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Abstract

We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as
well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of param-
eters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we
introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique,
to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the
interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction
and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with
a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective
parameters (nonlinear combinations of the physical ones) has previously been established analytically.

Keywords: parameter nonidentifiability, manifold learning, model order reduction, data mining.

Significance Statement:

A mathematical model is nonidentifiable if observations of its output behavior do not suffice to uniquely determine the parame-
ter values resulting in these observations. We propose a fully data-driven approach to distinguish those parameter combinations
that affect the behavior (effective parameter combinations) from those that have no such influence (redundant parameter combi-
nations). We also discuss the interpretability of our data-driven effective parameter combinations by mapping them invertibly to
candidate sets of physically interpretable ones. Our scheme performs estimation of effective parameter combination values from
observations, foliation of parameter space by observation level sets, as well as behavior estimation/prediction from parameters in
a seamless, data-driven manner.

Introduction
Model reduction has long been an important endeavor in math-
ematical modeling of physical phenomena and, in particular, in
the modeling of large, complex kinetic networks of the forms that
arise in combustion or in cellular signaling (1–3). A rich array of
techniques, often based on time-scale separation, exist that can
result in a smaller number of effective state variables and, con-
sequently, a reduced set of coupled nonlinear differential equa-
tions [e.g. Benner et al. (4), Quarteroni et al. (5), and from our
work (6–10)]. Yet, it also becomes important to discover, when pos-
sible, a smaller number of effective parameters. These are (possibly

nonlinear) combinations of the original, usually physically mean-
ingful, model parameters on which the output behavior depends.
A universally accepted and practiced approach toward reducing
the set of parameters, undertaken before any computation is, of
course, dimensional analysis (11).

Beyond dimensional analysis, the issue of parameter noniden-
tifiability, whether truly structural or approximate, has been the
subject of extensive studies for decades, with rekindled interest in
recent years (12, 13). Such developments are eloquently summa-
rized in ref. (14). This can be attributed in part to sloppiness/MBAM
studies (15, 16); the study of active subspaces (17); the increased
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Fig. 1. The function f(φ) = exp ( −φ/2), with φ = p1p2, is sampled at a
cloud of points and plotted against the two parameters p1, p2 (red mesh).
Here, φ is the effective parameter, which we call the “meaningful”
parameter combination. The green curve indicates a level set of this
effective parameter, for which f(φ) − C = 0, for some constant C (here, C
= 0.75). The blue curve illustrates the direction orthogonal to each level
set of φ, parameterized by ψ = p2

1 − p2
2, which we call the “redundant”

parameter combination because it does not affect the output. The
projection onto the (p1, p2)-plane helps illustrate the level sets of the
meaningful and redundant parameter combination(s) in parameter
space.

availability and exploitation of symbolic regression packages (18);
and, more generally, to recent advances in data science and man-
ifold learning techniques (19, 20). To a large extent, established
model reduction techniques hinge on the availability of analyt-
ical model equations and operations (e.g. singular perturbation
theory-based expansions) on these closed form equations.

This work aspires to synthesize and implement a purely data-
driven process for finding reduced effective parameters. The type
of models we consider here are systems of coupled, nonlin-
ear, first-order differential equations describing time-evolution of
chemical/biochemical reaction networks, but the approach is ap-
plicable more generally to the parameterization of input–output
relations. Here, the inputs are the parameters, and the outputs are
time series of the system observables, such as species concentra-
tions, temperatures, or functions of such quantities.

In Fig. 1, we illustrate a simple model with structurally
nonidentifiable parameters. The model output, f(p1, p2) =
exp (−p1p2/2), though plotted as a function of the two parame-
ters (p1, p2), in fact depends only on their product φ = p1p2. The
output data do not suffice to identify or estimate p1 and p2 inde-
pendently: observations can only confine pairs of p1 and p2 to a
level set, colored green in Fig. 1, of the effective parameter φ. It is
interesting to observe that these level sets are parameterized by
the quantity ψ = p2

1 − p2
2, which is conformal everywhere to p1p2,

thus making φ and ψ an orthogonal system of coordinates (cf. po-
lar or hyperbolic coordinates). A level set for ψ is colored blue in
Fig. 1. This is the parameter combination that does not matter to the
output, one that is “redundant”: keeping the output constant while
changing ψ traces out the level set φ = C. To trace out the possible
values of the output, one could of course fix one parameter (say,
p2) and vary the other(s). In that case, however, the sensitivity of
the output to the variation of p1 depends on the value at which we
choose to keep p2 constant. This variability is avoided when using
a conformal orthogonal set of coordinates, such as the one in the
figure.

In our illustrative models, the system is available in the form
of a “black box” set of ordinary differential equations (ODEs):
given parameter values and initial conditions, one can record time

series of the evolution of the system states, or of functions of the
system states. But the evolution equations are not explicitly avail-
able, so that analytical (possibly perturbative) approaches to re-
duction of either system states or parameters (outputs or inputs)
cannot be undertaken. Given such an input–output model, we
start by systematically prescribing a set of numerical experiments
for data collection. These data will be processed with manifold
learning techniques—here, Diffusion Maps (DMaps) and Geomet-
ric Harmonics (GH)—as well as their extensions: output-informed
DMaps and Double DMaps GH. Processing the data will:

� determine the number of model parameter combinations
that matter, i.e. the meaningful effective parameters that af-
fect the model output;

� consequently, determine the number of model parameter
combinations that do not matter, the redundant ones;

� interpret the meaningful parameter combinations through
computational testing/validation of expert suggestions, or
possibly through symbolic regression;

� disentangle the redundant parameter combinations from the
meaningful effective ones (21, 22), which is accomplished
using deep learning techniques (Conformal Autoencoders)
or, alternatively, kernel-based Jointly Smooth Feature extrac-
tion (23);

� translate between the data-driven effective parameters and
physical ones, which underscores the importance of level sets
in parameter space consistent with the same output behavior.

We believe these capabilities constitute a useful toolkit for
data-driven reparameterization of models, whether computa-
tional or physical/experimental. In the experimental setting, the
same toolkit can be applied; one will perturb (“jiggle”) all in-
puts/parameters around a base point, record the richness of
the resulting output behavior, and establish (through the same
framework) correlations between parameters’ richness and out-
put richness—quantify it and parametrize it.

The remainder of the paper is organized as follows: In the sec-
tion “The MSP model,” we will demonstrate and visualize the dis-
covery of the intrinsic dimensionality of the meaningful effec-
tive parameter space through our main illustrative example: a
six-equation multisite phosphorylation (MSP) kinetic model and
its analytical reduction by Yeung et al. (24). In the section “Data-
driven parameter reduction,” we compare our data-driven effec-
tive parameter constructs with those previously obtained ana-
lytically and discuss their interpretability, both numerically and
through symbolic regression. Finally, we demonstrate the use of
these effective parameters in behavior prediction for new physi-
cal parameter settings in the section “Effective parameter identifi-
cation” and (a type of) parameter estimation for previously unob-
served behaviors in the section “Behavior estimation.” Toward the
latter task, in the section “Parameter estimation,” we discover and
parameterize entire level sets in parameter space that are con-
sistent with this new observed behavior; this requires discovering
the redundant parameter combinations. In the section “On the pa-
rameter combinations that do not matter,” a deep learning archi-
tecture (Conformal Autoencoder Networks) as well as an alterna-
tive kernel-based Jointly Smooth Functions (JSFs) extraction is used for
this task of disentangling meaningful effective parameters from
redundant ones. We conclude by summarizing the approach and
offering a discussion of its potential, shortcomings, and current
research directions.

In Supplementary Material Sections S5 and S6, we have in-
cluded two additional examples. The first comes from a textbook
nonidentifiable dynamical system representing a compartmental
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model and the second is a steady-state example, which allows us
to illustrate how our data-driven framework behaves when transi-
tions between qualitatively distinct behavior regimes arise as one
traverses the original parameter space.

Results
The “black box” models that we seek to parameterize in our data-
driven work arise mainly from chemical kinetic mechanisms (e.g.
Eq. 1), which give rise to systems of ODEs for the evolution in time
of the species concentrations as output, depending on several ki-
netic parameters, possibly including the total quantity of a cata-
lyst or enzyme, as input. In certain parameter regimes, the exis-
tence of disparate (fast–slow) time scales allows one to explicitly
reduce a detailed kinetic scheme through, e.g. the Bodenstein (25)
or Quasi-Steady-State Approximation (QSSA) to an effective re-
duced one, characterized by new, reduced effective parameters.

The detection of such effective parameters in our scheme will
be achieved by using the manifold learning algorithm DMaps (19),
for which a more detailed description is given in Section S2A of the
Supplementary Material. We will illustrate that, given a system-
atically collected data set, and with an appropriate metric, DMaps
can be used for parameter reduction: discovery of effective pa-
rameter combinations that affect the output, as well as parame-
ter combinations that do not affect it. The motivation for our work
arose from studying the reduction of the following MSP model.

The MSP model
Yeung et al. (24) proposed and analyzed a kinetic model that de-
scribes the dual phosphorylation of extracellular signal-regulated
kinase (ERK) by an enzyme known as mitogen-activated protein
kinase kinase (MEK). Here, ERK can exist in any of three states: S0,
S1, and S2, where the subscript indicates the number of times the
substrate has been phosphorylated. The MEK enzyme, denoted by
E, forms complexes ES0 and ES1 with the first two phosphostates.
The reaction mechanism for this system is given by

E + S0

k f,1

�
kr,1

ES0

kcat,1

→ ES1

kcat,2

→ E + S2

k f,2 �� kr,2

E + S1 , (1)

with the six rate constants comprising our vector of in-
puts/parameters:

p = [kf,1, kr,1, kcat,1, kf,2, kr,2, kcat,2]� ∈ R
6.

The governing system of ordinary differential equations is listed
in Section S1A of the Supplementary Material.

Yeung et al. used the QSSA for the species ES0 and ES1 along
with stoichiometric conservation to approximately reduce the
above system: If the assumptions

Stot � kf,1 + kcat,1

kf,1
, Stot � kr,2 + kcat,2

kf,2

reasonably hold, where

Stot = [S0]
∣∣
t=0 = [S0] + [S1] + [S2] + [ES0] + [ES1],

then the initial model reduces to a three-state linear kinetic
model that depends on only three effective parameters, which are

combinations of the full model parameters

κ1 = [E]
kf,1kcat,1

kr,1 + kcat,1
,

κ2 = [E]
kf,2kcat,2

kr,2 + kcat,2
,

π = kcat,2

kr,2 + kcat,2
. (2)

The reduced equations can be found in Section S1B of the Sup-
plementary Material. We will attempt to derive such a reduced
parameterization in a data-driven manner.

Data-driven parameter reduction
We select a base point in parameter space

p̃ = [0.71, 19, 6700, 9200, 0.97, 5200]�,

which is situated in the region of parameter space where the re-
duction assumptions hold. We select a reference initial condition
[S0] = 5 and [E] = 0.66, with the other species not initially present.
Numerically integrating the associated system of ODEs, we col-
lected 10,000 dynamic observations of the system output in re-
sponse to perturbations of each parameter within ±10% of its base
value. Note that our random parameter perturbations, are merely
a device for sampling the neighborhood of the base point in in-
put/parameter space; a grid of equally spaced points would also
suffice.

In the following analysis, we take as our outputs the concen-
tration [S2] at t ∈ {2, 4, …, 20}, which yields a 10D observation vec-
tor at each parameter setting. For this example, the choice of [S2]
as the observed output is not particularly significant; the tempo-
ral response of any time-varying chemical species or combination
thereof would give the same results [based on Takens’ embedding
theorem (26)]. We will refer to this particular data set X as the
transient data. This data set samples what in the literature is re-
ferred to as the model manifold, whose dimensionality determines
the number of meaningful (effective) parameters (16, 27, 28).

A second data set, Y, was obtained through computational op-
timization experiments, in which we estimated vectors of six pa-
rameter values that best fit the reference transient, we obtained
at the base parameter setting. In these experiments, initial con-
ditions were chosen randomly from a log10-uniform distribution,
with lower and upper bounds set, respectively, at 10−3 and 10+3

times the rates estimated by Aoki et al. (29). We performed nonlin-
ear least-square fits of these transients from 1,000 random initial
conditions in 6D parameter space, as described in ref. (24). Upon
successful completion of these computations, we have 1,000 6D
“optimal fits” of the base parameter setting; we call this data set
the optimization data.

We first computed output informed DMaps, with the distance
metric described in Section S2A of the Supplementary Material, on
the transient data set. The observed outputs in X for these compu-
tations, are used without reference to the values of the analytical
parameters provided in Eq. (2); the latter will only be considered
later for validation of our data-driven approach: comparing our
effective parameters to previously analytically known ones will
confirm that our data-driven scheme finds a parameter represen-
tation that is equivalent to that proposed in Eq. (2), which we use
later only as a means of comparison to confirm that our data-
driven scheme finds a representation that is equivalent to that
proposed in ref. (24). The number of independent/nonharmonic
eigenvectors indicates the effective dimensionality of the model
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Fig. 2. The first three independent, nontrivial eigenvectors, φ1, φ3, φ9, colored by (computed) values of the three theoretical effective parameters, κ1, κ2,
π , respectively, for a transient data set.

manifold. We found three nonharmonic DMaps eigenvectors (30)

φ = (φ1, φ3, φ9) ∈ � ⊂ R
3

and deduced that the intrinsic dimensionality of the transient
data set, and thus of the model manifold, is three. We then turned
to the optimization data set and performed both principal com-
ponent analysis (PCA) and “regular” DMaps. We found that the in-
trinsic dimensionality of the optimization data set is also three,
whether we estimate it from PCA or from DMaps. These two re-
sults corroborate/complement each other, since three plus three
equals six, the total number of original parameters.

The dimensionality of the transient data set could be estimated
from the dimension of the null space of either the sensitivity ma-
trix or the sensitivity Fisher information matrix (14) at the base
point. Beyond this estimate, however, our approach discovers a
global parameterization over the data of the output in terms of
φ = (φ1, φ3, φ9), which are our data-driven effective parameters.
These eigenmodes capture the directions, in full parameter space,
that matter to the output: the parameter changes that affect the
response of our system. Figure 2 illustrates these three leading
nonharmonic eigenvectors, colored by the analytical effective pa-
rameters of Yeung et al. in Eq. (2). Even though it is difficult to visu-
ally appreciate a 3D point cloud through color, we believe one gets
a clear visual impression that the data-driven effective parameter
set and the analytical effective parameter set are one-to-one with
each other. We will quantify this below.

We remind the reader that the DMaps effective parameters, like
the analytical ones, will in general correspond to combinations of
the original parameters. But while the analytical effective param-
eters are physically explainable [Eq. (2) shows their dependence
on the original parameters], no such a priori physical interpreta-
tion comes with the proposed data-driven effective parameters.
We will address this issue below.

Computing DMaps on the optimization data also results in an in-
trinsically 3D parameterization of the manifold of equivalent op-
tima (Fig. 3). The intrinsic parameters computed for this data set
uncover the directions in parameter space that produce (approx-
imately) the same response: the reference trajectory at the base
input settings. This dictates how many parameter combinations
do not matter to the recorded output response. This structural non-
identifiability, computed around a selected output response (one
in a base setting) is a property of the system in a neighborhood
of that setting, as long as the intrinsic dimensionality of the re-
sponses does not change when we perturb the base parameter
values (i.e. as long as the QSSA remains valid, see the discussion
in Section S2D of the Supplementary Material). For our example,
it was sufficient to perform linear data processing of the optima

Fig. 3. (Left) Independent eigenvector coordinates, ψ1, ψ2, ψ3, for the
optimized data set, colored by ψ2. (Right) The three dominant singular
vectors computed with PCA, colored by the second, U2.

by PCA. Indeed, the three redundant parameter combinations for
the reference trajectory happen to live on a 3D hyperplane in full
parameter space; this hyperplane contains ∼99% of the total vari-
ance of the 6D parameter vectors in the optimization set. In this
example, it so happens that linear data analysis (PCA) is sufficient
to determine the “minimal response richness”: The responses lie
on a 3D hyperplane in the 10D output space. In general (and, we
expect, most often), PCA will suggest more than the truly minimal
number of effective parameters to span the data, and nonlinear
tools like DMaps would be required to find a minimal set.

We already have our first result: a data-driven corroboration of
the number of effective parameter combinations. Three of them
matter, and three of them do not, adding up to the correct total
number of six full inputs. The reader may already have noticed
that these structurally unidentifiable combinations are not global;
they are valid only for the reference trajectory. Beyond finding this
number, we will also construct a global parameterization/foliation
of the “hypersurfaces that do not matter” in the original input
space. Even though only three-dimensional, they are impossible
to visualize, leading to our introduction of a visualizable carica-
ture below.

Effective parameter identification
The leading nonharmonic eigenvectors, φ, computed for the tran-
sient data X provide an intrinsic parameterization of this data
set, i.e. a set of coordinates parameterizing the model manifold
(see the discussion on Section S2A of the Supplementary Mate-
rial for clarification of the term nonharmonics). However, they
are not necessarily physically meaningful. In order to interpret
them, the data scientist who knows their dimensionality can now
ask a domain scientist to suggest a set of physically meaningful
parameter combinations, κ i, and try to quantitatively establish a
one-to-one correspondence between the data-driven φi and the
hypothesized meaningful κ i. This approach to interpretability has
been proposed and used in refs. (31–34) for the case of data-driven
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Fig. 4. The three theoretical effective parameters predicted as a functions of the DMaps eigenvectors φ with Double DMaps. (Left) κ1 = f1(φ), (middle)
κ2 = f2(φ), and (right) π = f3(φ). Blue dots denote the training points (7,000 data points) and red crosses the test points (3,000 data points).

Fig. 5. (Left) Histograms of the determinant of the Jacobian, det J f (φ), computed on each observed data point with automatic and symbolic
differentiation of GH and with automatic differentiation using a neural network. (Right) Histogram of Jacobian determinants for the inverse function,
det J f−1(κ), computed with a neural network.

effective variables, and it can be extended, as we propose here, for
data-driven effective parameters.

In our case, Yeung et al. have already provided us with good
candidate analytical effective parameters κ = (κ1, κ2, π ) ∈ K ⊂ R

3.
We seek a (hopefully smooth) invertible mapping f: � → K from the
DMaps space to the space of analytical effective parameter val-
ues and back. This mapping is constructed through a “slight twist”
on GH, which we call Double DMaps, explained in Section S2C of
the Supplementary Material. From the total 10,000 collected data
points, we use 7,000 as training points and 3,000 as test points for
our Double DMaps. We use the inverse function theorem (IFT) de-
scribed in Section S2E of the Supplementary Material to check that
our data-driven effective parameters are indeed locally one-to-one
with the known analytical effective parameters (Eq. 2). We then
use our Double DMaps GH to express the three theoretical effec-
tive parameters κ = (κ1, κ2, π ) ∈ K ⊂ R

3 as (approximate) functions
of our coordinates φ.

An alternative realization of this map (data-driven effective
to analytical effective) and its inverse can also be constructed
through the “technology” of neural networks: We used the data-
driven effective parameters as inputs in a neural network whose
outputs are the analytical effective parameters. Specifically, we
used a five-layer, fully connected network with 30 nodes per layer
and tanh activation functions, which we optimized via ADAM

to achieve a mean squared error (MSE) on the order of 10−6.
Training this network provides an alternative realization of the

mapping between the data-driven φi and the interpretable (here
analytically obtainable) κ i, the map f: � → K. We also obtained
the inverse map, f−1: K → �, by training a second neural network
that implemented the same architecture and training scheme
but with inputs and outputs switched. Instead of training two
separate networks, one could combine the two networks into an
autoencoder. Being able to construct the forward and the inverse
mapping confirms the global one-to-one correspondence of the
two sets on the data: The autoencoder would not be trainable
otherwise. Figure 4 plots the ground truth values of the three
effective parameters against those interpolated with GH.

To establish that this map f: � → K is invertible, we first confirm
that the determinant of its 3 × 3 Jacobian matrix is bounded away
from zero for all points in our data set. By construction, f is con-
tinuously differentiable, so the IFT guarantees local invertibility
in a neighborhood of any point φ ∈ �, where the Jacobian matrix

J f (φ) =

⎡
⎢⎣

∂κ1/∂φ1 ∂κ1/∂φ3 ∂κ1/∂φ9

∂κ2/∂φ1 ∂κ2/∂φ3 ∂κ2/∂φ9

∂π/∂φ1 ∂π/∂φ3 ∂π/∂φ9

⎤
⎥⎦

is nonsingular. In Fig. 5, we illustrate that det J f (φ) is bounded
away from zero on our complete data set of 104 points. Further-
more, our success in training the decoder component indicates
that f : � → K is globally invertible over our data and that our
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Fig. 6. The three eigenvectors, φ, are fitted as functions of the original parameters, p, through a symbolic regression algorithm. Entries of φ and p were
rescaled in the range [− 1, 1]. Expressions for the μ� are provided in Eq. (4).

computed data-driven effective parameters are indeed one-to-
one with the proposed theoretical ones [Eq. (2)].

The effective parameters proposed in ref. (24) were obtained by
applying the QSSA to the full model. Simply by rearranging and
simplifying the terms in Eq. (2), we could derive another equally
plausible triplet of effective parameters:

μ′
1 = [E]

kf,1kcat,1

kr,1 + kcat,1
μ′

2 = k4

k5k6
, μ′

3 = k4

k6
. (3)

Which of the two triplets would a symbolic regression package
[e.g. gplearn (35)] select? We illustrate an answer graphically in
Fig. 6 and analytically in Eq. (4). Note that, when performing
this regression, we rescaled both the original parameters and the
DMaps coordinates to lie in the range [−1, 1], as suggested in the
package documentation (35):

μ�
1 = 0.288(kcat,2 − kcat,1 + kr,2 + kf,1),

μ�
2 = 0.455(kf,1 − kf,2),

μ�
3 = 0.218(0.36k2

f,1 − 1.38kf,1kr,2 − kf,2 + kcat,2

− kf,1 − kr,2 − 0.436), (4)

where μ�
i denotes the ith estimated symbolic regression expres-

sion/parameter. As illustrated in Fig. 6, these simple linear or
quadratic expressions of the original parameters p can fit the coor-
dinates quite accurately. In our opinion, while they can be written
down in terms of “simple cognitive basis functions,” (i.e. mono-
mials) ultimately these symbolically regressed parameters are al-
most as mechanistically uninterpretable as our data-driven effec-
tive ones.

Behavior estimation
Our computational formulation also allows us to obtain a map-
ping from new values of the effective parameters to the corre-
sponding system output behavior. Each analytical effective pa-
rameter κ i and each element of every observed behavior vector
are functions over the intrinsic model manifold, which is pa-
rameterized by the data-driven effective parameters φi. If we
are given a new triplet of φi, GH on our Double DMaps can re-
cover any element of any observation vector. If, on the other
hand, we are given a new triplet of κ i, we need only locally in-
vert the known κ i(φj) functions to the data-driven effective pa-
rameters, and proceed as above to predict the corresponding dy-
namic behavior through GH. Alternatively, after a round of DMaps
on the κ i, we perform GH on these DMaps to interpolate any de-
sirable element of the expected behavior vector as a function of
the κ i.

To implement this latter procedure, we generated 5,000 triplets
of analytical effective parameters by perturbing uniformly within
±20% of the nominal parameter values (κ1, κ2, π ) = (0.467, 0.232,
0.362), designating 4,000 as training and 1,000 as test points. We
used this data set to learn the output concentration profiles for
10 time steps of S2 with our Double DMaps GH scheme. Figure 7
shows the true values of the concentrations against the predicted
values with our scheme for t = 10. Across all 1,000 test points for
analytical effective parameter values, the relative prediction error
does not exceed 0.1%.

Parameter estimation
Even when the kinetic mechanism is known, parameter estima-
tion is often challenging, due to measurement noise and differ-
ences in the timescales of individual reactions (24). Estimating the
parameters not through optimization but through our data-driven
scheme is straightforward from a technical standpoint. For previ-
ously unseen behaviors f (pnew) = [S2(t1|pnew), . . . , S2(tf |pnew)], the
Nyström extension (described in Section S2B of the Supplemen-
tary Material) directly estimates the corresponding φi on the
model manifold, from which we directly go to the effective pa-
rameters κ leading to this behavior through our Double DMaps
version of GH (see Section S2C). Our approach performs this esti-
mation in the minimal required dimensions—the intrinsic, data-
driven ones—that jointly parameterize the observed behavior and
the meaningful input combinations that produce it. Figure 8 il-
lustrates the projection of 100 previously unseen behaviors to the
3D manifold through the Nyström extension and quantifies how
well we can estimate the effective parameters for those unseen
behaviors through our scheme.

On the parameter combinations that do not
matter
Having identified a data-driven effective parameterization of the
model and constructed data-driven maps from behavior to ef-
fective parameters and back, we now need to complete the task
by mapping behavior to the original, full parameter set. Clearly,
this mapping is not one-to-one: For every observed behavior from
the model, there exists an entire level set of the original param-
eter space consistent with this behavior—and with a single set
of meaningful parameter combination values. For the optimized
data in Fig. 3, we showed that an entire 3D level set exists in the
original parameter space, for a given output behavior (and so, for
a given set of effective parameters/meaningful parameter combi-
nations). But this does not identify the parameter combinations
that do not matter, that is, those which do not influence the re-
sulting model behavior as one changes their values by moving
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Fig. 7. (Left) Comparison of true and predicted values of the product concentration [S2] at t = 10 with our scheme for 4,000 training and 1,000 test
points. (Center) A reconstructed concentration profile of S2 for a test point. With crosses are illustrated the true values, and with red points the values
predicted with Double DMaps. (Right) The relative error for the 1,000 unseen behaviors.

Fig. 8. (Left) The unseen behaviors f (pnew ) projected onto DMaps space via the Nyström extension. (Right) For 100 unseen behaviors, the effective
parameters (κ1, κ2, π ) are predicted with our Double DMaps scheme from previously unseen behaviors f (pnew ).

along a level set of the effective parameters. In order to describe
these level sets, we must employ a data-driven approach that
allows us to detect the combinations of original parameters that
do not affect the model output. This will disentangle the meaning-
ful effective parameter combinations from the redundant ones. In
Fig. 1, this disentangled parameterization was given by φ ≡ p1p2

and ψ ≡ p2
1 − p2

2.
Notice that the level sets of these two types of original pa-

rameter combinations are conformal everywhere. Moving p1 and
p2 along the green level set does not change the model output,
whereas moving them on the blue level set suffices to sample all
possible output behaviors. In this way, the redundant parameter
combinations allow us to construct the set of original, physical
parameter values that are consistent with an observed behavior.
Alternatively, holding them constant reduces the number of di-
mensions to be explored when optimizing the model behavior. Fi-
nally, after finding a behavior that optimizes a primary objective,
the redundant parameter combinations help parameterize the
search for an optimal secondary objective—not a Pareto multiob-
jective but rather a lexicographic optimization (36). This disentan-
glement helps outline the nature of this subsequent lexicographic
optimization and the dimensions available for it in parameter
space. However, since the data are collected locally around the
base point, our computation provides only a springboard for fur-
ther systematic exploration. A discussion of the systematic col-
lection of additional data, parsimoniously extending the known
“patches” of the level sets is discussed in ref. (37).

A visualizable caricature
The 3D level sets of our working MSP example do not lend them-
selves to visualization. We therefore turn to a simpler kinetic
model to illustrate these ideas and methods:

S0 + E
k f

�
kr

ES0

kcat
→ S1 + E, (5)

where S0 and S1 are two different states of the substrate S; E is
the enzyme; and ES0 and ES1 are complexes between the enzyme
and the substrate. The differential equations can be found in Sec-
tion S1C of the Supplementary Material. We chose two base values
of the original parameters kf, kr, kcat to work with. The first base
value

k1 = (kf , kr, kcat ) = (0.71, 19, 6700),

gives a single effective parameter keff � kf; in Section S3 of the
Supplementary Material, we describe the discovery, through our
manifold learning, of this single effective parameter and also the
construction of its level sets. We choose to discuss here our results
for the more interesting case of nominal parameters

k2 = (kf , kr, kcat ) = (0.97, 7000, 10000).
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Fig. 9. The proposed Y-shaped Conformal Autoencoder consists of the
following subnetworks: an Encoder (NN1), a Decoder (NN2), a Behavior
Estimator (NN3), and possibly an additional Parameter Estimator (NN4)
[see Eq. (7)].

In this regime, QSSA yields the single effective parameter

keff = Etot
kfkcat

kr + kcat
, (6)

where Etot is the total concentration of the enzyme.
We generated 2,000 parameter vectors by sampling each entry

uniformly within ±20% of its nominal value. We collected output
system behaviors for each parameter vector by integrating the
model mechanism of Eq. (5) from the reference initial condition
([S0], [E], [S1], [ES1]) = (5.0, 0.66, 0, 0). The response is recorded ev-
ery 2 seconds in time for five total points per trajectory. Our data-
driven approach again detects that the output behavior of the sys-
tem is intrinsically 1D, and the new single effective parameter ψ1

is one-to-one with our data-driven effective parameter keff, which
is a combination of all three original parameters. The level sets of
ψ1 (or keff) are 2D curved surfaces (manifolds) in the original pa-
rameter space. In order to describe this level set, that is, discover
the redundant parameter combinations, we introduced a Confor-
mal Autoencoder Y-shaped Neural Network architecture (see Fig. 9).

Our Y-shaped Neural Network scheme consists of several con-
nected subnetworks:

NN1 : (kf , kr, kcat ) 
→ (ν1, ν2, ν3),

NN2 : (ν1, ν2, ν3) 
→ (k̃f , k̃r, k̃cat ),

NN3 : ν1 
→ ([S2]|t1 , . . . , [S2]|t f ),

NN4 : ([S2]|t1 , . . . , [S2]|t f ) 
→ ν4. (7)

We used three multilayer perceptrons illustrated in Fig. 9:

(1) “Encoder” (NN1), which transforms the original parame-
ters to a reparameterization, disentangling their meaning-
ful combinations (one in the figure) and the redundant ones
(two in the figure);

(2) “Decoder” (NN2), which reconstructs the original parame-
ters; and

(3) “Behavior Estimator” (NN3), which maps the meaningful
combination(s) to the observed output data.

An additional “Parameter Estimator” (NN4) could be used to
map observed behaviors back to the effective parameter(s) to en-
sure global invertibility.

The key feature is the loss function, consisting of several parts.
The obvious one is the successful reconstruction of the input orig-
inal parameters (the “Autoencoder” part). Next comes the ability
of NN3, whose input is the single effective parameter combination
we seek, to reproduce the observed output; this forces ν1 to be one-
to-one with the analytically known parameter keff. How many out-
put measurements are necessary? Whitney’s (and Takens’) em-
bedding theorems provide guarantees for 2n + 1 generic observa-
tions, when n is the dimension of the model manifold (26). Clearly,
to build the architecture, we need to know in advance the number
(here, one) of the required meaningful parameter combinations
from the dimensionality of the model manifold. This number is
the first quantity we compute with our output-informed DMaps
analysis of the transient system observations. The third necessary
loss component comes from further imposing an orthogonality con-
straint on the Conformal Autoencoder’s latent coordinates ν:

〈
dνi, dν j

〉 = 0 ∀i �= j,

where dνi indicates the vector of partial derivatives of the latent
coordinate ν i in terms of the input parameters (kf, kr, kcat) and 〈
·, ·〉 indicates the inner product. This constraint is imposed using
the automatic differentiation capabilities of the relevant code li-
braries and aims to disentangle what matters from what does not,
making the architecture a “Conformal Autoencoder.” We explain
the procedure used to train this Neural Network in Section S2G of
the Supplementary Material.

We thus discover a parameterization of the two redundant pa-
rameter combinations through ν2 and ν3. We also discover the
Neural Network encoding of the effective parameter, ν1, which is
one-to-one with both keff and φ1 (see Fig. 10). Our Double DMaps
can easily approximate the estimation of ν1 from new, unobserved
behavior. Figure 10 shows representative (orthogonally) intersect-
ing level sets of the three ν i, and the conformal grid of ν2, ν3 on a
level set of the effective parameter ν1.

This network can be used to encode a full set of initial pa-
rameter values to the effective parameter values that matter and
through them to the predicted behavior. More importantly, the al-
ready established path from the new, unobserved behavior to the
corresponding value of ν1, the effective parameter that matters,
allows us to fix this value as an input to the Decoder NN2 and re-
produce the level set of original parameters consistent with this
new observed behavior by varying the values of ν2, ν3.

JSF extraction
We conclude this section by discussing how a kernel-based
method called JSFs, introduced by Dietrich et al. (23), can be ex-
tended and used to disentangle input–output relations. Instead of
a Neural Network architecture, the “Jointly Smooth Functions” (23)
approach, as its name suggests, could be used to find functions
of the original parameters and functions of the output measure-
ments that are jointly smooth over the available data. Those JSFs
between the original parameters and the output are the effective
parameters of the model in our case.

Figure 11 illustrates the results for our second, visualizable ex-
ample. Two data sets are collected, containing 2,000 samples each.
One consists of 20 time-delayed measurements of four output
variable observations, (S0, S1, ES0, E), which we express as x1 ∈ R

80.
The second contains the corresponding parameters x2 ∈ R

3. We
use these two data sets as input to the JSF extraction pipeline
(Algorithm in the Supplementary Material) and compute 25 such
functions. The first JSF is one-to-one with the known effective pa-
rameter keff (bottom left). We additionally plot an output (here,
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Fig. 10. (Top left) The effective parameter keff is one-to-one with the data-driven coordinate φ1, and also with the Neural Network effective variable ν1.
(Top right) The level sets of constant behaviors, the level sets here are surfaces of the form f(kf, kr, kcat) = C. A particular effective parameter (red point)
corresponds to a level set (red surface) of the original parameters (kf, kr, kcat). (Bottom left) The same level set of keff (equivalently, of ν1, since they are
one-to-one), on which the conformal directions are colored as a grid of red and blue lines. (Bottom center) The intersection of the level set of keff with a
level set of ν2. (Bottom right) The intersection of the level set of keff with a level set of ν3.

Fig. 11. (Left) The first JSF for the second example, compared to the
effective parameter keff. (Right) The first JSF is one-to-one with the

observation x(79)
1 .

one of the measurements, the 79th one in time) that is also one-
to-one with the first JSF (on the right). Note that, to test the robust-
ness of the approach, the latter half of the output measurements
were substituted with random noise uniformly distributed over
the measurement range.

In our work, we introduce an additional feature of the JSFs that
allows to the computation of redundant parameter combinations
through the JSF approach; this is illustrated in Section S2H of the
Supplementary Material.

Discussion
We have presented a systematic, data-driven approach for obtain-
ing a meaningful reparameterization of parameter-dependent dy-
namical systems, disentangling the parameter combinations that
matter to the output observations (temporal state measurements)
from those that do not. The approach is generally applicable to the
reparameterization of input–output relations.

We used manifold learning techniques, including DMaps, to
jointly parameterize the behaviors observed (the “model mani-
fold”) and the parameter combinations leading to them. We found

the minimal number of meaningful parameter combinations (the
effective parameters), expressed the outputs as functions of these
effective parameters, and showed how to construct data-driven
mappings from new effective parameters to the estimated out-
puts (prediction) and from new output observations back to ef-
fective parameters (estimation). It is worth mentioning that, in the
case of noisy outputs, the DMaps parametrization will be robust
to output noise as long as the scale parameter

√
ε remains larger

than the amplitude of the noise (19).
Disentangling the parameter combinations that affect the out-

put from those combinations that do not (the redundant parame-
ter combinations) was obtained through a conformal autoencoder
neural network. This allows us to now provide, for any observed
behavior, not only the effective parameter values for it but also
the level set, in full input parameter space consistent with this behav-
ior. The capability of disentangling meaningful from redundant by
enforcing conformality seems a promising research tool in tasks
ranging from data-driven dimensional analysis to the exploration
and construction of closures, and to the training of overparame-
terized neural networks.

We briefly discuss the computational scalability of our ap-
proach. Generally, the ambient space dimension of the data in-
fluences the computational complexity less than the intrinsic di-
mension of the model manifold, i.e. the number of effective pa-
rameters. The detection of effective parameters in an intrinsically
high-dimensional (say, five- or more dimensional) model manifold
is less constrained by the scaling of our approach, but hinges on
the large amount of data needed to sample the manifold well.
Ambient space dimension, i.e. the number of given parameters
(including redundant ones) as well as the number of observations,
does not matter as much for the computational complexity of our
approaches, since DMaps, GH, and JSFs are all based on pair-wise
distance matrices that effectively ignore ambient dimension. The
computational efficiency of the JSF approach is discussed in ref.
(23). In general, kernel-based methods such as DMaps require
more careful numerical implementations than Neural Network
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approaches, otherwise the number of data points becomes a bot-
tleneck. Efficient algorithms that scale to millions of data points,
even in high-dimensions, are available; see refs. (23) and (38) for a
discussion. Regarding memory, the Conformal Autoencoder net-
work is less demanding than kernel-based approaches, because
we can utilize minibatching for training and highly parallelized
software with efficient implementations is readily available. The
analysis of the computational complexity of the network ap-
proach is much more involved than for kernel-based approaches,
however, and out of the scope of this paper. Even convergence
of the training is not clear, although some recent work hints on
global convergence at least in controlled settings (39, 40).

It is interesting to consider the interplay of this approach with
multiobjective optimization: If some input parameter combina-
tions matter to a dominant objective, while others do not, we can,
after a first round of optimization, exploit the redundant param-
eter combinations and optimize a second, “subservient” objective
on optimal level sets of the first, dominant one. This is termed lex-
icographic optimization and can also be related to “lifelong learn-
ing.” A conceptually simple example is the training of an overpa-
rameterized neural network to perform some task: The primary
objective will be the accuracy of the prediction, while the “sub-
servient,” secondary objective can be the pruning of the network
for sparsity while remaining on the level set of successfully optimized
predictions.

Finally, we explored interpretability of our data-driven effec-
tive parameters through establishing bijections between them
and candidate “tuples” of physical ones, which must come from
domain experts. We also explored another simple approach to
effective parameter interpretability by symbolically regressing
the data-driven effective parameters as functions of the input
ones.

This work, creating mappings between parameters (in a sense,
inputs to a dynamical system) and observed behavior (outputs),
can be extended to create mappings between inputs and states,
as well as mappings between states and outputs. We are ex-
ploring this direction toward data-driven balanced realizations.
We expect that our level set parameterizations of the parameter
sets that matter/do not matter (whether through Conformal NN
or through JSF computations) may lead to useful extensions of
the controllability and observability subspaces of linear theory. In
this more general problem formulation, one can go beyond struc-
turally unidentifiable inputs, and uncover spurious observations
that are not system outputs (e.g. intrinsic sensor noise in our out-
put observations) (41). We are also exploring JSFs as a promising
alternative kernel-based approach. Extracting the components of
the inputs and outputs in the jointly smooth directions “that mat-
ter” can also help highlight those that do not. A key benefit is that,
in addition to removing irrelevant input directions, this computa-
tion also removes output directions that are not influenced by the
input (parameter) data, and provides a numerically stable and ac-
curate approximation of the function space over the space of the
effective parameters.

Conclusion
We conclude by reiterating that, while the paper was focused
on parameter nonidentifiabiity, in a context where the original
model parameters function as “inputs” to the model, and the ob-
served state time series are the “output,” our approach is gener-
ally applicable to data-driven (re)parametrization of more general
input–output relations, with an eye toward disentangling mean-
ingful inputs from redundant ones. Applicability of our current

framework in an experimental setting involves (after selection of
a reference set of conditions) the systematic local perturbation
of all distinct experimental parameters/inputs; data mining on
the response/output then leads to the discovery of the meaningful
and redundant parameter combinations.
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