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Agroforestry can reduce trade-offs between economic and ecological 1 

benefits, but only when uncertainties are considered  2 
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Abstract Persistent uncertainty about the economic implications of agroforestry presents a 49 

major barrier to adoption. Despite this, most research to date ignores the impact of uncertainty 50 

on land allocation decisions, with studies commonly relying on simplistic scenarios involving 51 

a dichotomous choice between switching entirely to agroforestry or retaining the status quo 52 

system. For a more realistic decision problem, we explore partial adoption choices by analysing 53 

how the performance of landscape portfolios under combined ecological and economic 54 

uncertainty changes when managers can incorporate two agroforestry alternatives (silvopasture 55 

and alley cropping) alongside existing land-use options. Drawing on published data from 56 

smallholders in Panama, we use robust optimisation to allocate fractions of land area across six 57 

agroforestry and non-agroforestry land uses under a range of possible futures. We visualise 58 

trade-offs between uncertain ecological and economic benefits using robust Pareto frontiers. 59 

We find that neglecting uncertainty reduces the attractiveness of agroforestry. Instead, 60 

agroforestry becomes increasingly competitive as uncertainty grows, and incorporating it into 61 

landscape portfolios can mitigate trade-offs between ecological and economic objectives when 62 

the future is uncertain. We conclude by outlining a research agenda for a more holistic approach 63 

to agroforestry economics under global change. 64 

Keywords: Land-use allocation; Robust optimisation; Multicriteria decision analysis; Pareto 65 

frontiers; Portfolio approach; Sustainable land use 66 
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1 Introduction 76 

Agroforestry is a land-use practice that involves cultivating trees alongside crops or animals on 77 

the same parcel of land. Today, it is particularly prevalent among smallholder farms in the 78 

Global South (Nair et al. 2021; Sousa-Silva et al. 2024) but is also garnering growing attention 79 

as an alternative to agricultural practices in the Global North (Rigueiro-Rodríguez et al. 2008) 80 

due to its ecological benefits (Fagerholm et al. 2016; Torralba et al. 2016; Sollen-Norrlin et al. 81 

2020). However, the actual rate of agroforestry adoption remains low, partly because of the 82 

unclear economic consequences of agroforestry adoption (Abdul-Salam et al. 2022), and 83 

systematic economic assessments are scarce (Thiesmeier and Zander 2023).  84 

We present an innovative environmental-economic approach that captures partial adoption 85 

decisions under uncertainty about future benefits. The key to our approach is explicitly 86 

accounting for such uncertainty by considering a range of possible benefits from different land-87 

use types representing multiple possible futures. We demonstrate this technique through a case 88 

study of smallholder farms in Panama but contend that the research approach is generalisable 89 

to agroforestry adoption decisions in other settings. The discussion highlights critical 90 

considerations for transferring this approach to other contexts.  91 

Panama is an example of large-scale afforestation projects with exotic and native tree species 92 

(Hall et al. 2011; Sinacore et al. 2023) often financed by private investors (Griess and Knoke 93 

2011; Paul et al. 2015). Agroforestry has a strong research history in Panama (Dibala et al. 94 

2023). Over the last 15 years, some regions in Panama have been the focus of new developments 95 

in economic and multiple-criteria assessment of agroforestry (Paul and Weber 2012, 2013; Paul 96 

2014; Paul et al. 2015; Paul and Weber 2016; Paul et al. 2017; Gosling et al. 2020b; Gosling et 97 

al. 2020a; Gosling and Reith 2020; Reith et al. 2020; Gosling 2021; Reith et al. 2022; Reith 98 

2024). Building on such previous research is an excellent opportunity to demonstrate our 99 

ecological-economic research approach.  100 
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The main contribution of our study is an exploratory non-spatial portfolio optimisation method 101 

to analyse the impact of different levels of uncertainty on the simulated desirable landscape 102 

compositions and the trade-offs between economic and ecological benefits associated with 103 

agroforestry adoption decisions. 104 

2 State of knowledge 105 

Existing stochastic land-use allocation approaches build on random variables and associated 106 

probabilities (Knoke et al. 2011; Castro et al. 2013; Neuner et al. 2013; Castro et al. 2015; Hauk 107 

et al. 2017; Friedrich et al. 2019; Matthies et al. 2019; Fuchs et al. 2022; Fuchs et al. 2024). 108 

However, the available historical information on the distribution of possible benefits from 109 

different land-use types is often too unreliable for assigning future probabilities to each outcome 110 

and land-use type. Instead of referring to risk (which implies sufficient information to estimate 111 

probabilities), we suggest that referring to uncertainty (Knight 1921; Bewley 2002) can be more 112 

realistic, which implies that the set of potential outcomes is known but not their probabilities of 113 

occurring (see, e.g. Walker et al. 2010; Knoke et al. 2022a; Knoke et al. 2023).   114 

Land management under global change increasingly involves making decisions under 115 

uncertainty. Considerable inherent uncertainty is related to climate change, its mitigation 116 

pathways and the impacts of extreme events, which are increasing in frequency and intensity 117 

(Reyer et al. 2013). Thus, many so far unassessed adaptation options in agriculture and forestry 118 

to droughts and extreme precipitation events exist, and the higher risk of compound extremes 119 

and their less-studied legacy effects add additional uncertainties (Seidel et al. 2019). For 120 

example, the increasing uncertainties about the impact of climate change on agriculture (Asseng 121 

et al. 2013), the resulting market fluctuations and policy changes (Long et al. 2016) are still 122 

unresolved (Molina Bacca et al. 2023). Uncertainty prevails in any economic assessment of 123 

ecosystem services, particularly for more complex or unconventional land-use practices like 124 

agroforestry. In this context, the policy influence of subsidies, e.g. for photovoltaic parks to be 125 
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established on croplands, must be considered. Such policies reduce the uncertainty exposure of 126 

the subsidized non-ecosystem-based land-use alternatives. Policies insuring landowners against 127 

financial losses likely boost the expansion of the subsidized alternatives, which may become a 128 

barrier to enhancing the share of sustainable land-use alternatives.   129 

From a practical standpoint, allocating agricultural land to perennial woody species is a long-130 

term investment that requires patience to receive future economic benefits from trees. 131 

Establishing trees is expensive; once planted, they must be maintained for years or decades to 132 

recover the initial investment; during this transition period, they may yield far lower cash flows 133 

than alternative land uses, and the revenue anticipated at the end of the planning horizon may 134 

not materialise at all due to adverse environmental or market conditions. Thus, uncertainty 135 

about the economics of transitioning to agroforestry can pose a significant barrier to its wider 136 

adoption (Rössert et al. 2022). Clarifying the interaction between agroforestry and uncertainty 137 

could facilitate greater uptake (Hosier 1989). 138 

Although agroforestry economics has yet to mature into a specialised subfield, scholars have 139 

been laying the foundations. A recent special issue by Cialdella et al. (2023) offers a helpful 140 

window into the current state of the art. For instance, it is standard practice to use discounted 141 

cash flow methods like net present value (NPV) to evaluate agroforestry against current 142 

alternatives. However, this approach has a significant limitation: it assumes that investors can 143 

obtain money elsewhere in periods with zero or negative cash flows while waiting for deferred 144 

income from trees (Knoke et al. 2020). Cash flow discontinuities are typical of production 145 

systems involving trees, which tend to entail long waiting periods between establishing and 146 

harvesting marketable products. These discontinuities can often be smoothed through land-use 147 

diversification, which presumably applies to agroforestry adoption as well: rather than allocate 148 

one’s entire holding to a single land use that produces a discontinuous income stream, managers 149 

may be more likely to integrate agroforestry on a portion of their land while retaining existing 150 
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land-use types with more regular income on the remainder (Reidsma et al. 2023). Crucially, 151 

most previous work in agroforestry economics largely neglects uncertainty (e.g. Žalac et al. 152 

2023; Smith et al. 2023; Thevs and Aliev 2023; Martinelli et al. 2019; Giannitsopoulos et al. 153 

2020; Etherington and Matthews 1983).  154 

Even with these simplifications, economic assessments of agroforestry often produce 155 

conflicting results. For instance, a recent review by Thiesmeier and Zander (2023) concludes 156 

that agroforestry generally shows lower economic performance than agricultural alternatives 157 

(but higher than forestry). In contrast, Kay et al. (2019) find that agroforestry outperforms 158 

conventional agriculture when one accounts for machinery, labour costs, and the economic 159 

value of ecosystem services. Against this backdrop of potentially irregular cash flows and 160 

conflicting scientific results, we think it is crucial to examine agroforestry adoption as a process 161 

that can unfold alongside (rather than strictly in opposition to) alternative land uses within larger 162 

farm or landscape portfolios (Castro et al. 2013; Castro et al. 2015).  163 

To that end, we outline an approach that embeds agroforestry into landscapes from which 164 

multiple ecosystem services (“benefits”) are expected to be generated by land uses ranging from 165 

intensive maize agriculture and livestock grazing to unmanaged natural forests. In doing so, we 166 

hope to lay the groundwork for more rigorous and realistic economic assessments of 167 

agroforestry transitions.  168 

If we consider agroforestry essential for sustainable landscape management because of 169 

ecological arguments favouring such land-use practices (Plieninger et al. 2020), we need 170 

methods to derive desirable proportions of agroforestry in multifunctional landscapes under 171 

uncertainty, which must not ignore economic benefits.  172 

The method we describe below builds on a handful of pioneering studies (e.g. Paul et al. 2017; 173 

Reith et al. 2020). To demonstrate our approach, we also adopt example data from Gosling et 174 

al. (2021) and Gosling et al. (2020a), who use robust optimisation to design landscape portfolios 175 
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providing multiple ecosystem benefits. These studies report economic cost-benefit information 176 

and quantify estimates for two ecological benefits (water supply and soil protection) for each 177 

land-use type. This allows us to analyse ecological-economic trade-offs. However, they also 178 

assume equal weights for all decision criteria, and as a result, their solutions consist of a single 179 

optimal landscape portfolio.  180 

Existing studies using robust multiple-criteria optimisation commonly assume that all 181 

objectives have equal weight (Knoke et al. 2016; Uhde et al. 2017; Friedrich et al. 2021; Jarisch 182 

et al. 2022; Kindu et al. 2022; Reith et al. 2022). We relax this equal-weight assumption using 183 

Pareto optimisation, named after the Italian economist Vilfredo Pareto (1848–1923). This 184 

technique yields a set of portfolios representing all possible weighting schemes (or preferences) 185 

for a set of decision criteria. It has emerged as an increasingly popular tool for trade-off analysis 186 

in multicriteria environmental decision support (e.g. Vasilakou et al. 2024) and is also widely 187 

used in life-cycle assessment (e.g. Azapagic and Clift 1999), agriculture (e.g. Andreotti et al. 188 

2018; Milne et al. 2020; Kaim et al. 2020; Wesemeyer et al. 2023), and forestry (e.g. Borges et 189 

al. 2014). Applying Pareto methods to land-use allocation problems allows the analyst to 190 

generate an 'efficient' set of landscape portfolios, meaning that it is impossible to modify one 191 

criterion without worsening the performance of another. Land managers can select the portfolio 192 

that aligns with their criteria weights or multi-attribute utility functions.  193 

  194 
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3 Material and methods 195 

To demonstrate our approach, we used data from farm surveys in the district of Chepo, in the 196 

East of the Republic of Panama. The study area represents a typical pasture-dominated 197 

landscape in the lowland humid tropics (average rainfall is 1910 mm per annum). The mean 198 

relative humidity is 87.4%, with a dry season from January to March and an average annual 199 

temperature of 26.4 C. The elevation of the mostly flat area is around 100 m above sea level, 200 

with some hills to the southeast reaching 400 m in elevation. Vertisol is the classified soil type 201 

where a high clay content limits agricultural productivity in the area. Pasture, crops and exotic 202 

tree plantations with small areas of secondary forest remnants dominate land use. Currently, 203 

agroforestry has yet to be widely implemented. However, retaining trees in pastures to provide 204 

shade and living fences is a common agricultural practice. This study considers two agroforestry 205 

systems - alley cropping and silvopasture - as land-use alternatives known to farmers but with 206 

limited adoption (information obtained from Gosling et al. 2020a).  207 

The farm size of the farmers interviewed in 2018 was, on average, 77 ha (ranging from 5 to 271 208 

ha), with a land-use distribution of 60% pasture, 26% crops, 13% natural forest and 1% forest 209 

plantation. The total area managed by the surveyed farmers sums to 2681 ha. At the time of the 210 

survey, >50% of these farms had allocated the largest share of their land area to pasture, while 211 

most crop-based farms also comprised some pasture area (Gosling et al. 2020b).   212 

3.1 Land-use types and decision criteria 213 

We adopted subjective ecological indicators (from Gosling et al. 2020a) and benefit-cost 214 

derived economic indicators (from Gosling et al. 2021) for six Panamanian land-use types 215 

(Table 1) to conduct a series of exploratory analyses on the economic impacts of integrating 216 

agroforestry into landscape portfolios. We consider two agroforestry land uses: silvopasture 217 

and a polycyclic alley cropping system locally known as taungya, which involves planting 218 

maize (Zea mays) between rows of teak (Tectona grandis) (Table 3) (Paul et al. 2015).  219 
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Table 1 Description of the land-use types considered for agroforestry land-use optimisation for smallholder farms 220 
in Eastern Panama (adopted from Gosling et al. 2020a). Names for the land-use types were not changed from the 221 
original publication, although ‘alley cropping’ could have also been named ‘Taungya system’ 222 

Land-use Description 

Cropland 

Corn croplands were assumed as land-use types for conducting cost-benefit analyses. 
The interviews to quantify the ecological indicators described various annual or (non-
woody) perennial crops, either grown as a monoculture, a mix of crops in the same area, 
or rotated over time. Traditional planting methods were assumed, with some use of 
herbicides and fertilisers.  

Pasture 
Traditional pastures were assumed for cost-benefit analyses and interviews, with a 
stocking rate of 1.5–2.0 cattle per ha, which can include scattered trees. 

Alley cropping 

Trees and crops grown on the same parcel of land were assumed for cost-benefit 
analyses and interviews: teak lines are grown every 6 m, with corn (Zea mays) grown in 
between. Initial tree spacing is 3 m × 6 m, representing 550 trees per ha. Trees are grown 
for timber with a rotation length of 20 years; crops are no longer planted after year five due 
to shading. 

Silvopasture 

Trees and cattle on the same parcel of land were assumed for cost-benefit analyses and 
interviews: tree densities of around 200 trees per ha on traditional pastures, with a 
stocking rate of one cow per ha. Trees may be exotic or native and are planted or 
regenerated naturally (in which case they are guarded); trees may be harvested for timber 
after 20 years. 

Plantation 
Teak plantations were assumed for cost-benefit analyses and interviews: trees planted 
with 3 m × 3 m spacing (initial tree density of 1110 trees per ha) and harvested after 20 
years. 

Forest 
Natural forests of native species were assumed for cost-benefit analyses and for 
interviews, which we used to collect firewood, fruits, etc., but not for commercial timber 
production. 

 223 

The six land-use types constitute the decision alternatives for the Pareto optimisation, which 224 

allocates fractions of the total land area ranging from 0-100% to each land-use type (see 2.3). 225 

The result is a Pareto efficient portfolio where the area fractions indicate the composition of the 226 

future landscape. 227 

We used four indicators to describe the decision criteria: economic indicators (NPV and 228 

payback period) and ecological indicators (perceived protection of freshwater supply and soils 229 

obtained with interviews; Table 2). The payback period is the years until the cumulated 230 

discounted cash flows have recovered the initial investment. 231 

3.2 Data 232 

Values for the ecological indicators were adopted from Gosling et al. (2020a), who asked the 233 

interviewed farmers to rank each land-use type according to their experience and local 234 

knowledge (Table 2). Values for the economic indicators were taken from Gosling et al. (2021), 235 
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who conducted cost-benefit analyses and obtained standard deviations via Monte Carlo 236 

simulations using historical time series for yields and prices. The payback period and NPV were 237 

calculated from the cash flows shown in Table 3. 238 

Table 2 Description of economic and ecological indicators used as decision criteria for agroforestry land-use 239 
optimisation adopted from Gosling et al. (2021) (indicators 1 and 2) and from Gosling et al. (2020a) (indicators 3 240 
and 4) 241 

Indicator Unit Direction Description Calculation 

(1) Net 
present value 

US$  
ha-1 yr-1 More is better 

Quantifies the economic return 
for the objective of increasing 
long-term income.   

Sum of all discounted net cash 
flows (NCF) over 20 years, using a 
5% discount rate: 𝑁𝑃𝑉𝑙 =  ∑ 𝑁𝐶𝐹𝑙,𝑡𝑇

𝑡 ∙ (1.05)−𝑡 
[𝑙 refers to the land-use type, 𝑡 to 
time and 𝑇 is the considered period 
length] 

(2) Payback 
period 

Years Less is better 

We used the payback period, 
i.e. the time taken to earn back 
the initial investment, to 
account for cash flow and 
access to money. This 
indicator relates to the 
objective of liquidity. 

We computed a discounted 
payback period, defined as the first 
year (within the 20-year rotation), 
with a positive discounted 
cumulative cash flow based on a 
5% discount rate. 

(3) Water 
supply 

Score 
(0–10) More is better 

The degree to which land use 
can improve freshwater 
availability and quality. 

Farmers ranked the six land-use 
types (Table 1) against these 
indicators. Their average and 
standard deviation were computed 
from the scores. Standard 
deviations were calculated from 
standard errors by multiplying with √𝑛 and using 𝑛 = 32. 

(4) Soil 
protection 

The degree to which the land 
use maintains soil fertility long-
term. 

The standard deviations of these ecological indicators represent the uncertainty in the rankings 242 

due to variations in farmer responses. They were calculated from the standard errors reported 243 

in the original publication, multiplied by the square root of the number of farmers interviewed. 244 

For the economic indicators, the standard deviation was obtained by Monte-Carlo simulations 245 

in the original publication considering the variation in historical time series for yield and 246 

product prices of each land-use type; for details, see Gosling et al. (2021). Other sources of 247 

uncertainty that are interesting for future research are included in our discussion. The resulting 248 

indicator values we expect on average for the different land-use types and their standard 249 

deviations are reported in Table 4 (in the Results chapter). We conservatively treated  250 
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Table 3 Cash flows used to compute NPVs and payback periods (from Gosling et al. 2021, provided in their 251 
Supplementary Table S8); values do not include subsidies. Negative cash flows show that the investment 252 
(financial outflow) was higher than the financial inflow. We assumed no commercial products for the natural forest 253 
(called Forest in the Table) and thus zero cash flows. 254 

 Cash flows (US$ ha-1) 

 Period (year) 

 0 1 2 3 4 5 6 7 8 9  

Cropland 444 531 531 531 531 531 531 531 531 531  

Pasture -1435 456 393 393 393 393 393 393 393 393  

Alley cropping -817 130 178 -242 -95 -209 -31 -95 -95 -95  

Silvopasture -1970 177 114 183 248 244 240 236 278 272  

Plantation -2185 -581 -485 -199 -423 -129 -129 -129 -129 -129  

Forest 0 0 0 0 0 0 0 0 0 0  

 Period, continued (year) 

 10 11 12 13 14 15 16 17 18 19 20 

Cropland 531 531 531 531 531 531 531 531 531 531 531 

Pasture 393 393 393 393 393 393 393 393 393 393 1168 

Alley cropping 1393 -31 -95 -95 -95 -95 -95 -95 -95 -95 14132 

Silvopasture 267 261 256 249 243 236 229 222 214 206 10234 

Plantation 2336 -129 -129 -129 -129 -129 -129 -129 -129 -129 22710 

Forest 0 0 0 0 0 0 0 0 0 0 0 

expected indicator values as the best-case scenario and derived worst cases using multiples 255 

(𝑚 = 2,3,4) of the standard deviation. The best cases form an upper bound, and the worst cases 256 

form a lower bound of intervals, which we later integrate into the optimisations as the possible 257 

range of future indicator values.  258 

3.3 Pareto optimisation 259 

Constructing a Pareto-efficient set of landscape portfolios involves first solving for the portfolio 260 

that maximises economic performance without any regard to ecological effects, then 261 

introducing a constraint requiring a minimum provision of ecological benefits and solving again 262 

to obtain the following portfolio. By iteratively increasing the ecological requirement and 263 

calculating new solutions, we generate Pareto frontiers representing the maximum economic 264 

benefit that can be reliably obtained for all feasible levels of ecological benefits. 265 

Our method also extends classical deterministic Pareto optimisation by integrating uncertainty. 266 

This is achieved by defining an interval of possible benefit levels for each land use and 267 
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indicator, the magnitude of which is scaled by multiples of the standard deviation (Table 4). 268 

Wider intervals reflect a more uncertain future (or more uncertainty-averse decision-makers). 269 

We combinatorically aggregate the best and worst cases (i.e. the bounds of the intervals) across 270 

all land uses to create the surface of a multi-dimensional uncertainty space containing all 271 

possible combinations of future benefit levels for all land-use types. Each unique interval-bound 272 

combination constitutes a future uncertainty scenario, corresponding to a corner point of the 273 

uncertainty space, with 26 = 64 corner points per indicator. By considering only the bounds of 274 

the benefit intervals—a representation known as ‘box uncertainty’ (Gorissen et al. 2015)—the 275 

resulting portfolios guarantee a performance floor for all benefits and land uses included in the 276 

uncertainty space (e.g. Bertsimas et al. 2011). For each uncertainty scenario, we compute the 277 

distances between portfolio performance and the best-case value for each indicator, where 278 

portfolio performance is an area-weighted mean of the benefits associated with its constituent 279 

land uses.  280 

Mathematically, the objective function identifies the portfolio that minimises the maximum 281 

distance across the economic indicators 𝛽𝑟 and their uncertainty scenarios without violating the 282 

maximum tolerable distance across the ecological indicators 𝛽𝑒: 283 

𝛽𝑟 = max(𝑟,𝑢) 𝐷𝑟𝑢%         (Eq. 1) 284 

𝛽𝑒 = max(𝑒,𝑢) 𝐷𝑒𝑢%         (Eq. 2) 285 

𝐷𝑟𝑢% and 𝐷𝑒𝑢% are relative distances between the desired and achieved indicator levels for the 286 

portfolio given uncertainty scenario 𝑢: 287 

𝐷𝑟𝑢% = 𝑌𝑟𝑢∗ −𝑌𝑟𝑢(𝑎𝑙)𝑌𝑟𝑢∗ −𝑌𝑟𝑢∗ ∙ 100        (Eq. 3) 288 

𝐷𝑒𝑢% = 𝑌𝑒𝑢∗ −𝑌𝑒𝑢(𝑎𝑙)𝑌𝑒𝑢∗ −𝑌𝑒𝑢∗ ∙ 100        (Eq. 4)  289 
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Distance 𝐷𝑟𝑢% describes the degree of economic ‘underperformance’ and depends, inter alia, 290 

on the best (𝑌𝑟𝑢∗ ) and worst (𝑌𝑟𝑢∗) economic indicator values for each land use and uncertainty 291 

scenario.  𝑦𝑙𝑟𝑢 represents the economic benefit of a single land-use type 𝑙 in uncertainty scenario 292 𝑢. 293 

𝑌𝑟𝑢(𝑎𝑙) = ∑ 𝑎𝑙 ∙ 𝑦𝑙𝑟𝑢𝑙          (Eq. 5) 294 

with 295 

𝑦𝑙𝑟𝑢 = { 𝐸(𝑦𝑙𝑟)                     as the optimistic economic indicator level𝐸(𝑦𝑙𝑟) ± 𝑚 ∙ 𝑠𝑑𝑙𝑟 as the pessimistic economic indicator level              (Eq. 6) 296 

𝐸(𝑦𝑙𝑟) refers to the expected level of an indicator. Standard deviations 𝑠𝑑𝑙𝑟 for each land use and 297 

indicator are reported in Table 4. The size of the uncertainty space is controlled by the factor 298 𝑚. The same description applies to the variables included in Eq. 4 for the ecological benefit 299 

indicators. 300 

Note that the best-case indicator value 𝑌𝑟𝑢∗  or 𝑌𝑒𝑢∗  can be either the maximum or minimum values 301 

(Knoke et al. 2022b)--after all, managers prefer shorter payback periods but larger NPVs. 302 

Because the numerator and the denominator of 𝐷𝑟𝑢% are both negative when the minimum 303 

represents the best case (zero is also possible in the case of the numerator), the distance to the 304 

reference point is always positive, and Eqs. 3,4 hold irrespective of whether the indicator should 305 

be minimized (payback period) or maximized (𝑁𝑃𝑉).  306 

To minimize the maximum distance  𝐷𝑟𝑢% , we allocate area proportions (𝑎𝑙) across land-use 307 

types (𝑙), thus controlling the area-weighted portfolio benefit 𝑌𝑟𝑢(𝑎𝑙), subject to stepwise 308 

reductions in the tolerated maximum distances 𝑍𝑒𝑡 for the ecological decision criteria 𝑒 (Eq. 9) 309 

(see Knoke et al. 2024). We initialise the Pareto frontier by maximizing the economic benefit 310 

without any ecological requirement (tolerating 𝛽𝑒𝑡 = 100), then iteratively reduce 𝑍𝑒𝑡 (i.e. 311 

increase the ecological requirement) in 5% steps until no feasible solution remains. Requiring 312 

Eq. 8 and 9 for all uncertainty scenarios (∀ 𝑢) entails a robust optimisation problem.  313 
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min𝑎𝑙 𝛽𝑟           (Eq. 7) 314 

s.t. 315 

𝛽𝑟 ≥ 𝐷𝑟𝑢%     ∀ 𝑢         (Eq. 8) 316 

𝑍𝑒𝑡 ≥ 𝛽𝑒         ∀ 𝑢         (Eq. 9) 317 

Requiring Eq. 8 and 9 for all uncertainty scenarios (∀ 𝑢), we have selected a robust 318 

mathematical representation of the optimisation problem. The resulting landscape portfolios 319 

thus provide solutions that are deterministically immune to realisations of the uncertain land-320 

use type benefits from uncertainty spaces (Bertsimas et al. 2011). We started without any 321 

specific required ecological benefit, thus tolerating 𝛽𝑒𝑡 = 100, which means we maximised the 322 

economic benefit only. Subsequently, we reduced 𝑍𝑒𝑡 in Eq. 9 in steps of 5% to enhance the 323 

required ecological benefits as long the problem optimisation remained feasible.  324 

To visualize the Pareto frontier, we translated the maximum distances into robust benefits 𝑝𝑟 325 

and 𝑝𝑒: 326 

𝑝𝑟 = 100 − 𝛽𝑟         (Eq. 10)    327 

𝑝𝑒 = 100 − 𝛽𝑒         (Eq. 11)   328 

Because 𝑝𝑟 and 𝑝𝑒 are guaranteed for all possible values within the uncertainty interval, the 329 

portfolio solutions for each scenario are also deterministically immune to future variations in 330 

benefit levels, provided they do not exceed bounds of the uncertainty space (Bertsimas et al. 331 

2011). 332 

  333 
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4 Results 334 

4.1 Indicators 335 

Best-case NPVs ranged from US $0 ha-1 (unmanaged natural forest) to $7061 ha-1 (croplands) 336 

(Table 4). Although croplands and teak plantations can achieve the highest NPVs, they 337 

comprise only a minor share of the actual study area. The real-world landscape predominates 338 

in pastureland, whose NPV ranks only above unmanaged natural forests. However, this 339 

apparent discrepancy is readily resolved by considering uncertainty aversion. The NPV for 340 

croplands and teak plantations is high but also highly variable, whereas pasture is remarkably 341 

consistent. As a result, pasture offers the highest reward-to-variability ratio (NPV/SD) of any 342 

land-use type ($7.31 vs. $2.67 for cropland). 343 

Table 4 Expected indicator values used for the optimisations (mean ± SD). SD for NPV and payback period 344 
obtained from Table 4 in Gosling et al. (2021), and scores and SD for freshwater supply and soil protection 345 
adopted from Table 4 in Gosling et al. (2020b). These indicator levels are considered best cases, ranking in 346 
brackets.  347 

Land-use Net present value Payback period Water supply Soil protection 

 US$ ha-1 Years Score (0-10) 

Cropland 7061 (±2643) [1] 1 (±1.6) [2] 4.0 (±2.4) [6] 5.5 (±2.60) [5] 

Pasture 3815 (±522) [5] 5 (±1.1) [3] 4.7 (±2.3) [5] 5.0 (±1.81) [6] 

Alley cropping 4605 (±1792) [4] 8 (±8.6) [4] 6.8 (±1.5) [4] 6.5 (±2.26) [4] 

Silvopasture 4622 (±696) [3] 11 (±2.8) [5] 7.6 (±1.2) [2] 6.9 (±1.81) [2] 

Plantation 5273 (±2019) [2] 20 (±0) [6] 7.2 (±2.5) [3] 6.6 (±2.60) [3] 

Forest 0 [6] 0 [1] 9.9 (±0.5) [1] 9.1 (±2.15) [1] 

 348 

Despite exhibiting similar, moderate best-case NPVs (i.e. superior to pasture but worse than 349 

teak plantations), the agroforestry systems can also be differentiated by benefit volatility: 350 

silvopasture offers a reward-to-variability ratio of $6.64, versus $2.56 for alley cropping. 351 

Cropland exhibited short but variable payback periods, while those for pasture were both short 352 

and consistent. The agroforestry options were moderate performers; teak plantations feature the 353 

longest payback period, with the initial investment recovered with the final harvest in year 20. 354 
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Cashflow continuity is primarily a function of the prevalence of trees in each land-use type 355 

(Table 3). Cropland and pasture generate cash flows quickly and regularly. The agroforestry 356 

options produce early revenue but exhibit more significant fluctuations associated with timber 357 

harvests. In alley cropping, timber revenue dominates the cash flow distribution. Although the 358 

maize cultivated in the alleys generates net-positive cashflows as early as the second year, it is 359 

shaded out by year five. As a result, positive returns are expected in only four years of the 20-360 

year-long production period. 361 

Unmanaged natural forests' payback period and NPV are null (no initial investment is required, 362 

and no revenue is generated). Note that the opportunity costs of keeping the unmanaged natural 363 

forest were considered implicitly, as any area allocated to the unmanaged natural forest reduced 364 

the landscape-level NPV proportionally. However, natural forests offer the highest ecological 365 

benefits from the six land uses. Depending on the indicator, teak plantations or agroforestry 366 

offer the second-best ecological performance. Ecological benefits are lowest for pasture and 367 

cropland. 368 

4.2 The economic contribution of agroforestry when ignoring uncertainty 369 

In scenarios that ignore uncertainty and ecological benefits, the optimal landscape portfolio 370 

consists exclusively of intensive maize agriculture (Figure 1). Introducing ecological 371 

requirements stimulates the inclusion of silvopasture and natural forests, with the maximum 372 

ecological benefit being achieved by allocating roughly two-thirds of the total land area to 373 

silvopasture. Interestingly, however, the economic performance of portfolios including 374 

silvopasture was only marginally higher than those excluding agroforestry. Without 375 

agroforestry, the ecological constraint is satisfied mainly by increasing the share of tree  376 

  377 
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 378 

plantations and natural forests (Figure 1). No land was allocated to pasture or alley cropping 379 

without uncertainty, regardless of the ecological requirement.  380 

4.3 The economic contribution of agroforestry in an uncertain world 381 

Under moderate uncertainty (𝑚 = 2), agroforestry options are only included in the solution if 382 

there is also a demand for ecological benefits (Figure 2A). However, accounting for higher 383 

uncertainties (𝑚 ≥ 3) results in incorporating both agroforestry land-use types even without 384 

ecological requirements (Figure 2B).1   385 

As uncertainty grows, portfolios with agroforestry increasingly outperform those without it. At 386 

the highest uncertainty levels, 11.8% and 21.8% of the land area is allocated to alley cropping    387 

 
1 An uncertainty level of 𝑚 = 2 means that the worst-case indicator value is two times the 

standard deviation worse than the best-case indicator value; 𝑚 = 3 means three times the 

standard deviation; and so forth (Table 4). 

 

Figure 1 Left: Pareto frontiers (i.e. efficiency frontiers) and landscape portfolio compositions for maximum 
economic benefits under increasing levels of required ecological benefits when uncertainty was ignored. The 
frontiers show the maximum (optimistic) economic benefit achievable when requiring certain levels of 
ecological benefits, either allowing for agroforestry or not. Right: Changes in the landscape composition with 
increasing levels of required ecological benefits, the upper part allowing for agroforestry and the lower part 
excluding it 
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 416 

Figure 2 Pareto frontiers (i.e. efficiency frontiers) and landscape portfolio compositions for maximum economic 
benefits under increasing required ecological benefits for different levels of uncertainty. Panel A considers m=2 
standard deviations to compute the worst-case benefits of the individual land-use types, while panels B and C 
account for 3 and 4 standard deviations, respectively, in finding the worst-case benefits. 
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and silvopasture, respectively (Figure 2, left corner). Agroforestry also mitigates trade-offs 417 

between ecological and economic performance in scenarios featuring a high demand for 418 

ecological benefits. Expanding the uncertainty space enhances the maximum proportion of 419 

agroforestry (silvopasture plus alley cropping) from 23.9% for 𝑚 = 2 to 40.1% for 𝑚 = 4. 420 

However, even these proportions are notably smaller than the 67.1% achieved in the no-421 

uncertainty scenario with maximum ecological requirements.  422 

In addition to modulating the share of agroforestry in the landscape, the size of the uncertainty 423 

space also alters the curvature of the Pareto frontiers. Large uncertainty spaces magnify the 424 

sensitivity of economic benefits to ecological demands, notably when agroforestry options are 425 

excluded. The no-agroforestry frontiers exhibit clear economic tipping points: beyond a certain 426 

threshold, ecological requirements force sharp increases in the land area allocated to natural 427 

forests (Figure 2). Including agroforestry options attenuates this effect when uncertainty is 428 

elevated by displacing part of the natural forest area: for uncertainty 𝑚 = 4 , for example, robust 429 

ecological benefits top out at 30% without agroforestry versus 40% with agroforestry. This ten-430 

point increase also comes with economic benefits that exceed the best-performing non-431 

agroforestry portfolio (Figure 2). 432 

4.4 Testing for the robustness of the desirable landscape portfolios 433 

Mathematically, the performance of our landscape portfolios should be robust as long as benefit 434 

variability remains within the uncertainty intervals. To test this empirically, we confronted the 435 

optimised portfolio sets with benefit levels randomly drawn from the uncertainty intervals 436 

(Figure 3). We also forced pessimistic benefit combinations as an additional robustness check 437 

but could not generate any empirical outcomes that underperformed the frontier (Figure 3). 438 
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 439 

Figure 3 Simulated benefits of the efficient landscape portfolios when benefits of the single land-use types were 440 
drawn from the considered benefit intervals formed by worst and best cases. The Figure is built on 𝑚 = 3, meaning 441 
the worst case is three times the standard deviation of the considered benefit smaller than the best case.  442 

 443 

Thus, the frontiers visualise a guaranteed floor below which portfolio performance will not fall 444 

for a given uncertainty scenario (dashed grey lines in Figure 3). Landscape portfolios containing 445 

agroforestry maintained robust economic benefits of at least 51% over the full range of 446 

ecological constraints (Figure 3, left). When agroforestry was excluded, economic performance 447 

fell to 33% under elevated ecological constraints (Figure 3, right side).    448 

5 Discussion  449 

This study builds on earlier efforts to consider risk and uncertainty in agroforestry economics. 450 

In particular, Paul et al. (2017) set the stage by providing a framework to economically assess 451 

land-use combinations using Markowitz portfolio optimisation. While it offers a helpful 452 

reference, their approach encounters several limitations. For instance, it is probabilistic and 453 

does not situate allocation decisions within the conventional agricultural landscapes where 454 

agroforestry transitions would presumably occur. 455 

In contrast, our non-stochastic approach embeds agroforestry in portfolios encompassing 456 

status-quo agricultural alternatives. Unlike the Markowitz model, our approach does not require 457 
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outcome probabilities to be assigned a priori. Instead, it captures benefits guaranteed across 458 

entire uncertainty spaces (see Figure 3) defined by land managers according to their degree of 459 

caution (e.g. Knoke et al. 2022a). As far as we know, ours is the first study to adopt this broader 460 

Pareto perspective, at least in the context of agroforestry research.  461 

We are also indebted to a handful of previous studies that applied robust multi-criteria portfolio 462 

optimisation to study the potential role of agroforestry in the study area where we obtained our 463 

example data (Gosling et al. 2020b; Gosling et al. 2020a; Reith et al. 2020; Gosling 2021; Reith 464 

et al. 2022). These studies have struggled to reproduce the real-world landscape composition 465 

based on economic indicators alone, tending to overestimate cropland and underestimate 466 

pasture, the predominant land use in the area, despite its seemingly uncompetitive NPV 467 

(Gosling et al. 2021).  468 

Our model successfully approximates this counterintuitive result, which occurs in scenarios that 469 

account for uncertainty but ignore ecological performance. Thus, we also suggest a lens for 470 

understanding existing landscape dynamics. If land managers favour pasture because it 471 

generates modest but reliable returns, they are likely sensitive to future costs and benefits 472 

volatility. Consequently, their land allocation decisions are unlikely to be captured by simple 473 

NPV comparisons, arguably the default approach in agroforestry economics today (Do et al. 474 

2020). 475 

Methodologically, these earlier studies also assume equal weights for all decision criteria. In 476 

contrast, we generate Pareto-efficient sets of portfolios representing all possible weighting 477 

schemes (Figs. 2,3). This feature makes our method easier to generalise to other settings. For 478 

instance, it could be deployed to support stakeholder consultations, participatory decision-479 

making (Marques et al. 2020), or co-creation heuristics like the Nature Futures Framework (e.g. 480 

Pereira et al. 2020), which seeks to identify interventions that are responsive to diverse 481 

perspectives and worldviews (Kim et al. 2023).  482 
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6 A research agenda for agroforestry ecological economics 483 

This article presents an argument for broadening the ecological economics of agroforestry 484 

beyond the narrow view offered by deterministic cost-benefit analysis to explore how adoption 485 

decisions are shaped by the landscapes they are embedded in and how they shape, in turn, the 486 

capacity of those landscapes to provide ecological and economic benefits in an increasingly 487 

uncertain world.  488 

To that end, this section sketches the contours of a new research agenda for agroforestry 489 

ecological economics. We highlight eight points: (1) making uncertainty explicit; (2) 490 

accounting for temporal discontinuities in cost-benefit flows; (3) focusing on the pivotal 491 

establishment phase for agroforestry transitions; (4) quantifying the economic implications of 492 

biophysical interactions and feedbacks; (5) using new monitoring technologies and simulating 493 

models and accounting for their uncertainties; (6) taking a proactive approach to market-based 494 

instruments; (7) exploring trade-offs in context; and (8) embedding agroforestry transitions in 495 

landscapes. 496 

Making uncertainty explicit 497 

Our findings suggest a potential new economic argument for agroforestry adoption: 498 

incorporating agroforestry into land-use portfolios could enhance their ability to provide 499 

ecological and economic benefits robust to various possible futures. This advantage is not 500 

captured by NPV alone but instead results from moderate reward-to-uncertainty ratios and 501 

partially discontinuous cashflows. This hypothesis warrants further empirical testing in other 502 

contexts, such as productive landscapes in the Global North.  503 

Incorporating uncertainty into descriptive studies can complement the normative decision-504 

theoretical approach described here. For example, previous work has successfully applied 505 

microeconomic stochastic frontier analysis to obtain efficiency information from uncertain 506 

agricultural outputs (Stetter and Sauer 2022). This method can help to explore the production 507 
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frontier of uncertain agricultural output and input to obtain efficiency information related to the 508 

joint provision of agroforestry solutions. Similarly, recent simulation experiments suggest 509 

German farmers may consider agroforestry practices as a risk-hedging strategy in response to 510 

increasing extreme weather events (Stetter and Sauer 2024), highlighting the importance of 511 

uncertainty for future decision-making. Given the proliferating uncertainties associated with 512 

land management planning (e.g. Molina Bacca et al. 2023; Verburg et al. 2013), we encourage 513 

an explicit consideration of uncertainty in future work. 514 

Accounting for temporal discontinuities in cost-benefit flows 515 

Our study builds on dynamic economic data covering a timeline of 20 years for each benefit 516 

and land use. Future work should take advantage of temporally disaggregated information, 517 

particularly concerning the ‘early life’ of land-use practices that exhibit cashflow 518 

discontinuities and significant discrepancies in the duration of production cycles. The economic 519 

attractiveness of agroforestry could be plausibly enhanced by identifying strategies for 520 

obtaining earlier and more continuous economic returns from the tree components. For 521 

example, multi-purpose trees could enable land managers to earn income earlier from non-522 

timber products like fruits, nuts, or fodder. An alternative might involve incorporating 523 

components with shorter production times into the tree lines themselves, as suggested by 524 

syntropical (Andrade et al. 2020) and other successional agroforestry systems. This would 525 

diversify the product portfolio and provide earlier and more frequent financial returns, although 526 

potentially at the cost of additional labour input. 527 

Focusing on the pivotal establishment phase for agroforestry transitions 528 

Improving the design of agroforestry systems requires long-term information, beginning with 529 

the pivotal “early life” phase. Establishing agroforestry involves navigating an array of 530 

variables, many of which have yet to be researched systematically: ungulates browsing shoots 531 

or damaging bark, spring drought, suboptimal planting conditions, and inadequate soil or fungal 532 
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symbionts can all contribute to tree mortality and increase material costs (Cossel et al. 2020). 533 

Soil water, carbon, nutrient dynamics and the structure and function of biota living in soil and 534 

acting as architects for soil health may gradually change when agroforestry systems are 535 

established until a new stable equilibrium is reached; thus, managers might leverage supporting 536 

factors (e.g., diverse vegetation) in early phases. While trees are growing, dynamic soil niche 537 

spaces between crops and trees are created. Initially, resource competition in the same soil space 538 

could be prevalent (Ludwig et al. 2004), while effective niche partitioning and more efficient 539 

resource use between trees and crops may develop with tree growth (Bouttier et al. 2014; 540 

Goisser et al. 2016). How these dynamics unfold presumably depends on interactions between 541 

management decisions and environmental dynamics, but the nature of these relationships is still 542 

poorly understood. 543 

In short, there is considerable potential for statistically well-designed, long-term experimental 544 

platforms to drive significant advances in our understanding of agroforestry transitions. Only a 545 

handful of such platforms exist worldwide (Veldkamp et al. 2023; Fedrigo et al. 2024). While 546 

expensive experimental approaches will always represent only a narrow ecological and socio-547 

economic context, they can serve as hubs for knowledge exchange through international and 548 

interdisciplinary research initiatives.  549 

Quantifying the economic implications of biophysical interactions and feedbacks 550 

Generally, combining forestry and agriculture is believed to increase ecosystem services 551 

provisioning (Torralba et al. 2016) and product diversification (Neupane and Thapa 2001) while 552 

also supporting resistance, soil health, yield, and economic stability (Pumariño et al. 2015; 553 

Isbell et al. 2017; Fahad et al. 2022). Ecosystem services associated with trees, such as water 554 

or nutrient redistribution (Sun et al. 2014; Alagele et al. 2021), may reduce irrigation and 555 

fertilization costs for neighbouring crops—a largely unquantified benefit. The diversification 556 
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of the agricultural ecosystems may also increase biodiversity, although current evidence is 557 

mixed, see Mupepele et al. (2021), and more work is needed. 558 

Using new monitoring technologies and simulating models and assessing their uncertainties 559 

Remote sensing and artificial intelligence can play a crucial role in mitigating uncertainties in 560 

agroforestry by providing real-time monitoring and predictive insights (Thapa et al. 2023). 561 

Integrating the Internet of Things (a network that connects and controls sensors and devices, 562 

exchanges data and communicates with users) and sensing technologies, such as strap-cameras, 563 

multispectral drone imagery, and real-time monitoring devices (e.g. Valentini et al. 2019) can 564 

enable early identification of stresses and diseases so that managers can react quickly to reduce 565 

yield losses. Additionally, digital platforms can integrate weather forecasts and market trend 566 

data to support a proactive approach to managing meteorological variability, market 567 

fluctuations, and resource allocations. However, integrative research leveraging such 568 

technologies in the context of agroforestry is still needed. 569 

Frequent tree, crop and tree-crop-interaction measurements during the establishment phase will 570 

be crucial for developing and testing dynamic agroforestry simulation models across their 571 

lifespan. Some dynamic agroforestry models and modelling approaches exist (van Noordwijk 572 

and Lusiana 1998; Riofrío et al. 2015; Morhart et al. 2016; Dupraz et al. 2019; Bohn Reckziegel 573 

et al. 2021; Bohn Reckziegel et al. 2022; Rahman et al. 2023; Žalac et al. 2023), mainly focusing 574 

on biomass and yield (Kraft et al. 2021), which can be translated to economic benefits using 575 

price time series. However, these models still often ignore the impact of agroforestry on 576 

ecological benefits related to water and nutrient dynamics, micro-climate, and soil biota, for 577 

which detailed field data are a prerequisite for further model enhancements. In addition, 578 

comprehensive assessments of the uncertainty associated with the model predictions are largely 579 

missing. Dynamic agroforestry simulation models will be needed for evaluating agroforestry 580 

practices for different soils, climatic conditions and future climate scenarios and for scaling up 581 
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agroforestry field experiments across regions, similarly as recently shown for simple crop-582 

disease system interactions (Pequeno et al. 2024). To quantify agroforestry model uncertainty 583 

and understand uncertainty propagation in a system will eventually require a multi-model 584 

approach combined with field experiments as proposed by the Agricultural Model 585 

Intercomparison and Improvement Project, AgMIP (Wang et al. 2024). 586 

Taking a proactive approach to market-based instruments 587 

The idea of leveraging agroforestry as a buffer against uncertainty in sustainable landscape 588 

portfolios raises the possibility of further mitigating ecological-economic trade-offs by seeking 589 

to monetize their ecosystem services. To support this, market-based solutions, such as 590 

Pigouvian subsidies or certification of agricultural products grown in ecologically favourable 591 

agroforestry systems, warrant exploration. Certification schemes could differentiate products 592 

in the marketplace, allowing farmers to charge premium prices based on consumer preferences 593 

for sustainable goods, similar to organic, Fairtrade, or Forest Stewardship Council certifications 594 

(Altmann and Berger Filho 2020; Ota et al. 2022). However, the costs of establishing and 595 

acquiring such certifications are significant and may hinder farmers' entry.  596 

An alternative approach could involve the creation of "ecological certificates," similar to the 597 

trading forest certificates discussed by Soares-Filho et al. (2016). Under this system, farmers 598 

who adopt land-use practices delivering measurable ecological benefits—such as improved soil 599 

health or enhanced water retention—could sell their "ecological certificates" to companies 600 

seeking to offset their environmental impacts. These certificates could be traded on markets 601 

driven by consumer expectations or regulatory requirements for ecological sustainability, such 602 

as non-financial reporting standards. Both approaches provide direct financial incentives for 603 

farmers that could facilitate agroforestry transitions.  604 

Exploring trade-offs in context 605 

The inclusion of agroforestry into landscape portfolios may compromise alternative land-use 606 
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types with high conservation value. For example, under higher uncertainty levels, agroforestry 607 

replaced part of the area that would have otherwise been allocated to natural forests with a high 608 

conservation value (Fig. 3 and Reith et al. 2022, showing similar effects). While this is a 609 

sensitive issue at the tropical forest frontier, it may not be a significant problem in other 610 

contexts, such as Central Europe, where primary forests cover only 0.7% of the forest area 611 

(Sabatini et al. 2018). However, agroforestry in Europe may compromise open-space 612 

demanding species, such as skylarks or lapwings (Gayer et al. 2019). Also, while agroforestry 613 

systems may harbour more animal (e.g. insect) species as mono-cropping systems, their insect 614 

communities are still less diverse than those of natural forests (Perry et al. 2016; Mupepele et 615 

al. 2021). Future land-use studies must address such trade-offs and possible legal implications. 616 

While we have focused on small-scale uncertainties like fluctuations in productivity and prices 617 

or expert uncertainty about ecological benefits, exploring risks and trade-offs associated with 618 

agroforestry adoption in other settings will likely require incorporating assessments of the 619 

policy landscape. For example, the EU's Common Agricultural Policy (CAP) focuses on 620 

sustainable land use and incorporating environmental aspects into agricultural practices. Our 621 

results confirm that agroforestry may align with these policy objectives while potentially 622 

minimising trade-offs with economic objectives. Given the diverse agroecological zones across 623 

Europe, from Mediterranean to temperate regions, it is crucial to adapt evidence-based 624 

agroforestry practices to specific regional environmental and economic conditions. 625 

Embedding agroforestry transitions in landscapes 626 

Rather than examining the economics of an agroforestry system in isolation, this study sought 627 

to capture partial adoption decisions by considering portfolios of land-use alternatives that 628 

agroforestry systems may displace or be displaced by. This might include competition from 629 

non-agricultural land uses. Solar farms, for example, represent an increasingly important land-630 

use alternative in many countries (Dias et al. 2019). Their deployment on potential agricultural 631 
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lands suggests the need for additional economic comparisons. Portfolio-based approaches like 632 

the one we describe here (see also Paul et al. 2017) can be re-tooled to address how subsidising 633 

financial risk in emerging land-use types could influence the competitiveness of agroforestry-634 

based land uses in different environmental settings. 635 

7 Outlook 636 

The extent to which agroforestry systems can compete economically with standard agricultural 637 

practices ceteris paribus remains unclear. Indeed, substantial evidence suggests they might not 638 

compete (e.g. Thiesmeier and Zander 2023). We argue that by failing to explicitly consider the 639 

role of uncertainty and landscape context in agroforestry adoption decisions, the available 640 

economic evidence—favourable or not—has overlooked a crucial consideration.  641 

In our study area, allowing the partial adoption of agroforestry options into landscape portfolios 642 

mitigated environmental-economic trade-offs and increased portfolio performance under 643 

uncertainty. Beyond our study area, we hypothesise that uncertainty considerations can also 644 

provide convincing arguments in support of agroforestry in the Global North, where adoption 645 

remains slow despite growing scientific interest. Understanding how variations in uncertainty 646 

and temporal discontinuities in benefit flows influence economic assessments of agroforestry 647 

relative to conventional land uses is crucial for stimulating uptake. By offering a lens through 648 

which the economics of agroforestry adoption can be assessed alongside status quo systems in 649 

the face of growing uncertainty about future benefit flows, we aim to broaden the scope of such 650 

assessments.  651 

At the same time, we identify substantial knowledge gaps, beginning with the pivotal 'early life' 652 

phase of agroforestry transitions. Developing rigorous, realistic, and helpful agroforestry 653 

ecological economics will require ongoing cooperation between economists, natural scientists 654 

and land managers.   655 
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