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Abstract— Remote sensing deals with a plethora of sensors,
a large number of classes/categories, and a huge variation
in geography. Due to the difficulty of collecting labeled data
uniformly representing all scenarios, data-hungry deep learning
models are often trained with labeled data in a source domain
that is limited in the above-mentioned aspects. However, during
the test/inference phase, such deep learning models are often
subjected to a distributional shift, also called out-of-distribution
(OOD) samples, in the form of unseen classes, geographic
differences, and multisensor differences. Deep learning models
can behave in an unexpected manner when subjected to such
distributional uncertainties. Vulnerability to OOD data severely
reduces the reliability of deep learning models and trusting
on such predictions in the absence of any reliability indicator
may lead to wrong policy decisions or mishaps in time-bound
remote sensing applications. Motivated by this, in this work,
we propose a Dirichlet prior network-based model to quantify the
distributional uncertainty of deep learning-based remote sensing
models. The approach seeks to maximize the representation gap
between the in-domain and OOD examples for better segregation
of OOD samples at test time. Extensive experiments on several
remote sensing image classification datasets demonstrate that the
proposed model can quantify distributional uncertainty. To the
best of our knowledge, this is the first work to elaborately study
distributional uncertainty in context of remote sensing. The codes
are publicly available at https://gitlab.lrz.de/ai4eo/Uncertainty/-/
tree/main/DPN-RS.

Index Terms— Distributional uncertainty, open-set recognition,
out-of-distribution (OOD), reliability, remote sensing, robustness,
uncertainty.
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I. INTRODUCTION

DEEP learning has revolutionized the field of remote sens-
ing in the last few years [1] and has been successfully

applied in various remote sensing tasks, including classifi-
cation [2], [3], hyperspectral image analysis [4]–[6], seman-
tic segmentation [7]–[9], change detection [10]–[12], image
retrieval [13], [14], target detection [15], [16], disaster man-
agement [17], [18], cloud detection and removal [19]–[21],
and image fusion [22]–[24]. Most of these methods assume
that the model is trained on a dataset that has similar geo-
graphical characteristics as the target area [25], i.e., the source
data distribution is the same as the target data distribution.
Moreover, they assume that the source and the target data
have an identical set of classes. However, in practice, remote
sensing deals with a large number of sensors, which operates
across a significant variation of geographies and a large
number of classes [26]. Considering this variation, the above
assumptions often do not hold in remote sensing. There are
a few works related to domain adaptation [27]–[29] that try
to align the target distribution with the source distribution.
However, such methods are only effective when the domain
shift between the source and the target is small. Moreover, they
do not consider the presence of unseen/open-set classes. Deep
learning models are likely to fail or behave in an unexpected
way when faced with open-set classes, e.g., when a deep
model trained on images from forest area is applied on urban
images consisting of residential complexes and parking lots.
Similarly, deep models behave in an unexpected way when
they are fed with data from seen classes but with considerable
geographic variation, e.g., when a model trained on European
urban area (where skyscrapers are rare) is used to predict
test images from Asian urban areas. When deep learning
models fail, they do not provide sufficient clue to the user,
having unforeseeable impact on remote sensing applications,
especially in time-bound and safety-critical applications. As an
example, we can consider the scenario of disaster management
after an earthquake where unreliable predictions may lead
the rescue team to the wrong site, at the expense of human
lives. Nevertheless, unreliable predictions may also negatively
impact nontime-bound applications, e.g., a building detection
model trained for Europe and used unreliably on Asia/Africa
may lead to incorrect estimations of the building density and
thus impacts the subsequent policy decisions.

Toward designing reliable deep learning models that are
aware of different sources of uncertainty, predictive uncertainty
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estimation has recently emerged as a research topic in the
machine learning community [30]. Uncertainty estimation
informs users about the confidence on a prediction, thus
improving the reliability of such systems. Deep learning-based
classification models are prone to predictive uncertainties from
three different sources [31], model (also known as epistemic)
uncertainty, data (also known as aleatoric) uncertainty, and
distributional uncertainty. Epistemic uncertainty stems from a
model’s lack of knowledge (e.g., limited training data, limited
complexity, and errors in the training process), while aleatoric
uncertainty arises from complexities related to data distribu-
tion (e.g., class overlap in data). Distributional uncertainty is
related to the mismatch between the training and the test data
and can be seen as a special case of model uncertainty [32].
In remote sensing, distributional uncertainty may arise due
to various reasons, e.g., unseen classes, geographic differ-
ences, and sensor differences. Considering its high relevance
in remote sensing, in this work, we focus on distributional
uncertainty [31].

The key contributions of this article are as follows:

1) introducing the concept of out-of-distribution (OOD)
detection in remote sensing,

2) proposing a Dirichlet prior network (DPN)-based model
that can quantify distributional uncertainty in context of
different remote sensing uncertainty sources,

3) extensively experimenting on large-scale remote sensing
datasets for open-set recognition, sensor shift, and region
shift,

4) providing a benchmark that can facilitate further
research on remote sensing distributional uncertainty.

Extensive experiments demonstrated that the proposed
approach is able to detect OOD examples in remote sensing
images, thus improving the reliability and robustness of deep
learning-based models. To the best of our knowledge, this is
the first work that extensively addresses OOD detection in
remote sensing.1

The rest of this article is organized as follows. We briefly
discuss the related works in Section II. In Section III, we detail
the proposed method, and in Section IV, the datasets, exper-
iments, and results are presented. A critical discussion on
different distributional uncertainties in context of our results is
presented in Section V. We conclude this article and discuss
scope of future research in Section VI.

II. RELATED WORKS

Uncertainty quantification gained attention of the remote
sensing community even before the emergence of deep learn-
ing [33], [34]. Despite this, there are only a few works that
explore distributional uncertainty for remote sensing and topics
closely related to it [35]. In Section II-A, we briefly discuss
them. We also briefly discuss different existing Bayesian para-
digms in the machine learning literature to handle uncertainty
(Section II-B). Our work is not in contrast with the domain
adaptation literature, as explained in Section II-C.

1The code for this work is available under https://gitlab.lrz.de/ai4eo/
Uncertainty/-/tree/main/DPN-RS

A. Detecting Distributional Shifts in Remote Sensing

One common form of distributional shift is the presence of
new classes in the target data. This problem has also been
dealt as open-set recognition; da Silva et al. [36] proposed a
method for open-set aerial image segmentation. They assign
a pixel with a class confidence (given by the soft max) that
exceeds a threshold as belonging to that class. However, if the
pixelwise probability is inferior to the threshold, the pixel is
classified as open set. Dang et al. [37] proposed an open-set
incremental learning-based method for target recognition by
exploiting an extreme value theory (EVT). Wu et al. [38]
introduced open-set recognition to hyperspectral image classi-
fication.

A few works identified that the models may likely fail if
applied to new geographic locations considerably different
from the training data [39], [40]. To quantify the area of
applicability, Meyer and Pebesma [39] proposed a dissimilarity
index based on the minimum distance to the training data in
multidimensional predictor space. In [25], an applicable model
is learned by using unlabeled data from each geography of
interest.

Contrary to the previous works, our work tackles all forms
of distributional shift (e.g., open set, spatial shift, and sensor
shift) in the same framework. Moreover, on the contrary to
previous works [36] that employ trivial solutions, our work
is based on DPNs, a well-founded theoretical framework for
uncertainty estimation. Our work is also a step forward toward
building explainable remote sensing model [41], [42].

B. Bayesian Frameworks for Uncertainty

Bayesian frameworks are traditionally used to model the
predictive uncertainty of a classifier. The sources of uncer-
tainty [31] can be broadly categorized into the following three
categories.

1) Epistemic uncertainty characterizes the uncertainty
caused by the lack of knowledge of the network, caused,
for example, by insufficient training data, a shortage of
model capabilities, or an insufficient training process.

2) Aleatoric uncertainty arises from the complexity in the
data distribution, e.g., class overlap and label noise. For
example, data having different values in label space may
have very similar representation in the feature domain.

3) Distributional uncertainty arises from a mismatch in the
distribution of the training and the test data. Distrib-
utional uncertainty is likely in remote sensing due to
differences caused by new classes in the target data,
geographic shift, and multisensor differences.

Data uncertainty is in general modeled as a confidence predic-
tion by the neural network itself, e.g. by a soft-max probability
vector [32], [43]. Bayesian neural network-based approaches
capture the model uncertainty by modeling the network para-
meters as probability variables. A posterior distribution over
the parameters is derived based on the given training data and
predictions are realized by sampling different sets of para-
meters from this posterior. Different ways of approximating
such a posterior are available, e.g., Monte Carlo dropout [43],
Laplace approximation [44], or deep ensembles [32]. However,
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it is computationally very expensive to produce such ensem-
bles, thus limiting the application of existing ensemble and
Bayesian approaches in such scenario. DPN and its variants
are introduced in [31] and [45] as an efficient adaptation of
the Bayesian networks. Our work directly derives from [31]
and [45], thus exploiting the benefits of Bayesian modeling
while still being computationally efficient.

C. Position in Reference to Domain Adaptation

Domain adaptation [28], [46] is a branch of multidomain
learning. A model trained on a source domain is modulated by
domain adaptation techniques to be applied to another target
domain. However, domain adaptation assumes that either a few
labeled data samples or a large unlabeled dataset from the
target domain is available during the training of the model.
If the target domain data are completely unseen during the
training, the most domain adaptation methods do not have the
capability to mitigate differences between domains and may
eventually produce unreliable predictions. Thus, it is important
to be able to identify the test samples that are drawn from
a distribution unseen during the training. This is where the
OOD detection comes into play, further pushing forward the
paradigm of multidomain learning.

III. PROPOSED METHOD

Remote sensing deals with a vast set of data types, varying
in geography, climate conditions, sensor properties, end appli-
cations, and target classes. It is expensive, both in terms of
time and effort, to collect labeled data uniformly representing
all scenarios. Thus, most deep learning models are trained
with limited training samples in a source domain that is
limited in the above-mentioned aspects. During test/inference,
when the model is fed with data that do not follow the
source domain distribution, the model predicts in unexpected
fashion. Our goal is to propose a framework that handles
the above-mentioned sources of uncertainty in the same
framework without any adjustment being made for different
sources of uncertainty. Toward this, we adopt an efficient
adaptation of the DPN approach [45]. The Dirichlet distri-
bution is popularly used as a prior distribution in Bayesian
learning [47]. Motivated by this, Malinin and Gales [31]
proposed DPNs for an improved detection of OOD samples.
DPNs are deterministic neural networks that efficiently mimic
the behavior of Bayesian neural networks by parameterizing a
Dirichlet distribution over the categorical distribution given
by a soft-max classification output. Convenient to remote
sensing applications, any neural network with a soft-max
activation can be considered as a DPN. Following the idea of
Malinin and Gales, several other DPN-based methods for OOD
detection were developed [45], [48], [49]. In this work, we take
inspiration from the Dirichlet distribution-based approaches
and propose DPN-RS that transfers DPNs to remote sensing
settings.

Section III-A briefly introduces the Dirichlet distribution.
In Section III-B, we detail the DPNs, and we briefly discuss
its suitability for remote sensing data in Section III-C. Finally,
we present DPN-RS in Section III-D.

Fig. 1. Visualization of the data environment. The in-distribution represents
the data on which the network is expected to deliver accurate predictions. OOD
covers any other kind of data that are significantly different from the training
data distribution. The OOD training dataset is used to train the network to
handle OOD examples but can only cover a small portion of the OOD region.
While trained, the network can handle any OOD data.

A. Dirichlet Distribution

In probability theory, a categorical distribution is a discrete
probability distribution that describes the possible results of
a random variable that can take on one of K possible cate-
gories [50]. In classification tasks, the popularly used soft-max
activation function transforms the output of a neural network to
a probability vector describing a categorical distribution. The
Dirichlet distribution is the conjugate prior of the categorical
distribution and can be interpreted as a distribution over
categorical distributions. While the probability vector given
by a soft-max function represents a single point on the under-
lying solution simplex, the Dirichlet distribution represents
a distribution on this simplex. Following, it can be used to
represent the uncertainty on a classification network’s output
vector. A Dirichlet distribution for K classes is described by
class concentrations {α1, . . . , αK } > 0 and a derived precision
value α0 = ∑K

c=1 αc. With this, the density of a Dirichlet
distribution is given by

Dir(μ|α) = �(α0)∏K
c=1 �(αc)

K∏
c=1

μαc−1
c (1)

where � is the gamma function. A higher class concentration
αi for the class ci leads to more probability mass shifted
toward the corner of class ci . Also, the higher the resulting
precision value, the sharper is the Dirichlet distribution, i.e.,
the lower is the variety in the plausible categorical probability
vectors. In Fig. 2, this is visualized for a Dirichlet distribution
based on three classes.

B. Dirichlet Prior Network

Since a Dirichlet distribution describes a distribution over
categorical distributions, it can be used as a distribution over
the outputs of a neural network with K outputs. For a neural
network fθ (x) with parameters θ and input x , the network out-
puts before the soft-max activation function are called the log-
its and are given by fθ (x) = z(x) = (z1(x), . . . , zK (x)) ∈ R

K .
The logits are in general unbounded and can be both, positive
and negative. A DPN uses the logit output to predict the log
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Fig. 2. Different desired Dirichlet distributions shown over the simplex
(cf. [45]). (a) In-domain confident: high-class concentration αi for a single
class ci . (b) In-domain aleatoric uncertainty: high-class concentrations for all
three classes leading to a sharp and centered Dirichlet distribution. (c) OOD
(with DPN): low-class concentrations αi > 1 for all classes leading to
flat and centered Dirichlet distribution. (d) OOD (with DPN-RS): low-class
concentrations αi < 1 for all classes leading to a degenerated and multimodal
Dirichlet distribution.

concentration of a Dirichlet distribution. With predicted logit
values z1, . . . , zK , the network parameterizes a Dirichlet distri-
bution with (positive) concentrations αc = ex p(zc(x∗)), c =
1, . . . , K . Equivalently, the precision value is given by α0 =∑K

c=1 αc = ∑K
c=1 ex p(zc(x∗)).

With this formulation, the posterior distribution p(ω|x, θ)
over the possible class labels ω ∈ {1, 2, . . . , K } is given by
the expected value of the Dirichlet distribution

p(ω|x, θ) = EDir(μ|α)[p]

=
∫

p(ω) Dir(μ|α) dμ

= αc

α0
. (2)

The posterior given in (2) is equivalent to applying the
soft-max function to the logit values of the network.

The challenge in optimizing the posterior distribution using
standard neural networks with a soft-max activation function
and cross-entropy loss function lies in the scaling of the
posterior. As evident from (2), the scaling of the concentrations
(αc) affects the precision (α0). Thus, looking only at the soft-
max value, one can not conclude on the precision of the
Dirichlet distribution. Following, the network is optimized
based on pointwise estimations of the posterior distribution
instead of taking the uncertainty on the posterior into account.
As a result, it is not possible to separate distributional and data
uncertainty effectively, leading to difficulty in the detection of
OOD samples.

The DPN tackles the above-mentioned challenge by design-
ing a multitask learning paradigm. In order to separate
in-distribution samples and OOD samples, the network is
trained on a mixture of two sets, a set of in-distribution
samples (Din) and an additional set of OOD samples (Dout).
Please note that the set Dout for training is not necessarily
drawn from the same distribution as the OOD samples during
test/evaluation (see Fig. 1). The OOD samples during training
(Dout) are only used to learn a boundary on the in-distribution
samples. Once trained, the network can be applied on any
OOD samples, even those that have a completely different
distribution than the OOD samples used during training.

The general purpose of DPNs is to predict different forms of
Dirichlet distributions in order to separate the following three
cases:

1) in-distribution examples where the network is certain in
its prediction;

2) in-distribution examples where the network is uncertain;
3) OOD examples.

DPNs seek to differentiate between in-domain and OOD sam-
ples based on the predicted class concentrations. More explic-
itly, they aim to produce a unimodal distribution at the corner
of the solution simplex with the correct class [Fig. 2(a)] [31].
For in-domain samples with high data uncertainty, DPNs aim
to produce a sharp distribution at the center [Fig. 2(b)] and for
OOD data, DPNs aim to produce a flat distribution [Fig. 2(c)].

The key architecture of the deep model remains unmodified
with a DPN, except removing the soft-max activation after
the final layer, i.e., outputting the logits. However, the key
to achieve the desired behavior is the design of a multitask
optimization loss function, i.e., a loss that simultaneously
supports the network in learning the classification task for
in-distribution samples and learning to predict very small
class concentrations for OOD examples. For that, the loss has
to differentiate whether a received prediction is based on a
sample from Din or Dout and hence should be of the form of

L(θ) = Lin(θ) + γ · Lout(θ) (3)

where γ > 0 is a scalar, balancing the impact of in-distribution
and OOD samples. In order to achieve the desired behavior,
Malinin and Gales [31] presented a loss function based on the
Kullback–Leibler (KL) divergence between the target Dirichlet
distribution Dir(μ|αin) or Dir(μ|αout) for some sample x , and
the corresponding predicted Dirichlet distribution p(μ|x, θ)

Lkl
(
θ; αin, αout

) = EPin(x)

[
KL

[
Dir

(
μ|αin

)||p(μ|x, θ)
]]

+EPout(x)

[
KL

[
Dir

(
μ|αout

)||p(μ|x, θ)
]]

.

(4)

Pin and Pout describe the in- and out-distribution, respectively,
and αin and αout represent the ground-truth target concentra-
tions. Since the target concentrations cannot be derived from
the one-hot encoding (due to the scaling described before),
these values have to be chosen beforehand [31].

Based on further investigations, Malinin and Gales [48] also
presented a loss function based on reverse KL divergence

Lrkl
(
θ; αin, αout

) = EPin

[
KL

[
p(μ|x, θ)||Dir

(
μ|αin

)]]
+EPout

[
KL

[
p(μ|x, θ)||Dir

(
μ|αout)]].

(5)

The reverse KL divergence showed improvement in the numer-
ical stability and OOD detection results in comparison to [31].
However, as shown by Nandy et al. [45], for in-domain exam-
ples with high aleatoric uncertainty among multiple classes,
DPNs produce flat Dirichlet distributions [45]. In practice, this
could easily lead to representations that are indistinguishable
from OOD examples.

C. Suitability of Classical DPN for Remote Sensing

The DPN is a suitable framework for remote sensing image
classification for the following reasons.

1) Considering the variety of remote sensing data, OOD
data may come in many unforeseeable forms in remote
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sensing. DPNs provide the flexibility that all samples
from all possible distributions do not need to be seen
during the training phase. For example, considering a
spatially varying system, if the in-domain training data
belong to Europe and OOD training data belong to
Africa, the DPN model is capable of handling OOD test
data from Asia.

2) DPNs can be used without altering the key architecture
of the models already used in remote sensing classifica-
tion.

3) A DPN is a single deterministic neural network where
only one forward pass per evaluation has to be per-
formed. This leads to less computation than for other
approaches as ensembles or Bayesian neural networks.
This is an important advantage, especially for very-large-
scale Earth Observation (EO) applications.

Due to the large number of classes in remote sensing with
strong interclass similarity, it is common in remote sensing
for in-domain samples to have high aleatoric uncertainty
among multiple classes. In such cases, DPNs produce a flatter
Dirichlet distribution [45]. This leads to representations that
are harder to distinguish from the OOD samples. In other
words, for remote sensing applications, DPN may confuse
between aleatoric uncertainty and distributional uncertainty.
This limits the practical application of traditional DPNs [48]
in remote sensing. Hence, to alleviate this problem, inspired
by [45], we propose DPN-RS that can effectively segregate
the OOD samples from in-domain data.

D. DPN-RS

To overcome the challenges introduced in Section III-C,
our approach aims at learning a sharp multimodal distribution
(α0 � 1) [see Fig. 2(d)] instead of a flat unimodal distribution
for OOD examples. The precision regularization is achieved
by introducing a bounded regularization term given by the
sigmoid function on the logits

α′
0 = 1

K

K∑
c=1

sigmoid(zc(x)).

α′
0 is used as a regularizer along with the cross-entropy loss.

This gives the following two loss formulations for in-domain
and OOD examples:

Lin(θ; λin) := EPin(x,y)

[− log p(y|x, θ) − λinα
′
0

]
(6)

and

Lout(θ; λout) := EPout(x,y)

[Hce(U; p(y|x, θ)) − λoutα
′
0

]
(7)

where U denotes the uniform distribution over all classes and
Hce denotes the cross-entropy function. With this approach,
the ground truth is given by a probability vector and can be
therefore directly derived from the class labels and no target
concentrations have to be chosen. The precision is controlled
by two hyperparameters λin and λout [45] and the combined
loss function is given by

LDPN-RS(θ; γ, λin, λout) = Lin(θ, λin) + γLout(θ, λout) (8)

Fig. 3. Visualization of the training procedure for the considered DPN-RS
network.

where again in-domain and OOD samples are balanced by a
hyperparameter γ > 0. For the proposed approach, we use
λin > 0, while λout < 0. For in-domain examples that
are confidently predicted, the cross-entropy loss maximizes
the logit value of the correct class. However, for in-domain
samples with aleatoric uncertainty, the optimizer maximizes
sigmoid(zc(x)) for all classes, thus yielding a sharp distribu-
tion centered on the solution simplex. By choosing λout < 0,
DPN-RS produces negative values for zc(x∗) for an OOD
example x∗. This leads to αc � 1 for all c = 1, . . . , K ,
and thus, an OOD sample yields a sharp multimodal Dirichlet
distribution with probability mass at each corner of the simplex
[Fig. 2(d)]. Fig. 2(b) and (d) shows more distinct over the
simplex, making the OOD samples easily distinguishable
from the in-domain ones. In Fig. 3, a visualization of the
training process of the proposed approach is given. In Fig. 5,
an example for a certain in-distribution prediction, an uncertain
in-distribution prediction, and an OOD prediction is presented
together with different derived measures, which can be used
to separate between in-distribution and OOD.

IV. EXPERIMENTAL VALIDATION

In Section IV-A, we briefly present the datasets used
in our experiments. Experimental settings are discussed in
Section IV-B. The rest of this section presents the results and
the analyses for each of the experiments.

A. Datasets

We perform our experiments on three different datasets,
namely, the Aerial Image dataset (AID) [52], the UC-Merced



5616819 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 4. Defined classes and corresponding example patches of the UCM dataset [51], the AID [52], and the So2Sat LCZ42 dataset [53]. For LCZ42, only
the three bands representing red, green, and blue are visualized.

Land Use (UCM) dataset [51], and the So2Sat Local Climate
Zone 42 (LCZ42) dataset [53]. In the following, the datasets
are briefly described. An overview over the classes contained
in the different datasets is given in Fig. 4.

1) AID Dataset: The AID dataset [52] contains very
high-resolution aerial RGB images with 600×600 pixels size.
The dataset covers 30 different classes, each represented by
more than 300 samples in the dataset. We split the dataset
randomly into 70% for training and 30% for testing. Further-
more, the images are cropped and resized to 256×256 pixels.
All experiments are based on a ResNet50 neural network
pretrained on imagenet.

2) UC Merced Landcover Dataset: The UC Merced (UCM)
dataset [51] contains high-resolution aerial RGB images with
1-ft ground sampling distance and 256 × 256 pixels size.

The dataset covers 21 different classes, each represented
by 100 samples in the dataset. Again, we split the dataset
randomly into 70% for training and 30% for testing. All exper-
iments are based on a ResNet50 neural network pretrained on
Imagenet.

3) So2Sat LCZ42 Dataset: The So2Sat LCZ42 dataset [53]
provides about half a million coregistered Sentinel-1 and
Sentinel-2 patches. For our experiments, we only use the
optical Sentinel-2 images. The 32×32 patches are taken from
42 different regions worldwide, and for each sample, a local
climate zone (LCZ) label is provided. The data are split into
a training set of 352 366 patches and a validation and test set
containing 24 188 and 24 119 patches, respectively, sampled
from regions different from the regions of the training set.
An overview over the LCZs can be seen in Fig. 4. We build
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TABLE I

OVERVIEW OVER THE COMPARED METHODS AND THEIR FUNDAMENTAL PROPERTIES AND DIFFERENCES

our networks based on the network structure proposed in [54]
but without multilevel fusion. For the experiments related to
open-set recognition and sensor shifts, we want to avoid a
region shift and therefore work only on the training set of the
original dataset which we split into 70%–30% for our training
and testing.

B. Experimental Settings
We evaluate the performance of the presented methods on

three different remote sensing tasks.
1) Open-Set Recognition: Where the test set contains

classes unseen during training.
2) Channel Separation: Where the test set contains images

from different channels than the training images. This
simulates a multisensor scenario.

3) Location Separation: Where the test set contains images
from different spatial locations than the training images.

We run the experiments within single datasets and without
mixing different datasets. Intuitively, it is clear that when
working with different datasets, the similarity between the
dataset used for in-distribution and the dataset used for OOD
during training builds a crucial point for the OOD detection
performance.

We compare the proposed method to the following par-
adigms in which main properties are also summarized in
Table I.

1) DPN+ [45]: A DPN-based approach with precision
regularizing factors λin > 0 and λout > 0.

2) DPNrev [48]: A DPN that uses the reverse KL divergence
as in (5) to compare the predicted and the ground-truth
Dirichlet distribution.

3) DPNforw [31]: A DPN that uses the KL divergence as
in (4) to compare the predicted and the ground-truth
Dirichlet distribution.

4) Evidential neural network (ENN) [49]: The ENN does
not require any OOD training data. ENN is motivated
by subjective logic and also interprets the logits as a
parameterization of a Dirichlet distribution. However,
in contrast to DPNs, ENNs set the class concentrations
in relation to an additional constant concentration that
is interpreted as an unknown class. For ENNs, different
loss functions are presented in [49]. For our analysis,
we use the expected cross-entropy loss.

The receiver operator characteristic (ROC) is popularly used
to present the results for binary decision problems in machine
learning [55]. Conforming to this, we use the area under
ROC (AUROC) to present the OOD detection performance
based on four popularly indicators, namely, maximum proba-
bility, entropy, mutual information, and α0 [45].

For the approaches that make use of OOD samples at train-
ing time, we generated batches that contain 50% in-distribution
and 50% OOD samples. Based on preliminary experiments,
we have chosen the hyperparameters λin, λout and γ for the
losses defined in (6)–(8) as

λin = 0.5, λout = 1

K
− 0.5, γ = 1. (9)

The targets are chosen, as shown in Table I.
We show all results as mean and standard deviation based on

seven different runs. Even though the objective of the proposed
method is OOD detection, we also show in-domain classifica-
tion performances. We show them as accuracy computed over
all in-domain samples (denoted as “accuracy” in the tables)
and accuracy computed separately over all classes and then
averaged (denoted as “average accuracy” in the tables) and as
Cohen’s kappa value.
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TABLE II

DIFFERENT SPLITS OF THE 30 CLASSES CONTAINED IN AID INTO IN-DOMAIN, OOD FOR TRAINING, AND OOD FOR TESTING SETS

TABLE III

OOD DETECTION RESULTS ON THE OPEN-SET RECOGNITION TASK ON THE AID DATASET. THE PERFORMANCE IS MEASURED BY 100× THE AUROC.
THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER APPROACH ARE

GIVEN BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

C. Open-Set Recognition
Open-set recognition is an important problem in computer

vision [56] and remote sensing [36]. To simulate open-set
behavior in a remote sensing dataset, we split the given
datasets into three subsets. The sets of classes in each subset
are disjoint, i.e., each class is part of exactly one subset. For

the open-set recognition problem, we use one of the subsets
as in-distribution samples, one as OOD samples that are given
at training time and the third one as OOD samples reserved
for testing the OOD detection performance.

1) Open-Set Recognition on AID: For the open-set recog-
nition, we split the 30 classes of the AID into three groups
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TABLE IV

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE OPEN-SET RECOGNITION TASK ON THE AID DATASET. THE RESULTS ARE GIVEN AS
MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY FOR EACH SETTING IS HIGHLIGHTED

TABLE V

DIFFERENT SPLITS OF THE 21 CLASSES CONTAINED IN THE UCM DATASET INTO IN-DOMAIN, OOD FOR TRAINING, AND OOD FOR TESTING SETS

of ten classes each. In order to evaluate the robustness of
the considered approaches, we consider a handcrafted split
into human built scenes and nonhuman built scenes. Further-
more, we consider five random splits of classes. The result-
ing in-domain and OOD datasets are described in Table II.
We tabulate the open-set recognition accuracy and classifica-
tion accuracy in Tables III and IV, respectively. All methods
perform relatively well for this dataset. While the DPN-based
approaches (DPN-RS, DPN+, DPNforw, and DPNrev) receive
AUROC values above 0.9 for the OOD detection task, the
ENN achieves at least 0.80 in average. Over all test cases, all
DPN-based approaches are among the best performances with
not more than 1% difference.

All approaches perform satisfactorily in regard to the
classification accuracy on the in-distribution samples. All
DPN-based approaches obtain an average accuracy higher than
95% for all test cases.

2) Open-Set Recognition on UCM: We split the 21 classes
of the UCM dataset into three groups of seven classes
each. In order to evaluate the robustness of the considered
approaches, we consider a handcrafted split into human built
scenes and nonhuman built scenes. Furthermore, we consider
five random splits of classes. The resulting in-domain and
OOD datasets are described in Table V. The OOD detection
performance and classification results on the UCM dataset
are presented in Tables VI and VII, respectively. Regarding
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TABLE VI

OOD DETECTION RESULTS ON THE OPEN-SET RECOGNITION TASK ON THE UCM DATASET. THE PERFORMANCE IS MEASURED BY 100× THE AUROC.
THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER APPROACH ARE

GIVEN BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

TABLE VII

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE OPEN-SET RECOGNITION TASK ON THE UCM DATASET. THE RESULTS ARE GIVEN AS
MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY FOR EACH SETTING IS HIGHLIGHTED

the OOD detection task, the DPN-based approaches perform
satisfactorily with AUROC values of at least 0.95. Even though
DPN-RS gives the highest average AUROC score in four
out of six cases, the results are very close to each other
considering the stated standard deviations. The performances
of all DPN-based approaches do not differ more than 2% in
almost all cases. The ENN results are worse compared to the
DPN-based methods.

The average in-domain classification accuracy is satisfactory
for all approaches and all settings. The best average accuracy
is above 99% with only small deviations between the different
approaches.

3) Open-Set Recognition on LCZ42: In comparison to the
AID and UCM datasets, the interclass similarity is much
stronger in the low spatial-resolution LCZ42 dataset, making
it a more challenging dataset. For our experiments, we split
the classes into urban (classes 1–10), vegetation (classes A–F),
and water (class G). First, we test the performance with urban
as in-domain and vegetation and water as OOD data. Second,

we test the performance with vegetation as in-domain and
urban and water as OOD data. The OOD detection perfor-
mance and the classification results on the LCZ42 dataset are
presented in Tables VIII and IX, respectively.

The proposed DPN-RS performs best on all test settings
based on the LCZ42 dataset. Not only the average sepa-
ration performance is better than for the other approaches
but also the accuracy on the in-distribution classification task
is larger in three out of four settings and the variances
in the results are smaller. The setting with urban classes
as in-domain and vegetation as OOD during training and
water as OOD for testing leads to the best results over
all test settings with all considered AUROC values above
0.99 for DPN-RS.

In Table X, we show the results of DPN-RS on the open-
set problem when using UCM, AID, and LCZ42 at the same
time. One can clearly see that the similar resolution of AID
and UCM has a significant influence on the OOD detection
performance.
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TABLE VIII

OOD DETECTION RESULTS ON THE OPEN-SET RECOGNITION TASK ON THE SO2SAT LCZ42 DATASET. THE PERFORMANCE IS MEASURED BY 100×
THE AUROC. THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER

APPROACH ARE GIVEN BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

TABLE IX

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE OPEN-SET RECOGNITION TASK ON THE SO2SAT LCZ42 DATASET.
THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST

AVERAGE ACCURACY FOR EACH SETTING IS HIGHLIGHTED

TABLE X

OOD DETECTION RESULTS OF THE PROPOSED METHOD ON THE

OPEN-SET RECOGNITION TASK ON THE MIXTURE OF THE UCM,
THE AID, AND THE LCZ42 DATASET. UCM IS USED AS

IN-DISTRIBUTION AND THE OTHER TWO DATASETS FOR OOD
FOR TRAINING AND TESTING. ONE CAN CLEARLY SEE

THAT THE LCZ42 DATASET WITH A MUCH LOWER RES-
OLUTION THAN UCM IS DETECTED SIGNIFICANTLY

BETTER AS OOD

D. Channel Separation

For the channel separation, we use the R-, G-, and
B-channels of the samples of the three datasets. All classes
are considered, but each sample is separated into an in-domain
channel, an OOD channel for training, and an OOD channel
for testing. The in-domain classification results and OOD
detection indices for the AID, UCM, and LCZ42 datasets are
tabulated in Tables XI–XVI. For all datasets, the DPN-RS and
DPN+ provide the best OOD detection performance, with
DPN-RS reaching four out of six top scores. For the UCM
and the AID dataset, DPNrevperforms worse on the OOD
detection than DPN-RS and DPN+ but better than DPNforw and
the ENN approach. The two settings where the blue channel
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TABLE XI

OOD DETECTION UNDER SENSOR SHIFT IN THE AID DATASET. THE PERFORMANCE IS MEASURED BY 100× THE AUROC. THE RESULTS ARE GIVEN
AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER APPROACH ARE GIVEN BOLDFACED AND

THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

TABLE XII

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE SENSOR SHIFT TASKS ON THE AID DATASET. THE RESULTS ARE GIVEN AS MEAN

AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY FOR EACH SETTING IS HIGHLIGHTED

TABLE XIII

OOD DETECTION UNDER SENSOR SHIFT IN THE UCM DATASET. THE PERFORMANCE IS MEASURED BY 100× THE AUROC. THE RESULTS ARE GIVEN

AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER APPROACH ARE GIVEN BOLDFACED AND
THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED
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TABLE XIV

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE SENSOR SHIFT TASKS ON THE UCM DATASET. THE RESULTS ARE GIVEN AS MEAN
AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY FOR EACH SETTING IS HIGHLIGHTED

TABLE XV

OOD DETECTION UNDER SENSOR SHIFT IN THE SO2SAT LCZ42 DATASET. THE PERFORMANCE IS MEASURED BY 100× THE AUROC. THE RESULTS
ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER APPROACH ARE GIVEN

BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

TABLE XVI

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE SENSOR SHIFT TASKS ON THE LCZ42 DATASET. THE RESULTS ARE GIVEN AS MEAN
AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY FOR EACH SETTING IS HIGHLIGHTED
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TABLE XVII

OOD DETECTION UNDER REGION SHIFT IN ALL CLASSES OF THE SO2SAT LCZ42 DATASET. THE PERFORMANCE IS MEASURED BY 100× THE AUROC.
THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER APPROACH ARE

GIVEN BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

4

TABLE XVIII

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE REGION SHIFT TASKS ON ALL CLASSES OF THE LCZ42 DATASET. THE RESULTS

ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY ON IN-DISTRIBUTION
SAMPLES IS HIGHLIGHTED FOR EACH SETTING

is considered as in-domain provide the best OOD separa-
tion performance, while other settings provide less satisfac-
tory OOD separation results. Remarkably, the performance
of DPN-RS is superior for the more challenging LCZ42
dataset in comparison to the other datasets. At the same
time, DPN-RS provides competitive in-domain prediction
accuracies for the LCZ42 dataset by performing best or
at most 1% below the best performing approach. In gen-
eral, the performance is lower for the open-set recognition
experiments.

E. Location Separation

The location separation experiments are conducted
only on the LCZ42 dataset as any location information
for the other two datasets is not available. We form
three sets of regions contained in the LCZ42
dataset.

1) Europe and North America: Amsterdam, Cologne,
London, Zurich, Los Angeles, Melbourne,
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TABLE XIX

OOD DETECTION UNDER REGION SHIFT IN THE URBAN CLASSES OF THE SO2SAT LCZ42 DATASET. THE PERFORMANCE IS MEASURED BY 100×
THE AUROC. THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER

APPROACH ARE GIVEN BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

TABLE XX

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE SAMPLES OF THE REGION SHIFT TASK ON THE URBAN CLASSES OF THE LCZ42
DATASET. THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY

ON IN-DISTRIBUTION SAMPLES IS HIGHLIGHTED FOR EACH SETTING

Madrid, Paris, Milan, Rome, Philadelphia,
New and York.

2) China and Japan: Beijing, Changsha, Dongying,
Hongkong, Wuhan, Tokyo, Shenzhen, Shanghai,
Qingdao, Nanjing, and Kyoto.

3) South America, Africa, and Middle East: Cairo,
Capetown, Islamabad, Istanbul, Dhaka, Lima, Orangi-
town, Caracas, Bogota, Sao Paulo, Salvador, and Rio de
Janeiro.

The three groups exhibit distinct characteristics. While
group 1 contains less high-rise buildings, group 2 contains
many high-rise buildings. In contrast to this, group 3 contains
many disorganized crowded settlements.

In order to evaluate the performance with a special focus
on the urban and the vegetation classes, we apply three
different types of experiments. For the first setting, we con-
sider all classes, for the second setting, we only use the
urban classes 1-10, and for the third setting, we only use the
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TABLE XXI

OOD DETECTION UNDER REGION SHIFT IN THE VEGETATION CLASSES OF THE SO2SAT LCZ42 DATASET. THE PERFORMANCE IS MEASURED BY 100×
THE AUROC. THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST RESULTS PER

APPROACH ARE GIVEN BOLDFACED AND THE BEST RESULTS ON THE SINGLE SETTINGS OVER ALL APPROACHES ARE ITALICIZED

TABLE XXII

CLASSIFICATION ACCURACY AND AVERAGE ACCURACY ON THE SAMPLES OF THE REGION SHIFT TASK ON THE VEGETATION CLASSES OF THE LCZ42
DATASET. THE RESULTS ARE GIVEN AS MEAN AND STANDARD DEVIATION COMPUTED BASED ON SEVEN RUNS. THE BEST AVERAGE ACCURACY

ON IN-DISTRIBUTION SAMPLES IS HIGHLIGHTED FOR EACH SETTING

vegetation classes A–F. The OOD detection and in-domain
classification results for the experiments with all classes,
urban classes only, and vegetation classes only are presented
in Tables XVII–XXII. For all three cases, DPN-RS and
DPN+ give the best results in almost all cases regarding
both the OOD detection and the in-domain classification.
They specially perform very good for the top four settings.
Depending on the definition of in- and out-domain, the prior
networks based on forward and reverse KL divergence perform
poorly. While the best separation performance increases from
all classes setting to the urban only setting, it decreases for
the vegetation-only setting.

V. DISCUSSION

A. Open-Set Recognition

The experiments on the open-set recognition clearly demon-
strate that the proposed method as well as the compared
methods are capable of differentiating between in-domain and
OOD samples for high-resolution images with clear differ-
ences in the class representations, as seen for the AID and the
UCM dataset. On the low-resolution So2Sat LCZ42 dataset
which contains multiple very similar classes, the proposed
method clearly outperforms the other methods and is the only
method that still delivers a separation between in-domain and
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Fig. 5. Examples of DPN-RS predictions with low uncertainty, data uncer-
tainty, and distributional uncertainty. One can clearly see that the differences
in the stated maximum probability (Max. Prob), the entropy, and the precision.

OOD samples with the best AUROC scores between 0.88 and
0.99 on all considered test cases. This result underlines the
main motivation of this method to derive a better separation
between aleatoric in-distribution uncertainty and distributional
uncertainty. However, the performance is lower in this dataset
compared to the other two datasets, caused by its lower
resolution and poor interclass separability. Small variations
in such low-resolution data may lead to completely differ-
ent predictions. Therefore, maximizing the gap between the
in-distribution and OOD data is challenging on such datasets.

B. Sensor Shift

Contrary to the open-set recognition, the results indicate
that the OOD detection under sensor shift is easier with
lower resolution images and more challenging with higher
resolution images. Furthermore, the similarity of the differ-
ent sensors highly affects the OOD detection performance.
It can be clearly observed that separating the blue channel
from the green and the red channel gives the best results.
Furthermore, the results on the LCZ42 dataset indicate that
using a band more similar to the in-distribution as OOD
data for training leads to a better separation. This underlines
the obvious assumption that the similarity of the sensors
highly affects the performance of such approaches and has
to be considered for further research in this direction. The
classification performance on the in-distribution data is pretty
similar among the different experiments.

C. Region Shift

The region shift shows that DPN-RS is in general capable of
detecting unknown city structures from other regions. More-
over, such a regionwise shift is almost similarly prevalent in
both urban classes and vegetation classes. Poor OOD detection
performance is obtained when using group 2 as in-domain
data, group 3 as OOD training data, and group 1 as OOD test
data. This shows that group 3 has a more diverse distribution
than the other two, and thus, a boundary learned on group

2 using group 3 as OOD training data is less efficient to detect
group 1 as OOD.

In contrast to the experiments in sensor shift experiments,
the accuracy on the in-distribution samples is competitive,
even though it might change significantly between different
regions. Taking the OOD detection into account is therefore
a promising way to improve the classification performance by
rejecting uncertain samples from new regions.

VI. CONCLUSION

In this article, we proposed a method for OOD detection
for remote sensing data. While deep learning is currently
being applied to almost all remote sensing problems, their
reliability is still questionable when the test data have a
distributional shift from the training data. OOD detection is a
crucial step for improving the trustworthiness of deep learning
models. Toward this, we propose a DPN-based model that
can effectively increase the gap between in-domain data and
OOD data. The proposed method is tested extensively on
three remote sensing datasets and three different tasks, namely,
open-set recognition, sensor shift, and region shift. The pro-
posed method shows satisfactory performance in all of the
above settings. In general, DPN-based methods perform very
well on OOD-detection and outperform the compared ENN
approach and other baselines. Successful detection of OOD
samples is a stride forward for building reliable, trustworthy
deep learning-based remote sensing models. To the best of our
knowledge, our work is the first extensive study on remote
sensing data for this topic. Our future work will aim toward
extending the OOD detection in the context of multitemporal
analysis and multimodal fusion.
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