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To design a geotechnical engineering structure optimally, an iterative decision-making process is
required due to the prevailing uncertainty of the ground conditions. At present, these decisions are
taken based on simple deterministic rules and models. This paper proposes a risk-based decision-
theoretic framework to the optimal planning for geotechnical construction. This framework combines
geotechnical probabilistic models, cost analysis using Monte Carlo simulation and the observational
method. The framework is illustrated on the design of the surcharge for an embankment on soft soil,
whereby the optimal preloading sequence of added surcharge is adapted to the observed settlement.
The approach balances the cost of surcharge material against financial penalties related to project
delays and insufficient overconsolidation, which causes damage due to residual settlement. The result is
a preloading strategy that optimally accounts for information obtained from settlement measurements
under uncertain ground conditions. The findings highlight the potential of using risk-based decision
planning in geotechnical engineering, in particular when combinedwith the observational method. For
the investigated case study, a reduction in the expected cost in the order of 25% is observed.
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INTRODUCTION
Design of geotechnical engineering structures implies decision
making under uncertainty. The reason is mainly a lack
of knowledge about the prevailing ground conditions, but
there are also limitations in understanding and predict-
ing the ground–structure interaction or temporal variations.
Managing these uncertainties is essential to achieving a
design of satisfactory quality without unnecessary delays
and at a reasonable cost. One approach to this challenge is
to view the geotechnical design and execution as a sequential
decision problem, which has been studied in other areas of
engineering and decision making (e.g. Rosenstein & Barto,
2001; Straub & Faber, 2005; Memarzadeh et al., 2014;
Papakonstantinou & Shinozuka, 2014; Malings & Pozzi,
2016; Bismut & Straub, 2021; Wang et al., 2022). The engi-
neering challenge lies in finding a cost-effective sequence of
design decisions, considering not only the technical require-
ments at the time of project completion, but also the respective
probabilities and costs of potential consequences caused by
an unsuccessful design. In the ideal case, the analysis should
also consider operational and maintenance costs (Mendoza
et al., 2021). At present, these decisions are taken based on
simple deterministic rules and simplifying model assumptions.

A typical example of a geotechnical engineer’s decision
under uncertainty is the design of embankments on soft soil
prone to consolidation settlements using a surcharge and
prefabricated vertical drains (PVDs) (Fig. 1). The embank-
ment load initiates a consolidation process towards a final
long-term settlement, but neither the magnitude of this
settlement, nor the time until it is reached, can be well
predicted by the engineer; despite geotechnical pre-
investigations being performed, there are typically consider-
able uncertainties regarding the soil’s hydraulic conductivity
and deformation properties. Unless this uncertainty is care-
fully managed by a planned sequence of inspection decisions
and mitigating actions during design and construction,
unwanted costly consequences such as time delays or residual
settlements after completion of the superstructure may
occur. The engineering challenge therefore essentially lies in
finding a cost-effective design solution, considering not only
the technical requirements at the time of project completion,
but also the respective probabilities and costs of potential
consequences caused by an unsuccessful design.
To the authors’ knowledge no geotechnical problem has

ever been formalised as a sequential decision problem under
uncertainty. A few studies have, however, used other, simpler
decision theoretical analyses for other geotechnical appli-
cations: Einstein et al. (1978) showed an early application of
decision theoretical principles; Zetterlund et al. (2011), Sousa
et al. (2017), Klerk et al. (2019) andHu et al. (2021) performed
value of information analyses; and preposterior analyses were
performed by Schweckendiek & Vrouwenvelder (2013), Spross
& Johansson (2017), van der Krogt et al. (2022), Löfman &
Korkiala-Tanttu (2022) and Spross et al. (2022).
Probabilistic settlement analyses have recently been per-

formed by, for example, Bari et al. (2016), Bong & Stuedlein
(2018) and Löfman & Korkiala-Tanttu (2022). Addressing
the design issue of embankment preloading with PVDs,
Spross & Larsson (2021) specifically showed how a prob-
abilistically evaluated initial surcharge height can be used in
an observational method to limit the probability of time
delay and residual settlement in soft soil. Spross et al. (2019)
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discussed how settlement monitoring can be evaluated as a
basis for a decision to increase the surcharge height. The
specific decision-theoretical problem was highlighted, but
not solved.

In this paper, the authors propose a risk-based decision-
theoretic framework to optimal sequential planning in
geotechnical construction. This framework combines a geo-
technical probabilistic model with models of the observations
and the cost models of actions and unwanted consequences.
As a methodology to identify optimal decisions, the authors
propose – for the first time in geotechnical engineering – the
use of heuristics to describe and optimise the sequence of
decisions (Bismut & Straub, 2021).

The proposed framework and methodology are illustrated
through an embankment preloading problem. The sequence of
decisions on initial surcharge height and later additions to the
surcharge are optimised such that a desired settlement is
achieved at aminimal expected cost, which reflectswhether the
settlement is achieved within a fixed timeframe. Construction
delays aswell as insufficient overconsolidation, which is a cause
of residual settlement, are explicitly penalised.

The probabilistic preloading model by Spross & Larsson
(2021) is used to describe the settlement evolution. Here, this
model is extended to allow simulation of soil settlement
curves when the surcharge height is adjusted, thereby enabl-
ing modelling of the effect of sequential surcharge height
decisions on the settlement evolution.

The outcome of the analysis is a preloading strategy, which
prescribes how much surcharge to add conditional on settle-
ment measurements through optimised heuristic parameter
values.

EXAMPLE APPLICATION
To illustrate the proposed framework, the current authors

take the specific example introduced by Spross & Larsson
(2021). A section of an embankment built for the construction
of a highway in the south of the county of Stockholm, Sweden
is considered. A cross-section of the soil is shown in Fig. 2.

The authors consider the planning of the surcharge
loading on the embankment during an available preloading
time, tmax, within which an acceptable soil consolidation is
to be reached. The engineering questions can be stated as
follows. (a) What initial surcharge height should be used?
(b) When is a load increase warranted during the preloading
time, and if so, how much more should be added?

GEOTECHNICAL MODEL AND DESIGN
REQUIREMENTS

In this section, the main aspects are presented of the
probabilistic model adopted to describe the evolution of soil
settlement and resulting overconsolidation ratio (OCR), first

under constant load and then under multi-stage loading. This
geotechnical model, described in detail in Spross & Larsson
(2021), considers (a) how primary compression settlement
develops with time, due to the weight of the embankment and
the surcharge, and (b) the effect of the unloading of the
surcharge on the OCR. More detailed and complex models of
settlement and consolidationbehaviour for staged construction
are available in the literature (see, e.g. Walker & Indraratna,
2009; Yin et al., 2022), but the effect of the choice of the geo-
technicalmodel on the results is outside the scope of this paper.

Settlement evolution
Under a constant load Δσ and known soil properties, a

settlement trajectory with time follows

S tð Þ ¼ U tð ÞS1 ð1Þ
where

U tð Þ ¼ 1� 1�Uv tð Þ½ � 1�Uh tð Þ½ � ð2Þ
is the spatially averaged degree of consolidation at time t, and
S∞ is the predicted long-term primary compression settle-
ment under load Δσ. The vertical consolidation component
Uv(t) is obtained from Terzaghi’s consolidation theory. For
the horizontal consolidation component Uh(t), Hansbo’s
well-established analytical PVD model is applied (Hansbo,
1979). Owing to the specific consolidation behaviour of soft
clays, S∞ is predicted as (Larsson & Sällfors, 1986)

S1 Δσð Þ ¼
Xl

i¼1
hcl;iΔεi Δσð Þ ð3Þ

where hcl,i is the thickness of the ith clay layer and Δεi is the
strain increase caused by the load Δσ. The strain depends on
parameters evaluated from constant-rate-of-strain (CRS)
tests, including the preconsolidation pressure and soil
moduli (Spross & Larsson, 2021).
In the analyses performed, the embankment and surcharge

are assumed to be of the same material; hence the load Δσ is
proportional to the material unit weight and to its total
height.
If the surcharge is increased by Δσadd after some preloading

time, tadd, the adjusted settlement trajectory is modelled as

S tð Þ ¼ U tð ÞS1 Δσð Þ; for 0 � t , tadd
U t� tshiftð ÞS1 Δσ þ Δσaddð Þ; for t � tadd

�
ð4Þ
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Fig. 1. Preloading of an embankment with a surcharge of total height
ΔH to accelerate consolidation. Prefabricated vertical drains are
omitted for clarity (GW, ground water)
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Fig. 2. Cross-section of the soil under the planned embankment (from
Spross & Larsson (2021) CC-BY-4.0, https://creativecommons.org/
licenses/by/4.0/)
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Under this staged preloading, the first part of the trajectory
is equivalent to equation (1). The second part contains, due to
the load increase, a recalculated, larger long-term primary
consolidation settlement S2,∞¼S∞(ΔσþΔσadd) following
equation (3) and a corresponding degree of consolidation
U(t� tshift), for which a hypothetical zero degree of consolida-
tion occurs at time tshift¼ tadd� t0. To determine t0, it is noted
that the settlement curve is continuous at tadd, which results in
the degree of consolidation

U t0ð Þ ¼ U taddð ÞS1;1
S2;1

ð5Þ

where U(t) is obtained from equation (2). Fig. 3 illustrates
tshift and the resulting settlement curve for staged preloading.

Overconsolidation ratio
As achieving overconsolidation by the removal of the

surcharge in practice has been found to reduce residual
settlement (Alonso et al., 2000; Han, 2015; Indraratna et al.,
2019), the model considers this effect through the OCR in the
middle of the clay stratum. Under constant surcharge, this
quantity can be obtained as in the paper by Spross & Larsson
(2021)

OCR tð Þ ¼ σ′0 þU tð ÞΔσsur
σ′0 þU tð ÞΔσemb

ð6Þ

where σ′0 is the initial vertical stress in the middle of the clay
stratum; Δσsur is the vertical stress caused by the preloaded
embankment (i.e. including the surcharge); and Δσemb is the
remaining stress increase directly after the unloading of the
surcharge (see Fig. 1).
For staged preloading, the effect of the added load on

the OCR at unloading depends on the preloading time of both
the initial and any added load. To the present authors’
knowledge, there are no validated analytical models for this
issue. Therefore, the following reformulation of equation (6)
is used to capture the effect on theOCRat the unloading at time
t, when it occurs after a previous load increase at time tadd

OCR tð Þ ¼ σ′0 þU tð ÞΔσsur þ ΔU tð ÞΔσadd
σ′0 þU tð ÞΔσemb

ð7Þ

where ΔU(t)¼U(t� tshift)�U(tadd� tshift). Consequently,
the effect on the OCR of the added load will depend on the
degree of consolidation achieved along the recalculated
settlement trajectory after the load has been added. The
OCR for staged preloading is depicted in Fig. 4.

Uncertainties in the soil parameters
The presented soil consolidation model depends on numer-

ous parameters for the soil properties and PVD design. These
parameters govern the evolution of the vertical and horizontal
consolidation, hence the settlement, as per equations (1)–(7).
As explained in the paper by Spross & Larsson (2021), these
soil properties are modelled as random variables with an
associated probability distribution either evaluated from CRS
oedometer tests or assigned based on engineering judgement
when data on variability were not available. The parameters in
Hansbo’s PVD model (Hansbo, 1979) are assumed constant.
The complete deterministic and probabilistic assumptions are
described in detail in tables 2 and 3 of the paper by Spross &
Larsson (2021) and are therefore omitted for brevity. Random
settlement trajectories obtained by Monte Carlo (MC)
simulation are depicted in Fig. 5.

Settlement and OCR requirements
The proposed risk-based planning framework for optimal

preloading requires the definition of performance criteria, such
that apreloading decision can be assessed in termsof its success
to reach the desired goals. These goals are here expressed in
terms of sufficient soil consolidation, through targets on the
settlement and OCR, starget and OCRtarget, respectively. These
targets are defined in the following paragraphs.
Owing to the uncertainty associated with the ground

properties, the long-term settlement S∞ caused by the load
of the completed embankment, Δσemb, is also uncertain. To
ensure an acceptable residual (post-construction) primary
consolidation settlement, Spross & Larsson (2021) proposed
a target settlement starget, such that the probability that the
long-term settlement under the embankment load attains
this target is equal to an acceptable, fixed probability, pFT

Pr S1 Δσembð Þ . starget
� � ¼ pFT ð8Þ

In the numerical investigations, pFT is set to 5% to
represent a serviceability limit state. By generating sample
values of S∞(Δσemb) from the defined probabilistic model
and equation (3), starget is obtained as the quantile value
corresponding to pFT (Fig. 5). The value of starget is thereafter
used to define penalty mechanisms.

Settlement under
initial surcharge at t = 0

Settlement under
initial surcharge at t = 0

and surcharge added at t = 36 weeks
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Fig. 3. Effect of the added surcharge at time tadd on the settlement,
where tshift = tadd− t0
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With added surcharge ΔH1 = 1·9 m at t = 36 weeks

Fig. 4. Effect of the surcharge added at time tadd on the OCR, using
equation (6) with initial surcharge Δσsur corresponding to height ΔH0
for the first part of the curve until t=36 (weeks) and equation (7) with
Δσadd corresponding to additional surcharge height ΔH1. The resulting
curve is located below the one for the case where the total surcharge
(initial and additional) is applied directly at t=0, with equation (6)

1624 BISMUT, COTOARBĂ, SPROSS AND STRAUB
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In addition, it is required that the OCR exceeds the
threshold OCRtarget¼ 1·10 in the middle of the soft soil
stratum after unloading of the surcharge. This is in line with
the general technical requirements and guidance for geo-
technical works issued by the Swedish Transport
Administration (Trafikverket, 2013a, 2013b).

In addition to settlement and OCR requirements, a
successful embankment design needs to consider the stability
of the embankment. This is typically ensured by the berms
(Fig. 1), which add to the construction cost. Ideally, the
dimensions of the berms should also be evaluated from the
geotechnical model based on the undrained shear strength of
the clay. For simplicity, the current authors do not carry out
this analysis but do consider the berms in the cost model (see
equation (16)).

OPTIMAL PRELOADING STRATEGIES
To find the optimal preloading strategy, the authors rely

on the decision analysis framework of Raiffa & Schlaifer
(1961), which formalised decision problems under uncer-
tainty with varying information. This enables the optimis-
ation of the surcharge decisions, which can be done in a
sequential manner based on measurements of the settlement.
Further general information on sequential decision making
can be found in Kochenderfer (2015).

Elements of the decision analysis
A decision analysis under uncertainty is based on a

probabilistic model of the system, a model of the decision
alternatives as well as a utility or cost function. These models
are summarised in the following.

Probabilistic model. A complete probabilistic model must
account for the effects of actions affecting the system (see
‘Decision alternatives’ below) and reflect the uncertainty
in information collection, through a likelihood function
(Bismut & Straub, 2022).

In the investigated engineering problem, the soil consoli-
dation model described above is used. Information on the

state of the system is obtained as a measurement Mt1 of the
settlement St1 at time t1. The Mt1 is related to the true value
of the settlement by an additive measurement error, ε

Mt1 ¼ St1 þ ε ð9Þ
For simplicity, the numerical investigation is restricted to

error-free measurement – that is, ε¼ 0. The proposed
methodology can easily be adapted to account for noise in
the measurement.

Decision alternatives. The decision alternatives describe the
available mitigating actions and must account for operational
constraints. The description of the available decision alterna-
tives should also include operational constraints that must be
accounted for in the planning process.

Utility and cost. The effects of a decision are evaluated in
terms of utility, which reflects the preferences of the decision
maker. Ultimately, the optimal decision is selected as the one
that maximises the expected utility. Assuming a risk-neutral
context, the utility can simply translate to costs associated
with the actions and the system performance. In this case,
utility is expressed in monetary terms.
For the embankment preloading illustration, three cost

components are identified, and these are summarised in
Table 1. The total cost Ctot incurred at the completion of the
preloading operation is obtained as

Ctot ¼
X
i

Csur;i þ Cdelay þ COCR ð10Þ

If relevant, discounting can be used to reflect the
decreasing value of an investment over time; this effect is,
however, ignored here.

Decision settings and influence diagrams
With the above elements specified, a decision setting (DS)

is defined. A typical compact graphical representation of a
DS is the influence diagram (ID) (Jensen et al., 2007). Round
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Fig. 5. One hundred sample soil settlement trajectories for an initial surcharge h0 = 0 (m) (no added surcharge). One such trajectory is highlighted
in black. For each trajectory, the value of the long-term settlement S∞ is obtained with equation (3). The histogram on the right shows the resulting
distribution of S∞. The value starget is obtained from the condition Pr ðS1 . stargetÞ ¼ pFT
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nodes represent uncertain outcomes (which are described by
the probabilistic model), square nodes are the decisions and
lozenge-shaped nodes are the utility. The nodes are con-
nected by directed edges, which represent stochastic, causal
and monetary dependence.
The DS is usually determined by operational constraints,

as well as the level of complexity of the decision sequence
considered. For this study IDs were constructed for three
different DSs.

DS #1: surcharge applied at t¼ 0. In DS #1, the case is
considered where the surcharge is applied only at the time
of constructing the embankment – that is, at t¼ 0. The only
decision variable is the height ΔH0 of the surcharge. The
settlement at time t, St, and the achieved OCR if unloaded at
time t, OCRt, are both probabilistic quantities, which depend
on the applied surcharge. The overall decision process is
summarised by the ID of Fig. 6.

DS #2 and DS #3: surcharge applied at t¼ 0 and adjusted
at time t1. DS #2 and DS #3 consider that there is an

opportunity to add a surcharge of heightΔH1 at a fixed time t1,
on top of the initial surcharge heightΔH0. The decision on how
much to add is based on a measurementMt1 of the settlement
at time t1 (equation (9)). The overall decision process is
summarised by the ID depicted in Fig. 7. In DS #2, the time
t1 is fixed and cannot be influenced by the decision maker,
whereas in DS #3, this time can be chosen and optimised.

Optimal decision making
The most desirable outcome of the decision process is the

one with the lowest cost. Owing to the uncertain nature of the
soil parameters, the outcomes of a sequence of decisions are
uncertain, hence so is the total cost. The optimal sequence of
decisions is therefore that which results in the minimum
expected total cost (Raiffa & Schlaifer, 1961). For DS #1, the
optimal decision for ΔH0 is therefore defined as

ΔH�0 ¼ arg min E Ctot ΔH0ð Þ½ � ð11Þ
where E[Ctot(ΔH0)] is the expected value of the total cost
evaluated with equation (10), when an initial preloading
surcharge of height ΔH0 is applied. This expected total
cost thus accounts for the associated risk E[Cdelay(ΔH0)]þ
E[COCR(ΔH0)] of not achieving the desired settlement or
OCRwithin the available preloading time.
The formulation of the optimisation problem is not as

straightforward for DSs that involve one or more opportu-
nities to adjust the surcharge after the initial surcharge is
applied – that is, DS #2 and DS #3. In these sequential
decision problems, the optimal actions depend on the past
observations. Therefore, one must find the optimal function
that maps past observations to actions. In general, this type
of problem is hard to solve and an exact solution becomes
intractable with increasing number of decision or observation
steps (Papadimitriou & Tsitsiklis, 1987). Approximate sol-
utions are possible – for example, by way of partially
observable Markovian decision processes (POMDPs) or
reinforcement learning (Porta et al., 2005; Roy et al., 2005;
Silver & Veness, 2010; Mnih et al., 2013; Memarzadeh &

Time

Overconsolidation
ratio

Settlement
trajectory

Added surcharge
(height)

Costs

Geotechnical model

Project
delay,
Cdelay

Insufficient
consolidation,

COCR

t = 0 tmax

OCRfin

tdelay

Stmax
S1

ΔH0

Csur,0

Fig. 6. Influence diagram for DS #1. Optimisation of the initial surcharge. The square node ΔH0 indicates that first a value of ΔH0 is chosen, at a
cost Csur,0(ΔH0). The now fixed ΔH0 influences the evolution of the settlement St and the overconsolidation ratio at unloading OCRfin as well as
the time ttarget when the target settlement is reached, defined by S(ttarget) = starget. Monetary consequences due to project delay and residual
settlement result from these quantities. The interaction between ΔH0 and the geotechnical model is represented in a simplified manner

Table 1. Components of the cost model for the embankment
preloading example

Cost
component

Description

Csur,i Cost of adding a preloading surcharge of height
ΔHi. Includes material costs, mobilisation costs,
material availability at the time of the decision,
and additional berms for slope stability

Cdelay Cost penalty for project delay – that is, sufficient
settlement (starget) has not been reached within a
dedicated time period

COCR Cost penalty for reduced serviceability of the
superstructure, due to residual settlement causedby
insufficient overconsolidation at time of unloading

1626 BISMUT, COTOARBĂ, SPROSS AND STRAUB
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Pozzi, 2016; Papakonstantinou et al., 2018; Andriotis &
Papakonstantinou, 2019).

To solve the general sequential decision problem, it is
convenient to define preloading strategies S, which
compactly prescribe the sequence of decisions. A strategy
consists of a set of rules that prescribes how much surcharge to
add at any time as allowed by the DS. For example, for DS #1,
a strategy simply prescribes the surcharge height at time t¼ 0;
for DS #2, it prescribes the surcharge height at time t¼ 0 and
gives a rule at time t1, which can be based on settlement
measurements, to adjust the surcharge. In DS #3, the strategy
additionally prescribes the time t¼ ti at which to collect the
settlement measurement and adjust the surcharge.

Generalising the notation to any preloading strategy S, the
expected total cost associated with a preloading strategy S is
thus evaluated as

E Ctot Sð Þ½ � ¼ E Csur Sð Þ þE� ½Cdelay Sð Þ þE� ½COCR Sð Þ
� �

ð12Þ
The optimal preloading problem is equivalent to finding the

preloading strategy that minimises the expected total cost

S� ¼ arg min
S

E Ctot Sð Þ½ � ð13Þ

In general, E Ctot Sð Þ½ � cannot be evaluated analytically.
An MC approximation can instead be obtained using
the assumed probabilistic geotechnical model. The latter
enables the generation of nMC random settlement trajectories,
St
(k), and OCR at unloading OCRfin

(k), obtained from surcharge
sequences ΔH kð Þ

0 ; ΔH kð Þ
1 and so on, with 1� k� nMC. A total

cost can be computed for each of these trajectories as
per equations (10), (16), (18) and (19). The MC approxi-
mation of the expected total cost of a preloading strategy S is
therefore

E Ctot Sð Þ½ � ’ 1
nMC

XnMC

k¼1
Ctot S kð Þ

t ;OCR kð Þ
fin

� �
ð14Þ

The estimate improves with the number of samples nMC.

HEURISTICS FOROPTIMAL PRELOADING
STRATEGIES
The problem of finding the best strategy is equivalent to

finding the best sequence of decisions and an exact solution to
equation (13) is still intractable in general. To address this
challenge, the space of possible strategies that are considered in
the optimisation is reduced, following Bismut & Straub
(2022). The proposed methodology considers only strategies
that can be described by a specific set of rules, so-called
heuristics. A heuristic is typically formulated with simple
statements (the rules), in which a number of parameters
w¼ [w1;w2;…;wn] intervene. For example, the following
heuristic is defined for DS #2:

• the initial surcharge ΔH0 is h0
• the additional surcharge ΔH1 at time t1¼ 36 weeks is h1 if

the measured settlement at this time is lower than a
threshold sth.

The parametersw for this heuristic are h0, h1 and sth. In thisDS,
t1 is fixed to 36weeks.Anarbitrarily chosenpreloading strategy
following this heuristic format with parameters h0¼ 0·94 m,
h1¼ 1·04m and sth¼ 0·77 mwill react to different trajectories,
as shown inFig. 8.The total cost incurredwill dependon (a) the
strategy and (b) the settlement occurring. The expected cost
of a strategy with fixed parameters can be estimated with
equation (14).
For a given heuristic, there is a set of parameter values that

optimises the expected cost. The associated strategy is called
the optimal heuristic strategy. Thus, for a given heuristic and
associated parameters w¼ [w1;w2;…;wn], the preloading
problem is reduced to finding

w� ¼ argmin E Ctot S wð Þð Þ½ � ð15Þ

As the heuristic formulation of the optimisation problem
operates in a restricted strategy space, it yields a sub-optimal
preloading strategy. However, the heuristic parametrisation
enables the inclusion of operational constraints (e.g. surcharge
can only be added at certain prescribed times) and provides
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In DS #2, t1 is fixed to 36 weeks. In DS #3, it is chosen

t = 0 t1

S1

t1

�H0 �Ht1

Csur,0 Csur,1

St1

Mt1

St1+1 Stmax

OCRfin

Project
delay
Cdelay

Insufficient
consolidation

COCR

tdelay

tmax

Fig. 7. Influence diagram for DS #2 and DS #3. The interactions between the decisions on the initial and added surcharge heights, ΔH0, ΔH1,
and the geotechnical model are represented in a simplified manner
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easily interpretable strategies. Furthermore, the definition of
preloading strategies with heuristics makes sense from the
point of view of geotechnical engineering practice, as most
preloading strategieswould indeed be definedwith such simple
rules. In addition, several heuristics can be compared and the
better-performing strategy selected. In the numerical investi-
gations, the impact of different heuristic choices is discussed,
in particular the impact of increasing the number of heuristic
parameters.
The optimal parameter values w* are the solution of a noisy

optimisation problemwhere the objective function is expressed
as an expected value (Rubinstein & Kroese, 2004), for which
no analytical expression exists. An efficient approach is a
sampling-based optimisation, which was previously developed
for this purpose in Bismut & Straub (2021) and is based on
the cross-entropy (CE) method (Rubinstein & Kroese, 2004).
The basic steps are summarised in the Appendix and the
convergence to the optimal parameter values is illustrated in
Fig. 9. The current authors have previously demonstrated this
method on other sequential decision planning problems and
discussed details of its implementation and performance in
Bismut & Straub (2021) and Bismut et al. (2022). The method
stands out for the simplicity of its implementation and
robustness. However, it can be replaced by any other method
suitable for noisy optimisation.

NUMERICAL INVESTIGATIONS
Probabilistic model set-up
As stated above, the probabilistic geotechnical model

is described in detail in Spross & Larsson (2021). The settle-
ment target is computed for pFT¼ 0·05, and is obtained as
starget¼ 1·27 (m) (Fig. 5).

Cost model
Refer to the cost components in Table 1. Csur,i corresponds

to the cost of adding surcharge of height ΔHi. It increases
with the total surcharge height, and accounts for the cost of
berms needed to ensure slope stability (see Fig. 1). It is
evaluated from the cost of total surcharge height Htot

Csur Htotð Þ ¼ Htotcsur if Htot � 1m

1:25Htotcsur otherwise

�
ð16Þ

where 1·25 is a cost factor addressing the cost increase related
to the construction of berms for embankments higher than
1 m. The cost attributed to each increase ΔHi of surcharge on
top of existing surcharge Htot is computed as

Csur;i ΔHið Þ ¼ Csur Htot þ ΔHið Þ � Csur Htotð Þ½ � � fadd;i ð17Þ
where the factor fadd,i� 1 accounts for additional costs
incurred by increasing the surcharge at a later time ti. 0.
Note that the cost of the remaining embankment material
after unloading is not included here, as it is the same for all
scenarios.
In the model, project delay occurs when the settlement tra-

jectory either does not meet starget within the preloading time
allowed by the construction contract, tmax, (ttarget. tmax) or is
unable to meet starget at all (ttarget. tlim) (see Fig. 8). The
associated penalty is

Cdelay ttarget
� �

¼
0 if ttarget� tmax

cdelay� minðtlim; ttargetÞ� tmax

h i
otherwise

(

ð18Þ

where cdelay represents the penalty per week of delay.
Finally, the penalty associatedwith residual settlement due

to insufficient OCR is evaluated with the logistic function

COCR OCRfinð Þ ¼ cOCR

1þ exp �ð1�075�OCRfinÞ=ð4�5� 10�3Þ� �
ð19Þ

where OCRfin is the OCR at unloading at time ttarget or tlim
if the settlement target has not been achieved in time. This
smoothed step function approaches the maximum penalty
cOCRwhen OCRfin, 1·05, and 0 when OCRfin.OCRtarget¼
1·1 – that is, when the OCR requirement is satisfied.

Table 2. Parameters of the cost model

Cost factor Value

csur 3·45� 106 SEK/m
cdelay 3� 105 SEK/week
cOCR 2� 107 SEK
fadd,0 1
fadd,1 1
tmax 72 weeks

Note: SEK, Swedish krona (1 SEK = £0.075)
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The cost factors csur, cdelay and cOCR and the available
preloading time tmax for the initial numerical investigation
are given in Table 2.

Heuristic parametrisations
The following heuristics are investigated for the different

DSs. The heuristic parameters for each defined heuristic are
indicated in bold.

DS #1. As explained above, the optimisation for this setting
only consists in optimising the initial surcharge height ΔH0.
Thus the corresponding heuristic, with single heuristic para-
meter h0, is simply as follows.

Heuristic 1: h0� 0
(1) ΔH0¼ h0.

DS #2. For DS #2, the performance of two different
heuristics in approximating the optimal preloading strategy is
investigated. A preloading strategy described with heuristic
2A specifies the initial surcharge height and adjusts it by
adding a surcharge height if the measured settlement is lower
than a threshold.

Heuristic 2A: h0� 0, h1� 0, sth� 0
(1) At time t¼ 0, add surcharge of height ΔH0¼ h0.
(2) Obtain measurement mt1 at time t1¼ 36 (weeks).
(3) Ifmt1 , sth, add surchargeΔH1¼ h1. OtherwiseΔH1¼ 0.

With heuristic 2B, the strategy adjusts the height of the added
surcharge based on the difference d between the measured
settlement and the threshold. This height adjustment is
defined by a sigmoid function varying between 0 and
maximum added height h1, characterised by a curve steep-
ness a. When a¼ 0, this sigmoid function is a step function.

Heuristic 2B: h0� 0, h1� 0, sth� 0, a� 0
(1) At time t¼ 0, add surcharge of height ΔH0¼ h0.
(2) Obtain measurement mt1 at time t1¼ 36 weeks.
(3) Compute d ¼ mt1 � sth.
(4) Add surcharge

ΔH1 ¼

0; d � a

2h1
d � a
2a

� �2

; a � d � 0

1� 2
d � a
2a

� �2
" #

h1; 0 � d � �a

h1; d � �a

8>>>>>>>>><
>>>>>>>>>:

DS #3. Heuristic 3 is the same as heuristic 2B, with the
additional freedom to choose the time t1 at which the
settlement is measured and the surcharge height is adjusted.
The t1 is thus an additional heuristic parameter.

Heuristic 3: h0� 0, h1� 0, sth� 0, a� 0, t1[ {1, 2, 3, …,
tmax}
(1) At time t¼ 0, add surcharge of height ΔH0¼ h0.
(2) Obtain measurement mt1 at time t1.
(3) Compute d ¼ mt1 � sth.
(4) Add surcharge

ΔH1 ¼

0; d � a

2h1
d � a
2a

� �2

; a � d � 0

1� 2
d � a
2a

� �2
" #

h1; 0 � d � �a

h1; d � �a

8>>>>>>>>><
>>>>>>>>>:

Computational set-up
For the CE method, the values nCE¼ 100, nE¼ 30 and

nMC¼ 10 are fixed. On an eight-core CPU 3·2 GHzmachine,
optimising the heuristic parameters for a given heuristic takes
around 4 min. The expected cost of the resulting optimised
strategy is evaluated with nMC¼ 104 samples.

RESULTS
The CEmethod is applied to obtain the optimal parameter

values and associated expected costs for the different DSs
and heuristics defined above, assuming the cost model of
Table 2. Fig. 10 illustrates the optimisation of the heuristic
parameters for DS #1. The results for all DSs are sum-
marised in Table 3.
The expected costs of the optimal heuristic strategies

obtained for each of the DSs decrease from DS #1 to DS #3.
This is in agreement with the fact that DS #1 is more
restrictive in terms of available actions than DS #2, and in
turn DS #2 is more restrictive (because the adjustment time is
fixed) than DS #3. Table 3 also reports the estimated
standard deviation of the total cost. For the investigated
heuristics, the coefficient of variation of the total cost for
the optimal strategy varies around 95%. The standard error
of the MC estimates of the expected costs is therefore 1%,
which ensures a sufficient accuracy to rank the heuristics
according to the estimated expected cost of their optimal
strategies.
The optimal initial surcharge prescribed by heuristic 1 in

DS #1 is higher than the initial surcharge prescribed in DS
#2 and DS #3. This shows that the heuristics chosen for DS
#2 and DS #3 exploit the fact that measurement information
enables an optimised adjustment of surcharge.
For DS #2, it is noted that heuristic 2B performs better

than heuristic 2A in terms of expected cost; hence the
smoothed step function for the selection of the adjusted load
is a better heuristic than the simple step function.
Figure 11 depicts the breakdown of the costs for each

optimal heuristic strategy. It is observed that heuristic 3 yields
a lower risk of delay than heuristics 2A and 2B and a lower
expected total cost, even though it applies on average a higher
total surcharge. Therefore, the choice of time t1 to adjust the
surcharge plays a significant role in efficiently controlling the
settlement. The expected penalty associated with insufficient
OCR is here negligible in comparison with the other cost
components, for all heuristics.
Figure 12 illustrates the effect of adjusting the surcharge at

time t1¼ 36 on the settlement trajectory, following the

5·0
Total expected cost E[Ctot(h0)]

Expected delay penalty E[Cdelay(h0)]
Expected OCR penalty E[COCR(h0)]

Cost of surcharge Csur(h0)4·5
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Fig. 10. Expected costs for DS #1 as a function of ΔH0 = h0
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optimal strategy for heuristic 2A. The distribution of the
settlement at time tmax is obtained from 104 sample
trajectories for both the case where only the initial surcharge
is applied and not adjusted at t¼ 36 weeks and the case where
the surcharge is adjusted according to the optimal strategy.
With the load adjustment action, the settlement trajectories
that already reach the target at tmax with the sole initial load
are unaffected, while a portion of trajectories which would
not have achieved starget at tmax are now compliant – that is,
the probability Pr ðStmax , StargetÞ decreases by enabling the
adjustment of the surcharge. Most of the corrected trajec-
tories will nevertheless incur a delay penalty, which is optimal
under the assumed cost model of Table 2.
The effect of the different heuristics on the final settle-

ment at time tmax and on the OCR at unloading is depicted in
Figs 13(a) and 13(b). Heuristics 2A, 2B and 3 can be
distinguished from heuristic 1, where the preloading is only
added at t¼ 0. The uncertainty in the settlement reduces when
the surcharge is adjusted based on the measured settlement,
and the probability that Stmax is larger than starget increases
from heuristic 1 to heuristic 3. Notably, the optimal strategies
for heuristics 2A, 2B and 3 result in a larger probability that
the OCR at unloading is smaller than the critical value 1·1,
compared to heuristic 1. Hence these heuristics can balance
both penalties associated with insufficient settlement and
OCRagainst the applied surcharge in a more efficient manner.

DISCUSSION
To demonstrate the potential of quantitatively analysing

and optimising geotechnical design under sequential infor-
mation, the design of preloading for an embankment on soft
soil is considered. The preloading problem is formulated as a
sequential decision problem in different DSs. Preloading
strategies are described through heuristics with associated
parameters, which are optimised to minimise the total
expected cost. Different heuristics are considered and it is
observed that – as expected – the more flexibility in decision

the heuristic provides, the more cost efficient the resulting
optimal heuristic strategy is. For the case study investigated,
the authors observe a reduction in the expected cost in the
order of 25% between heuristics 1 and 3.
It is noted that – with all investigated heuristics – the

coefficient of variation of the total cost is large, around
100%. While this variability depends on the assumed cost
model, if the decision maker wanted to prioritise strategies
that reduce this variability, a risk-averse behaviour could be
included in the objective function of equation (13) by
considering a utility function that is non-linear with costs
(Straub & Welpe, 2014).
Other heuristics than those proposed can be investigated

and might result in lower expected costs. For example, one
might replace the sigmoid function of heuristic 2B by another
function. As settlement measurements are typically available
at weekly intervals, a heuristic could be formulated such that
the adjusted surcharge at time t1 depends on an observed
trend. In this case, the processing of the measurements for the
purpose of decision making, hence the trend prediction
model, is part of the definition of the heuristic. Ultimately,
one could define a heuristic to address the setting in which
continuous settlement measurements are available, with
near-real-time decision support.
The advantage of the heuristic methodology for the

planning of preloading decisions is that the resulting strategies
are interpretable, because the decision rules are explicitly
defined through the chosen heuristic. This also entails that
the heuristic can encode geotechnical expertise. The flexibility
in the formulation of the DS through the IDs and the cost
functions also enables the analyst to integrate additional
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bimodal histogram shows the distribution of the settlement obtained
by adjusting the surcharge at t=36 weeks, as prescribed by the
strategy (see Table 3). A full-colour version of this figure can be found
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Table 3. Optimal heuristic parameters and associated expected costs

Parameter Unit DS #1 DS #2 DS #3

Heuristic 1 Heuristic 2A Heuristic 2B Heuristic 3

h0 m 1·05 0·98 0·96 0·95
h1 m — 1·06 1·08 1·81
sth m — 0·71 0·73 0·37
a m — — � 0·15 � 0·28
t1 weeks — 36* 36* 20
Expected cost 106 SEK 8·11 6·54 6·29 6·06
Std dev. cost 106 SEK 7·4 6·3 6·0 5·6

*Value is not optimised but fixed.
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constraints. For instance, the uncertainty in the availability of
preloading material could be explicitly modelled, such that
there is a certain probability of obtaining the requested
material at a given point in time.

The decision-theoretical framework described in this paper
is suitable to apply in combination with the observational
method, which was first defined as a design approach by Peck
(1969) and today is accepted into design codes such as
Eurocode 7, EN 1997-1:2004 (CEN, 2004). The observa-
tional method implies that the geotechnical engineer estab-
lishes a monitoring plan with thresholds that trigger prepared
design changes specified in an action plan, thereby adjusting
the initial design to fit better to the actual ground conditions.

In the context of a sequential decision problem, such thre-
sholds and design changes can be formulated as heuristics,
allowing the geotechnical engineer not only to compare con-
ceptually different options of monitoring and action plans, but
also to optimise their included threshold values and specified
actions. The evaluated DSs in this paper illustrate this clearly:
the heuristics 2A, 2B and 3 can be seen as three different
options of monitoring and action plans, while Table 3 specifies
the optimised heuristics for the plans and also shows their
respective expected costs. Such risk-based optimisation of
monitoring and action plans is a considerable leap forward
from the current practice, where monitoring and action
plans usually are defined based on deterministic analyses,
although probabilistic approaches are emerging (e.g. Spross &
Gasch, 2019).

CONCLUSION
The authors have formalised a geotechnical problem as a

sequential decision problem and proposed a methodology
based on heuristics to finding optimal strategies. This frame-
work was applied to an embankment preloading problem
and highlighted how the DS, chosen heuristics and cost

model affect the optimal preloading strategies. This enables a
quantitative optimisation of preloading decisions under
uncertainty. It was shown that the potential for cost savings
is significant. This framework is not limited to embankment
design and construction, but is designed as a decision support
tool to be extended to avast range of geotechnical engineering
applications, especially those to which the observational
method is applied.
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APPENDIX. CROSS-ENTROPY OPTIMISATION
ALGORITHM

Algorithm 1 describes the steps of the CE method used for the
optimisation of the heuristic parameters. The algorithm also applies a
smoothing operation, which is not described here, to prevent con-
vergence to localminima (refer toKroese et al. (2006) formore details).
The optimal cost is obtained with equation (14) evaluated in S w�ð Þ.
The sampling density is here chosen as a truncated normal

for positive (or negative) parameters. For integer parameters,
the sampled value is rounded to the nearest integer. The updated
distribution parameters λ* of the multivariate truncated normal
distribution are the mean and covariance of the elite samples.

NOTATION
a heuristic parameter

Cdelay cost penalty for project delay
COCR cost penalty for reduced serviceability of the

superstructure
Csur,i cost of adding a preloading surcharge of height ΔHi

Ctot total cost
cdelay cost factor for Cdelay
cOCR cost factor for COCR
csur cost factor for Csur
E expectation operator

fadd,i penalty factor for adding surcharge at later time ti

Heuristic 1
Heuristic 2A
Heuristic 2B
Heuristic 3

Heuristic 1
Heuristic 2A
Heuristic 2B
Heuristic 3

0·5 1·0
Settlement at tmax: m

starget 1·5 2·0
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Fig. 13. Distribution of (a) settlement achieved at tmax and (b) of the
OCR at unloading for the optimal heuristic strategies (see Table 3).
The area of the histograms to the left of the dotted line represents for
each optimal heuristic strategy, in (a) the probability Pr ðStmax ,
stargetÞ, and in (b) the probability PrðOCRfin , OCRtargetÞ. A
full-colour version of this figure can be found on the ICE Virtual
Library (www.icevirtuallibrary.com)

Algorithm 1. Cross-entropy method applied to noisy optimisation

Input: cross-entropy sampling density P(·|λ*); initial sampling
distribution parameter λ*; number of CE samples per iteration
nCE; number of elite samples nE; number of sample settlement
trajectories nMC; maximum number of iterations nmax.

1 l  0;
2 while l, nmax do
3 for m 1 to nCE do
4 generate random heuristic parameter values w (m)

from sampling density P(·|λ*);
5 generate nMC settlement trajectories and

measurement following strategy S w mð Þ	 

;

6 evaluate the expected total life-cycle cost qm with
nMC samples (equation (14));

7 end
8 sort (w (1), …, w (nCE)) in increasing order of qm;
9 fit the distribution parameter λ* to the nE elite samples;
10 l lþ1;
11 end
12 w* mean of P(·|λ*);
13 return w*
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Htot total added surcharge height
h0 heuristic parameter for surcharge height
h1 heuristic parameter for surcharge height

hcl,i thickness of ith clay layer
l number of layers of clay stratum

Mt measured settlement at time t
nCE number of cross-entropy samples per iteration
nE number of elite samples

nmax maximum number of cross-entropy iterations
nMC number of sample settlement trajectories

OCRfin overconsolidation ratio at unloading
OCRt overconsolidation ratio at time t

OCRtarget target overconsolidation ratio
P(·) cross-entropy sampling density
pFT acceptable target failure probability
S settlement
S preloading strategy
St settlement at time t

Stmax settlement at time tmax

S∞ long-term primary consolidation settlement
starget target settlement

sth heuristic parameter for settlement threshold
t time
t1 heuristic parameter for time of added surcharge

tadd time of addition of surcharge
tlim maximum possible preloading time
tmax allowed preloading time in contract
tshift time at which a hypothetical zero degree of

consolidation occurs
ttarget time at which the settlement reaches starget

U average degree of consolidation
Uh average degree of horizontal consolidation
Uv average degree of vertical consolidation
w vector of heuristic parameters wj

w* optimal heuristic parameters
ΔH height of added surcharge
ΔHi height of surcharge added at time ti
ΔU difference in degree of consolidation with additional

surcharge
Δεi strain increase
Δσ load – that is, stress increase in soil

Δσadd stress increase in soil caused by surcharge added at tadd
Δσemb remaining stress increase in soil after unloading
Δσsur vertical stress increase caused by preloading, including

the surcharge
ε measurement error
λ initial cross-entropy sampling distribution parameter
σ0′ initial vertical stress
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