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Abstract— Unmanned aerial vehicles (UAVs) are now widely
applied to data acquisition due to its low cost and fast mobility.
With the increasing volume of aerial videos, the demand for
automatically parsing these videos is surging. To achieve this,
current research mainly focuses on extracting a holistic feature
with convolutions along both spatial and temporal dimensions.
However, these methods are limited by small temporal recep-
tive fields and cannot adequately capture long-term temporal
dependencies that are important for describing complicated
dynamics. In this article, we propose a novel deep neural network,
termed Fusing Temporal relations and Holistic features for
aerial video classification (FuTH-Net), to model not only holistic
features but also temporal relations for aerial video classification.
Furthermore, the holistic features are refined by the multiscale
temporal relations in a novel fusion module for yielding more
discriminative video representations. More specially, FuTH-Net
employs a two-pathway architecture: 1) a holistic representation
pathway to learn a general feature of both frame appearances
and short-term temporal variations and 2) a temporal relation
pathway to capture multiscale temporal relations across arbitrary
frames, providing long-term temporal dependencies. Afterward,
a novel fusion module is proposed to spatiotemporally integrate
the two features learned from the two pathways. Our model
is evaluated on two aerial video classification datasets, ERA
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and Drone-Action, and achieves the state-of-the-art results. This
demonstrates its effectiveness and good generalization capacity
across different recognition tasks (event classification and human
action recognition). To facilitate further research, we release the
code at https://gitlab.lrz.de/ai4eo/reasoning/futh-net.

Index Terms— Aerial video classification, convolutional neural
networks (CNNs), holistic features, temporal relations, two-
pathway, unmanned aerial vehicle (UAV).

I. INTRODUCTION

BY THE virtue of low-cost, real-time, and high-
resolution data acquisition capacity, unmanned aerial

vehicles (UAVs) can be exploited for a wide range of appli-
cations [1]–[17] in the field of remote sensing, such as
object tracking and surveillance [5]–[10], traffic flow mon-
itoring [11]–[14], and precision agriculture [15]–[17]. With
the proliferation of UAVs worldwide, the number of produced
aerial videos is significantly increasing. Hence, there is an
escalating demand for automatically parsing aerial videos
because it is unrealistic for humans to screen such big data and
understand their contents. Therefore, aerial video classification
becomes an important task in aerial video interpretation [18].

Feature learning and representation from videos is crucial
for this task. Convolutional neural networks (CNNs) have
demonstrated the superb capability of learning effective visual
representations from images. For instance, ResNet [19] has
achieved an impressive performance on the ImageNet dataset,
which is even better than the reported human-level perfor-
mance [20]. Compared to a sequence of remote sensing images
in which the temporal information is limited due to relatively
long satellite revisit periods, an overhead video is able to
deliver more fine-grained temporal dynamics that are essential
for describing complex events. Therefore, moving from image
recognition to video classification, much effort has been made
to learn spatiotemporal feature representations.

On the one hand, several methods [21]–[38] aim at learning
a global spatiotemporal feature representation that can holis-
tically represent a video. A straightforward idea is to extract
spatiotemporal features on each video frame individually by
making use of 2-D convolutions and then pool stacked fea-
ture maps across the temporal domain [21]. However, this
could lead to the ignorance of temporal relations among
various frames. To address this, Donahue et al. [22] and
Ng et al. [23] employed recurrent neural networks (RNNs),
such as long short-term memory (LSTM) [39] to model
temporal relations by integrating features over time. However,
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the effectiveness of such methods usually depends heavily on
the learning effect of long-term memorization. Furthermore,
3-D CNNs are fairly natural models for video representation
learning and able to learn global spatiotemporal features by
performing 3-D convolutions in both spatial and temporal
dimensions. Some 3-D CNN architectures [31]–[38] have been
investigated and shown impressive performance. For instance,
Tran et al. [31] proposed a 3-D CNN model with 3 × 3 × 3
convolution filters for learning a video representation on a
large-scale video dataset. Nonetheless, massive computational
consumption and memory demand hinder efforts to train a very
deep 3-D CNN and limit the performance of 3-D CNN archi-
tectures. To address this problem, inflated 3-D convolution
filters [35] and decomposed 3-D convolution filters [36], [37]
utilize a more economic method to implement 3-D convolu-
tions and boost the performance of 3-D CNNs. However, the
aforementioned methods with either 2-D or 3-D convolutions
have limited temporal receptive fields and therefore cannot
adequately capture variable temporal dependencies. On the
other hand, a few recent works attempt to explicitly model
temporal relationships and demonstrate promising results in
several tasks, to name a few, temporal relational reasoning
[40]–[44], object detection and tracking [6]–[9], event recogni-
tion [45]–[47], video segmentation [48]–[50], dynamic texture
recognition [51], and spatiotemporal learning [52], [53].

A video delivers not only spatial information but also
temporal dynamics. Hence, some studies are dedicated to
capture spatial (appearance) and temporal (motion) repre-
sentations separately by a two-stream architecture. In these
two-stream models, fusing the features from two pathways
is an important procedure for recognition. For example,
Simonyan and Zisserman [24] directly fused the softmax
scores using either averaging operation or a simple linear
SVM. Karpathy et al. [21] utilized a fully connected layer to
merge the two streams of the late fusion model. However,
its performance is surpassed by a purely spatial network.
In addition, Feichtenhofer et al. [54] introduced residual con-
nections between appearance and temporal streams to enable
motion interactions. For stream fusion, they average the pre-
diction scores of the classification layers from two streams.
Feichtenhofer et al. [30] investigated several fusion methods
such as max, concatenation, convolution, and observe that
3-D convolutional fusion outperforms averaging the softmax
output. The main limitation of the two-stream architecture is
that it is not capable to spatiotemporally match spatial and
temporal information. Therefore, a fusion method is needed
to spatiotemporally register the features from two pathways.
However, the abovementioned fusion methods leverage a sin-
gle operation (e.g., averaging) that is not able to effectively
enable spatiotemporal interactions between them.

The motion in aerial videos usually has different dura-
tions and shows high variability. For example, in the ERA
dataset [18], mudslide shows a simple and repeated motion
over a long duration, which could be described by a few
video frames; car racing depicts a complicated, dynamic
process and is composed of a variety of consecutive motions,
including chasing, approaching, away, and colliding, over
a short duration. Temporal relations across multiple frames

are an important cue to represent the complex motion. The
aforementioned approaches based on spatiotemporal convo-
lutions (e.g., 3 × 3 × 3 convolutions) simply add a tem-
poral dimension to 2-D convolution filters to implicitly learn
temporal dependencies, and they are not adaptable to capture
various, complicated temporal dynamics over a long duration
due to their limited temporal receptive fields. To address
this issue, we propose to explicitly learn temporal relations
across arbitrary frames to effectively model long-term tem-
poral dependencies. Furthermore, we introduce multiscale
temporal relations into holistic features to design a two-
pathway architecture for aerial video classification. Besides,
for spatiotemporal registering temporal relations and holis-
tic features, we propose a novel fusion module in which
holistic features are spatiotemporally modulated with temporal
relations.

In this article, we present a two-pathway network, termed
Fusing Temporal relations and Holistic features for aerial
video classification (FuTH-Net). One pathway is devised to
capture a holistic feature describing appearances and short-
term temporal variations. The other pathway is responsible for
excavating temporal relations across arbitrary frames at mul-
tiple timescales, providing long-term temporal dependencies.
Last but not least, for spatiotemporally fusing two features
from two pathways, we further present a novel fusion module
in which the multiscale temporal relations are leveraged to
refine the temporal features in the holistic representation. More
specifically, we learn the holistic feature by treating a video as
an entirety and using inflated 3-D convolution operators [35].
Meanwhile, we sample frame-level feature vectors at different
sampling rates to learn multiscale temporal relations with a
sequence of multilayer perceptrons (MLPs) [55]. As to the
fusion of these two features, we employ a fusion module in
which the temporal relations are modulated with the holistic
representation by a normalization-like process [56], [57]. The
resulting feature representation is then fed into the following
layers for the purpose of video classification. Contributions of
this article are threefold.

1) We propose a novel network, namely FuTH-Net, for the
task of aerial video classification. This network exploits
a two-pathway architecture, one for learning a video pre-
sentation holistically and the other for fully excavating
useful temporal relations at multiple timescales among
video frames.

2) A novel fusion module exploits a normalization-like
pipeline in which the two features learned from two
pathways are spatiotemporally registered by modulating
the holistic features according to temporal relations.
In this module, the temporal information in holistic
features is refined by multiscale temporal relations.
A more discriminative fused feature is obtained for
distinguishing different video events.

3) We evaluate the effectiveness of the proposed net-
work through extensive experiments, and experimental
results show that our method achieves the state-of-the-art
performance.

The remaining sections of this article are organized as
follows. Section II details the architecture of FuTH-Net, and
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Fig. 1. Overview of FuTH-Net. The upper pathway, namely the holistic representation pathway, aims at capturing a holistic feature g by 3-D convolutions.
The lower pathway, namely temporal relation pathway, aims to learn a multiscale temporal relation bank l by a temporal relation block. A followed fusion
module combines the outputs of two pathways to generate a robust fused feature z, which is finally fed into a fully connected layer for aerial video classification.

Fig. 2. (a) 2-D convolution versus (b) 3-D convolution. Compared to
2-D convolution, 3-D convolution slides in both temporal and spatial dimen-
sions and results in an output volume, which thereby captures both spatial
and temporal information, i.e., the holistic representation.

Section III shows and discusses experimental results. Finally,
the conclusion is drawn in Section IV.

II. NETWORK ARCHITECTURE

In this section, we detail our proposed network archi-
tecture, FuTH-Net, for aerial video classification. First,
we introduce an overview of the proposed network in
Section II-A. Furthermore, we give more detailed descriptions
for two modules, temporal relation block and fusion module,
in Sections II-B and II-C, respectively. Finally, the implemen-
tation of our network is introduced in Section II-D.

A. FuTH-Net

The motivation of our network is to simultaneously model
the holistic feature and temporal relations of a video with a
two-pathway architecture. The resulting two feature represen-
tations are integrated by a fusion module. The overview of the
architecture is shown in Fig. 1.

Holistic representation pathway treats a video as an entity
and aims at learning a holistic feature by 3-D convolutions.
The 3-D convolution is achieved by endowing 2-D convolution
with an additional dimension (e.g., the temporal dimension of
aerial videos), which is shown in Fig. 2. Compared to 2-D
convolution, 3-D convolution is able to capture both spatial
information and temporal information, so-called holistic rep-
resentation in our case. It is of importance for video classi-
fication under some circumstances where events with simple

temporal dynamics are strongly associated with certain objects
or scenes. As to the implementation of 3-D convolutions,
many efforts, e.g., 3-D convolutional kernel [31], inflated
3-D convolution [35], and pseudo-3-D convolution [36], have
been made to symmetrically extract both spatial informa-
tion and short-term temporal information. In this work,
we choose a typical 2-D CNN architecture and trans-
form all 2-D operations to 3-D operations by a specific
3-D implementation method [35]. Then, we employ the trans-
formed 3-D CNN with a bunch of 3-D convolution and
pooling operations on a video volume to capture a holistic
representation g.

Temporal relation pathway views a video as a sequence of
frames and aims to capture temporal relations across multi-
ple frames by a temporal relation block. Temporal relation
information is vital for video classification, as it is capable
of capturing high-level interactions among entities (subjects,
objects, scenes, and so on) over a long temporal series, which
are significant for recognizing events with complex temporal
dynamics. To take advantage of this cue, we apply a 2-D CNN
to video frames to extract appearance features. Then, these
features are fed into the temporal relation block to learn a
multiscale temporal relation bank l across arbitrary frames.

Fusion module combines the outputs of the two pathways to
build a more discriminative representation. More specifically,
it leverages a normalization-like pipeline in which the temporal
relations are transformed to two modulation parameters by
two affine transformations, and the produced parameters F1(l)
F2(l) multiplied and added with the holistic feature g to
yield the normalized activation elementwisely. Finally, the
fused feature z is obtained by concatenating the normalized
activation with an additional holistic feature g.

In what follows, we detail the temporal relation block and
fusion module.

B. Temporal Relation Block

The purpose of temporal relational reasoning lies in link-
ing meaningful transformations among entities over time.
The work [58] is intended to construct a fully connected
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Fig. 3. Temporal relation block. Appearance feature vectors are randomly
selected from the feature set V . Afterward, the selected vectors are concate-
nated and then fed into an MLP to learn a corresponding m-frame relation.
Finally, all m-frame relations are concatenated to produce a multiscale
temporal relation bank l .

graph among entities in video frames and calculate pairwise
energy functions among node pairs in the graph to model
temporal relations. Inspired by this work, we aim at cap-
turing temporal relations among arbitrary frames. Instead of
utilizing a fully connected graph among video frames which
inevitably increases computation and redundancy, we make use
of a sampling strategy to sample multiple snippets and learn
relational representations using a group of MLPs. Note that
each sampled snippet contains a variable number of frames for
the purpose of learning multiscale relational representations.

Formally, suppose that we have extracted an appearance
feature set V = { f 1, f 2, . . . , f N } of video frames by a
2-D CNN, where f i denotes the 256-D feature vector of the
i th video frame and N is the number of frames. We randomly
sample m vectors from V and concatenate them to sm , where m
is the total number of sampled frames and the length of vector
sm is m × 256. Notably, before concatenation, we rearrange
sampled vectors according to the original temporal order. The
corresponding m-frame relation function is defined as follows:

R(sm) = hφm (sm) (1)

where the input is the concatenated vector sm = [ f i , f j , . . . ,
f p], i, j, p ∈ [1, N], m ∈ [2, N], and [·, ·] denotes concatena-
tion. hφm is a two-layer MLP with parameters φm and learns
the transformations among m feature vectors. The parameters
of hφm are learned separately with respect to each sm . With
variant values m, temporal relations at multiple timescales
can be yielded and further concatenated to build a multiscale
temporal relation bank l = [R(s2), R(s3), . . . , R(sN )].

The temporal relation block is a basic computational unit
with an input feature set V and an output temporal relation
bank l and can be easily plugged into any classification CNN
models. Fig. 3 shows the structure of our temporal relation
block.

C. Fusion Module

Outputs from the holistic representation pathway and tem-
poral relation pathway are integrated by a fusion module
that encodes spatiotemporal correspondences between holistic

Fig. 4. Fusion module. Two affine transformations are applied on the
temporal relation bank l to produce two vectors, F1(l) and F2(l). Afterward,
the Hadamard product and addition operation are applied on them with g.
Finally, the output vector is concatenated with g to yield the fused feature z.

features and temporal relations. Spatiotemporally register-
ing the two features is vital for encoding spatiotempo-
ral correspondences. Motivated by conditional normalization
[56], [57], we present a novel fusion module where the
two features are spatiotemporally registered by modulating the
holistic features according to temporal relations. The multi-
scale temporal information is leveraged to refine the temporal
representations in holistic features. Specifically, the module
utilizes a normalization-like pipeline in which the temporal
relations are transformed to two modulation parameters by
two affine transformations, and the produced parameters F1(l)
and F2(l) are multiplied and added with g to yield the
normalized activation elementwisely. Finally, the fused feature
z is obtained by concatenating the normalized activation with
an additional holistic feature g. The fusion equation is given
as follows:

z = [F1(l) � g + F2(l), g
]

(2)

where F1 and F2 are affine transformations and aim to produce
the modulation parameters, � denotes a Hadamard production,
and [·, ·] denotes concatenation. The overall structure of fusion
module is shown in Fig. 4. We concatenate an additional holis-
tic feature g with the modulated feature to yield the final fused
feature z. This is for enriching the spatial information that is
important for distinguishing events with simple dynamics. For
validating its effectiveness, we further compare it with several
existing fusion methods in ablation study (see Section III-B).

D. Implementation Details

In this section, we describe the implementation of our
FuTH-Net.

1) Holistic Representation Pathway: We convert a typi-
cal image classification architecture, Inception-v1 [59], into
a 3-D architecture by inflating all convolutions and pool-
ing filters. The 3-D convolutions are created by endowing
2-D ones with an additional temporal dimension. Furthermore,
we would like to bootstrap the 2-D network weights pre-
trained on ImageNet into the 3-D model. To achieve this,
the 3-D model could be implicitly pretrained on ImageNet by
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converting images into fixed videos. We replicate weights of
2-D convolutions N times along the temporal dimension and
then divide them by N to produce pretrained parameters for
the 3-D model. Moreover, we optimize hyperparameters for
convolutions and pooling operations (e.g., stride and pooling
size) to effectively capture representative temporal dynamics.
In detail, we use 1 × 3 × 3 kernels with 1 × 2 × 2
strides in the first two max-pooling layers for remaining initial
temporal information. The final average-pooling layer exploits
a 2 × 7 × 7 kernel to produce a 1024-D feature vector that
is regarded as the holistic representation g.

2) Temporal Relation Pathway: We utilize Inception-v1
with batch normalization pretrained on ImageNet as our fea-
ture extraction model to generate a 1024-D feature vector
for each frame. Subsequently, a feature bank with the size
of n × 1024 for an input video is produced, where n is
the number of input video frames. Moreover, φm is a two-
layer MLP with 256 units, and each layer is followed by a
batch normalization [56] layer and a ReLU activation function.
(N − 1) temporal relations are extracted by φm and then
concatenated into the final multiscale temporal relation bank
with the dimension of 256 × (N − 1). The number of input
frames is set to 16 in both two pathways.

3) Fusion Module: Two simple MLPs with dropout opera-
tions are exploited to implement the two affine transformations
that are employed on l to yield two 1024-D vectors, F1(l) and
F2(l). The final fused feature is a 2048-D vector.

4) Training Schedule: The network is trained on PyTorch1

framework and runs on one NVIDIA Tesla P100 GPU2 with
16-GB on-board memory. We train our model with a stochas-
tic gradient descent (SGD) [60] optimizer using a momentum
of 0.9 and a weight decay of 0.0005. Due to the limitation
of GPU memory, we utilize a multistage training strategy.
Specifically, the whole training procedure is composed of three
phases. First, we train the holistic representation pathway for
100 epochs with a batch size of 6 and a learning rate of
0.001. Then, we train the temporal relation pathway with a
learning rate of 0.0001 and the same epochs and batch size
while keeping weights of the holistic representation pathway
fixed. Finally, the fusion module is trained for 120 epochs with
weights of two pathways fixed.

III. EXPERIMENTS

In this section, we first introduce aerial video recognition
datasets, competitors, and evaluation metrics in Section III-A.
Then, we perform ablation studies to investigate the comple-
mentarity between the holistic representation pathway and the
temporal relation pathway as well as the effectiveness of our
fusion module in Section III-B. Furthermore, we assess the
performance of our FuTH-Net on two different aerial video
recognition datasets, ERA and Drone-Action, and analyze the
experimental results in Sections III-C and III-D, respectively.

A. Experimental Setup

1) Datasets: To evaluate the performance of FuTH-Net,
we conduct experiments on two aerial video recognition

1https://pytorch.org/
2https://www.nvidia.com/en-us/data-center/tesla-p100/

TABLE I

DATASET OVERVIEW. WE PROVIDE VARIABLE DETAILS
OF THE TWO DATASETS

Fig. 5. Overview of the ERA dataset. We show the middle frame of one
video in each class.

datasets with standard evaluation protocols. First, we use the
ERA dataset [18] that is an event recognition dataset and
consists of 2864 aerial event videos collected from YouTube.
In this dataset, 25 events are defined, including postearthquake,
flood, fire, landslide, mudslide, traffic collision, traffic conges-
tion, harvesting, ploughing, constructing, police chase, con-
flict, baseball, basketball, boating, cycling, running, soccer,
swimming, car racing, party, concert, parade/protest, religious
activity, and nonevent (see Fig. 5). Then, the Drone-Action
dataset [61] for human action classification in aerial videos is
utilized to further assess the performance of models. In this
dataset, 240 self-taken aerial videos are collected, and 13
different actions are defined: kicking, walking front/back,
running side, jogging side, walking side, hitting stick, running
front/back, stabbing, jogging front/back, clapping, hitting bot-
tle, boxing, and waving hands (see Fig. 6). Table I exhibits
the details of the two datasets.
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TABLE II

COMPARISON WITH STATE-OF-THE-ART METHODS ON THE ERA DATASET. WE SHOW THE PER-CLASS PRECISION AND
OVERALL ACCURACY (OA) ON THE TEST SET. THE BEST PRECISION/ACCURACY IS SHOWN IN BOLD

Fig. 6. Overview of the Drone-Action dataset. We show the middle frame
of one video in each class.

In the preprocessing phase, we transform video clips of the
Drone-Action dataset into the same data structure as the ERA
dataset. Since durations of videos in the Drone-Action dataset
range from 5 to 21 s, we cut them to 5-s clips. Afterward,
each frame is cropped and resized to a size of 640 × 640. For
both datasets, we sample 16 frames from each video clip with
a fixed sampling rate.

2) Competitors: We compare the proposed network with
several state-of-the-art video classification models.

1) 3-D Convolutional Network (C3D) [31]: It aims to
extract spatiotemporal features with 3-D convolutional
filters and pooling layers. Compared to conventional

2-D CNNs, 3-D convolutions and pooling operations in
C3D can preserve the temporal information of input sig-
nals and model motion as well as appearance simultane-
ously. Moreover, Tran et al. [31] demonstrated that the
optimal size of 3-D convolutional filters is 3 × 3 × 3.
In our experiments, we test two C3D3 networks with
pretrained weights on the Sport1M dataset [21] and the
UCF101 dataset [62] (see C3D† and C3D‡ in Table II),
respectively.

2) Pseudo-3-D Residual Network (P3D ResNet) [36]: It
is composed of pseudo-3-D convolutions, where con-
ventional 3-D convolutions are decoupled into 2-D and
1-D convolutions in order to learn spatial and tempo-
ral information separately. With such convolutions, the
model size of a network can be significantly reduced,
and the utilization of pretrained 2-D CNNs is feasi-
ble. Besides, inspired by the success of ResNet [19],
P3D ResNet employs ResNet-like architectures to learn
residuals in both spatial and temporal domains. In our
experiments, we test two 199-layer P3D ResNet4

(P3D-ResNet-199) models with pretrained weights
on the Kinetics dataset [63] and the Kinetics-600
dataset [64] (see P3D†-ResNet-199 and P3D‡-ResNet-
199 in Table II), respectively.

3) Inflated 3-D ConvNet (I3D) [35]: It expands the
2-D convolution and pooling filters to 3-D, which
are then initialized with inflated pretrained models.
In particular, the weights of 2-D networks pretrained on
the ImageNet dataset are replicated along the temporal

3https://github.com/tqvinhcs/C3D-tensorflow
4https://github.com/zzy123abc/p3d
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dimension. With this design, not only 2-D network
architectures but also pretrained 2-D models can be
efficiently employed to increase the learning efficiency
and performance of 3-D networks. To assess the
performance of I3D on our dataset, we test two
I3D5 models whose backbones are both Inception-
v1 [59] (I3D-Inception-v1) with pretrained weights
on the Kinetics dataset [63] and Kinetics+ImageNet
(see I3D†-Inception-v1 and I3D‡-Inception-v1 in
Table II).

4) Temporal Relation Network (TRN) [43]: It is proposed
to recognize human actions by reasoning about multi-
scale temporal relations among video frames. By lever-
aging the proposed plug-and-play relational reasoning
module, TRN can even accurately predict human ges-
tures and human–object interactions through sparsely
sampled frames. For our experiments, we test TRNs6

with 16 multiscale relations and select the inception
architecture as the backbone. Notably, we experiment
two variants of the inception architecture: BNIncep-
tion [65] and Inception-v3 [66]. We initialize the former
with weights pretrained on the Something-Something
V2 dataset [67] (TRN†-BNInception in Table II) and the
latter with weights pretrained on the Moments in Time
dataset [68] (TRN‡-Inception-v3 in Table II).

5) SlowFast [46]: SlowFast network is a two-pathway
architecture in which a slow pathway is designed for
operating at low frame rate to capture spatial semantic
information, and a fast pathway aims at operating at high
frame rate to learn motion at fine temporal resolution.
To assess the performance of SlowFast on our dataset,
we test one SlowFast7 model (see SlowFast† in Table II)
whose backbone is ResNet [19] without pretraining.

6) Multigrid [47]: Multigrid training method utilizes vari-
able minibatch shapes with different spatiotemporal res-
olutions in the training phase. The different shapes are
generated by resampling the training data on multiple
sampling grids. The novel training method yields a
significant out-of-the-box training speedup for different
models (I3D, SlowFast). In our experiments, we use this
training method test SlowFast network8 (see Multigrid†
in Table II) with ImageNet-pretraining.

3) Evaluation Metrics: We make use of the per-class preci-
sion, OA, confusion matrix, and kappa coefficient as evaluation
metrics for comparing the performance of different models.
Specifically, the preclass precision is calculated with the
following equation:

precision = true positives

true positives + false positives
. (3)

The OA is computed by dividing the number of correctly
classified test samples by that of all test samples. Moreover,
the confusion matrix is visualized to illustrate the classification

5https://github.com/LossNAN/I3D-Tensorflow
6https://github.com/metalbubble/TRN-pytorch
7https://github.com/facebookresearch/SlowFast
8https://github.com/facebookresearch/SlowFast/tree/master/projects/

multigrid

Fig. 7. FuTH-Net versus Holistic-only versus Relation-only. OAs of
FuTH-Net (red), Holistic-only (blue), and Relation-only (green) with different
numbers of sampled frames on the ERA dataset.

TABLE III

COMPARISON WITH DIFFERENT HYBRID MODELS. WE COMPARE OUR

FUTH-NET WITH DIFFERENT HYBRID MODELS USING DIFFERENT

FUSION METHODS ON THE ERA AND DRONE-ACTION DATASETS

performance of variant models. Each element of the matrix
denotes the number of instances that belong to the ground-
truth class (X-axis) but are classified as the predicted class (Y -
axis). For an explicit visualization, we normalize the confusion
matrix by dividing each element with the sum of each row.
In addition, the kappa coefficient is leveraged to evaluate
consistency and classification precision. It considers both the
OA and the variations in the number of samples in each
category.

B. Ablation Studies

To evaluate the complementarity between two pathways and
effectiveness of the fusion module, we conduct ablation studies
on the ERA and Drone-Action datasets.

1) Complementarity: We investigate the complementarity
by comparing our FuTH-Net with its single-pathway versions
on the EAR dataset. Specifically, instead of simultaneously
utilizing both pathways, Holistic-only and Relation-only make
use of holistic representation and temporal relation pathways,
respectively. For a comprehensive study, we compare these
models under variant video sampling strategies. As shown in
Fig. 7, we sample 4, 8, 12, 16, and 20 frames from each
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TABLE IV

COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DRONE-ACTION DATASET. WE SHOW THE PER-CLASS PRECISION
AND OA ON THE TEST SET. THE BEST PRECISION/ACCURACY IS SHOWN IN BOLD

TABLE V

ABLATION STUDIES OF THE FUSION MODULE ON THE ERA AND

DRONE-ACTION DATASETS. WE SHOW THE

OAS OF FUTH-NET AND FUTH-CONCAT AND
COMPARE THEM WITH HOLISTIC-ONLY AND

RELATION-ONLY NETWORKS. THE BEST

ACCURACIES ARE SHOWN IN BOLD

video clip and show OAs. It can be observed that FuTH-Net
exhibits superior performance than the other two competitors
under all sampling strategies. The combination of the two
pathways brings in significant improvements, demonstrating
that the multiscale temporal dependencies captured by the
temporal relation pathway are largely complementary with the
holistic feature.

Moreover, we note that Holistic-only outperforms Relation-
only when four or eight frames are used but is surpassed by
Relation-only with increasing frames. The reason could be that
a few frames are not enough for the learning of multiscale
temporal relations. Another interesting observation is that the
performance of Holistic-only deteriorates when the number of

TABLE VI

ABLATION STUDIES ON GENERATIONS OF THE FUSED FEATURE z .
WE SHOW THE OAS OF MODELS WITH

DIFFERENT ADDITIONAL FEATURES ON THE ERA AND
DRONE-ACTION DATASETS. THE BEST

ACCURACIES ARE SHOWN IN BOLD

sampled frames is larger than 12, which might result from
information redundancy. This also has a negative effect on
FuTH-Net and brings a decrement of 2.3% with the number
of sampled frames increasing from 16 to 20. Finally, FuTH-
Net reaches the best performance at 16 frames.

In addition, we jointly leverage holistic spatiotemporal fea-
tures and multiscale temporal relations for video classification.
For validating the effectiveness of this combination, we com-
pare our model with other hybrid models (i.e., C3D + TRN,
P3D + TRN, and I3D + TRN) on two datasets using two
fusion methods, concatenation and our fusion module. The
numerical results are reported in Table III. We can observe
that compared to other hybrid models, our FuTH-Net achieves
the best performance with different fusion methods on two
datasets. Moreover, we note that hybrid models with our
fusion module outperform those with concatenation in gen-
eral. Another interesting observation is that the three hybrid
models do not achieve better performance than single models
(i.e., TRN). For example, I3D + TRN with our fusion module
achieves an OA of 60.8%, while TRN‡-Inception-v3 obtains
an OA of 64.3%.

2) Fusion Module: As an important component in our
framework, the fusion module aims to integrate features from
both pathways. To validate its effectiveness, we compare
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Fig. 8. Examples of predicted results on the ERA dataset. We show the results of the second best architecture, TRN, and our FuTH-Net. The ground-truth
label and top three predictions of each model are reported. Four frames are selected with 1-s interval from each example video.

Fig. 9. Confusion matrices of the proposed network. (a) ERA dataset. (b) Drone-Action dataset.

the fusion module with several commonly used integration
operation, such as max, average, concatenation, bilinear, sum,
2-D conv, and 3-D conv. Notably, for 2-D and 3-D convs,
the input is the concatenation of feature maps from the last
convolutional layers of two pathways. Table V compares
FuTH-Net to other models with different fusion modules on
both the ERA and Drone-Action datasets. As can be seen
in this table, FuTH-Net provides better results than models
with other different fusion methods and models with single
pathways, which demonstrates that our fusion module can

effectively encode high-level interactions between the two
features and improve the performance.

Moreover, we concatenate an additional holistic feature g
with the modulated feature to yield the final fused feature z.
For ablating this design, we concatenate different additional
features, i.e., none and temporal relation l , with the modulated
feature to obtain the final fused feature z. We use these
additional features to conduct ablation studies on different
generations of the fused feature z. The numerical results are
reported in Table VI. We can observe that the model with
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Fig. 10. Examples of predicted results on the Drone-Action dataset. We show the results of the second best architecture, TRN, and our FuTH-Net. The
ground-truth label and top three predictions of each model are reported. Four frames are selected with 1-s interval from each example video.

holistic feature g as the additional feature outperforms other
models. Richer spatial information introduced from the holistic
feature can improve the discriminant ability for events with
simple dynamics.

C. Results on the ERA Dataset

We compare the proposed FuTH-Net and other competitors
on the ERA dataset and report the numerical results in Table II.
As we can see, our model has a superb performance and
provides an OA of 66.8%, which is 1.5% higher than the
second best model, Multigrid‡. Also, our model and Multigrid
achieve the same best kappa coefficient (0.63). In addition, the
per-class precision is also reported to evaluate the performance
of different models on each class. In particular, our model
achieves the highest per-class precisions for some challenging
categories, such as concert (89.8%), car racing (84.2%), and
parade/protest (65.3%). This is mainly because our FuTH-
Net is able to capture complex dynamic information, which
is crucial to distinguish events with insignificant interclass
variances. Taking concert and parade/protest (cf. the first row
of Fig. 8) for example, they have something in common
(e.g., crowd and street). However, the temporal dynamics
of crowds in these two events are very different (concert:
moving randomly or standing still and parade/protest: moving
toward a certain direction). We can see that our FuTH-Net
correctly predicts these two events. This can also be seen from
Table II that our network gains the highest precisions for these
two classes, showing its effectiveness for temporal relational
reasoning.

Moreover, the performance on class nonevent can reflect
whether a model can distinguish specific events from normal

videos. Notably, our model produces the best precision
(63.9%) for nonevent, which illustrates that our method is able
to capture discriminative spatiotemporal features for inferring
the existence of events.

Finally, the confusion matrix in Fig. 9(a) shows more
details. We can observe that some events, including similar
objects and scenes (e.g., “landslide versus mudslide,” “traffic
collision versus police chase,” “harvesting versus plowing,”
and “concert versus party”), tend to be misclassified. Other
competitors also suffer from this problem. Fig. 8 shows
some predictions of FuTH-Net and the second best model
(i.e., Multigrid). It can be observed that there are a lot of
visual similarities existing in textures, objects, and scenes of
these events.

D. Results on the Drone-Action Dataset

This section compares FuTH-Net and state-of-the-art meth-
ods on the Drone-Action dataset, and quantitative results are
reported in Table IV. Our FuTH-Net achieves the highest OA,
88.4%, and compared to SlowFast that is the second best
model, an increment of 1.7% can be obtained. Moreover, our
model achieves the best kappa coefficient (0.87).

Besides, it is interesting to note that FuTH-Net shows good
performance in recognizing actions in which effectively sens-
ing motion speeds is crucial for a successful prediction. For
instance, the proposed network gains the highest precisions for
walking side (100.0%), running side (58.8%), and jogging side
(100.0%). To further illustrate this, we show some predictions
of FuTH-Net and the second best model (i.e., SlowFast) in
Fig. 10. As can be observed, the motion speeds of walking
side and running side are variant, and our FuTH-Net succeeds
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in identifying them with high confidence. The bottom right
example shows that running front/back is misclassified by
both FuTH-Net and SlowFast since human poses and motion
speeds are very similar in this angle of view. Furthermore,
the confusion matrix of the proposed network on the Drone-
Action dataset shown in Fig. 9(b) also suggests that running
front/back is easily misidentified as jogging front/back.

IV. CONCLUSION

In this article, a novel method is proposed to learn fea-
ture representations from aerial videos using a two-pathway
network, termed FuTH-Net. Specifically, the proposed net-
work exploits inflated 3-D conclusions to capture a holistic
feature on a holistic representation pathway. Simultaneously,
a temporal relation block learns temporal relations across
multiple frames on a temporal relation pathway. A novel fusion
module is applied to fuse outputs from the two pathways
for producing a more discriminative video representation.
Furthermore, we conduct extensive experiments on two aerial
video recognition datasets, ERA and Drone-Action. On the
one hand, we perform ablation studies to validate the com-
plementarity between the two pathways as well as the effec-
tiveness of the proposed fusion module. On the other hand,
we compare our model with other state-of-the-art methods.
Experimental results demonstrate that the introduction of the
temporal relation pathway can enhance the ability of capturing
representative temporal relations. Besides, our fusion module
is capable of learning high-level interactions between the
holistic features and temporal relations to further boost the
performance. The outstanding performance on the two datasets
further illustrates the superior capability of FuTH-Net for
remote sensing video recognition and its powerful generaliza-
tion capability across different tasks (event classification and
human action recognition).
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