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Abstract
The distributed blocking flowshop scheduling problem (DBFSP) with new job insertions
is studied. Rescheduling all remaining jobs after a dynamic event like a new job insertion
is unreasonable to an actual distributed blocking flowshop production process. A deep
reinforcement learning (DRL) algorithm is proposed to optimise the job selection model,
and local modifications are made on the basis of the original scheduling plan when new
jobs arrive. The objective is to minimise the total completion time deviation of all
products so that all jobs can be finished on time to reduce the cost of storage. First,
according to the definitions of the dynamic DBFSP problem, a DRL framework based on
multi‐agent deep deterministic policy gradient (MADDPG) is proposed. In this frame-
work, a full schedule is generated by the variable neighbourhood descent algorithm
before a dynamic event occurs. Meanwhile, all newly added jobs are reordered before the
agents make decisions to select the one that needs to be scheduled most urgently. This
study defines the observations, actions and reward calculation methods and applies
centralised training and distributed execution in MADDPG. Finally, a comprehensive
computational experiment is carried out to compare the proposed method with the
closely related and well‐performing methods. The results indicate that the proposed
method can solve the dynamic DBFSP effectively and efficiently.

KEYWORD S
deep reinforcement learning, distributed blocking flowshop scheduling problem, dynamic scheduling, job
insertions, multi‐agent deep deterministic policy gradient

1 | INTRODUCTION

Production scheduling is one of the most critical issues in
manufacturing systems and has been extensively studied in the
literature [1]. As a typical production scheduling problem,
flowshop scheduling problem (FSP) plays an important role in
modern manufacturing systems. In the classic FSP, there is an
infinite buffer capacity between successive machines. However,
in many real‐world manufacturing environments, such as
pharmaceutical workshops, the buffer capacity between ma-
chines is limited or even zero due to technical requirements or
characteristics of the jobs. Under this circumstance, FSP turns to
be the Blocking Flowshop Scheduling Problem (BFSP). At the
same time, compared with the traditional single‐factory pro-
duction and processing mode, the distributed manufacturing

system makes full use of the resources of multiple factories,
realises the overall optimisation through the effective allocation
of resources, and quickly achieves the goal of manufacturing at
the lowest cost [2]. Therefore, distributed blocking flowshop
scheduling problem (DBFSP) has become one of the active
research topics in the field of manufacturing scheduling. When
the number of machines is greater than two, BFSP has been
proved to be a typical NP‐hard (non‐deterministic Polynomial‐
hard) combinatorial optimisation problem [3]. Blocking Flow-
shop Scheduling Problem is a subproblem of DBFSP, and
therefore, DBFSP is also an NP‐hard optimisation problem.

In real production, the processing environment changes
dynamically, and the manufacturing system is often affected by
various disturbing events, such as machine failures, new job
insertions, worker lateness and absences due to illnesses, which
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will lead to the low efficiency of the original scheduling
scheme. When a dynamic disturbance occurs, the original
processing plan needs to be modified to adapt to the new
production environment to ensure the continuous execution of
the manufacturing system. Therefore, establishing a dynamic
DBFSP scheduling system is closer to real production. There
are two kinds of dynamic scheduling: one is real‐time sched-
uling, which means that there is no static scheduling scheme in
advance, and the processing priority of a workpiece is deter-
mined directly by the status of the jobs and equipment in the
production system; the other one is that based on the original
plan and the dynamic status of the production system; the
static scheduling plan will be adjusted in real time to determine
the processing priority of the jobs, which is called rescheduling.
Both these methods can obtain executable scheduling de-
cisions, but the effectiveness is different. Real‐time scheduling
often only considers local information in decision‐making, so
the scheduling results obtained may be feasible, but they are
still far from the optimisation scheme. Rescheduling is
adjusting the existing static scheduling scheme to ensure its
operability. Since the static scheduling scheme is often obtained
by considering multiple performance indicators through global
optimisation methods, rescheduling can obtain more optimal
dynamic scheduling results. In this paper, we combine these
two ways to dynamically repair the original static schedule by
the status of the jobs and equipment in the production system
in order to make a more efficient decision.

Typical scheduling methods can be divided into two cate-
gories: precise scheduling methods and approximate scheduling
methods. Precise methods are not efficient at solving large‐scale
scheduling problems because of their high computational
complexities. Compared with precise scheduling methods,
approximate methods do not search the whole solution space
but explore multiple directions based on particular strategies [4].
So, the approximate methods have lower computational
complexity and obtain feasible solutions more quickly, while
having more advantages in solving large‐scale scheduling
problems. Approximate approaches for the dynamic scheduling
problem include variable neighbourhood search [5], learning‐
based approaches [6], heuristic algorithms [7], and agent‐based
methods [8]. Gao et al. [9] proposed a discretisation strategy
in the Jaya algorithm to four bi‐objective flexible job‐shop
rescheduling (FJRP) optimisation cases under the condition of
new job insertion. An et al. [10] investigated a multi‐objective
FJRP with both new job insertion and machine preventive
maintenance using an improved non‐dominated sorting genetic
algorithm III with an adaptive reference vector (NSGA‐III/
ARV). Fu et al. [11] proposed some new artificial molecules to
construct and inject into the population adaptively to escape
from a local optimum in FSP. They [12] also developed a hybrid
multi‐objective optimisation algorithm that maintained two
populations, executing the global search in the whole solution
space and the local search in promising regions to address a
dual‐objective stochastic hybrid flow shop deteriorating sched-
uling problem. Zhao et al. [13] applied the memetic algorithm
that integrated a population‐based non‐dominated sorting ge-
netic algorithm II and two single‐solution‐based improvement

methods to solve a bi‐objective serial‐batch group scheduling
problem considering the constraints of sequence‐dependent
setup time, release time, and due time. Also, Zhao [14] sum-
marised iterated greedy algorithm (IGA) variants and hybrid
algorithms with IGA integrated for solving FSPs according to
their scheduling scenarios, objective functions, and constraints.
But the most approximate methods that are applied in dynamic
rescheduling must consider all information and make a totally
new schedule instead of adjusting the original plan. For the
learning‐based methods, they can be adapted to different cir-
cumstances flexibly and more suitably to make decisions ac-
cording to changing environments.

In recent years, reinforcement learning (RL) has emerged as
a powerful method to deal with the Markov Decision Process
[15]. For actual manufacturing systems, a real‐time scheduling
algorithm based on RL is worth investigation [16]. Due to the
ability of RL to learn the best action at each decision point and
react to dynamic events completely in real time, many RL‐based
methods have been applied to different kinds of dynamic
scheduling problems. For single‐agent RL methods, Riedmiller
[17] proposed an RL approach to learn local scheduling policies
in the workshop with the objective of reducing the total latency.
A neural network‐based agent is associated with each resource
and trained via Q‐learning. Compared with ordinary heuristic
scheduling rules, it shows better performance. Aydin and
Öztemel [18] developed an improved Q‐learning‐based algo-
rithm, called Q‐III, training an agent to choose the most
appropriate scheduling rules in real‐time for dynamic job shops
with new job insertions. Wang and Usher [19] used Q‐learning
to train a single machine agent that selected the best scheduling
rule among the three given rules to minimise the average
tardiness. Chen et al. [20] proposed a rule‐driven approach to
develop compound scheduling rules for multi‐objective dy-
namic job shop scheduling. Other researchers applied deep RL
approaches to dynamic scheduling problems. Luo [21] studied
the dynamic flexible shop floor scheduling problem and pro-
posed seven state indicators, and six dispatch rules, and adopted
the double deep Q network. Martin [22] used two heuristic
algorithms, Randomised Nawaz‐Enscore‐Ham and Rando-
mised Clarke Wright Savings (RandCWS), for the permutation
FSP and capacitated the vehicle routing problem to increase the
autonomy of multiple agents and obtain the current best so-
lution through self‐optimisation and communication between
multiple agents. Cao et al. [23] applied a Cuckoo Search algo-
rithm with RL and surrogate modelling to solving a semi-
conductor final testing problem and proposed a parameter
control scheme based on RL, which can improve the search
efficiency and well balance the diversification and intensifica-
tion of population. Zhang [24] took corresponding actions
according to the status of dynamic occurrence (idle machines
with new jobs or machines with surrogate processing jobs) and
introduced a feedforward neural network to map state‐action
pairs to their values based on a simulation‐based value itera-
tion algorithm and simulation‐based Q‐learning algorithm.
Zhou et al. [25] gave the mathematical description of the dy-
namic scheduling in smart manufacturing problem and pre-
sented a deep reinforcement learning (DRL)‐based framework
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to minimise the makespan of all tasks over time. Kim et al. [26]
presented a smart manufacturing system using a Multi‐Agent
System (MAS) and RL. Machines with intelligent agents eval-
uate the priorities of jobs and distribute them through negoti-
ation. Han et al. [27] proposed an end‐to‐end DRL framework
based on 3D disjunctive graph dispatching. They improved the
pointer network and trained the policy with 20 static features
and 24 dynamic features that described the full picture of
scheduling problem. Zinn et al. [28] applied DQN in the
control of PLC‐based automated production systems to pro-
cess workpieces depending on their colours and fulfil the
schedule automatically. Luo [29] proposed an on‐line resched-
uling framework named as two‐hierarchy DQN for the dy-
namic multi‐objective flexible job shop scheduling problem
with new job insertions. The higher‐level DQN was a controller
determining the temporary optimisation goal for the lower
DQN. At each rescheduling point, it took the current state
features as input and chose a feasible goal to guide the
behaviour of the lower DQN. The lower‐level DQN acted as an
actuator. It took the current state features together with the
higher optimisation goal as input and chose a proper dis-
patching rule to achieve the given goal. Baer et al. [30] applied
the Multi‐Agent RL (MARL) version of DQN without explicit
exchange of information between agents, with agents who had
learnt to guide products efficiently through the plant and ach-
ieve near‐optimal timing regarding resource allocation. Zinn
et al [31] addressed the waypoint‐based exploration with Hi-
erarchical RL to the domain of robotic devices. The resulting
algorithm utilised a top‐level policy, which suggested waypoints
to a bottom‐level policy that controls the system actuators.
Gankin et al. [32] introduced a method for Modular Production
Control that combines a DQN and MAS, proving that the
approach can foster advantages from both research fields and at
the same time showed that the MAS achieves optimal
throughput in a static production environment.

To sum up, most researchers tend to apply traditional RL
algorithms such as Q learning and DQN to solve the
manufacturing scheduling problem. At present, many other RL
algorithms with great performance have been designed, such as
Deep Deterministic Policy Gradient (DDPG) and Proximal
Policy Optimization. But they are less used in manufacturing
scheduling problems. Meanwhile, the application of RL is
mostly in a single workshop, and there is little research on the
scheduling problem of multiple workshops. Furthermore, most
actions of RL are dispatch rules, which reduce the selection
space. This paper focuses on the DBFSP dynamic scheduling
problem with new job insertions by applying the multi‐Agent
DRL (MADRL). Also, we combine the static optimisation
with dynamic DRL‐based schedule repair, which is closer to the
real production.

The rest of the paper is organised as follows: Section 2
describes the considered problem. Section 3 presents the
proposed DRL scheduling framework. Section 4 provides
detailed information about the proposed training method.
Section 5 shows a series of computational experiments and
comparisons. Finally, the conclusion and future research are
discussed in Section 6.

2 | PROBLEM DESCRIPTION

The problem to be addressed in this paper is a dynamic
scheduling problem with new job insertions. There is a full
schedule plan before dynamic events happen. Therefore, this
section introduces both the static and dynamic problems.

2.1 | DBFSP problem statement

The DBFSP is an extension of the BFSP, where multiple
blocking factories are scheduled simultaneously. The problem
is described as follows: There are n workpieces {J1, J2, …, Jn},
and each job includes S consecutive processing stages (work-
stations), but different jobs may have different process times in
different stages. At the same time, all these jobs can be
assigned to f factories that have identical blocking assembly
lines. There is no buffer between successive stages; jobs cannot
leave the current station until the next station is available for
processing. With the goal of total completion time deviation
minimisation shown in Formula (1), all the jobs are assigned to
different factories, the processing orders of the jobs in
different factories are determined, and finally, the start and end
times of each process are obtained. The DBFSP is abstracted
from real manufacturing scheduling problems. The following
assumptions are made: each machine is available at time zero,
and the f processing factories are exactly the same, including
the machines and their numbers, There is no time constraint
between successive operations.

The DBFSP model is formed based on the BFSP model.
This paper adopts a sequence‐based modelling method and
establishes constraint conditions by expressing the connections
between processed jobs. Notations in this model are as follows:

Notations:

N Total number of jobs
S Total number of stages in each factory
F Total number of factories
j Index of job, j = 1, 2,. . ., N
k Index of stage, k = 1, 2,. . ., S
f Index of factory, f = 1, 2,. . ., F
pj;k Processing time of job j at stage k
L A very large positive number
rk Release time of stage k
Cj Completion time of job j
DTj Due time of job j
stj;k Start time of job j at stage k
ej;k End time of job j at stage k

The objective is to minimise the total completion time
deviation that refers to the sum of the absolute values of all
jobs completion times minus the due times:

MIN � Cd ¼
XN

j¼1
abs
�
Cj −DTj

�
ð1Þ
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Decision variables are:

‐ Starting process time of job j at stage k: sj;k
‐ Ending process time of job j at stage k: ej;k
‐ If job j is assigned to factory f before job j’:

yf ;j;j 0 ¼

(
1 if job j precedes job j0at factory f
0 otherwise

ð2Þ

‐ If job j is assigned to factory f:

zj;f ¼
�
1 if job j is processed on factory f
0 otherwise

ð3Þ

Constraints are:

‐ For any job j, it can only be assigned to one factory:

XF

f¼1

zj;f ¼ 1; j ¼ 1; 2;…;N ð4Þ

‐ For any job j, the start time of the first stage must be greater
than or equal to 0:

st1;j ≥ 0; j ¼ 1; 2;…;N ð5Þ

‐ For any job j, the start time from the second stage is equal to
the maximum between stage k release time and end time of
the last stage:

stj;k ¼max
�
rk; ej;k−1

�
; j ¼ 1; 2; :::;N ; k¼ 2; :::; S ð6Þ

‐ For any stage k except last stage, the release time is equal to
the maximum between the job j end time of stage k and the
job j−1 end time of stage k + 1:

rk ¼max
�
ej;k; ej−1;kþ1

�
; j ¼ 2; :::;N ; k¼ 1; 2; :::; S − 1 ð7Þ

‐ For any job j, the start time of the next stage must be greater
than or equal to the end time of the previous stage:

stkþ1;j − stk;j ≥ pk;j; j ¼ 1; 2;…;N ; k¼ 1; 2;…; S − 1 ð8Þ

‐ The sequences of two jobs at the same factory are deter-
mined by:

yf ;j;j0 þ yf ;j0;j ≤ 1; j; j0 ¼ 1; 2; :::;N ; j ≠ j0; f ¼ 1; 2; :::; F ð9Þ

‐ Time constraints to ensure that two jobs are in the same
factory at the same stage:

sk;j0 −
�
stk;j þ pk;j

�
þ L�

�
3 − zj;f − zj0;f − yf ;j;j0

�
≥ 0 ð10Þ

2.2 | Dynamic DBFSP problem statement

In this paper, we consider new job insertions as the dynamic
event. Based on the full schedule, several factories need to
choose new jobs to own waiting queues. The problem can
be described as follows: when several factories are running
with the determined schedule plans, there are m new jobs
fNJ1;NJ2; :::;NJmg arriving randomly that need to be
assigned to factories at the decision points. The decision points
are the set of the first stage’s ending time of all jobs after the first
new job insertion. And the optimisation goal is to minimise the
total completion time deviation that is shown in Formula (1).

To describe the problem more clearly, this part uses an
example to illustrate. We can see from Figure 1 that there are
three identical factories with three stages including s1, s2 and
s3. Eight jobs are assigned to three factories by the variable
neighbourhood descent (VND) algorithm before new job in-
sertions. At time t0, a new job nine arrives, which must be
arranged at next decision point. Each factory can calculate the
decision point according to the time t0 and decide to choose
new job or not if the new job is available. When the decision
point comes to the t1 of factory 1, job nine is chosen to the
factory and processed after job seven immediately.

3 | DRL SCHEDULING FRAMEWORK

The proposed scheduling framework indicates the whole
process of the proposed method. It includes three parts:
DBFSP virtual environment (DVE), offline training process,
and new instance evaluation, as shown in Figure 2.

Distributed blocking flowshop scheduling problem virtual
environment: this part defines the DBFS process. Each
episode resets the virtual world randomly such as number of
jobs, number of stages, process time and due time. According
to such information, the VND algorithm can be used to
generate a full schedule for all factories. After the beginning of
the process, the virtual environment inserts new jobs randomly,
and DVE will update the observations of agents and the global
states and transfer this information to agents. According to
actions from the agents, DVE chooses the first job in the new
job queue for all factories and enters into a new state. The
process is repeated until the new job pool is empty and a new
schedule is generated. Such a complete process is called an
episode.

Offline training process: in this phase, each factory has a
DDPG agent. The observations of each agent are input to the
actor network and get an action that will provide feedback to
DVE and move to the next state. The critic network is used to
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evaluate the pair of state and action from the global view so
that all agents can learn cooperatively.

New instance evaluation: after a long period of the training
phase, the optimal policies of agents can be obtained. Some
new scheduling problem instances can be solved using this
model in a short time.

4 | METHOD FOR SOLVING DBFSP

In this section, we introduce the multi‐agent deep deterministic
policy gradient (MADDPG) algorithm into our solving pro-
cess. Before executing MADDPG, there should be a full
schedule and a sorted new job queue.

F I GURE 1 (a) Before job insertion (b) After job insertion

F I GURE 2 Deep reinforcement learning (DRL) scheduling framework of distributed blocking flowshop scheduling problem (DBFSP)
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4.1 | Full schedule and new jobs sorting

To generate a full schedule before new job insertions, this paper
uses an improved VND algorithm from our previous research.
There, we use the Insertion, Move and Exchange local search
methods. The process of VND is shown in Figure 3.

Insertion: this method is used in all factories. First, there are
nf jobs in the original order of factory f and nf − 1 jobs are
selected randomly from the original orders. Then, insert selected
jobs one by one to all possible positions of the original order.
Finally, get the best inserted orders for individual factories.

Move: this operation is applied between the factory with
maximum on‐time cost (fmax) and the one with minimum on‐
time cost (fmin). The Move operation is to move each job in
fmax to all insertable positions in fmin to find the optimal
arrangement.

Exchange: this operation is applied between the factory
with maximum on‐time cost (fmax) and the one with mini-
mum on‐time cost (fmin). Exchange is to exchange each job in
fmax with all jobs in fmin to find the optimal arrangement.

To build a more adaptive solving policy network, for each
decision point, only one new job is left to be chosen so that no
matter how many new jobs come in, this model does not have
to be learnt again. Therefore, before making a decision, all
insert jobs need to be sorted into a new list with the first job
being the most urgent to be arranged.

The proposed insert jobs sorting method is shown in
Figure 4. At first, according to process times and due times of
all jobs DT and decision time U, calculate the left times (H) of
all jobs. H of job j can be calculated as follows:

Hj ¼U −DTj −
X

k∈S
pj;k ð11Þ

Then, sorting all jobs in an ascending order by H, start the
insertion operation in the same way as we mentioned above in
the VND algorithm. Stop the insertion until all jobs fall into all
positions.

4.2 | DRL by multi‐agent DDPG

After getting a full schedule and sorting the insertion jobs, this
paper applies MADDPG to learn the model of making de-
cisions. This section will introduce MADDPG in detail.

4.2.1 | Multi‐agent deep deterministic policy
gradient

In RL research, DDPG followed a development path of PG →
DPG → DDPG. Sutton [33] proposed PG in 2000, which is a
classic action‐control method for continuous learning. The
solving strategy in PG is as follows: using a probability distri-
bution function πθðajsÞ to represent the optimal strategy for
each step and performing action sampling according to the
probability distribution at each step to obtain the current optimal

action value Qπðs; aÞ. The process of generating an action is
essentially a random process and the learnt policy is also a sto-
chastic policy. The gradient of the policy can be written as
follows:

∇θJðθÞ ¼ Εs�pπ ;a�πθ½∇θ log πθðajsÞQπðs; aÞ� ð12Þ

The stochastic strategy is obtained, but at each step, we still
need to sample the obtained optimal strategy probability dis-
tribution in order to obtain the specific action. Also, at most
conditions, an action is usually a high‐dimensional vector so
that frequent sampling of action space will undoubtedly
consume computing power. Silver et al. [34] proposed DPG in
2014, which is a deterministic behaviour policy, and the
behaviour of each step directly obtains a definite value through
the policy μθðajsÞ:

F I GURE 3 Variable neighbourhood descent (VND) algorithm

F I GURE 4 Insert jobs sorting method

SUN ET AL. - 171

 25168398, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cim

2.12060 by T
echnische U

niversitat M
unchen-M

U
N

C
H

E
047S, W

iley O
nline L

ibrary on [25/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



This function, μ, is the optimal behaviour policy, which is
no longer a stochastic policy that needs to be sampled. The
gradient of the policy can be written as follows:

∇θJðθÞ ¼ Εs�D
h
∇θμθðajsÞ∇aQμðs; aÞja¼μθðsÞ

i
ð13Þ

Based on DPG, Lillicrap proposed Deep DPG in 2016
[35], which is a strategy learning method that integrates deep
learning neural networks with DPG. The main improvement
over DPG is: using the convolutional neural network as the
simulation of policy function μ and Q function, namely policy
network and Q network, and then using the deep learning
method to train the above neural network.

The implementation and training method of the Q func-
tion adopts the DQN method published by Mnih in 2015 [36].

All these methods are applied in single agent problems. If we
use them to learn policies in a multi‐agent environment without
modifications, all agents will continuously learn and improve
their policies independently. A decision made by one agent will
change the states of the environment immediately so that the
environment becomes unstable, changed with every single de-
cision, which does not meet the traditional RL convergence
conditions. And to a certain extent, it is impossible to adapt to a
dynamically unstable environment by simply changing the
agent's own strategy. Due to the instability of the environment,
the key skills of DQN, such as experience replay, will not be used
directly.

Multi‐agent deep deterministic policy gradient overcomes
these difficulties because the MADDPG algorithm has the
following two characteristics [37]:

(1) Centralised training and distributed execution. Centralised
learning is used to train critics and actors during training,
and actors can run only by knowing local information.
The critic needs the policy information of other agents.

(2) Improved experience replay buffer data. In order to be
applicable to dynamic environments, each piece of infor-
mation consists of ðx; a1; :::; an; x0; rÞ, x¼ ðo1; o2; :::; onÞ,
representing the observations of all agents.

4.2.2 | MADDPG training method

We use θ ¼ ½θ1; θ2; :::; θn� to represent the policy parameters
of n agents and π ¼ ½π1; :::; πn� to represent the policies of n
agents. For Agent i, the accumulated reward expectation is as
follows:

JðθiÞ ¼ Εs�pπ ;a�πθ

"
X∞

t¼0
γtri;t

#

ð14Þ

And the gradient of the policy can be written as follows:

∇θi JðθiÞ ¼ Εs�pπ ;ai�πi
�
∇θi log πiðaijoiÞQπ

i ðx; a1; :::; anÞ
�

ð15Þ

where oi is the observations of agent i; x¼ ðo1; o2; :::; onÞ is an
observation vector, also called global states; Qπ

i ðx; a1; :::; anÞ is
the centralised states‐action value function of Agent i.
Extending the stochastic strategy to deterministic strategy μθi,
the gradient of the policy can be written as follows:

∇θi J
�
μi
�
¼ Εx;a�D

h
∇θiμiðaijoiÞ∇aiQ

μ
i ðx; a1; :::; anÞjai¼μiðoiÞ

i

ð16Þ

Here, the experience replay buffer D contains the tuples
ðx; a1; :::; an; x0; rÞ for the batch learning. The update of the
centralised states‐action value function is the same as the
DQN, using temporal difference error, which can be written as
follows:

L
�
θi
�
¼ Εx;a;r;x0

��
Qμi
�
x; a1; :::; an

�
− y
�2
i
; y¼ ri

þ γQμ
0

i

�
x0; a01; :::; a0n

��
�
�
a0j¼μ

0
jðojÞ

ð17Þ

where μ0 ¼
h
μθ1 0; :::; μθn0

i
is the set of target policies with

delayed parameters θi0.
The centralised training and distributed execution process of

MADDPG can be shown in Figure 5. All training data are
selected randomly from the experience replay buffer. Every
agent has four networks to learn, including actor network, critic
network, and two target networks. According to observations
obs of the agent, the actor gives an action A that will be executed
by an agent. Combinations of (obs, A) of all agents are taken as
inputs of the critic, computing a Q value. Meanwhile, target
actor could get an action A0 with observations obs' that is used to
obtain the Q0 from the target critic. Then, parameters of the
critic network can be updated using Formula (17), with the
gradient descent method. The actor network aims at finding an
action with the biggestQ value so that it updates parameters by
using the gradient ascent method. Finally, a soft update method
is used for two target networks in every training process.

At last, the whole pseudocode of the proposed learning
algorithm is given in Figure 6. The learning process runs M
episodes. And at start of each episode, the environment resets
randomly and gets an original schedule by VND. After that,
when the episode does not end, actions will be chosen and
executed by agents. New information of ðx; a1; :::; an; x0; rÞ is
stored in the replay buffer. At last, the network parameters are
updated by a mini‐batch of examples until the end of the
episode (Figure 6).

4.2.3 | Definitions for states, observations,
actions, rewards and networks

According to our problem description, agents have to make a
decision to execute an insert job or execute the original
schedule. Therefore, we get our action’s definition for each
agent, which is choosing one job between the first one in the
agent waiting line and the one in the insertion pool.
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Every agent makes decision only based on the local ob-
servations including actual total completion time deviation for
the original plan and the estimated total completion time de-
viation (after a new job is inserted). The calculation process is
shown in Figure 7. Global states for the centralised state‐action
value function contains all observations of all agents.

All agents in this problem work cooperatively. They shared
all rewards. The reward of each agent is calculated as follows:

rewi ¼ −
�
Cati − Cat−1i

�
ð18Þ

where Cati is the total completion time deviation at time t. The
reward recorded in the replay buffer is

P
rewi.

To complete the learning process, three full connection
layers are applied to build the Actor network and Critic

network. Due to the functions and inputs, the outputs of these
two networks are different, and there are subtle differences in
their structures that are shown in Figure 8.

5 | EXPERIMENTS AND DISCUSSIONS

This section presents the experimental settings in training, the
results of performance comparisons between the proposed
MADDPG and two MARL methods as well as three existing
well‐known dispatching rules.

F I GURE 5 Multi‐agent deep deterministic policy gradient (MADDPG) training method

F I GURE 6 whole process of our algorithm

F I GURE 7 Local observations calculation
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5.1 | Experimental settings

In this study, all the experiments are conducted using Python
3.8.6 and run on the AMD Ryzen 5 2500U CPU. To model
the actor and critic networks, the number of hidden layers
and hidden layer nodes should be determined at first. An
example with three agents, 30 jobs, three stages and 16 new
jobs is selected to make a comparison. When the episode is
3000, Relu is applied as the activation function. From Fig-
ures 9 and 10, we can see that the number of hidden layers
and hidden layer nodes really impact the training results. With
the increase in the number of hidden layers, the converged

reward value is gradually reduced. And the hidden layer
nodes show the opposite effectiveness, which becomes more
accurate when the number grows. According to these results,
for the comparisons with other MADRL methods and
dispatch rules, this paper uses three full connection layers,
and each hidden layer contains 256 nodes. In all our exper-
iments, we use the Adam optimiser with a learning rate of
0.01 and τ = 0.01 for updating the target networks. The
discounted factor γ is set to be 0.95. The size of the replay
buffer is 106, and we update the network parameters after
every 100 samples added to the replay buffer. We use a batch
size of 100 episodes before making an update [37].

F I GURE 8 (a) Structure of the actor network (b) Structure of the critic network

F I GURE 9 Hidden layer comparison F I GURE 1 0 Hidden layer nodes comparison
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5.2 | Experiment results and analyses

To verify the effectiveness of the proposedmethod, we compare
our MADDPGwith the other twoMADRLmethods, which are
Multi‐Agent Actor Critic (MAAC) and Multi‐Agent Deep Q
Networks (MADQN). Also, we make a comparison with three
dispatch rules, including shortest process time (SPT), longest
process time (LPT), and earliest due date (EDD), which are the
most used dispatching rules in real production. To make this
comparison more effective, we reserve all original plans when
applying dispatching rules to optimise and insert jobs according
to the SPT, LPT, and EDD of order.

In this paper, we use Due Date Tightness (DDT) to
indicate the tightness of a job's slack time from its arrival time
to its due date. For a job i with ni operations arriving at time
point Ai, its due date Di can be calculated as follows:

Di ¼ Ai þ

0

@
Xni

j¼1
pi;j

1

A⋅DDT ð19Þ

where pi,j is the process time of job i of the jth operation.
We randomly generate basic 18 examples for the experi-

ments with three factories to generate the original schedule plan.
Number of jobs: J = [40, 50, 60]; number of stages: S = [3, 5, 7];

number of new jobs:I = [20, 30]; processing times range from 1
to 100 and due time range from 300 to 500. And for the new
jobs, the due times are calculated using formula (18) with
DDT = 0.5, 1.0, 1.5. Instance C3J40S3I20 means inserting 20
jobs into three factories with 40 jobs and three stages.

Three comparisons are shown in Table 1, Table 2 and
Table 3 with the best results highlighted in bold font. Table 1 and
Table 2 are the comparisons by same instances with three DDT
dimentions between MADDPG with dispatching rules and
other MADRLs, seperately. Results in Table 3 are calculated by
random due dates instead of same DDT in Table 1 and Table 2.
All results shown in the tables are the average results of 10 runs.
The results in Table 1 are the total completion time deviation of
three MADRL methods in different DDTs. It can be seen that
the MADDPG outperforms other DRL methods (MADQN
and MAAC) for most production environments, indicating that
the MADDPG has learnt a better actor policy to choose an
action at each decision point. Even the actor policy of
MADDPG executes only by observations of the agent, which is
the same as the MAAC's, but it uses the target actor to generate
the new actions with old observations, which can improve the
optimisation ability of the actor policy. Also, DDPG combines
advantages of DPG and DQN, and can have a better perfor-
mance comparing with DQN. Therefore, MADDPG obtains
better results than MADQN.

TABLE 1 Comparison among MADRLs

DDT = 0.5 DDT = 1.0 DDT = 1.5

Instances MADDPG MADQN MAAC MADDPG MADQN MAAC MADDPG MADQN MAAC

C3J40S3I20 2.904E + 04 3.003E + 04 3.004E + 04 2.797E + 04 2.841E + 04 2.881E + 04 2.579E + 04 2.622E + 04 2.656E + 04

C3J40S3I30 4.014E + 04 4.176E + 04 4.196E + 04 3.949E + 04 4.039E + 04 4.036E + 04 3.717E + 04 3.785E + 04 3.817E + 04

C3J40S5I20 2.521E + 04 2.819E + 04 2.805E + 04 2.286E + 04 2.386E + 04 2.411E + 04 1.908E + 04 1.987E + 04 1.988E + 04

C3J40S5I30 4.349E + 04 4.547E + 04 4.510E + 04 3.733E + 04 3.952E + 04 3.943E + 04 3.301E + 04 3.287E + 04 3.332E + 04

C3J40S7I20 4.215E + 04 4.187E + 04 4.185E + 04 4.101E + 04 4.034E + 04 4.008E + 04 3.734E + 04 3.821E + 04 3.880E + 04

C3J40S7I30 4.989E + 04 5.192E + 04 5.227E + 04 4.397E + 04 4.486E + 04 4.489E + 04 3.749E + 04 3.725E + 04 3.753E + 04

C3J50S3I20 3.066E + 04 3.322E + 04 3.445E + 04 2.993E + 04 3.321E + 04 3.289E + 04 2.824E + 04 3.184E + 04 3.198E + 04

C3J50S3I30 3.962E + 04 4.281E + 04 4.282E + 04 3.527E + 04 3.838E + 04 3.845E + 04 3.024E + 04 3.405E + 04 3.360E + 04

C3J50S5I20 4.051E + 04 4.180E + 04 4.201E + 04 3.521E + 04 3.552E + 04 3.555E + 04 3.057E + 04 3.034E + 04 3.058E + 04

C3J40S5I30 5.243E + 04 5.794E + 04 5.840E + 04 5.008E + 04 5.186E + 04 5.152E + 04 4.339E + 04 4.606E + 04 4.641E + 04

C3J50S7I20 5.299E + 04 5.350E + 04 5.334E + 04 4.935E + 04 4.981E + 04 4.937E + 04 4.450E + 04 4.562E + 04 4.581E + 04

C3J50S7I30 6.316E + 04 6.625E + 04 6.579E + 04 5.755E + 04 6.051E + 04 6.042E + 04 5.162E + 04 5.345E + 04 5.534E + 04

C3J60S3I20 3.822E + 04 3.781E + 04 3.818E + 04 3.220E + 04 3.209E + 04 3.201E + 04 2.807E + 04 2.790E + 04 2.771E + 04

C3J60S3I30 6.878E + 04 6.815E + 04 6.743E + 04 6.443E + 04 6.340E + 04 6.380E + 04 5.869E + 04 5.920E + 04 5.902E + 04

C3J60S5I20 5.809E + 04 5.719E + 04 5.667E + 04 5.493E + 04 5.507E + 04 5.465E + 04 5.234E + 04 5.214E + 04 5.090E + 04

C3J40S5I30 8.007E + 04 8.191E + 04 8.287E + 04 7.772E + 04 7.949E + 04 7.901E + 04 7.500E + 04 7.586E + 04 7.686E + 04

C3J60S7I20 6.124E + 04 6.150E + 04 6.192E + 04 5.482E + 04 5.522E + 04 5.572E + 04 4.838E + 04 4.911E + 04 4.879E + 04

C3J60S7I30 7.918E + 04 8.030E + 04 8.027E + 04 7.321E + 04 7.435E + 04 7.438E + 04 6.723E + 04 6.896E + 04 6.845E + 04

Abbreviations: DDT, Due Date Tightness; MAAC, Multi‐Agent Actor Critic; MADDPG, multi‐agent deep deterministic policy gradient; MADQN, Multi‐Agent Deep Q Networks;
MADRLs, multi‐Agent DRL.
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Next, compared with three dispatching rules as shown in
Table 2, the MADDPG can also obtain the best results for most
instances. This conclusion reflects that there does not exist a
single rule to perform well for all production environments
(except the results with DDT = 0.5) and further confirms the
effectiveness and generality of the proposed MADDPG.

Furthermore, this paper compares MADDPG with two
other MADRL methods and three dispatching rules by random
Due date, ranging from 300 to 500. All results shown in
Table 3 indicate that the proposed method obtains the best

solutions among all the compared methods in most instances.
Even for the instances that are not in the best solutions, they
perform similar to other MADRL methods. Also, all MADRL
methods have better results than single dispatch rules.

With these random examples, we also compare running
times among all MADRL methods and dispatch rules in
Table 4. Here, the running time means the decision‐making
time from the initial state to the end of the instance. It can
be seen that MADDPG runs faster than MADQN and MAAC
with better solutions from the whole. Also, compared with
EDD, MADDPG can be quicker in 10 instances. However,
this dominant position does not exist in the comparisons be-
tween MADDPG with SPT and LPT.

At last, we choose three instances, C3J40S3I30, C3J40S5I30
and C3J60S7I30, to show the generalisation of MADDPG. The
following conclusions can be drawn from Figure 11: (1)
MADDPG can obtain the best results from the average view; (2)
MADDPG has strong generalisation for a small distribution of
results; and (3) other methods perform unstably in different
examples.

6 | CONCLUSIONS AND FUTURE
WORK

In this paper, a MADDPG is developed for the DBFSP with
new job insertions aiming at optimising the total completion
time deviation. A DRL framework based on MADDPG is
proposed based on the characteristics of DBFSP problem first.
This framework combines the VND algorithm and new jobs
sorting rule with MADDPG. The initial scheduling solution is
generated by VND before a dynamic event occurs. Meanwhile,
all newly added jobs are reordered before the agents make
decisions to select the one that needs to be scheduled most
urgently. According to this problem description, the global
states, agent observations, actions and rewards are defined
before the training process. Numerical experiments are con-
ducted on a set of instances that can be regarded as a high
abstraction of actual manufacturing processes to verify the
effectiveness and superiority of the proposed MADDPG in
practical applications. The results demonstrate that the pro-
posed MADDPG performs better than dispatching rules and
other multi‐agent DRLs in most experiment instances.

TABLE 4 Time comparison between MADRLs and dispatch rules
(seconds)

Instances MADDPG MADQN MAAC SPT LPT EDD

C3J40S3I20 0.4505 0.7389 0.5028 0.0074 0.0114 0.1622

C3J40S3I30 0.6673 1.0738 0.7541 0.0108 0.0161 0.4107

C3J40S5I20 0.4332 0.7122 0.4972 0.0089 0.0133 0.2736

C3J40S5I30 0.7089 1.0897 0.7845 0.0132 0.0219 0.6935

C3J40S7I20 0.4345 0.7402 0.5199 0.0152 0.0208 0.4162

C3J40S7I30 0.6748 1.1160 0.7813 0.0167 0.0292 1.1070

C3J50S3I20 0.4381 0.7094 0.5238 0.0082 0.0128 0.3144

C3J50S3I30 0.6773 1.0350 0.7887 0.0098 0.0183 0.7167

C3J50S5I20 0.4242 0.7153 0.4934 0.0086 0.0155 0.3747

C3J40S5I30 0.6774 1.1276 0.7395 0.0161 0.0305 0.8726

C3J50S7I20 0.4486 0.7330 0.5169 0.0146 0.0225 0.5667

C3J50S7I30 0.6915 1.0949 0.8160 0.0190 0.0358 1.5398

C3J60S3I20 0.4365 0.7134 0.5417 0.0064 0.0092 0.3328

C3J60S3I30 0.6760 1.1443 0.7737 0.0133 0.0215 1.0042

C3J60S5I20 0.4515 0.7559 0.5231 0.0136 0.0200 0.6081

C3J40S5I30 0.7135 1.1326 0.7695 0.0240 0.0371 1.0845

C3J60S7I20 0.4438 0.7068 0.5138 0.0133 0.0208 0.6206

C3J60S7I30 0.7141 1.1380 0.7808 0.0268 0.0439 1.5222

Abbreviations: LPT, longest process time; MAAC, Multi‐Agent Actor Critic;
MADDPG, multi‐agent deep deterministic policy gradient; MADRLs, multi‐Agent
DRL.

F I GURE 1 1 Result comparison with all methods
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This paper presents some preliminary work of our ongoing
work. For future work, other uncertain events such as machine
breakdowns will be considered. Also, the observations of
agents can be transferred into direct data so that the proposed
MADDPG will be an end‐to‐end DRL. We will also consider
combining RL and evolutionary algorithms together for solv-
ing the dynamic scheduling problem in our future work in
order to achieve better results.
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