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ABSTRACT 1 
Road safety is one critical transport effect on health. To assess the safety performance of a city or a region, 2 
large scale crash estimation models are essential to be integrated into transport models. Most research on 3 
crash estimation models focused on improving model predication performance by adding more omitted 4 
variables, using random parameters, or more advanced statistical techniques. However, those models are 5 
not easy to implement in practice due to the model complexity. This research aims to develop practical 6 
crash estimation models within an entire region. This research employed the road accident data from the 7 
German Federal Statistic Office to estimate the number of crashes on each link for different road users 8 
including car occupants, cyclists, and pedestrians. Results show that magnitudes of the effects of traffic 9 
volumes varied from car occupancy model to cyclist and pedestrian model. The effect of motor traffic 10 
volume is notable on the number of car occupancy crashes, while bike flow and pedestrian flow have more 11 
positive influences on cyclist and pedestrian crashes than motor traffic volume. The models are practical in 12 
aiding transportation safety planning. In addition, the models can be applied in practice within existing 13 
agent-based transport models to assess the crash exposure rate of each road user. 14 
 15 

 16 
 17 
 18 
Keywords: crash estimation model; cyclist crash; pedestrian crash; car occupant crash  19 
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INTRODUCTION 1 
Safety of different road users has been closely linked to the public health level. According to the 2 

German Federal Statistic Office, 206,129 car occupants were injured in 2019 which accounts for 54% of 3 
all injured people in traffic crashes (1). Furthermore, cyclists and pedestrians are usually considered as more 4 
vulnerable road users compared to car occupants since they are exposed to a higher risk of injury and fatality 5 
in urban road accidents (1). It is also a fact that traveling on a roadway with poor infrastructure or on a busy 6 
network could be detrimental to individual’s health. Therefore, crash estimation models are of critical 7 
importance to assess the safety performance of roadways which can help inform governments and agencies 8 
of how to allocate infrastructure investments and devise policies to maintain safer roadways.  9 

The motivation of this research is to assess transport influences on health aspects in an agent-based 10 
simulation environment. Agent-based simulation attempts to more accurately represent individual trips 11 
thereby giving a better assessment of health. Road safety is one critical transport effect on health. The goal 12 
of this research is to implement practical crash estimation models in agent-based transport simulation tool 13 
at a region-wide study area. 14 

For many decades, various crash estimation models and statistical techniques have been developed 15 
to better understand the factors that affect the number of crashes, injuries, and fatalities. Conventional 16 
Poisson and negative binomial models are the starting points. More advanced models, like random 17 
parameter models and random effect models, are widely used to better account for unobserved 18 
heterogeneity and to handle temporal and spatial correlations (2). These models made a major contribution 19 
to transportation safety research. However, Lord and Mannering (2) pointed out the trade-off between 20 
model prediction performance and practicality. They argued that these models may not be easily 21 
transferable to other datasets and they are not easy to implement in transportation safety planning due to 22 
the model complexity, which are substantial disadvantages. A common practice in transportation safety 23 
planning is to predict crash frequencies and severity using only traffic volumes and link length as 24 
explanatory variables (3). Nonetheless, researchers argue that such simple models may result in inaccurate 25 
predictions. (2, 4) 26 

Given this context, we attempt to balance the tradeoff between model prediction performance and 27 
model practicality for future implementation. Considering the practical aspect, we examine this using a 28 
conventional zero-inflated Poisson model (ZIP), which is easy to implement in the agent-based simulation. 29 
Given the model prediction performance, we test more variables that are usually omitted in the practice of 30 
transportation safety planning. We selected explanatory variables that can be easily obtained and/or readily 31 
forecasted.  32 

Another highlight of this study is that the practical crash estimation models can be employed at a 33 
city-wide or region-wide area for large-scale safety assessment. From the perspective of analysis entity, 34 
road safety research can be divided into two main lines: zonal level analysis and link/segment level analysis. 35 
Zonal level studies are conducted at different spatial units (transportation analysis zone, block group, census 36 
track) (5–9). With the benefit of agent-based simulation, the traveling routes of individual trips can be 37 
specified. By using zonal level crash analysis may diminish the benefit of agent-based simulation. 38 
Therefore, such studies are not aligned with the objective of this research. In terms of link/segment level 39 
analysis, the majority of the literature focuses on the investigation of the number of crashes on a specific 40 
type of road, such as highway segments and arterial roads (10, 11). However, there is scant literature on the 41 
analysis of different types of crashes that occurred on residential roads and other minor roads. In this 42 
research, all kinds of road links from the motorway to minor roads like pedestrian path and living streets 43 
are considered in the estimation model.  44 

This research proposes new link-level crash estimation models for different road users including 45 
car occupants, cyclists, and pedestrians. We categorize the road accidents into four different cases 1) car-46 
occupancy-as victim crashes 2) cyclist-as-victim crashes in the bike-motor accidents 3) cyclist-as-victim 47 
crashes in the bike-bike accidents 4) pedestrian-as-victim crashes. The number of severe-fatal crashes and 48 
the number of light injury crashes are estimated separately for all cases.  49 

The organization of the paper is as follows. Section 2 reviews research related to factors associated 50 
with crash frequency and severity, after which section 3 presents the data sources and methodology. Model 51 
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estimation results are discussed in Section 4. Finally, a summary of the main findings and conclusions are 1 
provided in Section 5. 2 
 3 
LITERATURE REVIEW 4 

Previous studies have identified many factors that influence different kinds of accidents. While the 5 
magnitudes of the effects vary across studies (5–11), a common set of factors that affect the number of 6 
injury and fatality has been identified in the literature. 7 

The association between land use characteristics and the number of crashes are widely explored in 8 
the zonal level safety studies. Amoh-Gyimah et al. (6) comprehensively compared different statistical 9 
models to estimate pedestrian and cyclist crashes at the aggregated zone level. They found that population 10 
and land use diversity have significant and positive correlations with pedestrian and bicycle crash 11 
frequency. For instance, a 1% increase in land use mix index will have on total 11.67 increase in pedestrian 12 
crashes. 13 

In terms of traffic-related factors, annual average daily traffic (AADT-an indicator of the volume 14 
of motorists in the traffic) was found to be consistently significant in the previous studies (12, 13).  In 15 
addition to the motorist volumes, Aldred et al. (5) find that cyclist flow is a significant predictor of bicycle 16 
crashes. Their model shows a decrease in cycle injury odds with an increase in cycling flows significantly. 17 

Roadway-related factors also have significant influences on the frequencies of different types of 18 
crashes. Kim et al. (8) estimated motor vehicle crashes as a function of demographic variables, land use 19 
factors, and road characteristics. The key finding is that number of intersections is associated with increases 20 
in all kinds of accidents including motor vehicles, cyclists, and pedestrians. 21 

Some studies also pointed out the associations between injury severity and environmental factors. 22 
For instance, Pahukula et al. (13) explored the influence of time of day on injury severity in truck-involved 23 
accidents. Employing the crash data in Texas from 2006 to 2010, they developed random parameter logit 24 
models for five-time of period. They found that factors like light condition, traffic volume, and surface 25 
condition perform differently in five-time of day models. Also, it is interesting that their results also 26 
revealed that clear weather conditions increase the probability of severe injury. On the other hand, it is 27 
proved that injury severity is determined by the level of vehicle speed (7, 14). For example, Chen et al. (14) 28 
analyzed cyclist injury severity in automobile-involved bicycle crashes and found that speed limit of 29 
roadway is positively correlated with the likelihood of severe injury and fatality in cyclist crashes. 30 
 31 
DATA AND METHODS 32 
Road accidents data 33 
The study area is the Munich Metropolitan area. Road accident data in this area are obtained from the 34 
German Federal Statistic Office based on reports from the police (1). Crash information ranging from 2016 35 
to 2018 is used in this study. The severity of accidents is classified into three levels: fatal, severe injury, 36 
and light injury. Accidents are classified into these segments based on the most severe injury that occurred 37 
in an accident. Fatality is defined as persons who died within 30 days as a result of the accident. A severe 38 
injury requires hospital treatment for at least 24 hours, while light level includes all other injuries. Accident 39 
locations are recorded at the coordinate level. This study considers all kinds of network links including 40 
minor roads like residential roads and living streets. Crash points are assigned (based on geolocation) to the 41 
road network obtained from OpenStreetMap (OSM) to aggregate the crash frequency at each network link.  42 

A total of 55,848 accidents were identified in the study area. The data provided the information on 43 
which road entities were involved in an accident including pedestrian, cyclists, passenger cars, trucks, 44 
public transport vehicles. Unfortunately, the data did not have information to identify which road user was 45 
insured. In this study, we assigned the injury or fatality to the weakest road user involved in an accident. 46 
We assumed that pedestrians are the most vulnerable road users, while cyclists are relatively more 47 
vulnerable than car occupants. With these assumptions, we defined the victim for each accident. To assess 48 
the crash risk exposure of different road users, accidents are classified into four cases based on the assumed 49 
victim. 50 
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• Case 1: car-occupant-as-victim crashes are defined as any crash involving passenger car(s) and/or other 1 
types of vehicles (e.g. trucks, bus, tram) 2 

• Case 2: cyclist-as-victim crashes are defined as any crash involving both bike(s) and motor vehicle(s) 3 
• Case 3: cyclist-as-victim crashes are defined as any crash involving only bikes 4 
• Case 4: pedestrian-as-victim crashes are defined as any crash involving pedestrian(s) 5 

In this study, severe injury accidents and fatal accidents are merged into one category. The main 6 
reason is that fatal accidents have a small sample size in this dataset. Small sample size may introduce bias 7 
into the estimation process so that the results of model estimation will not be accurate and reliable. 3,428 8 
accidents are filtered because they only involve truck/bus/tram, which is out of the scope of this research. 9 
Finally, there are 52,420 accidents considered in model estimation. TABLE 1 summarizes the number of 10 
severe-fatal and light injury crashes of four cases. 11 

 12 
TABLE 1 Number of severe-fatal and light injury crashes of four cases from 2016 to 2018 13 

 14 

Case Truck/PT Car Bike Pedestrian Victim Total Severe-fatal Light injury 

Case 1 √ √   Car-

occupant 
30516 4262 26254 

Case 2 √ √ √  Cyclist 10773 1448 9325 

Case 3   √  Cyclist 6486 1352 5134 

Case 4 √ √ √ √ Pedestrian 4645 1050 3595 

 15 
Explanatory variables 16 
Previous studies on road safety factors give us an indication of variable selection. Road safety factors for 17 
macro-level analysis are mainly divided into three streams: traffic-related factors, roadway-related factors, 18 
and land use factors. Explanatory variables considered in this study are three traffic-related variables: motor 19 
traffic volumes, bike flows, and pedestrian flows; and four roadway-related variables: link length, speed 20 
limit, road classification, and number of intersections. 21 

An agent-based travel demand model suite created by Moeckel et al. (15) is used to derive estimates 22 
of motor traffic volumes, bike flows, and pedestrian flows. MITO (microscopic transportation orchestrator, 23 
https://github.com/msmobility/mito) generates individual trips for household members of a synthetic 24 
population and then pass on to transportation simulation tool MATSim (16) for trip assignment. This model 25 
suite provides us traffic flows of different modes across the Munich Metropolitan area on a typical weekday. 26 
With the benefits of microscopic simulation, traffic flow information is available on both major and minor 27 
roads. The agent-based travel demand model also provides information on trip purposes, so the share of 28 
commuter trips on each link can be measured. It was initially considered in estimation models but it is 29 
removed in the final models due to the consistently insignificance. 30 

In the study area, there are a total of 133,546 links in the car network and a total of 92,748 links in 31 
the pedestrian and bike network which excludes motorway and other car-only links. Link length and speed 32 
limit data are directly obtained from OSM. The number of intersections on each link is measured in 33 
MATSim by counting the number of nodes with more than two legs along the link segment. The network 34 
links in OSM have more than twenty classifications of road types. Those links with similar characteristics 35 
are grouped into six aggregated road classifications. For example, “trunk” links are merged with “primary” 36 
links since they have similar characteristics such as maximum speed and capacity. All minor roads such as 37 
“pedestrian”, “track” and “living street” are merged into one category because they normally have a lower 38 
speed limit and grant pedestrian the right of way over. The six aggregated link types used in the estimation 39 
models are motorway, primary road, secondary road, tertiary road, residential road, and other minor roads. 40 

TABLE 2 gives an overview of descriptive statistics of the dependent and explanatory variables. 41 
One notable characteristic of crash frequency data is that there is a very large number of zero-crash 42 
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observations. Especially in severe-fatal crash cases, approximately 99% of all network links have zero 1 
severe-fatal crash.  2 
 3 
TABLE 2 Descriptive statistics of the set of dependent and explanatory variables 4 

 5 

  Total Mean Sd. Min Max 
Zero 

proportion 

Case 1: Car-occupancy-as-victim crashes            

Severe-fatal crash frequency 4262 0.03 0.20 0 11 97.8% 

Light crash frequency 
2625

4 0.16 0.70 0 53 90.6% 

Case 2: Cyclist-as-victim crashes in bike-motor accidents    

Severe-fatal crash frequency 1448 0.01 0.13 0 5 98.6% 

Light crash frequency 9325 0.10 0.42 0 14 93.1% 

Case 3: Cyclist-as-victim crashes in bike-bike accidents  
Severe-fatal crash frequency 1352 0.01 0.12 0 4 98.7% 

Light crash frequency 5134 0.05 0.27 0 11 95.7% 

Case 4: Pedestrian-as-victim crashes       
Severe-fatal crash frequency 1050 0.01 0.11 0 5 99.0% 

Light crash frequency 3595 0.04 0.24 0 20 96.9% 
       

Explanatory Variables            

Motor traffic volumes (x1,000)  1.76 3.81 0 54 2.7% 

Bike flows (x1,000)  0.47 1.22 0 24 ~ 

Pedestrian flows (x1,000)  0.62 1.24 0 20 ~ 

Speed limit (km/h)  27.50 23.70 3 109 ~ 

Link length (meter)  540.48 837.35 50 17530 ~ 

Number of intersections  2.58 3.16 0 42 18.8% 

 6 
Zero-inflated Poisson Regression Model 7 
The eight dependent variables in this study are all count variables with non-negative integer values. Two 8 
popular non-linear count models that are widely used for estimating this kind of dependent variable: Poisson 9 
regression model (P) and negative binomial regression model (NB). The Poisson model assumes that the 10 
sample variance is equal to its expected value; however, the crash frequency data is known to have an over-11 
dispersion issue, i.e., the variance of the number of crashes is larger than the mean number of crashes. 12 
Nevertheless, the over-dispersion issue was not identified in the crash datasets utilized in this study. 13 
Moreover, some researchers argue that the performance of negative binomial models can be negatively 14 
influenced by the low sample mean (2). As shown in TABLE 2, eight crash frequency variables all have 15 
more zero observations than non-zero ones, which indicates that it is necessary to explore whether zero-16 
inflated Poisson model (ZIP) and zero-inflated negative binomial model (ZINB) are more suitable than the 17 
ordinary ones.  18 

Therefore, the performance of Poisson, NB, ZIP, ZINB are compared using three measures: Akaike 19 
information criterion (AIC), Efron’s pseudo R2, and root mean square errors (RMSE). AIC is a common 20 
score for comparing the goodness-of-fit of different models using the same dataset. Efron’s pseudo R2 and 21 
RMSE are used for evaluating the prediction quality of the models to the observed data. TABLE 3 presents 22 
an example of model comparison results for bike crash models. In general, all three measures indicate that 23 
zero-inflated models have a better performance than the normal ones. The differences of R2 and RMSE 24 
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between ZIP and ZINB are minor. AIC indicates that ZIP fits better for severe-fatal models, while ZINB is 1 
more suitable for light injury models. In this study, ZINB does not help much in model prediction accuracy. 2 
To keep consistency and take account for the practical side of this study, ZIP model was adopted to examine 3 
the number of severe-fatal crashes and light injury crashes in all cases. 4 

The ZIP model (17) is also called the two-steps model, as it is essentially a combination of a logistic 5 
model and a standard Poisson model. In the first step, a logistic regression model is applied to distinguish 6 
zero and non-zero state of each link. If the link has a high probability of generating a crash, then the second 7 
step estimates the number of crashes on that link. 8 
 9 
TABLE 3 Goodness-of-fit comparison among four different bike crash models 10 
 Severe-fatal  Light injury 
 P NB ZIP ZINB  P NB ZIP ZINB 

AIC 12803 12753 12745 12756  50698 48447 48647 48182 

Efron’s Pseudo R2 0.024 0.024 0.024 0.024  0.143 0.133 0.147 0.145 

RMSE 0.127 0.127 0.127 0.127  0.397 0.400 0.397 0.397 

 11 
 12 
RESULTS AND DISCUSSION 13 
To avoid the multicollinearity in the regression model, the Pearson correlation coefficients are calculated 14 
for all the explanatory variables as shown in TABLE 4. The speed limit is highly correlated to road 15 
classification. Separate individual models were developed for both variables. Road classification is found 16 
to be significant and highly correlated to the number of crashes, so it is retained for the final models. It is 17 
expected that bike flow and pedestrian flow are correlated to a high degree with a score of 0.92 because the 18 
travel demand model simply assigned both cyclists and pedestrians to the shortest path. We were lacking 19 
data to describe the differences in bike and pedestrian route choice behavior. After testing bike flow, 20 
pedestrian flow, and the sum-up flows in separate individual models, bike flow was retained in the models 21 
of Case 2 and 3, while the pedestrian flow was kept in the models of Case 4. Note that, non-log and log-22 
form of traffic flows were tested in separate models and either of them retained in the final models based 23 
on the significance and correlation score. After testing, link lengths are transferred to log-form since the 24 
log-form results in a better model fit in all models. 25 

In this study, two measurements were applied to evaluate model performance. McFadden’s pseudo 26 
R2 is adopted to measure the performance of the final fitted model compared to the intercept only (null) 27 
model. Efron’s pseudo R2 is a normalized square error between the predicted value and actual value, which 28 
is comparable across models with different datasets. By analyzing the model performance and significance, 29 
some of the variables were excluded and specifications of the final models are presented in TABLE 5, 6 30 
and 7.  31 
 32 
TABLE 4 Pearson coefficient of correlation for all the explanatory variables 33 
 34 

 Motor 

volume 

Bike 

flow 

Pedestrian 

flow 

Log (link 

length) 

Link 

type 

Speed 

limit 
Intersections 

Motor volume 1.00       

Bike flow 0.65 1.00      

Pedestrian flow 0.59 0.92 1.00     

Log (link length) -0.26 -0.20 -0.19 1.00    

Link type -0.54 -0.29 -0.25 0.21 1.00   

Speed limit 0.49 0.26 0.23 -0.18 0.95 1.00  

Intersections -0.16 -0.06 -0.01 0.46 0.11 -0.13 1.00 
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 1 
Car-occupant-as-Victim crash frequency models 2 
The influences of explanatory variables on the car-occupant-as-victim crash are shown in TABLE 5. It was 3 
found that significant differences are present between the predictor sets for light injury crashes and severe-4 
fatal crashes. As expected, motor traffic volumes and link length, as two common factors in safety research, 5 
are significant in both models. However, number of intersections only shows influences on number of light 6 
injury crashes. In the light injury model, the coefficients of link types show consistently decreasing by road 7 
hierarchy levels. This indicates that passenger car crashes are prone to happen on motorways and major 8 
roads. The interaction coefficients between traffic volumes and link type give us hints that a busy residential 9 
road has a higher risk of light injury crashes than a congested highway. This might because of the low 10 
capacity and relatively poor road infrastructure on minor roads. It is notable that the coefficient of traffic 11 
volume in the light injury model is much smaller than that in the severe-fatal model. The result may be due 12 
to the effects of interaction parts in the light injury crashes, which decomponent the influence of traffic 13 
volume to link types. In general, we found less model sensitivity in the severe-fatal crashes. Moreover, the 14 
large intercept (-6.81) in the severe-fatal model also indicates that there is more unobserved heterogeneity 15 
in rare crash types (fatality and severe injury). 16 

 17 
TABLE 5 Estimation results of ZIP models for car-occupant-as-victim (Case 1) crash models 18 
 Light injury crashes Severe-fatal crashes 
 Estimate Pr(>|z|)  Estimate Pr(>|z|)  

Step 1: Zero-inflation model coefficients (binomial with logit link)   

Intercept -2.68 0.00 *** -1.87 0.00 *** 

Traffic conditions       

Motor traffic volumes in 1,000 0.04 0.00 *** 1.72 0.00 *** 

x motorway  base base base base base base 

x primary road 0.10 0.00 ***    

x secondary road 0.09 0.00 ***    

x tertiary road 0.88 0.00 ***    

x residential or minor road 4.13 0.00 ***    

Roadway function       

is motorway base base base base base base 

is primary road -0.30 0.00 *** -0.33 0.07 . 

is secondary road -0.13 0.19     

is tertiary road -1.24 0.00 ***    

is residential or minor road -2.33 0.00 *** -1.61 0.00 *** 

Roadway geometry       

log(link length) 0.36 0.00 *** 0.14 0.00 *** 

Number of intersections 0.06 0.00 ***    

       

Step 2: Count model coefficients (Poisson with log link)    

Intercept -1.58 0.00 *** -6.81 0.00 *** 

Traffic conditions       

Motor traffic volumes in 1,000 0.01 0.00 *** 0.01 0.00 *** 

x motorway  base base base base base base 

x primary road       
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x secondary road 0.04 0.00 ***    

x tertiary road 0.11 0.00 ***    

x residential or minor road 0.18 0.00 ***    

Roadway function       

is motorway base base base base base base 

is primary road -0.30 0.00 *** -0.14 0.01 ** 

is secondary road -0.68 0.00 ***    

is tertiary road -1.28 0.00 *** -0.78 0.00 *** 

is residential road -2.09 0.00 *** -0.93 0.00 *** 

Roadway geometry       

log(link length) 0.35 0.00 *** 0.81 0.00 *** 

Number of intersections 0.03 0.00 ***    

Efron's pseudo R2 25.6%   17.6%   

McFadden’s pseudo R2 23.9%   22.7%   

Note: 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  

Not significant variables were not estimated in the final model 

 1 
Cyclist-as-Victim crash frequency models  2 
It is assumed that cyclist crashes have different characteristics than the car occupant crashes. Results of 3 
light injury crash models (TABLE 6) show that bike flows have a larger influence in bike-motor accidents 4 
(Case 2) on both number of crashes and non-zero crash state switching, that is the likelihood of switching 5 
from a zero-crash link to a non-zero crash link. Especially in the zero-part model, the coefficient of bike 6 
flows is about 23 times larger than that of motor traffic volumes. On the one hand, this large difference 7 
results from the inequivalent scales between bike and motor traffic volumes. On average of the study area, 8 
daily motor traffic volume of one link is approximately 5 times higher than the daily bike traffic volume. 9 
However, bike flows still weigh more than motor traffic volumes after diminishing the scale issue. In Case 10 
3, motor traffic volumes have no significant impact on non-zero state switching. This is reasonable that the 11 
accidents in case 3 only involve cyclists. Secondary bike accidents resulting from car accidents seem to be 12 
rare in this dataset. 13 

The coefficients of link types are not intuitive at first sight. They give us inconsistent indications 14 
in Case 2 and Case 3. In bike-motor accidents, residential roads and minor roads were found to be less risky 15 
for cyclists, while major roads including primary, secondary, and tertiary roads are more vulnerable. In 16 
bike-bike accidents, tertiary roads have less probability of having a cyclist crash, but it has a higher potential 17 
to generate a larger number of crashes on one link. The low probability of having a crash might be due to 18 
the low bike flows on the tertiary road. However, some specific tertiary roads tend to be the hot spots of 19 
cyclist crashes due to poor road conditions. There might be because of lacking cycle infrastructures but this 20 
needs to be explored in further research. 21 

Different from the car occupant models, number of intersections is notable in both Case 2 and Case 22 
3, though the effects are marginal. The influence of number of intersections in bike-motor accidents is 23 
slightly higher than that in bike-bike accidents. It is expected that bike-vehicle conflicts tend to be happened 24 
at intersections due to the mixed space. 25 

TABLE 7 presents the severe-fatal crashes in cyclist accidents. The model results are quite similar 26 
to light injury models. Bike flow is the dominant factor in number of severe-fatal crashes. Differently, 27 
tertiary roads do not show negative impacts on generating crashes. Number of intersections is not 28 
significantly correlated to the number of severe-fatal crashes in bike-bike accidents. Overall, the severe-29 
fatal models have a poorer performance than the light injury models in terms of R2. This can be explained 30 
that 1) fewer severe and fatal accidents recorded in our dataset, 2) literature points out that severe accidents 31 
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are highly associated with vehicle factors like driving speed and human factors. For example, aging cyclists 1 
appear to be more vulnerable to severe injury or fatality (14). However, this information is not available in 2 
our dataset, 3) such rare crashes events appear to be more random due to the (fortunately) very small sample 3 
size. 4 
 5 
TABLE 6 Estimation results of ZIP models for light injury crash models in case 2,3 and 4 6 
 7 
 Case 2 Case 3 Case 4 

 θ Pr(>|z|)  θ Pr(>|z|)  θ Pr(>|z|)  

Step 1: Zero-inflation model coefficients (binomial with logit link)  

Intercept -4.14 0.00 *** -2.29 0.00 *** -3.50 0.00 *** 

Motor traffic volumes in 1,000 0.18 0.00 ***    0.05 0.02 * 

Bike flows in 1,000 4.91 0.00 *** 4.74 0.00 ***    

Pedestrian flows in 1,000       2.68 0.00 *** 

is primary road 1.03 0.00 ***       

is secondary road 0.90 0.00 ***       

is tertiary road 1.55 0.00 *** -0.46 0.00 *** 0.51 0.00 *** 

is residential or minor road    0.19 0.02 *    

          

Step 2: Count model coefficients (Poisson with log link)       

Intercept -3.24 0.00 *** -4.88 0.00 *** -4.37 0.00 *** 

Motor traffic volumes in 1,000 0.01 0.00 *** 0.01 0.00 *** 0.01 0.00 *** 

Bike flows in 1,000 0.08 0.00 *** 0.10 0.00 ***    

Pedestrian flows in 1,000       0.10 0.00 *** 

is primary road          

is secondary road 
-0.12 0.02 * 

      

is tertiary road 0.32 0.00 ***    

is residential or minor road -0.11 0.08 .    -0.24 0.00 *** 

log(link length) 0.38 0.00 *** 0.51 0.00 *** 0.46 0.00 *** 

Number of intersections 0.03 0.00 *** 0.01 0.00 ***    

Efron's pseudo R2 13.9%   7.59%   10.0%   

McFadden pseudo R2 13.1%   11.1%   16.6%   

Note: 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  

Not significant variables were not estimated in the final model 

 8 
 9 
Pedestrian-as-Victim crash frequency models 10 
The estimation results of pedestrian crashes are presented in TABLE 6 and TABLE 7. Compared to the 11 
bike flow, pedestrian flow was found to be highly correlated with pedestrian crashes. In accordance with 12 
the previous models, motor traffic volume is also a significant predictor in pedestrian crashes. The model 13 
coefficients reveal that for each increase of 1,000 in motor traffic flow, there is a 4.6% increase in the 14 
likelihood of having a light injury pedestrian crash. Tertiary roads are associated with the increase in the 15 
likelihood of switching from zero crash link to non-zero crash link. Residential and minor roads show a 16 
negative relationship with number of light injury pedestrian crashes. One possible reason might be the 17 
low motor traffic volume on minor roads resulting in fewer conflict points between vehicles and 18 
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pedestrians. In terms of severe-fatal pedestrian crashes, tertiary and residential roads remain negatively 1 
correlated to the crash generation.  2 
 3 
TABLE 7 Estimation results of ZIP models for severe-fatal crash models in case 2, 3 and 4 4 
 5 
 Case 2 Case 3 Case 4 

 θ Pr(>|z|)  θ Pr(>|z|)  θ Pr(>|z|)   

Step 1: Zero-inflation model coefficients (binomial with logit link)      

Intercept -3.13 0.00 *** -1.94 0.00 *** -2.73 0.00 *** 

Motor traffic volumes in 1,000 0.23 0.02 *       

Bike flows in 1,000 6.32 0.00 *** 5.74 0.00 ***    

Pedestrian flows in 1,000       2.80 0.00 *** 

is primary road base   base   base   

is secondary road 1.05 0.00 **       

is tertiary road 0.65 0.05 .    -0.37 0.09 . 

is residential or minor road 1.14 0.00 ** 0.56 0.01 **    

          

Step 2: Count model coefficients (Poisson with log link)       

Intercept -5.81 0.00 *** -7.06 0.00 *** -5.99 0.00 *** 

Motor traffic volumes in 1,000 0.01 0.09 . 0.01 0.11  0.01 0.17  

Bike flows in 1,000 0.08 0.00 *** 0.10 0.00 ***    

Pedestrian flows in 1,000       0.11 0.00 *** 

is primary road base   base   base   

is secondary road -0.21 0.03 *       

is tertiary road       -0.22 0.08 . 

is residential or minor road -0.43 0.00 *** -0.22 0.04 * -0.78 0.00 *** 

log(link length) 0.45 0.00 *** 0.62 0.00 *** 0.54 0.00 *** 

Number of intersections 0.04 0.00 ***       

Efron's pseudo R2 2.3%   1.6%   4.0%   

McFadden pseudo R2 9.3%   8.1%   15.2%   

Note: 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  

Not significant variables were not estimated in the final model 

 6 
 7 
CONCLUSIONS 8 
This study built eight crash estimation models accounting for different road users including car occupants, 9 
cyclists, and pedestrians. Conventional statistical approaches were applied to explore the impacts of traffic 10 
volume factors and road characteristics factors on the number of severe-fatal crashes and number light 11 
injury crashes in different accident types.  12 

One contribution of this study is that it found significant differences between the predictor sets for 13 
all cases. Firstly, motor traffic volume, as the most common predictor used in the literature, is identified to 14 
be consistently significant. However, magnitudes of the effects varied from car occupancy model to cyclist 15 
and pedestrian model. The effect of motor traffic volume is dominant in car occupancy crashes. On the 16 
contrary, it slightly influences cyclist and pedestrian crashes. Moreover, different from the typical 17 
link/segment crash models, this study accounted for all road link types in the model estimation. It provides 18 
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the capability to assess the large-scale safety level of a city or a regional area. Although the models have 1 
relatively low goodness-of-fit, it can be explained by imperfect crash data and limited data accessibility to 2 
important variables like the presence of bike lanes. Rich data consisting of several variables such as the 3 
presence of bike lanes, road infrastructure design, and road conditions, are typically collected for the small-4 
scale area. Such detailed information across an urban area or even region is difficult to obtain. Most 5 
importantly, with the simple model structure, those crash estimation models are practical in aiding 6 
transportation safety planning. Also, it is easier to transfer those models to other study areas due to the less 7 
requirement in data collection.  8 

In future research, one practice of these crash estimation models is to be integrated into an agent-9 
based transport model. We plan to assess the number of car occupants, bike and pedestrian crashes in the 10 
Munich metropolitan area. With the benefit of agent-based simulation, the model is also able to assess the 11 
risk of traffic crash for each road user. Based on the estimated number of crashes resulting from the 12 
presented models, the risk exposure rate can be measured for each link in the study area. The specified links 13 
where each agent traveled is simulated in the agent-based transport model. Hence, the crash risk/likelihood 14 
of each road user can be calculated by cumulating the risk exposure rates of all traveled links. Then Monte 15 
Carlo simulation will be applied to determine the occurrence of a crash on each road user. Crash occurrence 16 
can be further employed in the transport model. The agents occurred a fatal accident lead to a death event 17 
in the simulation, while severely injured agents will have the probability of disability which affects their 18 
long-term mobility such as the limited access to car mode and less accessibility to public transport. 19 
 20 
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