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Abstract— Recovering the 3D motion of the heart from
cine cardiac magnetic resonance (CMR) imaging enables
the assessment of regional myocardial function and is
important for understanding and analyzing cardiovascular
disease. However, 3D cardiac motion estimation is chal-
lenging because the acquired cine CMR images are usually
2D slices which limit the accurate estimation of through-
plane motion. To address this problem, we propose a novel
multi-view motion estimation network (MulViMotion), which
integrates 2D cine CMR images acquired in short-axis and
long-axis planes to learn a consistent 3D motion field of the
heart. In the proposed method, a hybrid 2D/3D network is
built to generate dense 3D motion fields by learning fused
representations from multi-view images. To ensure that the
motion estimation is consistent in 3D, a shape regular-
ization module is introduced during training, where shape
information from multi-view images is exploited to provide
weak supervision to 3D motion estimation. We extensively
evaluate the proposed method on 2D cine CMR images
from 580 subjects of the UK Biobank study for 3D motion
tracking of the left ventricular myocardium. Experimental
results show that the proposed method quantitatively and
qualitatively outperforms competing methods.

Index Terms— Multi-view, 3D motion tracking, shape reg-
ularization, cine CMR, deep neural networks.
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I. INTRODUCTION

HE motion of the beating heart is a rhythmic pattern of
non-linear trajectories regulated by the circulatory system
and cardiac neuroautonomic control [1]-[3]. Estimating car-
diac motion is an important step for the exploration of cardiac
function and the diagnosis of cardiovascular diseases [1], [4],
[5]. In particular, left ventricular (LV) myocardial motion
tracking enables spatially and temporally localized assessment
of LV function [6]. This is helpful for the early and accurate
detection of LV dysfunction and myocardial diseases [7], [8].
Cine cardiac magnetic resonance (CMR) imaging supports
motion analysis by acquiring sequences of 2D images in
different views. Each image sequence covers the complete
cardiac cycle containing end-diastolic (ED) and end-systolic
(ES) phases [10]. Two types of anatomical views are identified,
including (1) short-axis (SAX) view and (2) long-axis (LAX)
view such as 2-chamber (2CH) view and 4-chamber (4CH)
view (Fig. 1). The SAX sequences typically contain a stack
of 2D slices sampling from base to apex in each frame (e.g.,
9-12 slices). The LAX sequences contain a single 2D slice
that is approximately orthogonal to the SAX plane in each
frame. These acquired images have high temporal resolution,
high signal-to-noise ratio as well as high contrast between the
blood pool and myocardium. With these properties, cine CMR
imaging has been utilized in recent works for 2D myocardial
motion estimation, e.g., [11]-[15].

2D myocardial motion estimation only considers motion in
either the SAX plane or LAX plane and does not provide
complete 3D motion information for the heart. This may lead
to inaccurate assessment of cardiac function. Therefore, 3D
motion estimation that recovers myocardial deformation in
the X, Y and Z directions is important. However, estimating
3D motion fields from cine CMR images remains challenging
because (1) SAX stacks have much lower through-plane reso-
lution (typically 8 mm slice thickness) than in-plane resolution
(typically 1.8 x 1.8 mm), (2) image quality can be negatively
affected by slice misalignment in SAX stacks as only one or
two slices are acquired during a single breath-hold, and (3)
high-resolution 2CH and 4CH view images are too spatially
sparse to estimate 3D motion fields on their own.

In this work, we take full advantage of both SAX and
LAX (2CH and 4CH) view images, and propose a multi-view
motion estimation network for 3D myocardial motion tracking
from cine CMR images. In the proposed method, a hybrid
2D/3D network is developed for 3D motion estimation.
This hybrid network learns combined representations from
multi-view images to estimate a 3D motion field from the ED

For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Examples of 2D cine CMR scans of a healthy subject. Cine
CMR scans are acquired from short-axis (SAX) view and two long-axis
(LAX) views. The SAX view contains a stack of 2D images while each
LAX view contains a single 2D image. (a) XY-plane of the SAX stack.
(b) XZ-plane of the SAX stack. (c) LAX 2-chamber (2CH) view. (d) LAX
4-chamber (4CH) view. Red and green contours’ show the epicardium
and endocardium, respectively. The area between these contours is the
myocardium of the left ventricle. We show the end-diastolic (ED) frame
(top row) and the end-systolic (ES) frame (bottom row) of the cine CMR
image sequence.

frame to any t-th frame in the cardiac cycle. To guarantee an
accurate motion estimation, especially along the longitudinal
direction (i.e., the Z direction), a shape regularization module
is introduced to leverage anatomical shape information for
motion estimation during training. This module encourages
the estimated 3D motion field to correctly transform the 3D
shape of the myocardial wall from the ED frame to the 7-th
frame. Here anatomical shape is represented by edge maps that
show the contour of the cardiac anatomy. During inference,
the hybrid network generates a sequence of 3D motion fields
between paired frames (ED and ¢-th frames), which represents
the myocardial motion across the cardiac cycle. The main
contributions of this paper are summarized as follows:

o« We develop a solution to a challenging cardiac motion
tracking problem: learning 3D motion fields from a set
of 2D SAX and LAX cine CMR images. We propose
an end-to-end trainable multi-view motion estimation net-
work (MulViMotion) for 3D myocardial motion tracking.

o The proposed method enables accurate 3D motion track-
ing by combining multi-view images using both latent
information and shape information: (1) the representa-
tions of multi-view images are combined in the latent
space for the generation of 3D motion fields; (2) the com-
plementary shape information from multi-view images
is exploited in a shape regularization module to provide
explicit constraint on the estimated 3D motion fields.

o The proposed method is trained in a weakly supervised
manner which only requires sparsely annotated data in
different 2D SAX and LAX views and requires no
ground truth 3D motion fields. The 2D edge maps from
the corresponding SAX and LAX planes provide weak
supervision to the estimated 3D edge maps for guiding
3D motion estimation in the shape regularization module.

I'The contours are generated based on [9] and a manual quality control.
Detailed information is shown in Sec. IV-A.

o We perform extensive evaluations for the proposed
method on 580 subjects from the UK Biobank study.
We further present qualitative analysis on the CMR
images with severe slice misalignment and we explore
the applicability of our method for wall thickening mea-
surement.

Il. RELATED WORK

1) Conventional Motion Estimation Methods: A common
method for quantifying cardiac motion is to track noninvasive
markers. CMR myocardial tagging provides tissue markers
(stripe-like darker tags) in myocardium which can deform
with myocardial motion [16]. By tracking the deformation
of markers, dense displacement fields can be retrieved in
the imaging plane. Harmonic phase (HARP) technique is the
most representative approach for motion tracking in tagged
images [17]-[19]. Several other methods have been proposed
to compute dense displacement fields from dynamic myocar-
dial contours or surfaces using geometrical and biomechanical
modeling [20], [21]. For example, Papademetris et al. [21]
proposed a Bayesian estimation framework for myocardial
motion tracking from 3D echocardiography. In addition, image
registration has been applied to cardiac motion estimation
in previous works. Craene et al. [22] introduced continuous
spatio-temporal B-spline kernels for computing a 4D velocity
field, which enforced temporal consistency in motion recovery.
Rueckert et al. [23] proposed a free form deformation (FFD)
method for general non-rigid image registration. This method
has been used for cardiac motion estimation in many recent
works, e.g., [1], [4], [6], [14], [24]-[27]. Thirion [28] built a
demons algorithm which utilizes diffusing models for image
matching and further cardiac motion tracking. Based on
this work, Vercauteren et al. [29] adapted demons algorithm
to provide non-parametric diffeomorphic transformation and
McLeod et al. [30] introduced an elastic-like regularizer to
improve the incompressibility of deformation recovery.

2) Deep Learning-Based Motion Estimation Methods: In
recent years, deep convolutional neural networks (CNNs)
have been successfully applied to medical image analysis,
which has inspired the exploration of deep learning-based car-
diac motion estimation approaches. Qin ef al. [11] proposed a
multi-task framework for joint estimation of segmentation and
motion. This multi-task framework contains a shared feature
encoder which enables a weakly-supervised segmentation.
Zheng et al. [12] proposed a method for cardiac pathology
classification based on cardiac motion. Their method utilizes
a modified U-Net [31] to generate flow maps between ED
frame and any other frame. For cardiac motion tracking in
multiple datasets, Yu er al. [15] considered the distribution
mismatch problem and proposed a meta-learning-based online
model adaption framework. Different from these methods
which estimate motion in cine CMR, Ye et al. [32] proposed a
deep learning model for tagged image motion tracking. In their
work, the motion field between any two consecutive frames
is first computed, followed by estimating the Lagrangian
motion field between ED frame and any other frame. Most of
these existing deep learning-based methods aim at 2D motion
tracking by only using SAX stacks. In contrast, our method
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Fig. 2. An overview of MulViMotion. We use a hybrid 2D/3D network to estimate a 3D motion field ¢ from the input multi-view images. In the hybrid
network, FeatureNet learns multi-view motion feature Fy; and multi-view shape feature Fg from the input, followed by MotionNet which generates
@ based on F. A shape regularization module leverages anatomical shape information for 3D motion estimation. It encourages the predicted 3D
edge maps of the myocardial wall Ey/E; (predicted from Fg using ShapeNet) and the warped 3D edge map Eq_, ; (warped from ED frame to the t-th
frame by ®;) to be consistent with the ground truth 2D edge maps defined on multi-view images. Shape regularization is only used during training.

focuses on 3D motion tracking by fully combining multiple
anatomical views (i.e., SAX, 2CH and 4CH), which is able to
estimate both in-plane and through-plane myocardial motion.

3) Multi-View Based Cardiac Analysis: Different anatomical
scan views usually contain complementary information and the
combined multiple views can be more descriptive than a single
view. Chen et al. [33] utilized both SAX and LAX views for
2D cardiac segmentation, where the features of multi-view
images are combined in the bottleneck of 2D U-Net. Puyol-
Antén et al. [27] introduced a framework that separately uses
multi-view images for myocardial strain analysis. In their
method, the SAX view is used for radial and circumferential
strain estimation while the LAX view is used for longitu-
dinal strain estimation. Abdelkhalek et al. [34] proposed a
3D myocardial strain estimation framework, where the point
clouds from SAX and LAX views are aligned for surface
reconstruction. Attar et al. [35] proposed a framework for 3D
cardiac shape prediction, in which the features of multi-view
images are concatenated in CNNs to predict the 3D shape
parameters. In this work, we focus on using multi-view images
for 3D motion estimation. Compared to most of these existing
works which only combine the features of multi-view images
in the latent space (e.g., [33], [35]), our method additionally
combines complementary shape information from multiple
views to predict anatomically plausible 3D edge map of
myocardial wall on different time frames, which provides
guidance for 3D motion estimation.

I11. METHOD
Our goal is to estimate 3D motion fields of the
LV  myocardium from multi-view 2D cine CMR

images. We formulate our task as follows: Let
54 = {14 e RIXWxD10 <t < T — 1} be a SAX sequence
which contains stacks of 2D images (D slices) and
LA {ItZChERHXW’I;lchERHXW|O<t<T_1} be
LAX sequences which contain 2D images in the 2CH and
4CH views. H and W are the height and width of each image
and T is the number of frames. We want to train a network
to estimate a 3D motion field ®; € RF*WxDx3 py ysing the
multi-view images of the ED frame ({3“, IzCh I4Ch}) and
of any ¢-th frame ({19, I; 2ch g 4Ch}) [ON descrlbes the motion
of the LV myocardlum from ED frame to the ¢-th frame.
For each voxel in @;, we estimate its displacement in the
X, Y, Z directions.

To solve this task, we propose MulViMotion that estimates
3D motion fields from multi-view images with shape regular-
ization. The schematic architecture of our method is shown
in Fig. 2. A hybrid 2D/3D network that contains FeatureNet
(2D CNNs5s) and MotionNet (3D CNNs) is used to predict @,
from the input multi-view images. FeatureNet learns multi-
view multi-scale features and is used to extract multi-view
motion feature F); and multi-view shape feature Fs from
the input. MotionNet generates @, based on Fj;. A shape
regularization module is used to leverage anatomical shape
information for 3D motion estimation during training. In this
module, 3D edge maps of the myocardial wall are predicted
from Fg using ShapeNet and warped from ED frame to the
t-th frame by ®;. The sparse ground truth 2D edge maps
derived from the multi-view images provide weak supervision
to the predicted and warped 3D edge maps, and thus encourage
an accurate estimation of ®,, especially in the Z direction.
Here, a slicing step is used to extract corresponding multi-view
planes from the 3D edge maps in order to compare 3D edge
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Fig. 3. An overview of FeatureNet. FeatureNet takes multi-view images as input and extracts multi-view motion feature Fy; and multi-view shape
feature Fg. Panel (a) describes multi-scale feature fusion. Panel (b) shows the 2D encoder fwi, where i = {sa, 2ch, 4ch} refers to SAX, 2CH and

4CH views. Panel (c) describes the combination of multi-view features.

maps with 2D ground truth. During inference, a 3D motion
field is directly generated from the input multi-view images
by the hybrid network, without using shape regularization.

A. 3D Motion Estimation

1) Multi-View Multi-Scale Feature Extraction (FeatureNet):
The first step of 3D motion estimation is to extract inter-
nal representations from the input 2D multi-view images
{1 ;", Ijzc”, I4h) Jj = {0, t}}. We build FeatureNet to simultane-
ously learn motion and shape feature from the input because
the motion and shape of the myocardial wall are closely
related and can provide complementary information to each
other [11], [36], [37]. FeatureNet consists of (1) multi-scale
feature fusion and (2) multi-view concatenation (see Fig. 3).

In the multi-scale feature fusion (Fig. 3 (a)), the input
multi-view images are unified to D-channel 2D feature maps
by applying 2D convolution on 2CH and 4CH view images.
Then three 2D encoders { fy;|i = {sa, 2ch, 4ch}} are built to
extract motion and shape features from each anatomical view,

{Fip, FiY = fo, (5, 1)), i = {sa,2ch, 4ch). (D

Here, i represents anatomical views and y; refers to the
network parameters of fy,. F ;V[ and F g are the learned motion
feature and shape feature, respectively. As these encoders
aim to extract the same type of information (i.e., shape and
motion information), the three encoders share weights to learn
representations that are useful and related to different views.

In each encoder, representations at different scales are fully
exploited for feature extraction. { fy, |i = {sa, 2ch, 4ch}} con-
sists of (1) a Siamese network that extracts features from both
ED frame and 7-th frame, and (2) feature-fusion layers that
concatenate multi-scale features from pairs of frames (Fig. 3
(b)). From the Siamese network, the last feature maps of the
two streams are used as shape feature of the ED frame (F¢ 0)
and the ¢-th frame (F é ;). respectively, and Fi ¢ =1{F g o0 Fs ; NE
All features across different scales from both streams are
combined by feature-fusion layers to generate motion feature
F 1lw In detail, these multi-scale features are upsampled to the
original resolution by a convolution and upsampling operation
and then combined using a concatenation layer.

With the obtained {F},, Fili = {sa,2ch,4ch}}, a multi-
view concatenation generates the multi-view motion feature
Fjy and the multi-view shape feature Fs via channel-wise
concatenation C(, -, -) (see Fig. 3 (¢)),

2h 4ch
FSj_C( s], SCJ,FC)

)

Fi = C(Fyf, Fif", Fyf™),

Here j = {0,¢} and Fs = {Fs o, Fs_+}.

The FeatureNet model is composed of 2D CNNs which
learns 2D features from the multi-view images and inter-
slice correlation from SAX stacks. The obtained Fj; is first
unified to D-channels using 2D convolution and then is used
to predict @, in the next step. The obtained Fs is used for
shape regularization in Sec. III-B.

2) Motion Estimation (MotionNet): In this step, we introduce
MotionNet to predict the 3D motion field ®; by learning
3D representations from the multi-view motion feature Fjy.
MotionNet is built with a 3D encoder-decoder architecture.
@, is predicted by MotionNet with

®; = go(U(Fu)), 3)

where gy represents MotionNet and § refers to the network
parameters of gp. The function U(-) denotes an un-squeeze
operation which changes F); from a stack of 2D feature maps
to a 3D feature map by adding an extra dimension.

3) Spatial Transform (Warping): Inspired by the successful
application of spatial transformer networks [38], [39], the SAX
stack of the ED frame (/j?) can be transformed to the t-th
frame using the motion field ®,. For voxel with location
p in the transformed SAX stack (Ij¢,), we compute the
corresponding location p’ in I§“ by p’ = p+®;(p). As image
values are only defined at discrete locations, the value at p in
13¢ , is computed from p’ in /¢ using trillinear interpolation.?

4) Motion Loss: As true dense motion fields of paired
frames are usually unavailable in real practice, we propose
an unsupervised motion loss L., to evaluate the 3D motion
estimation model using only the input SAX stack (/) and
the generated 3D motion field (®;). L0, consists of two

2This is implemented by Pytorch function grid_sample().
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components: (1) an image similarity loss Ly;,, that penalizes
appearance difference between I/¢ and I3“ ,, and (2) a local
smoothness 10ss Lg;,00r5 that penalizes the gradients of @y,

ﬁmou = £sim + j«ﬁsmooth~ (4)

Here A is a hyper-parameter, Ly;,, is defined by voxel-wise
mean squared error and Lg00: 18 the Huber loss used in [11],
[39] which encourages a smooth @y,

1 N
Loim = & 2 U (i) = 5% ()%, (5)
i=1

N
e+ > 1ve:(p)l2,

»Csmooth =
i=1
0D (pi) 0®@:(pi) 0D/(pi)
VO (pi) = ( afxl : ;yl : éz 2). (6
Here % ~ O(pi, + 1, pi,» pi.) — @:(pi,, piy» pi,) and

acI)l (P:

we use the same approximation to and aq)é(p 1) Same

to [11], [39], € is set to 0.01. In Eq. 5 and Eq 6, p;i is the ith
voxel and N denotes the number of voxels.

Note that Ly, is only applied to SAX stacks because 2D
images in 2CH and 4CH views typically consist of only one
slice and can not be directly warped by a 3D motion field.

B. Shape Regularization

The motion loss (L,,) on its own is not sufficient to
guarantee motion estimation in the Z direction due to the
low through-plane resolution in SAX stacks. To address this
problem, we introduce a shape regularization module which
ensures the 3D edge map of the myocardial wall is correct
before and after ®; warping, and thus enables an accurate
estimation of @;. Here, the ground truth 2D edge maps derived
from the multi-view images provide weak supervision to the
predicted and warped 3D edge maps.

1) Shape Estimation (ShapeNet): ShapeNet is built to gen-
erate the 3D edge map of the myocardial wall in the ED frame
(13"0) and the ¢-th frame (Ig"t) from Fs = {Fs o, Fs_+},

Eo = hi(Fso), Ei=hy(Fs). (7)

Here h; and h, are the two branches in ShapeNet which
contain shared 2D decoders and 3D convolutional layers in
order to learn 3D edge maps from 2D features for all frames
(Fig. 4). The dimension of Eo and Et are H x W x D. With
the spatial transform in Sec. III-A.3, Eg is warped to the 7-
th frame by @;, which generates the transformed 3D edge
map E()_>, Then Eo, E, and E()_>, are weakly supervised by
ground truth 2D edge maps.

2) Slicing: To compare the 3D edge maps with 2D ground
truth, we use 3D masks {M?, M>" M4Ch} to extract SAX,
2CH and 4CH view planes from E(), E, and E0_>, with

E\=M ©Ey,El =M QE, E\ , =M ©Eos, (8)

where i = {sa,2ch,4ch} represents anatomical views and
© refers to element-wise multiplication. These 3D masks
describe the locations of multi-view images in SAX stacks and
are generated based on the input during image preprocessing.

ED frame 3D edge maps 2D convolution
F ~
so—ug~ O ] Eo ff 3D convolution
Frame t Share weights

Fig. 4. An overview of ShapeNet. ShapeNet predicts the 3D edge
maps of the LV myocardial wall in ED frame and the t-th frame from
the corresponding shape features Fg o and Fg ;.

U Un-squeeze

3 Shape Loss: The sliced 2D edge maps
{E’, 0_>,|l = {sa,2ch,4ch}} are compared to 2D
ground truth {E’,E,’Ii = {sa,2ch,4ch}} by a shape loss
L:Shape,

ﬁshape = Eg + £;9 + ﬁgﬁp )

For each component in Lgpqpe, We utilize cross-entropy loss
(CE(, -)) to measure the similarity of edge maps, e.g.,

s _ pi g
Ly = Zi:{sa,ZchAch} CE(Eg, Eo)-

Same to Eq. 10, llts is computed by {E E'} and L3
computed by {E_,,, E}}.

(10)

00—t

C. Optimization

Our model is an end-to-end trainable framework and the
overall objective is a linear combination of all loss functions
min{Lsim + ALsmoorh + ,B»Cshape}; (11)

where 1 and f are hyper-parameters chosen experimen-
tally depending on the dataset. We use the Adam optimizer
(learning rate = 10_4) to update the parameters of MulViMo-

tion. Our model is implemented by Pytorch and is trained on
a NVIDIA Tesla T4 GPU with 16 GB of memory.

IV. EXPERIMENTS

We demonstrate our method on the task of 3D myocardial
motion tracking. We evaluate the proposed method using
quantitative metrics such as Dice, Hausdorff distance, volume
difference and Jacobian determinant. Geometric mesh is used
to provide qualitative results with 3D visualization. We com-
pared the proposed method with other state-of-the-art motion
estimation methods and performed extensive ablation study.
In addition, we show the effectiveness of the proposed method
on the subjects with severe slice misalignment. We further
explore the applicability of the proposed method for wall
thickening measurement. We show the key results in the main
paper. More results (e.g., dynamic videos) are shown in the
Appendix.’

3Code is at DOI: 10.5281/zenodo.6092253
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TABLE |
PARTICIPANT CHARACTERISTICS. DATA ARE MEAN+STANDARD
DEVIATION FOR CONTINUOUS VARIABLES AND NUMBER OF
PARTICIPANT FOR CATEGORICAL VARIABLE

Parameter Value (Subject number is 580)
Age (years) 64+8

Sex (Female/Male) 3257/ 255

Ejection fraction (%) 60+6

Weight (kg) 74+£15

Height (cm) 16949

Body mass index (kg/m?) 26+4

Diastolic blood pressure (mm Hg) 79410

Systolic blood pressure (mm Hg) 138£19

A. Experiment Setups

1) Data: We performed experiments on randomly selected
580 subjects from the UK Biobank study.* All participants
gave written informed consent [40]. The participant char-
acteristics are shown in Table I. The CMR images of all
subjects are acquired by a 1.5 Tesla scanner (MAGNETOM
Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen,
Germany). Each subject contains SAX, 2CH and 4CH view
cine CMR sequences and each sequence contains 50 frames.
More CMR acquisition details for UK Biobank study can
be found in [41]. For image preprocessing, (1) SAX view
images were resampled by linear interpolation from a spacing
of ~ 1.8x1.8x 10mm to a spacing of 1.25x1.25x2mm while
2CH and 4CH view images were resampled from ~ 1.8 x
1.8 mm to 1.25 x 1.25mm, (2) by keeping the middle slice of
the resampled SAX stacks in the center, zero-padding was used
on top or bottom if necessary to reshape the resampled SAX
stacks to 64 slices, (3) to cover the whole LV as the ROI, based
on the center of the LV in the middle slice, the resampled SAX
stacks were cropped to a size of 128 x 128 x 64 (note that we
computed the center of the LV based on the LV myocardium
segmentation of the middle slice of the SAX stack), (4) 2CH
and 4CH view images were cropped to 128 x 128 based on
the center of the intersecting line between the middle slice
of the cropped SAX stack and the 2CH/4CH view image, (5)
each frame was independently normalized to zero mean and
unitary standard deviation, and (6) 3D masks (Eq. 8) were
computed by a coordinate transformation using DICOM image
header information of SAX, 2CH and 4CH view images. Note
that 2D SAX slices used in the shape regularization module
were unified to 9 adjacent slices for all subjects, including the
middle slice and 4 upper and lower slices. With this image
preprocessing, the input SAX, 2CH and 4CH view images
cover the whole LV in the center.

3D high-resolution segmentations of these subjects were
automatically generated using the 4Dsegment tool [9] based
on the resampled SAX stacks, followed by manual quality
control. The obtained segmentations have been shown to be
useful in clinical applications (e.g., [1]), and thus we use
them to generate ground truth 2D edge maps (Fig. 1) in this
work. In detail, we utilize the obtained 3D masks to extract
SAX, 2CH and 4CH view planes from these 3D segmenta-

4Application number 40616, https://www.ukbiobank.ac.uk/

tions and then use contour extraction to obtain {EZ, Efli =
{sa,2ch,4ch}} used in Sec. III-B.2. Note that we use 3D
segmentation(s) to refer to the 3D segmentations obtained
by [9] in this section.

We split the dataset into 450/50/80 for train/validation/test
and train MulViMotion for 300 epochs. The hyper-parameters
in Eq. 11 are selected as 4 = 0.005, § = 5.

2) Evaluation Metrics: We use segmentations to provide
quantitative evaluation to the estimated 3D motion fields. This
is the same evaluation performed in other cardiac motion
tracking literature [11], [12], [15]. Here, 3D segmentations
obtained by [9] are used in the evaluation metrics. The frame-
work in [9] performs learning-based segmentation, followed
by an atlas-based refinement step to ensure robustness towards
potential imaging artifacts. The generated segmentations are
anatomically meaningful and spatially consistent. As our work
aims to estimate real 3D motion of the heart from the
acquired CMR images, such segmentations that approximate
the real shape of the heart can provide a reasonable evaluation.
In specific, on test data, we estimate the 3D motion field @gg
from ED frame to ES frame, which shows large deformation.
Then we warp the 3D segmentation of the ED frame (Sgp) to
ES frame by ®gg. Finally, we compared the transformed 3D
segmentation (Sgp— gs) with the ground truth 3D segmenta-
tion of the ES frame (Sgs) using following metrics. Note that
the ES frame is identified as the frame with the least image
intensity similarity to the ED frame.

Dice score and Hausdorff distance (HD) are utilized to
respectively quantify the volume overlap and contour distance
between Sgs and Sgp—fgs. A high value of Dice and a low
value of HD represent an accurate 3D motion estimation.

Volume difference (VD) is computed to evaluate the vol-
ume preservation, as incompressible motion is desired within
the myocardium [13], [19], [25], [30]. VD = |V(Sgp) —
V(SeEp—ES)|/V(SEp), where V() computes the number of
voxels in the segmentation volume. A low value of VD means
a good volume preservation ability of ®fg.

The Jacobian determinant det(Jog) (Jorg = VPgs) is
employed to evaluate the local behavior of ®gg: A negative
Jacobian determinant det(Jo.4(p)) <O indicates that the
motion field at position p results in folding and leads to non-
diffeomorphic transformations. Therefore, a low number of
points with det (Jo.4(p)) < 0 corresponds to an anatomically
plausible deformation from ED frame to ES frame and thus
indicates a good ®gg. We count the percentage of voxels in
the myocardial wall with det(Jo.(p)) < O in the evaluation.

3) Baseline Methods: We compared the proposed method
with three cardiac motion tracking methods, including two
conventional methods and one deep learning method. The
first baseline is a B-spline free form deformation (FFD) algo-
rithm [23] which has been used in many recent cardiac motion
tracking works [1], [6], [14], [26], [27]. We use the FFD
approach implemented in the MIRTK toolkit.> The second
baseline is a diffeomorphic Demons (dDemons) algorithm [29]
which has been used in [13] for cardiac motion tracking.
We use a SimplelTK software package as the dDemons

Shttp://mirtk.github.io/
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(a) Warped 3D segmentations overlaid on multi-view images
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(b) The ground truth vs. the warped SAX stacks

Fig. 5. Examples of motion tracking results. 3D motion fields generated
by MulViMotion are used to warp 3D segmentations and SAX stacks
from ED frame to the t-th frame. (a) The warped segmentations overlaid
on SAX, 2CH and 4CH view images. (b) The ground truth (GT) and the
warped SAX stacks as well as their difference maps (i.e., GT—Warped).

implementation.6 In addition, the UNet architecture has been
used in many recent works for image registration [37], [42],
[43], and thus our third baseline is a deep learning method
with 3D-UNet [44]. The input of 3D-UNet baseline is paired
frames (I3%, I/) and output is a 3D motion field. Eq. 4 is
used as the loss function for this baseline. We implemented
3D-UNet based on its online code.” For the baseline methods
with hyper-parameters, we evaluated several sets of parameter
values. The hyper-parameters that achieve the best Dice score
on the validation set are selected.

B. 3D Myocardial Motion Tracking

1) Motion Tracking Performance: For each test subject, Mul-
ViMotion is utilized to estimate 3D motion fields in the full
cardiac cycle. With the obtained {®;|r = [0, 49]}, we warp
the 3D segmentation of ED frame (+ = 0) to the ¢-th frame.
Fig. 5 (a) shows that the estimated @, enables the warped 3D
segmentation to match the myocardial area in images from

6https:// github.com/InsightSoftwareConsortium/SimpleI TK-
Notebooks/blob/master/Python/66_Registration_Demons.ipynb
7https://github.com/wolny/pytorch—3dunet
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Fig. 6. The results of LV volume across the cardiac cycle. (a) Results on
a randomly selected test subject. (b) Results on all test subjects (mean
values and confidence interval are presented). Note that, for each subject
in (b), we normalized LV volume (dividing LV volume in all time frames by
that in the ED frame) and show the average results of all test subjects.

different anatomical views. In addition, we warp the SAX
stack of the ED frame (I3) to the ¢-th frame. Fig. 5 (b)
shows the effectiveness of ®; by comparing the warped and
the ground truth SAX view images. By utilizing the warped
3D segmentation, we further compute established clinical
biomarkers. Fig. 6 demonstrates the curve of LV volume over
time. The shape of the curve are consistent with reported
results in the literature [11], [45].

We quantitatively compared MulViMotion with baseline
methods in Table II. With the 3D motion fields generated
by different methods, the 3D segmentations of ED frame are
warped to ES frame and compared with the ground truth 3D
segmentations of ES frame by using metrics introduced in
Sec. IV-A.2. From this table, we observe that MulViMotion
outperforms all baseline methods for Dice and Hausdorff dis-
tance, demonstrating the effectiveness of the proposed method
on estimating 3D motion fields. MulViMotion achieves the
lowest volume difference, indicating that the proposed method
is more capable of preserving the volume of the myocar-
dial wall during cardiac motion tracking. Compared to a
diffeomorphic motion tracking method (dDemons [29]), the
proposed method has a similar number of voxels with a
negative Jacobian determinant. This illustrates that the learned
motion field is smooth and preserves topology.

We further qualitatively compared MulViMotion with base-
line methods in Fig. 7. A geometric mesh is used to provide
3D visualization of the myocardial wall. Specifically, 3D
segmentations of ED frame are warped to any 7-th frame
in the cardiac cycle and geometric meshes are reconstructed
from these warped 3D segmentations. Red meshes in Fig. 7
demonstrate that in contrast to all baseline methods which
only show motion within SAX plane (i.e., along the X and
Y directions), MulViMotion is able to estimate through-plane
motion along the longitudinal direction (i.e., the Z direction)
in the cardiac cycle, e.g., the reconstructed meshes of ¢t =
20 frame is deformed in the X, Y, Z directions compared to
t =0 and t = 40 frames. In addition, white meshes in Fig. 7
illustrate that compared to all baseline methods, the 3D motion
field generated by MulViMotion performs best in warping ED
frame to ES frame and obtains the reconstructed mesh of
ES frame which is most similar to the ground truth (GT)
ES frame mesh (blue meshes). These results demonstrate
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TABLE Il
COMPARISON OF OTHER CARDIAC MOTION TRACKING METHODS. 1 INDICATES THE HIGHER VALUE THE BETTER WHILE | INDICATES THE LOWER
VALUE THE BETTER. RESULTS ARE REPORTED AS “MEAN (STANDARD DEVIATION)” FOR DICE, HAUSDORFF DISTANCE (HD), VOLUME

DIFFERENCE (VD) AND NEGATIVE JACOBIAN DETERMINANT (det(Jq,ES) < 0). CPU AND GPU RUNTIMES ARE REPORTED AS THE AVERAGE

INFERENCE TIME FOR A SINGLE SUBJECT. BEST RESULTS IN BOLD

Methods Anatomical views Dice 1 HD (mm) | VD (%) | det(Jong) <0 (%)  Times CPU (s) |  Times GPU (s) |
FFD [23] SAX 0.7250 (0.0511)  20.1138 (5.1130)  14.45 (6.87) 11.94 (5.01) 15.91 -
dDemons [29] SAX 0.7219 (0.0422)  18.3945 (3.5650)  14.46 (6.38) 0.13 (0.17) 28.32 -
3D-UNet [44] SAX 0.7382 (0.0293)  17.4785 (3.1030)  30.97 (9.89) 0.95 (1.05) 16.88 1.09
MulViMotion SAX, 2CH, 4CH 0.8200 (0.0348) 14.5937 (4.2449) 8.62 (4.85) 0.93 (0.94) 3.55 1.15

FFD [23]

3D-UNet [44] dDemons [29]

MulViMotion

Y999
d99®
Y999
VY999

ED frame (GT) t=0

-
Il

p—
<

t=20

t=30 t=40 ES frame (warped) ES frame (GT)

Fig. 7. 3D visualization of motion tracking results using the baseline methods and MulViMotion. Column 1 (blue) shows the ground truth (GT) meshes
of ED frame. Columns 2-6 (red) show 3D motion tracking results across the cardiac cycle. These meshes are reconstructed from the warped 3D
segmentations (warped from ED frame to different time frames). Column 7 (white) additionally shows the reconstructed meshes of ES frame from

the motion tracking results and Column 8 (blue) shows the ground truth meshes of ES frame.

the effectiveness of MulViMotion for 3D motion tracking,
especially for estimating through-plane motion.

2) Runtime: Table II shows runtime results of MulViMotion
and baseline methods using Intel Xeon E5-2643 CPU and
NVIDIA Tesla T4 GPU. The average inference time for a sin-
gle subject is reported. FFD [23] and dDemons [29] are only
available on CPUs while the 3D-UNet [44] and MulViMotion
are available on both CPU and GPU. The results show that
our method achieves similar runtime to 3D-UNet [44] on GPU
and at least 5 times faster than baseline methods on CPU.

3) Ablation Study: For the proposed method, we explore the
effects of using different anatomical views and the importance
of the shape regularization module. We use evaluation metrics
in Sec. IV-A.2 to show quantitative results.

Table III shows the motion tracking results using different
anatomical views. In particular, M/ only uses images and 2D
edge maps from SAX view to train the proposed method, M2
uses those from both SAX and 2CH views and M3 uses those
from both SAX and 4CH views. M2 and M3 outperforms M1,
illustrating the importance of LAX view images. In addition,

TABLE IlI
3D MOTION TRACKING WITH DIFFERENT ANATOMICAL VIEWS. M1
AND M2 ARE VARIANTS OF THE PROPOSED METHOD AND M REFERS
TO MulViMotion. RESULTS ARE REPORTED THE SAME WAY AS
TABLE Il. BEST RESULTS IN BOLD

| Anatomical views |

Di HD VD
| SAX 2CH 4CH | ice 1 (mm) ¢ o ¢
Ml | 07780 (0.0275)  18.2564 (3.4031)  30.66 (1.73)
M| v Y 0.7964 (0.0273)  18.1014 (3.7146)  24.05 (5.24)
M3 | V| 07904 0.0305) 192265 (3.2441)  17.50 (4.55)
M | v v | 0820000348 14.5937 (4.2449)  8.62 (4.85)

MulViMotion (M) outperforms other variant models. This
might be because more LAX views can introduce more high-
resolution 3D anatomical information for 3D motion tracking.

In Table IV, the proposed method is trained using all three
anatomical views but optimized by different combination of
losses. Al optimizes the proposed method without shape reg-
ularization (i.e., without Lyjqpe in Eq. 11). A2 introduces basic
shape regularization on top of A/, which adds Eg and £g .
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TABLE IV
3D MOTION TRACKING WITH DIFFERENT COMBINATION OF LOSS
FUNCTIONS. A7 OPTIMIZES THE PROPOSED METHOD WITHOUT
SHAPE REGULARIZATION (WITHOUT Lgpgpe IN EQ. 11). A2 ADDS
BASIC SHAPE REGULARIZATION ON TOP OF A1. M REFERS TO
MulViMotion. ALL MODELS ARE TRAINED BY THREE ANATOMICAL
VIEWS. RESULTS ARE REPORTED THE SAME WAY AS TABLE Il. BEST
RESULTS IN BOLD

| Lshape

Dice HD (mm VD (%
1§ @ gl T e e
Al 0.7134 (0.0316)  18.9555 (3.1054)  33.93 (10.27)
A2 A VA 0.7294 (0.0295)  17.5047 (3.7485) 12.51 (4.28)
M Vv VA vV 0.8200 (0.0348) 14.5937 (4.2449) 8.62 (4.85)
0.9
T2
0.85 2
. 290
g5
0.75 3
£ 19
0.7
20%  40%  60%  80%  100% 20%  40%  60%  80%  100%

Percentage of training subiects Percentage of training subiects

Fig. 8. 3D motion tracking with different strength of shape reg-
ularization, where the shape loss (E'shape) is computed by different
percentage of training subjects (20%, 40%, 60%, 80%, 100%). The left
column is Dice score and the right column is Hausdorff distance.

for Lspape. MulViMotion (M) outperforms Al, illustrating
the importance of shape regularization. MulViMotion also
outperforms A2. This is likely because Eg and L5 are both
needed to guarantee the generation of distinct and correct 3D
edge maps for all frames in the cardiac cycle. These results
show the effectiveness of all proposed components in Lspape.

Fig. 8 shows motion estimation performance using different
strength of shape regularization. In detail, the proposed method
is trained by three anatomical views and all loss components,
but the shape loss (Lspape) is computed by different percent-
age of training subjects (20%, 40%, 60%, 80%, 100%). From
Fig. 8, we observe that motion estimation performance is
improved with an increased percentage of subjects.

4) The Influence of Hyper-Parameters: Fig. 9 presents Dice
and Hausdorff distance (HD) on the test data for various
smoothness loss weight A and shape regularization weight S
(Eq. 11). The Dice scores and HDs are computed accord-
ing to Sec. IV-A.2. We observe that a strong constraint on
motion field smoothness may scarify registration accuracy (see
Fig. 9 (a)). Moreover, registration performance improves as
f increases from 1 to 5 and then deteriorates with a further
increased B (from 5 to 9). This might be because a strong
shape regularization can enforce motion estimation to focus
mainly on the few 2D planes which contain sparse labels.

5) The Performance on Subjects With Slice Misalignment:
Acquired SAX stacks may contain slice misalignment due
to poor compliance with breath holding instructions or the
change of position during breath-holding acquisitions [46].
This leads to an incorrect representation of cardiac volume
and result in difficulties for accurate 3D motion tracking.
Fig. 10 compares the motion tracking results of 3D-UNet [44],
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Fig. 9. Effects of varied hyper-parameters on Dice and Hausdorff

distance. (a) shows the results of using various A under 8 = 5. (b) shows
the results of using various 3 under A = 0.005.

MulViMotion and MulViMotion without Lgjap. for the test
subject with the severe slice misalignment (e.g., Fig. 10 (a)
middle column). Fig. 10 (b) shows that in contrast to 3D-
UNet, the motion fields generated by MulViMotion enables
topology preservation of the myocardial wall (e.g., mesh of r =
17). MulViMotion outperforms MulViMotion without Lyjape,
which indicates the importance of the shape regularization
module for reducing negative effect of slice misalignment.
These results demonstrate the advantage of integrating shape
information from multiple views and shows the effectiveness
of the proposed method on special cases.

6) Wall Thickening Measurement: We have computed
regional and global myocardial wall thickness at ED frame
and ES frame based on ED frame segmentation and warped
ES frame segmentation,® respectively. The global wall thick-
ness at ED frame is 6.6 &= 0.9mm, which is consistent with
results obtained by [14] (5.5 £ 0.8mm). The wall thickness
at the ES frame for American Heart Association 16-segments
are shown in Table V. In addition, we have computed the
fractional wall thickening between ED frame and ES frame by
(ES—ED)/EDx%100%. The results in Table V shows that the
regional and global fractional wall thickening are comparable
with results reported in literature [47], [48].

V. DISCUSSION

In this paper, we propose a deep learning-based method
for estimating 3D myocardial motion from 2D multi-view
cine CMR images. A naive alternative to our method would
be to train a fully unsupervised motion estimation network
using high-resolution 3D cine CMR images. However, such
3D images are rarely available because (1) 3D cine imag-
ing requires long breath holds during acquisition and are
not commonly used in clinical practice, and (2) recovering

8Implemented based on https://github.com/baiwenjia/ukbb_ cardiac
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ED frame

3D-UNet [44]

Motion tracking results on 2CH view
MulViMotion

X . MulViMotion
MulViMotion 3D-UNet [44]

Motion tracking results on 4CH view

MulViMotion

t=40

t=0 t=10

t=17 t=30

(b) Motion tracking results

Fig. 10. Motion tracking results on the test subject with slice misalign-
ment. The first three columns in (a) are the three orthogonal planes of
the SAX stack and the last two columns are 2CH and 4CH view images,
respectively. (b) presents examples of motion tracking results using 3D-
UNet [44], MulViMotion and MulViMotion without Lgpape. The yellow
arrow shows an example of slice misalignment while green arrows show
examples of motion tracking failures using 3D-UNet. Note that we show
the results in frame t = 17 for a more distinct comparison.

high-resolution 3D volumes purely from 2D multi-view
images is challenging due to the sparsity of multi-view planes.

Our focus has been on LV myocardial motion tracking
because it is important for clinical assessment of cardiac func-
tion. Our model can be easily adapted to 3D right ventricular
myocardial motion tracking by using the corresponding 2D
edge maps in the shape regularization module during training.

In shape regularization, we use edge maps to represent
anatomical shape, i.e., we predict 3D edge maps of the
myocardial wall and we use 2D edge maps defined in the
multi-view images to provide shape information. This is
because (1) the contour of the myocardial wall is more repre-
sentative of anatomical shape than the content, (2) compared
to 3D dense segmentation, 3D edge maps with sparse labels
are more likely to be estimated by images from sparse multi-
view planes, and (3) using edge maps offers the potential of

TABLE V
WALL THICKNESS AT THE ES FRAME AND FRACTIONAL WALL
THICKENING BETWEEN ED AND ES FRAMES. RESULTS ARE
REPORTED AS “MEAN (STANDARD DEVIATION)”

Segments ‘ Wall thickness (mm)  Fractional wall thickening (%)
Anterior (1) 9.7 (2.7) 34.0 (39.5)
Anteroseptal (2) 5.7 (2.9) -24.4 (38.7)
Inferoseptal (3) 5.5 (2.0 -17.3 (30.2)
Basal Inferior (4) 9.0 (1.7) 47.8 (28.5)
Inferolateral (5) 11.0 (2.0) 72.8 (25.9)
Anterolateral (6) 10.9 (1.8) 62.0 (23.8)
Anterior (7) 10.9 (1.5) 79.9 (21.0)
Anteroseptal (8) 11.9 (1.6) 76.2 (21.4)
Inferoseptal (9) 10.8 (1.4) 39.8 (12.3)
Mid-ventricle Inferior (10) 10.9 (1.3) 62.5 (15.5)
Inferolateral (11) 11.2 (1.5) 73.3 (17.1)
Anterolateral (12) 10.5 (1.2) 63.9 (15.6)
Anterior (13) 10.8 (1.1) 86.3 (23.2)
Septal (14) 10.9 (1.4) 76.7 (20.5)
Apical Inferior (15) 10.6 (1.4) 76.2 (15.1)
Lateral (16) 11.1 (1.4) 84.3 (18.9)
Global | 10.1 (2.5) 55.9 (40.6)
TABLE VI

QUANTITATIVE COMPARISON BETWEEN 3D-UNet AND MulViMotion*
ON TEST SET. MulViMotion* USES UNALIGNED SAX GROUND TRUTH
EDGE MAPS DURING TRAINING. RESULTS ARE REPORTED THE SAME

WAY AS TABLE |I. BEST RESULTS IN BOLD

Methods | Dice 1 HD (mm) | VD (%) |
3D-UNet [44] 0.7382 (0.0293) 17.4785 (3.1030)  30.97 (9.89)
MulViMotion* | 0.7856 (0.0295) 16.0028 (3.9749) 21.35 (5.32)

using automatic contour detection algorithms to obtain shape
information directly from images.

An automated algorithm is utilized to obtain 2D edge
maps for providing shape information in the shape regu-
larization module. This is because manual data labeling is
time-consuming, costly and usually unavailable. The proposed
method can be robust to these automatically obtained 2D edge
maps since the 2D edge maps only provides constraint to
spatially sparse planes for the estimated 3D edge maps.

We use the aligned 2D edge maps of SAX stacks to train
MulViMotion. This is reasonable because aligned SAX ground
truth edge maps can introduce correct shape information of
the heart, and thus can explicitly constrain the estimated
3D motion field to reflect the real motion of the heart.
Nevertheless, we further test the effectiveness of the proposed
method by utilizing unaligned SAX edge maps during training.
In specific, Mul ViMotion* uses the algorithm in [49] to predict
the 2D segmentation of myocardium for each SAX slice inde-
pendently without accounting for the inter-slice misalignment.
The contour of this 2D segmentation is used as the SAX
ground truth edge map during training. LAX ground truth edge
maps are still generated based on [9]. Table VI and Fig. 11
(e.g., t = 20) show that the proposed method is capable of
estimating 3D motion even if it is trained with unaligned SAX
edge maps. This indicates that the LAX 2CH and 4CH view
images that provides correct longitudinal anatomical shape
information can compensate the slice misalignment in the SAX
stacks and thus makes a major contribution to the improved
estimation accuracy of through-plane motion.
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Fig. 11. 3D visualization of motion tracking results using 3D-UNet
and MulViMotion*. MulViMotion* uses unaligned SAX ground truth edge
maps during training.

In the proposed method, a hybrid 2D/3D network is built
to estimate 3D motion fields, where the 2D CNNs combine
multi-view features and the 3D CNNs learn 3D representations
from the combined features. Such a hybrid network can
occupy less GPU memory compared to a pure 3D network.
In particular, the number of parameters in this hybrid network
is 21.7 millions, much less than 3D-UNet (41.5 millions).
Moreover, this hybrid network is able to take full advantage of
2D multi-view images because it enables learning 2D features
from each anatomical view before learning 3D representations.

In the experiment, we use 580 subjects for model training
and evaluation. This is mainly because our work tackles 3D
data and the number of training subjects is limited by the cost
of model training. In specific, we used 500 subjects to train our
model for 300 epochs with a NVIDIA Tesla T4 GPU, which
requires ~ 60 hours of training for each model. In addition,
this work focus on developing the methodology for multi-view
motion tracking and this sample size align with other previous
cardiac analysis work for method development [11], [15], [32],
[33]. A population-based clinical study for the whole UK
Biobank (currently ~ 50,000 subjects) still requires future
investigation.

With the view planning step in standard cardiac MRI
acquisition, the acquired multi-view images are aligned and
thus are able to describe a heart from different views [50].
In order to preserve such spatial connection between multiple
separate anatomical views, data augmentations (e.g., rotation
and scaling) that used in some 2D motion estimation works
are excluded in this multi-view 3D motion tracking task.

We use two LAX views (2CH and 4CH) in this work for
3D motion estimation but the number of anatomical views
is not a limitation of the proposed method. More LAX views
(e.g., 3-chamber view) can be integrated into MulViMotion by
adding extra encoders in FeatureNet and extra views in Lypape
for shape regularization. However, each additional anatomical
view can lead to an increased occupation of GPU memory and
extra requirement of image annotation (i.e., 2D edge maps).

The data used in the experiment is acquired by a 1.5 Tesla
(1.5T) scanner but the proposed method can be applied on 3T
CMR images. The possible dark band artifacts in 3T CMR
images may affect the image similarity loss (Lyi,). However,
the high image quality of 3T CMR and utilizing high weights
for the regularization terms (e.g., shape regularization and the
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Fig. 12. Examples of 3D masks used in the shape regularization
module of MulViMotion. The top row show the 2D images from different
anatomical views in the space of the SAX stack. The bottom row show
the 3D masks which represent the locations of these 2D images in the
SAX stack. (a) The 2D images from SAX view (9 slices). (b) The single
2D image from 2CH view. (c) The single 2D image from 4CH view.

local smoothness loss) may potentially reduce the negative
effect of these artifacts.

We utilize the ED frame and the ¢-th frame (t =0, 1,..., T,
T is the number of frames) as paired frames to estimate the
3D motion field. This is mainly because the motion estimated
from such frame pairing is needed for downstream tasks such
as strain estimation [27], [51], [52]. In the cardiac motion
tracking task, the reference frame is commonly chosen as
the ED or ES frame [15]. Such frame pairing can often be
observed in other cardiac motion tracking literature, e.g., [11],
[12], [15].

In this work, apart from two typical and widely used conven-
tional algorithms, we also compared the proposed method with
a learning-based method [31] which can represent most of the
recent image registration works. In specific, the architecture
of [31] has been used in many recent works, e.g., [37], [42],
[43], and many other recent works, e.g., [42], [53], [54], are
similar to [31] where only single view images are utilized
for image registration. Nevertheless, we further thoroughly
compared the proposed method with another recent and widely
used learning-based image registration method [42] (Voxel-
Morph”). We train VoxelMorph following the optimal archi-
tecture and hyper-parameters suggested by the authors (VM)
and we also train VoxelMorph with a bigger architecture'”

9https://github,com/voxelmorph/voxelmorph

10Filters in encoder are [64,128,256,512] while filters in decoder are
[512, 512, 256, 256, 128, 64, 64]. The weight of the smoothness loss is chosen
with grid search (4 € {0.5,0.6,0.7,0.8,0.9, 1}) and we select the value
with the best result on validation data 4 = 0.7. The weight for auxiliary
segmentation is chosen from y € {0.1, 0.3, 0.5, 0.7, 1} and we select y = 0.5.
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TABLE VI
QUANTITATIVE COMPARISON BETWEEN VoxelMorph (VM) [42] AND
MulViMotion ON TEST SET. VM FOLLOWS THE OPTIMAL
ARCHITECTURE AND HYPER-PARAMETERS SUGGESTED BY THE
AUTHORS. VM USES A BIGGER ARCHITECTURE 0. RESULTS ARE
REPORTED THE SAME WAY AS TABLE |I. BEST RESULTS IN BOLD

Methods | Dice 1 HD (mm) | VD (%) |

VM [44] 0.7115 (0.0339) 153277 (2.7690)  34.71 (11.84)

vMt [44] 0.7147 (0.0307)  17.6747 (4.3181)  31.75 (10.80)
MulViMotion | 0.8200 (0.0348)  14.5937 (4.2449)  8.62 (4.85)

(VM"). For fair comparison, 2D ground truth edge maps (E3%,
E$* in Eq. 8) are used to generate the segmentation of SAX
stacks for adding auxiliary information. Table VI shows that
the proposed method outperforms VoxelMorph for 3D cardiac
motion tracking. This is expected because SAX segmentation
used in VoxelMorph has low through-plane resolution and thus
can hardly help improve 3D motion estimation. Moreover,
VoxelMorph only uses single view images while the proposed
method utilizes information from multiple views.

VI. CONCLUSION

In this paper, we propose multi-view motion estimation net-
work (MulViMotion) for 3D myocardial motion tracking. The
proposed method takes full advantage of routinely acquired
multi-view 2D cine CMR images to accurately estimate
3D motion fields. Experiments on the UK Biobank dataset
demonstrate the effectiveness and practical applicability of our
method compared with other competing methods.

APPENDIX
A. Examples of 3D Masks

Fig. 12 shows the examples of 3D masks used in the
shape regularization module of MulViMotion. These 3D masks
identify the locations of multi-view images in the SAX stack.
We generate these 3D masks in image preprocessing step
by a coordinate transformation using DICOM image header
information.

B. The Dynamic Videos of Motion Tracking Results

The dynamic videos of motion tracking results of dif-
ferent motion estimation methods have been attached as
“Dynamic_videos.zip” in the supplementary material. This
file contains four MPEG-4 movies where “FFD.mp4”,
“dDemons.mp4”, “3D-UNet.mp4” are the results of the cor-
responding baseline methods and “MulViMotion.mp4” is the
result of the proposed method. All methods are applied on
the same test subject. The Codecs of these videos is H.264.
We have opened the uploaded videos in computers with
(1) Winl0 operating system, Movies& TV player, (2) Linux
Ubuntu 20.04 operating system, Videos player, and (3) Mac
OS, QuickTime Player. However, if there is any difficulty
to open the attached videos, the same dynamic videos can
be found in https://github.com/qmeng99/dynamic_videos/blob/
main/README.md

t=40

MulViMotion 3D-UNet [44]
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(a) Warped 3D segmentation overlaid on SAX view
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Fig. 13.  Motion tracking results on the test subject with slice mis-

alignment. using 3D-UNet [44], MulViMotion, and MulViMotion without
Lshape. (a) The warped 3D segmentation overlaid on SAX view. (b) The
3D visualization of the motion tracking results. The green arrows show
examples of motion tracking failures using 3D-UNet. Note that we show
results in frame t= 17 for a more distinct comparison.

C. Additional 3D Motion Tracking Results

Fig. 13 shows the additional 3D motion tracking results
on a test subject with slice misalignment. This test subject is
the same subject used in Fig. 10 in the main paper. These
more results further demonstrate that the proposed method is
able to reduce the negative effect of slice misalignment on
3D motion tracking. In addition, we have computed more
established clinical biomarkers. Fig. 14 shows the temporal
ejection fraction across the cardiac cycle.

D. Applications

1) Strain Estimation: Myocardial strain provide a quan-
titative evaluation for the total deformation of a region
of tissue during the heartbeat. It is typically evaluated
along three orthogonal directions, namely radial, circumfer-
ential and longitudinal. Here, we evaluate the performance
of the proposed method by estimating the three strains
based on the estimated 3D motion field ®;. The myocar-
dial mesh at the ED frame is warped to the z-th frame
using a numeric method and vertex-wise strain is calculated
using the Lagrangian strain tensor formula [55] (imple-
mented by https://github.com/Marjola89/3Dstrain_analysis).
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Fig. 14. The results of temporal ejection fraction across the cardiac

cycle. (a) Results on a randomly selected test subject. (b) Results on all
test subjects (mean values and confidence interval are presented).
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Fig. 15. Global strains across the cardiac cycle which are estimated
base on MulViMotion. (a) Results on a randomly selected test subject.
(b) Results on all test subjects (mean values and confidence interval are
presented).

Subsequently, global strain is computed by averaging across
all the vertices of the myocardial wall.

Fig. 15 shows the estimated global strain curves on test
subjects. Both the shapes of the curves and the value ranges
of peak strains are consistent with reported results in the
literature [52], [56], [57], i.e., radial peak strain is ~ 20% to
~ T70%, circumferential peak strain is ~ —15% to ~ —22%
and longitudinal peak strain is ~ —8% to ~ —20%.

To get more reference strains, we have separately computed
global longitudinal and circumferential strains on the 2D LAX
and SAX slices according to the algorithm in [14]. On the test
set, global longitudinal peak strain is —18.55% %2.74% (ours
is —9.72% + 2.49%) while global circumferential peak strain
is —22.76%+£3.31% (ours is —27.38% £9.63%). It is possible
that our strains are different from these strains. This is because
these strains in [14] are computed only on sparse 2D slices
by 2D motion field estimation, and in contrast, we compute
global strains by considering the whole myocardium wall with
3D motion fields.

Compared to echocardiograpy, another widely used imaging
modality for strain estimation, the average circumferential
peak strain reported in our work (—27.38%) is consistent
with those typically reported in echocardiograpy (~ —22%
to ~ —32% [58]). The average longitudinal peak strain
in our study (—9.72%) is lower than that reported in
echocardiograpy (~ —20% to ~ —25% [58]). This difference
is likely due to the higher spatial and temporal resolution of
echocardiography (e.g., 0.2 —0.3mm for spatial resolution and
40 — 60 frames/s for temporal resolution) compared to CMR
(e.g., our data has ~ 1.8mm in-plane resolution, ~ 10mm
through-plane resolution and 50 frames/heart-beat temporal
resolution) [41], [58].

For strain estimation, our results are in general consistent
with the value ranges reported in [52], [56], [57]. However,
it has to be noted that we calculate the strain based on 3D
motion fields, whereas most existing strain analysis methods
or software packages are based on 2D motion fields, i.e. only
accounting for in-plane motion within SAX or LAX views.
This may result in difference between our estimated strain
values and the reported strain values in literature. In addition,
there is still a lack of agreement of strain value ranges (in
particular for radial strains) even among mainstream commer-
cial software packages [57]. This is because strain value ranges
can vary depending on the vendors, imaging modalities, image
quality and motion estimation techniques [57], [58]. It still
requires further investigations to set up a reference standard for
strain evaluation and to carry out clinical association studies
using the reported strain values. Moreover, when manual seg-
mentation is available, it could be used to provide more perfect
and accurate shape constraint, which may further improve 3D
motion estimation and thus strain estimation.
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