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Zusammenfassung

GaußscheGraphenmodelle repräsentieren bedingte Unabhängigkeitsbeziehungen inmultivariatenGaußschen
Verteilungen durch ungerichtete Graphen. Frühere Arbeiten zu diesem Thema haben die algebraische Struk-
tur der Erzeuger des verschwindenden Ideals für bestimmte Grapharten mit einer bestimmten Färbung unter-
sucht. Auf dieser Grundlage untersucht diese Arbeit zyklische Graphen imDetail und berücksichtigt dabei alle
möglichen Färbungen dieses Graphentyps. Das Hauptziel besteht darin, die Gültigkeit einer Vermutung zu
überprüfen, die besagt, dass in zyklischen Graphen die binomischen Linearformen im verschwindenden Ideal
genau dann existieren, wenn es eine entsprechende Symmetrie im Graphen gibt. Durch rechnerische Studien
und theoretische Analysenwird die hinreichende Bedingung der Vermutung für alle𝑛-Zyklen bestätigt, wobei
gezeigt wird, dass, wenn eine Symmetrie in einem zyklischen Graphen existiert, die binomischen Linearfor-
men, die durch diese Symmetrie induziert werden, im verschwindenden Ideal enthalten sind. Die notwendige
Bedingung dagegen kann nur für 3- und 5-Zyklen bewiesen werden. Indem wir Gegenbeispiele konstruieren,
widerlegen wir, dass die notwendige Bedingung der Vermutung für alle 𝑛-Zyklen gilt. Das zeigt, dass nicht in
allen 𝑛-Zyklen alle binomischen Linearformen durch Symmetrien im Graphen entstehen. Des Weiteren un-
tersuchen wir nicht-binomische Linearformen im verschwindenden Ideal und schlagen eine Vermutung über
ihre strukturellen Eigenschaften vor, die noch vollständig verstanden werden müssen. Alle Berechnungen für
diese Arbeit werden mit Macaulay2 durchgeführt, wobei der Code im Anhang bereitgestellt wird, um weitere
Forschungen zu unterstützen.

Abstract

Gaussian graphical models represent conditional independence relationships in multivariate Gaussian distri-
butions through undirected graphs. Previous studies have explored the algebraic structures of the generators
of the vanishing ideal for certain graph types with a specific coloring. Building on this foundation, this thesis
investigates cycle graphs in detail, considering all possible colorings of this graph type. The primary objec-
tive is to evaluate the validity of a conjecture stating that, in cycle graphs, binomial linear forms are elements
of the vanishing ideal if and only if there exists a corresponding symmetry in that graph. Through compu-
tational studies and theoretical analyses, the sufficient part of the conjecture is confirmed for all 𝑛-cycles,
demonstrating that whenever a symmetry exists in a cyclic graph, all binomial linear forms induced by that
symmetry lie in the vanishing ideal. The necessary condition, however, is proven only for 3- and 5-cycles.
By constructing counterexamples, we show that the necessary condition of the conjecture does not hold for
all 𝑛-cycles, demonstrating that not all binomial linear elements of the vanishing ideal arise from graph sym-
metries for all 𝑛-cycles. Furthermore, we examine non-binomial linear forms within the vanishing ideal and
propose a conjecture regarding their structural properties, which remain to be fully understood. All com-
putations for this thesis are performed using Macaulay2, with the code provided in the appendix to support
further research.



iv

Contents

1 Introduction 1

2 Preliminaries on Gaussian graphical models 2
2.1 Setup of a Gaussian graphical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Introduction of the concentration and adjacency matrices and the reciprocal variety . . . . . . 2
2.3 Relating the concentration and covariance matrices . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Obtaining binomial linear forms from symmetries 6
3.1 Graph colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Graph symmetries and induced binomial linear forms . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Uniform colored graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Binomial linear forms in the vanishing ideal of cyclic graphs 12
4.1 Computational study on binomial linear generators for the 5-cycle . . . . . . . . . . . . . . . . 12
4.2 Analysis of graph symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Reflections and rotations under the parametrization . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Reflection symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Rotation symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Analysis of binomial linear elements of the vanishing ideal . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Conditions on when two tridiagonal matrices have the same determinant . . . . . . . 21
4.4.2 Proof of the conjecture for 3- and 5-cycles . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Counterexamples to the conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.1 Counterexample of size 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.2 Counterexample of size 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Non-binomial linear forms in the vanishing ideal of cyclic graphs 28

6 Conclusion 31

A Appendix: Macaulay2 implementations 32
A.1 Code for Example 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Code for the computational study on 3-, 4- and 5-cycles . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Code for Counterexample 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.4 Code for Counterexample 4.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References 36



1

1 Introduction

Gaussian graphical models provide a powerful framework for understanding the conditional dependence re-
lationships in multivariate Gaussian distributions through graph theory. These models use graphs to encode
dependencies among variables, with vertices representing variables and edges indicating direct conditional
dependencies. They find applications in diverse fields such as genomics, finance, and social network analysis,
where understanding the interactions between variables is critical for uncovering underlying structures. A
central object of study in these models is the covariance matrix, which captures the direction and strength
of the linear relationships between variables. The algebraic study of this matrix, particularly its constraints,
has become a crucial aspect of understanding Gaussian graphical models. These constraints directly impact
the vanishing ideal, since it encounters for all polynomial relations that need to be satisfied by the entries
of the covariance matrix in order to preserve the underlying structure of the graph. This thesis extends the
foundational analysis of Gaussian graphical models by examining the connection between graph symmetries
and the vanishing ideal arising from these models. In particular, we investigate how symmetries in the graph
influence the binomial linear elements of the vanishing ideal with a specific focus on cyclic graphs. Cyclic
graphs are of major importance since they can represent complex, bidirectional, and recursive dependencies
in systems, enabling the modeling of feedback loops, joint distributions, and real-world phenomena that ex-
hibit cyclic, non-hierarchical behavior. A central question in this investigation is the validity of the following
conjecture, proposed by Davies and Marigliano [3]:

Conjecture 1.0.1. [3, Conjecture 4.2] Let𝐺 be a colored 𝑛-cycle. All binomial linear forms in the vanishing
ideal 𝐼

(
L−1) are induced by symmetries.

This conjecture establishes a precise relationship between algebraic structures and graph theoretic proper-
ties. If it proves correct, it provides a powerful tool for characterizing binomial linear forms in the vanishing
ideal purely through the symmetries of the graph. This connection would not only simplify the study of the
algebraic structure of reciprocal varieties but also enable more efficient computational analyses of Gaussian
graphical models, especially in applications where model parameters need to be estimated or tested on large
datasets. Despite the promise of this conjecture, its general validity remains an open question. Prior research,
including the work by Davies and Marigliano [3], has explored specific cases, but a complete proof remains
unknown. This thesis aims to address this gap by focusing on cyclic graphs. Through computational studies
and theoretical analysis, we examine whether Conjecture 1.0.1 holds for all 𝑛-cycles. The thesis is structured
as follows: Chapter 2 introduces Gaussian graphical models, discussing the concentration matrix and its role
in defining the vanishing ideal. Therefore, a method for explicitly calculating the inverse of the concentra-
tion matrix, the covariance matrix, is presented, providing a way to find the elements of the vanishing ideal.
Chapter 3 introduces the concept of graph colorings, which enable the examination of graph symmetries.
This chapter includes an analysis of specific graphs with a particular coloring configuration: uniformly col-
ored graphs. Chapter 4 is the main and most important part of this thesis. It begins with a computational
study on binomial linear generators of the vanishing ideal for cyclic graphs with three, four, and five vertices.
This chapter presents a detailed analysis of graph symmetries and their impact on the generators of the van-
ishing ideal. Furthermore, we investigate the binomial linear forms within this ideal, allowing us to address
the main goal of this thesis: determining whether Conjecture 1.0.1 holds for all 𝑛-cycles. Chapter 5 extends
the discussion to non-binomial linear forms. It includes a computational study of these forms for cyclic graphs
with four and five vertices and proposes a conjecture explaining aspects of their structural properties. The
chapter concludes by posing an open question for future research.
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2 Preliminaries on Gaussian graphical models

Gaussian graphical models arise from the statistical framework for modeling multivariate Gaussian distribu-
tions, where the goal is to understand the conditional dependencies between random variables. By repre-
senting these dependencies through the structure of an undirected graph, Gaussian graphical models enable
an intuitive and mathematically rigorous way to study relationships in high-dimensional data. This section
introduces the core concepts of these models, laying the groundwork for their theoretical and practical appli-
cations.

2.1 Setup of a Gaussian graphical model

We setup a Gaussian graphical model by following the framework and its application to graph-basedmodeling
of conditional dependencies established by Sullivant [9]. Let 𝑋 = (𝑋1, 𝑋2, ..., 𝑋𝑛) ∈ ℝ𝑛 be a random vector,
which is distributed according to a multivariate Gaussian, 𝑋 ∼ N(𝜇, Σ), where 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑛) ∈ ℝ𝑛 is
the vector of means and Σ ∈ ℝ𝑛×𝑛 is the symmetric matrix, capturing the covariances between all variables
in 𝑋 . For the Gaussian Graphical Model to be well-defined, we require the covariance matrix Σ to be positive
definite, ensuring that it is invertible. To model the conditional dependencies and independencies among
the components of 𝑋 , we construct a Gaussian graphical model. In this framework, we define an undirected
graph 𝐺 = (𝑉 , 𝐸), where the vertex set 𝑉 := {1, 2, . . . , 𝑛} and the edge set 𝐸 are determined as follows: each
random variable 𝑋𝑖 is associated with a vertex 𝑖 ∈ 𝑉 . An edge is placed between vertices 𝑖 and 𝑗 if and only
if the corresponding random variables 𝑋𝑖 and 𝑋 𝑗 are dependent. Conversely, if 𝑋𝑖 and 𝑋 𝑗 are conditionally
independent given all other variables, then there is no edge between 𝑖 and 𝑗 . Thus, the edge set is given by
𝐸 = {{𝑖, 𝑗} | 𝑖, 𝑗 ∈ 𝑉 and 𝑋𝑖 and 𝑋 𝑗 are dependent}.

2.2 Introduction of the concentration and adjacency matrices and the
reciprocal variety

In the context of Gaussian graphical models, two matrices are of major importance: the concentration matrix
and the adjacency matrix.
As described in [9], the conditional dependencies represented by the edge structure of the graph are encoded

in the symmetric concentration matrix 𝐾 = (𝑘𝑖 𝑗 ) ∈ ℝ𝑛×𝑛 , where 𝐾 is the inverse of the covariance matrix.
For 𝑖, 𝑗 ∈ 𝑉 , the entry 𝑖 𝑗-th and 𝑗𝑖-th entries of 𝐾 represents the conditional dependence between the random
variables 𝑋𝑖 and 𝑋 𝑗 . Formally:

𝑘𝑖 𝑗 ≠ 0 ⇐⇒ there is an edge between the vertices 𝑖 and 𝑗 in the graph 𝐺 ⇐⇒ 𝑋𝑖 and 𝑋 𝑗 are dependent.

Conversely, if 𝑋𝑖 and 𝑋 𝑗 are conditionally independent, given all other variables, which corresponds to the
absence of an edge between 𝑖 and 𝑗 in 𝐺 , it holds 𝑘𝑖 𝑗 = 0. Due to the positive definiteness of Σ, its inverse 𝐾
is also positive definite and therefore, 𝑘𝑖𝑖 ≠ 0 for all vertices 𝑖 ∈ 𝑉 .

The concentration matrix 𝐾 can be expressed as a linear combination of linearly independent symmetric
matrices:

𝐾 =
∑︁

{𝑖, 𝑗 }∈𝐸
𝐾𝑖 𝑗 +

∑︁
𝑖∈𝑉

𝐾𝑖𝑖 ,

where each𝐾𝑖 𝑗 is defined as the symmetric matrix with the 𝑖 𝑗-th and 𝑗𝑖-th entries corresponding to the partial
correlation between 𝑋𝑖 and 𝑋 𝑗 , and all other entries being zero. The collection of these matrices induces a
linear subspace of the space of real symmetric matrices 𝕊𝑛 , as outlined in [9], defined as:

L = span{𝐾𝑖 𝑗 | {𝑖, 𝑗} ∈ 𝐸 or 𝑖 = 𝑗}.
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The reciprocal variety L−1 is the set of all symmetric matrices Σ ∈ 𝕊𝑛 whose inverses belong to L [9]:

L−1 =
{
Σ ∈ 𝕊𝑛 | Σ−1 ∈ L

}
.

The vanishing ideal of L−1, denoted 𝐼
(
L−1) , is the set of all polynomials in the polynomial ring ℝ[Σ] that

vanish on L−1. This ideal encodes the algebraic constraints that the matrix Σ must satisfy for its inverse to
lie in L.
The adjacency matrix 𝐴 = (𝑎𝑖 𝑗 ) ∈ ℝ𝑛×𝑛 , as defined in [1], has a similar structure to the concentration

matrix 𝐾 . It is also symmetric and all off-diagonal, non-zero entries of 𝐾 are set to be one in 𝐴. The main
difference between 𝐾 and𝐴 is that the diagonal entries of𝐴 are set to zero. Specifically, for 𝑖, 𝑗 ∈ 𝑉 with 𝑖 ≠ 𝑗 ,
the 𝑖 𝑗-th and 𝑗𝑖-th entry of 𝐴 is 1 if and only if there is an edge between 𝑖 and 𝑗 , i.e. {𝑖, 𝑗} ∈ 𝐸.

2.3 Relating the concentration and covariance matrices

Our goal is to find the linear elements among the generators of the ideal 𝐼
(
L−1) , especially the binomial linear

ones. To do so, we are interested in representing the entries of the covariance matrix Σ by the entries of the
concentration matrix 𝐾 , which can be directly inferred from the graph. This requires a function that maps
the entries of 𝐾 to the entries of the covariance matrix Σ.
Sullivant established such a connection by introducing the pull-back map 𝜌 in [9], which arises from the

identity𝐾 ·Σ−1 = Id . Letℝ[𝐾] = ℝ[𝑘11, 𝑘12, . . . , 𝑘𝑛𝑛] be the polynomial ring in the entries of the concentration
matrix 𝐾 , and ℝ(𝐾) be its fraction field. Then the pull-back map is defined as:

𝜌 : ℝ[Σ] → ℝ(𝐾), 𝜌 (𝜎𝑖 𝑗 ) = 𝜌𝑖 𝑗 (𝐾) =
(
𝐾−1)

𝑖 𝑗
=

1
det(𝐾) · Cofactor(𝐾) 𝑗𝑖 =

1
det(𝐾) (−1)

𝑗+𝑖 det
(
𝐾 𝑗𝑖

)
,

where 𝐾 𝑗𝑖 is the submatrix of 𝐾 obtained by deleting the 𝑗-th row and 𝑖-th column. The value 𝜌𝑖 𝑗 ∈ ℝ(𝐾)
thus represents the 𝑖 𝑗-th entry of 𝐾−1. This map is well-defined since it only inserts invertible elements of L.
For any polynomial 𝑓 ∈ ℝ[Σ] and any 𝐾 ∈ L, we have the following composition:

𝜌 (𝑓 ) (𝐾) = 𝑓 ◦ 𝜌 (𝐾) = 𝑓 (𝜌11(𝐾), 𝜌12(𝐾), . . . , 𝜌𝑛𝑛 (𝐾)).

Hence, the kernel of this map consists of the polynomial elements in ℝ[Σ] that vanish when evaluated at
𝐾−1 = Σ:

ker(𝜌) = {𝑓 ∈ ℝ[Σ] | 𝑓
(
𝐾−1) = 𝑓 (Σ) = 0}.

Therefore, the elements of the kernel correspond to polynomial relations between the entries of the covariance
matrix Σ, that vanish. Since Σ ∈ L−1, the kernel of 𝜌 is equal to the vanishing ideal, as outlined in [9]:

𝐼
(
L−1) = ker

(
𝜌
)
.

Any entry in 𝐾−1 can be expressed as the product of 1/det(𝐾) and a polynomial. Since the determinant is
a constant scalar, the map defined by

𝜌∗ : ℝ[Σ] → ℝ(𝐾), 𝜌∗(𝜎𝑖 𝑗 ) = det(𝐾) · 𝜌𝑖 𝑗 (𝐾) = Cofactor(𝐾) 𝑗𝑖 ,

has the same kernel as 𝜌 [9]. Therefore, it also holds that

𝐼
(
L−1) = ker(𝜌∗) .

To illustrate the practical application of the pull-back map, we consider the following example:

Example 2.3.1. Let 𝐺 be the uncolored 4-cycle.
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1 2

34

The corresponding concentration matrix of this graph is

𝐾 =

©«
𝑘11 𝑘12 0 𝑘14
𝑘12 𝑘22 𝑘23 0
0 𝑘23 𝑘33 𝑘34
𝑘14 0 𝑘34 𝑘44

ª®®®¬ .
By applying the second version of the pull-back map, 𝑝∗, we can compute the covariance matrix Σ multiplied
by the determinant of 𝐾 , from which we obtain the generators of the vanishing ideal 𝐼

(
L−1) . For example,

𝜌∗(𝜎11) = det(𝐾) · 𝜎11 = det(𝐾) ·
(
𝐾−1)

11 = (−1)1+1 · det ©«
𝑘22 𝑘23 0
𝑘23 𝑘33 𝑘34
0 𝑘34 𝑘44

ª®¬ = 𝑘22𝑘33𝑘44 − 𝑘22𝑘234 − 𝑘223𝑘44,
𝜌∗(𝜎12) = det(𝐾) · 𝜎12 = det(𝐾) ·

(
𝐾−1)

12 = (−1)2+1 · det ©«
𝑘12 0 𝑘14
𝑘23 𝑘33 𝑘34
0 𝑘34 𝑘44

ª®¬ = −𝑘14𝑘23𝑘34 + 𝑘12𝑘234 − 𝑘12𝑘33𝑘44.

In this uncolored 4-cycle, no linear relations vanish on Σ since all entries of the concentration matrix 𝐾 are
distinct. With 8 degrees of freedom in 𝐾 , the dimension of 𝐼

(
L−1) is 8.

We define an uncolored graph as one where all partial correlations are distinct. For such graphs, no linear
forms exist in the vanishing ideal, except for those originating from disconnected components. This result
follows from the proposition established in [3]:

Proposition 2.3.2. [3, Prop. 2.5] Let 𝐺 be a colored graph, and let the vertices 𝑖 and 𝑗 belong to different
connected components of 𝐺 . Then, 𝜎𝑖 𝑗 ∈ 𝐼

(
L−1) .

Proof. When 𝑖 and 𝑗 belong to different components in𝐺 , the graph𝐺 can be decomposed into𝑚 disjoint sub-
graphs𝐺1,𝐺2, ...,𝐺𝑚 , where 𝑖 is in one component and 𝑗 is in another component. By reordering the vertices
of 𝐺 in a way such that the vertices of each connected component are grouped together, the concentration
matrix 𝐾 of the underlying uncolored graph can be written in a block-diagonal form:

𝐾 =

©«
𝐾1 0 · · · 0
0 𝐾2 · · · 0
...

...
. . .

...

0 0 · · · 𝐾𝑚

ª®®®®¬
,

where 𝐾𝑙 corresponds to the subgraph 𝐺𝑙 for 𝑙 ∈ {1, 2, . . . ,𝑚}. Since 𝐾 is block-diagonal, its inverse Σ = 𝐾−1

also exhibits block-diagonal structure:

Σ =

©«
Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · Σ𝑚

ª®®®®¬
.

Here, Σ𝑙 = 𝐾−1
𝑙

is the covariance matrix corresponding to the subgraph 𝐺𝑙 . Since 𝑖 and 𝑗 belong to different
connected components and the off-diagonal blocks of Σ are zero, 𝜎𝑖 𝑗 = 0 for all 𝑖, 𝑗 in different connected
components.
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For any uncolored graph, where all edges and vertices have distinct partial correlations, the vanishing ideal
𝐼
(
L−1) has dimension |𝑉 | + |𝐸 |, since there are as many distinct entries in 𝐾 that determine Σ, and thus the

vanishing ideal. Consequently, calculating the generators of this ideal can become algebraic complex, even
for relatively small graphs. To address this, we introduce graph colorings as a tool to reduce the dimension
of the vanishing ideal and the computational complexity in the next chapter.
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3 Obtaining binomial linear forms from symmetries

This chapter explores methods to reduce the dimension of the vanishing ideal 𝐼
(
L−1) and therefore simplify

the computation of the linear generators of 𝐼
(
L−1) . To achieve this, we introduce graph colorings, which

enable the analysis of graph symmetries. These symmetries offer a powerful technique for identifying specific
linear generators, the binomial linear ones. Finally, we provide an explicit characterization of all binomial
linear generators of the vanishing ideal for specific types of graphs with specific color configurations.

3.1 Graph colorings

Partial correlations between distinct vertices in a graph can be equal, reflecting structural equivalences in
the graph. When such partial correlations are equal, this reduces the complexity of the calculation of the
generators of the vanishing ideal 𝐼

(
L−1) . To formalize and make use of these equivalences, we introduce the

concept of graph coloring. Graph coloring is based on the idea of grouping variables, vertices or edges, with
approximately equal partial concentrations into equivalence classes. If two partial correlations are equal, the
corresponding vertices or edges in the graph are assigned the same color [3].
To describe this formally, let 𝜆(𝑖) and 𝜆({𝑖, 𝑗}) denote the colors of a vertex 𝑖 ∈ 𝑉 and an edge {𝑖, 𝑗} ∈ 𝐸,

respectively. The relationship between the colorings and the concentration matrix is then as described in [2]:

Definition 3.1.1 (Concentration matrix of a colored graph). Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with
associated concentration matrix 𝐾 . The matrix 𝐾 has the following properties:

1. If the vertices 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 have the same partial correlation and are therefore in the same equiva-
lence class, then 𝜆(𝑖) = 𝜆( 𝑗) and 𝑘𝑖𝑖 = 𝑘 𝑗 𝑗 .

2. If the edges {𝑖, 𝑗} ∈ 𝐸 and {𝑙,𝑚} ∈ 𝐸 have the same partial correlation, then 𝜆({𝑖, 𝑗}) = 𝜆({𝑙,𝑚}) and
𝑘𝑖 𝑗 = 𝑘𝑙𝑚 .

This approach not only reduces the number of free parameters in the concentration matrix but also influ-
ences the structure of the vanishing ideal 𝐼

(
L−1) . Specifically, the dimension of the vanishing ideal is directly

tied to the number of distinct entries in the concentration matrix, which corresponds to the number of distinct
colors used in the graph. Fewer colors correspond to a lower dimensional linear subspace, offering a more
compact representation of the ideal and reducing the computational time required to calculate the generators
of the vanishing ideal. The benefits of graph coloring are illustrated in the following example, which is a
colored version of Example 2.3.1:

Example 3.1.2. Let 𝐺 be the 4-cycle defined in Example 2.3.1, with the following specific coloring:

1 2

34
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In this example, all vertices are in the same equivalence class, so all diagonal entries of the concentration
matrix are equal. Furthermore, the edges {1, 2}, {3, 4}, and {1, 4} share the same color, leading to the following
concentration matrix:

𝐾 =

©«
𝑘11 𝑘12 0 𝑘12
𝑘12 𝑘11 𝑘23 0
0 𝑘23 𝑘11 𝑘12
𝑘12 0 𝑘12 𝑘11

ª®®®¬ .
Calculating the pull-back map yields the covariance matrix Σ, enabling us to find the generators of the ideal
of the reciprocal variety 𝐼

(
L−1) . In this case, the dimension of the ideal is 3, since there are 3 distinct entries

in the concentration matrix 𝐾 . Compared to the uncolored version of this graph, the degrees of freedom are
reduced by 5, significantly simplifying the system. This coloring also results in some binomial linear forms
within the vanishing ideal:

𝜎22 − 𝜎33, 𝜎13 − 𝜎24, 𝜎12 − 𝜎34, 𝜎11 − 𝜎44.

In the next section, we provide an explanation of the origin of these binomial linear forms.

3.2 Graph symmetries and induced binomial linear forms

Specific graph coloring configurations naturally reveal graph symmetries. Intuitively, a graph symmetry
refers to a rearrangement, or permutation, of the vertices and edges of a graph such that the graph remains
unchanged after the transformation, preserving the relationships between all vertices and edges. In other
words, a symmetry is a way of shuffling the graph while maintaining its structure and the connections be-
tween its elements. These graph symmetries have an interesting role in determining the algebraic relations
among the entries of Σ and consequently the generators of the 𝐼

(
L−1) . To begin this investigation, we first

recall the definition of a graph symmetry as stated in [3]:

Definition 3.2.1 (Graph symmetry). A symmetry of a graph 𝐺 is a permutation matrix 𝑃 ∈ 𝐺𝐿(𝑛,ℝ), the
general linear group of invertible matrices, for which the following equation holds:

𝑃𝐾𝑃−1 = 𝐾,

where 𝐾 is the concentration matrix associated with 𝐺 .

Remark 3.2.2. Whenever a permutation matrix 𝑃 meets this condition for the concentration matrix 𝐾 , it
also holds that 𝑃𝐴𝑃−1 = 𝐴 for the corresponding adjacency matrix 𝐴 of 𝐺 . This is because 𝐴 has the same
structure as 𝐾 , where all non-zero entries are equal to one, except for the diagonal, which is zero in 𝐴.

Using these symmetries, one can derive the binomial linear generators of the vanishing ideal 𝐼
(
L−1) :

Proposition 3.2.3. [3, Prop. 2.2] Let 𝐺 be a colored graph and 𝑃 ∈ 𝐺𝐿(𝑛,ℝ) be a symmetry of that graph.
Then, the entries of the matrix 𝑃Σ𝑃−1 −Σ, where Σ is the covariance matrix of𝐺 , vanish on L−1, and the distinct
entries form binomial linear generators of the ideal 𝐼

(
L−1) .

Proof. If 𝑃 is a symmetry of𝐺 , then by Definition 3.2.1, 𝑃𝐾𝑃−1 = 𝐾 for the concentration matrix 𝐾 ∈ L of the
graph. Since Σ = 𝐾−1 ∈ L−1, it also holds that 𝑃Σ𝑃−1 = Σ. Subtracting Σ from both sides yields 𝑃Σ𝑃−1−Σ = 0,
which implies that the entries of 𝑃Σ𝑃−1 − Σ vanish on L−1. Since 𝑃 is a permutation matrix, the entries of
this difference are binomial linear forms.

Following the terminology introduced in [3], we refer to these linear forms as induced by symmetries, and we
say that the ideal 𝐼

(
L−1) is induced by symmetries if the entire linear part of the ideal is generated by these

forms. To illustrate the connection between graph symmetries and the generation of binomial linear forms,
consider the following example:
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Example 3.2.4. Let 𝐺 be the following disconnected graph:

1 2

3

45

Since the graph consists of two disconnected components, we can apply Proposition 2.3.2, which ensures that
the following linear forms vanish on the reciprocal variety and are therefore elements of 𝐼

(
L−1) :

𝜎13, 𝜎23, 𝜎34, 𝜎35.

Moreover, the only non-trivial symmetry of this graph is the permutation swapping vertices 1 and 2 as well
as 5 and 6. The associated permutation matrix 𝑃 is:

𝑃 =

©«
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

ª®®®®®¬
.

By Proposition 3.2.3, all binomial linear forms defined by the distinct entries of 𝑃Σ𝑃−1 − Σ belong to the ideal
𝐼
(
L−1) . The covariance matrix Σ ∈ L−1 has the following generic structure:

Σ =

©«
𝜎11 𝜎12 𝜎13 𝜎14 𝜎15
𝜎12 𝜎22 𝜎23 𝜎24 𝜎25
𝜎13 𝜎23 𝜎33 𝜎34 𝜎35
𝜎14 𝜎24 𝜎34 𝜎44 𝜎45
𝜎15 𝜎25 𝜎35 𝜎45 𝜎55

ª®®®®®¬
.

We compute 𝑃Σ𝑃−1 − Σ as follows:

𝑃Σ𝑃−1 − Σ =

©«
−𝜎11 + 𝜎22 0 −𝜎13 + 𝜎23 −𝜎14 + 𝜎25 −𝜎15 + 𝜎24

0 𝜎11 − 𝜎22 𝜎13 − 𝜎23 𝜎15 − 𝜎24 𝜎14 − 𝜎25
−𝜎13 + 𝜎23 𝜎13 − 𝜎23 0 −𝜎34 + 𝜎35 𝜎34 − 𝜎35
−𝜎14 + 𝜎25 𝜎15 − 𝜎24 −𝜎34 + 𝜎35 −𝜎44 + 𝜎55 0
−𝜎15 + 𝜎24 𝜎14 − 𝜎25 𝜎34 − 𝜎35 0 𝜎44 − 𝜎55

ª®®®®®¬
.

Thus, by Proposition 3.2.3, we conclude that the following binomial linear forms belong to the vanishing ideal
𝐼
(
L−1) :

𝜎11 − 𝜎22, 𝜎15 − 𝜎24, 𝜎44 − 𝜎55, 𝜎14 − 𝜎25.

Using the pull-back map approach outlined in Section 2.3, we can verify whether these linear forms pro-
vide a complete description of the linear part of the ideal. By executing the Macaulay2 code provided in
Appendix A.1, we conclude that all linear generators of 𝐼

(
L−1) are given by:

𝜎13, 𝜎23, 𝜎34, 𝜎35, 𝜎11 − 𝜎22, 𝜎15 − 𝜎24, 𝜎44 − 𝜎55, 𝜎14 − 𝜎25.

Thus, in this example, all binomial linear forms are induced by symmetries.
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3.3 Uniform colored graphs

Uniform colored graphs represent a specific class of colored graphs for which Davies andMarigliano provided
deeper insights into the structure of the linear generators of the vanishing ideal. As defined in [3], a uniform
colored graph is a graph where all vertices have the same partial correlation and all edges share a different,
uniform partial correlation. Consequently, the symmetric concentration matrix of a uniform colored graph
exhibits a special structure [3]:

𝐾 = 𝑘11𝐼𝑑 + 𝑘12𝐴,

where 𝑘11 is the partial correlation of all vertices and 𝐼𝑑 is the 𝑛×𝑛 identity matrix. Similarly, 𝑘12 is the partial
correlation of all edges and 𝐴 the adjacency matrix of the underlying graph. The special properties of such
graphs are illustrated in the graph by assigning a single color to all vertices and a different color to all edges.
Examples of such graphs are shown in Figure 3.1.
To characterize the linear generators of the ideal 𝐼

(
L−1) for uniform colored graphs, we first need an

important intermediate result. The following corollary introduced in [3] provides crucial information on the
number of linearly independent linear forms, which is essential for the analysis.

Corollary 3.3.1. [3, Corollary 3.3] Let𝐺 be an undirected uniform colored graph with vertex set𝑉 . The number
of linearly independent linear forms in the vanishing ideal 𝐼

(
L−1) that are induced by symmetries is

(
𝑛+1
2
)
− 𝑠 ,

where 𝑠 denotes the number of orbits of the entrywise action of Aut(𝐺) on the set of unordered pairs of vertices
𝑉 ×𝑉 .

Proof. The set of unordered pairs of vertices is𝑉 ×𝑉 = {(1, 1), (1, 2), . . . , (1, 𝑛), (2, 2), (2, 3), . . . , (𝑛, 𝑛)}, which
has

(
𝑛+1
2
)
elements. The automorphism group Aut(𝐺) acts on 𝑉 × 𝑉 by permuting vertices in a way that

preserves the adjacency structure of the graph. This action partitions𝑉 ×𝑉 into 𝑠 orbits, denoted by𝑌1, . . . , 𝑌𝑠 ,
such that:

∑𝑠
𝑖=1 |𝑌𝑖 | =

(
𝑛+1
2
)
. For each orbit 𝑌𝑖 , any pair of vertices in that orbit can be mapped to any other

pair in 𝑌𝑖 to produce a binomial linear form. Thus, for each orbit 𝑌𝑖 , there are |𝑌𝑖 | − 1 linearly independent
binomial linear forms in the vanishing ideal 𝐼

(
L−1) . Summing over all orbits, the total number of linearly

independent binomial linear forms in 𝐼
(
L−1) is:

𝑠∑︁
𝑖=1

(
|𝑌𝑖 | − 1

)
=

𝑠∑︁
𝑖=1

|𝑌𝑖 | − 𝑠 =
(
𝑛 + 1
2

)
− 𝑠 .

The forms are induced by symmetries since they arise from applying an element of the automorphism group
to a pair in the set𝑉 ×𝑉 . This action corresponds to a permutation of the vertices in that pair, preserving the
adjacency structure of the graph. Thus, by Definition 3.2.1 and Proposition 3.2.3 we complete the proof.

Let 𝑟 denote the number of distinct eigenvalues of the adjacency matrix 𝐴. According to [4], the total
number of linearly independent linear generators of the vanishing ideal is given by

(
𝑛+1
2
)
− 𝑟 . Comparing the

total number of linear forms in the vanishing ideal 𝐼
(
L−1) with those induced by symmetries, we conclude

that, for uniform colored graphs, the entire linear part of 𝐼
(
L−1) is induced by symmetries if and only if 𝑟 = 𝑠

[3]. In this context, Davies and Marigliano examined four types of graphs:

1. The first one is the cycle graph𝐶𝑛 , which is formed by arranging 𝑛 vertices in a circular sequence. Each
vertex is connected to exactly two others, creating a closed loop.

2. The second type is the complete graph 𝐾𝑛 , where every vertex is directly connected to every other
vertex, resulting in the maximum number of edges.

3. The third type is the complete bipartite graph 𝐾𝑛,𝑛 , formed by splitting the vertices into two groups
of size 𝑛, where every vertex in one group is connected to every vertex in the other group. No edges
connect vertices within the same group.

4. Finally, the hyperoctahedral graph 𝐻𝑛 is based on the complete graph 𝐾2𝑛 , but the edges {{2𝑘 − 1, 2𝑘} |
𝑘 ∈ {1, 2, . . . , 𝑛}} are removed.
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The following figure shows examples of these four types of graphs with 6 vertices and uniform coloring:

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

Figure 3.1 (a) Cycle graph 𝐶6, (b) Complete graph 𝐾6, (c) Complete bipartite graph 𝐾3,3, (d) Hyperoctahedral graph 𝐻3.

For these types of graphs with uniform coloring, Davies and Marigliano provided a total description of the
linear part of the ideal 𝐼

(
L−1) , which is given by the following theorem:

Theorem 3.3.2. [3, Theorem 3.4] The linear part of 𝐼
(
L−1) is induced by symmetries for the following uniform

colored graph types and precisely characterized as follows:

1. For a cycle graph 𝐶𝑛 , the linear part of 𝐼
(
L−1) consists of the relations:

𝜎11+𝑑 − 𝜎𝑖𝑖+𝑑 , for 𝑖 ∈ {2, ..., 𝑛} and 𝑑 ∈ {0, ...,
⌊𝑛
2

⌋
},

where all indices are taken modulo n.

2. For a complete graph 𝐾𝑛 , the linear part of 𝐼
(
L−1) is generated by:

𝜎11 − 𝜎𝑖𝑖 , for 𝑖 ∈ 𝑉 ,
𝜎12 − 𝜎𝑖 𝑗 , for {𝑖, 𝑗} ∈ 𝐸.

3. For a complete bipartite graph 𝐾𝑛,𝑛 , the linear part of 𝐼
(
L−1) is given by:

𝜎11 − 𝜎𝑖𝑖 , for 𝑖 ∈ 𝑉 ,
𝜎12 − 𝜎𝑖 𝑗 , for {𝑖, 𝑗} ∈ 𝐸,
𝜎13 − 𝜎𝑖 𝑗 , for {𝑖, 𝑗} ∈ 𝐸𝑐 .

4. For a hyperoctahedral graph 𝐻𝑛 , the linear part of 𝐼
(
L−1) is generated by:

𝜎11 − 𝜎𝑖𝑖 , for 𝑖 ∈ 𝑉 ,
𝜎13 − 𝜎𝑖 𝑗 , for {𝑖, 𝑗} ∈ 𝐸,
𝜎12 − 𝜎𝑖 𝑗 , for {𝑖, 𝑗} ∈ 𝐸𝑐 .

Proof. The result follows from comparing the number of eigenvalues 𝑟 of the adjacency matrix 𝐴 of the un-
derlying graph with the number of orbits 𝑠 under the action of Aut(𝐺) on pairs of vertices. The eigenvalue
results are provided by [1, pp. 11, 17]. We analyze each graph type separately:

1. The eigenvalues of the adjacency matrix of 𝐶𝑛 are given by:

2𝑐𝑜𝑠
(2𝑘𝜋
𝑛

)
, for 𝑘 ∈ {0, . . . ,

⌊𝑛
2

⌋
}.

Thus, 𝑟 =
⌊
𝑛
2
⌋
+ 1. The automorphism group Aut(𝐶𝑛) generates the following orbits: 𝑉 , 𝐸 and 𝐸𝑐

𝑑
=

{{𝑖, 𝑖 + 𝑑} | 𝑖 ∈ 𝑉 } for 𝑑 ∈ {2, . . . ,
⌊
𝑛
2
⌋
}. Therefore, 𝑠 = 2 + (

⌊
𝑛
2
⌋
− 1) =

⌊
𝑛
2
⌋
+ 1 = 𝑟 .

2. The eigenvalues of the adjacency matrix of 𝐾𝑛 are 𝑛 − 1 and −1, so 𝑟 = 2. Since the graph contains
the maximum number of edges, the automorphism group Aut(𝐾𝑛) acts on the orbits 𝑉 and 𝐸. Thus,
𝑠 = 𝑟 = 2.
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3. The eigenvalues of the adjacency matrix of 𝐾𝑛,𝑛 are −𝜆, 0 and 𝜆 for some 𝜆 > 0, giving 𝑟 = 3. The
automorphism group Aut(𝐾𝑛,𝑛) partitions into three orbits: 𝑉 , 𝐸, and 𝐸𝑐 . Thus, 𝑠 = 𝑟 = 3.

4. The eigenvalues of the adjacency matrix of 𝐻𝑛 are 2𝑛 − 1, 0 and −2. The automorphism group Aut(𝐻𝑛)
acts on three orbits: 𝑉 , 𝐸, and 𝐸𝑐 = {{2𝑘 − 1, 2𝑘} | 𝑘 ∈ {1, . . . , 𝑛}}. Thus, 𝑠 = 𝑟 = 3.

Since 𝑟 = 𝑠 in all cases, all binomial linear forms in 𝐼
(
L−1) are induced by symmetries.

For these four graph types with uniform coloring, the entire linear part of the vanishing ideal 𝐼
(
L−1) is

induced by symmetries, confirming the validity of Conjecture 1.0.1 through Theorem 3.3.2. However, uniform
coloring represents only one of many possible color configurations. In the subsequent chapters, we aim to
examine the validity of Conjecture 1.0.1 for all possible colorings within one of the graph classes discussed in
this section. We focus on cycle graphs because their simple, periodic structure allows symmetries to be easily
identified and analyzed. Therefore, they are particularly suitable for understanding the relationship between
graph symmetries and the linear generators of 𝐼

(
L−1) , allowing for a more systematic and detailed study.
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4 Binomial linear forms in the vanishing ideal of
cyclic graphs

This chapter addresses the main objective of this thesis, which is evaluating whether Conjecture 1.0.1, pro-
posed in [3], holds for all 𝑛-cycles. The conjecture, previously introduced in Chapter 1, states:

Conjecture 4.0.1. [3, Conjecture 4.2] Let 𝐺 be a colored 𝑛-cycle. All binomial linear forms in 𝐼
(
L−1) are

induced by symmetries.

Building on the insights from [3], revisited in the previous chapter, this conjecture can be equivalently refor-
mulated as an if and only if statement:

Conjecture 4.0.2. Let𝐺 be a colored 𝑛-cycle. Then a linear binomial exists in the vanishing ideal 𝐼
(
L−1) if

and only if there is a corresponding symmetry in the graph 𝐺 .

To investigate the validity of this conjecture, we performed a computational study of the binomial linear
relations associated with 𝑛-cycles of size 𝑛 = 3, 4 and 5, using the Macaulay2 code provided in Appendix A.2.
Representative examples of 5-cycles are provided in Section 4.1. We also analyzed graph symmetries to better
understand their role in generating binomial linear forms and examined the implications of these forms being
elements of the vanishing ideal. This systematic approach aims to determine whether the conjecture holds
true for all 𝑛-cycles.

4.1 Computational study on binomial linear generators for the 5-cycle

To systematically investigate the role of coloring configurations in the emergence of binomial linear forms,
we developed an algorithm that computes the binomial linear forms in 𝐼

(
L−1) for any coloring configuration

of an 𝑛-cycle, where 𝑛 ∈ ℕ, on a set of 𝑛 distinct vertex colors and a disjoint set of 𝑛 distinct edge colors.
The implementation of this algorithm is provided in Appendix A.2. For 𝑛 = 5, the computation required
significant time, limiting our study to cycles of size 3, 4, and 5. While all three cycles exhibit binomial linear
forms, we focus on providing examples from various scenarios of the 5-cycle. This is because the 5-cycle is the
largest cycle for which we were able to fully compute the linear part of the vanishing ideal. These examples
highlight how the specific coloring configurations influence the appearance of binomial linear forms in the
ideal 𝐼

(
L−1) .

Graph Binomial linear forms in 𝐼
(
L−1)

1

5

4 3

2

𝜎44 − 𝜎55 𝜎34 − 𝜎45 𝜎33 − 𝜎55
𝜎25 − 𝜎35 𝜎24 − 𝜎35 𝜎23 − 𝜎45
𝜎22 − 𝜎55 𝜎15 − 𝜎45 𝜎14 − 𝜎35
𝜎13 − 𝜎35 𝜎12 − 𝜎45 𝜎11 − 𝜎55

Table 4.1 Binomial linear generators of 𝐼
(
L−1) for colored 5-cycles. The left column presents the colored cycles and

the right column lists the corresponding binomial linear forms.
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Graph Binomial linear forms in 𝐼
(
L−1)

1

5

4 3

2

𝜎33 − 𝜎44 𝜎24 − 𝜎35 𝜎23 − 𝜎45
𝜎22 − 𝜎55 𝜎13 − 𝜎14 𝜎12 − 𝜎15

1

2

34

5
None.

1

2

34

5

𝜎23 − 𝜎34 𝜎22 − 𝜎44 𝜎14 − 𝜎25
𝜎13 − 𝜎35 𝜎12 − 𝜎45 𝜎11 − 𝜎55

1

2

34

5
None.

1

2

34

5

𝜎23 − 𝜎34 𝜎22 − 𝜎44 𝜎14 − 𝜎25
𝜎13 − 𝜎35 𝜎12 − 𝜎45 𝜎11 − 𝜎55

1

2

34

5

𝜎34 − 𝜎45 𝜎33 − 𝜎55 𝜎15 − 𝜎23
𝜎14 − 𝜎24 𝜎13 − 𝜎25 𝜎11 − 𝜎22

Table 4.2 Continuation of Table 4.1
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Graph Binomial linear forms in 𝐼
(
L−1)

1

2

34

5

𝜎33 − 𝜎44 𝜎24 − 𝜎35 𝜎23 − 𝜎45
𝜎22 − 𝜎55 𝜎13 − 𝜎14 𝜎12 − 𝜎15

1

2

34

5
None.

1

2

34

5

𝜎23 − 𝜎34 𝜎22 − 𝜎44 𝜎14 − 𝜎25
𝜎13 − 𝜎35 𝜎12 − 𝜎45 𝜎11 − 𝜎55

1

2

34

5
None.

1

2

34

5
None.

Table 4.3 Continuation of Table 4.2

The results of the conducted computational study for the 3- and 5-cycles suggest that the presence or
absence of binomial linear forms in 𝐼

(
L−1) is likely to be dependent on the existence of an axis of symmetry

in the graph, providing evidence in support of Conjecture 4.0.2. However, specific colorings of the 4-cycle
seem to give rise to binomial linear forms in the vanishing ideal, even in the absence of symmetry. These
observationsmotivate a deeper investigation into the interplay between graph symmetries and binomial linear
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forms, with the aim of determining whether Conjecture 4.0.2 holds for all 𝑛-cycles or if a counterexample can
be constructed.
A key insight, directly following from the results established in [3], is that the sufficient condition of the

conjecture holds universally, regardless of 𝑛. This leads to the following theorem:

Theorem 4.1.1. Let 𝐺 be a colored 𝑛-cycle. If there exists a symmetry in the graph 𝐺 , then all binomial linear
forms obtained from that symmetry are contained in 𝐼

(
L−1) .

Proof. If a symmetry exists in the graph, then, by Definition 3.2.1, there is a permutation matrix 𝑃 such that
𝑃𝐾𝑃−1 − 𝐾 = 0 for the concentration matrix 𝐾 of the graph. By Proposition 3.2.3, all distinct binomial linear
forms arising from the equation 𝑃Σ𝑃−1 − Σ = 0 are contained in 𝐼

(
L−1) . Thus, all binomial linear forms

obtained from a symmetry are contained in 𝐼
(
L−1) .

To evaluate the necessary condition of Conjecture 4.0.2, we first delve into a detailed study of graph symme-
tries. Following this, we analyze the implications of a binomial linear form being an element of the vanishing
ideal 𝐼

(
L−1) , aiming to uncover its relationship with a potential underlying symmetry of the graph.

4.2 Analysis of graph symmetries

Definition 4.2.1. The automorphism group of a graph 𝐺 = (𝑉 , 𝐸) is defined as:

Aut(𝐺) = {𝜋 : 𝐺 ↦→ 𝐺 | {𝜋 (𝑖), 𝜋 ( 𝑗)} ∈ 𝐸 for {𝑖, 𝑗} ∈ 𝐸 and 𝜋 is bijective}.

Theorem 4.2.2. [8, Theorem 4.5] The automorphism group of a cycle graph 𝐶𝑛 is isomorphic to the dihedral
group 𝐷𝑛 .

Proof. The dihedral group 𝐷𝑛 consists of 𝑛 rotation and 𝑛 reflection. We define a map 𝜑 : 𝐷𝑛 ↦→ Aut(𝐶𝑛),
where each rotation 𝑟𝑘 ∈ 𝐷𝑛 maps to the vertex permutation 𝜑 (𝑟𝑘 ) (𝑖) = (𝑘 + 𝑖) mod 𝑛, and each reflection
𝑠𝑘 ∈ 𝐷𝑛 maps to 𝜑 (𝑠𝑘 ) (𝑖) = (𝑘 − 𝑖) mod 𝑛. For any {𝑖, 𝑗} ∈ 𝐸 and any rotation 𝑟𝑘 ∈ 𝐷𝑛 , the vertices
𝜑 (𝑟𝑘 ) (𝑖) = (𝑖 + 𝑘) mod 𝑛 and 𝜑 (𝑟𝑘 ) ( 𝑗) = ( 𝑗 + 𝑘) mod 𝑛 are still adjacent due to the adjacency structure
of the cyclic graph. Therefore, the edge is preserved, {𝜑 (𝑟𝑘 ) (𝑖), 𝜑 (𝑟𝑘 ) ( 𝑗)} ∈ 𝐸, and thus 𝜑 (𝑟𝑘 ) ∈ Aut(𝐶𝑛).
Similarly, for any {𝑖, 𝑗} ∈ 𝐸, the reflected vertices 𝜑 (𝑠𝑘 ) (𝑖) = (𝑘 − 𝑖) mod 𝑛 and 𝜑 (𝑠𝑘 ) ( 𝑗) = (𝑘 − 𝑗) mod 𝑛
are still adjacent, ensuring that {𝜑 (𝑠𝑘 ) (𝑖), 𝜑 (𝑠𝑘 ) ( 𝑗)} is an element of 𝐸. Thus, 𝜑 (𝑠𝑘 ) ∈ Aut(𝐶𝑛). Hence, the
map 𝜑 is well-defined.
For any 𝑟𝑞, 𝑟𝑟 , 𝑠𝑢, 𝑠𝑣 ∈ 𝐷𝑛 and 𝑖 ∈ 𝑉 , we verify that 𝜑 respects the group operation:

𝜑 (𝑟𝑞 ◦ 𝑟𝑟 ) (𝑖) = 𝜑 (𝑟𝑞+𝑟 ) (𝑖) = (𝑖 + 𝑞 + 𝑟 ) mod 𝑛 = 𝜑 (𝑟𝑞) ((𝑖 + 𝑟 ) mod 𝑛) = 𝜑 (𝑟𝑞) (𝑖) ◦ 𝜑 (𝑟𝑟 ) (𝑖),
𝜑 (𝑟𝑞 ◦ 𝑠𝑢) (𝑖) = 𝜑 (𝑠𝑞+𝑢) (𝑖) = (𝑞 + 𝑢 − 𝑖) mod 𝑛 = 𝜑 (𝑟𝑞) ((𝑢 − 𝑖) mod 𝑛) = 𝜑 (𝑟𝑞) (𝑖) ◦ 𝜑 (𝑠𝑢) (𝑖),
𝜑 (𝑠𝑢 ◦ 𝑟𝑞) (𝑖) = 𝜑 (𝑠𝑢−𝑞) (𝑖) = (𝑢 − 𝑞 − 𝑖) mod 𝑛 = 𝜑 (𝑠𝑢) ((𝑞 + 𝑖) mod 𝑛) = 𝜑 (𝑠𝑢) (𝑖) ◦ 𝜑 (𝑟𝑞) (𝑖),
𝜑 (𝑠𝑢 ◦ 𝑠𝑣) (𝑖) = 𝜑 (𝑟𝑢−𝑣) (𝑖) = (𝑖 + 𝑢 − 𝑣) mod 𝑛 = 𝜑 (𝑠𝑢) ((𝑣 − 𝑖) mod 𝑛) = 𝜑 (𝑠𝑢) (𝑖) ◦ 𝜑 (𝑠𝑣) (𝑖) .

Thus, 𝜑 is a homomorphism, as per Definition 1.3 in [8]. The dihedral group 𝐷𝑛 consists of distinct rotations
and reflections, and 𝜑 assigns a unique automorphism in Aut(𝐶𝑛) to each element of𝐷𝑛 . Hence, 𝜑 is injective.
Consider an automorphism 𝜋 ∈ Aut(𝐶𝑛). The image of 𝑖 under 𝜋 can be any vertex 𝑗 ∈ 𝑉 , giving 𝑛 possible
choices for 𝑗 . Since 𝜋 preserves the adjacency structure of 𝐶𝑛 , the image of the adjacent vertex 𝑖 + 1 mod 𝑛
must be either 𝑗 +1 mod 𝑛 or 𝑗 −1 mod 𝑛. These two choices for the adjacency preserving action determine
two unique automorphisms. Thus, Aut(𝐶𝑛) has 2𝑛 elements, matching that also 𝐷𝑛 has 2𝑛 elements. Hence,
𝜑 is also surjective. Therefore, 𝜑 is a bijective homomorphism and thus an isomorphism by Definition 1.4 in
[8]. We conclude that Aut(𝐶𝑛) � 𝐷𝑛 .

Theorem 4.2.3. A permutation matrix 𝑃 ∈ ℝ𝑛×𝑛 satisfies 𝑃𝐴𝑃−1 = 𝐴, where 𝐴 is the adjacency matrix of a
graph 𝐺 with 𝑛 vertices, if and only if 𝑃 corresponds to an element in 𝐷𝑛 .
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Proof. This is a well-known result in algebraic graph theory. Nevertheless, we include the proof for complete-
ness. Additional details can be found in [6]. We prove the statement by showing both implications:

First, assume that the permutation matrix 𝑃 = (𝑝𝑖 𝑗 ) satisfies 𝑃𝐴𝑃−1 = 𝐴, where 𝐴 = (𝑎𝑖 𝑗 ) is the adjacency
matrix of a graph 𝐺 . Let 𝑓 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} be the map defined by 𝑓 (𝑖) = 𝑗 if and only if 𝑝𝑖 𝑗 = 1.
Since 𝑃 is a permutation matrix, each row and each column of 𝑃 contains exactly one 1, implying that 𝑓 is a
bijection. Now, consider a vector 𝑥 ∈ ℝ𝑛 . The 𝑖-th entry of the vector 𝑃𝑥 is given by

(𝑃𝑥)𝑖 =
𝑛∑︁
𝑗=1

𝑝𝑖 𝑗𝑥 𝑗 = 𝑥 𝑓 (𝑖 ) ,

since 𝑝𝑖 𝑗 = 0 for all 𝑗 ≠ 𝑓 (𝑖) and 𝑝𝑖 𝑓 (𝑖 ) = 1. Therefore, we can express the result of multiplying 𝑃 by 𝑥 as:

𝑃𝑥 =

©«
𝑥 𝑓 (1)
𝑥 𝑓 (2)
...

𝑥 𝑓 (𝑛)

ª®®®®¬
. (4.1)

Therefore,

𝑃𝐴 =

©«
𝑎𝑓 (1)1 𝑎𝑓 (1)2 . . . 𝑎𝑓 (1)𝑛
𝑎𝑓 (2)1 𝑎𝑓 (2)2 . . . 𝑎𝑓 (2)𝑛
...

...
. . .

...

𝑎𝑓 (𝑛)1 𝑎𝑓 (𝑛)2 . . . 𝑎𝑓 (𝑛)𝑛

ª®®®®¬
,

and by the transposed version of (4.1):

𝑃𝐴𝑃−1 = 𝑃𝐴𝑃T =

©«
𝑎𝑓 (1) 𝑓 (1) 𝑎𝑓 (1) 𝑓 (2) . . . 𝑎𝑓 (1) 𝑓 (𝑛)
𝑎𝑓 (2) 𝑓 (1) 𝑎𝑓 (2) 𝑓 (2) . . . 𝑎𝑓 (2) 𝑓 (𝑛)

...
...

. . .
...

𝑎𝑓 (𝑛) 𝑓 (1) 𝑎𝑓 (𝑛) 𝑓 (2) . . . 𝑎𝑓 (𝑛) 𝑓 (𝑛)

ª®®®®¬
.

This holds since 𝑃 is a permutation matrix, implying that 𝑃𝑇 = 𝑃−1. For 𝑃𝐴𝑃−1 = 𝐴 to hold, it must be true
that for all 𝑖, 𝑗 ∈ 𝑉 , the entries 𝑎𝑖 𝑗 and 𝑎𝑓 (𝑖 ) 𝑓 ( 𝑗 ) are equal. This implies that the map 𝑓 preserves the adjacency
relation and since 𝑓 is bijective, 𝑓 ∈ Aut(𝐺). Thus, by Theorem 4.2.2, 𝑃 corresponds to an element of 𝐷𝑛 , as
required.
Next, let 𝑃 be the permutation matrix corresponding to the element 𝜋 ∈ 𝐷𝑛 . By Definition 4.2.1 and

Theorem 4.2.2, for 𝑖, 𝑗 ∈ 𝑉 , we have 𝑎𝑖 𝑗 = 1 if and only if 𝑎𝜋 (𝑖 )𝜋 ( 𝑗 ) = 1. Consider 𝐵 := 𝑃−1𝐴𝑃 . For any 𝑖, 𝑗 ∈ 𝑉 ,
we compute:

𝑎𝑖 𝑗 = 𝑒
T
𝑖 𝐴𝑒 𝑗 = 𝑒

T
𝜋 (𝑖 )𝐴𝑒𝜋 ( 𝑗 ) = (𝑃𝑒𝑖)T𝐴(𝑃𝑒 𝑗 ) = 𝑒T𝑖 (𝑃T𝐴𝑃)𝑒 𝑗 = 𝑒T𝑖 (𝑃−1𝐴𝑃)𝑒 𝑗 = 𝑒T𝑖 𝐵𝑒 𝑗 = 𝑏𝑖 𝑗 .

Therefore, 𝐴 = 𝐵 = 𝑃−1𝐴𝑃 .

Theorem 4.2.4. Every symmetry of an 𝑛-cycle is either a reflection or a rotation.

Proof. By Remark 3.2.2, any symmetry of 𝐶𝑛 is a permutation matrix 𝑃 ∈ ℝ𝑛×𝑛 that satisfies 𝑃𝐴𝑃−1 = 𝐴 for
the adjacency matrix 𝐴 of 𝐶𝑛 . Therefore, according to Theorem 4.2.3, 𝑃 corresponds to an element in the
dihedral group 𝐷𝑛 , which consists of rotations and reflections only. Thus, 𝑃 must be either a rotation or a
reflection.

4.3 Reflections and rotations under the parametrization

To deepen our understanding of the role symmetry plays in a graph, we continue by exploring its implications.
A key tool in this exploration is a theorem established by Jones and West. Before presenting the theorem, it
is essential to recall the definition of a path:
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Definition 4.3.1. A path 𝑃 is a graph with vertex set 𝑉 (𝑃) = {1, 2, . . . , 𝑛} and edge set 𝐸 (𝑃) = {{𝑖, 𝑖 + 1} |
1 ≤ 𝑖 ≤ 𝑛 − 1}, which is connected and acyclic.

Considering this, we now investigate the following theorem by Jones and West, which provides valuable
insight into the relationship between the edge structure of a graph and the entries of its associated covariance
matrix. Specifically, it shows how the entries of the covariance matrix can be expressed as sums over paths
in the graph, with weights determined by the entries of the concentration matrix:
Theorem 4.3.2. [5, Theorem 1] Consider an 𝑛-dimensional multivariate normal distribution with a finite and
non-singular covariance matrix Σ, and concentration matrix 𝐾 = Σ−1. The element of Σ corresponding to the
covariance between vertices 𝑖 and 𝑗 can be written as a sum of path weights over all paths in the graph between 𝑖
and 𝑗 :

𝜎𝑖 𝑗 =
∑︁

𝑃∈𝒫𝑖 𝑗

(−1)𝑚+1𝑘𝑝1𝑝2𝑘𝑝2𝑝3 . . . 𝑘𝑝𝑚−1𝑝𝑚

det(𝐾\𝑃 )
det(𝐾) ,

where 𝒫𝑖 𝑗 represents the set of paths between 𝑖 and 𝑗 , such that 𝑝1 = 𝑖 and 𝑝𝑚 = 𝑗 for all 𝑃 ∈ 𝒫𝑖 𝑗 , and 𝐾\𝑃 is
the matrix with rows and columns corresponding to the variables in the path 𝑃 omitted, with the determinant of
a zero-dimensional matrix taken to be 1.

Proof. The proof of this theorem is omitted here, as it is rigorously established in [5].

We will apply this theorem to our object of interest: cyclic graphs.
Corollary 4.3.3. Let 𝐺 be an 𝑛-cycle with concentration matrix 𝐾 and let 𝑖 and 𝑗 be vertices in 𝐺 . Then, there
exist precisely two distinct paths connecting 𝑖 and 𝑗 : a shorter path, denoted by 𝑖 ↔ 𝑗 , and a complementary
path, denoted by 𝑖

𝑐↔ 𝑗 . The covariance between the vertices 𝑖 and 𝑗 is then given by:

𝜎𝑖 𝑗 =
1

det(𝐾)
(
(−1)𝑛𝑖↔𝑗 + 1

∏
{𝑖′, 𝑗 ′ }∈𝑖↔𝑗

𝑘𝑖′ 𝑗 ′ det
(
𝐾\𝑖↔𝑗

)
+ (−1)𝑛𝑖 𝑐↔𝑗

+ 1 ∏
{𝑖′𝑐 , 𝑗 ′𝑐 }∈𝑖

𝑐↔𝑗

𝑘𝑖′𝑐 𝑗 ′𝑐 det
(
𝐾\𝑖 𝑐↔𝑗

) )
.

Here, 𝑛𝑖↔𝑗 denotes the number of vertices on the path 𝑖 ↔ 𝑗 , and 𝐾\𝑖↔𝑗 is the submatrix of the concentration
matrix 𝐾 , with rows and columns corresponding to variables used in the path 𝑖 ↔ 𝑗 omitted.

Proof. Due to the structure of a cycle, there are only two distinct paths connecting any two vertices in 𝑉 . As
a result, the formula in Theorem 4.3.2 simplifies to the expression given in this corollary.

For the rest of this thesis, we assume𝐺 = (𝑉 , 𝐸) to be a colored 𝑛-cycle, with 𝑉 as the set of 𝑛 vertices and
𝐸 as the set of edges. We will continue the convention established in Corollary 4.3.3 and denote the shorter
path between two vertices 𝑖, 𝑗 ∈ 𝑉 by 𝑖 ↔ 𝑗 , and the complementary path by 𝑖 𝑐↔ 𝑗 . Thus, both the shorter
and the complementary paths include the vertices 𝑖 and 𝑗 . Additionally, we will denote 𝑛𝑖↔𝑗 as the number
of vertices on the path 𝑖 ↔ 𝑗 . Note that the shorter path may not be unique, since in a cycle with an even
number of vertices the two paths could be of the same length for specific 𝑖, 𝑗 ∈ 𝑉 . Nevertheless, it is always
true that 𝑛𝑖↔𝑗 ≤ 𝑛𝑖 𝑐↔𝑗

.
Since the path on vertices 𝑉 \ 𝑉 (𝑖 ↔ 𝑗) is equal to the one on the vertices of the complementary path

without 𝑖 and 𝑗 , denoted by 𝑉
(
𝑖

𝑐↔ 𝑗 \ {𝑖, 𝑗}
)
, the concentration matrix 𝐾\𝑖↔𝑗 is equal to the concentration

matrix induced by the complementary path, with rows and columns corresponding to the vertices 𝑖 and 𝑗
omitted, which is 𝐾

𝑖
𝑐↔𝑗\{𝑖, 𝑗 } . Since the concentration matrix of paths has a specific pattern, we can derive an

explicit formula to efficiently compute the determinants required in Corollary 4.3.3.
Lemma 4.3.4. Let 𝑃 be a colored path in a graph𝐺 = (𝑉 , 𝐸) with𝑚 ≤ |𝑉 | vertices such that 𝐾𝑃 ∈ ℝ𝑚×𝑚 is the
concentration matrix that contains all rows and columns corresponding to the variables used in that path. Then
𝐾𝑃 is a tridiagonal matrix and its determinant is given by:

det(𝐾𝑃 ) =
⌊𝑚

2 ⌋∑︁
|𝑆 |=0,

𝑆⊆𝐸 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉 \𝑉 (𝑆 )

𝑘𝑣𝑣,
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where 𝑉 (𝑆) is the set of vertices incident to the edges in 𝑆 .

Proof. The concentration matrix induced by a path 𝑃 is tridiagonal since, by Definition 4.3.1, every vertex 𝑖
for 𝑖 ∈ {2, . . . ,𝑚 − 1} is connected to its two neighbors 𝑖 − 1 and 𝑖 + 1, while the vertices 1 and𝑚 are only
connected to 2 and𝑚 − 1, respectively. Let 𝐾𝑚×𝑚 denote the concentration matrix 𝐾𝑃 and 𝐸𝑚 the edge set
of the path 𝑃 including 𝑚 − 1 edges and 𝑉𝑚 the corresponding set of 𝑚 vertices. To prove the formula by
induction on 𝑚, the size of the matrix, we use the well-know recurrence relation for the determinant of a
tridiagonal matrix, which is given by:

det
(
𝐾𝑚×𝑚 )

= 𝑘𝑚𝑚 det
(
𝐾𝑚−1×𝑚−1) − 𝑘2𝑚−1𝑚 det

(
𝐾𝑚−2×𝑚−2) .

Base Case: Since 𝑚 = 1 is the trivial case, we start with 𝑚 = 2. The concentration matrix 𝐾 is symmetric,
therefore, the formula in this lemma gives:

det
(
𝐾2×2) = 1∑︁

|𝑆 |=0,
𝑆⊆𝐸2 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉2\𝑉 (𝑆 )

𝑘𝑣𝑣 = 𝑘11𝑘22 − 𝑘212.

One can easily verify that this determinant is correct.

Induction hypothesis: Assume the formula holds for all subpaths of 𝑃 of length smaller or equal to𝑚 − 1.

Induction step: Applying the recurrence relation and substituting the inductive hypothesis for det
(
𝐾𝑚−1×𝑚−1)

and det
(
𝐾𝑚−2×𝑚−2) , we find:

det
(
𝐾𝑚×𝑚 )

= 𝑘𝑚𝑚 det
(
𝐾𝑚−1×𝑚−1) − 𝑘2𝑚−1𝑚 det

(
𝐾𝑚−2×𝑚−2)

= 𝑘𝑚𝑚

⌊𝑚−1
2 ⌋∑︁

|𝑆 |=0,
𝑆⊆𝐸𝑚−1 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚−1\𝑉 (𝑆 )

𝑘𝑣𝑣 − 𝑘2𝑚−1𝑚

⌊𝑚−2
2 ⌋∑︁

|𝑆 |=0,
𝑆⊆𝐸𝑚−2 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚−2\𝑉 (𝑆 )

𝑘𝑣𝑣

For 𝑆 ⊆ 𝐸𝑚−1, the vertex𝑚 is never included in 𝑣 ∈ 𝑉𝑚−1 \ 𝑉 (𝑆). Hence, multiplying the product 𝑘𝑣𝑣 over
these vertices by 𝑘𝑚𝑚 is equivalent to taking the product of 𝑘𝑣𝑣 over 𝑣 ∈ 𝑉𝑚 \ 𝑉 (𝑆). Moreover, multiplying
the second sum by 𝑘2𝑚−1𝑚 corresponds to summing over all edge sets 𝑆 ⊆ 𝐸𝑚−2 that additionally include the
edge {𝑚 − 1,𝑚}. Since 𝑆 then contains one more edge than in the previous sum, the upper bound of the sum
increases by 1 and the sign switches. This new 𝑆 ensures that the vertices𝑚 − 1 and𝑚 are always included
in 𝑉 (𝑆). Consequently, we can rewrite the equation as:

=

⌊𝑚−1
2 ⌋∑︁

|𝑆 |=0,
𝑆⊆𝐸𝑚−1 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚\𝑉 (𝑆 )

𝑘𝑣𝑣 +
⌊𝑚

2 ⌋∑︁
|𝑆 |=0,

𝑆⊆𝐸𝑚−2 disjoint,
{𝑚−1,𝑚}∈𝑆

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚\𝑉 (𝑆 )

𝑘𝑣𝑣

In the first sum, since 𝐸𝑚−1 = 𝐸𝑚 \ {𝑚 − 1,𝑚}, we can rewrite 𝑆 ⊆ 𝐸𝑚−1 disjoint as 𝑆 ⊆ 𝐸𝑚 disjoint with
the additional condition that {𝑚 − 1,𝑚} ∉ 𝑆 . Furthermore, the upper bound of that sum can be increased by
1 since, for |𝑆 | =

⌊
𝑚
2
⌋
, the sum is empty as the edges in 𝑆 need to be disjoint, and {𝑚 − 1,𝑚} ∉ 𝑆 . In the

second sum, requiring {𝑚−1,𝑚} ∈ 𝑆 , we avoid the edge {𝑚−2,𝑚−1} in all summand due to the disjointness
condition. Thus, we can rewrite 𝑆 ⊆ 𝐸𝑚−2 disjoint with {𝑚−1,𝑚} ∈ 𝑆 as 𝑆 ⊆ 𝐸𝑚 disjoint with {𝑚−1,𝑚} ∈ 𝑆 :

=

⌊𝑚
2 ⌋∑︁

|𝑆 |=0,
𝑆⊆𝐸𝑚 disjoint,
{𝑚−1,𝑚}∉𝑆

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚\𝑉 (𝑆 )

𝑘𝑣𝑣 +
⌊𝑚

2 ⌋∑︁
|𝑆 |=0,

𝑆⊆𝐸𝑚 disjoint,
{𝑚−1,𝑚}∈𝑆

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚\𝑉 (𝑆 )

𝑘𝑣𝑣

Thus, we arrive at the desired formula:

=

⌊𝑚
2 ⌋∑︁

|𝑆 |=0,
𝑆⊆𝐸𝑚 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉𝑚\𝑉 (𝑆 )

𝑘𝑣𝑣
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Example 4.3.5. Consider a path 𝑃 with𝑚 = 4 vertices, where its concentration matrix is given by:

𝐾𝑃 =

©«
𝑘11 𝑘12 0 0
𝑘12 𝑘22 𝑘23 0
0 𝑘23 𝑘33 𝑘34
0 0 𝑘34 𝑘44

ª®®®¬ .
By applying the formula from Lemma 4.3.4, we can calculate the determinant of this matrix as follows:

det(𝐾4×4) =
2∑︁

|𝑆 |=0,
𝑆⊆𝐸 disjoint

(−1) |𝑆 |
∏

{𝑖, 𝑗 }∈𝑆
𝑘2𝑖 𝑗

∏
𝑣∈𝑉 \𝑉 (𝑆 )

𝑘𝑣𝑣

= 𝑘11𝑘22𝑘33𝑘44︸        ︷︷        ︸
for |𝑆 |=0

− 𝑘212𝑘33𝑘44 − 𝑘223𝑘11𝑘44 − 𝑘234𝑘11𝑘22︸                                        ︷︷                                        ︸
for |𝑆 |=1

+ 𝑘212𝑘234︸   ︷︷   ︸
for |𝑆 |=2

.

One can easily verify that this determinant is correct.

Now that we have established an efficient way to calculate the determinants in the covariance formula in
Corollary 4.3.3, we proceed to analyze the possible symmetries in a cycle graph 𝐶𝑛 . By Theorem 4.2.4, every
symmetry in a cycle graph is either a reflection or a rotation. Therefore, we analyze each type of symmetry
separately:

4.3.1 Reflection symmetry

Assume there exists a symmetry in the graph, which is a reflection. Suppose it maps the vertices 𝑖 → 𝑚

and 𝑗 → 𝑙 for some 𝑖, 𝑗, 𝑙,𝑚 ∈ 𝑉 , where 𝑖, 𝑗, 𝑙,𝑚 are not all the same (since this would correspond the trivial
case). The reflection symmetry preserves the structure of the graph, including adjacency and cyclic ordering
by Theorems 4.2.3 and 4.2.2. As a result, the relative positions of 𝑖 and 𝑗 are mirrored by 𝑚 and 𝑙 , and the
sequence of edges in 𝑖 ↔ 𝑗 maps directly onto𝑚 ↔ 𝑙 , ensuring that the shortest paths 𝑖 ↔ 𝑗 and𝑚 ↔ 𝑙 are
identical.
We analyze this symmetry by examining the structure of the paths between the vertices separately. In this
context, we denote 𝑃 ∼ 𝑄 to mean that the paths 𝑃 and 𝑄 are graphically identical.

Case 1: Suppose𝑚 and 𝑙 lie on the complementary path between 𝑖 and 𝑗 .
In this scenario, the complementary paths are given by:

𝑖
𝑐↔ 𝑗 = 𝑖 ↔𝑚 ↔ 𝑙 ↔ 𝑗,

𝑚
𝑐↔ 𝑙 =𝑚 ↔ 𝑖 ↔ 𝑗 ↔ 𝑙 .

The reflection symmetry in the graph yields 𝑖 ↔ 𝑗 ∼ 𝑚 ↔ 𝑙 , so it follows
directly that 𝑖 𝑐↔ 𝑗 ∼𝑚 𝑐↔ 𝑙 .

𝑖

𝑗

𝑚

𝑙

According to Corollary 4.3.3, for any pair of vertices 𝑖, 𝑗 ∈ 𝑉 , the 𝑖 𝑗-th entry of the covariance matrix Σ can
be expressed as the sum of contributions from the shortest path and its complementary path between 𝑖 and 𝑗 :

𝜎𝑖 𝑗 =
1

det(𝐾)
(
(−1)𝑛𝑖↔𝑗 + 1

∏
{𝑖′, 𝑗 ′ }∈𝑖↔𝑗

𝑘𝑖′ 𝑗 ′ det
(
𝐾\𝑖↔𝑗

)
+ (−1)𝑛𝑖 𝑐↔𝑗

+ 1 ∏
{𝑖′𝑐 , 𝑗 ′𝑐 }∈𝑖

𝑐↔𝑗

𝑘𝑖′𝑐 𝑗 ′𝑐 det
(
𝐾\𝑖 𝑐↔𝑗

) )
,

𝜎𝑚𝑙 =
1

det(𝐾)
(
(−1)𝑛𝑚↔𝑙 + 1

∏
{𝑚′,𝑙 ′ }∈𝑚↔𝑙

𝑘𝑚′𝑙 ′ det
(
𝐾\𝑚↔𝑙

)
+ (−1)𝑛𝑚 𝑐↔𝑙

+ 1 ∏
{𝑚′

𝑐 ,𝑙
′
𝑐 }∈𝑚

𝑐↔𝑙

𝑘𝑚′
𝑐𝑙

′
𝑐

det
(
𝐾\𝑚 𝑐↔𝑙

) )
,

where 𝐾\𝑖↔𝑗 is the concentration matrix of the cycle with rows and columns corresponding to variables used
in the path 𝑖 ↔ 𝑗 omitted. From the reflection 𝑖 ↔ 𝑗 ∼𝑚 ↔ 𝑙 and 𝑖 𝑐↔ 𝑗 ∼𝑚 𝑐↔ 𝑙 , we observe:
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• The path on the vertices 𝑉 \𝑉 (𝑖 ↔ 𝑗) is identical to the one on 𝑉
(
𝑖

𝑐↔ 𝑗 \ {𝑖, 𝑗}
)
, which is isomorphic

to the path on the vertices 𝑉
(
𝑚

𝑐↔ 𝑙 \ {𝑚, 𝑙}
)
, and this path is identical to the one on the vertices

𝑉 \ 𝑉 (𝑚 ↔ 𝑙). Therefore, the corresponding submatrices 𝐾\𝑖↔𝑗 = 𝐾
𝑖
𝑐↔𝑗\{𝑖, 𝑗 } and 𝐾\𝑚↔𝑙 = 𝐾

𝑚
𝑐↔𝑙\{𝑚,𝑙 }

are equal, which implies det
(
𝐾\𝑖↔𝑗

)
= det

(
𝐾\𝑚↔𝑙

)
.

• The reflection symmetry also ensures that 𝑛𝑖↔𝑗 = 𝑛𝑚↔𝑙 .
• The product of edge weights along the paths is preserved:∏

{𝑖′, 𝑗 ′ }∈𝑖↔𝑗

𝑘𝑖′ 𝑗 ′ =
∏

{𝑚′,𝑙 ′ }∈𝑚↔𝑙

𝑘𝑚′𝑙 ′ .

Thus, the terms corresponding to the shorter paths in 𝜎𝑖 𝑗 and 𝜎𝑚𝑙 are identical.
Using analogous reasoning, we also have det

(
𝐾\𝑖 𝑐↔𝑗

)
= det

(
𝐾\𝑚 𝑐↔𝑙

)
and 𝑛

𝑖
𝑐↔𝑗

= 𝑛
𝑚

𝑐↔𝑙
, along with:∏

{𝑖′𝑐 , 𝑗 ′𝑐 }∈𝑖
𝑐↔𝑗

𝑘𝑖′𝑐 𝑗 ′𝑐 =
∏

{𝑚′
𝑐 ,𝑙

′
𝑐 }∈𝑚

𝑐↔𝑙

𝑘𝑚′
𝑐𝑙

′
𝑐
.

Thus, the terms corresponding to the complementary paths in 𝜎𝑖 𝑗 and 𝜎𝑚𝑙 are also identical.
Combining these results, all contributions from both the shortest paths and their complementary paths in the
expressions for 𝜎𝑖 𝑗 and 𝜎𝑚𝑙 are identical. Therefore, we conclude:

𝜎𝑖 𝑗 = 𝜎𝑚𝑙 .

Case 2: Suppose, without loss of generality,𝑚 lies on the shortest path from 𝑖 to 𝑗 and 𝑗 lies on the shortest
path from𝑚 to 𝑙 .
Given the symmetry in the graph, the paths satisfy:

𝑖 ↔ 𝑗 ∼𝑚 ↔ 𝑙 ⇔ 𝑖 ↔𝑚 ↔ 𝑗 ∼𝑚 ↔ 𝑗 ↔ 𝑙 .

This path equality implies 𝑖 ↔𝑚 ∼ 𝑗 ↔ 𝑙 .
Furthermore, the complementary pathsare given by:

𝑖
𝑐↔ 𝑗 = 𝑖 ↔ 𝑙 ↔ 𝑗

𝑚
𝑐↔ 𝑙 =𝑚 ↔ 𝑖 ↔ 𝑙 .

𝑚

𝑗

𝑖

𝑙

Therefore, we conclude 𝑖 𝑐↔ 𝑗 ∼𝑚 𝑐↔ 𝑙 .
Since the equivalence relations in this case are analogous to the ones in Case 1, we immediately obtain:

𝜎𝑖 𝑗 = 𝜎𝑚𝑙 .

Case 3: Assume 𝑖 = 𝑗 and𝑚 = 𝑙 .
In this case, the shortest paths from 𝑖 to 𝑗 and 𝑚 to 𝑙 collapse into single
vertices. Since the symmetry in in the graph implies that the corresponding
subgraphs induced by 𝑉 \ {𝑖} and 𝑉 \ {𝑚} are identical, the contributions
from both the shortest and complementary paths to 𝜎𝑖 𝑗 and 𝜎𝑚𝑙 are trivially
identical. Hence, we conclude:

𝜎𝑖 𝑗 = 𝜎𝑚𝑙 .

𝑖𝑚

After considering all possible cases, we conclude that 𝜎𝑖 𝑗 = 𝜎𝑚𝑙 for all possible 𝑖, 𝑗, 𝑙,𝑚 ∈ 𝑉 .

Next, we investigate the second type of symmetry in a cycle: rotation symmetries.
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4.3.2 Rotation symmetry

For a graph 𝐶𝑛 a rotation symmetry corresponds to rotating the cycle by an angle 𝜃 = 𝑘 · 360◦
𝑛

for 𝑘 ∈
{1, 2, . . . , 𝑛}, with each vertex mapping to the next in a cyclic order. Suppose the rotation maps the vertices
𝑖 → 𝑙 and 𝑗 →𝑚 through a fixed angle of rotation. Under the rotation symmetry, both the shorter path 𝑖 ↔ 𝑗

and its complementary path 𝑖 𝑐↔ 𝑗 will undergo the same rotation. Since the rotation preserves the relative
positions of vertices and the adjacency structure of the graph, and since 𝑖 is mapped to 𝑙 and 𝑗 is mapped to𝑚,
it follows that 𝑖 ↔ 𝑗 ∼𝑚 ↔ 𝑙 and 𝑖 𝑐↔ 𝑗 ∼𝑚 𝑐↔ 𝑙 . Thus, by the same reasoning as established for reflection
symmetries, the terms in the formulas for 𝜎𝑖 𝑗 and 𝜎𝑚𝑙 from Corollary 4.3.3 corresponding to the shorter paths
are identical under the rotation, as are the terms corresponding to the complementary paths. Therefore, we
conclude:

𝜎𝑖 𝑗 = 𝜎𝑚𝑙 .

By analyzing the two types of symmetries in a cyclic graph 𝐶𝑛 , we have gained a deeper understanding
of why the existence of a symmetry in a cycle graph forces the covariance matrix entries corresponding to
pairs of symmetrically related vertices to be equal. This insight enables us to proceed with the analysis of the
covariance matrix and its algebraic relations.

4.4 Analysis of binomial linear elements of the vanishing ideal

Suppose there exists a binomial linear form in 𝐼
(
L−1) , specifically 𝜎𝑖 𝑗 − 𝜎𝑚𝑙 = 0 for some 𝑖, 𝑗, 𝑙,𝑚 ∈ 𝑉 . By

Corollary 4.3.3, the formulas for 𝜎𝑖 𝑗 and 𝜎𝑚𝑙 each consist of two summands: one containing terms arising
from the shorter path and the other containing terms arising from the complementary path. Comparing
the number of vertices on these paths, it holds that 𝑛𝑖↔𝑗 ≤ 𝑛

𝑖
𝑐↔𝑗

and 𝑛𝑚↔𝑙 ≤ 𝑛
𝑚

𝑐↔𝑙
. From the equation

𝜎𝑖 𝑗 − 𝜎𝑚𝑙 = 0, it follows that 𝑛𝑖↔𝑗 = 𝑛𝑚↔𝑙 and 𝑛𝑖 𝑐↔𝑗
= 𝑛

𝑚
𝑐↔𝑙
, and consequently, the terms arising from the

shorter paths between 𝑖, 𝑗 and 𝑚, 𝑙 match, and the ones arising from the complementary paths. Therefore,
the product of weights along the shorter paths are equal, as well as the product of weights along the com-
plementary paths. Additionally, the determinants used in the formula of Corollary 4.3.3 satisfy in this case
det

(
𝐾\𝑖↔𝑗

)
= det

(
𝐾\𝑚↔𝑙

)
and det

(
𝐾\𝑖 𝑐↔𝑗

)
= det

(
𝐾\𝑚 𝑐↔𝑙

)
. The path on the vertices𝑉 \𝑉 (𝑖 ↔ 𝑗) is isomorphic

to the one on𝑉
(
𝑖

𝑐↔ 𝑗 \ {𝑖, 𝑗}
)
, and similarly, the path on the vertices𝑉 \𝑉

(
𝑖

𝑐↔ 𝑗
)
is isomorphic to the one on

𝑉
(
𝑖 ↔ 𝑗 \ {𝑖, 𝑗}

)
. Thus, the the determinant equalities can be rewritten as det

(
𝐾𝑖↔𝑗\{𝑖, 𝑗 }

)
= det

(
𝐾𝑚↔𝑙\{𝑚,𝑙 }

)
and det

(
𝐾
𝑖
𝑐↔𝑗\{𝑖, 𝑗 }

)
= det

(
𝐾
𝑚

𝑐↔𝑙\{𝑚,𝑙 }
)
. There are various possibilities for when these determinants of con-

centration matrices of paths can be equal. We want to analyze them in the following subsection.

4.4.1 Conditions on when two tridiagonal matrices have the same determinant

When 𝑃 and 𝑄 are of the same length, there are several cases in which the determinants of the tridiagonal
concentration matrices of these two paths are equal:

1. 𝑃 is equal to 𝑄 .

2. 𝑃 is the reflection of 𝑄 .

3. Third and special case.

Before discussing these cases, which are sufficient for the purposes of this thesis, it is important to acknowl-
edge the possibility of other configurations of paths that could also result in equal determinants. Therefore
we state the following question, which remains open for further investigation.

Question 4.4.1. Are there any additional conditions under which the determinants of the concentration
matrices of two paths are equal?

To begin with examining the three given cases, we first want to provide an important result, which is based
on the first and second case.
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4.4.2 Proof of the conjecture for 3- and 5-cycles

The computational study conducted in Section 4.1 provides evidence in support of the necessary condition of
Conjecture 4.0.2 for 3- and 5-cycles, which claims that for every binomial linear form in 𝐼

(
L−1) , there exists a

corresponding symmetry in the graph that induces this form. Demonstrating that all relevant paths between
any two vertices in 3- and 5-cycles fall into the first or second cases described in Section 4.4.1 allows us to
establish a key result that confirms this evidence for these cycles. To achieve this, we require the following
lemma:

Lemma 4.4.2. Let 𝑃 and 𝑄 be two colored paths in a graph 𝐺 , which are either both of length one or both of
length two. If det(𝐾𝑃 ) = det(𝐾𝑄 ), then 𝑃 and 𝑄 are either identical or reflections of each other.

Proof. We analyze the two possible path lengths separately:

Length one: Suppose 𝑃 and𝑄 are paths of length one, and assume det(𝐾𝑃 ) = det(𝐾𝑄 ). Let the vertices of path
𝑃 be 𝑣 and𝑤 and those of path 𝑄 be 𝑥 and 𝑦. The associated concentration matrices are given by:

𝐾𝑃 =

(
𝑘𝑣𝑣 𝑘𝑣𝑤
𝑘𝑣𝑤 𝑘𝑤𝑤

)
, 𝐾𝑄 =

(
𝑘𝑥𝑥 𝑘𝑥𝑦
𝑘𝑥𝑦 𝑘𝑦𝑦

)
.

Equating the determinants, we have:

det(𝐾𝑃 ) = det(𝐾𝑄 ) ⇒ 𝑘𝑣𝑣𝑘𝑤𝑤 − 𝑘2𝑣𝑤 = 𝑘𝑥𝑥𝑘𝑦𝑦 − 𝑘2𝑥𝑦 .

This implies 𝑘𝑣𝑤 = 𝑘𝑥𝑦 . Two cases arise:
1. If 𝑘𝑣𝑣 = 𝑘𝑥𝑥 and 𝑘𝑤𝑤 = 𝑘𝑦𝑦 , then 𝑃 and 𝑄 are identical.
2. If 𝑘𝑣𝑣 = 𝑘𝑦𝑦 and 𝑘𝑤𝑤 = 𝑘𝑥𝑥 , the 𝑃 and 𝑄 are reflections of each other.

Length two: Suppose 𝑃 and 𝑄 are paths of length two, and assume det(𝐾𝑃 ) = det(𝐾𝑄 ). Let the vertices of 𝑃
be 𝑢, 𝑣,𝑤 , and those of 𝑄 be 𝑥,𝑦, 𝑧. The associated concentration matrices are given by:

𝐾𝑃 =
©«
𝑘𝑢𝑢 𝑘𝑢𝑣 0
𝑘𝑢𝑣 𝑘𝑣𝑣 𝑘𝑣𝑤
0 𝑘𝑣𝑤 𝑘𝑤𝑤

ª®¬ , 𝐾𝑄 =
©«
𝑘𝑥𝑥 𝑘𝑥𝑦 0
𝑘𝑥𝑦 𝑘𝑦𝑦 𝑘𝑦𝑧
0 𝑘𝑦𝑧 𝑘𝑧𝑧

ª®¬ .
Thus, by Lemma 4.3.4:

det(𝐾𝑃 ) = det(𝐾𝑄 ) ⇒ 𝑘𝑢𝑢𝑘𝑣𝑣𝑘𝑤𝑤 − 𝑘2𝑢𝑣𝑘𝑤𝑤 − 𝑘2𝑣𝑤𝑘𝑢𝑢 = 𝑘𝑥𝑥𝑘𝑦𝑦𝑘𝑧𝑧 − 𝑘2𝑥𝑦𝑘𝑧𝑧 − 𝑘2𝑦𝑧𝑘𝑥𝑥 .

Since the degrees need to match, we conclude 𝑘𝑢𝑢𝑘𝑣𝑣𝑘𝑤𝑤 = 𝑘𝑥𝑥𝑘𝑦𝑦𝑘𝑧𝑧 . Two possible cases follow:
1. If𝑘2𝑢𝑣𝑘𝑤𝑤 = 𝑘2𝑥𝑦𝑘𝑧𝑧 and𝑘2𝑣𝑤𝑘𝑢𝑢 = 𝑘2𝑦𝑧𝑘𝑥𝑥 , it follows that𝑘𝑢𝑣 = 𝑘𝑥𝑦 and𝑘𝑤𝑤 = 𝑘𝑧𝑧 . Additionally, 𝑘𝑣𝑤 = 𝑘𝑦𝑧

and 𝑘𝑢𝑢 = 𝑘𝑥𝑥 . Since 𝑘𝑢𝑢𝑘𝑣𝑣𝑘𝑤𝑤 = 𝑘𝑥𝑥𝑘𝑦𝑦𝑘𝑧𝑧 , we have 𝑘𝑣𝑣 = 𝑘𝑦𝑦 , and therefore 𝑃 and 𝑄 are identical.
2. If 𝑘2𝑢𝑣𝑘𝑤𝑤 = 𝑘2𝑦𝑧𝑘𝑥𝑥 and 𝑘2𝑣𝑤𝑘𝑢𝑢 = 𝑘2𝑥𝑦𝑘𝑧𝑧 , we deduce 𝑘𝑢𝑣 = 𝑘𝑦𝑧 , 𝑘𝑤𝑤 = 𝑘𝑥𝑥 and 𝑘𝑣𝑤 = 𝑘𝑥𝑦 , 𝑘𝑢𝑢 = 𝑘𝑧𝑧 ,

which implies 𝑘𝑣𝑣 = 𝑘𝑦𝑦 . In this case, the paths 𝑃 and 𝑄 are reflections of each other.

This lemma assists in proving the validity of Conjecture 4.0.2 for 3- and 5-cycles:

Theorem 4.4.3. Let 𝐺 be a colored 3-cycle or 5-cycle. Then a binomial linear form exists in 𝐼
(
L−1) if and only

if there is a corresponding symmetry in 𝐺 .

Proof. The sufficient condition of this theorem is already established in Theorem 4.1.1 for all 𝑛-cycles, so we
focus on proving the necessary condition. Let 𝜎𝑖 𝑗 − 𝜎𝑚𝑙 = 0 be a binomial linear form in 𝐼

(
L−1) , where

𝑖, 𝑗,𝑚, 𝑙 ∈ 𝑉 . Our previous results in the beginning of Section 4.4 have shown that in this case, the shorter
paths between 𝑖, 𝑗 and𝑚, 𝑙 are of the same length, as well as their complementary paths. Moreover, we have the
following determinant equalities: det

(
𝐾𝑖↔𝑗\{𝑖, 𝑗 }

)
= det

(
𝐾𝑚↔𝑙\{𝑚,𝑙 }

)
and det

(
𝐾
𝑖
𝑐↔𝑗\{𝑖, 𝑗 }

)
= det

(
𝐾
𝑚

𝑐↔𝑙\{𝑚,𝑙 }
)
.

Our goal is to show that there exists a symmetry in the graph that induces the binomial linear form. We
analyze the two graph types, 3-cycles and 5-cycles, separately:
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3-cycle: In a 3-cycle, the shorter path between any two distinct vertices is of length one, and the complemen-
tary path is of length two. Since the numbering of the vertices can be chosen arbitrarily, we assume without
loss of generality that 𝜎𝑖 𝑗 − 𝜎𝑚𝑙 = 𝜎12 − 𝜎23 ∈ 𝐼

(
L−1) . Any other binomial linear form in 𝐼

(
L−1) , where

exactly two of the variables 𝑖, 𝑗,𝑚, 𝑙 are equal, can be obtained by appropriately renumbering the vertices. By
Corollary 4.3.3, this linear form yields:

𝑘12 det
(
𝐾1 𝑐↔2\{1,2}

)
= 𝑘23 det

(
𝐾2 𝑐↔3\{2,3}

)
⇒ 𝑘12𝑘33 = 𝑘23𝑘11,

𝑘23𝑘13 det
(
𝐾1↔2\{1,2}

)
= 𝑘13𝑘12 det

(
𝐾2↔3\{2,3}

)
⇒ 𝑘23𝑘13 = 𝑘13𝑘12.

Therefore, 𝑘23 = 𝑘12 and 𝑘33 = 𝑘11, which implies that there exists a reflection symmetry mapping vertex 1 to
vertex 3.
A binomial linear form in the vanishing ideal of a 3-cycle can also take the form 𝜎𝑖𝑖 = 𝜎𝑚𝑚 . Assume, without
loss of generality, that 𝜎11 = 𝜎22 ∈ 𝐼

(
L−1) . Then, the following holds by Corollary 4.3.3:

det
(
𝐾\1

)
= det

(
𝐾\2

)
⇒ det

(
𝐾2↔3

)
= det

(
𝐾3↔1

)
,

𝑘12𝑘23𝑘13 det
(
𝐾1↔1\1

)
= 𝑘23𝑘13𝑘12 det

(
𝐾2↔2\2

)
⇒ 𝑘12𝑘23𝑘13 = 𝑘23𝑘13𝑘12.

By Lemma 4.4.2, the paths on vertices 𝑉 (2 ↔ 3) and 𝑉 (3 ↔ 1) are either identical or reflections of each
other:

1. If the paths are identical, it follows 𝑘22 = 𝑘33 = 𝑘11 and 𝑘23 = 𝑘13. Thus, there exists a reflection symmetry
mapping vertex 1 to vertex 2.

2. If the paths are reflections of each other, it holds 𝑘22 = 𝑘11 and 𝑘23 = 𝑘13. In this case, there also exists a
reflection symmetry mapping vertex 1 to vertex 2.

Since the symmetries in all these cases exist independent of the unconstrained entries of 𝐾 , in a 3-cycle, all
binomial linear forms in 𝐼

(
L−1) are induced by symmetries of 𝐺 .

5-cycle: In a 5-cycle, either the shorter path between any two distinct vertices is of length one and the com-
plementary path is of length four, or the shorter path is of length two and the complementary path is of length
three.
For the first case, assume without loss of generality 𝜎12 − 𝜎45 ∈ 𝐼

(
L−1) . Then, by Corollary 4.3.3, we have:

𝑘12 det
(
𝐾1 𝑐↔2\{1,2}

)
= 𝑘45 det

(
𝐾4 𝑐↔5\{4,5}

)
⇒ 𝑘12 det

(
𝐾3↔5

)
= 𝑘45 det

(
𝐾1↔3

)
,

𝑘23𝑘34𝑘45𝑘15 det
(
𝐾1↔2\{1,2}

)
= 𝑘15𝑘12𝑘23𝑘34 det

(
𝐾4↔5\{4,5}

)
⇒ 𝑘23𝑘34𝑘45𝑘15 = 𝑘15𝑘12𝑘23𝑘34.

Therefore, 𝑘12 = 𝑘45. Since the paths on 𝑉 (3 ↔ 5) and 𝑉 (1 ↔ 3) are both of length two, by Lemma 4.4.2,
they are either identical or reflections of each other.

1. If the paths on𝑉 (3 ↔ 5) and𝑉 (1 ↔ 3) are equal to each other, it follows 𝑘33 = 𝑘11, 𝑘44 = 𝑘22, 𝑘55 = 𝑘33,
and 𝑘34 = 𝑘12, 𝑘45 = 𝑘23. Thus, there is a reflection symmetry in the graph mapping vertex 1 to vertex 5
and vertex 2 to vertex 4.

2. If the paths 𝑉 (3 ↔ 5) and 𝑉 (1 ↔ 3) are reflections of each other, it holds 𝑘44 = 𝑘22, 𝑘55 = 𝑘11, and
𝑘34 = 𝑘23. In this case, there exists a reflection symmetry mapping vertex 1 to vertex 5 and vertex 2 to
vertex 4.

For the second case, assume without loss of generality 𝜎13 = 𝜎24 ∈ 𝐼
(
L−1) . Then, it holds by Corollary 4.3.3:

𝑘12𝑘23 det
(
𝐾1 𝑐↔3\{1,3}

)
= 𝑘23𝑘34 det

(
𝐾2 𝑐↔4\{2,4}

)
⇒ 𝑘12𝑘23 det

(
𝐾4↔5

)
= 𝑘23𝑘34 det

(
𝐾5↔1

)
,

𝑘34𝑘45𝑘15 det
(
𝐾1↔3\{1,3}

)
= 𝑘45𝑘15𝑘12 det

(
𝐾2↔4\{2,4}

)
⇒ 𝑘34𝑘45𝑘15𝑘22 = 𝑘45𝑘15𝑘12𝑘33.

Thus, 𝑘12 = 𝑘34 and 𝑘22 = 𝑘33. Since the paths on 𝑉 (4 ↔ 5) and 𝑉 (5 ↔ 1) are both of length 1, we can apply
Lemma 4.4.2 to find two cases:
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1. If the paths on 𝑉 (4 ↔ 5) and 𝑉 (5 ↔ 1) are equal, it follows 𝑘44 = 𝑘55 = 𝑘11 and 𝑘45 = 𝑘15. Then there
exists a reflection symmetry in the cycle mapping vertex 1 to 4 and vertex 2 to 3.

2. If the paths on 𝑉 (4 ↔ 5) and 𝑉 (5 ↔ 1) are reflections of each other, it holds 𝑘44 = 𝑘11 and 𝑘45 = 𝑘15.
Thus, there exists a reflection symmetry mapping vertex 1 to 4 and vertex 2 to 3.

A binomial linear form in the vanishing ideal of a 5-cycle can also take the form 𝜎𝑖𝑖 − 𝜎𝑚𝑚 . Assume, without
loss of generality, that 𝜎11 − 𝜎33 ∈ 𝐼

(
L−1) . By Corollary 4.3.3, it holds that

det
(
𝐾\1

)
= det

(
𝐾\3

)
⇒ det

(
𝐾
2

𝑐
↔5

)
= det

(
𝐾
4

𝑐
↔2

)
,

𝑘12𝑘23𝑘34𝑘45𝑘15 det
(
𝐾1↔1\1

)
= 𝑘34𝑘45𝑘15𝑘12𝑘23 det

(
𝐾3↔3\3

)
⇒ 𝑘12𝑘23𝑘34𝑘45𝑘15 = 𝑘34𝑘45𝑘15𝑘12𝑘23.

To compute the determinant in the first equation, we apply Lemma 4.3.4, obtaining:

𝑘22𝑘33𝑘44𝑘55 − 𝑘223𝑘44𝑘55 − 𝑘234𝑘22𝑘55 − 𝑘245𝑘22𝑘33 + 𝑘223𝑘245
= 𝑘44𝑘55𝑘11𝑘22 − 𝑘245𝑘11𝑘22 − 𝑘215𝑘44𝑘22 − 𝑘212𝑘44𝑘55 + 𝑘245𝑘212.

From the first terms, we deduce 𝑘33 = 𝑘11 and from the last terms, we conclude 𝑘23 = 𝑘12. Additionally,
the equality 𝑘234𝑘22𝑘55 = 𝑘215𝑘44𝑘22 implies that 𝑘34 = 𝑘15 and 𝑘44 = 𝑘55. Therefore, there exists a reflection
symmetry mapping vertex 1 to vertex 3 and vertex 5 to vertex 4.
In all the cases outlined, the symmetries exist independent of the unconstrained entries of 𝐾 . Thus, in a
5-cycle, all binomial linear forms in 𝐼

(
L−1) are induced by symmetries of𝐺 , and we complete the proof.

4.5 Counterexamples to the conjecture

The analyses conducted so far have enabled the identification of counterexamples to the necessary condition
of Conjecture 4.0.2. These counterexamples are presented and discussed in the following subsections:

4.5.1 Counterexample of size 4

When analyzing small cycles for Theorem 4.4.3, we observed that binomial linear forms with shorter paths of
length one in the vanishing ideal of 4-cycles can lead to problems in identifying a corresponding symmetry.
The reason for this issue is as follows:

Assume without loss of generality 𝜎12 − 𝜎34 ∈ 𝐼
(
L−1) . Then, by Corollary 4.3.3:

𝑘12 det
(
𝐾1 𝑐↔2\{1,2}

)
= 𝑘34 det

(
𝐾3 𝑐↔4\{3,4}

)
⇒ 𝑘12 det

(
𝐾3↔4

)
= 𝑘34 det

(
𝐾1↔2

)
,

𝑘23𝑘34𝑘14 det
(
𝐾1↔2\{1,2}

)
= 𝑘14𝑘12𝑘23 det

(
𝐾3↔4\{3,4}

)
⇒ 𝑘23𝑘34𝑘14 = 𝑘14𝑘12𝑘23.

From this, we deduce that 𝑘12 = 𝑘34. Since the paths on 𝑉 (3 ↔ 4) and 𝑉 (1 ↔ 2) are both of length 1, we can
apply Lemma 4.4.2, which yields two possible cases:

1. If the paths on 𝑉 (3 ↔ 4) and 𝑉 (1 ↔ 2) are identical, we obtain the equalities 𝑘33 = 𝑘11 and 𝑘44 = 𝑘22.

2. If the paths on 𝑉 (3 ↔ 4) and 𝑉 (1 ↔ 2) are reflections of each other, we derive the equalities 𝑘33 = 𝑘22
and 𝑘44 = 𝑘11. In this case, the graph exhibits a reflection symmetry mapping vertex 1 to vertex 4 and
vertex 2 to vertex 3.

In both cases, no constraints are required on 𝑘23 and 𝑘14. In the second case, where the paths on𝑉 (3 ↔ 4) and
𝑉 (1 ↔ 2) are reflections of each other, the symmetry exists regardless of the values of 𝑘23 and 𝑘14. In the first
case, however, where the paths are identical, the symmetry condition requires that 𝑘23 = 𝑘14. Thus, whenever
a 4-cycle of the first type does not satisfy this extra constraint, there will be a binomial linear form in the
vanishing ideal that is not induced by symmetry. This observation leads us to the following counterexample
to Conjecture 4.0.2:

Example 4.5.1. Let 𝐺 be the following colored 4-cycle:
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1 2

34

TheMacaulay2 code provided in Appendix A.3 verifies that there is no symmetry within this graph. However,
the code confirms the existence of the following binomial linear element in the vanishing ideal 𝐼

(
L−1) :

𝜎12 − 𝜎34.

In this example, the binomial linear form is not obtained from a symmetry in the graph, thereby disproving
that the necessary condition of Conjecture 4.0.2 holds for all 𝑛-cycles with 𝑛 ∈ ℕ.

4.5.2 Counterexample of size 6

Investigating the third and special case discussed in Section 4.4.1 leads us to another interesting counterexam-
ple to Conjecture 4.0.2 of larger size. To begin, we illustrate the third type path with the following example:

Example 4.5.2. Let 𝑃 and 𝑄 be two paths both with vertex set 𝑉 = {1, 2, 3, 4} and coloring as follows:

P:
1 2 3 4

Q:
1 2 3 4

Calculating the determinants of 𝐾𝑃 and 𝐾𝑄 using Lemma 4.3.4 yields det(𝐾𝑃 ) = det(𝐾𝑄 ).

Building on this example, we are able to generalize the third type path for any even length𝑚:

Lemma 4.5.3. Let 𝑃 and𝑄 be two even sized paths with vertices𝑉𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚} and𝑉𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑚},
where 𝜆({𝑝𝑖 , 𝑝 𝑗 }) = 𝜆({𝑞𝑖 , 𝑞 𝑗 }) for all edges {𝑝𝑖 , 𝑝 𝑗 } ∈ 𝐸𝑃 and {𝑞𝑖 , 𝑞 𝑗 } ∈ 𝐸𝑄 . Additionally, suppose that 𝜆(𝑝1) =
𝜆(𝑝3) = · · · = 𝜆(𝑝𝑚−1) = 𝜆(𝑞2) = 𝜆(𝑞4) = · · · = 𝜆(𝑞𝑚) and 𝜆(𝑝2) = 𝜆(𝑝4) = · · · = 𝜆(𝑝𝑚) = 𝜆(𝑞1) = 𝜆(𝑞3) =
· · · = 𝜆(𝑞𝑚−1). Then, det(𝐾𝑃 ) = det(𝐾𝑄 ).

Proof. The paths have the following structure:

P:
𝑝1 𝑝2 𝑝3 𝑝𝑚−2 𝑝𝑚−1 𝑝𝑚

Q:
𝑞1 𝑞2 𝑞3 𝑞𝑚−2 𝑞𝑚−1 𝑞𝑚

We assign the odd vertices of 𝑃 the partial correlation 𝑘11 and the even vertices of 𝑃 the partial correlation
𝑘22. By the color constraints specified in the lemma, the concentration matrices 𝐾𝑃 = (𝑝𝑖 𝑗 ) and 𝐾𝑄 = (𝑞𝑖 𝑗 )
meet the following conditions:

𝑝𝑖𝑖 = 𝑘11 and 𝑞𝑖𝑖 = 𝑘22, if 𝑖 ∈ {1, 2, . . . ,𝑚} is odd,
𝑝𝑖𝑖 = 𝑘22 and 𝑞𝑖𝑖 = 𝑘11, if 𝑖 ∈ {1, 2, . . . ,𝑚} is even,
𝑝𝑖 𝑗 = 𝑞𝑖 𝑗 = 𝑘𝑖 𝑗 , for all {𝑝𝑖 , 𝑝 𝑗 } ∈ 𝐸𝑃 and {𝑞𝑖 , 𝑞 𝑗 } ∈ 𝐸𝑄 .
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The concentration matrices of 𝑃 and 𝑄 are then given by:

𝐾𝑃 =

©«

𝑘11 𝑘12 0 · · · 0

𝑘12 𝑘22 𝑘23
. . .

...

0 𝑘23 𝑘11
. . . 0

...
. . .

. . .
. . . 𝑘𝑚−1𝑚

0 · · · 0 𝑘𝑚−1𝑚 𝑘22

ª®®®®®®®®¬
, 𝐾𝑄 =

©«

𝑘22 𝑘12 0 · · · 0

𝑘12 𝑘11 𝑘23
. . .

...

0 𝑘23 𝑘22
. . . 0

...
. . .

. . .
. . . 𝑘𝑚−1𝑚

0 · · · 0 𝑘𝑚−1𝑚 𝑘11

ª®®®®®®®®¬
.

To calculate the determinants of 𝐾𝑃 and 𝐾𝑄 , we apply the well-known Leibniz formula:

det(𝐾𝑃 ) =
∑︁
𝜏∈𝕊𝑚

sgn(𝜏)
𝑚∏
𝑖=1

𝑝𝑖𝜏 (𝑖 ) , det(𝐾𝑄 ) =
∑︁
𝜏∈𝕊𝑚

sgn(𝜏)
𝑚∏
𝑖=1

𝑞𝑖𝜏 (𝑖 ) .

For the tridiagonal matrices 𝐾𝑃 and 𝐾𝑄 , any permutation 𝜏 where 𝜏 (𝑖) maps 𝑖 to an index not adjacent to
𝑖 results in a product term that is zero, since the corresponding matrix entries 𝑝𝑖𝜏 (𝑖 ) and 𝑞𝑖𝜏 (𝑖 ) are zero for
non-adjacent indices. Consequently, only permutations that are either the identity or disjoint compositions
of 2-cycles, which permute adjacent indices, contribute to the determinant. Let T ⊆ 𝕊𝑚 denote the set of
such permutations. Then:

det(𝐾𝑃 ) =
∑︁
𝜏∈T

sgn(𝜏)
𝑚∏
𝑖=1

𝑝𝑖𝜏 (𝑖 ) , det(𝐾𝑄 ) =
∑︁
𝜏∈T

sgn(𝜏)
𝑚∏
𝑖=1

𝑞𝑖𝜏 (𝑖 ) .

The products in these formulas can be decomposed into two components: the product of variables corre-
sponding to indices permuted under the permutation 𝜏 , and the product of variables corresponding to indices
fixed by 𝜏 :

det(𝐾𝑃 ) =
∑︁
𝜏∈T

sgn(𝜏)
𝑚∏
𝑖=1,

𝜏 (𝑖 )≠𝑖

𝑝𝑖𝜏 (𝑖 )

𝑚∏
𝑖=1,

𝜏 (𝑖 )=𝑖

𝑝𝑖𝜏 (𝑖 ) , det(𝐾𝑄 ) =
∑︁
𝜏∈T

sgn(𝜏)
𝑚∏
𝑖=1,

𝜏 (𝑖 )≠𝑖

𝑞𝑖𝜏 (𝑖 )

𝑚∏
𝑖=1,

𝜏 (𝑖 )=𝑖

𝑞𝑖𝜏 (𝑖 ) .

Let 𝑡𝜏 ∈ {0, 1, . . . , 𝑚2 } denote the number of 2-cycles within the permutation 𝜏 ∈ T . The first product in
det(𝐾𝑃 ) corresponds to the off-diagonal entries of𝐾𝑃 . Any 𝜏 ∈ T permutes an even amount of 2𝑡𝜏 off-diagonal
entries, which are equal in𝐾𝑃 and𝐾𝑄 . Since𝑚 is even, 𝜏 fixes an even amount of diagonal entries. Specifically,
𝜏 fixes 𝑚

2 − 𝑡𝜏 diagonal entries corresponding to even indices 𝑖 , and 𝑚
2 − 𝑡𝜏 diagonal entries corresponding to

odd indices 𝑖 . Thus, the second product in the determinant formula includes 𝑚
2 − 𝑡𝜏 factors of 𝑘11 and 𝑚

2 − 𝑡𝜏
factors of 𝑘22. Thus, the determinant of 𝐾𝑃 simplifies as:

det(𝐾𝑃 ) =
∑︁
𝜏∈T

sgn(𝜏) 𝑘
𝑚
2 −𝑡𝜏
11 𝑘

𝑚
2 −𝑡𝜏
22

𝑚∏
𝑖=1,

𝜏 (𝑖 )≠𝑖

𝑘𝑖𝜏 (𝑖 ) .

Similarly, for 𝐾𝑄 , the fixed diagonal entries contribute 𝑚
2 − 𝑡𝜏 factors of 𝑘22 and 𝑚

2 − 𝑡𝜏 factors of 𝑘11 for each
𝜏 ∈ T :

det(𝐾𝑄 ) =
∑︁
𝜏∈T

sgn(𝜏) 𝑘
𝑚
2 −𝑡𝜏
22 𝑘

𝑚
2 −𝑡𝜏
11

𝑚∏
𝑖=1,

𝜏 (𝑖 )≠𝑖

𝑘𝑖𝜏 (𝑖 ) .

Hence, we conclude:
det(𝐾𝑃 ) = det(𝐾𝑄 ) .

From Example 4.5.2, which illustrates a path of the third type, we constructed a larger cycle that serves as
another counterexample to Conjecture 4.0.2, thereby preventing its verification for all 𝑛-cycles.
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Example 4.5.4. Let 𝐺 be the 6-cycle, which is colored as follows:

1

2

3

4

5

6

The only potential symmetry in this 6-cycle would require a reflection along the symmetry axis passing
through the edges {1, 6} and {3, 4}, due to the unique pink edge. However, this cannot be a valid symmetry
since vertex 1 is not equivalent to vertex 6. Therefore, the graph has no symmetry. To support this conclu-
sion, Macaulay2 code is provided in Appendix A.4, which computes all permutation matrices satisfying the
symmetry condition. Running this code confirms that the graph possesses no symmetry.
The concentration matrix associated with this 6-cycle graph is given by:

𝐾 =

©«

𝑘11 𝑘12 0 0 0 𝑘16
𝑘12 𝑘22 𝑘23 0 0 0
0 𝑘23 𝑘11 𝑘23 0 0
0 0 𝑘23 𝑘22 𝑘23 0
0 0 0 𝑘23 𝑘11 𝑘12
𝑘16 0 0 0 𝑘12 𝑘22

ª®®®®®®®¬
.

Calculating its inverse using the pull-back map approach defined in Section 2.3, we obtain the following
binomial linear forms, which are contained in the ideal 𝐼

(
L−1) :

𝜎23 − 𝜎45, 𝜎14 − 𝜎36, 𝜎12 − 𝜎56.

This counterexample is directly related to the third case path described in Example 4.5.2. Specifically, the
cycle was constructed such that the paths 𝑃 and 𝑄 from Example 4.5.2 are embedded within it. These paths
directly yield the third binomial linear form, 𝜎12 − 𝜎56. To see this, note that the path on 𝑉

(
1 𝑐↔ 2 \ {1, 2}

)
corresponds to the path on the vertices {3, 4, 5, 6}, which is the reflection of path 𝑃 in Example 4.5.2. Similarly,
the path on 𝑉

(
5 𝑐↔ 6 \ {5, 6}

)
corresponds to the path on the vertices {1, 2, 3, 4}, which is equal to path 𝑄 in

the same example. By the results of Section 4.4, the determinants of the concentration matrices of path 𝑃 and
its reflection are equal. Therefore, by Example 4.5.2, we have:

det
(
𝐾1 𝑐↔2\{1,2}

)
= det

(
𝐾5 𝑐↔6\{5,6}

)
.

Moreover, the construction of the cycle ensures that the weights along the shorter paths and the complemen-
tary paths are identical. Consequently, all terms in the formulas for 𝜎12 and 𝜎56 given in Corollary 4.3.3 are
equal, resulting in the binomial linear form 𝜎12−𝜎56 ∈ 𝐼

(
L−1) . This demonstrates that a binomial linear form

can arise in a cycle that lacks symmetry.
Note that using a similar argument, the linear form 𝜎23−𝜎45 also arises from a determinant equality induced

by a third case path, demonstrating the generality of this construction.
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5 Non-binomial linear forms in the vanishing ideal of
cyclic graphs

After completing the computation of the entire linear part of the vanishing ideal for the study presented in
Section 4.1, we observed the presence of non-binomial linear elements within the vanishing ideal of the 4- and
5-cycles. In contrast, 3-cycles, which were also considered in the computational study, do not exhibit non-
binomial linear generators. Consequently, the 4-cycle is the smallest graph with an even number of vertices
where non-binomial linear forms appear, while the 5-cycle is the smallest such graph with an odd number of
vertices. These observations suggest that the structure of the linear part of the vanishing ideal can exhibit
significant complexity beyond the binomial case. To further illustrate these findings, we present examples of
the 4- and 5-cycle, emphasizing the algebraic properties that arise from specific color configurations:

Graph Non-binomial linear forms in 𝐼
(
L−1)

1 2

34

𝜎13 − 𝜎22 − 𝜎24 + 𝜎33

1 2

34

𝜎13 − 𝜎24 + 𝜎33 − 𝜎44

1 2

34

𝜎11 − 𝜎22 + 𝜎33 − 𝜎44

1 2

34

𝜎11 − 𝜎22 + 𝜎33 − 𝜎44

Table 5.1 Non-binomial linear generators of 𝐼
(
L−1) for colored cycles. The left column of the table presents the

colored cycle and the right column the corresponding non-binomial linear forms.



29

Graph Non-binomial linear forms in 𝐼
(
L−1)

1 2

34

𝜎11 + 𝜎13 − 𝜎22 − 𝜎24

1 2

34

𝜎13 − 𝜎22 − 𝜎24 + 𝜎33

1

5

4 3

2

𝜎25 − 𝜎34 − 𝜎35 + 𝜎44 + 𝜎45 − 𝜎55
𝜎14 − 𝜎35 + 𝜎44 − 𝜎55
𝜎13 − 𝜎35 + 𝜎44 − 𝜎55

1

5

4 3

2

𝜎14 − 𝜎35 + 𝜎44 − 𝜎55
𝜎13 − 𝜎22 − 𝜎24 + 𝜎33

1

2

34

5
𝜎24 − 𝜎33 − 𝜎35 + 𝜎44

1

2

34

5

𝜎13 − 𝜎33 + 𝜎34 − 𝜎35 − 𝜎45 + 𝜎55

Table 5.2 Continuation of Table 5.1
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Graph Non-binomial linear forms in 𝐼
(
L−1)

1

5

4 3

2

𝜎11 + 𝜎14 − 𝜎25 − 𝜎55

1

2

34

5

𝜎24 − 𝜎33 − 𝜎35 + 𝜎44

1

2

34

5

𝜎12 + 𝜎14 − 𝜎23 − 𝜎24 + 𝜎33 − 𝜎44

1

2

34

5

𝜎24 − 𝜎33 − 𝜎35 + 𝜎44

Table 5.3 Continuation of Table 5.2.

Based on our observations of non-binomial generators of the vanishing ideal 𝐼
(
L−1) for 4- and 5-cycles,

we propose the following conjecture:

Conjecture 5.0.1. Let 𝐺 be a colored 𝑛-cycle. In any linear form in 𝐼
(
L−1) , the number of non-zero terms

with positive coefficients is equal to the number of non-zero terms with negative coefficients.

The computational study also raises the question of whether there is an underlying pattern in the way the
non-binomial linear generators are defined. As explained in Chapter 4, when symmetry exists in the graph,
the binomial linear forms arise from projecting edges and nodes along the symmetry axis of the graph or
rotating them by a specific angle. This behavior, induced by symmetries, is well understood and leads to
predictable structures for the corresponding linear forms. However, for non-binomial linear forms, we were
unable to identify a structural pattern within the time available. This motivates the following question:

Question 5.0.2. Let𝐺 be a colored 𝑛-cycle. What is the underlying pattern of the non-binomial linear forms
in 𝐼

(
L−1)?
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6 Conclusion

This thesis was motivated by previous work on Gaussian graphical models, with the aim of investigating
whether Conjecture 1.0.1 presented by Davies and Marigliano in [3] holds for all 𝑛-cycles. The conjecture
states that binomial linear forms exists in the vanishing ideal 𝐼

(
L−1) if and only if they are obtained from a

corresponding symmetry of the graph.
To address this question, we began by reviewing key concepts of Gaussian graphical models and their

algebraic properties, with a focus on the vanishing ideal 𝐼
(
L−1) [3, 9]. We introduced the pull-back map [9], a

powerful tool for computing the generators of this ideal. In order to simplify these calculations, we discussed
the concept of graph colorings based on the work of [3, 2], which allowed us to define symmetries within
graphs. Furthermore, we revisited the description of the entire linear part of 𝐼

(
L−1) for certain uniform

colored graphs [3].
Focusing on cycle graphs, we conducted a computational study of the entire linear part of the vanishing

ideal 𝐼
(
L−1) for small cycles. This study provided preliminary evidence supporting the conjecture for 3- and

5-cycles. In Section 4.1, we successfully verified the sufficient condition of the conjecture for all𝑛-cycles, prov-
ing that whenever a symmetry exists within a graph, all binomial linear forms obtained from that symmetry
are contained in the vanishing ideal. After thoroughly analyzing the types of symmetries present in cycle
graphs and the properties they imply, we focused on studying the binomial linear elements of the vanishing
ideal. Building on a key theorem by [5], we confirmed the necessary condition for 3- and 5-cycles, proving that
in these cases, all binomial linear forms in the vanishing ideal are indeed obtained from corresponding sym-
metries in the graph. However, we found specific colorings of the 4- and 6-cycle, where binomial linear forms
are elements of the vanishing ideal, but no symmetry exists in the graph. Thus, by Counterexamples 4.5.1 and
4.5.4, we disproved that the necessary condition of Conjecture 1.0.1 holds for all 𝑛-cycles.

In addition to resolving the conjecture, our study revealed that the linear part of 𝐼
(
L−1) contains numerous

non-binomial linear forms, whose structural patterns remain unexplained. While we provided illustrative
examples of 4- and 5-cycles in Chapter 5, a comprehensive characterization of these forms remains as an
open question.
In conclusion, this thesis has verified the sufficient condition of Conjecture 1.0.1 for all 𝑛-cycles, but dis-

proved that the necessary condition holds for all 𝑛-cycles. This clarifies the relationship between graph sym-
metries and binomial linear forms in the vanishing ideal. We believe this thesis lays the groundwork for
deeper explorations of the algebraic and combinatorial properties of Gaussian graphical models.
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A Appendix: Macaulay2 implementations

A.1 Code for Example 3.2.4

The following code demonstrates how to find all symmetries of the underlying graph and the correspond-
ing binomial linear elements of the vanishing ideal for Example 3.2.4. Additionally, the pull-back map is
implemented to ensure that no binomial linear forms exist beyond those induced by the symmetry. This
implementation provides a clear computational framework for analyzing linear generators of the vanishing
ideal.

S=QQ[x11 ,x12 ,x13 ,x14 ,x15 ,x22 ,x23 ,x24 ,x25 ,x33 ,x34 ,x35 ,x44 ,x45 ,x55];
R=frac(QQ[k11 ,k12 ,k15 ,k33 ,k44]);

--Define the concentration matrix of the underlying graph
K=matrix {{k11 ,k12 ,0,0,k15},{k12 ,k11 ,0,k15 ,0},{0,0,k33 ,0,0},{0,k15 ,0,
k44 ,k12},{k15 ,0,0,k12 ,k44 }};

--Find all permutation matrices meeting the symmetry condition
n=5;
Id = map(ZZ^n);
for p in permutations(n) list(

P := Id_p;
if (P*K*transpose(P) - K ) == 0 then p
else continue

)

--This ensures that the following matrix is the only non -trivial
permutation:

P = matrix
{{0,1,0,0,0},{1,0,0,0,0},{0,0,1,0,0},{0,0,0,0,1},{0,0,0,1,0}};

--Calculate the linear forms induced by this symmetry
X=matrix {{x11 ,x12 ,x13 ,x14 ,x15},{x12 ,x22 ,x23 ,x24 ,x25},{x13 ,x23 ,x33 ,x34
,x35},{x14 ,x24 ,x34 ,x44 ,x45},{x15 ,x25 ,x35 ,x45 ,x55 }};

P * X * inverse(P) - X

--Use the pull -back map approach for verification of the linear forms
N = inverse K * det K;

--Define the pull -back map
f = map(R,S,{N_(0,0),N_(0,1),N_(0,2),N_(0,3),N_(0,4),N_(1,1),N_(1,2),
N_(1,3),N_(1,4),N_(2,2),N_(2,3),N_(2,4),N_(3,3),N_(3,4),N_(4,4)});

--Get the generators of the ideal as a list of polynomials
I = ker f;
gen = flatten entries gens I;
--The linear generators of I are given by:
linearGens = select(gen , f -> sum degree f == 1)
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A.2 Code for the computational study on 3-, 4- and 5-cycles

The following Macaulay2 code was used to perform the computational study described in Section 4.1. It
provides the results for the binomial and non-binomial linear forms for all examples presented in Section 4.1
and Chapter 5. It is important to note that whenever the number of vertices in the graph is modified, the sets
of vertex colors and edge colors must be updated to contain the same number of elements as the number of
vertices in the graph. Additionally, the code may require a relatively long computational time, primarily due
to the matrix operations and the computation of the entire ideal. Suggestions for optimizing or simplifying
this program are welcome.

numNodes = 5; --number of vertices; adjust accordingly
SetVertexColors = {a, b, c, d, e};
SetEdgeColors = {v, w, x, y ,z};
colorings = {};
combinedColorings = {};
results = {};
R=frac(QQ[flatten(SetVertexColors , SetEdgeColors)]);

GenerateAllLinearForms = (numNodes , fractionF , vertexColors ,
edgeColors) -> (
S=QQ[createVariables(numNodes)];
colorings = {};
combinedColorings = {};
verticesCombinations = calculateAllCombinations ({}, 0,
vertexColors);

colorings = {};
combinedColorings = {};
edgesCombinations = calculateAllCombinations ({}, 0, edgeColors);

for vCombi in verticesCombinations do(
for eCombi in edgesCombinations do(

K = createConcentrationMatrix(numNodes , vCombi , eCombi);
linearGenerators = applyMathematicalOperations(numNodes ,
K, fractionF , S);

if length(linearGenerators) > 0 then(
results = append(results , {vCombi , eCombi ,
linearGenerators });

);
);

);
return results;

);

--Function that calculates all possible color combinations
calculateAllCombinations = (currentCombination , GraphDepth , colors)
-> (
if GraphDepth == numNodes then (

colorings = append(colorings , currentCombination);
return ();

);
for color in colors do (
calculateAllCombinations(append(currentCombination , color),
GraphDepth + 1, colors);

);
return colorings;

);

--Function that creates the colored concentration matrix
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createConcentrationMatrix = (numNodes , vertexEntryList , edgeEntryList
) -> (
K = matrix( for i from 1 to numNodes list(
for j from 1 to numNodes list(

if i==j then k_(i,j) = vertexEntryList_(i-1)
else if i==(j+1) or j==(i+1) then k_(i,j) = edgeEntryList_(
max(i,j) -2)

else if (i==1 and j== numNodes) or (j==1 and i== numNodes) then
k_(i,j) = edgeEntryList_(max(i,j) -1)

else 0
)

)
)

)

--Function that creates the variables of the corresponding ring
createVariables = (numNodes) ->(

sVars = flatten for i from 1 to numNodes list(
for j from i to numNodes list(

if i <= j then s_(i,j)
else continue
)

)
)

--Function that computes all linear generators of the vanishing ideal
applyMathematicalOperations = (numNodes , concentrationMatrix ,
fractionField , givenRing) -> (
N = det(concentrationMatrix) * inverse(concentrationMatrix);
mapping = flatten for i from 0 to (numNodes - 1) list (

for j from i to (numNodes - 1) list (
N_(i, j)
)

);
f = map(fractionField , givenRing , mapping);
I = ker f;
gen = flatten entries gens I;
linearGenerators = select(gen , f -> sum degree f == 1);
return linearGenerators

)

--Generate all linear forms by running the code:
GenerateAllLinearForms (5, R, {a, b, c, d, e}, {v, w, x, y, z})

A.3 Code for Counterexample 4.5.1

This implementation verifies that the 4-cycle in Counterexample 4.5.1 has no symmetry and computes the
linear part of the vanishing ideal, uncovering the presence of a binomial linear form within the ideal.

S=QQ[s11 ,s12 ,s13 ,s14 ,s22 ,s23 ,s24 ,s33 ,s34 ,s44];
R=frac(QQ[k11 ,k12 ,k15 ,k33 ,k14 ,k44 ,k22 ,k23]);

--Encode the concentration matrix of the underlying 4-cycle
K=matrix {{k11 ,k12 ,0,k14},{k12 ,k22 ,k23 ,0},{0,k23 ,k11 ,k12},{k14 ,0,k12 ,
k22}};
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--Test if any non -trivial permutation matrix meets the symmetry
condition

n=4;
Id = map(ZZ^n);
for p in permutations(n) list(

P := Id_p;
if (P*K*transpose(P) - K ) == 0 then p
else continue

)

--Check for linear elements of the vanishing ideal
N = inverse K * det K;
f = map(R,S,{N_(0,0),N_(0,1),N_(0,2),N_(0,3),N_(1,1),N_(1,2),N_(1,3),
N_(2,2),N_(2,3),N_(3,3)});

I= ker f;
gen = flatten entries gens I;
linearGens= select(gen , f -> sum degree f == 1)

A.4 Code for Counterexample 4.5.4

This implementation verifies that the 6-cycle in Example 4.5.4 has no symmetry and computes the entire
linear part of the vanishing ideal, revealing the presence of binomial linear elements within the ideal.

S=QQ[s11 ,s12 ,s13 ,s14 ,s15 ,s16 ,s22 ,s23 ,s24 ,s25 ,s26 ,s33 ,s34 ,s35 ,s36 ,s44 ,
s45 ,s46 ,s55 ,s56 ,s66];

R=frac(QQ[k11 ,k12 ,k16 ,k22 ,k23]);

--Define the concentration matrix of the 6-cycle in this
counterexample

K = matrix {{k11 ,k12 ,0,0,0,k16},{k12 ,k22 ,k23 ,0,0,0}, {0,k23 ,k11 ,k23
,0,0},{0,0,k23 ,k22 ,k23 ,0},{0,0,0,k23 ,k11 ,k12},{k16 ,0,0,0,k12 ,k22
}};

--Test if any non -trivial permutation matrix meets the symmetry
condition

n=6;
Id = map(ZZ^n);
for p in permutations(n) list(

P := Id_p;
if (P*K*transpose(P) - K ) == 0 then p
else continue

)

--Check for linear elements of the vanishing ideal
N = inverse K * det K;
f = map(R,S,{N_(0,0),N_(0,1),N_(0,2),N_(0,3),N_(0,4),N_(0,5),N_(1,1),
N_(1,2),N_(1,3),N_(1,4),N_(1,5),N_(2,2),N_(2,3),N_(2,4),N_(2,5),N_
(3,3),N_(3,4),N_(3,5),N_(4,4),N_(4,5),N_(5,5)});

I= ker f;
gen = flatten entries gens I;
linearGens= select(gen , f -> sum degree f == 1)
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