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Abstract—Sea-ice segmentation is of great importance for en-
vironmental research, ship navigation, and ice hazard forecast-
ing. Remote sensing (RS) images have been a unique data source
for rapid and large-scale sea-ice monitoring. The 2021 Gaofen
Challenge has offered a track of sea-ice segmentation based on
optical RS images. For the initial competition, our team ranked 3rd
place (deepjoker) in the accuracy leaderboard and the solution
has been the most efficient algorithm to achieve a segmentation
score above 97.79%. In this article, we briefly introduce our three
strategies of the achievement including: 1) decoding the partial pre-
trained networks which can simultaneously capture the complex
boundaries of sea ices and decrease the computational cost without
the performance drop; 2) employing the classwise Dice loss for
solving the gradient vanishing problem when most ground-truth
maps are backgrounds; and 3) replacing the commonly exploited
decoder with the one proposed by Silva et al. (2021). The main
contributions are twofold: 1) an efficient and effective sea-ice
segmentation method is proposed and 2) the gradient vanishing
problem of binary Dice loss is investigated under some scenarios
and solved by introducing its classwise version. Comparison and
ablation experiments demonstrate the effectiveness of the proposed
method with respect to other commonly adopted deep segmentation
models.

Index Terms—Gaofen (GF) challenge, gradient vanishing
problem, sea-ice segmentation, semantic segmentation.

I. INTRODUCTION

A S THE effect of global warming, amounts of sea ices have
disappeared in the past decades. Although the decreased
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sea-ice cover has led to the opening of new pathways for ship-
ping, isolated and floating sea ices are still potential risks and
hazards to the international shipping through those areas [1].
Compared to other sources of sea-ice images, such as phones,
the nadir-looking from satellites has offered unique way for rapid
and large-scale sea-ice monitoring through the acquired remote
sensing (RS) images, as shown in Fig. 1. Therefore, segmenting
sea ices from RS images is of great importance for ice hazard
forecasting, ship navigation, environmental research, and other
related topics [2].

The sea-ice segmentation aims at pixel-wisely labeling the
sea-ice area with 1 and the background area with 0, which be-
longs to the binary segmentation problem. Conventional meth-
ods for segmenting sea ices are mostly model-driven, such as
graph cut segmentation [3] on the back-scattering intensities
from synthetic aperture radar (SAR) images [4], Markov ran-
dom field segmentation based on image textures [5], and snake
segmentation on detected ice pixels [6]. Although those methods
have demonstrated prominent results for segmenting sea ices,
they cannot effectively preserve the accuracy and efficiency as
latest satellites provide more fine-grained and huge-volume RS
images.

More recently, the fast development of deep learning methods,
such as convolutional neural networks (CNNs), has significantly
promoted the state of the art performances of RS imagery
interpretation including sea-ice segmentation [7]–[17]. Based
on CNNs, the key point for extracting sea ices is learning to dis-
criminate pixels from sea ices and the background. The technical
solution for solving such a binary segmentation problem is also
general to other related tasks, such as building segmentation,
cloud detection, and road extraction [18]–[22]. Commonly, the
CNN models applied for the segmentation task are consisted
of three parts: 1) CNN architectures, which decide the overall
network construction; 2) encoders, which hierarchically encode
multiscale features from the input images; 3) decoders, which
decode the multiscale features into binary masks. For architec-
tures, the most widely exploited ones include fully convolu-
tional networks (FCN) [23], SegNet [24], UNet [25], DeepLab
series [26], [27], etc. Researchers favor to choose the networks
which achieve the state of the art performances on the ImageNet
dataset [28], such as ResNets [29] and EfficientNets [30], as
the encoders within segmentation architectures. To gradually
increase the spatial dimensions of the encoded features, the
upsampling operation and convolutional blocks are adopted in
the design of decoder structures. In order to optimize the CNN
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Fig. 1. Sea ices observed from different sensors. (a) Phones (Credit: Google)
and (b) satellites.

models for binary segmentation, sigmoid activation is applied
on the last layer and losses such as binary cross entropy (BCE),
Dice, or their combined version, are commonly exploited for
learning the CNN parameters.

The above-mentioned strategies are widely chosen for solving
binary segmentation tasks in the framework of deep learning.
However, for some cases in RS, they are not optimal and can lead
to the gradient vanishing problem, which will be explained in
Section III-C with details. In this article, we propose an efficient
deep learning based binary segmentation method and uncover
such problem in some specific scenarios. As a case study for
validating the proposed method, our solution achieves the 3rd
place (team name: deepjoker) during the first round of sea-
ice segmentation task in 2021 Gaofen (GF) Challenge1 with
97.79% frequency weighted intersection over union (FWIoU).
Specifically, the following three strategies are carefully designed
for this challenge.

1) Differently to other methods, we decode the partial pre-
trained networks rather than the full ones which are com-
monly exploited.

2) We replace the last layer activated by the sigmoid function
with the one activated by the softmax function and adopt
the classwise Dice loss rather than the normal Dice loss
for binary segmentation.

3) We adopt the CNN block proposed in [31] as the decoder
in replace of the vanilla one.

To this end, the main contributions of this article can be
summarized as follows.

1) We propose a binary segmentation method which ef-
ficiently decodes the partial pretrained networks and
achieve the 3rd place during the first round of sea-ice
segmentation task in 2021 Gaofen Challenge.

2) We uncover a scenario of binary segmentation in RS where
the sigmoid function and Dice loss are not suitable and the
gradient vanishing problem happens. Moreover, a simple
and effective solution is proposed for tackling it.

The rest of this article is organized as follows. Section II
presents some related work from the perspectives of semantic
segmentation and binary segmentation in RS. Section III intro-
duces the overall method proposed for sea-ice segmentation in

1[Online]. Available: http://gaofen-challenge.com/challenge

the 2021 Gaofen Challenge. Section IV demonstrates the con-
ducted experiments and analyzes the associated results. Finally,
Section V concludes this article.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation can be formulated as classifying pix-
els with object categories [32]. In RS, those categories are
generally referred to land-use or land-cover classes. Recent
advances of RS image segmentation techniques have been
achieved with the development of deep learning methods. An
end-to-end semantic segmentation network is proposed in [33],
where detecting semantically meaningful boundaries is involved
for refining segmentation results. Kampffmeyer et al. [34] in-
vestigated the class imbalance that existed in RS segmenta-
tion task and proposed a novel method for identifying small
geospatial objects. Li et al. proposed [35] a novel UNet-like
architecture with DownBlock and UpBlock structures for sea–
land segmentation. By simultaneously training the segmenta-
tion and edge detection networks, Cheng et al. [36] proposed
an edge-aware CNN architecture for sea–land segmentation
in RS harbor images. Chen et al. [37] proposed symmetrical
dense-shortcut mechanism for semantic segmentation in very
high resolution RS images. Audebert et al. [38] investigated
different fusion strategies for semantic segmentation based on
multimodal and multiscale RS images. By integrating several
auxiliary tasks, such as input image reconstruction and distance
transform inference, Diakogiannis et al. [39] proposed a novel
CNN architecture, i.e., ResUNet-a, and a loss function based
on the Dice loss for segmenting high-resolution aerial images.
Sun et al. introduced a boundary-aware segmentation method
for high-resolution RS images when a small amount of labels
are available [40]. By adaptively capturing global correlations of
space, channel, and category, Niu et al. [41] proposed a hybrid
multiple attention network for segmenting high-resolution aerial
images. For boosting the segmentation performance on SAR
images, Shi et al. [42] created a well-annotated multimodality
RS dataset consisted of GF-3 and Google Earth optical images,
along with object-level vector data.

B. Binary Segmentation in RS

Differently to semantic segmentation, binary segmentation
aims at discriminating one specific land-use or land-cover class
from RS images, such as buildings and roads. For example, an
FCN-based segmentation CNN architecture with the multiscale
feature aggregation strategy is proposed in [43] for learning fine-
grained building contours. By optimizing the selective spatial
pyramid dilated network with a L-shape weighting loss, Jing
et al. [20] proposed a novel method for characterizing build-
ing footprints in SAR images. To improve the performance of
building boundaries, Ziaee et al. [44] modified the conventional
Pix2Pix framework with the proposed two generators which
generate localization and boundary features. Shamsolmoali
et al. [45] proposed a novel adversarial spatial pyramid network
for applying structural domain adaptation for synthetic image

[Online].protect unhbox voidb@x penalty @M  {}Available: ignorespaces http://gaofen-challenge.com/challenge
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Fig. 2. Typical structure of the pretrained CNN networks.

generation and road segmentation. Similarly, to solve the label-
deficient problem in road segmentation, Zhang et al. [46] in-
vestigated a stagewise unsupervised domain adaptation method
based on adversarial self-training scheme to segment roads in
high-resolution RS images. Mohajerani et al. [47] proposed a
filtered Jaccard loss function for better segmenting foreground
objects when they are absent in RS images. He et al. [22]
proposed a deformable context feature pyramid module which
can effectively adapting multiscale features extracted from
RS images and a boundary-weighted loss function for cloud
detection.

III. METHODOLOGY

The proposed method contains two main novel strategies for
achieving efficient and effective sea-ice segmentation including:
1) efficiently decoding the partial pretrained networks and 2)
replacing the binary Dice loss with its classwise version for
avoiding the gradient vanishing problem in some scenarios. In
the following, we describe all these components in detail.

A. Pretrained CNN Backbone

As pretrained CNN backbones have sufficient features to be
reused in the challenge, we adopt the transfer learning strategy
which exploits state of the art pretrained CNN backbones on
ImageNet as the encoder subnetworks [48]. For the later ensem-
ble learning purpose, Res2Net50 [49], EfficientNet-B4 [30], and
dual path networks (DPN) [50] are exploited as the backbones.
As shown in Fig. 2, these networks can be all represented
in a common structure, which is composed of several feature
encoding stages. The spatial dimensions of the output features
from the current stage are all half of those from one stage earlier.
Generally, the early stages often capture detailed structure infor-
mation of the input images while the last several stages encode
high-level semantic information with larger receptive fields.

B. Proposed Segmentation Architecture

According to the provided challenge dataset present in Fig. 8,
it can be observed that precisely segmenting the sea ices is
challenging, since the spatial coverage of them is complicated.
To effectively learn their detailed boundary structures, we decide
to reuse the early-stage features from the pretrained networks, as
they capture the detailed spatial information of the input images.
Differently with other methods, the 5th encoding blocks of the
pretrained networks are omitted here, with the consideration of

Fig. 3. Proposed segmentation architecture for sea-ice segmentation. Dif-
ferently to other methods utilizing the pretrained CNN networks, we remove
the fifth encoding stage for achieving a relatively light-weight segmentation
network.

the balance between the computational cost and segmentation
performance. For one convolutional kernel of the spatial size
K ×K, its convolutional operation on the features F with the
size of C ×H ×W is of the computational cost

O(K ×K × C ×H ×W ). (1)

With the stage increasing, the channel numbers of feature maps
also become larger. In addition, the feature maps of the 5th
stage generally capture high-level semantics of the input images,
while they cannot be of great help for localizing the boundary
structures of sea ices at pixel-level. Taken these into account, we
directly decode the features output from the 4th stage in order to
achieve a relatively light-weight CNN with lower computational
cost than decoding the full pretrained networks. As illustrated
in Fig. 3, a segmentation network with a U-shape structure is
proposed which can simultaneously speed up the inference and
preserve the detailed spatial information of sea ices. The output
channel numbers of four decoders are {128, 64, 32, 16} in the
top-down direction. Moreover, we exploit the deep supervision
strategy [51] to further improve the multilevel feature discrim-
ination through the supervision on the latent representations
within the networks. To achieve this, we additionally add two
more segmentation heads on top of second and third last decoder
outputs.

Conventional decoders for segmentation are usually com-
posed of the stacked Conv[3× 3]-BN-ReLu modules. To im-
prove the efficiency, we adopt the convolutional block proposed
in [31], which exploits the residual learning scheme with the
depthwise and pointwise convolutions involved. In addition, the
concurrent spatial and channel squeeze and excitation (SCSE)
block [52], [53] (as shown in Fig. 4) is integrated to refine the
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Fig. 4. Concurrent SCSE block exploited for calibrating the input features
along the spatial and channel dimensions.

Fig. 5. Adopted CNN block [31] in the decoder.

features both along the spatial and channel dimensions. The
overall structure of the convolutional block is illustrated in Fig. 5.

C. Loss Function

For the binary segmentation task, commonly exploited losses
in the literature are BCE, Dice, or their combinations. Compared
to the pixel-based loss, i.e., BCE, Dice loss is more emphasized
on learning precise region predictions with the following for-
mula:

LDice = 1− 2
∑

i piyi + ε∑
i yi +

∑
i pi + ε

(2)

where yi and pi denote the pixel-wise ground-truth and the
predicted probability value output from the sigmoid activation,
respectively, and ε is often set as 1× 10−6 to avoid unstable
division. For most cases, Dice loss can be optimized to align the
prediction and the associated ground-truth maps. However, as
pointed out in [47], there exists a defect when there are no class
1 in ground-truth maps, i.e., yi = 0, ∀i. In such case, the dice
loss is rewritten as

LDice = 1− ε∑
i pi + ε

. (3)

Considering a toy case shown in Fig. 6, the ground-truth map is
of the size with 3× 3 pixels and all of them are 0, i.e., yi = 0.
Let us assume two kinds of predictions: 1) each pixel is with
the probability of 0.01 for class 0 and 2) each pixel is with
the probability of 0.9 for class 0. Clearly, the second prediction
is correct, since the probabilities of class 0 are all above 0.5.
However, the Dice losses for the two cases are both approximated
to 1. It indicates the networks cannot be optimized when the
whole ground-truth map is all 0. For this challenge, since most
training images are without sea ices, there will be no effects on
the network optimization when those images are fed. To solve
this issue, we propose to exploit a simple and effective loss,
which extends LDice in a classwise manner

LCls−Dice = 1− 1

2

∑
c∈{0,1}

2
∑

i p
c
iy

c
i + ε∑

i y
c
i +

∑
i p

c
i + ε

(4)

Fig. 6. Toy example for explaining the signification difference of loss values
between the Dice and classwise Dice losses when the ground-truth map is
background.

Fig. 7. Loss values versus sum of pixel predictions of class 0 in the toy
example.

where c indicates the class label. It is important to note that the
predictions pci are activated by softmax function, although it is
binary. Take the same toy example as above, the classwise Dice
losses for two predictions are different, i.e., 0.5 and 1 for both
0.01 and 0.9 probability of class 0, respectively. Moreover, for
the toy example, we plot the Dice and classwide Dice losses with
respect to the sum of prediction probability of class 0 in Fig. 7.
It can be observed that no matter what predictions of networks
make, the loss values are all around 1 when ground-truth maps
are all 0. In a comparison, classwise Dice loss gradually in-
creases when the predictions are becoming worse. Such gradient
vanishing problem can be further observed from the following
formulas:

∂LDice

∂pi
=

ε

(pi + ε)2
∀yi = 0 (5)

∂LCls−Dice

∂pci
=

1

2

(
ε

(pci + ε)2
− 2 + ε

(2− pci + ε)2

)
∀yci = 0.

(6)

Since ε is almost 0, ∂LDice/∂pi will be vanished when all yi
are 0. Differently, for ∂LCls−Dice/∂p

c
i , the term 2 + ε/(2−



KANG et al.: DECODING THE PARTIAL PRETRAINED NETWORKS FOR SEA-ICE SEGMENTATION OF 2021 GAOFEN CHALLENGE 4525

Fig. 8. Some released images with the associated ground-truth maps during the first round of challenge.

Fig. 9. Image counts under different pixel number ratios of class 0.

pci + ε)2 can avoid such a issue. To this end, the joint loss
containing cross entropy (CE), classwise Dice, and boundary
(BD) losses [54] is exploited for this contest.

IV. EXPERIMENTS

A. Experimental Setup

The organizers provided 1500 RGB optical RS images with
spatial sizes ranging from512× 512 to2048× 2048 for training
the sea-ice segmentation network and 1000 images for validating
the inference performance during the first round. Some provided
samples are illustrated in Fig. 8, along with the labeled segments.
It can be observed that accurately segmenting the sea-ice areas
is challenging due to the isolated and complex-structured blocks
of sea ices with different sizes. Moreover, as shown in Fig. 9,
we calculate the histograms of the ratio between the number of
background pixels and the total number of pixels in the scene
and observe that a large amount of training images are without
sea ices. Such a specific characteristic of the dataset will lead
to the gradient vanishing problem when the Dice loss is applied
for training the networks. It will be thoroughly described in
Section III-C.

We randomly split the provided images into the training
and test sets with the ratio of 9 : 1. As introduced above,

TABLE I
EVALUATION OF THE PROPOSED METHOD COMPARED WITH SEVERAL

COMMONLY-EXPLOITED SEGMENTATION METHODS UNDER DIFFERENT

METRICS (%)

Res2Net50 [49], EfficientNet-B4 [30], and DPN [50] are em-
ployed as CNN backbones and their results are ensembled
through a majority voting strategy. For data augmentation, Hor-
izontalFlip and RandomRotate90 are adopted and the images
are normalized with the mean and standard deviation values
of 127.5 and 31.875, respectively. Stochastic gradient descent
(SGD) optimizer is utilized to train the segmentation model with
a initial learning rate of 5× 10−3 and progressively adjusted by a
polynomial scheduler. The networks are trained for a total num-
ber of 200 epochs with a minibatch size of 8. All the experiments
are implemented in PyTorch [55] and carried out on an NVIDIA
RTX3090 GPU. To validate the effectiveness of the proposed
method, we compare it with several widely-adopted methods
for segmentation including: 1) UNet [25]; 2) PSPNet [56];
3) feature pyramid network (FPN) [57]; 4) LinkNet [58]; 5)
DeepLabV3 [26]; and 6) DeepLabV3+ [27]. The evaluation
metrics are frequency FWIoU, intersection over union (IoU),
and overall accuracy (OA). The detailed calculations of them
can be found in [59].

B. Experimental Results

1) Comparison to State of the Art Methods: Table I demon-
strates the segmentation results on the test set manually split
from the data provided during the first contest round. It can be
observed that the proposed method can outperform UNet by a
margin of 0.5% for the metric FWIoU and achieve the best result
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TABLE II
SEGMENTATION ACCURACY AND EXECUTION TIME EVALUATED ON TOP-10

TEAMS IN THE LEADERBOARD DURING THE FIRST ROUND (% AND SECOND)

TABLE III
SEGMENTATION RESULTS EVALUATED ON THE PROPOSED METHOD WHEN

DIFFERENT NUMBERS OF ENCODER STAGES ARE DECODED (%)

among all the considered methods. To visualize some predicted
results of sea ices, we select the image examples associated
with their ground-truth maps shown in Fig. 10. As illustrated in
Fig. 10, the obtained sea-ice segments are compared among all
the considered methods. The proposed method can achieve more
accurate boundary predictions in all the examples than others.
The plausible reason is that the boundary-loss term is exploited
for emphasizing the boundary areas. In addition, the proposed
method is compared with other teams’ solutions during the initial
phase and their results are illustrated in Table II. Although all
the considered methods can achieve comparable results with
slightly different FWIoU, the proposed method is ranked at the
third place and the execution time is much shorter than the other
methods, which can validate its efficiency and effectiveness for
the sea-ice segmentation.

2) Ablation Study: Effect of number of encoder stages: In
the proposed method, we only decode the extracted features
until the fourth stage of the encoder, since the features from
the last stage mainly capture the semantics of whole images
and may not be profitable enough for learning complex sea-ice
boundaries. For evaluation, the different number of stages within
the three pretrained networks are decoded and the associated
segmentation performances are illustrated in Table III. It can
be observed that decoding the features from four stages can
achieve higher segmentation accuracy than exploiting all the
stage features. Moreover, by removing the fifth stage, more light-
weight networks and faster image inference can be achieved.

Effect of LCls−Dice: As analyzed above, the gradient vanish-
ing problem can be avoided when the softmax activation and
classwise Dice loss are utilized. To verify this, we replace them
with the sigmoid activation and Dice loss, and calculate their

TABLE IV
SEGMENTATION PERFORMANCE COMPARISON BETWEEN THE DICE

AND CLASSWISE DICE LOSSES (%)

TABLE V
SEGMENTATION PERFORMANCE COMPARISON WHEN THE PROPOSED METHOD

WITH AND WITHOUT THE DEEP SUPERVISION STRATEGY (%)

TABLE VI
SEGMENTATION PERFORMANCE COMPARISON BETWEEN DIFFERENT

DECODERS (%)

TABLE VII
SEGMENTATION PERFORMANCE COMPARISON BETWEEN DIFFERENT LOSS

TERMS (%)

segmentation results in Table IV. Since most training images
are backgrounds, the Dice loss cannot make any affords in
the network optimization. Thus, the associated segmentation
accuracy is lower than the proposed method.

Effect of deep supervision: Moreover, the ablation study re-
gards to deep supervision is also conducted. As shown from
Table V, with the constraint of deep supervision, the proposed
method can achieve better segmentation performance than the
one without it. By imposing the accurate segmentation pre-
dictions from multiscale output features, it can lead to more
prominent results obtained from the last layer.

Effect of the decoder: We also compare segmentation perfor-
mances when different decoders are adopted. Commonly, most
work exploit the vanilla decoder proposed in [25]. The associated
result is illustrated in Table VI. It can be seen that the decoder
proposed in [31] can better capture the complex structures of
sea ices. One plausible reason is that the residual design and
the SCSE block applied in it can emphasize the learning of
contributed features and inhibit others at the same time.

Effect of the joint loss: The joint loss exploited in the proposed
method is composed of CE, Cls-Dice, and BD loss terms. In
order to validate the effectiveness, we conduct ablation study
on the loss configuration. As illustrated in Table VII, the best
segmentation accuracy can be achieved by exploiting all of them.
Compared to CE, Dice loss can effectively deal with the class-
imbalance problem. As CE and Cls-Dice losses are region-based
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Fig. 10. Sea-ice predictions of the provided images based on the considered methods.
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segmentation losses, BD loss is more emphasized on precisely
learning the boundaries of segments, especially for extracting
sea-ice areas with complex structures.

3) Discussion: The extensive experiments carried out
demonstrate the effectiveness of the proposed method and we
also achieve a high rank on the enclosed test set during the first
round of the contest. For the binary segmentation of objects
with complex structures, the proposed method demonstrates
the superior performance compared to other widely-adopted
segmentation methods. Thus, the method also has the potential
to be applied for other RS objects like sea ices, such as clouds.
Moreover, we point out one extreme case that the Dice loss
makes no contributions for the network optimization due to the
gradient vanishing problem. To avoid such an issue, we propose
a simple and effective solution which extends the Dice loss into
a classwise manner. By analyzing its gradient, we can see that
the gradient vanishing problem can be avoided. Thus, for the
datasets where large number of images are backgrounds, the
classwise Dice loss is suggested to be adopted. Last but not
least, the proposed method offers a strong baseline for the binary
segmentation challenge in RS.

V. CONCLUSION

In this article, we propose a method for sea-ice segmentation
in 2021 GF Challenge, which achieves a FWIoU score of 97.79%
and the 3rd place in the leaderboard during the first round of chal-
lenge. The proposed method contains three carefully designed
strategies: 1) decoding the partial pretrained networks which can
simultaneously capture the complex boundaries of sea ices and
decrease the computational cost without performance drop; 2)
employing the classwise Dice loss for solving the gradient van-
ishing problem when most ground-truth maps are backgrounds;
and 3) replacing the commonly exploited decoder with the one
proposed in [31]. Compared to other commonly-exploited meth-
ods for binary segmentation, the proposed method demonstrates
significant performance improvement on the challenge dataset,
which can also be served as a baseline method for other related
binary segmentation tasks in RS.
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