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Multitarget Domain Adaptation for Remote Sensing
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Abstract— Remote sensing deals with huge variations in geog-
raphy, acquisition season, and a plethora of sensors. Considering
the difficulty of collecting labeled data uniformly represent-
ing all scenarios, data-hungry deep learning models are often
trained with labeled data in a source domain that is limited in
the above-mentioned aspects. Domain adaptation (DA) methods
can adapt such model for applying on target domains with
different distributions from the source domain. However, most
remote sensing DA methods are designed for single-target, thus
requiring a separate target classifier to be trained for each
target domain. To mitigate this, we propose multitarget DA
in which a single classifier is learned for multiple unlabeled
target domains. To build a multitarget classifier, it may be
beneficial to effectively aggregate features from the labeled source
and different unlabeled target domains. Toward this, we exploit
coteaching based on the graph neural network that is capable
of leveraging unlabeled data. We use a sequential adaptation
strategy that first adapts on the easier target domains assuming
that the network finds it easier to adapt to the closest target
domain. We validate the proposed method on two different
datasets, representing geographical and seasonal variation. Code
is available at https://gitlab.lrz.de/ai4eo/da-multitarget-gnn/.

Index Terms— Coteaching, domain adaptation (DA), graph
neural network (GNN), multimodal learning, multitarget adap-
tation.

I. INTRODUCTION

MOST deep learning-based methods assume that the
training data and test data are drawn from the same
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distribution. However, such assumption often does not hold
in remote sensing as differences are induced by geographic
variation, differences in acquisition season, and sensor. There
are works related to domain adaptation (DA) [1] that try to
align the target distribution with the source distribution. Most
DA methods adapt a single unlabeled target from a single
labeled source domain. Such methods include those based on
generative modeling [2], adversarial training [3], and statistical
alignment [4], [5]. Such models are not suitable for practical
setting in remote sensing as we may come across many target
domains and separate model needs to be trained for each
target domain. E.g., if the training data consists of images
corresponding to a city, every other city can be considered as a
different domain. Recently, some works in the computer vision
literature have addressed this issue by designing methods to
adapt to multiple target domains simultaneously from a single
source domain [6], a setting called as multitarget domain
adaptation (MTDA).

In multitarget setting, it is important to learn a classifier
that generalizes across multiple target domains. Given the
intrinsic nature of this task, we argue that learning robust
features in a unified space may be beneficial. Thus, feature
aggregation can be a suitable direction for multitarget adap-
tation. Toward this, graph neural networks (GNNs) have been
found effective [7]. This motivated us to design a GNN-based
incremental approach for MTDA in the context of remote
sensing image classification. A GNN with episodic training
is integrated to mitigate underlying domain shifts and the
adversarial learning is further adopted to close the gap between
the source and target distributions. Inspired by coteaching [8]
that can exploit noisy labels, we design a dual-head classifier
network that consists of a base feature extractor followed
by two classifier heads, a multilayer perceptron (MLP) head
and a GNN head. The network is first trained with the
labeled source samples. Following this, one target domain
at a time is processed to further train the network, ordered
by their level of difficulty. Training is accomplished with
mini-batches comprising of samples from both source domain
and target domains. While the MLP-based classifier focuses
on individual samples, the GNN-based classifier aggregates
feature from different samples in the minibatch. Similar to
coteaching [8], they help each other in an iterative manner
to learn more effective target classifier. An incremental train-
ing scheme aligns conditional distributions across domains
by gradually obtaining pseudolabeled target data. Class-
specific representations are further learned by aggregating the
source and target features and passing through deep GNNs.
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The proposed MLP-GNN classifier is seamlessly equipped
with a domain discriminator, which further closes the gap
between the source and target distributions.

The contributions of this work are as follows.
1) We propose a GNN-based method for MTDA that starts

by learning a classifier on the source domain and incre-
mentally updates it on the target domains.

2) We introduce the coteaching [7], [8] in the context of
remote sensing DA.

3) We experimented on two multitarget scenarios, one
with geographic variation (multiple cities) and the other
with season variation (multiple seasons). The datasets
are derived from LCZ42 dataset [9] and Sen12-MS
dataset [10], respectively. Our experiments indicate the
efficacy of the proposed method.

We present the related works in Section II and the proposed
method in Section III. Experimental results are presented in
Section IV. Finally, the letter is concluded in Section V.

II. RELATED WORKS

In computer vision, different strategies are adopted for
DA, e.g., adversarial training [11], [12] and discrepancies
measurement minimization [13]. There are several problem
settings according to the alignment of label space of domains,
e.g., open-set, close-set, and universal DA [14], or the num-
ber of sources and targets, e.g., single-source-single-target,
multisource [15], [16], and MTDA [17], [18].

MTDA is to learn a robust predictor for all the target
domains given one labeled source dataset and multiple unla-
beled target datasets that differ in data distributions [6], [17].
Few single-target DA methods can be applied in the mul-
titarget setting. Multiteacher MTDA (MT-MTDA) proposed
by Nguyen-Meidine et al. [6] used knowledge distillation to
iteratively distill domain knowledge from multiple target
domains to a common classifier.

Adapting the source classifier to each target domain sequen-
tially for multitarget adaptation is related to incremental learn-
ing. Incremental learning [19] gradually extends the existing
model’s capacity by digesting sequentially available data for
the upcoming new tasks. GNNs have the advantage over
other neural networks by allowing to capture the interaction
between data. Nodes of graphs can represent objects/images
and the relationship between nodes are encoded in edges.
GNNs can leverage unlabeled data to improve the performance
of supervised learning by label propagation and message pass-
ing [7], [20]. Many DA problems have also been addressed by
hierarchical [21], active learning [22], and semisupervised [23]
methods.

Coteaching is a deep learning paradigm first introduced
in [8] that simultaneously trains two deep neural networks
and let them teach each other.

III. PROPOSED METHOD

Let us assume, we have a labeled source domain dataset S
containing ns labeled samples (xs,i , ys,i )

ns
i=1. Our goal is

to exploit this dataset to train a classifier for N target

TABLE I

NETWORK ARCHITECTURE ASSUMING BATCH-SIZE B. CONV(a, b, c)
DENOTES A CONVOLUTIONAL FILTER WITH a INPUT FEATURES,

b OUTPUT FEATURES, AND KERNEL SIZE c × c

datasets T = {T j}Nj=1 each having nt j unlabeled samples
(xt j,k, yt j,k)

nt j

k=1. We assume that source domain has sufficient
samples to train an initial model (Section III-B). Further-
more, we do not assume any labeled samples from the target
domains, however, we assume that the target domains share
the same label space as source domain consisting of nc classes.

A. Model Key Components

Given an input image x , a feature extractor base network F
is used to extract the features from the input image f = F(x).
Extracted features are fed simultaneously to a MLP classifier
Gmlp and a GNN-based network Ggnn. The Ggnn consists of
an edge-network fedge and a node classifier fnode. In addition
to the Gmlp and Ggnn, a domain discriminator network D is
used. The weights of networks F , D, Gmlp, fedge, and fnode

are represented as θ,ψ, φ, ϕ, and ϕ ′, respectively.
We use Resnet-18 as feature extractor, however, any other

suitable model can be used. Gmlp consist of a fully con-
nected (FC) layer mapping 256-dimensional output from F to
nc-dimensional output. The fedge and fnode consist of series
1 × 1 convolutional layers (similar to [20]). Network key
components are outlined in Table I.

B. Pretraining on Source Dataset

The model is pretrained for Ksource iterations using only the
source (labeled) samples (xs,i , ys,i )

ns
i=1. Cross-entropy loss �mlp

ce
computed on the source samples is used to train F and Gmlp

and thus updating θ and φ, respectively.

C. Adaptation on Targets and Incremental Learning

The model’s generalization ability to the target domains is
progressively improved by incorporating more target samples
in each step. An incremental learning approach is adopted
by processing one target domain at a time, in the order
of difficulty levels. The easier target domains are processed
first followed by the harder ones to avoid potential negative
transfer. The level of domain difficulty can be measured by the
dissimilarity to the source domain. In our case, the entropy
(H (T j) for domain T j ) of the predictions returned by the
source-trained model is used to determine the level of difficulty
of the target domain [7]. H (T j) is computed as mean of
cross-entropy for all samples belonging to domain T j .

The labeled samples are denoted by Ŝ total and initially
consists of only samples from the source domain dataset S.
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Once one target domain (out of N domains) to be processed
is fixed, the adaptation is performed for K iterations on that
domain. In each iteration, source samples (B̂n

s ) and target
samples (B̂n

t ) are drawn to form a mini-batch. Each mini-
batch of images is fed to the feature extractor F to obtain
features corresponding to them and then fed to the Gmlp

and Ggnn. While the Gmlp does not aggregate features from
different samples, rather predict based on only the sample of
interest. On the other hand, GNN-based classifier Ggnn has
a sophisticated structure with an edge network fedge and a
node classifier fnode, which aggregates the features of the
samples in the batch. The edge network fedge encodes the
relationship between nodes and allows the messages passing
along the edges, thus efficiently aggregate the information
carried by nodes. The node classifier fnode provides more
robust predictions by taking advantage of the context-aware
learning paradigm. Instead of merely counting on the current
sample x, Ggnn is capable of giving the prediction on a global
scale based on the entire mini-batch. GNN and MLP capture
different aspects of the information and naively using either
of them may lead to noisy features or unreliable predictions
regarding the classification performance. This motivated a
cooperation of the two classifiers to improve each other. The
predictions of the MLP head and the GNN head are defined
as

ŷ ← softmax
(
Gmlp(F(x))

)
(1)

and

ȳ← softmax
(
Ggnn(F(x))

)
. (2)

The cross-entropy �mlp
ce and �node

ce are minimized over all source
samples to train the Gmlp classifier and fnode of Ggnn.

1) Coteaching and Pseudolabeling of the MLP and GNN:
Following the concept of coteaching [8], MLP and GNN are
trained together to provide feedback to each other.

The first information flow is from MLP to GNN. The
aim of fedge is to build an affinity matrix Â that encodes
the relationship between nodes, i.e., samples in a mini-batch.
The binary representation is a simple but effective choice,
where 1 indicates that the i th and j th sample share the same
class label and 0 otherwise. Due to the lack of the labels of
target samples, Â is a rather sparse matrix that carries little
information. To solve this, Gmlp provides pseduolabels of the
unlabeled target samples and forms a target matrix Âtar in
the similar way. Â is learned by minimizing the (binary cross
entropy) edge loss �edge

bce between the elements of the current
affinity matrix produced by fedge and the elements of the target
matrix Âtar given by Gmlp. By far, Ggnn is able to encode the
pairwise similarity between every two nodes by studying Â
under the guidance of Âtar.

The other information flow is from GNN to MLP. Generally,
confident predictions produce higher softmax value for one
class in comparison to the other classes. Based on this,
fnode computes the score of each sample in the target domain
as the max of softmax value

w j ← max
c∈nc

p
(

ȳt, j = c|xt, j

)
. (3)

Fig. 1. Proposed multitarget approach with source domain S and assuming
three target domains T1, T2,T3 (in that order of closeness to the source
domain).

Higher value of w j indicates that the pseudolabel is more
reliable to be accepted as an element in the source domain.
Thus w j is compared to a threshold τ , and if higher, the
target sample, together with its pseudolabel, is regarded as
an additional source sample, and the elements in the labeled
samples Ŝ total are updated. By doing this, the Ggnn creates
a series of context-aware pseudosamples after processing a
target domain, thus increasing the ability of the Gmlp to learn
the subsequent target domains.

Subsequently, the target adaption is performed on the next
target domain, however using the updated Ŝ total. Considering
the next target is more different from the source and thus less
likely to contain samples that can be included in pseudosource,
τ is increased by τ ′.

2) Domain Discriminator D: To further close the gap
between the source domain and the target domains, a domain
discriminator D to predict the domain of the samples is trained
using an adversarial loss �adv, following [11]. The prediction
of D is obtained by d̂ computed as sigmoid(D(F(x))).

Fig. 1 shows the proposed multitarget approach assuming
three target domains. Furthermore, the training procedure is
detailed in Algorithm 1.

D. Using Trained Model for Inference

Once the proposed MLP-GNN dual head model is trained on
all target domains, the GNN head can be used during inference
to determine the class of a target test samples. Unlike [7],
we do not use any final fine-tuning step.

IV. EXPERIMENTAL VALIDATION

A. Datasets

We conducted experiments on the following datasets.
1) Multicity dataset containing three domains (Moscow,

Mumbai, and Sydney) consisting of six classes each.
There are approximately 800 images per class per city
and are sampled from LCZ42 dataset [9] Sentinel-2
images with 10 m/pixel resolution.
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Algorithm 1 Training Procedure of the Proposed MTDA
Method

require: source dataset S , number of classes nc

require: target datasets T = {T j }Nj=1
require: networks F , D, Gmlp , fedge , fnode with parameters

θ,ψ, φ, ϕ, ϕ ′, respectively. The fedge and fnode form
the Ggnn .

require: hyperparameters B, τ , τ ′ Ksource , K . We use B = 32,
Ksource = 1000, and K = 5000.

Step 1: Pretraining on the source dataset
1 for k in (1 : Ksource) do
2 Sample mini-batch (xs,i , ys,i )

B
i=1 ∼ S

3 Compute loss �mlp
ce and update θ , φ

4 end

Step 2: Multitarget adaptation
5 Ŝ total ← S
6 T̂ 0 ← {T j }Nj=1
7 for n in (0 : N − 1) do
8 H← {} � Empty list

Stage 1: Domain selection stage
9 for T j in T̂ n do

10 compute H(T j )
11 H← H || H(T j ) � Append
12 end
13 D

n ← argmin j H � Chosen domain
Stage 2: Adaptation on single target

14 for k in (1 : K ) do
15 B̂n

s ← (xs,i , ys,i) pairs ∼ Ŝ total

16 B̂n
t ← (xt,i )

B
i=1 ∼ TDn

17 ŷ← softmax(Gmlp(F(x)))
18 ȳ← softmax(Ggnn(F(x)))
19 d̂ ← sigmoid(D(F(x)))
20 update ψ by using �adv

21 update θ , φ by using �mlp
ce and �adv

22 update θ , ϕ, ϕ ′ by using �edge
bce and �node

ce
23 end

Stage 3: Pseudo-labeling stage
24 DD

n

t ← {} � Empty list
25 for xt, j ∈ TDn do
26 w j ← maxc∈nc p( ȳt, j = c|xt, j )
27 if w j > τ then
28 DD

n

t ← DD
n

t ||{(xt, j , argmaxc∈nc
p( ȳt, j = c|xt, j ))}

� Append
29 end
30 end
31 Ŝ total ← Ŝ total ∪DD

n

t � Pseudo-source
32 T̂ n+1 = T̂ n \ TDn

33 τ ← τ + τ ′ � Increase threshold for next
target

34 end

2) Multiseason dataset containing images from four
domains (summer, fall, winter, and spring) correspond-
ing to seven different classes. There are 1000 images
per class per season and are sampled from Sen12-MS
dataset [10] Sentinel-2 images with 10 m/pixel resolu-
tion RGB bands.

B. Evaluation Protocol and Settings

We use the classification accuracy to evaluate the per-
formance. The performance for a given source is given by
setting the remaining domains as target domains. We use the

TABLE II

MULTICITY: PERFORMANCE COMPARISON
WITH SYDNEY AS THE SOURCE DOMAIN

TABLE III

KL DIVERGENCE VALUE BEFORE AND AFTER ADAPTATION:
WITH SYDNEY AS THE SOURCE DOMAIN

TABLE IV

MULTICITY: PERFORMANCE COMPARISON WITH

MUMBAI AS THE SOURCE DOMAIN

Resnet-18 network as the feature extractor. We show quanti-
tative comparisons to conditional adversarial domain adapta-
tion (CDAN) [11], batch-instance normalization (BIN) [13],
coteaching [7], and MT-MTDA [6]. While CDAN is based
on adversarial training, BIN is based on statistical alignment,
and thus together, they cover both major approaches in DA,
as discussed in Section II. CDAN is modified to exploit infor-
mation from all target domains by combining them together
while adapting. Adaptation of BIN is batch-specific and thus
it takes into account one target domain at a time. The other
two approaches are designed for MTDA and so no such
modifications are required.

C. Results

1) Multicity: Table II shows the quantitative result by
using Sydney as the labeled source domain and Moscow
and Mumbai as the unlabeled target domains. Model sim-
ply trained on source domain (Sydney) obtains an average
accuracy of 40.64% on the two target cities. While adver-
sarial training-based CDAN significantly improves the result
(47.07%), statistical alignment-based BIN does not signifi-
cantly improve the result. This shows that mere statistical
alignment is not sufficient for mitigating distribution gaps
between multiple cities. Proposed method outperforms all
compared paradigms and it obtains an accuracy of 61.64% for
Moscow, 45.18% for Mumbai, and thus an average accuracy
of 53.42% over two target cities. We also observe reduction in
Kullback–Leibler (KL) divergence after adaptation (Table III).

Table IV shows the quantitative result by using Mumbai as
the source domain. Source-trained model obtains an average
accuracy of 42.07%. Proposed method obtains an average
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TABLE V

MULTISEASON: AVERAGE PERFORMANCE FOR EACH SEASON
IS SHOWN, TAKING THE CONSIDERED SEASON AS SOURCE

AND ALL OTHER SEASONS AS TARGETS

Fig. 2. Visualization of season variation on class cropland. From left to
right: spring, summer, fall, and winter.

accuracy of 68.37% and outperforms the source trained model
and all compared paradigms. The proposed MTDA improves
classification accuracy for the targets by more than 26% over
source-trained model.

2) Multiseason: Average accuracies, considering each sea-
son as source and other three seasons as targets, are shown in
Table V. For spring, summer, and winter seasons (as source),
proposed method outperforms source-trained model and both
CDAN and BIN. However, for spring and fall as source,
proposed method is slightly outperformed by coteaching and
CDAN, respectively. Gain of the proposed method over the
source-trained models are less (approx. 5%, 8%, and 15% for
spring, summer, and winter, respectively) in comparison to
multicity dataset. A visualization for season variation is shown
in Fig. 2.

V. CONCLUSION

We proposed a GNN-based method for remote sens-
ing MTDA. The proposed method incrementally adapts a
source-trained classifier for multiple targets. We validated the
proposed method on two different types of domain shifts,
namely geographic shift and seasonal shift. Experimental
results clearly indicate the potentials of the proposed method.
MTDA is a comparatively new area in remote sensing and
there is still scope of improving this paradigm. In future,
we plan to devise a method to identify irrelevant source
samples, discarding which may potentially benefit the adapta-
tion process. Furthermore, we plan to extend the method for
multisource multitarget adaptation and mixed target domain
settings.
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