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Abstract—Earth observation data have huge potential to
enrich our knowledge about our planet. An important step
in many Earth observation tasks is semantic segmentation.
Generally, a large number of pixelwise labeled images are
required to train deep models for supervised semantic seg-
mentation. On the contrary, strong intersensor and geographic
variations impede the availability of annotated training data in
Earth observation. In practice, most Earth observation tasks
use only the target scene without assuming availability of any
additional scene, labeled or unlabeled. Keeping in mind such
constraints, we propose a semantic segmentation method that
learns to segment from a single scene, without using any
annotation. Earth observation scenes are generally larger than
those encountered in typical computer vision datasets. Exploiting
this, the proposed method samples smaller unlabeled patches
from the scene. For each patch, an alternate view is generated
by simple transformations, e.g., addition of noise. Both views
are then processed through a two-stream network and weights
are iteratively refined using deep clustering, spatial consistency,
and contrastive learning in the pixel space. The proposed model
automatically segregates the major classes present in the scene
and produces the segmentation map. Extensive experiments
on four Earth observation datasets collected by different sen-
sors show the effectiveness of the proposed method. Imple-
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I. INTRODUCTION

APID development of remote sensing technologies has

drastically increased the quantity of Earth observation
sensors acquiring images with different spatial, spectral, and
temporal resolution [1], [2]. A large volume of unlabeled
images are currently available for characterizing various
objects on the Earth’s surface. Automatic analysis of such
images is useful to study various anthropogenic and natural
factors, including urban monitoring [3], disaster manage-
ment [4], [5], agricultural monitoring [6], and monitoring
natural resources’ exploitation [7].

An important step in understanding images is semantic
segmentation that assigns each pixel in image/scene to a mean-
ingful category or class. This is true for both computer vision
and Earth observation images [8]. Research toward supervised
image segmentation methods has received significant attention
in the era of deep learning that has outperformed previous
methods [9]-[11]. Superior performance of deep learning,
especially convolutional neural networks (CNNs), for semantic
segmentation can be attributed to their capability to learn
spatial features from large volume of labeled data. Most com-
puter vision problems can use crowdsourcing [12] to collect
large volume of labeled data. However, collecting labeled
data in Earth observation is significantly challenging due to
several factors that require domain expertise, including varia-
tion among different Earth observation sensors and disparity
among different applications. Moreover, active (e.g., synthetic
aperture radar) and lower resolution optical images are visually
unintelligible, thus making them difficult to be labeled by
a volunteer in a crowdsourcing platform. Thus, the applica-
bility of supervised segmentation has been limited on Earth
observation images due to the lack of labeled data [13].
Moreover, many Earth observation applications assume pres-
ence of only the target scene and no additional scene
[14], [15]. Analyzing using only the target scene can be
especially useful for quick disaster mapping when there is
little time to collect additional unlabeled images.

Recently, unsupervised and self-supervised learning have
gained significant attention in machine learning. Such
approaches have been devised for different problems,
e.g., image clustering [16], video analysis [17], and change
detection in Earth observation images [18]. While most
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Fig. 1. Batch of patches is extracted from the training scene. Model is
trained from this batch using deep clustering. Furthermore, this batch is simply
transformed and shuffled, to form two other batches, first of which must
be similar to the original batch in the feature space and the other must be
dissimilar to the original batch in the feature space.

deep-learning-based semantic segmentation methods are
supervised [19], [20], unsupervised semantic segmentation
methods have been proposed in the literature exploiting deep
clustering [21]. Deep-clustering-based approaches have also
been extended for Earth observation bitemporal image analy-
sis [3]. As such, self-supervised learning can be potentially
used to learn from a single unlabeled scene.

Earth observation scenes generally capture a geographic
area and are significantly large in comparison to images in a
typical computer vision dataset. As an example, scenes in the
International Society for Photogrammetry and Remote Sensing
(ISPRS) semantic labeling dataset [22] are up to 6000 x
6000 pixels. Due to the repetitive nature of geographic objects,
an Earth observation scene generally captures many instances
of the same objects in a single scene. Based on this, we pro-
pose to sample smaller patches from a large scene. When
randomly sampled, many such patches essentially represent
the same object category (e.g., buildings). By taking a batch of
patches, an augmented version can be conveniently obtained
by data transformation, e.g., noise addition. This allows us
to process the patches using a two-stream network similar to
contrastive learning [23] and other multiaugmentation meth-
ods [24]. By jointly using concepts such as pixelwise deep
clustering [25], similarity between multiple augmentations of
the same input [24], and contrastive learning [23], we propose
a self-supervised method to simultaneously train a network
and assign pixelwise labels to an Earth observation scene.
The conceptualization behind the proposed method is shown
in Fig. 1. The key contributions of our work are as follows.

1) We propose a self-supervised segmentation method that
does not require any annotated data and can be trained
using single unlabeled Earth observation scene, without
requiring any additional pool of unlabeled data.

We use the concept of pixelwise deep clustering [25]
to automatically discern different classes from a single
remote sensing scene. We further use multiple augmen-
tations of same input [24] to ensure that similar inputs
produce similar segmentation map. We use the concept
of contrastive learning [23] to ensure that dissimilar
inputs produce dissimilar output.

By performing a set of experiments using input of differ-
ent sensors and resolutions, we show that the proposed
method is able to automatically discern important Earth

2)

3)
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observation classes. This implies, irrespective of exact
application, our method can be a precursor to further
analysis in most such applications.

II. RELATED WORK
A. Deep Segmentation for Earth Observation

Popular deep-learning-based segmentation architectures
include fully convolutional networks (FCNs) [19], U-Net [26],
SegNet [27], and dilated convolutional models including
DeepLab [28]. For Earth observation images, several super-
vised segmentation algorithms have been proposed using
these architectures [8], [29]-[35]. However, these methods
necessitate a large amount of training data for supervised
learning. To deal with the lack of training data, Hua et al. [13]
proposed a semantic segmentation approach that uses spatially
sparse annotations to train the model. In [3], an unsupervised
deep clustering algorithm is introduced for the problem of
multitemporal Earth observation segmentation. To effectively
capture the domain knowledge, Li et al. [36] combine the deep
learning module and knowledge-guided ontology reasoning.

Compared with optical images, SAR image segmentation
is more challenging due to the sensitivity to noise [37].
The traditional SAR segmentation methods rely on superpixel
merging [38], [39]. There are very few methods using deep
learning for SAR image segmentation [40]. Wang et al. [40]
noted that to train an effective deep model for SAR semantic
segmentation, it is important to have high-quality ground-truth
data that are not always available.

B. Unsupervised and Self-Supervised Learning

Practicality of supervised methods is limited due to diffi-
culty in acquiring labeled data. Unsupervised learning focuses
on alleviating these limitations by learning semantic represen-
tations from unlabeled images without relying on predefined
annotations. Clustering is an extensively studied unsupervised
learning topic. Extending this, deep clustering [16] jointly
optimizes the parameters of a deep network and the cluster
assignments of the data in feature space. Deep clustering
and its variants [41]-[44] divide a set of unlabeled training
inputs into groups in terms of inherent latent semantics.
Some self-supervised approaches use pretext tasks for learning
semantic features [45], [46]. Popular pretext tasks include
image rotation [45], jigsaw transformation [47], and rearrang-
ing of time-series [48]. Capitalizing on the availability of
positive and negative pairs, contrastive methods aim to spread
the representations of negative pairs apart while bringing
closer the representations of the positive pairs [23], [49].
Bootstrap Your Own Latent (BYOL) [24] further eliminates
the necessity of negative pairs using augmented instances
of the input. Several works have shown that self-supervised
learning can produce good representation even when available
data are scarce [50]. Weakly supervised [48], [51], [52],
unsupervised [53], and self-supervised learning [54], [55]
have also been used in many remote sensing applications,
e.g., cloud detection [52], change detection [53], and scene
classification [54]. Tao et al. [54] used self-supervised learn-
ing for classification using limited label. Yue ef al. [56] used
self-supervised learning for hyperspectral scene classification.
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TABLE I

KERNEL NUMBER AND RELEVANT DETAILS OF FIVE-CHANNEL NETWORK
(L =5), CONSIDERING A THREE-CHANNEL INPUT. ONLY ONE OF THE
TwO STREAMS IS SHOWN. BATCH NORMALIZATION AND
ACTIVATION FUNCTIONS ARE NOT SHOWN

Layer type | Kernel number | Kernel size | Stride
Conv. 64 3,3) 1
Conv. 128 3,3) 1
Conv. 128 3,3) 1
Conv. 64 3,3) 1
Conv. K (1,1) 1

C. Unsupervised Deep Segmentation

Aligned with the increased interest in unsupervised meth-
ods, efforts toward reducing supervision have gained traction
in semantic segmentation [21], [57]. A simple yet effective
approach toward this is using deep clustering in the pixel
space [21], [58]. In [21], a lightweight architecture is used
for single-image segmentation and output/label is obtained
by arg-max classification of the final layer. Predicted pixel
labels and network representation are adjusted in iterations.
Pixel-level feature clustering using invariance and equivariance
(PiCIE) [25] further exploits geometric consistency in addition
to deep clustering for unsupervised segmentation.

Our work is closely related to the above-mentioned unsuper-
vised methods. Like [21] and [25], it exploits pixelwise deep
clustering. Our method relies on multiple augmentations of the
same input, similar to BYOL [24]. Similar to [23], the method
uses contrastive learning. The method focuses on single
scene, thus further showing potential of deep self-supervised
learning in data-constrained situation, similar to [50]. While
works on self-supervised remote sensing classification [54] or
self-supervised hyperspectral scene classification [56] still use
some labeled samples, our method does not use any labeled
sample.

III. METHODOLOGY

To describe the proposed idea, let us denote the available
unlabeled scene/image as X and its transformed version as X
having the same spatial dimensions of R x C. Although any
transformation Ty could be useful, we use simple transfor-
mations such as addition of Gaussian noise. The transformed
version can be taken as an alternative view of the same scene.
This allows us to formulate the task of semantic segmentation
at hand as a self-supervised problem which typically exploits
the idea of reducing the gap among feature representations of
multiple views of the same image in an iterative manner with-
out using any labeled data. Both X and X are then processed
through a two-stream network and weights are iteratively
refined using pseudo labels generated via deep clustering [16]
and a contrastive learning strategy [23] in the pixel space to
automatically segregate the major classes present in the scene.
The proposed method produces segmentation map without
using any explicit labels as detailed in Sections III-A-III-F.

A. Proposed Network Architecture

To enable feature learning, a Siamese-like two-stream net-
work architecture is proposed that takes as input the patches
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Fig. 2. Computation of losses for training proposed unsupervised segmen-
tation framework. Network components are shown in blue outlined nodes to
distinguish them from inputs, intermediate tensors, and losses.

of size R x C' (R" < R and C' < C) extracted from X
and X. Each training batch is formed by drawing B patches
from X denoted as X = {x',...,xB} and the spatially
corresponding patches from X, symbolized as X. Since the
bispatial patches can be seen as multiple views of the same
location, the semantic information can be inferred from them
using a proposed Siamese-like architecture [59]. Both the
branches have the projection modules fx and f; to obtain
learned feature representations for the original and transformed
images, respectively. These learned feature representations are
then fed to the subsequent prediction modules #x and hy to
obtain the respective activation volumes. It is important to note
that the projection modules do not share weights (hence, two-
stream), while the prediction module does share the weights
(i.e., hx = hy), therefore denoted using / only. The projection
and prediction modules consist of L; and L, (in our case
L, = 1) convolutional layers, respectively, where the total
layer L is the sum of L; and L,. Convolution layers are fol-
lowed by activation function [rectified linear unit (ReLU)] and
batch normalization layer. The input size is preserved in the
output as pooling or stride is not used. The projection module
uses convolution filters of size 3 x 3, whereas the prediction
module is formed with 1 x 1 filter. The K kernels in the
final layer groups or clusters input data (pixels) into K groups
or classes.

The simplified network architecture for a five-channel net-
work (L = 5) is shown in Table I. The reasoning behind using
such an ad hoc lightweight architecture can be explained by
the following.

1) Given that training mechanism is unsupervised and train-
ing patches are sampled from a single scene, we have
limited number of patches. Thus, using a large network
is ineffective in such case. This is further supported by
previous works on single-scene segmentation [21] that
also used such lightweight network.

2) Given that most Earth observation images have much
coarser resolution compared with those in computer
vision, small networks using only few convolution layers
can still capture required spatial context.
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B. Pseudo Label Activations

The patches x? and % refer to patch extracted from the
same location in X and X' , respectively. The outcome of the
network for x” and £’ can be represented as y” = h(fx(x?))
and $” = h(f¢(%")) where y” and $° tensors have the spatial
dimensions of R' x C’ x K. Here, each pixel in this tensor
can be viewed as a K-dimensional vector of activations. If we
denote any generic ith pixel in y” as yf’ , then we can obtain the
prediction of the semantic label by simply selecting the kernel
in yih that has maximum value. Based on this simple intuition,
we formulate the pseudo label assignment as the process of
computing c¢? by finding the feature having the highest value
in K-dimensional pixel activation vector yf’ .

C. Pseudo Label Loss Objective

The computed pseudo label ¢? is thus considered as the
label of prediction y’. This enables us to quantify per-pixel
cross-entropy loss £? between yf’ and cf’ . €% is aggregated (by
computing mean) over pixels in x? and patches in the batch
to obtain the loss L:B' L, is used to adjust the weights of &
and fx. Similarly, £, is computed from w=1,....B)
and used to adjust the weights of & and fy. Ising £, and ﬁ,,
to iteratively adjust the weights of the network, the proposed
method simulates deep clustering in the pixel space.

D. Spatial Consistency

The bispatial patches x” and £” refer to the same location
and hence to same objects, and therefore the features computed
for such a bispatial pair patch should be similar. To ensure
this, we compute per-pixel absolute error loss ¢2 as absolute
difference between y? and $”. The mean of €% over all pixels
for all the patches in the batch gives the loss term L; that
ensures that the pixels in the bispatial patches x® and £” tend to
have the same label. We note that spatial consistency criterion
is conceptually similar to bringing closer the multiple views
of input as in some self-supervised learning methods [24].
However, differently from them, spatial consistency loss aims
to reduce the representation gap at pixel level instead of image
level.

A pitfall of the spatial consistency loss is that merely trying
to reduce the representation gap of x” and £’ may generate
trivial solution, simply producing the same output for all
pixels.

E. Representation Learning From Disparity

The spatial consistency loss encourages the features com-
puted for a paired bispatial patch to be similar. To balance
the overall training procedure, we also use a strategy similar
to contrastive learning to ensure that the network should also
learn different feature representations for dissimilar patches.
To create dissimilar pair patches, we randomly shuffle the
batch of patches X to produce X”. This ensures that the paired
patches in X and X’ are indeed dissimilar. These dissimilar
bispatial patches are then used to enable the model to learn
disparate features computed from x” and £”. Specifically,
" is computed as (negative) absolute error loss between y?

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Algorithm 1 Self-Supervised Training for Semantic Segmen-
tation in Earth Observation Data

1: Initialize the weights of the network

2: fori <~ 1toZ do

3 Sample X = {x',..., x5} from X
4:  Obtain spatially corresponding B patches from X,
denoted as X = {£!,..., %5}

5. Obtain X’ by randomly shuffling X
6 for j < 1to J do

7: for b € B do

8: ¥ = h(fx(x"))

9

3 = h(fz (&)
11:
12: 3" = h(fz(G"))
13:
14: end for
15: Estimate pseudo label losses L, ﬁp
16: Estimate spatial consistency loss - L
17: Estimate loss similar to contrastive learning - L.
18: Use the losses to train the network
19:  end for
20: end for
and $. The proposed loss L. is the mean of £ over all

patches in batch and all pixels in each patch.

FE. Progressive Network Training

The proposed mechanism for network training is shown in
Fig. 2 and Algorithm 1. Initially, all the trainable weights
W!, ..., WE corresponding to all L layers in the network are
initialized using He initialization strategy proposed in [60].
Instead, a pretrained network could have been used to initialize
weights. However, we note that Earth observation deals with
a variety of sensors with different specifics, and suitable
pretrained network is not always available. This motivates us
to exclude importing weights from pretrained networks.

For each batch of data, training is performed for 7 iterations
when the weights are iteratively optimized using stochastic
gradient descent with momentum [61]. Sampling all possible
patches from the training scene is equivalent to one epoch,
and the training process is performed for a total Z epochs.
Since pseudo label losses (£, and [Ip) and other two losses
(Ls and L) have values in different range, the first epoch is
optimized with the sum of £, and £,, while from the second
epoch onward the sum of all four losses (£, L » Ly, and L;)
is used, which yields a balanced training process taking into
account coherent cluster formation, spatial feature consistency,
and feature dissimilarity for unpaired patches.

IV. EXPERIMENTS
A. Dataset

We use the following datasets for experimental validation.
1) Vaihingen dataset, an wurban semantic segmenta-
tion benchmark [22], [62] acquired over Vaihingen,
Germany, with 9 cm/pixel resolution. The images in
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Algorithm 2 Matching Unsupervised Segmented Map to the
Reference Map

1:

AN A

® 3

11:

Input: Reference image and set of its constituent N
classes {S j}ﬁ.vzl, ordered by number of pixels

: Input: Obtained segmented image and set of its con-

stituent K classes {7;}X

T < (THE,

:for j < 1to N do

Find 7p; as the class in 77 having highest intersec-

tion/overlap with S

Assign Tp; as match for S;
T =TI\ Ty,
: end for

Assign any remaining class in TN+ o background.

2)

3)

the dataset are composed of three bands—near infrared
(NIR), red (R), and green (G), and each image covers
approximately 1.38 km?. The images show six land-
cover classes: building, impervious surface, low veg-
etation, tree, car, and background. Following previous
works [13], for test we use the image IDs 11, 15, 28,
30, and 34, i.e., total five test scenes. We train our
unsupervised model on a single scene, image ID 1.
Zurich summer dataset [63] acquired using Quickbird
sensor over Zurich, Switzerland. The images show a
spatial resolution of 0.62 m/pixel. Following previous
works [13] we use NIR, R, and G in our experi-
ments. Eight different urban classes are present: roads,
buildings, trees, grass, bare soil, water, railways and
swimming pools. Image IDs 16-20 (i.e., total five test
scenes) are used for test, while we train our unsupervised
single-scene model on image ID 1.

A polarimetric synthetic aperture radar (PolSAR) [64]
scene showing an area in Germany comprising four
classes [65]. Being characterized by speckle noise and
complex backscattering mechanism at the junction of
different landcovers, PolSAR images are significantly
different from optical images. Thus, the experiment on
this dataset illustrates the application of the proposed
method beyond typical optical images. Furthermore, due
to less visual saliency, PoISAR scenes are challenging to
label and there are not many labeled PolSAR datasets.
This further proves the application of the proposed single
scene unsupervised method on a case where label is
actually scarce. This dataset [65] is acquired by ESAR
L-band sensor. ESAR is an airbone SAR system of
German Aerospace Center (DLR). It captures a semi-
urban area in Germany (Oberperfaffenhofen, Bavaria
province). The scene shows an area of 1300 x 1200 pix-
els. The reference information for the area is obtained
using manually labeling based on the aerial images over
the same area in Google Earth. The entire image is
classified into four categories: built-up areas (in blue),

4)
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wood land (in green), open areas (in yellow), and others
(in dark blue). The classes are unbalanced, with much
more open areas than others. Besides, there are some
similarities between the built-up areas and wood land
in terms of PolSAR image. Thus, segmentation of this
scene is a challenging task for unsupervised methods.
Fire disturbance is recognized as an essential climate
variables (ECVs) and burned area is its primary descrip-
tive variable [66]. Here, we show the segmentation result
produced by the proposed method on a burned area in an
Alpine area in north Italy [67]. The fire event took place
on February 27, 2019. We applied our segmentation
method on postfire image acquired on March 3, 2019,
using Sentinel-2 sensor (10 m/pixel spatial resolution
and 13 spectral bands), part of Copernicus program of
European Space Agency. The goal of this study is to
investigate whether the proposed method can identify
burned area as a separate cluster from the postevent
image.

The proposed unsupervised training can be performed either
on a different scene from the test scenes (as in the first two
cases above) or on the same scene as the test scene (as in the
third and fourth cases above).

B. Compared Methods

Our work is one of the first attempts toward obtaining
multiclass segmentation in unsupervised way by training
on single-scene Earth observation image. Thus, we exclude
entirely supervised methods from compared methods and
choose following unsupervised/weakly supervised methods for

comparison.
1) FEature and Spatial relaTional regulArization
(FESTA) [13] is a weakly supervised method

2)

3)

4)

proposed in the context of semantic segmentation
of high-resolution Earth observation images. The same
training scene is used for training FESTA as our
method; however, our method assumes no annotated
point, while FESTA assumes the presence of some
annotated points. We design two variants of FESTA,
“FESTA 5 points” by considering five labeled point in
the training scene and similarly “FESTA 10 points.”
An unsupervised deep-clustering-based approach by
adopting [16] in pixel space. The same training scene is
used as the proposed method, and this method assumes
no annotated data as in the proposed approach.
Combining deep clustering with image reconstruction as
an additional pretext task. This model uses two outputs,
one output is optimized for clustering and the other is
optimized to reconstruct the input image [68].

Online deep clustering (ODC), derived from [41].

An unsupervised method by simply extracting pixel-
wise features from the second convolutional layer of
VGGI16 [69] and applying k-means clustering on the
extracted features. This particular layer is chosen since
beyond this layer, the spatial size reduces, and thus
pixelwise feature extraction is not possible.

Since FESTA assumes the presence of labeled pixels in the
training scene and we use the same scene for training/testing in
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TABLE II

PERFORMANCE VARIATION IN THE PROPOSED METHOD ON THE
VAIHINGEN DATASET WITH RESPECT TO EPOCH

Epoch (Z) | Mean F1 | Mean IOU | Acc.

1 0.43 0.30 46.33

2 0.45 0.32 48.54

3 0.46 0.31 48.36

4 0.43 0.30 47.28
TABLE III

PERFORMANCE VARIATION IN THE PROPOSED METHOD ON THE
VAIHINGEN DATASET WITH RESPECT TO K

K | Mean F1 | Mean IOU Acc.
6 0.40 0.28 46.85
8 0.45 0.32 48.54
12 0.40 0.29 42.96

case of the PoISAR scene, we exclude comparison to FESTA
for that scene.

The burned area scene is evaluated for change detection and
hence compared with the relevant method in [67].

C. Settings

The training process of the proposed method is performed
using 7 = 2, J = 50. The number of kernels in the final layer
(K) is set as slightly larger than the number of target classes in
dataset, e.g., K = 8 for the Vaihingen dataset and K = 12 for
the Zurich dataset. R' = C’ = 224 is used to sample patches
from the training scene. A learning rate of 0.001 is used for
training.

In an unsupervised clustering setting, it is not possible to
automatically discern the name of classes. Hence, each class
in obtained segmentation is assigned to the class with most
overlap in the reference map. This procedure is further shown
in Algorithm 2.

The results are shown as F1 score and intersection over
union (IoU). The indices are computed for each target class
and the mean is computed over all the classes. We also show
accuracy; however, note that accuracy may be misleading as
constituent classes are imbalanced and merely learning a single
class can lead to seemingly good accuracy.

For the proposed method, the segmentation results are
shown as an average of ten runs.

D. Result on Vaihingen Dataset

1) Result Variation With Respect to Parameters: Table Il
shows the performance variation in the proposed method as the
number of epochs 7 is varied by fixing the other parameters.
We observe that the performance improvement beyond 7 = 2
is not significant. Hence, we used Z = 2 in our subsequent
experiments. To further understand this, we visualize evolution
of losses in Fig. 3. £; + L, keeps decreasing slightly beyond
T = 2; however, it shows an oscillatory behavior beyond that,
which provides further indication toward why optimum result
is already reached by 7 = 2.

Table III shows the performance variation in the proposed
method as the number of kernels in the final layer (K) is
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TABLE IV

PERFORMANCE VARIATION IN THE PROPOSED METHOD ON THE
VAIHINGEN DATASET WITH RESPECT TO THE NUMBER
OF LAYERS IN THE MODEL

Layers (L) | Mean F1 | Mean IOU Acc.

4 041 0.28 44.87

5 0.45 0.32 48.54

6 0.40 0.28 45.07
TABLE V

PERFORMANCE VARIATION IN THE PROPOSED METHOD ON THE
VAIHINGEN DATASET BY VARYING COMPONENTS
OF Loss FUNCTIONS

Loss function) Mean F1 | Mean 10U Acc.
{Lp} 0.40 0.28 45.09
Lp, Lp} 0.44 0.31 47.62
Ls, L} 0.30 0.20 38.65
{Lp. Lp, L5} 0.44 0.31 4728
{Lp, Lp, Lc} 0.43 0.30 46.78
{Lp, Lp, Ls, Lc} 0.45 0.32 48.54

[ £p

08 L,

—-1.6

(b)

Fig. 3. Visualization of loss functions on Vaihingen scene. (a) £, and [Zp.
(b) L5 + L. x-axis represents epochs and y-axis represents loss values.

varied. We recall that the value of K implies the number of
classes that we want to cluster the data. The best performance
is obtained for K = 8 which is slightly larger than the actual
number of classes in the Vaihingen dataset (six classes).

Table IV shows the performance variation in the proposed
method as the number of layers (L) is varied. The result
confirms that only few layers are sufficient for the proposed
method, and further increasing the number of layers may not
improve the performance.

2) Ablation Study of Loss Function: Table V tabulates the
performance of the proposed method with different combina-
tions of losses: only {£,} (i.e., only pseudo label loss on target
scene); {L,, [Ip} (i.e., both pseudo-label losses); {Ls, L.}
(i.e., excluding pseudo label losses): {L,, ﬁp, L} (i.e., exclud-
ing contrastive loss L.); {£,, ﬁ,,, L.} (i.e., excluding spatial
consistency loss L;); and all {£,, ﬁ,,, Ly, L.},

Pseudo label loss plays more crucial role than other two
losses which is evident from superior performance of {£,} in
comparison to {Ly, L.}. {Lp, [Ip} significantly outperforms
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Fig. 4.
(c) Segmentation produced by the proposed unsupervised method.

TABLE VI
QUANTITATIVE COMPARISON FOR THE VAIHINGEN DATASET

El Buildings
Bl Clutter

5228011

Bl Low vegetation
Hl Undefined

Visualization of segmentation on the Vaihingen dataset. (a) Input image 11 (false color composition). (b) Corresponding reference segmentation.

TABLE VII
QUANTITATIVE COMPARISON FOR THE ZURICH DATASET

Method Mean F1 | Mean IOU | Acc. Method Mean F1 | Mean IOU | Acc.
Proposed 0.45 0.32 48.54 Proposed 0.39 0.33 68.70
FESTA 5 points 0.26 0.16 33.64 FESTA 5 points 0.15 0.09 29.29
FESTA 10 points 0.32 0.23 49.44 FESTA 10 points 0.13 0.07 30.83
Deep clustering 0.25 0.14 25.03 Deep clustering 0.33 0.26 67.23
Clustering with reconstruction 0.25 0.15 29.54 Clustering with reconstruction 0.29 0.22 61.89
ODC 0.22 0.13 29.24 ODC 0.36 0.29 67.70
VGG16+kMeans 0.23 0.15 34.11 VGG16+kMeans 0.34 0.30 75.45
TABLE VIII
. . . A . QUANTITATIVE COMPARISON FOR POLSAR SCENE
{L,}, showing that introduction of £, benefits segmentation.
Both {L,, L,, L} and {L,, L,, L.} are outperformed by {L,, Method Mean F1 | Mean IOU | Acc
L,}. However, a combination of all losses {L,, L, L, L} Proposed 0.52 0.39 61.23
P . Deep clustering 0.37 0.26 52.14
outperforms all other comblpatlons. This shows that losses L Clustering with reconstruction 037 008 =316
and £, cannot work on their own; however, they work when ODC 031 022 57.80
both of them are used together. VGG16+kMeans 0.24 0.17 50.25

3) Comparison to Existing Methods: The quantitative result
is shown in Table VI. The proposed method outperforms
FESTA 5 points, deep clustering, deep clustering with image
reconstruction, ODC, and VGG16 + kMeans with respect
to all three indices and outperforms FESTA 10 points with
respect to two out of three indices. We recall that FESTA is
a semisupervised method that uses few annotated points. The
proposed method still outperforms it, which shows the efficacy
of the proposed method. Segmentation map corresponding
to image ID 11 is visualized in Fig. 4. The three columns
show input image, reference segmentation, and obtained seg-
mentation, in that order. We observe that dominant classes
like buildings (blue) and impervious surfaces (white) are
clearly detected by the proposed method. However, it identifies
spectrally similar low vegetation and trees in the same cluster.
The classwise F1 score is 0.66, 0.48, 0.40, 0.64, and 0.08,
for impervious surface, buildings, low vegetation, trees, and
cars, respectively. This shows that the proposed unsupervised
method is capable of identifying the major classes while
its scope is limited for visually inconspicuous classes like
cars.

E. Result on Zurich Dataset

The quantitative result of the proposed method versus the
compared methods is shown in Table VII. The proposed
method outperforms all the compared methods in terms of
mean F1, and mean IOU, showing again its superiority even
against semisupervised FESTA. Segmentation map for image
ID 17 is visualized in Fig. 5. Similar to the observation for
Vaihingen, we observe that the dominant classes are clearly
detected by the proposed method. However, the performance
deteriorates for the nondominant classes.

F. Result on PolSAR Scene

Pauli-color-coded input, reference segmentation map, and
the segmentation produced by the proposed method are visu-
alized in Fig. 6. Despite different nature of PolSAR data, the
proposed method is able to identify the major classes from the
target scene. The quantitative result is tabulated in Table VIII
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Fig. 5.
(c) Segmentation produced by the proposed unsupervised method.

Fig. 6.
method.

(b)

Visualization of segmentation on the Zurich dataset. (a) Input images 17 (false color composition). (b) Corresponding reference segmentation.

Visualization of segmentation on PolSAR scene. (a) Pauli-color-coded scene. (b) Reference image. (c) Segmentation produced by the proposed

(d)

Fig. 7. Visualization of segmentation on Alpine burned area scene. (a) False color composition between prechange and postchange SWIR bands. (b) Reference
burned area. (c) Obtained multiclass segmentation. (d) Obtained segmentation projected to two classes (black corresponds to burned pixels).

which shows the superiority of the proposed method against
other unsupervised methods.

G. Result on Sentinel-2 Burned Area Scene

Our segmentation method is applied on the postchange
image (acquired on March 3, 2019). The target area is sig-
nificantly complex, showing mountain, some snow, forest,
in addition to the burned area. Showing the cluster that has
the best match to the burned area as positive class and rest
as negative class, we obtain a binary segmentation map,
as visualized in Fig. 7. It is evident that the proposed method
can segregate the target burned area as one class with little
false alarm. The method obtains an accuracy of 97.19%.

The result obtained by the proposed method is superior to or
comparable to the change detection methods compared in [67]
(worst accuracy: 76.16%, best accuracy 99.0%), though the
change detection methods use both pre/postchange images,
while the proposed method uses only the postchange image.

H. Comments on Computation Time

The proposed unsupervised training on a single scene can
be achieved in reasonable time, e.g., it takes approximately
195 s for training on Vaihingen image ID 1 using a machine
equipped with GeForce RTX 3090. Using the same hardware
and for the same scene, deep clustering [16] takes 280 s and
ODC takes [41] 295 s. VGG + kMeans does not involve a
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training phase. FESTA takes considerably more time than the
proposed method (approximately 10 min).

L. Summary of Observations

The proposed method is an inexpensive method, both
in terms of annotation (not needed) and computation time.
In addition to clustering in pixel space, the proposed method
effectively exploits spatial consistency and contrastive loss,
which is evident from the fact that the proposed method
outperforms deep clustering. While the proposed method’s
effectiveness to automatically segment small classes is limited,
it can effectively segregate the major classes, seen in all the
datasets. However, this suits most Earth observation applica-
tions where the task is to quickly find one or two classes of
interest, e.g., building during Earthquake disaster management
and burned area during postfire operations.

V. CONCLUSION

We proposed an unsupervised single-scene segmentation
method that combines different recently popular topics from
unsupervised and self-supervised learning, e.g., deep clus-
tering in pixel space, different view/augmentation, and con-
trastive learning. The experimental results on four different
Earth observation datasets show that the method can effec-
tively learn dominant classes, e.g., buildings in the Vaihingen
dataset. On the other hand, the effectiveness of the method
is limited for classes that are inconspicuous. However, given
the strong constraints under which the method works (only a
single unlabeled scene for training), learning such classes is
certainly challenging. A potential direction of extension of this
work is training weakly supervised model given few labeled
pixels from only such inconspicuous classes. The proposed
method complements the supervised models by providing a
quick unsupervised way of creating reasonable segmentation
map. In future, we will experiment on the images acquired by
other popular sensors in Earth observation, e.g., light detection
and ranging (LiDAR).
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