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Abstract. The Gaussian mechanism (GM) represents a universally employed tool for
achieving differential privacy (DP), and a large body of work has been devoted to its analysis.
We argue that the three prevailing interpretations of the GM, namely (ε, δ)-DP, f-DP and
Rényi DP can be expressed by using a single parameter ψ, which we term the sensitivity index.
ψ uniquely characterises the GM and its properties by encapsulating its two fundamental
quantities: the sensitivity of the query and the magnitude of the noise perturbation. With
strong links to the ROC curve and the hypothesis-testing interpretation of DP, ψ offers the
practitioner a powerful method for interpreting, comparing and communicating the privacy
guarantees of Gaussian mechanisms.

1. Introduction

Differential Privacy (DP) is the gold standard technique for providing quantifiable privacy
guarantees to individuals whose sensitive data is subjected to algorithmic processing (Dwork
and Roth, 2014). Since its inception, its applicability to real-world machine learning and
statistics tasks has continuously increased, as witnessed by its utilisation in the US census
(Abowd, 2018; Dwork, 2019) and recent large-scale deployments in industry (Apple, 2017;
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Erlingsson et al., 2014). DP is typically realised through noise perturbation of query outputs
over sensitive databases.

The Gaussian mechanism (GM) is the prototypical mechanism for obtaining (ε, δ)-DP,
especially in the setting of high-dimensional queries. A large body of research has been
devoted to better characterising the GM and has proposed relaxations with desirable
properties, such as facilitated composition (Mironov, 2017). However, to practitioners
without expert-level theoretical knowledge, translating the concepts presented in these works
to tangible, real-world applications is arguably difficult, which may ultimately hinder DP’s
broad deployment and democratisation. Moreover, many predominantly theoretical works
are also highly topical and can thus be hard to contextualise within the broader field of DP.
This bears the risk of incorrectly choosing, constructing or applying DP mechanisms (Lyu
et al., 2016), potentially resulting in the unintended disclosure of sensitive information, such
as medical or financial data. Another layer of complexity emerges upon deployment of DP
tools to user-facing products: For example, Apple’s use of DP was criticised as insufficient
due to its resetting of users’ privacy budgets on a frequent basis and poor communication
(Tang et al., 2017), further aggravated by the high complexity of the subject matter.

Promoting trust and acceptance of DP and reinforcing its meaningful application will thus be
contingent on a clear understanding of the underlying mechanisms, such as the GM (Dwork
et al., 2019; Cummings et al., 2021). This will not only facilitate clear communication to
users and developers, but also help bridge the gap between foundational DP research and
its translation into task-specific tools, e.g. software libraries. Here, we present a unifying
perspective on the GM which encapsulates its fundamental properties into an interpretable
quantity and intended as a reference to practitioners. Our contributions towards achieving
the above-mentioned goal are as follows:

• We demonstrate that the comprehensive characterisation of the GM requires knowledge
of only a single parameter, termed the sensitivity index ψ, which captures the two
fundamental properties of the mechanism, namely the sensitivity of the query function
and the magnitude of the noise perturbation;

• We prove that ψ fundamentally links the (ε, δ)-interpretation, the hypothesis-testing
interpretation of f-DP and the divergence-based interpretation of Rényi DP and can be
used to translate between them;

• Due to its link to the receiver-operator characteristic (ROC) curve, a universally applied
tool in machine learning and statistics, the sensitivity index can be easily understood and
communicated by and to practitioners;

• ψ leads to a intuitive geometric interpretation of the GM, as it can be used to express
privacy loss in terms of the area under the ROC curve (AUC). This facilitates comparisons
among mechanisms;

• Finally, we theoretically and empirically demonstrate the optimal conversion strategy
between ψ-DP and (ε, δ)-DP.
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2. Prior Work

DP and the GM were originally introduced by Dwork and Roth (2014). In its original
form, the GM was constrained to the high privacy regime, that is, values of ε ∈ (0, 1). This
constraint was lifted in the later work by Balle and Wang (2018), who extended the analysis
of the GM to arbitrary ε values by employing the cumulative distribution function of the
normal distribution instead of the previously used tail bounds. Rényi DP (Mironov, 2017)
was proposed as a natural relaxation of DP, based on the divergence of the same name. It
provides favourable properties under composition, however suffers from a lossy conversion
to (ε, δ)-DP, to which improvements have only recently been proposed (Balle et al., 2020;
Asoodeh et al., 2021). f-DP was proposed by Dong et al. (2019) and is conceptually the
closest to our work in that it expresses the properties of the DP mechanism in terms of a
trade-off function, which is an affine transformation of the ROC curve used by us. The ROC
curve was used to quantify privacy guarantees in Matthews et al. (2010) and Matthews and
Harel (2012), however these works pre-date more modern developments in DP, notably Rényi
DP and f-DP, and do not describe machine learning applications. We moreover rely on the
hypothesis testing interpretation of DP and on results due to Wasserman and Zhou (2010)
and Kairouz et al. (2015), who introduce the notion of a privacy region, which is conceptually
related to the AUC utilised in our work. The term sensitivity index is folklore and was
first utilised as early as 1965 (Dempster and Schatzoff, 1965). It (and the synonymous term
discriminability index ) is nowadays typically used to express the ratio between the mean
separation and the standard deviation of two Gaussian distributions with equal variance
(Das and Geisler, 2021) (their Mahalanobis distance (Mahalanobis, 1936)), which motivates
its utilisation in our work. We are not aware of any prior use of this term in DP literature.

3. Preliminaries

We begin by introducing key terminology used in the remainder of the work. We will consider
the case in which a trusted curator in possession of a sensitive database wants to employ
the GM to privatise the outputs of some function (synonymously, query) applied to the
database in order to privately publish the results while being able to offer the individuals
whose data is contained in the database a quantifiable privacy guarantee.

We will refer to the sensitive database (synonymously, dataset, to designate that individuals
are present in the database only once) as D. Its adjacent database, designated as D′ can be
constructed from D by adding or removing a single individual’s data, and we will use the
symbol ≃ to denote adjacency.

We assume that a (query) function q is applied to the database. An example of such a query
is counting how many individuals in the database exhibit a certain attribute. Moreover,
the execution of a training step of e.g. a neural network resulting in the publication of a
gradient update is also considered a query.

We will use a similar formalism as Laud et al. (2020) to describe the global sensitivity of q.
We consider the set X of all possible databases a (Banach) space equipped with a metric dX
which expresses the distance between them (here, the Hamming metric). The query function
q maps an element of X to an element of an output space Y . We define the global sensitivity
∆ of q as follows:
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Definition 1 (Global sensitivity ∆ of q). The global sensitivity ∆ of q is:

∆(q) = sup
D≃D′

dY (q(D), q (D′))
dX (D,D′)

. (3.1)

Here, the sup is taken over all adjacent dataset pairs whose Hamming distance equals 1.
We note that alternative definitions of adjacency may use a different metric or result in a
different distance between adjacent databases (such as when an individual is replaced by
another), but we only use the adjacency definition described above in this work. Thus, when
Y is the Euclidean space equipped with the L2 norm, we can equivalently write:

∆2(q) = sup
D≃D′

∥q(D)− q(D′)∥2. (3.2)

Equation 3.2 describes the global L2-sensitivity of q, which forms the basis of our discussion.
We will henceforth omit the subscript and argument and refer to the global L2-sensitivity as
∆.

A DP mechanism is a higher-order function which takes as an input a database, the query
function, its sensitivity and one or more hyperparameters which control how much noise to
apply to the output of the query before publishing the privatised result. We will limit the
scope of our discussion to the Gaussian mechanism on real-valued queries (Dwork and Roth,
2014):

Definition 2 (Gaussian mechanism). The Gaussian mechanism M on the query function
q : X → Rd with sensitivity ∆ applied over a database D ∈ X outputs:

M(q(D)) = q(D) + ξ, ξ ∼ N (0, σ Id), (3.3)

where σ denotes the standard deviation of the normal distribution N and is calibrated to
the sensitivity ∆ such that σ = O(∆ε ), where O denotes a lower bound due to an additional
parameter δ, described below. Id denotes the identity matrix with d diagonal elements.

The GM can be used to render the publication of q’s output differentially private with
respect to the individuals in the database. The publication of M’s outputs results in privacy
loss, which affects the individuals whose records are contained in q’s inputs. The exact
quantification of this privacy loss (for example using the parameters (ε, δ)) and constraining
it using specified mechanisms is central to the study of DP.

Definition 3 ((ε, δ)-DP, Dwork and Roth (2014)). We say that the randomised mechanism
M preserves (ε, δ)-DP if, for all pairs of adjacent databases D and D′ and all subsets S of
M’s range:

P(M(q(D) ∈ S)) ≤ eε P(M(q(D′) ∈ S)) + δ. (3.4)

We note that the definition is symmetric. At a global L2-sensitivity of ∆ and a noise standard
deviation of σ, the GM satisfies (ε, δ)-DP with:

ε(δ) =
∆

σ

√
2 log

(
1.25

δ

)
, (3.5)
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for ε ∈ (0, 1). The ε(δ) notation denotes a relationship between the two parameters which
will be explained below. In brief, a single (ε, δ)-tuple is insufficient to comprehensively
describe the privacy loss attributes of the GM. An extension to values of ε ≥ 1 is presented
below.

(ε, δ)-DP has several beneficial properties, among others group privacy, closure under post-
processing and composition, which are described in detail in Dwork and Roth (2014).

Rényi DP (RDP) was introduced by Mironov (2017) and interprets the DP guarantees in an
information theoretic way. Intuitively, two distributions P and Q are close to each other
when the Rényi divergence from one to the other is small. RDP utilises this fact to specify
DP guarantees. The Rényi divergence is a parameterised divergence whose parameter α can
be used to bound some moment of the ratio between two distributions and given by:

Dα(P ∥ Q) =
1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α
. (3.6)

Using the Rényi divergence, RDP is defined as follows:

Definition 4 (Rényi-DP). M preserves (α, ρ)-Rényi-DP (RDP) (Mironov, 2017) if, for all
pairs of adjacent databases D and D′:

Dα

(
M(q(D)) ∥ M(q(D′))

)
≤ ρ, (3.7)

where Dα denotes the Rényi divergence of order α > 1 described above. At α = 1, defined by
continuity, this corresponds to bounding the Kullback-Leibler-divergence. Of note, D∞-RDP
is equivalent to (ε, 0)-DP (which the GM never achieves). This definition is asymmetric, as
is the Rényi divergence (but this detail is often insignificant in practice). We will abuse
notation and write Dα(M1 ∥ M2) to denote max{Dα(M1 ∥ M2), Dα(M2 ∥ M1)}.

Beyond RDP and the broader class of divergence-based DP definitions, DP interpretations
relying on the techniques of statistical hypothesis testing have also been introduced. Here,
a hypothetical adversary is assumed to conduct a statistical test to distinguish between
the two databases and the strength of the DP guarantee is intuitively measured by how
(un-)successful such a statistical test is. The most notable hypothesis testing interpretation
is f-DP:

Definition 5 (f-DP). M preserves f-DP if, for all pairs of adjacent databases D and D′:

T (M(q(D)),M(q(D′))) ≥ f (3.8)

where T denotes a trade-off function of the form:

T (P,Q)(α) = inf {βϕ : αϕ ≤ α} . (3.9)

Here, ϕ is a rejection rule such that 0 ≤ ϕ ≤ 1, P and Q are two probability distributions
on the same space and α, β are the Type I and Type II statistical errors of a hypothesis
test. This test is assumed to be optimal in the sense that it has the highest power among all
tests for distinguishing between P and Q (or, in the case of DP, between D and D′). The
Neyman-Pearson lemma (Neyman and Pearson, 1933) motivates constructing such a test
via the log-likelihood ratio, as will be discussed below. Gaussian DP (GDP) represents a
specialisation of f-DP to the GM. Here, the trade-off function has a closed-form representation:

Gµ(α) = Φ
(
Φ−1(1− α)− µ)

)
, (3.10)
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where Φ is the cumulative distribution of the standard normal distribution. A mechanism
which fulfils T (M(q(D)),M(q(D′))) ≥ Gµ is said to preserve µ-GDP where µ = ∆

σ . This
fact establishes a strong link between µ-GDP and ψ-DP, which will be explored below.

We note that, whereas RDP conveys the properties of the GM as the value of a divergence
function from the output distribution of M applied to q(D) to the output distribution
of M applied to q(D′), f-DP utilises the notion of a trade-off between the Type I and
Type II statistical errors the adversary is facing when trying to distinguish between the
aforementioned outputs.

Expressing the similarities between RDP, f-DP and the (ε, δ)-interpretation through the
sensitivity index ψ represents the core of our work. We therefore define the sensitivity index
as follows:

Definition 6 (Sensitivity index ψ). The sensitivity index ψ is defined as:

ψ =
∆

σ
. (3.11)

The aforementioned introductory remarks allow us to reason about the GM using the
sensitivity index ψ and to define ψ-DP:

Definition 7 (ψ-DP). Let q be a query function with global L2-sensitivity ∆ and let M
be an instance of the Gaussian Mechanism with noise standard deviation σ. Then, the
application of M to an output of q satisfies ψ-DP with ψ = ∆

σ .

As is apparent from Equations 3.2 and 3.3, ψ encapsulates the two parameters which
completely determine the privacy properties of the GM in a single parameter, and can be
interpreted as the signal-to-noise ratio (SNR) of the mechanism, where ∆ represents the
signal and σ the noise. Intuitively, a ψ-DP mechanism preserves strong privacy if it has low
SNR, since the distinguishing details of the individuals in the database are “drowned out” by
the noise. Moreover, as the GM relies on a random noise draw and its behaviour is otherwise
independent of the query function and the input database, one may state that ψ is a singular
parameter of the GM. Furthermore, ψ-DP (like other DP definitions), offers a worst-case
interpretation: As discussed above, ψ expresses the ratio between the mean separation
and standard deviation of two normal distributions with equal variance (equivalently, the
Mahalanobis distance between them). In our work, the invocation of the GM results in an
output which can be considered a random variable drawn from a normal distribution induced
by the randomness of the mechanism. The worst-case interpretation assumes that the means
of these distributions are separated by ∆ (i.e. maximally separated) when the mechanism is
executed over adjacent databases. We note that ψ-DP is a formulation specific to the GM
in the sense that it is designed to hold for the global L2 sensitivity and for Gaussian noise.
However, a similar quantity to the sensitivity index arises e.g. in the Laplace mechanism
under the (ε, δ)-DP interpretation, where ε = S

b with S denoting the global L1-sensitivity
and b denoting the scale parameter of the Laplace distribution from which noise is added.
We will not expand on this tangent further in this work, but note it to be of interest as it
shows the SNR analogy to be useful beyond the GM and a similar concept as the sensitivity
index to exist.
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4. Bridging the gap between DP definitions

Throughout this and the following sections, we will utilise the terminology and notation
introduced above. We furthermore introduce an adversary A, who has black-box access to
a single output of M and attempts to determine whether the observed output originated
from q being executed over D vs. D′. We grant A access to arbitrary side-information
including e.g. an understanding of the inner workings of M, the characteristics of the noise
distribution, the query function q, as well as the ability to arbitrarily post-process the output
of M.

4.1. Relating the sensitivity index to (ε, δ)-DP. We assume that A observes an output
O from M. The privacy loss random variable on O, Ω is then defined as:

ΩM(q(D)) = log

(
P(M(q(D)) = O)

P(M(q(D′)) = O)

)
. (4.1)

where log is the natural logarithm. As is common in literature, we will use the notation
ΩM(q(D)) to specify that Ω quantifies the privacy loss when M is executed whilst considering
D (rather than D′) the “base” dataset (Dwork and Rothblum, 2016). Under the (ε, δ)-DP
definition, the magnitude of the privacy loss random variable is bounded by ε with probability
1−δ. We are therefore interested in the probability δ that the magnitude of ΩM(q(D)) exceeds
a certain value ε. By Definition 3:

P(ΩM(q(D)) ≥ ε) ≤ δ. (4.2)

We begin by noting that ΩM(q(D)) is also normally distributed with mean ∆2

2σ2 and standard

deviation ∆
σ (Dwork and Rothblum, 2016):

ΩM(q(D)) ∼ N
(
∆2

2σ2
,
∆

σ

)
Def.6
= N

(
1

2
ψ2, ψ

)
. (4.3)

where we have substituted ∥q(D) − q(D′)∥2 = ∆, assuming the worst-case distribution
without loss of generality. The distributions of ΩM(q(D)) and of the outputs of M are
exemplified in Figure 1. Here and below we will slightly abuse notation by conceptually
equating distributions to their density functions.

We will bound δ using the cumulative distribution function of ΩM(q(D)) to relate ΩM(q(D))

to ψ:

Lemma 1. If M is (ε, δ(ε))-DP ∀ ε ≥ 0, δ ∈ [0, 1], the following inequality holds:

Φ

(
1

2
ψ − 1

ψ
ε

)
≤ δ. (4.4)

We recall that Φ represents the cumulative distribution function of the standard normal
distribution.
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M(q(D)) M(q(D′))ΩM(q(D))

q(D) q(D′)

Figure 1. Exemplary plot showing the distributions of the Gaussian mech-
anism M’s outputs given input databases D and D′ (black curves). The
privacy loss random variable ΩM(q(D)) (blue curve) is also normally dis-
tributed, a particular property of the Gaussian mechanism.

Proof.

P
(
ΩM(q(D)) ≥ ε

)
= P

(
N
(
1

2
ψ2, ψ

)
≥ ε

)
=

= P

(
N (0, 1) ≥ ε− 1

2ψ
2

ψ

)
.

By symmetry of the standard normal distribution:

P

(
N (0, 1) ≥ ε− 1

2ψ
2

ψ

)
= P

(
N (0, 1) ≤

1
2ψ

2 − ε

ψ

)
=

= Φ

(
ψ2

2ψ
− ε

ψ

)
= Φ

(
1

2
ψ − 1

ψ
ε

)
.

The inverse case, P
(
ΩM(q(D′) ≤ −ε

)
, required by the symmetry of Definition 3, follows by

the same argument.

Notably, the (ε, δ(ε)) notation in Lemma 1 implies the existence of infinitely many valid
(ε, δ) pairs, corresponding to the privacy profile of M (Balle et al., 2018). Moreover, it
forms the foundation of the Analytic Gaussian Mechanism (Balle and Wang, 2018), which
we will utilise later. Also of note, this formulation holds for any ε > 0. Building upon this
relationship between the sensitivity index ψ and the (ε, δ)-DP definition, we now link ψ to
the hypothesis-testing DP interpretation, which we express via the ROC curve and its AUC.

4.2. Relating the sensitivity index to the ROC curve. The probabilistic definition of
DP we investigated above is centred around quantifying A’s (posterior) information gain
as a function of their prior beliefs and the information disclosed by publishing the output
of M. Orthogonal to this approach, we now investigate the ability of A to distinguish
between these outputs using a statistical hypothesis test. Formally, the adversary posits a
null hypothesis (e.g. H0: the underlying database is D) and an alternative hypothesis (H1:
the underlying database is D′) and then tries to determine whether to reject or fail to reject
the null hypothesis. This interpretation is closely related to the probabilistic definition
above, as the Neyman-Pearson-Lemma (Neyman and Pearson, 1933) motivates constructing
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the hypothesis test by relying on the likelihood ratio to achieve optimal statistical power.
This links it to the privacy loss random variable via the right hand side of Equation (4.1),
itself a (log-) likelihood ratio. In intuitive terms, A’s task can be summarised as follows:

(1) A formulates a binary classification problem concerned with discriminating whether the
observed output O of M is more likely given input D or D′.

(2) A develops a classification algorithm H which takes as its input O and a parameter c,
termed the cut-off-value or decision threshold. H deterministically outputs a decision
χ ∈ {“D”,“D′”} depending on the observed values of O and the value of c.

Our further analysis will rely on the following fundamental question: what is the optimal
true-positive rate (TPR) H can afford A for any given false-positive rate (FPR) at any
threshold c? We will use Figure 2 to illustrate our argument.

q(D) q(D′)

M(q(D)) M(q(D′))cc

TN

FN

FP TP

Figure 2. Illustration of the distributions of M’s possible outputs and their
relation to A’s adversarial task of binary classification between D and D′. A’s
classification algorithm H outputs a decision d based on the cut-off or decision
threshold c (red line). At any given value of c, H achieves a classification
performance which is fully described by the rates of true positive (TP, green
and blue areas), false positive (FP, yellow and blue areas), true negative (TN,
pink area) and false negative (FN, light purple area) classifications.

The classification performance of H can be fully described by its true positive rate (TPR)
and its false positive rate (FPR) (the true negative and false negative rates follow by the
fact that TNR+ FPR = FNR+TPR = 1. Intuitively, if A cannot simultaneously achieve a
high TPR and a low FPR through the use of H, then M preserves privacy. Evidently, the
TPR and FPR are immediately dependent on the choice of c. The ROC curve represents
the performance of H as c is varied as a plot of TPR against FPR.

To create the ROC curve from the TPR and FPR, we will rely on the following property:

Corollary 1. Let Pq(D)(x) be the density function of M when x ∼ q(D) and Pq(D′)(x) be
the density function of M when x ∼ q(D′). Then:
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TPR(c) =

∫ +∞

c
Pq(D)(t)dt = 1− Φq(D′),σ(c) and

FPR(c) =

∫ c

−∞
Pq(D′)(t)dt = 1− Φq(D),σ(c),

where c ∈ (−∞,+∞).

Proof. (Pictorial) Notice in Figure 2 that M’s outputs follow a normal distribution. Then,
TPR(c) is the sum of the green and blue shaded areas and FPR(c) is the sum of the yellow
and the blue shaded areas.

We are now able to relate the sensitivity index to the classification performance of H via the
ROC curve. We will use the following facts:

Corollary 2 (Adapted from (Gonçalves et al., 2014), (3.1)). Let X and Y be independent
normal variables with means µ0 and µ1 and covariance matrices σ20I and σ21I. Then, the
binormal ROC curve (whose construction assumes that the two populations, in this case,
the random variables, are normally distributed) is given by:

R(x) = Φ
(
a+ bΦ−1(x)

)
, x ∈ (0, 1). (4.5)

where a = ∥µ1−µ0∥2
σ1

and b = σ0
σ1
.

Corollary 3 (Adapted from (Gonçalves et al., 2014), (3.2)). The area (AUC) under the
binormal ROC curve is then given by:

AUC = Φ

(
a√

1 + b2

)
. (4.6)

where a and b are defined as above.

Lemma 2. Let R : (0, 1) → [0, 1] be the function of the ROC curve describing the
classification performance of H. Then:

R(x) = Φ
(
ψ +Φ−1(x)

)
. (4.7)

Proof. The ROC curve is constructed by parametrically plotting:

(FPR(c),TPR(c)), c ∈ (−∞,+∞) (4.8)

on the unit square and is strictly monotonically increasing (Gonçalves et al., 2014). Recog-
nising that Pq(D)(x) and Pq(D′)(x) follow a normal distribution with means q(D) and q(D′)
and common standard deviation σ, we can leverage the properties of the binormal ROC
curve and use equation (4.5) to re-write Equation 4.8 as:
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R(x) = Φ

(∥q(D′)− q(D)∥2 + σΦ−1(x)

σ

)
=

= Φ

(
∆+ σΦ−1(x)

σ

)
=

= Φ

(
∆

σ
+Φ−1(x)

)
=

= Φ
(
ψ +Φ−1(x)

)
, x ∈ (0, 1).

Lemma 3. The AUC of R is given by:

AUCR = Φ

(
ψ√
2

)
. (4.9)

Proof. Substitute a = ∥q(D)−q(D′)∥2
σ = ∆

σ = ψ and b = σ
σ = 1 in Equation 4.6.

Note that in both cases, we have substituted ∥q(D)− q(D′)∥2 = ∆, as we are interested in
the worst-case ROC curve and AUC, respectively.

From Equations 4.7 and 4.9, the following relationships are observed:

lim
ψ→+∞

AUCR = 1. (4.10)

This case corresponds to a mechanism which offers no privacy, as A is able to distinguish
between D and D′ with a TPR = 1 and a FPR = 0 and the vertex of the graph of R(x)
approaches the point (0, 1). This situation arises when ∆ → +∞ and/or when σ → 0.
Conversely,

lim
ψ→0

AUCR = 0.5. (4.11)

In this case, A is unable to distinguish between D and D′ and graph of R(x) approaches
the graph of TPR(FPR) = FPR, which is the line through the origin with unit slope. This
situation arises when ∆ → 0 and/or when σ → +∞ and corresponds to perfect privacy.

Figure 3 visually demonstrates the ROC curve and the AUC. As the AUC depends only on
the value of ψ, which is sufficient to fully characterise the behaviour of the GM, the results
above and the AUC can be utilised to (visually) compare the privacy guarantees between
GMs. This represents an advantage over (ε, δ)-DP whose characterisation and comparison
would require an infinite collection of (ε, δ(ε)) tuples. Moreover, the two components of
these tuples represent fundamentally different quantities, further encumbering the mental
model.
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FPR

T
P
R

1

1

AUC= Φ( ψ√
2
)

R(x)

Figure 3. Exemplary illustration of the ROC curve R(x) and of AUCR.
The ROC curve describes the performance of a classification algorithm at all
decision thresholds by plotting its TPR against its FPR on the unit square.

4.3. Recovering (ε, δ)-DP. The ROC curve comprehensively characterises M at all pos-
sible threshold values. We now turn to the question of how to losslessly convert between
the privacy profile of M and R(x). From the works of Wasserman and Zhou (2010) and
Kairouz et al. (2015), the following relationship is known:

Corollary 4 (Wasserman and Zhou (2010) and Kairouz et al. (2015), Theorem (2.1)). For a
classification algorithm H executed on the outputs of an (ε, δ)-DP mechanism, the following
holds:

TPRH ≤ eε FPRH+δ. (4.12)

This implies a linear relationship between TPRH and FPRH. Moreover, the optimal
classifier’s graph in this setting must also be tangent to R(x), which represents the worst case
in terms of privacy (Metz, 1978). This also follows intuitively by the fact that the vertex of
such a classifier’s graph lies closest to the point of perfect discrimination (FPR,TPR) = (0, 1).

Based on these assumptions, we can formulate the following relationship:

Lemma 4. The tangent with slope eε to the graph of a classifier H with ROC curve R(x)
has intercept at most δ.

Proof. To derive the tangent’s intercept, we rely on the Legendre-Fenchel -transform of R
(which, as strictly monotonically increasing, is amenable to such transformation). Let R⋆ be
the convex conjugate of R. Then:

R⋆(t) = ty −R(y). (4.13)

12



The condition dR⋆

dt = 0 is satisfied when:

t = Φ(m) ,m = −∆2 + 2σ2 log(y)

2∆σ
. (4.14)

Then, substituting t into Equation (4.7):

R(t) = Φ

(
∆

σ
+Φ−1 (Φ (m))

)
=

= Φ

(
∆

σ
+m

)
=

= Φ

(
∆

σ
− ∆2 + 2σ2 log(y)

2∆σ

)
=

= Φ

(
∆

σ
− ∆2

2∆σ
− 2σ2 log(y)

2∆σ

)
=

= Φ

(
∆

2σ
− σ log(y)

∆

)
.

When t = eε:

R(t)
∣∣
t=eε

= Φ

(
∆

2σ
− σ log(eε)

∆

)
=

= Φ

(
∆

2σ
− σε

∆

)
Lemma 1

=

= Φ

(
1

2
ψ − 1

ψ
ε

)
≤ δ.

This relationship is visualised in Figure 4. We note that a similar case is observed when
the slope of the line is e−ε (required by the symmetric definition of (ε, δ)-DP), whereby the
tangent in question is reflected about the diagonal y = −x+1. The resulting set of infinitely
many symmetric line pairs draw the boundary of the ROC curve and are conceptually
equivalent to the lines bounding the privacy region in Kairouz et al. (2015) and the trade-off
function in Dong et al. (2019).

Of note, this fact also admits an interesting geometric interpretation: The (fictitious) ROC
curve of a “failed” privacy mechanism, that is, a mechanism for which the δ-probability
event of catastrophic failure has occurred, is shown in Figure 5. The curve intercepts the
y-axis at a point (0, κ), κ > 0, indicating that A is able to discriminate between D and D′

with a FPR of 0 while still achieving a TPR of κ. A similar result can be found in Figure 3
of Pless et al. (2003).

5. Relating the sensitivity index to f-DP and Rényi DP

In the previous sections, we introduced the sensitivity index ψ as a singular value compre-
hensively characterising the GM and related it to the mechanism’s (ε, δ(ε)) privacy profile.
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FPR

T
P
R

R(x)

1

1

•

δ

eε

Figure 4. Relationship between the tangent with slope eε to the ROC
curve R(x) and its intercept δ. We note that, although we have plotted the
probability δ and the TPR (which also represents a probability) on the same
axis, the two are distinct (and usually on very different scales).

FPR

T
P
R

1

1
R(x)

κ

Figure 5. Fictitious ROC curve of a failed privacy mechanism M (solid line)
compared to its actual ROC curve (dashed continuation). The adversary A is
able to distinguish between D and D′ with a TPR of κ > 0 while maintaining
an FPR of 0.

We now study the relationship between ψ and two newer DP interpretations, f-DP and
Rényi DP.
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5.1. Converting between ψ-DP and f-DP. We begin by recalling that the f-DP frame-
work (Dong et al., 2019) is based on the hypothesis testing interpretation of DP and employs
trade-off functions between A’s Type I (α) and Type II (β) errors to characterise the
behaviour of mechanisms. When the mechanism analysed is the GM, this strongly links the
ROC curve used in our work to a particular sub-type of f-DP, namely Gaussian DP (GDP),
which is introduced above. Indeed, it is easily shown that the trade-off function used in
GDP is an affine transformation of a specific instance of the ROC curve function:

Corollary 5 (Equation 6 in Dong et al. (2019)). The trade-off function Gµ is given by:

Gµ := T (N (0, 1),N (µ, 1)) , (5.1)

and
Gµ(α) = Φ

(
Φ−1(1− α)− µ)

)
. (5.2)

Lemma 5. Let R(x) be the ROC curve of M defined above and let ∆ = µ and σ = 1.
Then:

R(x) = 1−Gµ(x). (5.3)

Proof. By substituting in Equation 4.7 and using the fact that ψ = ∆
σ = µ

1 = µ:

R(x) = Φ
(
µ+Φ−1(x)

)
= 1−

(
−Φ−1(x)− µ

)
=

= 1−
(
Φ−1(1− x)− µ

)
= 1−Gµ(x),

where we have used the facts that Φ(x) = 1 − Φ(−x) and −Φ−1(x) = Φ−1(1 − x). This
operation corresponds to reflecting the graph of R(x) about the x-axis and then transposing
its x-coordinates by +1.

We will also use the following property of Gµ:

Corollary 6. Gµ is strictly monotonically decreasing in µ such that if µ1 ≥ µ2, then
Gµ1 ≤ Gµ2 .

Proof. The claim follows from the fact that R(x) is strictly monotonically increasing and
from the reflection operation.

We can now show the following connection between f-DP and the ψ-based DP interpretation:

Lemma 6. Let M be a GM with sensitivity index ψ on the query function q over adjacent
databases D and D′. Then, M is ψ-GDP if and only if ψ ≤ µ.

Proof. The trade-off function between Mq(D) and Mq(D′) is:

T
(
N (q(D), σ),N (q(D′), σ)

)
= G ∥q(D)−q(D′)∥2

σ

. (5.4)

As
∥q(D)− q(D′)∥2

σ
≤ ∆

σ
= ψ, (5.5)

we obtain:
T
(
Mq(D),Mq(D′)

)
≥ Gψ. (5.6)
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As Gµ is strictly monotonically decreasing in µ, Gψ ≥ Gµ ⇔ ψ ≤ µ. However, if Gψ ≥ Gµ,
M is ψ-GDP. Thus, ψ ≤ µ is necessary and sufficient for M to be ψ-GDP.

This relationship between f-DP and ψ-based interpretations of the GM is noteworthy, as it
endows them with the attractive properties of GDP, while maintaining the advantages of
the (in our opinion) more intuitive ROC-curve-based GM characterisation. In particular,
the following properties are a direct consequence of Lemma 6:

Corollary 7 (Group Privacy, Theorem 2.14 in Dong et al. (2019)). If M is ψ-GDP, then it
is kψ-GDP for groups of size k.

Corollary 8 (Composition, Corollary 3.3 in Dong et al. (2019)). Let Mi be a sequence of

ψi-GDP GMs, i ∈ [1 . . . n]. Then their n-fold composition is
√
ψ2
1 + · · ·+ ψ2

n-GDP.

Moreover, ψ-based GM interpretations are amenable to the subsampling amplification and
central-limit-theorem-type phenomenon arising in f-DP. This allows the privacy analysis of
GMs iterated over many steps on (secret) subsamples of a database, such as DP stochastic
gradient descent (DP-SGD) DP-SGD (Abadi et al., 2016; Bu et al., 2020):

Corollary 9 (DP-SGD analysis, Corollary 5.4 in Dong et al. (2019)). Let D be an instance
of the DP-SGD algorithm with Gaussian noise magnitude σ, executed on a database of
cardinality n for T iterations, where n → +∞ and T → +∞. If secret subsamples of the
database are drawn uniformly at random with sampling rate r at every iteration, then D is
ψ-GDP with ψ given by:

ψ = s
√
2

√
exp

(
1

σ2

)
Φ

(
3

2σ

)
+ 3Φ

(
− 1

2σ

)
− 2, (5.7)

where r
√
T → s.

Of note, this formulation is asymptotic, yet reasonable for large databases and large
numbers of iterations, as are common in deep learning, and allows one to avoid cumbersome
composition computations otherwise required for the analysis of subsampled, iterated GMs
by f-DP. Recently, Asoodeh et al. (2021) showed that for a specific range of σ values, RDP
composition can be tigher than f-DP while Gopi et al. (2021) have indicated that such
asymptotic privacy analysis could under-estimate the true privacy cost of composition.
Moreover, newer techniques (Zhu et al., 2022) utilising the characteristic function for
facilitated accounting have been proposed and await investigation beyond the proof-of-
principle, as well as integration into DP machine learning libraries. We note that the
aforementioned works on composition and privacy accounting are orthogonal to ours in
the sense that our findings are completely independent of the choice to technique used to
conduct the privacy accounting and ψ can be used to interpret, compare and communicate
the privacy parameters of e.g. trained machine learning models using the ROC curve and
the ROC-AUC.

Despite the definitions of ψ and µ being nominally identical, we remark one –purely
conceptual– difference: µ-GDP intuitively states that telling apart the distributions of
M(q(D)) and M(q(D′)) is at least as hard as telling apart N (0, 1) and N (µ, 1) based on a
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single draw. ψ-DP states that that telling apart M(q(D)) and M(q(D′)) is at least as hard
as telling apart N (µ0, σ) and N (µ1, σ) such that |µ1 − µ0| = ∆. This change is of no formal
consequence as the two parameters can be converted into each other through a change of
variables procedure, but we choose to make the dependence on σ explicit in ψ-DP for clarity.

5.2. Relating ψ-DP and RDP. RDP (Mironov, 2017) was proposed as a natural relaxation
of DP, tailored to the specific properties of the GM. We choose to study the relationship
between the sensitivity index and RDP over other divergence-based DP relaxation such as
concentrated DP (Dwork and Rothblum, 2016) or zero-concentrated DP (Bun and Steinke,
2016), as it enjoys the greatest popularity among machine learning practitioners, representing
the basis of privacy accounting of both major DP machine learning libraries (Opacus and
TensorFlow Privacy). Fortunately, RDP can easily be expressed using the sensitivity index
ψ, facilitating the conversion between our ψ-based characterisation of the GM and RDP:

Lemma 7. Let M be a GM with sensitivity index ψ on the query function q over adjacent
databases D and D′. Then, M satisfies (α, ρ)-RDP, α ≥ 1 if and only if it also satisfies
(α, α2ψ

2)-RDP.

We will rely on the following fact about the Rényi divergence from one Gaussian probability
distribution to another:

Corollary 10 (See Van Erven and Harremoës (2014).). Let Pi := N (µi, σiI) and Pj :=
N (µj , σjI) be two Gaussian probability distributions. Then, the Rényi divergence of order
α from Pi to Pj is given by:

Dα(Pi ∥ Pj) =

= log

(
σj
σi

)
+

1

2(α− 1)
log

(
σ2j

ασ2j + (1− α)σ2i

)
+

+
1

2

α(µi − µj)(µi − µj)
T

ασ2j + (1− α)σ2i
.

We can now prove Lemma 7:

Proof. We recall that the density functions of M over q(D) and q(D′) follow Gaussian
distributions with means q(D) and q(D′), respectively and common covariance matrices σI.
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Substituting in Corollary 10 yields:

Dα

(
N (q(D), σI) ∥ N (q(D′), σI)

)
= log

(σ
σ

)
+

+
1

2(α− 1)
log

(
σ2

ασ2 + (1− α)σ2

)
+

+
1

2

α(q(D)− q(D′))(q(D)− q(D′))T

ασ2 + (1− α)σ2
=

=
1

2

α(q(D)− q(D′))(q(D)− q(D′))T

σ2
=

=
α

2

∥q(D)− q(D′)∥22
σ2

≤ α

2

∆2

σ2
=
α

2
ψ2.

Thus, for M to satisfy (α, ρ)-RDP it is sufficient for ρ = α
2ψ

2. The inverse condition follows
by the same argument.

We note that this result represents a generalisation of Proposition 7 and Corollary 3 of
Mironov (2017). Evidently, the translation between ψ and ρ also allows to make use of the
RDP composition theorem, including its subsampled variants, for which we refer to Zhu and
Wang (2019); Mironov et al. (2019).

6. Optimal conversion

In this section, we investigate the optimal conversion strategy between ψ-DP and (ε, δ)-DP
under a fixed value of δ. This question bears elaboration seeing as (ε, δ)-DP is –in our view–
widely regarded as the canonical version of DP and stakeholders may be more accustomed
to it. Moreover, δ is not typically treated as a free variable but chosen depending on the size

of the database in question
(
Ō
(

1
poly(|D|)

))
, where Ō denotes an upper bound and poly(|D|)

denotes a polynomial in the size of the dataset (e.g. |D|2), or chosen to be negligibly small
(e.g. 10−128). We note that the exact choice of δ is of no consequence to the following
experiments. Our results admit two different strategies to achieve conversion: (1) Directly
converting from ψ-DP using Lemma 4 or (2) converting to (ε, δ)-DP by taking a “detour”
via f-DP or RDP. We note that method (1) and the conversion via f-DP are equivalent in the
sense that the conversion between ψ-DP and (µ/ψ)-GDP is immediate and relies only on a
single parameter. The conversion via RDP is more involved, as it relies on the optimal choice
of a second parameter (α). One might –at this point– wonder why a conversion through RDP
is even necessary. However, RDP is widely used in deep learning applications with DP, as it
has elegant properties under composition. As deep learning with DP requires composing over
many applications of the GM, practitioners often require this type of conversion to express
the guarantees of models in terms of (ε, δ)-DP, motivating its inclusion in our work. We thus
investigate all four techniques, and begin by briefly introducing the conversion rules used in
our experiments. The following three conversion techniques are used to convert between
RDP and (ε, δ)-DP. We note that it is currently impossible to convert perfectly between
these interpretations because such a conversion would attempt to create a correspondence
between infinitely many (α, ρ)-RDP and infinitely many (ε, δ)-DP pairs. Thus, even for
a given δ, one would have to report the conversion for all values of α to not discard any
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information. It is thus often said that the RDP to (ε, δ)-DP conversion is lossy. The first
conversion technique was proposed in Mironov (2017), who introduced RDP:

Corollary 11 (Standard RDP conversion (Mironov, 2017)). If a mechanism M satisfies

(α, ρ)−RDP , it also satisfies

(
ρ+

log( 1
δ )

α−1 , δ

)
-DP for δ ∈ (0, 1). Equivalently, M satisfies:(

α

2
ψ2 +

log
(
1
δ

)
α− 1

, δ

)
-DP (6.1)

Follow-up work from Mironov (2017), namely Asoodeh et al. (2021); Balle et al. (2020), has
attempted to tighten the conversion, that is, introduce improved conversion techniques to
reduce the loss of conversion information.

Corollary 12 (Improved RDP conversion (A) (Asoodeh et al., 2021)). Let α > 1 and ρ ≥ 0

characterise a mechanism M satisfying (α, ρ)-RDP and let ζα := 1
α

(
1− 1

α

)α−1
. Then, M

satisfies:
ε(ρ, α, δ) = (ρ+ log(1− δ)) (6.2)

if αδ ≥ 1 and

ε(ρ, α, δ) ≤ 1

α− 1
min


(
(α− 1)ρ− log δ

ζα

)
log
(
exp((α−1)ρ)−1

αδ + 1
) (6.3)

if 0 < αδ < 1. Equivalently, M satisfies:

ε(ψ, α, δ) =
(α
2
ψ2 + log(1− δ)

)
(6.4)

if αδ ≥ 1 and

ε(ψ, α, δ) ≤ 1

α− 1
min

{(
α
2ψ

2(α− 1)− log δ
ζα

)
log
(
1 + 1

αδ (exp(
α
2ψ

2(α− 1))− 1)
) (6.5)

if αδ ≥ 1.

Corollary 13 (Improved RDP conversion (B) (Balle et al., 2020)). If a mechanismM satisfies

(α, ρ)-RDP, it also satisfies
(
ρ+ log

(
α−1
α

)
− log(δ)+log(α)

α−1 , δ
)
-DP for δ ∈ (0, 1). Equivalently,

M satisfies: (
α

2
ψ2 + log

(
α− 1

α

)
− log(δ) + log(α)

α− 1
, δ

)
-DP (6.6)

We note that Zhu et al. (2022) also discuss the topic of conversion (cf. Appendix F),
conjecturing that a truly optimal conversion technique exists, but leave a proof to future
work.

Lastly, due the relationship between ψ and δ proven in Lemma 4, we can leverage M’s
privacy profile to convert between ψ-based descriptions of the GM and (ε, δ)-DP. We will
use the following fact from Balle and Wang (2018), which was foreshadowed in Lemma 1:
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Corollary 14 (Analytic Gaussian Mechanism, (Balle and Wang, 2018)). M preserves
(ε, δ(ε))-DP if and only if the following holds ∀ ε > 0, δ ∈ [0, 1]:

δ(ε) ≥ Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
−∆

2σ
− εσ

∆

)
=

= Φ

(
1

2
ψ − 1

ψ
ε

)
− eεΦ

(
−1

2
ψ − 1

ψ
ε

)
This conversion method is lossless, as ψ-DP is a single-parameter interpretation in the sense
that a single value of ψ corresponds to infinitely many (ε, δ) pairs, hence the conversion
discards no additional information and, given ψg and δg, ε can be found by numerically
solving:

εψg ,δg = argmin
x

{δ(x, ψg)− δg} (6.7)

which we will refer to as the privacy profile-based conversion.

We selected the following conditions for our numerical experiments: δ = 10−5 (a value
often used in literature, e.g. Abadi et al. (2016); Tramèr and Boneh (2020)), ψ ∈ [0.1, 6],
α ∈ (1, 64]. For solving Equation 6.7, we used a numerical solver employing Brent’s method
(Brent, 2013). Expectedly, using the privacy profile resulted in the best conversion, including
when ψ → 0 since the conversion is lossless up to numerical stability. Also the improved RDP
conversion methods expectedly resulted in tighter conversions compared to the standard
RDP conversion. Interestingly, the two techniques performed almost on par in the higher α
regime. Neither RDP-based technique applies when δ → 0 due to the logarithm and/or a δ
term in the denominator, and thus both experience an increase in conversion error near zero.
These results corroborate our claim that the single-parameter characterisation provided by
our technique facilitates the interpretation of the GM’s behaviour: The RDP-based methods
obviously exhibit α-dependent behaviour. For values of ψ > 3, the privacy profile-based
direct conversion was better approximated by RDP-based conversion using low α-values.
Nevertheless, the lossiness of the conversion was more evident in this region. Conversely,
for low values of ψ around 1, the RDP-based conversion performed better at high α-values
and also matched the privacy-profile based conversion almost perfectly, albeit only within
a narrow interval. Of note, improved conversion (A) introduced in Asoodeh et al. (2021)
outperformed improved conversion (B) (Balle et al., 2020) for low values of ψ, in line with
the results of Asoodeh et al. (2021). All results are visualised in Figure 6.

Our experiments support that, whereas RDP-based conversions are in principle able to very
closely match the privacy profile-based conversion shown in Equation (6.7), especially in
the low-ψ-regime, they introduce an –in our view– undesirable additional consideration via
the α parameter. We therefore recommend the privacy profile-based strategy for converting
between ψ-based DP interpretations (or, equivalently, f-DP) and (ε, δ(ε))-DP.

7. Conclusion

We conclude our systematisation by summarising our findings on the properties of the
Gaussian Mechanism, viewed through the lens of the sensitivity index ψ:
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Figure 6. Exemplary numerical experiment results showcasing three strate-
gies for converting between ψ and (ε, δ(ε))-DP. The privacy profile-based
conversion consistently provides the tightest conversion compared to the
Standard RDP or either Improved RDP method. Moreover, all two RDP-
based conversion techniques are α-dependent. In the high-ψ regime (A),
RDP conversions utilising lower α-values (here: optimal α = 2) more closely
approximate the privacy profile-based conversion. In the low-ψ regime (B),
higher α values (here: α = 6) lead to a better approximation, which –in this
case –almost perfectly matches the privacy profile-based conversion within a
narrow interval. Observe also the increase in error for the Standard RDP
and Improved RDP (B) conversion methods when ψ → 0, which is –in part–
remedied by the Improved RDP (A) conversion.

Theorem. Let M be an instance of the Gaussian Mechanism with noise magnitude σ on
a query function with global L2-sensitivity ∆. We then say that M has sensitivity index
ψ = ∆

σ , and all of the following statements hold and are are equivalent:

• M is (ε, δ(ε))-DP with:

Φ

(
1

2
ψ − 1

ψ
ε

)
− eεΦ

(
−1

2
ψ − 1

ψ
ε

)
≤ δ(ε) (7.1)

• M is ψ-GDP

• M is
(
α, α2 ψ

2
)
-RDP

• The ROC curve fully characterising the properties of M under the hypothesis testing DP
interpretation is given by:

R(x)M = Φ
(
ψ +Φ−1(x)

)
(7.2)

• The area under R(x)M quantifying the privacy guaranteed by the application of M is
given by:

AUCRM = Φ

(
ψ√
2

)
(7.3)
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The broad utilisation of privacy technologies such as DP can herald an era of large dataset
availability, empowered by the trust granted through the provision of objectifiable privacy
guarantees. Since the inception of DP, the importance of practitioner and user participation
has been posited as central to the design of trustworthy data processing systems relying on
its utilisation (Dwork et al., 2019; Cummings et al., 2021). Our work aims to bridge a gap
between DP definitions which, to non-DP-experts, can seem disparate, abstract and hard to
relate to tangible concepts. The sensitivity index provides a parsimonious, yet comprehensive
description of the GM’s properties by encapsulating the quintessential properties of the query
function (sensitivity) and the mechanism used to privatise its output (noise magnitude)
in a “signal-to-noise ratio”-type argument. Moreover, it translates the threat model DP
aims to avert into quantities familiar to machine learning practitioners and statisticians (the
ROC curve and errors of hypothesis tests). Finally, it allows one to effortlessly compare
the guarantees offered by different realisations of the GM through a single calculation and
subsequent visual comparison of areas under the ROC curve. In future work, we intend to
expand our formalism to encompass the interpretation of mechanism composition, and to
propose similar analyses of other DP mechanisms.
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Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable privacy-
preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067, 2014. https://doi.org/10.

1145/2660267.2660348.
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F. Tramèr and D. Boneh. Differentially private learning needs better features (or much more
data). arXiv preprint arXiv:2011.11660, 2020. https://arxiv.org/abs/2011.11660.
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