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Disentangling the Frequency Content in
Optoacoustics

Antonia Longo , Dominik Jüstel , and Vasilis Ntziachristos

Abstract— Signalsacquired by optoacoustic tomography
systems have broadband frequency content that encodes
information about structures on different physical scales.
Concurrent processing and rendering of such broadband
signals may result in images with poor contrast and
fidelity due to a bias towards low frequency contributions
from larger structures. This problem cannot be addressed
by filtering different frequency bands and reconstructing
them individually, as this procedure leads to artefacts
due to its incompatibility with the entangled frequency
content of signals generated by structures of different
sizes. Here we introduce frequency-band model-based
(fbMB) reconstruction to separate frequency-band-specific
optoacoustic image components during image formation,
thereby enabling structures of all sizes to be rendered
with high fidelity. In order to disentangle the overlapping
frequency content of image components, fbMB uses soft
priors to achieve an optimal trade-off between localization
of the components in frequency bands and their structural
integrity. We demonstrate that fbMB produces optoacoustic
images with improved contrast and fidelity, which reveal
anatomical structures in in vivo images of mice in unprece-
dented detail. These enhancements further improve the
accuracy of spectral unmixing in small vasculature.By offer-
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ing a precise treatment of the frequency components of
optoacoustic signals, fbMB improves the quality, accuracy,
and quantification of optoacoustic images and provides a
method of choice for optoacoustic reconstructions.

Index Terms— Image reconstruction, photoacoustic
tomography, image enhancement, image quality
improvement.

I. INTRODUCTION

IN CONTRAST to ultrasonography, optoacoustic (OA)
imaging systems typically generate acoustic signals with

a broadband frequency content due to the ultra-short illumina-
tion pulses [1]–[5]. The broad frequency content carries infor-
mation about structures on different physical scales (i.e., size).
Therefore, advanced OA systems use broadband acoustic
detectors to ensure that no structural information is lost.
Despite the rich information that is contained in the frequency
spectrum, typical OA reconstructions do not consider the
particular dependencies of image features on frequency. For
example, the power of the OA signals scale with the size of the
source, resulting in a frequency dependent signal-to-noise ratio
(SNR) and images where small structures may be obscured
by the high SNR of low frequency contributions. Processing
and rendering all frequencies together therefore bias the visual
perception of an image towards larger structures. Further-
more, the sensitivity fields of broadband ultrasound detectors
employed in state-of-the-art OA systems are also frequency
dependent [6], [7]; lower frequencies sample larger volumes,
which, in the case of linear ultrasound arrays, may appear as
out-of-plane signals in the reconstructed image [7]; and further
obscure features formed by higher frequencies.

Current OA image reconstruction techniques do not accu-
rately extract all the information contained in broadband OA
signals. Common filtered back-projection methods [8] act as
high-pass filters on the image suppressing signals from bulky
absorbers, while delay-and-sum algorithms [9] and model-
based algorithms [10], [11] treat all frequencies equally,
thereby penalizing the high frequencies and leading to less
accurate rendering of smaller structures. Both methods result
in an oxymoron; they afford visually pleasing images by
penalizing either low or high frequency content and ultimately
reducing image fidelity.

Separate reconstruction of different frequency bands has
been considered in Ultra-broadband Raster-Scan Optoacoustic
Mesoscopy (RSOM) [12], [13] and in OA microscopy [14].
However, simple separation of the frequency bands using
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signal processing filters neglects the entanglement, i.e., super-
position of the broadband frequency content of signals that are
generated by structures of different sizes [2] which may result
in artefacts (e.g., ring artefacts) that can be further amplified
by limited view detection [15], [16] or insufficient spatial
sampling [16], [17]. Moreover, model-based reconstruction
techniques for OA tomography systems have yet to account
for the abovementioned dependence of image content on
the recorded acoustic frequencies. Out-of-plane signals have
been separated from in-plane signals by axially displacing
the transducer array and by de-correlating images acquired
at different out-of-plane positions with the in-plane image
[18], [19]. In another study [20], the probe’s trajectory was
incorporated into a two-stage iterative 3D model-based recon-
struction leading to significant out-of-plane artefact reduction.
However, such approaches are impractical since they require
the displacement of the transducer and do not consider the
frequency-dependence of the detector’s sensitivity.

In this work, we propose a frequency-band separated model-
based (fbMB) reconstruction framework for OA tomography
that untangles the overlapping frequency content of image
components to improve resolution and overall image fidelity.
The fbMB method reconstructs multiple images such that each
is a partial model-based reconstruction of a portion of the
signal and that these images sum up to a reconstruction of
the full OA signal data. fbMB imposes soft priors on the
frequency content of the signals underlying the different image
components to allow integration of frequencies from other
bands if required by the model, thereby achieving an optimal
trade-off between structural fidelity of these components and
localization of the corresponding signals in separate frequency
bands. Lastly, fbMB imposes non-negativity constraints on all
image components to ensure that artefacts in one component
cannot be compensated by negative contributions in others.
Since out-of-plane signals have prevalent low frequency con-
tent in bulk tissue, by effectively separating the frequency
components using fbMB, the effect of out-of-plane signal
can be partially decoupled from the weak signal from small
structures otherwise obscured [7]. Furthermore, fbMB can
be extended to any image reconstruction problem that is
based on a linear model of physical phenomena and the
computational complexity only increases linearly with the
number of components compared to a standard model-based
algorithm. We demonstrate on both a synthetic phantom and
real OA data that, with a suitable choice of filters depending
on the biological application, the new method can efficiently
separate structures of different physical scales. Using a dataset
of 533 in vivo multispectral OA tomography (MSOT) images
of different anatomical sections of mice, we show that the
new method generates OA images with lower reconstruc-
tion residuals and higher structural similarity index values
compared with simple filter techniques, and improved image
contrast and resolution compared with a standard model-based
algorithm. The fbMB method implements a unique multi-
frequency-band contrast in MSOT to complement its volumet-
ric imaging, real-time acquisition, and multispectral contrast
capabilities. By rendering the rich, high-fidelity OA content
from biological structures on all scales, fbMB could expand

the applications of MSOT in both preclinical and clinical
medicine.

II. METHODS

A. Linear Model of OA Signal Acquisition

In an acoustically homogeneous medium, the propagation of
the optoacoustically induced pressure wave p(r,t) is described
by the wave equation [10]:

∂2 p (r, t)

∂ t2 − c2∇2 p (r, t) = �
∂ H (r, t)

∂ t
, (1)

where c is the speed of sound in the medium, Ã is the dimen-
sionless Grüneisen parameter, which is assumed constant, and
H is the energy absorbed in tissue per unit volume and per
unit time, which is the source for OA fields. For pulsed laser
illumination (thermal and stress confinement conditions [21]),
the temporal dependence of H can in the acoustic regime be
approximated δ-distribution, so that H (r, t) = Hr (t)δ(t).

The solution of Eq. 1 can be described in terms of Green’s
function for the wave equation [2], [22]. Under the assumption
that an object � is an OA source, the solution of the wave
equation for object � can be estimated by assuming that each
point r’ in the object is the emitter of OA waves, given by the
Green’s function G, which is given by:

G(r,r′, t) =
δ
(

t − |r−r′|
c

)
4π |r − r′| . (2)

Eq. 2 represents the elementary wave generated at r′at t =
0, propagating outwards in a spherical shell. The solution to
Eq. 1 at a given point r can be written as:

p (r, t) = �

4πc2

∂

∂ t

⎡
⎢⎢⎣

∫
�

Hr

(
r

′) δ

(
t − |r−r

′ |
c

)

|r − r′ | dr
′

⎤
⎥⎥⎦ , (3)

where the integral is estimated along the whole object. Eq. 3
represents the OA statement of the Huygens Principle, since
it describes the OA pressure field generated by an object � at
point r as a superimposition of elementary waves generated
at points r′ on the source.

Since light attenuation primarily limits image penetra-
tion depth in the considered frequency range (<15 MHz),
frequency-dependent acoustic attenuation can be neglected and
is not included in the model [23].

B. Model-Based Optoacoustic Reconstruction

Several algorithms have been suggested for the inversion
of Eq. (3), i.e., for the estimation of the initial pressure p0
or Hr , given the OA signal p(r,t) at the detector locations r.
Back-projection and model-based algorithms are widely used
for OA image formation. While the former is commonly used
for its simplicity, the latter has been suggested as more precise
reconstruction algorithms for accurate quantitative functional
and molecular imaging in OA [11], [24].

Standard model-based algorithms reconstruct OA images by
minimizing the difference between the measured OA signal
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and the signal theoretically predicted by the forward model.
Typically, the broadband OA signal is entirely projected into
one single image which contains structural information rang-
ing from millimeter to micrometer resolution.

The discretization of Eq. (3) leads to a matrix equation of
the form of [10]:

p = Mx, (4)

where p is the broadband pressure signal recorded; x is the
unknown distribution of optical absorption; and M is the linear
operator that maps the unknown initial pressure to the recorded
signal. The inversion of Eq. (4) is achieved by minimizing the
squared error:

x∗ = arg min
x

‖p − Mx‖2
2. (5)

A common problem when using standard model-based
inversion is the appearance of negative values due to the bipo-
larity of the OA signal, which have no physical meaning since
optical absorption can only be positive or zero. Furthermore,
the OA inversion problem may be ill-posed leading to the
appearance of additional spurious negative values introduced
during the inversion process as part of the minimization. For
these reasons, non-negative constraints are included in the
algorithm to guarantee physical integrity of the solution [25],
i.e., positive optical absorption:

x∗ = arg min
x≥0

‖p − Mx‖2
2. (6)

In contrast to unconstrained inversion, Eq. (6) cannot be
solved analytically, and only iterative methods are applicable.
Furthermore, since the problem in Eq. (6) is ill-posed and leads
to inversion uncertainty, it requires additional regularization to
impose additional constraints.

Thereby, Eq. (6) is modified by adding a Tikhonov regular-
ization term, i.e.

x∗ = arg min
x≥0

‖p − Mx‖2
2 + λ ‖Lx‖2

2 , (7)

where λ is the regularization parameter, and ‖·‖2 is the
L2-norm. The matrix L can be selected as the identity matrix,
which gives preference to solutions with a small norm, and
penalizes any content in the data that is not in agreement with
the model, like noise. Regularization is required to achieve a
stable and unique solution.

The regularized problem in Eq. (7) can be formulated to the
same form as Eq. (5):

x∗ = arg min
x≥0

f (x) = arg min
x≥0

∥∥∥ p̃ − M̃x
∥∥∥2

2
, (8)

with

p̃ =
(

p
0

)

and

M̃ =
(

M
λ1/2 L

)

In this work, the Projected Conjugate Gradient [24] is used
as non-negative least square (NNLS) methods to solve Eq. (8).

For standard model-based reconstruction, the Tikhonov reg-
ularization parameter λ in Eq. 7 is tuned by considering the
L-curve, i.e., the plot of the solution norm ‖Lx‖2 versus the
residual norm ‖p − Mx‖2. The optimal trade-off for λ is
achieved close to the corner of the L-curve.

C. Frequency-Band Model-Based Reconstruction (fbMB)

The newly proposed frequency-band model-based recon-
struction (fbMB) framework allows us to decompose the OA
signal in different components and reconstruct multiple non-
negative images with scale specific contrast. Soft priors on the
frequency content of signals generated on different scales steer
the acoustic spectrum towards higher or lower frequencies,
while allowing overlaps when required by the system model.
Thus, for multiscale reconstruction, the matrix equation in
Eq. (4) is modified as follows:

p = M (x1 + · · · + xn) , (9)

where p is the broadband pressure signal recorded; and
x∗

1 , . . . , x∗
n are the unknown distributions of optical absorption

at n scales.

D. Soft Priors on Frequency Bands

In the framework of L2 regularization, a priori information
about the tissue being imaged can be included [26] to ensure
convergence of the reconstruction algorithm to the correct
optical absorption distribution on different scales. For this
reason, soft priors on the frequency band separation are added
into the inversion. The priors are considered “soft” because
they do not force a rigid frequency band separation, instead
they allow overlap between frequency bands to preserve the
physical accuracy of the solution. The regularized inversion
problem with soft priors can be written as:

(x∗
1, . . . , x∗

n ) = arg min
(x1,...,xn≥0)

‖p − M (x1 + · · · + xn)‖2
2

+λ ‖L (x1 + x2 + · · · + xn)‖2
2

+ημ1 ‖(id − F1) Mx1‖2
2

+ · · ·+ημn ‖(id − Fn) Mxn‖2
2 , (10)

where F1, . . . , Fn are the n band-pass filters, and
η,μ1, . . . , μn the regularization parameters for the soft
priors such that μ1 + · · · + μn = 1.

The regularized problem in Eq. (10) can be formulated in
the same form as Eq. (8):

(
x∗

1 , . . . , x∗
n

) = arg min
(x1,...,xn≥0)

f (x1, . . . , xn)

= arg min
(x1,...,xn≥0)

∥∥∥ p̃ − M̃ (x1, . . . , xn)
T
∥∥∥2

2
(11)

with

p̃ =

⎛
⎜⎜⎜⎝

p
0
...
0

⎞
⎟⎟⎟⎠
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and M̃ given by:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M . . . . . . M
λ1/2L . . . . . . λ1/2 L

(ημ1)
1/2(id − F1)M 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 (ημn)1/2(id − Fn)M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Projected Conjugate Gradient [25] is used as non-
negative least square (NNLS) methods to solve Eq. (11).

The Tikhonov regularization parameter λ in Eq. (10) is
chosen in agreement with the one selected for standard
model-based reconstruction. The regularization parameters
η,μ1, . . . , μn in fbMB in Eq. (10) are selected by considering
the reconstruction residuals curves, i.e., the plot of the residual
norm ‖p − Mx‖2 for different values of the regularization
parameters. The values are tuned as follows: first, the values
of μi are fixed and set equal (i.e., μ1 = 0.5, μ2 = 0.5 for two-
band model-based reconstruction [2bMB]) and the residual
norms for different values of η are plotted with the regulariza-
tion parameter η chosen at the corner of the curve. After tuning
the values of η, the regularization parameters μ1, . . . , μn are
selected according to the configuration that gives the lowest
residual norm.

Numerical inversions are usually computationally demand-
ing and imposing the additional non-negative constraint
increases the inversion time. However, the computational com-
plexity of fbMB is increased only by a constant factor (linear
in the number of components) compared to standard model-
based reconstruction, since the model needs to be evaluated
once for every component x j and the filters need to be applied.

E. Filter Selection for the Soft Priors

Standard Butterworth band-pass filters are used as soft
priors F1, . . . , Fn in (Eq.10). The low and high pass cut-off
frequencies and the relative bandwidth BW % are chosen fol-
lowing the Shannon-Nyquist Theorem [27] and in agreement
with Omar et al. [12] such that:

BW % = BW 1

fc,1
= BW 2

fc,2
= BW 3

fc,3
= · · ·

where BW n is the bandwidth and fc,n the central frequency
of the filter Fn, which are defined as the absolute difference
and the mean value of the low pass and high pass cut-off
frequencies, respectively. Therefore, after selecting the value
of the relative bandwidth BW % and the first high pass cut-off
frequency fH,n, the next high pass cut-off frequency fH,n+1
can be calculated as:

fH,n+1 = 2 + BW %

2 − BW %
fH,n

In the case of two-band decomposition, band-pass filters
with frequency bands 100 kHz to 1.23 MHz and 1.23 to
15.17 MHz are chosen in the soft priors, with a value of BW %
equal to 1.7. For three scale decomposition, band-pass filters
with frequency bands 100 to 500 kHz, 500 kHz to 2.5 MHz,

and 2.5 to 12.5 MHz are selected, for a value of BW % equal
to 1.33.

Notably, the fbMB method is flexible because it is robust
with respect to the choice of the filters used in the soft priors.

F. MSOT System Setup

OA measurements were conducted using a commer-
cially available, real-time, multispectral optoacoustic tomo-
graphic (MSOT) small animal scanner (inVision 256-TF,
iThera Medical, Munich, Germany). The system features 360◦
ring illumination and 270◦ acoustic detection. A tunable OPO
laser provides excitation pulses with a duration of 5-10 ns in
the wavelength range of 680-980 nm at 10 Hz repetition rate
(InnoLas Laser, Germany). For tissue illumination, 10 arms
of a fiber bundle are attached to both sides of the transducer
and arranged at an angle of 13◦ to the image plane. The
laser fluence on the surface of the imaged objects was below
20 m J/cm2, thereby within the American National Standards
Institute (ANSI) safety limit for laser exposure. The acoustic
detection includes 256 cylindrically focused transducers (Ima-
sonic SAS, France) with 5 MHz central frequency and −6 dB
bandwidth of 150% arranged in a circle of 40 mm radius to
surround the sample. Fig. 1a reports the simulated electrical
impulse response in receive-only mode in the time and fre-
quency domain for a single transducer obtained with the KLM
(Krimholtz, Leedom and Matthaei) model [28]–[30].

Each focused transducer is 0.735 x 15 mm in size with
0.1 mm inter element spacing and 37 mm elevational radius.
A 256-channel analog-to-digital converter is used to digitize
the transducer signals at a sampling rate of 40 MS/s with an
amplitude resolution of 12-bits.

G. Experiments

OA images of an excised kidney from a nude mouse
(4 weeks old) were acquired to demonstrate the structures
enhancement of the new proposed algorithm fbMB in an organ
with well-defined features of varying scales. Ten minutes after
the animal euthanasia the kidney was excised and embedded
in a supporting turbid agar gel in a cylindrical mold (12 mm
in diameter and 2.5 cm in height). The agar gel was made
by mixing 1.6% w/v agar gel (Agar for microbiology, Fluka
analytical) with 0.8% v/v Intralipid 20% (Sigma).

The multiscale capabilities of the new algorithm were tested
with an in vivo mouse dataset, including 533 OA images
from different anatomical sections, from the brain to the lower
abdomen.

2D OA images were continuously acquired at a single
wavelength (800 nm) for anatomy visualization, or at multiple
wavelengths (31 wavelengths, from 680 to 980 nm with a step
size of 10 nm) for spectral unmixing quantification.

For 3D whole body imaging, 2D images of consecutive
anatomical sections were collected with 200 μm resolution
between adjacent frames and then stacked together for vol-
umetric imaging. Animal procedures were approved by the
Government of Upper Bavaria. Nude mice (3-4 weeks old)
were anesthetized and placed lying prone in the animal holder
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such that the transducer array faced the ventral side. After data
acquisition, the mice were euthanized by cervical dislocation.

H. Validation

For algorithm validation, the performance of fbMB was
compared with standard model-based reconstruction and sim-
ple filtering techniques.

In the case of standard model-based reconstruction, the
acquired OA signals are filtered prior to reconstruction by
applying a Butterworth bandpass filter in the frequency range
between 0.1 and 13.3 MHz to reject signals beyond the
sensitivity of the transducers.

For simple filtering techniques, i.e., Butterworth and
Wavelet, the OA signals are divided into different frequency
bands by applying a bank of band pass filters and reconstruct-
ing each frequency band separately with standard model-based
algorithm. In the case of simple Butterworth filtering, the
band-pass filters are chosen identically to the ones selected
in the soft priors (see Methods, Section E). For the simple
Wavelet filtering technique, the Matlab functions swt and
iswt are used for two and three scale decomposition. The
Daubechies mother wavelet with two vanishing moments ‘db2’
was selected as previously reported [31]. The advantage of
using Wavelet decomposition over standard filters is that it
does not require the a priori knowledge of the frequency
information contained in the signal and guarantees optimal
temporal and frequency resolution for each band.

The efficiency of fbMB to separate different OA com-
ponents was quantified against standard filtering techniques
(i.e., Butterworth or Wavelet bandpass filters) in terms of
physical and structural accuracy considering standard model-
based reconstruction as ground truth. The proposed method is
physically accurate, in the sense that OA images at different
bands are related to the corresponding OA signals via the
physical model employed in the method, while the sum of
the OA signals corresponding to the components explains the
acquired signal data. For structural accuracy we indicate the
capability of the algorithm to compensate for potential ripples
and artefacts generated by the frequency band separations.

Herein, we use the “normalized reconstruction residuals” to
quantify the physical accuracy of reconstructions from fbMB
and standard filtering techniques relative to a standard model-
based algorithm. First, we evaluate the relative error r for each
reconstruction, defined as:

r =‖p − Mx‖2
2

‖p‖2
2

where x is the reconstructed image, M is the forward model
for the specific model-based reconstruction, p is the recorded
pressure signal, and ‖·‖ is the 2-norm. We normalize the rela-
tive errors obtained for fbMB and standard filtering techniques
by the relative error r0 of standard model-based reconstruction
to obtain the normalized reconstruction residuals r/r0.

Moreover, we use the structural similarity index (SSIM) [32]
between the reference images (reconstructed with standard
model-based) and the images obtained with the two different
methods, i.e., fbMB and standard filtering techniques (sum of
all components), to evaluate the structural accuracy.

Notably, images reconstructed with 2bMB and standard
filtering techniques (and relative quantification metrics) are
always compared to the ones obtained with a standard model-
based algorithm, which in this paper is taken as ground truth.

To quantify image quality improvement of fbMB against
standard model-based reconstruction, two different metrics
are proposed: image entropy, as an objective indicator of
the image information content; and perception-based image
quality evaluator (PIQE) to account for human visual system
perception [33]. The two indices were estimated on the three-
channel RGB images.

I. Visualization

fbMB decomposes the original acquired OA signal into
its components without modifying the signal energy in the
different frequency bands. Hence, the blend (sum) of the
grayscale images of the different components still results in
an image with poor contrast from small structures and visual
perception biased towards the low frequency components, as is
observed in model-based reconstruction.

Therefore, to visualize the multiscale information content
with high contrast, the different components were first color-
coded (i.e., images are converted from grayscale to RGB) and
then blended (summed up). The color coding for the different
frequency bands was as follows: since the visual human
perception is more sensitive to yellow and green colors, these
colors were used to render the high frequency components
which have a low SNR. To balance the high SNR and image
intensity of the low frequency components, blue and violet
colors (which human eyes are less sensitive to) were used.

To adjust image contrast, since OA images are characterized
by a high dynamic range of intensity values due to inhomoge-
neous light deposition inside the tissue (fluence), a histogram-
based thresholding method was applied to all OA images by
removing the 0.5% highest and 0.02% lowest pixel values. The
threshold values were chosen empirically to lower the image
dynamic range and improve the perceptual information content
from deep tissue.

III. RESULTS

The proposed fbMB method separates OA signal contribu-
tions from different frequency bands by integrating the filtering
process with soft priors into the reconstruction model, and by
applying non-negativity constraints on all components. In the
resulting multiscale images, anatomical structures of different
sizes are more accurately represented. An illustrative example
of two-band model-based reconstruction (2bMB) is provided
in Fig. 1b. The 2bMB reconstruction is applied to the OA
signal acquired by the system and generates OA images of
specific frequency band components: a low frequency image
(Band 1, Image domain in Fig. 1b) containing mainly signals
from larger structures and a high frequency image (Band 2,
Image domain in Fig. 1b) corresponding to smaller structures.
OA images with multiscale contrast are generated by color-
coding and blending the different components (2bMB, Image
domain in Fig. 1b). c (2bMB, Signal domain in Fig. 1b). In the
following, we report our findings in phantoms and in ex vivo
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Fig. 1. Frequency content disentanglement in OA imaging and fbMB reconstruction. a) Transducer electrical impulse response (EIR) in receive-only
mode in the time and frequency domain for a single detector using the Krimholtz, Leedom and Matthaei (KLM) model. b) Schematic of the two-
band model-based reconstruction algorithm (2bMB). c) A synthetic phantom with well-defined features of varying size. Reconstructed OA images
of the phantom for d) two-band model-based and e) standard model-based reconstruction (MB). The 2bMB image was obtained by color-coding
and blending the different frequency band components. The red arrows in the magnified ROIs indicate a small structure enhanced with the new
method. f) Mean power spectra of the OA signals corresponding to the two different frequency band components of the phantom showing frequency
overlaps between the components due to soft priors in the reconstruction. g) Ex vivo mouse kidney embedded in agar and magnification of the
selected anatomical cross section in the middle segment. OA images of the kidney cross section reconstructed using h) two-band model-based and
i) standard model-based reconstruction. j) Mean power spectra of the OA signals corresponding to the two frequency band components. Visible
anatomical details in the vascular network of the excised kidney for 2bMB: main renal vessel (RA/V), interlobal (IV), arcuate (AV), renal pelvis (RP),
and cortical (CV) vessels. k) Transverse ex vivo cryosection of the mouse kidneys section used for OA. In vivo OA images of the mouse kidney
section reconstructed by using l) two-band model-based and m) standard model- based reconstruction. Kidney (K), aorta (AO), spleen (SP) and
spinal cord (SC). n) OA frequency content for the corresponding frequency band components for two-band decomposition.

and in vivo mouse data. The data are supported with measures
of merit, such as the reconstruction residuals, the SSIM index,
the image entropy and the Perception-based Image Quality
Evaluator (PIQE).

Section A details the effectiveness of the proposed method
to separate different frequency band components in OA
imaging. Sections B and C describe the validation of the
method against standard signal filtering and simple model-
based reconstruction. Section D reports spectral unmixing
results to demonstrate multiscale quantification of specific
chromophores.

A. Disentanglement of the Frequency Content by fbMB

The capability of the algorithm to generate images with
band-specific contrast is first demonstrated on a controlled

synthetic phantom with well-defined features of different sizes
(Fig. 1c). The phantom features a network of vessel-like
structures with diameters ranging from 1.3 mm to 240 μm,
which are embedded in a circular absorbing background that
is 1.7 cm in diameter and absorbs 10 times less than the vessel-
like structures (see Methods section). We tested two-band
decomposition by applying a 2bMB algorithm. For 2bMB, two
band-pass filters with frequency bands 100 kHz to 1.23 MHz
and 1.23 to 15.17 MHz were chosen for the soft priors, with
1.7 BW % (see Methods section).

Fig. 1d shows images of the phantom that were recon-
structed by the two-band model-based (2bMB) algorithm. The
new algorithm successfully decomposes images into com-
ponents on different physical scales. Low frequency images
(Fig. 1d, Band 1) contain mainly signals from larger structures
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ranging from 1.6 cm to 600 μm in diameter, while high
frequency images (Fig. 1d, Band 2) correspond to small
structures that are less than 600 μm across. Color-coding
and blending the frequency band components generates OA
images with multiscale contrast as reported in the Methods
section (Fig. 1d, 2bMB). Compared with standard model-based
reconstruction (MB in Fig. 1e), 2bMB affords a more accurate
image and improved visualization of small features (red arrows
in the ROIs).

Fig. 1f reports the mean power spectra of the OA signals
(i.e., square root of the average power spectra density of the
detected acoustic signals from the 256 transducers) generated
by the structures on different scales for the 2bMB algorithm,
which demonstrate that the frequency contents of the different
reconstructed components overlap significantly. This finding
confirms that the new method achieves a disentanglement of
different-sized structures. The separation of this overlapping
content is enabled by the soft priors on the filtering process in
the reconstruction, which allows the components to integrate
frequencies from other bands if the model requires it (see
Methods section).

Next, the algorithm was applied to OA images of an ex vivo
mouse kidney (Fig. 1g) to demonstrate the ability of frequency
band contrast to reveal structures and vessels of different sizes
in tissue. Fig. 1h shows an OA image after decomposition
into two bands. As with the phantom, the algorithm efficiently
separated the different anatomical components in the kidney.
Low frequency components contain primarily OA signals from
the organs and large vessels. High frequency components have
better in-plane focus and show small vessel networks with high
accuracy. Furthermore, as shown in Fig. 1j the OA spectra of
the different bands overlap in the frequency domain, again
confirming the effect of the soft priors on the reconstructed
images, which enable each component to integrate frequencies
from other bands to assure consistency with the underlying
physics. Blending the two bands (2bMB in Fig. 1h) afforded
OA images in which fine details, such as small vasculature
inside bulk tissue, were rendered with significantly higher
contrast than possible with standard reconstruction (Fig. 1i).

The frequency disentanglement approach was then applied
to reconstruct an image of a kidney section in a live mouse to
enhancement in vivo. Fig. 1k shows the transverse cryosection
of an ex vivo mouse kidneys section approximately corre-
sponding to the anatomical section selected for in vivo OA
imaging. Fig. 1l shows the different OA frequency band
components of the in vivo mouse kidney section, obtained
by applying 2bMB. The low-frequency bands contain sig-
nals from organs such as the kidneys (K) and spleen (SP),
or large structures such as the abdominal aorta (AO) and
the spinal cord (SC). The high-frequency components contain
signals from small vessels such as the microvasculature in
the kidney, the splenic vessel (SPV), and the hepatic vessels
(HEV). As expected, the OA signals from these structures
again overlap in the frequency domain (Fig. 1n), supporting
the physical fidelity of the reconstructed in vivo images.
Finally, the OA images obtained by blending the different
frequency band components (2bMB in Fig. 1l) visualize with
high contrast the entire OA information content, which is

not possible with the standard model-based reconstruction
(MB in Fig. 1m).

Finally, we tested three-band model-based (3bMB) recon-
struction to evaluate the effect of a finer frequency band
decomposition on the image contrast. For 3bMB, three band-
pass filters with frequency bands 100 to 500 kHz, 500 kHz
to 2.5 MHz, and 2.5 MHz to 12.5 MHz were selected for the
soft priors, with 1.33 BW % (see Methods). Similar to 2bMB,
3bMB successfully separates the different OA frequency band
components in the images. Low frequency images contain
signal from bulky absorbing tissue and large structures, while
the high frequency images contain signals from smaller struc-
tures (Fig. 2a,c,e). Furthermore, as shown in Fig. 2b,d,f, the
individual bands overlap consistently in the frequency domain
due to the soft priors in the reconstruction.

To demonstrate that, depending on the biological applica-
tion, 3bMB can improve the visualization of small vasculatures
compared with 2bMB, the kidney region was specifically
selected due to its well-defined features of varying scale.
By increasing the number of bands from two to three,
we observed that the high frequency structures are further
decoupled from the middle and low frequencies, thus demon-
strating that by finer decomposition of the signal, the image
resolution further increases, and the visual perception of small
structures improves. For example, the three-band reconstruc-
tion of the ex-vivo kidney section in 3bMB in Fig. 2c reveals
further anatomical details of the vascular network of the kidney
with high accuracy. An example is the main renal vessel
(RA/V) entering the kidney and progressively branching into
the interlobal (IV), arcuate (AV), and cortical (CV) vessels,
which cannot be identified in the 2bMB image (2bMB in
Fig. 1g) or the standard model-based reconstructed image (MB
in Fig. 1h). 3bMB thus allows detailed visualization of the
entire blood supply in the kidney.

Notably, the appearance of low frequency diffusive compo-
nents in the high frequency images (Band 3 in Fig. 2a, c, e) is
a demonstration of the softness of the priors in the fbMB which
allows the inclusion of low frequencies for high frequency
bands (if necessary) to be consistent with the mode. Indeed, the
inclusion of low frequency components in the high frequency
band (Band 3 in Fig. 2b, d, f) is a result of the trade-off
between frequency localization and model consistency.

B. Comparison of 2bMB Against Simple Techniques
Compared to standard filtering methods, the proposed

algorithm affords images with significantly higher physical and
structural accuracy. If an image is decomposed into a super-
position, each component should comply with the underlying
physics. We can quantify the physical accuracy by comparing
the estimated residual errors, i.e., the difference between the
recorded OA signals and the model of the imaging system
applied to the reconstructed image, where the model compo-
nents should produce an image without introducing artefacts
(e.g., ripples at edges). Structural fidelity between two images
can be quantified using the SSIM index, which was used herein
to compare the output of the proposed algorithm to that of
standard model-based reconstruction. In this way, we validated
the physical and structural integrity of the fbMB reconstruction
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Fig. 2. 3bMB reconstruction. a) Three-band decomposition of OA images of the synthetic phantom from Fig. 1b. The 3bMB images were obtained
by color-coding and blending the three components. The red arrows in the magnified ROIs indicate a small structure enhanced with the new method.
b) Mean power spectra of the OA signals of the phantom for three different frequency band components with frequency overlaps between the
components due to soft priors in the reconstruction. c) 3bMB reconstructions of the excised kidney cross section shown in Fig. 1f. Visible anatomical
details in the vasculature network of the kidney for 3bMB: main renal vessel (RA/V), interlobal (IV), arcuate (AV), and cortical (CV) vessels. Renal
pelvis (RP), medullary pyramids (MP). d) Mean power spectra of the OA signals corresponding to the three frequency band components. e) In vivo
3bMB reconstructions of the mouse kidney section of Fig. 1j. f) OA frequency content of the three frequency band components.

Fig. 3. Comparison of 2bMB against simple filtering techniques. a) Reconstruction of an in vivo mouse liver section using 2bMB (top), simple
Butterworth (middle), and simple Wavelet (bottom) filtering techniques. b) Normalized reconstruction residuals and c) SSIM index of 2bMB and
simple filtering techniques, compared to standard model-based reconstruction.

against standard signal filtering with Butterworth filters and
Wavelet filters (Fig. 3) on a dataset of 533 OA images from
different anatomical sections.

Fig. 3a displays representative multiscale OA images from
a mouse liver section obtained with 2bMB reconstruction
and model-based reconstruction after the application of But-
terworth and Wavelet bandpass filters. All three methods
separate different frequency bands of OA contrast in the

liver section, highlighting bulky tissue (band 1) or vasculature
(band 2). However, as shown in Fig. 3b, 2bMB generates OA
images with lower normalized reconstruction residuals (mean
of 1.3) compared to Wavelet (mean of 4.7) and Butterworth
(mean value of 6.8). The residuals are normalized relative to
those obtained with standard model-based reconstruction (see
Methods section). Therefore, the new proposed decomposition
approach has only a small regularizing effect when compared



LONGO et al.: DISENTANGLING FREQUENCY CONTENT IN OPTOACOUSTICS 3381

Fig. 4. Comparison of 2bMB against standard MB. a) Maximum Intensity Projection (MIP) images of volumetric OA mouse data in the YZ and
XZ planes for the two frequency band components obtained with 2bMB reconstruction. b) Comparisons of 2bMB reconstructions to standard
model-based (MB) reconstructions for both volumetric data (left) and 2D sections (right) of the mouse. Image quality indicators c) entropy and
d) Perception-based Image Quality Evaluator (PIQE). Transverse whole mouse sections containing the: 1 brain, 2 neck, 3 lungs, 4 liver, 5 kidneys,
6 colon, 7 lower abdomen. Anatomical abbreviations in alphabetical order: aorta (AO); bladder (Bl); colon (C); common carotid (CC); common carotid/
jugular (CC/J); confluence sinus (CS); dorsal artery and vein (DA/V); deep cerebral vessel (DCV); dorsal intercostal artery and vein (DIA/V); external
jugular (EJ); facial artery (FA); femoris muscle (FM); intestine (I); iliac artery and vein (ILA/V); liver left (LL); liver right (LR); lungs (Lu); middle caudal
artery and vein (MCA/V); mandibula-facial arteries and veins (MFA/V); masseter muscle (MM); pectoral muscle (PM); portal vein (PV); rib (R); right
kidney (RK); splenic artery and vein (SA/V); spleen (SP); straight abdominal muscle (SAM); spinal cord (SC); superficial epigastric cranial artery
and vein (SECA/V); trachea (T); trapezius muscle (TM); transverse sinus (TS); and vena cava (VC).

to standard model-based reconstruction, while the other meth-
ods deviate from the data significantly. Hence, the new method
assures a solution with the highest physical accuracy, wherein
the sum of the different OA components most accurately
reflects the original OA signals.

In addition, as shown in Fig. 3c, the new algorithm
generates images with the highest SSIM index measure of
0.6 when compared to the reference reconstruction, while
the filtering techniques achieve values of 0.39 (Wavelet) and
0.21 (Butterworth).

Therefore, integrating the filtering process with soft priors
into the inversion assures that no artefacts are generated by
the decomposition and that the integrity of the structure being
imaged is better preserved. The still low value of structural
similarity of 0.6 for the 2bMB reconstruction is due to the
regularizing effect of the frequency band decomposition.

C. Comparison of 2bMB Against Standard Model-Based
Reconstruction

Fig. 4 demonstrates the effectiveness of 2bMB to separate
anatomical structures on different scales in in vivo whole-body
images of a mouse.

The improved contrast of 2bMB image (obtained by color-
coding and blending images at different frequency bands)
was quantified against a standard model based reconstructed
image (MB) using two measures of merit: the image entropy
and the Perception-based Image Quality Evaluator (PIQE).

Fig. 4a shows the maximum intensity projection (MIP)
images of the mouse in the YZ and XZ planes for two-
band decomposition (Band 1 and Band 2) reconstructed with
the 2bMB algorithm. As expected, the low frequency image
contains OA signals from large anatomical structures, such as
organs, muscles, and large vessels, while the high frequency
image shows the vasculature network inside of the mouse.

Several anatomical structures can be identified in the low-
frequency band image (blue), including: the carotid artery
and the jugular vein in the mouse neck; the aorta and the
vena cava running parallel in the mouse abdomen, branching
into the iliac artery/vein in the lower abdomen; the trapezius
muscle in the upper part of the spine; the femoral muscle
in the lower extremities of the mouse; the kidneys; and the
liver lobes in the abdomen. Visible in the high-frequency
band image (yellow) are the dorsal intercostal veins and
arteries between the ribs, which provide blood supply in the
thoracic wall, and the superficial epigastric artery and vein,
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Fig. 5. Spectral linear unmixing of in vivo mouse liver and kidneys sections. a) Absorption spectra of oxygenated hemoglobin (HbO2) and
deoxygenated hemoglobin (Hb) in the range 680 – 980 nm. b) Linear spectral unmixing of Hb and HbO2 in mouse liver and kidneys sections
obtained from OA images reconstructed with MB and 2bMB. Magnification of two ROIs in the left lobe of the liver and in the kidney-spleen region.

both cranial and inferior. Fig. 4b shows the image quality
improvement of 2bMB in both 3D and 2D mouse sections,
compared to standard model-based reconstruction (MB). The
2bMB images, obtained by color-coding and blending the
different bands (Fig. 4a), display more anatomical details and
broadband OA contrast than OA images from standard MB
reconstruction, which appear blurred and lack contrast for
small structures. For example, the dorsal artery and vein are
clearly visible in the 2bMB images but hidden in the MB
images due to the proximity of the liver and lungs. Fig. 4c,d
report the values of entropy and PIQE estimated for 533 in vivo
OA images from different mouse anatomical sections, which
quantify the image quality improvement of 2bMB compared to
standard MB reconstruction in a large dataset. The OA images
reconstructed with the proposed method exhibit increases in
entropy of 50%, higher visual contrast, and a reduction in
the PIQE index of 19%, implying an overall improved visual
image quality.

D. Spectral Unmixing

2bMB also improves image quantification via spectral
unmixing in OA imaging by utilizing the regularization effect
of the decomposition to prevent negative values of low
frequency signals from compromising the signal quantifica-
tion in small vasculature. Fig. 5a displays the absorption
spectra of oxygenated hemoglobin (HbO2) and deoxygenated
hemoglobin (Hb) in the range 680 – 980 nm. Fig. 5b shows
the Hb and HbO2 spectral linear unmixing results for mouse
cross sections of the liver and kidneys, obtained from both
2bMB and standard MB reconstruction. Notably, the proposed
method improves linear unmixing results in small vessels,
which are otherwise obscured by low frequency signals. The
magnification of a region-of-interest (ROI) in the right lobe
of the liver clearly shows the small vasculature that sup-
ply blood to the liver; the magnification of a ROI in the
left kidney demonstrates Hb and HbO2 quantification in the
splenic vessel, as well as in the small vasculature in the kidney
cortex.

IV. DISCUSSION

OA imaging yields rich information content due to the
detection of broadband acoustic signals. However, it is chal-
lenging to faithfully render objects in different size regimes
with a single image, which compromises the accuracy of
subsequent physical and spectral analyses. To overcome this
challenge, we developed fbMB, a method which employs soft
priors on the frequency bands to generate OA images with
frequency-band-specific contrast; low-frequency images con-
tain bulk tissue, organs, and out-of-plane signals, while high-
frequency images contain small vasculature and anatomical
details. The method is a practical solution to the longstand-
ing problem to reliably separate OA contrast from different
frequency bands and thereby counteract the bias towards low
frequencies in OA imaging.

Contrary to standard back-projection and model-based
reconstructions, the new algorithm allows, for the first time,
access to the full structural content of broadband OA images,
which is of great value for preclinical and clinical applications.
In combination with the three spatial dimensions (3D), the
time dimension (4D), and the optical wavelength dimension
(5D), fbMB adds a sixth “ultrasound frequency dimension”
(6D) to OA imaging, thus enabling analysis of images over
multiple scales [4]. The acquisition and visualization of six-
dimensional OA data enables the full range of OA contrast
mechanisms, i.e., real time volumetric imaging at multiple
wavelengths of structures with a wide range of sizes, offer-
ing unique performance among current biomedical imaging
modalities.

The ability of fbMB to separate different frequency bands
without generating artefacts was quantitatively evaluated on
a dataset of 533 in vivo OA images from different mouse
anatomical sections. By imposing soft priors on the filters
and allowing frequency bands to overlap, the new method
provides a unique solution to the decomposition problem,
which is less prone to reconstruction errors and artefacts than
rigid filtering. Moreover, fbMB generates OA images with
richer informational content and better visual and structural
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perception compared to standard model-based reconstruction.
The resulting OA images are more detailed and resolve
anatomical structures with high biological accuracy, increasing
the biomedical value of OA imaging systems.

Spectral unmixing applied to fbMB reconstructions enables
quantification of absorbers at resolutions ranging from mil-
limeters to micrometers. In general, spectral unmixing algo-
rithms are applied to OA images reconstructed with standard
model-based algorithms due to their higher accuracy compared
to back-projection algorithms. However, a common problem
for OA image quantification is that negative values in low
frequencies of the signal originating from larger structures
or artefacts [30] compromise the quantification of small-scale
features. Here instead, the multiscale representation of dif-
ferent chromophores through fbMB prevents negative values
from low frequencies to interfere with the signal from smaller
structures and enables in principle label-free quantification
of the vasculature down to the capillary level. This result
may expand applications of OA image quantification in,
for example, cardiovascular imaging by providing anatomi-
cal information from macro- to microvasculatures, in cancer
imaging by detecting angiogenesis and tissue perfusion, and
in neuroimaging by mapping the hemodynamics in the brain
vasculatures with high resolution.

The fbMB method allows a broad range of applications
and extensions. For instance, beyond multiscale contrast, one
could include the spectral dimension into the reconstruction,
which could enable simultaneous unmixing for multiscale
quantification of specific chromophores in the same schema.
A variation of the introduced method could also help to decou-
ple absorption and light fluence, which exhibits a global low
spatial frequency component [21], thus potentially improving
OA signal quantification in small vasculatures and in bulk
tissue.

In addition, a dedicated filter design in the soft priors could
improve the current results for special applications. Indeed,
each of these frequency bands has biological and clinical
potential, ranging from assessing mechanisms in organs and
bulky tissues at the macroscopic scale to detecting physiolog-
ical processes at microscopic levels (e.g., in the microvascula-
ture). Similarly, a dedicated image post-processing (i.e., image
histogram thresholding) may be necessary to achieve optimal
image quality for certain specific application, wavelength,
or anatomical section.

Notably, the method is also applicable to other image recon-
struction problems that suffer from the same bias towards low
frequencies. Furthermore, the method can be easily rescaled
and extended to OA microscopy and mesoscopy.

Recently, applications of machine learning in imaging have
afforded real time implementations of previously computa-
tionally expensive reconstruction methods. The acceleration of
fbMB through deep learning, would allow real time feedback
of multiple frequency band components to the system user in
clinical applications. This would enhance the clinical usage of
MSOT for screening and diagnosis.

The proposed method enables a unique frequency-band
contrast for OA imaging encoding the entire OA content
in a single image. The improved image quality and visual

perception of anatomical structures will advance the translation
of OA technology in clinical practice.

SOURCE CODE

The source code for the presented fbMB framework is
available at https://github.com/juestellab/mb-rec-msot.
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