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Abstract: It is well known that the association of parahydrogen (pH2) with an unsaturated molecule
or a transient metalorganic complex can enhance the intensity of NMR signals; the effect is known
as parahydrogen-induced polarization (PHIP). During recent decades, numerous methods were
proposed for converting pH2-derived nuclear spin order to the observable magnetization of protons
or other nuclei of interest, usually 13C or 15N. Here, we analyze the constraints imposed by the
topological symmetry of the spin systems on the amplitude of transferred polarization. We find that
in asymmetric systems, heteronuclei can be polarized to 100%. However, the amplitude drops to
75% in A2BX systems and further to 50% in A3B2X systems. The latter case is of primary importance
for biological applications of PHIP using sidearm hydrogenation (PHIP-SAH). If the polarization is
transferred to the same type of nuclei, i.e., 1H, symmetry constraints impose significant boundaries
on the spin-order distribution. For AB, A2B, A3B, A2B2, AA’(AA’) systems, the maximum average
polarization for each spin is 100%, 50%, 33.3%, 25%, and 0, respectively, (where A and B (or A’)
came from pH2). Remarkably, if the polarization of all spins in a molecule is summed up, the total
polarization grows asymptotically with ~1.27

√
N and can exceed 2 in the absence of symmetry

constraints (where N is the number of spins). We also discuss the effect of dipole–dipole-induced
pH2 spin-order distribution in heterogeneous catalysis or nematic liquid crystals. Practical examples
from the literature illustrate our theoretical analysis.

Keywords: parahydrogen; polarization transfer; hyperpolarization; symmetry constraints; PHIP;
PASADENA; ALTADENA; nuclear spin isomers; symmetry groups

1. Introduction

Parahydrogen-induced polarization (PHIP) is a cost-efficient and fast method to
polarize nuclear spins [1]. PHIP exploits the symmetry of molecular dihydrogen that
exists as two nuclear spin isomers: Parahydrogen (pH2) and orthohydrogen (oH2). The
nuclear spin state of pH2 is the singlet state, |S〉 = | αβ〉−| βα〉√

2
, which is assymetric

under the exchange of the nuclear spins. The total wave function of the H2 nuclei is
antisymmetric under the exchange of two nuclei (two fermions), so the quantum numbers
of the rotational states take even values [2]. oH2 is represented by three nuclear spin states,
|T0〉 = | αβ〉+| βα〉√

2
, |T+〉 = |αα〉 , and |T−〉 = | ββ〉 . These three nuclear spin states are

symmetric under spin exchange, hence necessitating odd rotational quantum numbers [2].
This selection is dictated by the generalized Pauli principle, which states that the total wave
function of two protons (two fermions with spin- 1

2 ) is antisymmetric upon permutation [2].
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Note, however, that the hydrogen atom, consisting of a proton and an electron (i.e., two
fermions), is a boson, hence the total wave function of H2 is symmetric under the exchange
of two atoms (further discussion below). Note that here we discuss the interplay between
the symmetry of the nuclear spin states and symmetry of rotation–molecular spin states.

Thus, pH2 takes the lowest rotational energy state, which is symmetric, and oH2 takes
the next rotational energy state, which is asymmetric. The gap between the lowest two
rotational energy levels, i.e., pH2 and oH2, is significant (170.5 K) and can be used to enrich
the para-state: 50% pH2 is obtained by cooling H2 to liquid nitrogen temperatures [3]
and 99% at about 25 K (e.g., using a two-stage Helium cryo-cooler or liquid Helium) [4,5].
Because pH2 and oH2 can be separated, they are also referred to as nuclear spin isomers
(NSIM). Some other molecules also have NSIM, for instance, molecular deuterium [6],
ethylene [7], and water [8].

The density matrix for an ensemble of molecules containing N spin- 1
2 nuclei, where

spins A and B originate from pH2, can be written as follows:

ρ̂A,B
S =

1̂N

2N −
1

2N−2 (
^
I

A

·
^
I

B

). (1)

Here, 1̂N is the identity matrix, i.e., a {2N × 2N} matrix with ones on the diagonal.

The individual spin operators ÎA,B
k in the dot product, (

^
I

A

·
^
I

B

) = ÎA
X ÎB

X + ÎA
Y ÎB

Y + ÎA
Z ÎB

Z, are
obtained using the Kronecker (direct) product

⊗
of the corresponding Pauli matrices ŝk

(with k = X, Y or Z) and N− 1 of 2× 2 identity matrices 1̂1. Here, the numbering of the spins
in the molecule is important. For example, for the first spin, the operator is constructed as

Î1
k =

1
2

ŝk
⊗

1̂1 . . .
⊗

1̂1. (2)

There are two primary variants of PHIP: (a) Hydrogenative PHIP (Figure 1A), such
as PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear align-
ment [9]) and ALTADENA (adiabatic longitudinal transport after dissociation engenders
net alignment [10]), and (b) non-hydrogenative PHIP, or SABRE (signal amplification by
reversible exchange [11], Figure 1B), where pH2 and the substrate interact via a reversible
exchange at a catalyst. Both methods have found applications at high (~T) [12], low
~1 mT [13], ultra-low ~1 µT [14,15], and zero fields [16]. To limit the scope of this paper,
however, we focus our discussion on hydrogenative PHIP at high magnetic fields only.
It should be noted that a similar analysis for four spin- 1

2 SABRE systems was recently
performed [17].

Figure 1. Schematic view of hydrogenative ((A), left) and non-hydrogenative ((B), right) PHIP
for a 3-spin-1/2 system with asymmetric couplings (top) and a 4-spin-1/2 system with symmetric
couplings (bottom). Here, we focus on hydrogenative PHIP in symmetric and asymmetric systems
(A). The case of 4-spin-1/2 SABRE ((B), bottom) was considered by Levitt in a seminal paper [17]. Note
that different lines represent different strengths of nuclear spin–spin interactions. pH2 is represented
by red circles, other spins or other reagents by blue squares, and J-couplings by thin, thick, and
dashed lines.
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For hydrogenative PHIP, the spin state of the molecule after pH2 addition strongly

depends on the coupling regime. Two spins
^
I

A

and
^
I

B

are considered strongly coupled
when the difference of their Larmor precession frequencies, δνAB =

∣∣v0
A − v0

B

∣∣, is much
smaller than their mutual indirect spin–spin coupling JAB, i.e., δνAB � |JAB|. In the oppo-
site case, the spins are weakly coupled [18]. The frequency v0

A,B = γA,BB0(1 + δA,B)/2π

of spin
^
I

A

or
^
I

B

depends on the strength of the magnetic field B0, chemical shift δA,B, and
magnetogyric ratio γA,B.

In the PASADENA case, upon the addition of pH2 to an asymmetric molecular environ-
ment at high fields, 1H spins are weakly coupled. Since individual molecular hydrogenation
events are distributed in time over the course of the hydrogenation reaction, the molecules
evolve for different times, and the non-stationary X and Y coherences (Equation (1)) are lost.
The singlet spin state ρ̂A,B

S is averaged to the non-evolving stationary state, the so-called ZZ
spin order [1]:

ρ̂A,B
ZZ =

1̂N

2N −
1

2N−2 ÎA
Z · ÎB

Z. (3)

From now on, we will omit operator “hats”.
It is common to transfer pH2-derived spin alignment to proton and X-nuclear magneti-

zation (e.g., 13C, 15N, 19F) for use as an MRI contrast agent [19–21], monitoring of chemical
and enzymatic reactions [7,22], or for analytical chemistry [23]. Many of such spin-order
transformations are represented by unitary transformations of the density matrix:

ρ(t) = U(t, t0)ρ(t0)U(t, t0)
†, (4)

where ρ(t0) is the density matrix at time t0, before the spin-order transfer (SOT), and ρ(t)
is the final density matrix, after the SOT. The unitary evolution operators U(t, t0), also
known as propagators, can be found by solving the corresponding Liouville von-Neumann
equation,

d
dt

U(t, t0) = −H(t)U(t, t0) (5)

for a time-dependent Hamiltonian H(t) and the initial condition U(t0, t0) = 1N .
In this work, we discuss the transformation of the singlet-state density matrix ρ̂A,B

S
and “PASADENA” density matrix ρ̂A,B

ZZ to observable magnetization for various spin sys-
tems using general properties of unitary transformations [24,25] together with restrictions
imposed by molecular symmetry [17].

2. Methods
2.1. Spin Operators and Observables

The general SOT from the initial spin state σinitial to the desired target spin state σtarget
under the action of the propagator U can be written as

UσinitialU† = σfinal = ξσtarget + σrest (6)

where σfinal is the final spin state, ξ is the amplitude of the target spin state σtarget, and σrest
is the difference between σfinal and ξσtarget that is not relevant for our considerations. We
will use ρ for density matrices with the trace of one and σ for traceless spin operators (or
traceless density matrices).

Since the propagator U is unitary, the transformation (6) implies boundaries on the pa-
rameter ξ. There is no general way to determine all possible final states σfinal for undefined
U. However, it is possible to obtain boundary conditions for the amplitude ξ ∈ [ξmin, ξmax]
and a given σinitial and σtarget in general.



Symmetry 2022, 14, 530 4 of 27

We define the operator of polarization of a single spin (e.g., A) in a molecule as

σA
P =

1
2N−1 IA

Z (7)

and the operator of polarization of N spins-1/2 as

σN
P =

1
2N−1 ∑N

k = 1 Ik
Z. (8)

Now it is straightforward to calculate a polarization (P) of one spin, or the average of
many spins, using corresponding spin operators (7) and (8):

P =
Tr(ρ(t)·σP)

Tr
(
σP·σP

) . (9)

Here, ρ(t) is the density matrix of the system at the time of interest t.
In the same fashion, the amplitude ξ of the state σtarget for σfinal after SOT can be

evaluated as:

ξ =
Tr
(

σf inal ·σtarget

)
Tr
(
σtarget·σtarget

) . (10)

We will use ξ in the following to report the maximum theoretically possible polariza-
tion (σtarget = σP).

We note that care should be taken when different initial states are analyzed. For
example, consider a general operator in the form 1̂N

2N + PσN
P that consists of two orthogonal

operators 1̂N

2N and σN
P (Equation (8)). Here, all diagonal elements of the unitary operator

are 1
2N and the largest element (its absolute value) of σN

P is equal to the maximum total
spin of N spin-1/2 system, N· 12 , times the normalization coefficient 1

2N−1 , that is, N
2N . Since

the population of any individual state must be between 0 and 1, additional constraints
are imposed on the allowed values of P: 0 ≤ 1

2N ± P N
2N ≤ 1. One can see that to avoid

non-negative populations, |P| ≤ 1
N is needed. This means that for the system of two

spins with net magnetization, the maximum average polarization per spin can only be
50%. However, if there are other components in the density matrix, larger values of P are
possible. For example, the polarization of spins in |T+〉 state is 100%; the corresponding
density matrix is 1̂N = 2

4 + σN = 2
P + I1

Z I2
Z for N = 2.

2.2. No Symmetry Constraints

The boundaries for the amplitude ξ of the target state σtarget after SOT (Equation (6))
are [24]

ξmax = ‖σtarget‖
−1·
(

Λ↑initial·Λ
↑
target

)
,

ξmin = ‖σtarget‖
−1·
(

Λ↑initial·Λ
↓
target

)
,

‖σtarget‖ =
(

Λ↑target·Λ
↑
target

)
.

(11)

Here, Λinitial and Λtarget are the eigenvalues arranged in vectors for the operators
σinitial and σtarget. The arrows up (↑) and down (↓) indicate that these eigenvalues are
sorted in an ascending or descending order. In general, ξmin ≤ ξ ≤ ξmax.

These boundaries arise because we assume all transformations to be unitary, and the
initial and final states are given by Hermitian operators [24]. Because σinitial and σtarget
are traceless operators, the boundary parameters often have the same absolute value:
ξmax = |ξmin| unless otherwise noted.
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2.3. Symmetry Constraints (SC)

When a system has spin symmetry (i.e., groups of equivalent spins), only the states
belonging to the same irreducible representations (Γ) of this group of symmetry G can be
mixed by unitary transformations [17,24,25]. In this case, the boundary conditions can be
found as:

ξSC
max = ‖σtarget‖

−1 ∑
Γ

(
Λ↑,Γinitial·Λ

↑,Γ
target

)
,

ξSC
min = ‖σtarget‖

−1 ∑
Γ

(
Λ↑,Γinitial·Λ

↓,Γ
target

)
.

(12)

where Λ↑,ΓX are vectors of eigenvalues of the operator σX (X = initial or target) that corre-
spond to eigenvectors belonging to the same Γ and sorted in an ascending (↑) or descending
(↓) order.

The transformation amplitude ξ is bounded as ξmin ≤ ξSC
min ≤ ξ ≤ ξSC

max ≤ ξmax.

2.4. Eigenvalues in the Case of SC

It is not trivial to define Λ↑,ΓX when SCs are present. To find the transformation of
a density matrix σ into a group-symmetrized basis, one needs to construct a symmetry
group-specific matrix Q from orthonormal basis vectors

→
v . Each vector

→
v must belong to

only one irreducible representation Γ. Vectors
→
v are written vertically. Let us enumerate

these vectors in such a way that all vectors from the same Γ stand next to each other:

Q =

(
→
v

Γ1
1 ,
→
v

Γ1
2 ,
→
v

Γ1
3 , . . .

→
v

Γ2
1 , . . .

→
v

Γk
m

)
. Then, the matrix of spin state σ (σinitial or σtarget) in

the new basis σQ can be found as

σQ = Q−1σQ. (13)

There are three different situations for σQ:

1. σQ is diagonal. When the predefined basis of the group G coincides with the eigen-
states of the operator σ, then σQ is diagonal with eigenvalues on the diagonal. All
coherences (off-diagonal elements) are zero. To find Λ↑or↓,Γ, one has only to sort and
enumerate the eigenvalues inside each Γ:

σQ = Q−1σQ =


ΛΓ1

1 0
0 ΛΓ1

2
· · · 0

0
...

. . .
...

0 0 · · · ΛΓk
m

. (14)

Here, ΛΓn
m is an eigenvalue of σ and

→
v

Γn
m is its corresponding eigenvector belonging to

irreducible representations Γn.

2. σQ is Γ-block diagonal. When σQ has coherences only inside the same irreducible
representations Γ, then σQ is a Γ-block diagonal matrix

σQ = Q−1σQ =


ΛΓ1 0

0 ΛΓ2 · · · 0
0

...
. . .

...
0 0 · · · ΛΓk

. (15)

Here, ΛΓm are the corresponding blocks of irreducible representations Γm. Because
all vectors from one Γ have the same symmetry, their superposition also has the same
symmetry. It means that each block ΛΓm should be additionally diagonalized, and resulting
diagonal elements are corresponding eigenvalues ΛΓn

m .
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3. σQ is not block diagonal. The most general case is when there are off-diagonal
elements between different irreducible representations.

σQ = Q−1σQ =


ΛΓ1 CΓ2

Γ1
CΓ1

Γ2 ΛΓ2 · · · CΓk
Γ1

CΓk
Γ2

...
. . .

...
CΓ1

Γk CΓ2
Γk · · · ΛΓk

. (16)

In this situation, we will assume that the coherences CΓm
Γn are averaged to zero during

the hydrogenation reaction due to magnetic field inhomogeneity and the different evolution
of each hydrogenated molecule. When such off-diagonal elements are removed (CΓm

Γn ·0),
the σQ is “Γ-block diagonal” and equivalent to Equation (15). Hence, the consequent
diagonalization and analysis are equivalent and described in “case 2”.

In the following discussion, we use these three methods to find eigenvalues to evaluate
ξ when SCs are imposed. A script is available in SI to evaluate ξ for a different number of
spins, symmetry, initial, and target spin states (Matlab).

Below, we will discuss some specific cases and demonstrate the effect of symmetry on
PHIP and spin order transfer.

2.5. Spin Systems Notations

We use a notation that is slightly different from Pople’s spin-system notation. The
main idea is to distinguish the symmetries of the spin system. In addition, we fix X-spin to
the target 13C nucleus. Let us consider some examples.

First, for us, “ABC” stands for a system with three chemically nonequivalent spins, and
only weak coupling is considered between spins. Second, “A2B” stands for a system with
two magnetically equivalent spins A2 (strongly coupled) that are weakly coupled to B and
have different chemical shifts with B. Third, according to Pople’s notation, 12C2-ethylene
consists of four chemically and magnetically equivalent 1H spins, hence the spin symmetry
is A4. However, it does not reflect the permutation group symmetry of ethylene. Hence,
we refer to the spin symmetry of 12C2-ethylene as AA’(AA’).

3. Results

Note that the polarization values reported in the following are the upper theoretical
limits (as implied by the transformation mathematics).

3.1. Parahydrogen Spin-Order Transfer in a Two Spin-1/2 System
3.1.1. The Symmetry of AB and A2 Systems

The simplest PHIP system consists of two spin-1/2 nuclei. If the protons of pH2 after
hydrogenation are magnetically and chemically nonequivalent (AB-system)—no symmetry
constrains—the spins can be treated separately, and the appropriate basis would be the
Zeeman basis:

SAB = {|αα〉 , |αβ〉 , | βα〉 , | ββ〉 }. (17)

When the protons are magnetically equivalent, the system is A2 and there are restric-
tions on the choice of the basis. Here, singlet-triplet (S-T) states should be used:

SA2 = {|S〉, |T+〉 , |T0〉 , |T−〉 }. (18)

Among these two systems, only A2 has nontrivial symmetry, which is C2. In Ap-
pendix A, we describe all relevant groups of symmetry. The transformation elements of the
C2 group are identity transformation E or null permutation “( )” and the permutation of

two protons
(

12
21

)
= (21):

G12 = {( ), (21)}. (19)
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The C2 group (or G12) has two irreducible representations: Even (gerade–“g”) and odd
(ungerade–“u”). The singlet state is the only member of the odd irreducible representation
Γu = B, while three triplet states are the members of Γg = A. In terms of sets, it can be
written as

S12
A = {|T+〉 , |T0〉 , |T−〉 },

S12
B = {|S 〉}. (20)

Tables of characters and decomposition of spin states into irreducible representations
are given for A2, A3, and AA’ (AA’) systems in Appendix A.

3.1.2. pH2 to Magnetization in AB Systems

Let us consider the transformation of σA,B
ZZ spin order in an AB system (no symmetry

constraints, Equation (11)) to magnetization (Equations (7) and (8)):

σA,B
ZZ = −IA

Z ·IB
Z →


1
2 IA, or B

Z , |ξ| = 1,
1
2

[
IA
Z + IB

Z

]
, |ξ| = 1

2 ,
1
2

[
IA
Z − IB

Z

]
, |ξ| = 1

2 .

(21)

This means that the PASADENA spin order (σA,B
ZZ ) can be transferred to 100% polariza-

tion of one spin, or 50% polarization of each spin. In the latter case, the net magnetization
can be 50% per spin or zero (21).

The examples of spin-order transfer (SOT) sequences for direct polarization transfers
to one spin are Selective Excitation of Polarization using PASADENA (SEPP) [26] and
adiabatic-passage spin order conversion (APSOC) [27–29]. SOT for polarization trans-
fer to two spins include out of phase echo (OPE) [30], only parahydrogen spectroscopy
(OPSY) [30,31], and APSOC [27–29].

3.1.3. pH2 to Magnetization in A2 Systems

The situation is different for two magnetically equivalent spins A1 and A2 in an A2

spin system. Symmetry constraints do not allow spin order conversion of σA,B
S into net

magnetization:

σA1,A2

S = −
(

IA1 ·IA2
)
→ 1

2
IA1

Z +
1
2

IA2

Z ,
∣∣∣ξSC

∣∣∣ = 0 (22)

The only way to transfer polarization is to break the symmetry (A2 → AB) that is
happening e.g., during ALTADENA.

3.1.4. Limitation of the Method: ALTADENA Example

One of the first experiments that demonstrated spin order conversion of pH2 was
ALTADENA [10], using adiabatic magnetic field variation (AMFV). AMFV-induced spin
order transfer in an AB two spin-1/2 system results in the following transformation of
σA,B

S [1]:

σA,B
S = −

(
IA·IB

)
AMFV→ −IA

Z ·IB
Z ±

1
2

(
IA
Z − IB

Z

)
. (23)

The sign (±) depends on the relative chemical shift difference and the sign of the
J-coupling constant of the spins [1]. It follows that in ALTADENA, both spins acquire
maximum polarization of 1 (see Equation (7)), but the total (net) polarization of the molecule
is zero.

The Hamiltonian of an AB system HAB is, in general, asymmetric (lacking permutation
symmetry). However, at a zero field (B0 = 0), it has the same permutation symmetry as
the Hamiltonian of A2 system HA2 :
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HAB(B0 6= 0) = −v0
A IA

Z − v0
B ÎB

Z + JAB
(
IA·IB),

HAB(B0 = 0) = JAB
(
IA·IB),

HA2(B0 6= 0) = −v0
A

(
IA1

Z + IA2

Z

)
+ JA1A2

(
IA1 ·IA2

)
.

(24)

This means that the initial and final symmetries of the Hamiltonian (and the spin
system) are different and Equation (12) cannot be used for the estimation of ξSC (i.e., the
symmetry changes during the experiment). We do not introduce a calculation method for
such situations.

However, notice that the symmetry of the Hamiltonian (24) changes by introducing
a magnetic field, while molecular symmetry does not change. This means that molecular
symmetry does not have to coincide with the spin symmetry (or the symmetry of the nuclear
spin Hamiltonian). The latter is essential for SOT, but molecular symmetry is essential for
spin isomers (discussed below). Thus, there are at least three relevant symmetries: The
Hamiltonian, interactions, and the spatial configuration of the molecule.

3.1.5. pH2 on the Surface of a Solid

It was predicted that the spin order of pH2 after chemisorption, i.e., interaction with
a surface, could be transformed into net magnetization even when the two spins have
the same chemical shifts [32,33]. Note that there are a minimum of two requirements for
PHIP via chemisorption: (a) The pH2 nascent protons have to be chemically nonequivalent,
and (b) if they split, there is a non-zero chance to reunite again with preserved quantum
coherences. The main reason for spin-order conversion is the difference in chemical shifts
and the intramolecular dipole–dipole (DD) interaction, which is relevant on the surface.
The Hamiltonian of such an AB system at a zero field is

HDD
AB (B0 = 0) = JAB

(
IA·IB

)
+ d(θ, ϕ)

(
3IA

Z ·IB
Z −

(
IA·IB

))
. (25)

As a result, the state of the dihydrogen after the chemisorption of pH2 is expected to
be a superposition of σA,B

S and σA,B
ZZ [33]:

σA,B
S−DD = −(PZZ − PS)IA

Z ·IB
Z − PS

(
IA·IB

)
. (26)

where PS and PZZ are the relative weight of the states σS and σZZ. This result was predicted
for two AB spins with the Hamiltonian HDD

AB (Equation (26)) by averaging the pH2-derived
initial spin state, σA,B

S , over the hydrogenation period.
We showed before that it is impossible to transfer σA,B

S to the total net magnetization
of two spins in an A2 system (Equation (22)). However, it is possible to transfer σA,B

ZZ :

σA,B
ZZ = −IA

Z ·IB
Z →

1
2

[
IA
Z + IB

Z

]
,
∣∣∣ξSC

∣∣∣ = 0.5, (27)

even with symmetry constraints. Note that
∣∣ξSC

∣∣ = |ξ| = 0.5 (compare Equations (21) and
(26)).

However, one should bear in mind that the mere feasibility of such a transfer com-
puted using the presented approach does not take into account whether or not there are
interactions in the system that can be used for the observation of the resulting spin or-
der. Using solid echo sequences, SOT from σA,B

ZZ to σA,B
P was predicted for chemisorbed

pH2 [32,33].

3.2. Transfer of pH2 Spin Order to 1H Magnetization in Multispin Systems
3.2.1. No Symmetry Constraints

Now we will consider the transfer of either σA,B
ZZ or σA,B

S spin orders into total spin
magnetization, σN

P (Equation (8), in asymmetric N spin-1/2 systems (Equation (11)).
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The highest level of polarization (i.e., the average polarization across all coupled spins)
is possible if the system is in a pure singlet state σA,B

S rather than in σA,B
ZZ (Figures 2–4

and Appendix B, Tables A6 and A7, and Appendix C for the corresponding analytical
calculations for N = 2, 3, and 4).

Figure 2. Spin topologies considered for simulating the effect of symmetry on the transforma-
tion of pH2-derived spin order (red) into observable polarization. Red symbols indicate the pH2-
nascent spins, different lines indicate J-coupling constants, and circles, squares, hexagons are spins of
the same type. Note that different lines represent different strengths of nuclear spin–spin interactions.

This situation is achieved when the S-T states are a (stationary) eigenbasis, i.e., when
the J-couplings dominate the interactions. This can be achieved by adding pH2 at low fields
like in ALTADENA or via strong RF pulses suppressing chemical shift evolution at high
fields [34]. Spin order transfer at the low field can be realized using SLIC pulses and was
demonstrated for molecular systems with up to five nonequivalent spins [35].

Interestingly, the maximum achievable polarization per molecule increases up to 4
(i.e., the equivalent of 4 spins polarized to 100%) if the system approaches 10 spins and the
initial density matrix is σA,B

S (Figure 4); even higher polarizations are possible for a larger
number of coupled spins (Appendix C).

Indeed, in an N-spin system where two spins are polarized with parahydrogen, 1/4
of all states, 2N−2, are equally populated. A unitary transformation can move that system
into the state |T+〉 〈T+ |

⊗
1̂N−2, which has two spins with P = 1 (total polarization per

molecule is then 2) and other spins are at equilibrium. Remarkably and nonintuitively,
further unitary transformations can convert this into a state with higher angular momentum
(or total polarization per molecule). Our calculations show that in the absence of symmetry
constraints, the maximum of average spin polarization is approximately 1.27/

√
N; this

corresponds to a total polarization per molecule of 1.27
√

N. For example, the sum of all
polarizations in one molecule with N = 500 can reach ~29 (Appendix C).

We note that real systems always impose additional symmetry constraints, and calcu-
lated values of maximal polarization per molecule are significantly lower (see below).
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Figure 3. Average polarization per spin achieved theoretically by adding pH2 to a precursor yield-
ing a molecule with 2–10 spins with (black) and without (orange, blue) symmetry constraints (SC).
In general, higher polarization can be achieved if there are no constraints (compare black with orange
and blue) and if the initial density matrix is σA,B

S (blue) rather than σA,B
ZZ (orange, compare blue and

orange in A). We assumed pH2 to be added in positions A and B. The reported values are given in
Tables A6 and A7 (Appendix B).

Figure 4. Average polarization per molecule—in units of one-spin-1/2 polarization—that can be
achieved theoretically by adding pH2 to a precursor yielding a molecule with 2–10 spins with
(black, σA,B

S → σN
P ) and without symmetry constraints (SC) for σA,B

S → σN
P (blue) and σA,B

ZZ → σN
P

(orange). If the polarization of all spins in one molecule is summed up, up to ~ 4 was obtained for
large spin systems (blue). The reported values can be obtained from the average values given in
Tables A6 and A7 (Appendix B) and calculations for N = 2, 3, and 4 exemplified in Appendix C.

3.2.2. With Symmetry Constraints

When a spin system topology has any permutation symmetries (Figure 2), the the-
oretically achievable proton polarization drops significantly. For example, in the A3B2C
system of ethanol, the maximum average polarization is only 14.2% if pH2 was added
pairwise in positions A and B. If the symmetry constraints are relaxed so that six spins are
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nonequivalent, the maximum achievable polarization increases to 31.2% for σinitial = σA,B
ZZ

and 50% for σinitial = σA,B
S , respectively (Figure 3).

Note that some similar systems were experimentally and theoretically studied in the
related context of long-lived nuclear singlet spin states [36–38]. The process of spin order
transfer discussed here is important for LLS because it gives the upper estimates for the
maximum amplitude of the LLS conversion to magnetization.

3.2.3. Nuclear Spin Isomers of H2 and Ethylene

Dihydrogen. We discuss nuclear spin isomers of molecules (NSIM) in more detail,
starting with H2. The molecular symmetry group of H2 is D∞h, while the permutation
symmetry group of two spins is only C2. The D∞h symmetry includes an infinite number of
symmetry elements and is a product of C2 and C∞ rotation groups, S∞ rotation–reflection,
and CV groups. For the sake of simplicity, and to exemplify NSIM, let us consider the C2
symmetry only. The four nuclear spin states (sp) of H2 can be grouped in two sets A and B
(Equation (20) and Appendix A): Asp (3 states, oH2) and Bsp (1 state, pH2).

Ethylene. Ethylene is another example of a molecule with different NSIMs. Unlike
H2, however, the molecular symmetry group of ethylene is D2h. Although the permutation
symmetry group of spins is D2 [39], it is helpful to use molecular symmetry to obtain a
connection to corresponding rotational symmetries.

The permutation D2 subgroup consists of one trivial and three nontrivial permutations
that correspond to three orthogonal 180◦ rotations (Figure 5). In the D2 symmetry group
(see Appendix A), the 16 spin states (sp) of ethylene are grouped in four sets that correspond
to Asp, Bsp

1 , Bsp
2 , and Bsp

3 symmetries; seven states for the A-symmetry set and three states
for each of the B-symmetry sets.

Figure 5. Interactions and symmetry axis of ethylene. (A) Ethylene structure and nuclear spin–spin
couplings (J-couplings, top), the numbering of the atomic positions, and the cartesian axis x, y, z.
(B) Graphs corresponding to the spin system AA’(AA’) where pH2 was added at cis-, trans-, or
geminal positions (red circles). Different lines correspond to different values of spin–spin interactions.

The D2h symmetry group includes additional inversion operation (i) and its combina-
tions with the above-mentioned 180◦ rotations. In this case, the decomposition of 16 spin
states also results in four groups with additional symmetry indices: Asp

g (seven states),
Bsp

1u (three states), Bsp
2u (three states), and Bsp

3g (three states). Seven states of Asp
g symmetry

include five states with total spin 2 (Asp
g,2) and two states with total spin 0 (Asp

g,01
and Asp

g,02
).

Each B group corresponds to three spin states of the same symmetry with the total spin 1.
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The parity of spin states is even, and so is the parity of these four groups of symmetry.
The rotational wavefunctions of ethylene are all of g symmetry, which leaves only four
rotational (rot) symmetries, Arot

g , Brot
1g , Brot

2g , and Brot
3g .

The total (rotational and nuclear spin) wavefunction should have A-symmetry (either
Ag or Au), therefore there are four allowed combinations for ethylene: Arot

g Asp
g , Brot

1g Bsp
1u,

Brot
2g Bsp

2u, Brot
3g Bsp

3g.
We discuss the ethylene case in detail because it gives very good insight into the

problem of polarization transfer between states of different symmetries.
Upon NSIM interconversion, the associated energy changes are much larger than what

is normally induced in NMR by RF pulses. An NSIM interconversion inevitably changes
both rotational and spin states of ethylene. This is in strong contrast to non-symmetric
molecules where the energy of spin flips is comparable to the strength of nuclear spin
interactions. The large gap between H2 rotational energies helps to enrich the pH2 state at
low temperatures and is responsible for its long lifetime [3,5].

Some of the states belonging to different NSIMs of polyatomic molecules may have
similar energies (in contrast to H2 for which this is impossible). Such gateways are the
basis of the quantum relaxation theory of NSIM interconversion [40]. For instance [41], for
the Brot

1g (J = 23) Bsp
1u and Brot

2g (J = 21) Bsp
1g states of ethylene (where J is a rotational quantum

number), the energy gap is “only” 46 MHz, i.e., within the reach of dipolar couplings.
However, the energy of these states is 900 cm−1 (1300 K) above the ground state of ethylene;
therefore, their thermal population is low and the NSIM interconversion is also relatively
slow despite efficient mixing of these states by the dipole–dipole interaction.

Unlike in H2 (with C2 symmetry), in ethylene, it seems possible to transfer singlet
state and ZZ spin order into magnetization:

σAm,An
S = − 1

4 IAm·IAn → 1
8

(
IA1
Z + IA2

Z + IA3
Z + IA4

Z

)
σAm,An

ZZ = − 1
4 IAm

Z ·IAn
Z → 1

8

(
IA1
Z + IA2

Z + IA3
Z + IA4

Z

) (28)

with Am and An being one of four protons. Using the ethylene J-coupling constants
to set the basis of spin states (Appendix A and ref [7], Jg = 1.07 Hz, Jc = 11.47 Hz, and
Jt = 17.78 Hz [42]), the following values were obtained for different hydrogenation sites:∣∣∣ξSC

S,cis

∣∣∣ =
∣∣∣ξSC

S,trans

∣∣∣ =
∣∣∣ξSC

S,gem

∣∣∣ = 0.2 and
∣∣∣ξSC

ZZ,cis

∣∣∣ =
∣∣∣ξSC

ZZ,trans

∣∣∣ =
∣∣∣ξSC

ZZ,gem

∣∣∣ = 0.225.
According to Figure 5, here cis corresponds to protons 1 and 4 (or 2 and 3), trans to 1 and 3
(or 2 and 4), and gem to 1 and 2 (or 3 and 4). Note that using other simulations or isotope-
labeling other (but similar) values were obtained and can be used [43]: Jg = 2.23–2.39 Hz,
Jc = 11.62–11.66 Hz and Jt = 18.99–19.03 Hz; [44]: Jg = 2.5 Hz, Jc = 11.6 Hz and Jt = 19.1 Hz.
However, because the constants were of the same order, we did not compare the spin order
transfer for different J-coupling values.

It may come as a surprise that the efficient transfer of singlet spin order to polarization
is feasible in a highly symmetric system like ethylene. So far, this transfer was demonstrated
only in aligned media (nematic liquid crystals), where dipole–dipole spin–spin interactions
remain, and the Hamiltonian of the system resembles HDD

AB (Equation (25)). For such a
Hamiltonian as discussed above, instead of pure σAm,An

S , a mixture of σAm,An
S and σAm,An

ZZ
should be considered and σAm,An

ZZ spin order is observable in NMR.
Normally, the transition between two states with spin 0 that are represented by Asp

g,01 or 2

and Asp
g,2 symmetries cannot be observed by NMR. However, the theory applied here still

allows the transfer of spin order to polarization. Let us take a closer look and determine
why this is possible.

After hydrogenation with pH2, six states with B-symmetry and two singlets of Ag
symmetry is populated under each hydrogenation scenario (Table 1). The average polar-
ization that we considered in Equation (28) depends on the populations of all symmetry
states and is not straightforward to analyze. However, let us instead consider the state
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|2, 2〉 = |αααα〉 with the maximum for the system value of spin and spin projection of
2; one of five states of Asp

g symmetry. It means that if there is a way to transfer polariza-
tion from one of two |0, 0〉 spin states (Asp

g,01 or 2
) to the |2, 2〉 state (both have the same

Asp
g symmetry), ethylene hyperpolarization will be revealed. Now the question of how

to achieve this remains, and if any existing spin order transfer methods, e.g., spin-lock-
induced crossing (SLIC) [45], adiabatic passage spin order conversion (APSOC) [29], or
magnetic field cycling (MFC) [46], are suitable. This analysis goes beyond the scope of this
paper and will be considered elsewhere.

Table 1. Relative populations of spin symmetries in ethylene after addition of pH2 in germinal
(gem), cis, and trans position. Note that there are also coherences between Asp

g,01
and Asp

g,02
states, and

between the two respective populated B-symmetries (e.g., Bsp
2u and Bsp

3g in case of pos. = gem).

Pos. Asp
g,2 Asp

g,01
Asp

g,02
Bsp

1u Bsp
2u Bsp

3g

gem 0 0.2409 0.009 0 1/8 1/8

cis 0 0.1075 0.1425 1/8 0 1/8

trans 0 0.0266 0.2234 1/8 1/8 0

3.3. PHIP-SAH and the Transfer of pH2 Spin Order to the Magnetization of X-Nuclei
3.3.1. PHIP-SAH

Polarization transfer from pH2 to X-nuclei also attracts significant attention in the
context of hyperpolarized MRI applications. The lack of background signal and extended
lifetime of polarization (compared to 1H) makes hyperpolarized MRI of X-nuclei highly
interesting for biomedical applications, spearheaded by hyperpolarized MRI of xenon and
13C-pyruvate [19,47–50].

PHIP by sidearm hydrogenation (PHIP-SAH) [51,52] (Figure 6) attracted significant
attention because it allowed the polarization of acetate and pyruvate—the most commonly
used contrast agents for hyperpolarized in vivo MRI [53,54].

Figure 6. Molecular structures (top) and spin topologies (bottom) of ethyl (A) and allyl (B) esters
of carboxylic acids-products of PHIP-SAH. Different lines (bottom) represent different spin–spin
interaction values.

3.3.2. No Symmetry Constraints

We considered the transfer of σA,B
S and σA,B

ZZ to X-nuclear polarization (σX
P ) without

symmetry constraints (Table 2). In both cases, 100% polarization can be achieved: |ξ| = 1.
This, for example, was predicted for the hydrogenation of perdeuterated 1-13C-vinyl-
acetate-d6 [12]. More than 50% polarization was achieved on 13C in the system consisting
of three nonequivalent spin-1/2 and six spin-1 nuclei (2H). The direct loss of polarization
is due to S-T0 mixing of pH2–derived hydrogens at the catalyst and relaxation during
hydrogenation [55].
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Table 2. Polarization transfer from pH2 (σA,B
S ) to an X nucleus (σX

P ). One hydrogen of pH2 is in A, the
other is in B position.

Type of the System ξmax from σA,B
S =ξσX

P +σrest
Examples of Molecules,
R = Acetate, Pyruvate

ABX,
ABCX,

ABCDX,
ABCDEX, . . .

ABCD2X

1
1-13C-vinyl-R

1-13C-allyl-R

AA’BB’X 1 1-13C-ethylene

A2BX 3/4

A2BC2X 3/4

A3BX 2/3

A2B2X 9/16

A3B2X 1/2 1-13C-ethyl-R

A3B2C2X 1/2 1-13C-propyl-R

3.3.3. Symmetry Constraints

If some other (i.e., non-nascent pH2) protons possess any symmetry, 100% polarization
transfer can still be achieved on X (theoretically). This situation is realized e.g., in 1-13C-
allyl-pyruvate, an ABCD2X system.

If one of the pH2-nascent protons ends up in a symmetric site of the product, the
maximum polarization that can be transferred to X is reduced to 75% for A2BX (

∣∣ξSC
∣∣ = 3/4)

and 66.(6)% for A3BX (
∣∣ξSC

∣∣ = 2/3). Again, the number of the “other” protons and their
symmetry does not play a role.

If both pH2 spins bind to two different symmetric spin sites, such as A3B2X, A3B2C2X, the
maximum polarization that can be transferred to X is further reduced to 50% (

∣∣ξSC
∣∣ = 0.5).

This situation is found, for example, in ethyl- and propyl pyruvate.
In the literature, 13C-polarization about 20% was reported on ethyl pyruvate. Here,

pH2 was added to vinyl pyruvate at a high field and spin order was transferred to 13C using
INEPT [56]. About 20–35% 13C-polarization was reported in a similar experiment, where
pH2 was added at a low field and the detection took place at the high field after magnetic
field variation [46,57]. However, one should remember that, as with the ALTADENA
discussed above, the Hamiltonian of the system changes during the magnetic field variation.

The other interesting case, however exotic for PHIP, is the transfer of pH2 spin order

in an A3X system if two of the A spins are in the singlet state (
∣∣ξSC

∣∣ = 0 for σ
Ai,Aj
S → σX

P ).
If they are in the “reduced” singlet state σZZ, however, the transfer is possible (

∣∣ξSC
∣∣ = 1/3

for σ
Ai,Aj
ZZ → σX

P ). For example, as we discussed before, pH2-derived spin order after
chemisorption is partially in the ZZ state.

3.3.4. Double Hydrogenation

Now we turn to the following question: Is it beneficial to add two pH2 molecules to
one target? For example, 1-13C-ethynyl pyruvate is transformed into 1-13C-ethyl pyruvate,
an A3B2X system, by double hydrogenation (addition of two pH2 molecules). Likewise,
1-13C-propargyl pyruvate becomes 1-13C propyl pyruvate, an A3B2C2X system, upon the
addition of two pH2 (pH2 is added to A and B in both cases).

Let us assume that the hydrogenation reaction is so fast that only the |SS〉 〈SS | spin
state is populated, which can be written as

σ
A1,B1|A2,B2
S|S = − 1

2N−2

(
IA1·IB1

)
− 1

2N−2

(
IA2·IB2

)
+

1
2N−4

(
IA1·IB1

)(
IA2·IB2

)
(29)
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The theoretically maximum transfer from σ
A1,B1|A2,B2
S|S to X-nuclear polarization in

A3B2X and A3B2C2X systems is
∣∣ξSC

∣∣ = 1/4, which is 2 times lower than for the single
hydrogenation. Note that it is also system-specific, e.g., for the A2B2X system double
hydrogenation results in

∣∣ξSC
∣∣ = 3/4, while

∣∣ξSC
∣∣ = 9/16 is the maximum predicted for

single hydrogenation (Table 2).
In reality, however, there will be a finite time between the first and second hydrogena-

tion, such that the system will start to evolve. As a result, the final state will be different
than |SS〉 〈SS | and the polarization of X nucleus will also be different.

The situation is similar for multiple hydrogenations in different positions, for example,
in trivinyl orthoacetate [58]. If we simplify the product to two ethyl groups, the system
becomes (A3B2)(A3B2)’X, where one pH2 is part of the A3B2 subsystem and the other is
part of (A3B2)’ subsystem. In this case, polarization transfer amplitude

∣∣ξSC
∣∣ = 5/16 was

predicted, while for single hydrogenation (yielding an A3B2X system), it was
∣∣ξSC

∣∣ = 1/2.
We did not find instantaneous double hydrogenation beneficial for spin order transfer

to X-nuclei, which may be different for slow and stepwise double hydrogenation.

3.4. Examples of Isotopic and Chemical Symmetry Breaking
3.4.1. Ethylene

Ethylene produced by adding pH2 to acetylene in an isotropic environment does not
demonstrate any enhanced observable magnetization. The spin state of pH2 should be
converted into the ZZ state instead: This was demonstrated after the hydrogenation and
subsequent dissolution of ethylene in a liquid crystal [7]. However, one can imagine doing
it in a different order. First, generate the ZZ-state of pH2-derived H2, which was estimated
for a solid catalyst [32,33]. Second, hydrogenate acetylene using this H2.

In general, the pH2-derived protons are observed only when they are attached to
chemically or magnetically inequivalent sites that for ethylene can be achieved in at least
two ways:

• The two pairs of hydrogens in ethylene can be made magnetically nonequivalent by
13C labeling. In the case of a single-sided 13C labeling system, symmetry drops down
to C2 and polarization transfer is possible to 1H or 13C nuclei. In addition, the chemical
shifts of two gem pairs of protons are different.

• The other way to break the ethylene symmetry is a chemical reaction. So, polarized
ethylene gas bubbled through a CCl4 solution of perfluoro(para-tolylsulfenyl) chlo-
ride (PTSC) yields an asymmetric PTSC/ethylene adduct [7]. As a result, a normal
PASADENA spectrum can be obtained.

3.4.2. Fumarate and Maleate

Fumarate and maleate are two metabolites with symmetry-imposed spin order transfer
restrictions; the solutions are also the same. The symmetry can be broken by 13C label-
ing [59,60] or as a result of a chemical reaction: “hyperpolarized” fumarate was converted
by fumarase to asymmetric malate revealing itself in the PASADENA spectrum [61].

Dimethyl ether of maleate (and fumarate, another popular PHIP molecule) has Cs
symmetry. However, pH2-derived protons are magnetically inequivalent because of the
interaction with two CH3 groups, and the spin order of pH2 can be accessed with RF
pulses [59] or magnetic field variation [37].

4. Discussion

We considered several cases of polarization transfer from pH2 to proton and X nuclei
magnetization using the methods introduced in refs. [17,24,25] (see Supplementary Materi-
als). The approach used here helps to provide some general answers to several nonintuitive
questions. However, a few situations remain unclear and may indicate some limitations of
the presented theory. Namely:

Q1. How do we estimate maximum polarization transfer from a state that is not
diagonal in the basis of the system’s symmetry?
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Q2. How do we estimate polarization transfer in systems that experience symmetry
change during the polarization transfer, e.g., A2→AB during magnetic field variation in
the ALTADENA experiment? Is there a general solution for an N-spin system?

Discussion of Q1. This situation corresponds to the third case of σQ-diagonalization
(Equation (16)) as described in methods. For example, in an A2BX system, the basis consists
of the functions |Mkl〉 where |M〉 is one of S-T basis functions and |k〉, |l〉 are spin up and
down, |α〉 and |β〉. On this basis, σA1,B

S is not diagonal. Instead, projecting this state on the

symmetry basis results in 1
2

[
σA1,B

ZZ + σA2,B
ZZ

]
, meaning that we lose part of the initial spin

order and potentially underestimate the level of polarization transfer.
Discussion of Q2. This problem was discussed in the context of ALTADENA, but it is

also very important for magnetic field variation e.g., in PHIP-SAH. Let us consider a simple
ABX system. At low fields, when the proton chemical shift difference can be neglected, the
ABX system becomes equivalent to an A2X system meaning that for protons, an S-T basis
is more appropriate at low fields. σA,B

S is the initial state of the system after pH2 addition
(σinitial = σA,B

S ). Then, we increase the field slowly so that the system changes from A2X to
ABX and the basis changes from S-T to Zeeman. This means that the symmetry basis of the
system before and after (and during) the transformation is different. The theory presented
here cannot be applied.

Although in three-spin systems, we can still reach 100% X nuclear polarization, we
again could underestimate the efficiency of polarization transfer in more complex systems.

It seems as though the methodology used here for the static high magnetic field can
be translated to low fields (and zero fields). However, the basis will be system-symmetry-
specific and, in addition, will depend on the J-coupling network.

Assessing the validity of this approach is not straightforward. To date, however,
experimental results have not contradicted the calculated results presented here.

5. Conclusions

The mathematical framework presented here allows for determining an upper limit
for the polarization transfer from pH2 to X-nuclei or other protons with an emphasis on
the effect of molecular spin symmetry. Solutions were presented for the most current
experimental situations, although more complex cases remain unaddressed. This method
may serve as a first check to estimate if and how much polarization transfer is possible in a
given situation. Naturally, identifying and optimizing a dedicated transfer strategy is the
next essential step, which is not addressed here.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym14030530/s1. All used Matlab scripts together with MOIN
spin library [62] (.zip) are available online.

Author Contributions: A.N.P., conceptualization and software; D.A.B. and J.-B.H. visualization;
A.N.P. and D.A.B., original draft; A.N.P., D.A.B. and I.V.K., investigation. All authors, review and
editing and funding acquisition. All authors have read and agreed to the published version of the
manuscript.

Funding: We acknowledge funding from the German Federal Ministry of Education and Research
(BMBF) within the framework of the e:Med research and funding concept (01ZX1915C), DFG (PR
1868/3-1, HO-4602/2-2, HO-4602/3, GRK2154-2019, EXC2167, FOR5042, SFB1479, TRR287), Kiel
University and the Faculty of Medicine. MOIN CC was founded by a grant from the European
Regional Development Fund (ERDF) and the Zukunftsprogramm Wirtschaft of Schleswig-Holstein
(Project no. 122-09-053). DAB acknowledges support from the Alexander von Humboldt Foundation
in the framework of the Sofja Kovalevskaja Award. I.V.K. acknowledges the Russian Ministry of
Science and Higher Education (grant no. 075-15-2020-779) for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/sym14030530/s1
https://www.mdpi.com/article/10.3390/sym14030530/s1


Symmetry 2022, 14, 530 17 of 27

Data Availability Statement: All data and software obtained and used are available with the paper
on mdpi.com.

Acknowledgments: We are grateful to Dmitry Budker for the discussion and editing of the manuscript.
We are particularly thankful for the insightful comments from Warren S. Warren regarding large
polarization obtained in multi-spin systems without symmetry constraints.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. A2 Two Spin-1/2 System, C2 Group

The number of states is 22 = 4.
The basis for two equivalent spins can be divided into two groups with a total spin Itot

of 1 (three states) and 0 (one state), also known as the singlet–triplet (S-T) basis. This can be
derived formally by finding eigenfunctions and eigenvalues (λ) of the cyclic permutation

operator
(

12
21

)
= (21). The C2 permutation group of the A2 system consists of two

permutations, {(),(21)}. In the matrix form, it is written in the Zeeman basis (|αα〉 , |αβ〉 ,
| βα〉 , | ββ〉 ):

() = E =


1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

,

(21) = C2 =


1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

.

(A1)

Eigenvalues of C2 are given in superscript to the corresponding wavefunctions:

λ = 1, group 1 ∈ A
|1,+1〉 1 = |T+〉 = |αα〉 ,
|1, 0〉 1 = |T0〉 = | αβ〉+| βα〉√

2
,

|1,−1〉 1 = |T−〉 = | ββ〉 ,
λ = −1, group 2 ∈ B
|0, 0〉−1 = |S0〉 = | αβ〉−| βα〉√

2
.

(A2)

We indicate spin states by the total spin Itot and its projection Itot
Z as

∣∣Itot, Itot
Z
〉λ and/or

by using the Zeeman basis, |α〉 and |β〉.

Table A1. Table of characters for A2 two spin-1/2 system (C2 group).

E C2
A 1 1
B 1 −1

SpinRep = 3A + B 4 2

Therefore, there are three symmetric states and one asymmetric state with respect to
(21) permutation (or rotation about 180 degrees, C2). It follows from both Equation (A1)
and Table A1. Therefore, the basis for A2 two spin-1/2 system consists of two sets (S) with
multiplicity of 3 and 1 (SpinRep = 3A + B):

S12
A = {|T+〉 , |T0〉 , |T−〉 },

S12
B = {|S0〉 }.

(A3)

mdpi.com
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To calculate characters for spin permutations (SpinRep) in Table A1, one can (i) write a
matrix of permutation and (ii) calculate the trace. For an identity transformation, () = E,
and for N spin-1/2, character is

χSpinRep(E) = Tr(E) = 2N . (A4)

Analogously (Equation (A1)) χSpinRep(C2) = Tr(C2) = 2.
For any character X of a representation T = ⊕iTi which is a superposition of

irreducible representations of the same group, the multiplicity nk of the irreducible repre-
sentation Ti is given by

nk =
1

ΩG
∑
g

X(g)∗χk(g). (A5)

Here “*” is a complex conjugate, ΩG = ∑
g

χk(g)∗χk(g) and χk is a character of an

irreducible representation Γk. Equation (A5) is useful to decompose the SpinRep line into a
sum of characters for irreducible representations. So, for the A2 system SpinRep = 3A + B.

Appendix A.2. A3 Three Spin-1/2 System, C3 Group

The number of states is 23 = 8.
The basis of three equivalent spins can be grouped into three groups with a total spin

Itot of 3/2 (four states), 1/2 (two states), and 1/2 (two states). Here, to distinguish groups,

we also introduce eigenvalues for the cycling permutation operator
(

123
231

)
= (231),

and its values are given as superscript to the corresponding wavefunctions.

Itot = 3/2, λ = 1, group 1 ∈ A∣∣ 3
2 ,+ 3

2
〉 1

= |ααα〉 ,∣∣∣ 3
2 ,+ 1

2

〉 1
= 1√

3
(|ααβ〉 + |αβα〉 + | βαα〉 ),∣∣∣ 3

2 ,− 1
2

〉 1
= 1√

3
(|αββ〉 + | βαβ〉 + | ββα〉 )∣∣ 3

2 ,− 3
2
〉 1

= | βββ〉 ,
Itot = 1/2, λ = e

i2π
3 = e+iθ , group 2 ∈ E1∣∣∣ 1

2 ,+ 1
2

〉 e+iθ

= | ααβ〉+e−iθ | αβα〉+e+iθ | βαα〉√
3

,∣∣∣ 1
2 ,− 1

2

〉 e+iθ

= | ββα〉+e−iθ | βαβ〉+e+iθ | αββ〉√
3

,

Itot = 1/2, λ = e−
i2π

3 = e−iθ , group 3 ∈ E2∣∣∣ 1
2 ,+ 1

2

〉 e−iθ

= | ααβ〉+e+iθ | αβα〉+e−iθ | βαα〉√
3

,∣∣∣ 1
2 ,− 1

2

〉 e−iθ

= | ββα〉+e+iθ | βαβ〉+e−iθ | αββ〉√
3

.

(A6)

The C3 permutation group G = {
(

1
1

2
2

3
3

)
,
(

1
2

2
3

3
1

)
,
(

1
3

2
1

3
2

)
}= {(), (+θ), (−θ)}

of the A3 system consists of three permutations: The trivial identity permutation, permutation, or “+θ”
rotation and “–θ” rotation, with θ = 2π

3 .
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Table A2. Table of characters for A3 three spin-1/2 system (C3 group). Here θ = 2π
3 . Note the

difference between three different “E” here. The characters for spin representations (SpinRep) are
filled using Equation (A4) and the following discussions. Any permutation (or rotation) will leave
only states |ααα〉 and | βββ〉 on the diagonal. This means that the sum of diagonal elements and
corresponding character value is 2.

E C1
3 C2

3

A 1 1 1
E1 1 eiθ e−iθ

E2 1 e−iθ eiθ

SpinRep = 4A + 2E1 + 2E2 8 2 2

Summarizing, there are four symmetric (g) states and two pairs of rotationally sym-
metric states (Ei, |S〉) states. It follows from both Equation (A6) and Table A2. Therefore,
the basis for the A3 three spin-1/2 system consists of three sets with multiplicities 4, 2, and 2
(SpinRep = 4A + 2E1 + 2E2):

S123
A =

{∣∣ 3
2 ,+ 3

2
〉 1

,
∣∣∣ 3

2 ,+ 1
2

〉 1
,
∣∣∣ 3

2 ,− 1
2

〉 1
,
∣∣ 3

2 ,− 3
2
〉 1
}

,

S123
E1

=

{∣∣∣ 1
2 ,+ 1

2

〉 e+iθ

,
∣∣∣ 1

2 ,− 1
2

〉 e+iθ}
,

S123
E2

=

{∣∣∣ 1
2 ,+ 1

2

〉 e−iθ

,
∣∣∣ 1

2 ,− 1
2

〉 e−iθ} (A7)

Appendix A.3. A4 Four Spin-1/2 System: C4 Group Example

The number of states is 24 = 16.
The basis of four spins can be grouped into four groups with total spin Itot of 2 (five

states), 1 (three groups, each consists of three states), and 0 (two groups, each with one
state).

The C4 permutation group G = {
(

1
1

2
2

3
3

4
4

)
,
(

1
2

2
3

3
4

4
1

)
,
(

1
3

2
4

3
1

4
2

)
,(

1
4

2
1

3
2

4
3

)
} = {(), (2341), (3412), (4123)} of the A4 system consists of four permutations: ( )

Trivial identity permutation and three cyclic permutations that are equivalent to the rotation of a
square by 90◦, 180◦, and 270◦ around the center axis perpendicular to its plane. Note that only 180◦

rotation can be represented as two consequent permutations (3412) = (13)(24).

Table A3. Table of characters for A4 four spin-1/2 system (C4 group). The characters for SpinRep are
filled using Equation (A4) and the following discussion. Any rotations will leave states |αααα〉 and
| ββββ〉 on diagonal. All other states change after an odd number of cyclic permutations. Hence,
character for C4 and (C4)

3 is only 2. 180◦ rotation ((31)(42) permutation) also does not change
|αβαβ〉 and | βαβα〉 states. Hence, the corresponding character is 2 + 2 = 4. This means that the sum
of diagonal elements and corresponding character values are 4 for each rotation (permutation).

E C4 C2 = (C4)2 (C4)3

A +1 +1 +1 +1
B +1 −1 +1 −1
E1 +1 +i −1 −i
E2 +1 −i −1 +i

SpinRep = 6A + 4B+3E1+3E2 16 2 4 2

Appendix A.4. AA’(AA’) Four Spin-1/2 System: D2 Group (Spin Symmetry of Ethylene)

The number of states is 24 = 16.
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The basis of four spins can be grouped into four groups with total spin Itot of 2 (five states), 1
(three groups, each consists of three states), and 0 (two groups, each with one state).

The D2 permutation group G = {
(

1 2 3 4
1 2 3 4

)
,
(

1 2 3 4
2 1 4 3

)
,
(

1 2 3 4
3 4 1 2

)
,
(

1 2 3 4
4 3 2 1

)
}=

{(), (21)(43), (31)(42), (41)(32)} of the AA’(AA’) system consists of four permutations: ( ) – Trivial
identity permutation and three pairwise permutations that are equivalent to rotations of the rectangle
by 180◦ around three orthogonal axes, which are orthogonal to the plane of the rectangle and (or) its
edges. We do not present the corresponding basis for a general D2 group here, which is equivalent to
D2h discussed below.

Table A4. Table of characters for AA’(AA’) four spin-1/2 system (D2 group). The characters for
SpinRep are filled using Equation A4 and the following discussion. Any rotations will leave states
|αααα and |ββββ on diagonal. In addition, states |ααββ and |ββαα do not change by the action of
(21)(43) permutation. For two other rotations, one can also write the corresponding two states. It
means that the sum of diagonal elements and corresponding character values are 4 for each rotation
(permutation).

E C2(z) C2(y) C2(x)
A +1 +1 +1 +1
B1 +1 +1 −1 −1
B2 +1 −1 +1 −1
B3 +1 −1 −1 +1

SpinRep = 7A + 3B1 + 3B2 + 3B3 16 4 4 4

Appendix A.5. AA’ (AA’) Four Spin-1/2 System, D2h Group (Molecular Symmetry of Ethylene)

The number of states is 24 = 16 [7].
The basis of four spins can be grouped into four groups with total spin Itot of 2 (five states), 1

(three groups, each consists of three states), and 0 (two groups, each with one state).
The D2h group is a direct product of D2 and Ci groups. The D2 part consists of four spin

permutations G(D2) = {(), (21)(43), (31)(42), (41)(32)}. The addition of the inversion operator of
Ci results in four additional transformations {i, σ(xy), σ(xz), σ(yz)}: Inversion “I” and three mirror
σ-planes: xy, xz, or yz (Figures 4 and A1).
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The eigenvectors for ethylene were found in [7] and are given in Equation (A8) without any
changes.

Itot = 2, λ = 1, group 1 ∈ Ag
|2,+2〉 g = |αααα〉 ,
|2,+1〉 g = | αααβ〉+| ααβα〉+| αβαα〉+| βααα〉

2 ,
|2, 0〉g = | ααββ〉+| αβαβ〉+| αββα〉+| βαβα〉+| ββαα〉+| βααβ〉√

6
,

|2,−1〉g = | βββα〉+| ββαβ〉+| βαββ〉+| αβββ〉
2 ,

|2,−2〉g = | ββββ〉 ,
Itot = 1, group 2 ∈ B1u

|1,+1〉 1u =
−| αααβ〉 −| ααβα〉+| αβαα〉+| βααα〉

2 ,
|1, 0〉 1u = | ααββ〉 −| ββαα〉+√

2
,

|1,−1〉 1u = | βββα〉+| ββαβ〉 −| βαββ〉 −| αβββ〉
2

Itot = 1, group 3 ∈ B2u

|1,+1〉 2u = | αααβ〉 −| ααβα〉+| αβαα〉 −| βααα〉
2 ,

|1, 0〉 2u = | αβαβ〉 −| βαβα〉√
2

,

|1,−1〉 2u =
−| βββα〉+| ββαβ〉 −| βαββ〉+| αβββ〉

2
Itot = 1, group 4 ∈ B3g

|1,+1〉 3g =
−| αααβ〉+| ααβα〉+| αβαα〉 −| βααα〉

2 ,
|1, 0〉 3g = | βααβ〉 −| αββα〉√

2
,

|1,−1〉 3g =
−| βββα〉+| ββαβ〉+| βαββ〉 −| αβββ〉

2
Itot = 0, group 5 ∈ Ag

|0, 0〉 g,s1 =
−κ| ββαα〉+| βαβα〉+(κ−1)| βααβ〉+(κ−1)| αββα〉+| αβαβ〉 −κ| ααββ〉

2
√

1−κ+κ2 ,

Itot = 0, group 6 ∈ Ag

|0, 0〉 g,s2 = (κ−2)| ββαα〉 −(2κ−1)| βαβα〉+(κ+1)| βααβ〉+(κ+1)| αββα〉 −(2κ−1)| αβαβ〉+(κ−2)| ααββ〉
2
√

3
√

1−κ+κ2 .

with κ =

√
J2
g+J2

c +J2
t −(Jg Jc+Jg Jt+Jc Jt)+(Jg−Jc)

Jg−Jt

(A8)

It is not as trivial as before to fill the SpinRep line in the character Table A5 as in the previous
cases; this needs some elaboration. However, the first four elements are identical to the one from
Table A4 for group D2.

Let us consider the mirror plane σ(yz) (Figure 1A), which also can be referred to as σh. It does
not change the position of atoms (a), and because spin is an axial vector (b) the spin states do not
change under the action of σ(yz). Hence, the corresponding character is 16 (number of spin states).
We refer to this operator as parity in the main text, and it changes the sign of one coordinate axis
(here x).

Now, let us consider two mirror planes σ(xy) and σ(xz) (Figure 1A), also referred to as σv. σv
exchanges two neighbor protons (permutations (21)(43) or (41)(32)) and changes the sign of the spin
projection (it is not convenient for NMR, but using this notation of the axis, we assume the projections
of the spin states along the x-axis). So, when two pairs of protons are exchanged and their sign is
inverted, then there are only four states that do not change under the action of this transformation:
|αβαβ〉 , | βααβ〉 , | βαβα〉 , and |αββα〉 for the case of (21)(43) permutation with inversion. Four
analogous states can be written for the other mirror transformation. Hence, the two corresponding
characters are 4.

Finally, the inversion operator, i, exchanges the protons as (31)(42) (a) and changes the sign of
the spin projections, meaning that only four states |ααββ〉 , | ββαα〉 , | βααβ〉 , and |αββα〉 will stay
the same; hence, the corresponding character is 4.
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Table A5. Table of characters for AA’ (AA’) four spin-1/2 system (D2h group). This can be obtained
as a direct product of Ci (the same as C2) and D2 character groups. See text for how to fill SpinRep
line.

E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)
Ag +1 +1 +1 +1 +1 +1 +1 +1
B1g +1 + −1 −1 +1 +1 −1 −1

B2g +1 −1 +1 −1 +1 −1 +1 −1

B3g +1 −1 −1 +1 +1 −1 −1 +1

Au +1 +1 +1 +1 −1 −1 −1 −1
B1u +1 +1 −1 −1 −1 −1 +1 +1
B2u +1 −1 +1 −1 −1 +1 −1 +1
B3u +1 −1 −1 +1 −1 +1 +1 −1

SpinRep =
7Ag + 3B1u + 3B1u + 3B3g

16 4 4 4 4 4 4 16

There are seven symmetrical (Ag symmetry) states and three states for each of the three B
symmetries (B1u, B2u, and B3g). This follows from both Equation (A8) and Table A5. Therefore, the
basis for the AA’(AA’) four spin-1/2 system of D2h symmetry consists of four sets with multiplicities
of 7, 3, 3, and 3 (Spins rep. = 7Ag + 3B1u + 3E2g + 3E3u):

SD2h
Ag

=
{
|2,+2〉 g, |2,+1〉 g, |2, 0〉 g, |2,−1〉 g, |2,−2〉 g, |0, 0〉 g,s1〉, |0, 0〉 g,s2

}
,

SD2h
B1u

=
{
|1,+1〉 1u, |1, 0〉 1u, |1,−1〉 1u

}
,

SD2h
B2u

=
{
|1,+1〉 2u, |1, 0〉 2u, |1,−1〉 2u

}
,

SD2h
B3g

=
{
|1,+1〉 3g, |1, 0〉 3g, |1,−1〉 3g

} (A9)

Note that in the case of C4 symmetry considered earlier, six states belong to the A(g) group.

Appendix B

Table A6. Maximum expected polarization transfer coefficient ξmax for systems without symmetry
constraints and pH2-derived spin order transfer (states σA,B

ZZ or σA,B
S ) to the longitudinal polarization

of all protons of the same molecule (average polarization).

Type of the System Number of Spins
ξmax from

σA,B
ZZ =ξσX

P +σrest

ξmax from
σA,B

S =ξσX
P +σrest

AB 2 1/2 1

ABC 3 1/2 2/3

ABCD 4 3/8 5/8

ABCDE 5 3/8 11/20

ABCDEF 6 5/16 1/2

ABCDEFG 7 5/16 0.4821

ABCDEFGH 8 0.2734 0.4336

ABCDEFGHI 9 0.2734 0.4323

ABCDEFGHIJ 10 0.2461 0.3906

ABCDEFGHIJK 11 0.2461 0.3835

ABCDEFGHIJKL 12 0.2256 0.3597



Symmetry 2022, 14, 530 23 of 27

Table A7. Maximum expected polarization transfer coefficient ξSC
max for systems with symmetry

constraints and pH2-derived spin order transfer (state σA,B
S ) to the longitudinal polarization of all

protons of the same molecule (average polarization).

Type of the System Number of Spins ξSC
max from σA,B

S =ξσX
P +σrest

A2B 3 1/3

A2BC 4 0.3125

A3B 4 0.25

A2B2 4 0.1875

A3BC 5 0.175

A2B2C 5 0.175

A3B2 5 0.1167

A3BCD 6 0.2014

A3B2C 6 0.1424

A3B3 6 0.1204

Appendix C

Here, we exemplify that more than 200% polarization per molecule is predicted in the absence
of symmetry constraints for N ≥ 4. We also investigate analytically asymptotic behavior for N � 1.

First, we will write down the eigenvalues of the target state σN
P (Equation (8)) for a different

number of spins. Because the Zeeman basis is the eigenbasis of σN
P , the eigenvalues of σN

P are:

Λ↑
(
σN

P
)
= 1

2N−1 [Vector of ordered spin projections of Zeeman states]

= 1
2N−1

[(
N
k

)
times

(
− N

2 + k
)]

,
(A10)

where
(

N
k

)
is the binomial coefficient and k is an integer number spanning from 0 to N.

Eigenvalues for N = 2, 3, and 4 are:

Λ↑
(
σN = 2

P
)
= 1

2 [−1, 0, 0, 1],

Λ↑
(
σN = 3

P
)
= 1

4

[
− 3

2 , − 1
2 , − 1

2 , − 1
2 , 1

2 , 1
2 , 1

2 , 3
2

]
,

Λ↑
(
σN = 4

P
)
= 1

8 [−2, −1, −1, −1, −1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2].

(A11)

Second, we write down eigenvalues for the initial singlet spin order σ̂
A,B|N
S (Equation (1)):

σ̂
A,B|N
S = ρ̂A,B

S − 1̂N

2N = − 1
2N−2

(
^
I

A
·
^
I

B
)

. (A12)

This operator is diagonal on the basis where the (S-T)-basis is used for A and B spins and the
Zeeman basis is used for the rest of (N-2) spins, respectively. The general rule is as follows:

Λ↑
(

σ̂
A,B|N
S

)
=

1
2N−2

[(
3× 2N−2

)
times

(
−1

4

)
, and

(
2N−2

)
times

(
3
4

)]
. (A13)

This follows directly from the definition of ρ̂A,B
S (Equation (1)) where one has 2N−2 times value(

1
2N−2

)
and 3× 2N−2 times value 0 on the diagonal; this corresponds to the singlet state of A and B

spins. The corresponding eigenvalues for N = 2, 3, and 4 are as follows:

Λ↑
(

σ̂
A,B|N = 2
S

)
= 1

4
[
−1, −1, −1, 3

]
,

Λ↑
(

σ̂
A,B|N = 3
S

)
= 1

8
[

−1, −1, −1, −1 , −1, −1, 3, 3
]

,

Λ↑
(

σ̂
A,B|N = 4
S

)
= 1

16
[

12 times (−1), 3, 3, 3, 3
]

.

(A14)
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Now, using Equation (11) and eigenvalues of the target state (A13) and initial state (A16), one
obtains the amplitude of the polarization transfer ξN :

Λ↑
(
σN = 2

P
)
·Λ↑

(
σN = 2

P
)
= 1

2 , Λ↑
(

σ̂
A,B|N = 2
S

)
·Λ↑

(
σN = 2

P
)
= 1

2 , ξN = 2 = 1, 2·ξN = 2 = 2

Λ↑
(
σN = 3

P
)
·Λ↑

(
σN = 3

P
)
= 3

8 , Λ↑
(

σ̂
A,B|N = 3
S

)
·Λ↑

(
σN = 3

P
)
= 1

4 , ξN = 3 = 2
3 , 3·ξN = 3 = 2

Λ↑
(
σN = 4

P
)
·Λ↑

(
σN = 4

P
)
= 1

4 , Λ↑
(

σ̂
A,B|N = 4
S

)
·Λ↑

(
σN = 4

P
)
= 5

32 , ξN = 4 = 5
8 , 4·ξN = 4 = 2.5

(A15)
It follows that average polarization decreases as the number of spins increases, but polarization

per molecule increases and can exceed two units of 100% spin-1/2 polarization. This is illustrated in
Figures 3 and 4.

For arbitrary N, one can use the known sums of binomial coefficients to find that

Λ↑
(
σN

P
)
·Λ↑

(
σN

P
)
= 1

22N−2

N
∑

k = 0

(
N2

4 − kN + k2
)( N

k

)
= 1

22N−2

[
N2

4

N
∑

k = 0

(
N
k

)
− N

N
∑

k = 0
k
(

N
k

)
+

N
∑

k = 0
k2
(

N
k

)]
= 1

22N−2

[
N2

4 2N − N·N·2N−1 +
(

N + N2)·2N−2
]
= N

2N ,

(A16)

and
Λ↑
(

σ̂
A,B|N
S

)
·Λ↑

(
σN

P

)
=

8·S
22N , (A17)

where S is the sum of 2N−2 last elements in Λ↑
(
σN

P
)
. Note that 2N−2 is a quarter of all 2N elements,

and this will be important in the following evaluation. Then,

ξN =
S

22N−3 ·
2N

N
=

8·S
N·2N . (A18)

The explicit formula for calculating S is cumbersome:

S =
x0

∑
k = 0

(
N
2
− k
)(

N
k

)
+

(
2N−2 −

x0

∑
k = 0

(
N
k

))(
N
2
− (x0 + 1)

)
(A19)

with x0 defined such that the sum over binomial coefficients from 0 to x0 does not exceed a quarter

of all states (elements): ∑x0
k = 0

(
N
k

)
≤ 2N−2 ≤ ∑x0+1

k = 0

(
N
k

)
. To the best of our knowledge, this

expression does not have a simple solution; however, it can be simply calculated numerically. In the
following, we derive an asymptotic solution for ξN when N � 1.

For the large N, the summation over binomial coefficients
(

N
k

)
can be replaced by the

integration over a normal distribution with a mean value of N/2 and variance var = N/4 (note that
we use var for variance instead of conventional σ2 to avoid confusion with spin operators):

1
2N

N

∑
k = 0

[×]
(

N
k

)
≈ 1√

2π·var

+∞∫
−∞

[×]e−
(x− N

2 )
2

2·var dx . (A20)

Then, the value of S (Equations (A19) and (A21)) can be estimated as

S ≈ 2N√
2π·var

x′′0∫
−∞

(
N
2 − x′′

)
e−

( N
2 −x′′ )2

2·var dx′′ = 2N√
2π·var

+∞∫
x′0

x′e−
x′2

2·var dx′

= 2N√var√
2π

+∞∫
x0

xe−
x2
2 dx = 2N√var·C = 2N−1

√
N·C.

(A21)

where the value C = 1√
2π

∫ +∞
x0

xe−
x2
2 dx ∼= 0.31(7) with x0 = 0.67448975. This x0 was found by solv-

ing an equation for the integral over the normal distribution equal to a quarter: 1√
2π

∫ +∞
x0

e−
x2
2 dx = 1/4.
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This is equivalent to a summation over a quarter of all elements in Equation (A21). Note that
1√
2π

∫ +∞
−∞ e−

x2
2 dx = 1. Thus, for large N values, Equation (A19) is approximated as

Λ↑
(

σ̂
A,B|N
S

)
·Λ↑

(
σN

P

)
=

8·S
22N ≈ 4C

√
N

2N
∼= 1.271

√
N

2N . (A22)

Now we can find the maximum expected average polarization per spin ξN and per molecule
N·ξN as

ξN ≈ 4C
√

N
2N ·

2N

N
=

4C√
N
∼=

1.271√
N

; N·ξN ≈ 4C
√

N ∼= 1.271
√

N . (A23)

This approximation (Equation (A23)) fits well the numerical simulations using Equations (A18)
and (A19) and values for N ≤ 10 demonstrated in the main manuscript (Figure 4).

Figure A2. Average polarization per molecule—in units of one-spin-1/2 polarization—that can be
achieved theoretically by adding pH2 to a precursor producing a molecule with N spins without
symmetry constraints. Numerically calculated values fit well to the approximation 1.271

√
N.
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