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Abstract—With the development of 5G, network slicing was
proposed to enable service provisioning for diverse sets of Ultra-
Reliable Low-Latency Communications (URLLC), enhanced Mo-
bile Broadband (eMBB), and massive Machine-Type Commu-
nications (mMTC) users which are characterized by different
Quality of Service (QoS) demands. Within network slicing, Radio
Access Network (RAN) slicing plays a central role for efficient
resource management. In addition, user admission control poses
a major challenge. In this context, the problem of joint slice
dimensioning and user admission control is investigated in this
paper. To this end, an optimization problem based on symbol-level
resource allocation with the objective of maximizing an operator’s
revenue while fulfilling the traffic requirements of all users is
formulated. Afterward, the optimization problem is reduced to
a knapsack problem and integrated into a Long-Term Revenue
Maximization (LTRM) algorithm. Using data from real-world 5G
measurements, the efficiency of the LTRM algorithm is verified,
and the impact of various resource granularities in the time
domain (symbol vs. slot) and frequency domain (varying Resource
Block Group (RBG) sizes) is investigated. The revenue gain of
the proposed joint algorithm over a sequential slice dimensioning
and user admission control scheme is 24%, while symbol-level
resource allocation offers at least 13% gain over a slot-based
allocation for specific slices.

Index Terms—5G and Beyond, RAN Slicing, User Admission
Control, Optimization.

I. INTRODUCTION

Network slicing is a new concept that was introduced in 5G
to enable network operators to support diverse services in an
economically sustainable manner [1]. The idea is to virtually
separate physical resources in the Radio Access Network
(RAN) and core network to provide End-to-End (E2E) Quality
of Service (QoS) guarantees for diverse users [2]. These users
can be grouped into three categories: Ultra-Reliable Low-
Latency Communications (URLLC), like autonomous vehi-
cles [3], enhanced Mobile Broadband (eMBB), corresponding
to services like eXtended Reality (XR) [4], and massive
Machine-Type Communications (mMTC), comprising a large
number of sensors and actuators [5]. Within each of these
categories, users can further be subdivided by specific QoS
demands based on their use case. This is done using Service
Level Agreements (SLAs), which classify the various slices
within a traffic category.

An integral part of network slicing is RAN slicing, which
deals with the problem of allocating radio resources to slices.
With the resources available in RANs being finite, it is
important to employ efficient allocation algorithms according
to objectives like energy or resource efficiency, or operator
revenue. Given the amount of resources available per slice, the

issue of user admission control arises. This problem consists
of selecting the users to admit to the slice/network such that
all admitted users’ guaranteed QoS are not violated.

So far, the problems of slice dimensioning and user admis-
sion control while guaranteeing a certain QoS have only been
tackled sequentially or without QoS guarantees [6], [7]. In a
sequential approach, the RAN resources are first distributed
(statically or dynamically) among all slices, and afterward,
users are admitted to these slices based on the available
resources per slice.

In this work, however, the network performance is opti-
mized by considering these two processes jointly. This is
done by considering all users’ channel conditions and traffic
requirements. In this way, a new degree of freedom in making
decisions is provided to the operators, as the slices can be
tuned based on the users requesting a service at a certain point
in time. The objective in this work is the maximization of the
network operator’s long-term profit while satisfying the QoS
requirements of all admitted users at all times. The profit a user
generates for the operator is defined by the type of traffic and
the specific SLA. Generally, the stricter the traffic demands
are, the higher the price for the specific service.

Besides frequency, the time domain is the other resource
allocation dimension in current cellular systems. Works deal-
ing with resource allocation in RANs so far have considered
slots or Transmission Time Intervals (TTIs) as the granularity
level of resources in the time domain [5], [8]. However,
sometimes, this leads to wasting valuable network resources.
Such an example arises when considering Hybrid Automatic
Repeat Request (HARQ) processes [9]. Retransmissions might
be delayed in case NACK packets and retransmissions are
scheduled on a per-slot basis, although the previously received
undecodable data packet or the NACK packet were processed
much faster than the slot duration. Based on the 5G standard-
ization, however, resource allocation in the time domain is
possible on a lower scale, i.e., on the symbol-level, where 14
symbols comprise one slot [10]. This allows for a much faster
(re)transmission of NACK and data packets. Hence, this is the
considered granularity level in the time domain in this work.
In the frequency domain, the considered resource granularity
is a Resource Block Group (RBG), which consists of multiple
Physical Resource Blocks (PRBs) [11].

In the sense of these elaborations, the important questions
that arise for a network operator are: (i) How to dynamically
dimension the network slices and which users to admit to
each slice at certain points in time to maximize the long-term



revenue? (ii) How does the resource granularity, both in the
time and frequency domain, impact the achieved revenue?

To answer these questions, this paper investigates the prob-
lem of joint slice dimensioning and user admission control
based on symbol-level resource allocation. The traffic require-
ments of URLLC, eMBB, and mMTC users are mathemati-
cally modeled in a generic way such that the specific SLAs
for different network slices of the same traffic category can
be specified based on various parameters. Leveraging these
formulations, an optimization problem for joint slice dimen-
sioning and user admission control is formulated. This problem
is then analyzed and reduced to a knapsack problem, enabling
an efficient solution. Finally, the devised knapsack problem is
embedded into an algorithm for revenue maximization, which
ensures the QoS of both previously and newly accepted users
at all times. The system model introduced in this work is
tightly coupled to the current 5G standards, e.g., the channel
conditions of all users are described with the Channel Quality
Indicator (CQI), or the different resource granularities used in
the time and frequency domain [10]. Nevertheless, reasonable
deviations from the standard allow for interesting insights
relevant to the design process of future mobile communication
systems. The simulation results, which are based on real-world
5G measurements, verify the effectiveness and practicality of
the presented approach and show that it outperforms other
revenue maximization solutions. Thus, the results are partic-
ularly relevant for network operators. Moreover, the findings
are valuable for gaining insights into the impact of different
resource granularities on network performance, i.e., symbols
vs. slots in the time domain and different RBG sizes in the
frequency domain. Summarizing, the main contributions are:

• Formulating an optimization problem for joint slice di-
mensioning and user admission control based on symbol-
level resource allocation (Section II);

• An in-depth analysis of the formulated optimization prob-
lem resulting in the reduction of the problem to a 0-1
knapsack problem (Section III);

• Integrating the 0-1 knapsack problem into a Long-Term
Revenue Maximization (LTRM) algorithm (Section III);

• An extensive simulation-based evaluation leveraging a
real-world 5G dataset, emphasizing the performance of
the proposed LTRM algorithm (Section IV).

II. PROBLEM FORMULATION

In this section, the system model is introduced. Subsequently,
the joint slice dimensioning and user admission control opti-
mization problem is mathematically formulated. All variables
are listed in Table I.

A. System Model

Slices and User Sets: In this work, a set of users U is in the
coverage area of a single 5G Base Station (BS) (gNodeB)
during a so-called Slice Dimensioning Interval (SDI) with
duration T slice (see Fig. 1). Each user can be mapped to a
single slice from the URLLC, eMBB, or mMTC slice sets
SU , SE , or SM , and moreover, either belongs to the set of
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Fig. 1: Illustration of the system model.

users that are currently being served and will still be present
in the upcoming SDI (Us), or to the set of waiting users that
are trying to get served in the upcoming SDI(s) (Uw). Since
there exist multiple slice instances for the same traffic type,
diverse QoS demands for specific services can be fulfilled. The
BS has a total of N tot PRBs to serve all users, from which
Nav PRBs are available to admit users from the set Uw in the
upcoming SDI, as the remaining resources are reserved for the
users that were already accepted and are still getting served,
i.e., the set Us. The newly accepted users per slice s are then
grouped in the set Ua,{U,E,M}

s . The admittance decision is
taken with the objective of maximizing the network operator’s
revenue, which also leads to a re-dimensioning of all slices
for the upcoming SDI. Note that once a user is admitted, it is
served until it no longer requests its service, and that a user’s
service duration is not known at the time of admittance.

Traffic Characterization: In general, URLLC users require
their packets to be delivered within a maximum time Dmax

s

with high reliability 1− ϵls, where ϵls is the maximum allowed
outage probability [3]. Hence, for the transmission of these
packets, retransmissions, i.e., HARQ, are also considered.
A packet is assumed to be successfully transmitted with
probability 1− δ, i.e., the packet error rate is δ. Moreover, to
enable faster retransmissions in order to comply with the strict
delay requirements of URLLC users, symbol-level resource al-
location is performed in the time domain. This allows for a 14
times more granular resource allocation and thus faster packet
rescheduling than usual slot-based allocation. The eMBB users
require a constant high data rate Rmin

s [4], which requires
efficient resource allocation of RBGs in the frequency domain.
Lastly, mMTC users periodically send small packets [12] with
periodicity λs, measured in packets per SDI, which enables
multiplexing them in the time domain.

Channel Conditions and Modeling: Finally, each user ex-
periences varying channel conditions over time. It is assumed
that these conditions are constant over all PRBs, i.e., a user
only reports one CQI value per Channel State Information
(CSI) report period, which corresponds to wideband CQI
reporting in 5G [10]. Based on the chosen Modulation and
Coding Scheme (MCS) table and slot duration, the per-PRB
rate can then be determined. Given the dynamic channel
conditions and various CQI values of the users, the slice
dimensioning is influenced by resource allocations performed
in the time and frequency domains. For the optimization
of slice dimensioning and user admission control, the CQI
values experienced by a user are characterized by a probability



TABLE I: List of Symbols

U set of all users U{s,w} set of served/wait. users
Uw,{U,E,M}
s set of wait. users in URLLC/eMBB/mMTC slice s Ua,{U,E,M}

s set of newly acc. users in URLLC/eMBB/mMTC slice s

Ntot total no. of available RBGs Nav available RBGs in a specific SDI

T slice dur. of an SDI T
{slot,sym}
s dur. of a slot/symbol in slice s

T p,{BS,UE} proc. dur. of the BS/of user u TN/ACK dur. of an ACK/NACK pkt.

S{U,E,M} set of URLLC/eMBB/mMTC slices vu value/rev. of user u
Iu, I var. spec. whether a user is acc. to the netw., vec. of vars. Iu Nu, N no. of RBGs req. by user u, vec. of vars. Nu

Nd,t
u no. of RBGs req. by user u, time-disc. res. alloc. Nd

u no. of RBGs req. by user u, time- and freq.-disc. res. alloc.
S
{PRB,RBG}
u size of a PRB/RBG of user u in bits Tmax

u max. wait. time of user u

Dpkt
u eperienced pkt. lat. for URLLC user u Dmax

s max. allowed lat. for a user’s URLLC pkt. in slice s

ϵls outage prob. for a URLLC pkt. of slice s δ pkt. error ratio
Ipktu var. spec. whether a user has a pkt. to send pu prob. for URLLC user u to have a pkt.
Xu trans. attempts of a pkt. of URLLC user u (rand. var.) ∆u pkt. size of user u

Ru data rate experienced by user u Rmin
s min. required data rate for every user of slice s

λs mMTC arrival rate of slice s in pkts. per SDI Nsym
s no. of symbols in one mMTC period of slice s

NM no. of RBGs occupied by an mMTC user group Nd,t,sym
u no. of symbols req. by mMTC user u, time-disc. res. alloc.

Uw,M
i,s wait. user group i in mMTC slice s vMi,s value/rev. of mMTC user group i in mMTC slice s

distribution known to the operator or transmitted by each user
together with its service request.

B. Optimization Problem Formulation

The user admission control problem that is solved for every
SDI serves two purposes: Firstly, it determines which waiting
users should be admitted to the network to maximize the
operator’s total revenue. Secondly, it specifies how many
resources, i.e., RBGs, should be allocated to each network
slice to optimally use the available resources during an SDI.
The corresponding optimization problem is formulated as

P1: max
I

∑
u∈Uw

vuIu (1a)

s.t.
P
(
Dpkt

u ≤ Dmax
s

)
≥ 1− ϵls,

∀u ∈ Ua,U
s , s ∈ SU ,

(1b)

Ru ≥ Rmin
s , ∀u ∈ Ua,E

s , s ∈ SE , (1c)

Nu ≥ ∆u · λs

SRBG
u

, ∀u ∈ Ua,M
s , s ∈ SM , (1d)∑

u∈Uw

Nu · Iu ≤ Nav, (1e)

Iu ∈ {0, 1}, ∀u ∈ Uw, (1f)
where

Dpkt
u =

(
Xu

(
∆u/Ru + T p,UE

)
+

(Xu − 1)
(
TN/ACK + T p,BS

))
· Ipktu (2)

denotes the latency experienced by a packet based on the
number of transmissions Xu, and

Ru = Nu · SRBG
u /T slot

s (3)
is the data rate experienced by user u. It is calculated by
multiplying the number of allocated RBGs Nu with the
size of an RBG SRBG

u and dividing by the duration of a
slot T slot

s . Thereby, SRBG
u depends on the channel conditions

of user u and T slot
s depends on the configured numerology µ

employed in slice s. The allocations Nu of all waiting users
are summarized in the vector N (|Uw|×1).

The first term of the summation in (2) comprises the trans-
mission duration, which is computed by dividing the packet
size ∆u by the experienced data rate Ru, and the processing
duration of the packet at the User Equipment (UE), T p,UE .
In case of a successful reception, the packet transmission is
finished. If the packet cannot be correctly decoded, a NACK
packet is sent to the BS (TN/ACK), and a retransmission is
triggered (T p,BS), which is captured by the second term in (2).
Lastly, the variable Ipktu indicates whether a user has a packet
to send, i.e., it takes the value 1 with probability pu and the
value 0 with probability 1− pu.1

The objective (1a) of P1 is to maximize an operator’s
revenue by accepting these waiting users to its network that
generate the highest profits and require the least amount of
resources. Hence, the binary variable Iu indicates whether
user u, which generates value vu for the operator, is accepted
in the network. The variables Iu are aggregated in the vec-
tor I (|Uw|×1). If a user from one of the waiting user sets
Uw,U
s , Uw,E

s , or Uw,M
s is accepted, i.e., Iu = 1, it is added to

the respective accepted user sets Ua,U
s , Ua,E

s , or Ua,M
s .

The users can have the different traffic types URLLC,
eMBB, or mMTC with different QoS specifications, which
are captured by (1b), (1c), or (1d), respectively. Eq. (1b)
determines the resources required in the frequency domain
to fulfill the latency requirement with reliability 1 − ϵls,
where the constant ϵls represents the maximum allowed outage
probability for a URLLC packet in slice s. This allocation is
expanded over the entire SDI to account for the probability pu
of having a packet to send. Since the rate requirement of an
eMBB user needs to be fulfilled at any time, (1c) specifies
the amount of resources reserved in the frequency domain for
the entire SDI. Lastly, (1d) establishes the minimum required
resources to transmit all arriving packets of a single mMTC

1Note that (2) captures the packet delay for downlink transmission. The
packet delay for uplink transmission can be modeled similarly by exchanging
the processing durations of the UE and the BS and by replacing the duration
of the ACK packet with the duration of a new transmission grant. Moreover,
note that all other constraints are agnostic to the transmission direction.



user during an SDI. Since there is no latency requirement,
the needed resources for a single packet transmission can be
allocated in the time or frequency domain. A network slice
is thus characterized by one of the Eqs. (1b) to (1d).2 Given
the previously accepted users, there is only a limited amount
of resources, i.e., RBGs, available, which is captured by (1e).
Lastly, (1f) merely states that the decision variables are binary.

III. ANALYSIS

In the following, P1 is reduced into a 0-1 knapsack problem.
Afterward, the knapsack problem is integrated into the LTRM
algorithm. To this end, first, the number of required RBGs per
user are determined based on continuous resource allocation.
Then, these values are employed to determine the required
resources for a discrete resource allocation. Ultimately, these
values are used as weights for the knapsack problem. To
guarantee all SLAs of the different users, the data rates Ru

are calculated based on a user’s lowest possible CQI value.

A. Determination of the Number of Required Resources

Hereafter, all constraints related to the various traffic types
are rewritten with the aim of determining the number of
required resources per user Nu such that the slice-specific QoS
guarantees can be fulfilled.

URLLC Users: To determine the required number of RBGs
per URLLC user u, (1b) is rewritten as

P
(
Dpkt

u ≤ Dmax
s | Ipktu = 0

)
· P

(
Ipktu = 0

)
+

P
(
Dpkt

u ≤ Dmax
s | Ipktu = 1

)
· P

(
Ipktu = 1

)
≥ 1− ϵls, (4)

by conditioning on having a packet. Next, (4) is solved to
P
(
Dpkt

u ≤ Dmax
s | Ipktu = 1

)
≥ 1− ϵls/pu,

by substituting the probabilities of having a packet or not.
Replacing the experienced packet delay Dpkt

u by (2) leads to

P
(
Xu

(
∆u/Ru + T p,UE + TN/ACK + T p,BS

)
− TN/ACK − T p,BS ≤ Dmax

s

)
≥ 1− ϵls/pu,

which is rewritten as

P

(
Xu ≤ Dmax

s + TN/ACK + T p,BS

∆u/Ru + T p,UE + TN/ACK + T p,BS

)
≥ 1− ϵls/pu, (5)

by solving the argument of the probability function for the
random variable Xu. The left-hand side (LHS) of (5) is now
equal to the Cumulative Distribution Function (CDF) of the
random variable Xu at the point

x =
Dmax

s + TN/ACK + T p,BS

∆u/Ru + T p,UE + TN/ACK + T p,BS
. (6)

Hence, (5) can be expressed as
FXu (x) ≥ 1− ϵls/pu. (7)

Recalling the assumption that each packet is successfully
transmitted with probability 1 − δ, the variable Xu is geo-
metrically distributed, i.e., Xu ∼ G(1 − δ). With the CDF of

2Note that the allowed outage probability ϵls, as well as the minimum
rate Rmin

s can also be set individually per user instead of specifying them
per slice. Nevertheless, this does not influence the subsequent analysis.

a geometric distribution given as 1 − (1− p)
⌊x⌋ [13], where

p is the success probability, (7) is rewritten as
1− (1− (1− δ))

⌊x⌋ ≥ 1− ϵls/pu.

This term can be reformulated as
δ⌊x⌋ ≤ ϵls/pu.

Taking the logarithm of both sides, then taking ⌊x⌋ out of the
logarithm and dividing by log δ results in

log
(
ϵls/pu

)
/log δ ≤ ⌊x⌋ , (8)

since log δ is a negative number (δ < 1).

Result 1. The statements
x ≤ ⌊y⌋, (9a)

⌈x⌉ ≤ y (9b)
are equivalent for x, y ∈ R+

0 .

Proof. Define, x = x′−e1 and y = y′+e2, where x′, y′ ∈ N0

and e1, e2 ∈ [0, 1). Then, (9b) can be reformulated as
⌈x⌉ = x′ = x+ e1 ≤ y ⇔ e1 ≤ y − x. (10)

Substituting the equations for x, y into (10) leads to
e1 ≤ y′ − x′ + e2 + e1 ⇔ −e2 ≤ y′ − x′. (11)

Since y′, x′ ∈ N0 and e1, e2 ∈ [0, 1), it follows from (11) that
0 ≤ y′ − x′, (12)

but also that
−e1 ≤ y′ − x′. (13)

Adding e2 on both sides of (13) and rearranging yields
e2 ≤ y′ − x′ + e2 + e1 ⇔ e2 ≤ y − x. (14)

Reordering (14) and substituting y′ for y − e2 results in
x ≤ y − e2 = y′ ⇔ x ≤ ⌊y⌋, (15)

which concludes the proof.

Using Result 1, (8) is written as⌈
log

(
ϵls/pu

)
/log δ

⌉
≤ x. (16)

Substituting (6) into (16) and replacing Ru by (3) leads to⌈
log

(
ϵls/pu

)
log δ

⌉
≤ Dmax

s + TN/ACK + T p,BS

∆u·T slot
s

Nu·SRBG
u

+ T p,UE + TN/ACK + T p,BS
,

(17)
which, after some calculus, can be solved for Nu as

∆u · T slot
s

SRBG
u

(
Dmax

s + TN/ACK + T p,BS

⌈log (ϵls/pu) /log δ⌉
− T p,UE

− TN/ACK − T p,BS

)−1

≤ Nu. (18)

eMBB Users: Since the data rate constraint (1c) does not
include any probabilities, it can easily be solved for the number
of required RBGs

Nu ≥
(
Rmin

s · T slot
s

)
/SRBG

u , (19)
when substituting (3) for the experienced data rate Ru.

mMTC Users: Lastly, (1d) already determines the number
of required RBGs of an mMTC user.

B. Discretizing the Number of Required Resources

The established bounds (1d), (18), (19) for the required RBGs
are deduced for a continuous allocation in the time and



frequency domain. To comply with the real-world discrete
allocation units, these numbers are adapted in the following.

URLLC Users: As the processing times T p,BS and T p,UE ,
and TN/ACK are constant and expressed as a multiple of the
symbol duration T sym

s , the only variable time duration in the
experienced delay of a packet is the transmission time. To
fulfill the URLLC guarantee, the transmission time dependent
on a time-discrete allocation must be smaller than or equal to
the transmission time dependent on the continuous allocation.
Thus, discretizing the transmission time is achieved by setting

∆u · T slot
s

Nd,t
u · SRBG

u

=

 ∆u·T slot
s

Nu·SRBG
u

T sym
s

 · T sym
s ,

which can be solved for the required RBGs depending on a
time-discrete allocation Nd,t

u as

Nd,t
u =

 ∆u·T slot
s

Nu·SRBG
u

T sym
s

−1

· ∆u · T slot
s

SRBG
u · T sym

s
.

As the final step for discretizing the allocation also in the
frequency domain, the required RBGs are determined as

Nd
u =

⌈
Nd,t

u

⌉
. (20)

eMBB Users: Since eMBB users require a constant data
rate, the resources reserved for such a user are allocated for
an entire SDI. Hence, no discretization in the time domain is
necessary for (19). To discretize the resource allocation in the
frequency domain, (20) can be applied when replacing Nd,t

u

by Nu of an eMBB user (19).
mMTC Users: Lastly, mMTC users only require a few

resources periodically, which allows for multiplexing the users
in the time domain and creating mMTC groups. To discretize
the number of required resources of a single user, the number
of symbols required by a user during one mMTC period,
defined as T slice/λs, is computed as

Nd,t,sym
u =

⌈(
∆u/S

RBG
u

)
· 14

⌉
. (21)

Thereby, the factor 14 results from the fact that one time slot
in 5G consists of 14 symbols [11]. Next, the total amount of
available symbols in one mMTC period is determined as

Nsym
s =

⌊
14 · T slice

λs · T slot
s

⌋
·NM , (22)

where NM denotes the number of RBGs that are occupied
by a single mMTC user group. As opposed to (21) where the
number of required symbols was determined, the floor function
is used in (22) to determine the number of available symbols
since no half symbol can be allocated to any user. To finally
create the mMTC user groups, the 0-1 knapsack problem

P2: max
IM

∑
u∈Uw,M

s

vuIu

s.t.
∑

u∈Uw,M
s

Nd,t,sym
u · Iu ≤ Nsym

s ,

Iu ∈ {0, 1}, ∀u ∈ Uw,M
s

is solved multiple times for every mMTC slice s with the
specific slice arrival rate λs, where the users that are already
served are removed from the set Uw,M

s in every next iteration.

Algorithm 1 Creation of mMTC user groups
Input: vu, Nd,t,sym

u , ∀u ∈ Uw,M
s , s ∈ SM ; Nsym

s , ∀s ∈ SM

Output: Uw,M
i,s assoc. with vMi,s, ∀ i, s ∈ SM

1: for all s ∈ SM do
2: i = 0
3: while Uw,M

s ̸= ∅ do
4: Solve P2

5: Uw,M
i,s =

{
u ∈ Uw,M

s | Iu = 1
}

6: vMi,s =
∑

u∈Uw,M
i,s

vu

7: Uw,M
s = Uw,M

s \ Uw,M
i,s , i = i+ 1

This procedure is summarized in Algorithm 1. In the worst
case, no multiplexing is possible, which implies that the
mMTC user group sets Uw,M

i,s only contain one user. Hence,
only one user would be removed from the set of all mMTC
users of slice s in line 7. This means that P2 is solved
at most

∣∣Uw,M
s

∣∣ times. Therefore, the time complexity of
Algorithm 1 is O(

∣∣Uw,M
s

∣∣ ∣∣SM
∣∣T ), where T determines the

complexity of the algorithm employed to solve P2.
Based on the solutions to P2, the mMTC user groups Uw,M

i,s

with value vMi,s can now be regarded as users attempting to
enter mMTC slice s. The amount of resources this group
requires is equal to NM RBGs.

C. Transformation of P1 to a 0-1 Knapsack Problem

With the preceding discretization of the number of required
resources both in the time and frequency domain, every user
or user group attempting to enter one of the eMBB, URLLC,
or mMTC slices can now be associated with a value vu and a
weight equal to the required number of RBGs Nd

u . This allows
for transforming P1 to the 0-1 knapsack problem

P3: max
I

∑
u∈Uw

vuIu

s.t.
∑

u∈Uw

Nd
u · Iu ≤ Nav,

Iu ∈ {0, 1}, ∀u ∈ Uw.

By solving P3, the set of users accepted in each slice is
determined. Based on the required number of resources per
user contained in the set of accepted users per slice, every
slice can eventually be dimensioned in the frequency domain.

D. Long-Term Revenue Maximization Algorithm

The final subsection presents the LTRM algorithm. For each
SDI, new users are arriving and are added to the set Uw. They
are associated with a maximum waiting time Tmax

u , value
vu, and weight Nd

u . At the end of each SDI, the slices are
dimensioned in the frequency domain, and admission control
for the set Uw is performed for the upcoming SDI. First, the
set of users that will still be present in the upcoming SDI Us

is updated. Based on these updates, the remaining available
RBGs Nav are determined. Next, the joint slice dimensioning
and user admission control optimization problem P3 is solved.
Afterward, the newly distributed resources are added to the
current slice configurations based on the required RBGs of
accepted users, and the served and waiting user sets Us and Uw



Algorithm 2 Long-Term Revenue Maximization (LTRM)
Input: vu, Nd

u , T
max
u ∀u ∈ Uw

1: for every SDI do
2: Update Us based on service request terminations
3: Nav = N tot −

∑
u∈Us Nd

u

4: Solve P3 given Nav , Uw

5: Update slice configurations,
6: add/remove newly accepted users to Us/from Uw

7: for all u ∈ Uw do
8: if waiting time > Tmax

u then
9: Remove u from Uw
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RU

CU-DP
Near-RT RAN
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Fig. 2: Placement of the LTRM Algorithm as an xApp within
the O-RAN architecture.

are updated based on the newly accepted users. Lastly, if a user
exceeds its maximum waiting time, it is finally rejected and
removed from the waiting list. The procedure is summarized in
Algorithm 2. Its complexity per SDI is O (|Us|+ |Uw|+ T ),
where T is the complexity of the algorithm used to solve P3.3

Deployment Considerations: Due to the polynomial time
complexity of the LTRM algorithm, it could, e.g., be imple-
mented as an xApp [16] within the O-RAN [17] architecture.
This xApp then performs dynamic slice resource management
as well as user admission control. An architectural overview
of such a network is depicted in Fig. 2.

IV. PERFORMANCE EVALUATION

In this section, first, the simulation setup is described and
the benchmarks are introduced. Then, the performance of the
LTRM algorithm is evaluated, and insights into the evolution
of slice dimensions are given. Finally, the impact of various
resource granularities is assessed.

A. Simulation Setup

To obtain a CQI probability distribution for each user, data
from a 5G measurement campaign was used [18]. These
measurements were realized during different time periods for
a single user that was either static (23 traces) or moving
around (59 traces). For each trace, a probability distribution
is calculated based on the measured CQI values. A statistical
analysis of the CQI distributions is provided in [19].

To calculate the size of an RBG in bits, the reported
CQI value is first mapped to an MCS index by using the
mapping table from [20]. Afterward, depending on the type
of traffic, the suitable MCS table is chosen from [10] to map

3To solve 0-1 knapsack problems, there exist very efficient algorithms like
Dynamic Programming (DP) (pseudo-polynomial time), a Fully Polynomial
Time Approximation Scheme (FPTAS) (polynomial time with performance
guarantee), or a Greedy algorithm [14], [15].

the MCS index to a modulation order and a code rate. Finally,
assuming that 156 Resource Elements (REs) are available for
data transmission per Resource Block (RB) [10], the PRB size
in bit is calculated according to the standardized formulas [10].

For the simulations, seven different slices were created.
Three URLLC slices that correspond to the use cases of an
intelligent transport system [21], a smart grid millisecond-
level precise load control [22], and mobile robot machine
control [23]. These use cases and their QoS requirements
are defined by the European Telecommunications Standards
Institute (ETSI) [24], [25]. It was assumed that roughly one-
third of the E2E latency can be spent on the radio transmission
to define the maximum allowed latency. Besides, three eMBB
slices are specified, where the first two correspond to mobile
users, e.g., pedestrians walking around or users driving in a car,
while the third corresponds to static users, e.g., office workers.
The required minimum data rates were chosen according
to [3]. Lastly, the mMTC slice corresponds to the use case
of Internet of Things (IoT) devices with downlink traffic [5],
[24], [26]. For each slice, the number of arriving users per
SDI is modeled as a Poisson process with various arrival
rates. Service times are assumed to be uniformly distributed
within predefined intervals per slice. The user values vu are
determined per slice, i.e., per SLA, and based on the average
resources required for fulfilling an SLA. For each slice, the
user’s CQI probability distribution is randomly sampled from
the data traces without replacement according to the mobility
type of the user. The processing durations of the UE and
the BS as well as the duration of a (N)ACK packet are
calculated as a multiple of the symbol duration based on the
values in [27]. Since all packet sizes of the URLLC traffic are
smaller than the maximum code block size [28], a packet is
transmitted using a single code block. Hence, a target Block
Error Rate (BLER) of 10−4 [29] can be taken as the packet
error rate δ. The slot duration for all slices is 0.5 ms, which
corresponds to numerology µ = 1. For this numerology, the
maximum bandwidth is 100 MHz, which corresponds to 273
PRBs [30]. Depending on the active Bandwidth Part (BWP)
size, the corresponding minimum number of PRBs comprising
a single RBG is in the set P = {2, 4, 8, 16} [10]. However,
the value 1 is also used to show the benefits of a smaller
resource granularity in the frequency domain. All parameter
values used in the simulations are summarized in Table II4.
In total, 25 discrete-time simulation runs with a duration of
1200 SDIs were conducted for every RBG size P . To solve
the knapsack problems, DP was used. The simulations were
conducted in MATLAB R2024a on a computer with an Apple
M1 processor using 16 GB of RAM, running macOS 14.2.1.

B. Benchmark Algorithms

The solutions obtained with the LTRM algorithm are compared
against three benchmarks. For the first one, P3 is solved
with the exact same solution approach. However, resource
allocation in the time domain is done on a per-slot basis,

4Wherever possible, references are given for simulation parameters. In all
other cases, reasonable values were chosen based on use case descriptions.



TABLE II: Simulation Parameters [3], [5], [10], [24]–[27], [29]

Slice Number 1 [24] 2 [25] 3 [25] 4 [3] 5 [3] 6 [3] 7 [5], [24], [26]
Traffic/Mobility Type URLLC/Static URLLC/Static URLLC/Mobile eMBB/Mobile eMBB/Mobile eMBB/Static mMTC/Mobile
User Value vu 6 5 7 20 34 48 1
User Arrival Rate [user arrivals/SDI] 1 3 2 2 2 1 15
Max. Queue Waiting Time [SDI] 30 1 20 5 5 5 20
Min./Max. Service Durations [SDI] {60, . . . , 144} {1, . . . , 3} {30, . . . , 90} {30, . . . , 120} {30, . . . , 120} {30, . . . , 120} {60, . . . , 180}
Packet Size ∆u [bit] 2208 960 1320 — — — 8160
Max. Delay Dmax

s [ms] 10 20 3 — — — —
Reliability (1-ϵls) [%] 99.999 99.9 99.99 — — — —
Packet Probability pu [%] 20 80 33.3 — — — —
Minimum Data Rates Rmin

s [Mbps] — — — 3 5 10 —
Packet Arrival Rate λs [pkts./SDI] — — — — — — 20
Avail. RBGs NM per P [RBG] — — — — — — {4, 2, 1, 1, 1}
Proc. Dur. at the BS plus (N)ACK Dur. T p,BS + TN/ACK [ms] [27] 0.2143 Packet Error Rate δ [29] 10−4

Proc. Dur. at the UE T p,UE [ms] [27] 0.1429 PRBs per RBG P [10] {1, 2, 4, 8, 16}
Numerology µ; Slot Dur. [ms]; Number of PRBs [30] 1; 0.5; 273 Slice Dimensioning Interval T slice [ms] 1000

which is the resource granularity in [31], [32]. By comparing
to this benchmark, called Benchmark 1 (BM1), the benefit
of exploiting the presented symbol-based allocation is demon-
strated. Furthermore, the second and third benchmarks follow
an approach where slice dimensioning and admission control
are not performed jointly. This implies that the slices are
first dimensioned in terms of the allocated RBGs using a
slice dimensioning algorithm, e.g., [8], [33], and afterward,
the admission control is performed depending on the number
of available RBGs in each slice. For user admission control,
on the one hand, the Partially Adaptive GrEedy (PAGE) algo-
rithm [34], referred to as Benchmark 2 (BM2), is employed.
Note that only one user class is considered in this work,
and hence, the PAGE algorithm is adapted to support only
best-effort users. On the other hand, user admission control
is performed using a Greedy algorithm in the sense of [34],
where users are ordered based on their values and resource
demands. This algorithm is called Benchmark 3 (BM3). Two
different constant slice allocations are used for BM2 and BM3.
For the first, referred to as BM2.1 or BM3.1, the available
RBGs are shared equally among all slices. For the second,
called BM2.2 or BM3.2, the RBGs are distributed to the slices
proportionally to the users’ average resource demand per slice.
The different numbers of allocated RBGs per dimensioning
approach and per RBG size P are summarized in Table III.5

In general, the complexity of the sequential approach depends
on whether the slice dimensioning is performed statically or
dynamically and on the complexity of the admission control
algorithm, which is O (|Uw| log |Uw|) for the PAGE algorithm.

C. Simulation Results

First, the performance of the LTRM algorithm is compared
to all benchmarks in terms of the achieved operator revenue.
To this end, the average revenue per SDI was calculated for
every simulation run based on 1000 data points. The first 200
SDIs were not considered for evaluation as these data points
represent the initialization phase of the system. Afterward, the

5Considering dynamic resource allocation approaches for disjoint slice
dimensioning and user admission control is deferred to future work, as this
poses the challenge of guaranteeing previously accepted users’ SLAs when
redimensioning slices.

TABLE III: Bandwidths [RBGs] for Benchmark 2/3

P
Slice 1 2 3 4 5 6 7

1 39/25 39/6 39/50 39/25 39/51 39/102 39/13
2 19/13 20/3 19/25 20/13 19/25 20/51 19/6
4 10/6 10/2 9/13 10/6 10/13 9/25 10/3
8 5/3 5/1 5/6 4/3 5/6 5/13 5/2
16 2/2 3/1 2/3 3/2 2/3 3/5 2/1

mean value across all 25 average revenues was calculated
together with the 99% confidence interval. The results are
depicted in Fig. 3. Several conclusions can be drawn:

Firstly, the average revenue decreases with an increasing
RBG size P . The reason is that a larger P leads to a larger
resource granularity in the frequency domain, and thus, the
resources can be split less efficiently according to the users’
demands. The revenue gain from the largest RBG size P = 16
to the smallest size P = 1 is 40.19%. Therefore, for future
6G systems, it is highly desirable to enable smaller RBG sizes
for large BWP sizes.

Secondly, for a specific P , the joint slice dimensioning and
user admission control approach based on slot-level allocation
(BM1) outperforms all other benchmarks. This proves the
superiority of the joint approach over the disjoint solution
methods. Furthermore, BM3 achieves a higher average revenue
for a given slice configuration. The reason for this observation
is that the PAGE algorithm (BM2) prioritizes users whose
maximum waiting time is almost reached. Thus, users are
getting served although they generate less revenue given the
resources they require compared to other waiting users.

Thirdly and most importantly, for all RBG sizes P , the
proposed LTRM algorithm outperforms both BM2 and BM3
for both slice configurations. Moreover, the revenues based
on symbol-level resource allocation outperform those achieved
in case slot-level resource allocation was conducted. Hence,
it can be concluded that the LTRM algorithm optimally
exploits the small resource granularity in the time domain,
i.e., symbols, and perfectly dimensions the slice widths for
every SDI according to the resources the users require and
the revenue they generate. The performance gains achieved
when using the LTRM algorithm instead of BM1 or the best
performing BM2 or BM3, respectively, are added in Fig. 3.



Fig. 3: Average revenues per SDI including the 99% confidence interval of the LTRM alg., BM1, BM2.1, BM2.2, BM3.1, and
BM3.2 for P ∈ P and the performance gains (in %) of the LTRM alg. over BM1 and the best-performing BM2 and BM3.

The average revenue gain across all RBG sizes P over BM1
is 1.79%, while it is 40.52% over the best performing BM2
and 23.81% over the best performing BM3.

Next, the user acceptance ratios, defined as the number of
accepted users divided by all users that were either accepted
or rejected to/from the system, are investigated. The user
acceptance ratios of selected slices for P = {1, 2} achieved
with the LTRM algorithm and the PAGE algorithm with slice
widths based on the users’ average resource demand (BM2.2)
are depicted in Fig. 4. It is discernible that the user acceptance
ratio highly depends on the specific service type and different
resource granularities in the frequency domain, i.e., the RBG
size P . For all slices but the mMTC slice, the acceptance
ratios are higher for smaller RBG sizes P . This trend was
also perceivable for higher P and can especially be observed
for the URLLC slices, as these users generally require a
small amount of resources, and hence their profit-to-resource
consumption factor decreases with increasing P . The user
acceptance ratios for the eMBB slice are quite low due to the
high resource demand of these users and the comparably high
service durations. The acceptance ratios for the other eMBB
slices were in the same range as the depicted values. Generally,
the acceptance ratios achieved with the LTRM algorithm are
higher than the ratios obtained with the PAGE algorithm, as
the slice widths can be adjusted perfectly to the demands of the
waiting users. Only for the eMBB users the acceptance ratios
are higher for BM2.2, as there is a fixed amount of resources
reserved for these users, whereas resources are reallocated to
other slices with the LTRM algorithm in case there are waiting
users in other slices that have a higher profit-to-resource
consumption factor. The acceptance ratios for the mMTC slice
are close to zero for the PAGE algorithm, as there is a very
high number of arriving users and the available resources in an
SDI cannot be adjusted to the demands. Similar conclusions
can be drawn when comparing the LTRM algorithm to the
other benchmarks. Finally, it must be noted that the acceptance
ratios and thus the fairness among the users can be strongly
influenced by adjusting the prices for a specific service, which

Fig. 4: User acceptance ratios over 1000 SDIs for the LTRM
algorithm and BM2.2 for P = 1 and P = 2 for selected slices.

influences a user’s profit-to-resource consumption factor.6

To verify the slice width adaptations realized by the LTRM
algorithm and to compare them among the different slices and
for various RBG sizes P , the coefficient of variation (cv) for
the slice widths in RBGs is given in Table IV. If no value is
shown, these slices were not allocated any resources for this
RBG size since only users from other slices were accepted
in the network due to better profit-to-resource consumption
factors. The cv is higher the smaller the service durations are,
i.e., the higher the user fluctuation is. No clear trend is apparent
when comparing cv across different P . However, for large P
and for high consuming users, i.e., eMBB slices, cv tends to be
larger, as single users with a very high resource demand that
were accepted or are leaving the system have a large influence
on the slice width in a given SDI.

To emphasize the impact of symbol-level resource allocation
in the time domain, the accumulated revenues of all URLLC

6To ensure a specific minimum fairness among all users, minimum accep-
tance rates per slice can be added as constraints to the optimization problem,
or resources can be reserved for certain slices with low acceptance ratios.
This task is beyond the scope of this paper and is deferred to future work.



TABLE IV: Coefficient of variation (cv) for the slice widths
in RBGs for the LTRM algorithm over 1000 SDIs

P
Slice 1 2 3 4 5 6 7

1 0.145 0.522 0.197 0.433 0.588 0.660 0.143
2 0.151 1.541 0.216 0.436 0.559 0.751 0.129
4 — — 0.430 0.431 0.566 0.663 0.058
8 — — — 0.350 0.837 0.750 0.106
16 — — — 1.930 0.438 0.490 0.167

Fig. 5: Accumulated average URLLC revenues per SDI for
the LTRM algorithm and BM1 for P = 1, P = 2, P = 4.

slices achieved with the LTRM algorithm and with BM1 are
depicted for P = {1, 2, 4} in Fig. 5. Since eMBB users
constantly require resources, the resource granularity in the
time domain does not influence them. However, URLLC
and mMTC users are positively affected by smaller resource
granularities in the time domain due to faster retransmissions
and better-fitted resource allocations. Hence, there are large
revenue gains of 13.34% to 19.48% observable that are
achieved when only considering URLLC slices. Since the
revenue gains shown in Fig. 3 are based on all slices and the
individual value of eMBB users is quite high, the observed
revenue gains over BM1 are much smaller.

Finally, the average run times over 1000 SDIs and 25
simulation runs of the DP algorithm employed to solve P3,
which is the dominating time-consuming process within the
LTRM algorithm, were analyzed. Although the simulations
were conducted on a personal computer, the average runtimes
are below 1 ms for all RBG sizes P . These values emphasize
the practicality and scalability of the proposed algorithm and
show that SDI durations as small as 10 ms are possible.
Smaller intervals are not considered useful as the slice re-
configuration overhead would be excessive.

V. RELATED WORK

There exist several works on resource allocation to various
network slices, mainly with the objective of revenue maxi-
mization [8], [32], [33], [35]–[39]. Due to the complexity of
allocating radio resources while fulfilling SLAs, many works
rely on Reinforcement Learning (RL) based solutions [32],

[33], [37], [38]. Since the RL agents require the SLA satisfac-
tion rate as feedback to take proper actions, these solutions
have to cope with the disadvantage of being reactive, i.e.,
no QoS guarantees can be given. In [35], an auction-based
approach is taken, where service and network providers place
bids by requesting and offering resources. The GREET [36] al-
gorithm allocates radio resources across a set of BSs to various
network slices. Enough resources are assumed to be available
to fulfill all slices’ minimum resource demands while GREET
distributes all remaining resources. In [8], the authors leverage
different numerologies and, thus, multiplex slices in the time
and frequency domain for efficient radio resource usage. The
authors of [39] develop a network slicing framework including
algorithms for network slice pricing and resource allocation
with the objective of maximizing a service provider’s profit
and overall resource utilization. Since the approach relies on a
resource demand predictor, QoS guarantees cannot be ensured.

To efficiently manage the network load, there exists a large
body of slice and user admission control schemes [31], [34],
[40]–[42]. The works [40], [41] deal with slice admission
control for heterogeneous slices based on queueing systems.
The objective of [41] is to maximize the network slice
providers’ long-term revenue, while the algorithm in [40] is
designed for general utility functions. In [31] and [42], user
admission control algorithms are presented. While the authors
of [31] propose both an offline and an online algorithm for
admission control of users’ service requests, an algorithm with
the objective of maximizing revenue and resource utilization
is devised in [42]. In [34], a user admission control heuristic
called PAGE algorithm is introduced. The authors consider two
different willingness-to-pay user classes. Admission control is
then done using a Greedy algorithm, where users are ordered
based on their profit, resource demand, and queueing time.

The works [6], [7], [43] deal with both user admission con-
trol/slice association and dimensioning. Although the authors
of [6] design a joint optimization problem, they solve the prob-
lem sequentially by first performing user admission control
and then conducting slice association and bandwidth alloca-
tion. The authors of [43] develop a RAN slicing framework
that enables to perform slice admission and dimensioning, and
UE to slice association. The slice dimensioning is done peri-
odically based on the SLA statuses. However, no specific slice
admission control policy or resource allocation mechanism
has been developed. A slice dimensioning framework based
on SLA fulfillment, slice configuration, and channel quality
monitoring is devised in [7]. User admission control is also
performed, but due to necessary data acquisition processes,
the presented approach has a response time in the order of
seconds, which is two orders of magnitude greater than the
potential SDIs in the present work.

VI. CONCLUSION

In this paper, a joint slice dimensioning and user admission
control optimization problem was formulated and integrated
into an algorithm for long-term revenue maximization. The
novel joint approach offers considerable performance gains.



The maximum observed gain between the average per-SDI
revenues across all RBG sizes P is 64.46%. Besides, con-
ducting RAN resource allocation on the symbol-level offers
significant performance gains for URLLC and mMTC slices.
An operator’s revenue can be increased further by decreasing
the RBG size for resource allocation in the frequency domain.
The increase from P = 16 to P = 1 is 40.19%. Finally, the
time complexity analysis and the run time measurements prove
the applicability of the proposed algorithm in real networks.
Considering fairness among users and including mobility man-
agement in a multi-BS setup is seen as possible future work.
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