 0. 15 s. The plotted frequency represents the number of elements (bar height) with stress values within a defined range 
(bar width). While the average �𝜇ASE < �𝜇ASA ≈ �𝜇GASA ≈ �𝜇GASAM, the variances �̃2 are similar. The skewness �̃3 is most pronounced for the ASA- and 
least pronounced for the GASA-material model.

FIGURE A2    |    Influence of the mesh refinement n: Simulated muscle force F33 and stretch ratio ϵ at t = 0. 15 s for an isometric and a free contrac-
tion of the fusiform muscle.
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A.4   |   Glenohumeral Joint Concavity Compression Simulation

A.4.1   |   Computation of Humerus Mass Density

In our shoulder model, the approximate humerus length is 33 cm. According to [168], humerus length is positively correlated to its weight. Considering 
a mean length of 31 cm and a mean dry weight of 108 g for males [169], we assume the model humerus dry weight to be 115 g. With an approximate 
dry-wet weight ratio of 0.65 [170, 171], the model humerus wet weight (the bone weight including all organic and inorganic material) is 177 g. For a 
measured volume of 232 cm3, we thus compute a mass density of 0. 76 g∕cm3.

A.4.2   |   Definition of Boundary Conditions

TABLE A4    |    Definition of surface and volume nodesets ids for the assignment of boundary conditions.

Humerus Scapula with labrum Deltoid Rotator cuff (RC)

Humeral head 8 Inner volume 34 Deltoid orig. (spinal, acromial) 18 Teres minor ins. 23

Deltoid ins. 5 Glenoid fossa 14 Deltoid orig. (clavicular) 17 Infraspinatus ins. 26

Teres minor ins. 1 Deltoid orig. (spinal, acromial) 13 Deltoid ins. 19 Supraspinatus ins. 25

Infraspinatus ins. 4 Teres minor orig. 9 Humerus contact 20 Subscapularis ins. 24

Supraspinatus ins. 3 Infraspinatus orig. 12 Scapula contact 21 Teres minor orig. 27

Subscapularis ins. 2 Supraspinatus orig. 11 RC contact 22 Infraspinatus orig. 30

Deltoid contact 6 Subscapularis orig. 10 Supraspinatus orig. 29

RC contact 7 Deltoid contact 16 Subscapularis orig. 28

RC contact 15 Humerus contact 31

Scapula contact 32

Deltoid contact 33

Note: Muscle insertions and origins are abbreviated as ins. and orig., respectively.

FIGURE A3    |    Influence of the incompressibility parameters � and K: Simulation results for an isometric and a free contraction of the fusiform 
muscle (n = 1). The reference values �ref = 1000 and Kref = 10 ,000 kPa were scaled by the factor s. The volume change is evaluated in the final con-
figuration at t = 0. 15 s, and the condition number is plotted for the last Newton iteration of the second time step.
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TABLE A6    |    Meshtying boundary conditions.

Pair Surfaces

Deltoid ins. 1 5 19

Teres minor ins. 2 1 23

Infraspinatus ins. 3 4 26

Supraspinatus ins. 4 3 25

Subscapularis ins. 5 2 24

Note: Muscle insertions are abbreviated as ins.

FIGURE A4    |    Surfaces defined for the shoulder model. Colors represent the assigned type of boundary condition. The surfaces are labelled ac-
cording to the ids in Table A4.

TABLE A5    |    Definition of Dirichlet boundary conditions due to fixation of the scapula and the muscle origins.

Surface nodesets (muscle origins) 9, 10, 11, 12, 13, 17, 18, 27, 28, 29, 30

Volume nodesets (inner nodes of scapula) 34
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TABLE A7    |    Contact boundary conditions.

Pair Master Slave

Glenohumeral joint 1 8 14

Humerus-deltoid 2 6 20

Humerus-RC 3 7 31

Deltoid-scapula 4 21 16

RC-scapula 5 32 15

Deltoid-RC 6 22 33
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