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A B S T R A C T

Microstructural effects on the energy release rate and the mode mixity for tunneling cracks are investigated.
A detailed microstructure is based on scanning electron microscopy of a real laminate. Based on a newly
developed two-dimensional off-axis finite element formulation, the dependency of the Mode I, Mode II,
and Mode III energy release rates on a range of different layup orientations are investigated. First, the
influence of the fiber–matrix microstructures on the energy release rates is assessed and compared to results
from homogenized models that exclude explicit representation of the microstructure. A finite element-based
homogenization is found to provide consistent and accurate predictions, whereas analytical homogenization
methods yield greater discrepancies with respect to a basic stress-based validation case and are thus not
recommended in the context of tunneling crack modeling. Secondly, realistic non-straight crack shapes are
included in the model resulting in similar energy release rates as for straight cracks in the corresponding fully
homogenized models. However, modeling the realistic non-straight cracks without accounting for the specific
microstructure provides too low energy release rates when compared to the realistic cases with microstructures.
1. Introduction

Tunnel cracking frequently occurs in layered materials due to dif-
ferences in ductility and fracture toughness in the layers. Typically,
off-axis layers will develop transverse-oriented tunnel cracks (Crossman
et al. [1], Tong et al. [2]), impacting adjacent load carrying layers. This
is of general importance, but of particular interest when considering
fatigue, as these tunnel cracks can act as damage initiation points for
both delamination and fiber failure (Raju et al. [3], Jamison et al. [4]).
These damage mechanisms have a detrimental impact on the overall
stiffness of the laminate with fiber failure leading to an overall collapse
of the laminate [5]. Hence, it is of critical importance to gain a
quantitative understanding of tunnel cracks, in order to suppress their
initiation and propagation, thus enabling improved lifetime predictions
of laminated structures.

Several numerical investigations have considered transversely ori-
ented tunnel cracks perpendicular to the main loading direction, by
applying two-dimensional plane strain finite element models. In this
context, Beuth [6], and Ho and Suo [7] proposed an energy balance
method to predict the energy release rate, , using the crack opening
displacement, 𝛿, together with the stress state, 𝜎0, of the corresponding

∗ Corresponding authors.
E-mail addresses: leon.herrmann@tum.de (L. Herrmann), lapm@dtu.dk (L.P. Mikkelsen).

un-cracked case. The stress states were typically estimated by analyt-
ical means, whereas the crack opening displacements were estimated
numerically using plane strain models.

Studies including detailed fiber–matrix microstructures have been
carried out for fibers and cracks oriented at 90◦ reducing the complexity
of the problem and enabling standard plane strain models, such as
the study of voids in fiber–matrix microstructures [8], or the study
of fiber–matrix debonding using a boundary element method [9,10].
An alternative approach to reduce the complexity of the problem is to
assume periodicity of the microstructure, allowing for reduced models
based on representative volume elements, such as the study of damage
due to voids under plane strain conditions [11], or the estimation of
the effective stiffness properties via generalized plane strain models
and three-dimensional models for spherical particles [12]. Such mod-
els with greatly simplified geometries allows for using sophisticated
material models such as isotropic plasticity and even anisotropic plas-
ticity [13,14]. Multiscale models offer yet another alternative, such as
in [15], where the problem is analyzed separately at different scales,
i.e. the scale of the lamina and the scale of the fiber–matrix interface.
An important idealization in the discussed models, as well as the one to
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Fig. 1. A laminated structure under a uni-axial load 𝑁1 with an off-axis tunnel crack in the center layer. The crack has an orientation 𝜃 w.r.t. the 𝑥1-axis and the crack growth
occurs at the crack front. For further detail of this type of problem, see [16].
be presented in this work is the assumption of a constant cross-section
along the fibers, i.e. a perfectly parallel alignment of fibers and cracks.

One major limitation of the models discussed above is their limita-
tion to cracks oriented at 90◦, implicit to typical plane strain models,
s tunneling cracks can occur at any arbitrary orientation, see Fig. 1
ith an indication of the crack front, governed by the lamina layup.
his is of particular interest, as tunneling cracks oriented at angles

ower than 90◦ are expected to grow slower due to both greater mixed-
ode crack resistance [17] and decreasing energy release rates with

maller tunnel crack angles [16,18]. An accurate analysis of the energy
elease rate is therefore central in the design phase of a laminate.
n orientation different from 90◦ will lead to a mixed mode crack
ropagation. Therefore the energy balance method by Ho and Suo [7]
as extended by Quaresimin and Carraro [19] and Mikkelsen et al. [16]

or orthotropic laminae taking mixed-mode fracture into account, bas-
ng crack opening displacements on three-dimensional finite element
odels with stresses obtained either from classical laminate theory (see

.g. [20]) or three-dimensional finite element models in the context
f other defects. These studies were based on the following expression
or the steady state energy release rate, 𝑠𝑠, for non-interacting cracks
see [19] for interacting cracks)

𝑠𝑠 = 𝐼+𝐼𝐼 = 1
2ℎ ∫

ℎ

0
𝜎 0
𝑇𝑇 (𝑥2)𝛿𝑛(𝑥2)𝑑𝑥2+

1
2ℎ ∫

ℎ

0
𝜎 0
𝐿𝑇 (𝑥2)𝛿𝑡(𝑥2)𝑑𝑥2, (1)

where the integration is performed in the global coordinate system
(𝑥1, 𝑥2, 𝑥3). Here, the layer thickness is ℎ, the laminae stresses (in the
absence of a tunnel crack) are denoted by 𝜎 0

𝑇𝑇 and 𝜎 0
𝐿𝑇 and the normal

and tangential crack openings, also referred to as crack face relative
opening and sliding displacements in other works, are denoted by 𝛿𝑛
and 𝛿𝑡, respectively. In the case of non-interacting cracks, the stresses
can be computed analytically with classical laminate theory. However,
neighboring cracks or microstructures, distort the stress-field, such that
it no longer can be constant. This can be taken into account with
a numerical simulation of the unopened crack of interest, as shown
in [18].

Note also that the stresses are expressed in a local coordinate system
(𝑥𝐿, 𝑥𝑇 , 𝑥𝑇 ′ ), where 𝑥𝑇 is perpendicular to the crack plane and 𝑥𝐿 is
aligned with the propagation direction of the tunnel crack. Components
defined in the local coordinate system will always be referred to via the
subindices 𝐿, 𝑇 , 𝑇 ′, as e.g. the stresses in Eq. (1). A visualization of the
local coordinate system with respect to the global coordinate system
2

(𝑥1, 𝑥2, 𝑥3) is provided in form of a top view of the deformed laminate
in Fig. 2, where the curved lines indicate the tangential variation in the
displacement field in the cracked lamina. The global coordinate system
employs the subindices 1, 2, 3 and is also illustrated in the 3D sketch in
Fig. 1. The global coordinate axis, 𝑥1, is aligned with the uni-axial load,
𝑁1, while 𝑥3 is perpendicular to the uni-axial load. For more details
on the element formulation including the coordinate systems, see [18].
The same coordinate conventions will be used unaltered throughout
this work.

With this formulation, it was possible in [16] to accurately predict
the tunneling crack energy release rate using homogeneous three-
dimensional finite element models for the computation of the crack
opening in terms of 𝛿𝑛 and 𝛿𝑡. It was, however, infeasible to include the
fiber–matrix microstructure in the three-dimensional model, due to the
heavy computational cost. However, an important observation made
in [16] circumvents the dimensionality issue, as it was observed that
the tunneling cracks reach a steady state when far from the boundaries.
Thus, the stress and strain fields far ahead and far behind the crack
front are invariant in the direction of the crack. This fact enables
a projection of the problem to a two-dimensional plane as shown
from a top view in Fig. 2, where the tunnel crack is aligned with
the fibers indicated in red. This was exploited in [18], where a finite
element was proposed, that captures the off-axis behavior with a special
two-dimensional kinematic formulation properly accounting for the
three-dimensional displacement field. In this kinematic formulation,
shown below, the far-field strains 𝜀̄11, 𝛾̄12, 𝛾̄13, 𝛾̄23, 𝜀̄33, arising from an
imposed far-field loading and treated as additional degrees of freedom,
make it possible to define a three-dimensional strain and displacement
state in a two-dimensional geometry (see Fig. 3), while accounting for
the off-axis orientation 𝜃 ∈ ]0◦, 90◦]. For a detailed explanation on this
and derivation, see [18].

𝜀11 = 𝑢1,1
𝜀22 = 𝑢2,2
𝛾12 = 𝑢1,2 + 𝑢2,1
𝛾13 = 𝛾̄13 + cot(𝜃) ⋅ 𝜀̄11 − cot(𝜃) ⋅ 𝑢1,1 + 𝑢̃3,1
𝛾23 = 𝛾̄23 +

1
2 cot(𝜃) ⋅ 𝛾̄12 − cot(𝜃) ⋅ 𝑢2,1 + 𝑢̃3,2

𝜀33 = 𝜀̄33 − cot(𝜃) ⋅ 𝑢̃3,1

(2)

Combined with the energy balance method this enables efficient and
accurate models for the energy release rates for arbitrary laminates and
arbitrary tunneling cracks. Due to the efficient two-dimensional frame-
work, investigations can now also be performed for inhomogeneous
materials, such as realistic fiber–matrix microstructures.
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Fig. 2. Deformed symmetry plane showing the laminate from a top-view. The thick bold black line indicates the projection onto the two-dimensional plane. The two-dimensional

odel is able to accurately represent the behavior inside the blue box far away from the edges. The fibers are indicated in red and are aligned with the tunnel crack direction, 𝑥𝐿.
The anti-symmetric curved lines indicates the tangential variation in the displacement field in the cracked lamina. See [18] for more details. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The off-axis element as a quadratic quadrilateral serendipity element, from [21].
See [18] for more details.

To the best of the authors’ knowledge, no work has been conducted
on tunneling cracks embedded in fiber–matrix microstructures using
either plane strain models or full three-dimensional models, except for a
preliminary investigation presented by Carraro et al. [22], that studies
the influence of the microstructure on delamination with periodic
three-dimensional models.

This paper aims to quantify the accuracy of homogenized material
models for the computation of the energy release rate under uni-axial
tension when compared to detailed models where realistic microstruc-
tures are accounted for. This is accomplished by modeling the mi-
crostructure near tunneling cracks in the new special two-dimensional
kinematic formulation in [18] and computing the energy release rate
by Eq. (1).

2. Problem

2.1. Material system

Inspired by a composite case studied by Mortensen et al. [23], a
3

basalt fiber reinforced epoxy matrix laminate with the symmetric and f
balanced layup [04∕𝜃∕04∕ − 𝜃]s is analyzed under a uni-axial load 𝑁1
pplied in the global 𝑥1-dimension (see Fig. 4). Each layer has the
hickness, ℎ, leading to a height of the load-carrying 0◦ layers of 4ℎ and
total laminate thickness of 20ℎ. The laminate domain extends 2𝑙 in the
1-direction. In [18] a similar layup, [0∕𝜃∕0∕ − 𝜃]s, was studied based
n homogenized material properties, where symmetry was exploited
nd only a quarter of the domain was modeled. In this work, a realistic
icrostructure is considered in the vicinity of the crack, violating the

ymmetry. Thus a full model including the full domain in all four
uadrants has to be considered, see Fig. 4.

The modeled microstructure is indicated by the white domain of
ength 2𝐿 in Fig. 4. The crack is aligned with the fiber direction in the
entral off-axis layer, i.e. at an angle of −𝜃, see Fig. 2. The discrete
ibers are shown by red dots in Fig. 4 as a regular distribution. This
articular simple case will be referred to as the regular case. In reality,
he fiber distribution within a layer is not regular, but rather random
though unidirectional). The lack of regularity invalidate otherwise
ossible symmetries such that the entire laminate must be modeled,
oth below and above the 𝑥1-axis as illustrated by the height 2ℎ of
he white domain in Fig. 4. Such a distribution based on, for instance,
canning electron microscopy of a real laminate, will be referred to as
he realistic case. To avoid resolving too many fibers far away from
he crack, homogenized orthotropic material properties are adopted
utside this domain, whereas the fiber and matrix material inside the
icrostructure domain are modeled as two distinct isotropic materials:

iber and matrix. Similarly, for the non-cracked layers, a homogenized
rthotropic material description is used. In Fig. 4 the domains with
omogenized material properties without discrete fiber representation,
re shown in gray. Obviously, it is essential, that an appropriate ma-
erial homogenization method is chosen, which represents the overall
echanical behavior of the microstructural domain accurately.

.2. Microstructure domain

.2.1. Realistic case
The distribution of the unidirectional fibers is typically arbitrary

ith only a few tendencies, as can be seen in microscopy images in
.g. [23] or similar computed tomography images. A realistic fiber
istribution is extracted from such an image and will be used for further
nalysis and, as previously stated, referred to as the realistic case. The
elected excerpt of such a scan is illustrated in Fig. 5 with a 90◦ layer
etween two 0◦ layers, where the red rectangle highlights the area of
nterest. Here, the fiber positions and radii, as well as crack shapes,
re extracted to create the realistic case shown in Fig. 6. To ease the
iscretization process, some fiber radii are modified slightly. Several
racks can be identified, from which four crack patterns are selected

or the computation of the energy release rate, here denoted as cracks
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Fig. 4. Laminate model from [18] under a uni-axial load, 𝑁1, in the global 𝑥1 direction and with two −𝜃 layers in the center extended to include a discrete microstructure in
the proximity of the crack illustrated by the white domain referred to as the embedded microstructure domain. The domain shown in gray is smeared out with a homogenization
model.
Fig. 5. Scanning electron microscopy image from [23] for the extraction of a realistic fiber distribution and crack patterns.
Fig. 6. Extracted realistic case shown with fibers in red and the non-straight tunneling cracks in black, see scan in Fig. 5. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
1 to 4 in Figs. 5 and 6. If all four cracks are modeled together, the cracks
are interacting. In this work they will first be considered separately, but
subsequently two cracks at a time are considered, in which one crack
is always assumed to be fully propagated.

2.2.2. Regular case
A second and more simple case, the regular case, is also investigated

in order to obtain a fundamental understanding of the influence of
accounting for a discrete microstructure. In this case, a rectangular
array of fibers and a straight crack, as shown in Fig. 7, is investi-
gated. The presented packing was chosen over possibly more realistic
structures, such as hexagonal packing, as it allows for straight cracks.
4

The motivation being to keep the model as simple as possible, while
gaining a fundamental understanding of the behavior when including
a microstructure. Additionally, it provides a good basis for comparison
to the homogenized case with a straight crack. The distances in the
modeling plane between the fibers, 2𝑑1 and 2𝑑2, can be determined
from the desired layer height, ℎ, the fiber volume fraction, 𝜑, and the
off-axis angle, 𝜃. The layer height, the fiber volume fraction, and the
mean fiber radius are chosen identical to the values extracted from the
realistic case, Fig. 6. In the regular case, symmetries enable the use of
a quarter model as encountered in previous works such as [18,21] (see
also red dashed symmetry lines in Fig. 7). Thus, only half the crack
height and width are considered.
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Fig. 7. Regular case.
Table 1
Dimensions of the regular microstructure, see Fig. 7.
𝜑 [−] 𝑟1 [μm] 𝑟2 [μm] 𝑑1 [μm] 𝑑2 [μm] Number of fibers through the half height [−]

0.5061 8.50∕ sin(𝜃) 8.50 2.052∕ sin(𝜃) 2.125 4
The model properties are taken directly from the specimen on which
he realistic case is based [23]. In [23], the orientation 𝜃 was originally
90◦, but will be varied in the following analyses to investigate the de-
pendence on the layup angles exploiting the capabilities of the special
two-dimensional finite element previously developed [18]. Thus, the
geometrical properties 𝑟1 and 𝑑1 are scaled accordingly, see Fig. 7 and
Table 1. To get the perpendicular fiber spacings and radii, that are
typically used in real measurements, 𝜃 = 90◦ has to be inserted in
the expressions for 𝑟1 and 𝑑1 provided in Table 1. With the change of
orientation 𝜃, the distance 𝑑1 and radius 𝑟1 in the modeling plane vary
with 1∕ sin(𝜃). The off-axis layer-heights of the laminae (Fig. 4) and the
load-carrying layers are ℎ = 0.085mm and 4ℎ = 0.34mm, respectively.
The fiber radius is nominally given by 𝑟 = 8.5 μm, but as seen in Fig. 5,
it varies slightly. All resulting dimensions used for the regular case are
listed in Table 1. Note the choice of having a slightly different fiber
distances 𝑑1 and 𝑑2 at 𝜃 = 90◦. The reason for this, was the hard
requirement on the layer height ℎ and the volume fraction 𝜑 for an
appropriate comparison to the realistic case from [23] shown in Fig. 5.

2.3. Homogenized domain

The basalt fiber reinforced epoxy matrix laminate studied by
Mortensen et al. [23] have the fiber volume fraction, 𝜑 = 0.5061, and
with fiber/matrix properties given in the uppermost rows in Table 2. In
the following, it will be assumed that all layers in Fig. 4 have the same
fiber volume fraction, 𝜑, and that both the fiber and matrix material are
isotropic and exhibit linear elastic behavior. Three different strategies
have been investigated in order to estimate the homogenized material
properties such that they represent the underlying microstructure as
accurately as possible; namely the analytical Voigt–Reuss model, the
empirical Halpin–Tsai model, and a finite element based homoge-
nization technique. Detailed descriptions are given in Appendix. The
finite element-based approach allows for evaluating both the realistic
case (see Fig. 6) and the regular case (see Fig. 7). This distinction is
not possible for neither the Voigt–Reuss model nor the Halpin–Tsai
model. The finite element analysis leads to two slightly different sets
of homogenized properties for the regular and realistic cases. Table 2
shows that the main differences are in the shear moduli, 𝐺𝐿𝑇 and 𝐺𝐿𝑇 ′ ,
and the transverse Poisson’s ratio, 𝜈𝑇𝑇 ′ . This effect can be explained by
the rectangular packing of the regular microstructure. It can also be
observed, that the results from the Halpin–Tsai model are, especially
for the transverse stiffnesses, much closer to the finite element results
5

Table 2
Homogenized material properties for basalt fiber reinforced epoxy, see Mortensen et al.
[23]. The fiber and matrix properties are denoted by subscript 𝑓 and 𝑚, respectively,
whereas subscripts 𝐿, 𝑇 and 𝑇 ′ are homogenized properties. Layer thickness is ℎ =
0.085mm and the mean fiber radius is 𝑟 = 8.50 μm.
𝜑 [−] 𝐸𝑓 [GPa] 𝜈𝑓 [−] 𝐸𝑚 [GPa] 𝜈𝑚 [−]

0.5061 85 0.22 3.0 0.40

Voigt–Reuss Halpin–Tsai FEM FEM
realistic case regular case
(see Fig. 6) (see Fig. 7)

𝐸𝐿 [GPa] 44.50 44.50 44.04 44.54
𝐸𝑇 [GPa] 5.862 10.53 10.33 11.72
𝐸𝑇 ′ [GPa] 5.862 10.53 10.84 11.81
𝜈𝐿𝑇 [−] 0.3089 0.3089 0.3030 0.3014
𝜈𝐿𝑇 ′ [−] 0.3089 0.3089 0.2934 0.3001
𝜈𝑇𝑇 ′ [−] 0.4100 0.4100 0.4680 0.4060
𝐺𝐿𝑇 [GPa] 2.055 3.833 3.133 3.104
𝐺𝐿𝑇 ′ [GPa] 2.055 3.833 3.529 3.069
𝐺𝑇𝑇 ′ [GPa] 1.071 3.734 3.052 2.302

compared to the properties obtained from the Voigt–Reuss model.
Minor differences, up to 1%, e.g. noticeable in the longitudinal Young’s
modulus 𝐸𝐿, can be explained due to geometrical discretization errors
of the circular fibers. Thus, the fiber volume fraction is not fully
resolved. The regular case suffers much less from this, as a much finer
discretization was possible by using a representative volume with a
single fiber.

2.4. Finite element model

The special two-dimensional finite element framework from [18] is
used to analyze the problem. The homogenized domain is modeled with
8-noded quadrilateral elements, while the domain of the microstructure
is modeled with 6-noded triangular elements due to the challenging
geometry. The two elements are fully compatible. The number of
degrees of freedom for the regular case varies between 1’000’000 and
2’500’000 depending on the size of the embedded domain, whereas
the irregular case was computed with about 15’000’000 degrees of
freedom. Computational times range from a few minutes to a few hours,
depending on the number of degrees of freedom. An example of the
finite element mesh for 𝜃 = 30◦ is illustrated in Fig. 8, where the

contour plot shows the normal strain in the 𝑥1-direction, 𝜀11.
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Fig. 8. The mesh used for the microstructure and homogenized domains at 𝜃 = 30◦. The contour plot shows the normal strain, 𝜀11, under an applied uni-axial strain 𝜀̄11.
Table 3
Volume-averaged stress components from microstructural finite element simulations compared with classical laminate predictions using three
different homogenizing strategies. The results are obtained for 𝜃 = 30◦ under a uni-axial load corresponding to an applied strain of 𝜀011 = 0.01
in the 𝑥1-direction, see also Fig. 8 .

Voigt–Reuss Halpin–Tsai FE-based
(regular case)

𝜎11 𝜎13 𝜎33 𝜎11 𝜎13 𝜎33 𝜎11 𝜎13 𝜎33
Classical Laminate Theory [MPa] 1.78 0.805 0.372 4.04 1.48 0.674 3.90 1.54 0.808
Microstructure with FEM [MPa] 1.87 0.752 0.309 3.93 1.54 0.787 3.93 1.54 0.806
Relative Error [%] 5.2 6.6 17 2.6 4.1 17 0.67 0.16 0.19
2.5. Validation and choice of the homogenization model

The accuracy of the different modeling strategies is validated
through a comparison of the stresses in the two domains, i.e. the
homogenized (gray) and microstructure (white) domains shown in
Fig. 4. This comparison is conducted in the absence of a crack, such
that analytical solutions from classical laminate theory (see e.g. [20])
can also be considered. A similar validation approach was used in [18],
where the homogenized finite element model was validated against the
classical laminate theory. The stresses inside the embedded microstruc-
ture domain are of interest as they are needed to evaluate the energy
release rate, and they are obtained by a volume average, performed by
Gaussian integration over the entire domain of the stress values in the
integration points. Subsequently, the stresses are compared to those
computed with classical laminate theory using the different homoge-
nization approaches, and a valid homogenized material model should
lead to a good agreement. The results for the three homogenization
methods are presented in Table 3 for 𝜃 = 30◦ with the analytical
solutions from classical laminate theory as reference values. Similar
tendencies were observed for 𝜃 = 60◦, and 𝜃 = 90◦, which are not
further reported here.

It is observed, that the stresses for the Voigt–Reuss model and
the Halpin–Tsai model deviate significantly from the prediction of
the classical laminate theory. Errors above 10% are observed for 𝜎33
indicating, that these are inaccurate choices for the homogenization
approach. However, the homogenized material properties derived from
the finite element-based homogenization (with the Abaqus Plugin [24])
applied to the regular case provide a good agreement with errors less
than 1%. In addition, as the transverse stiffness of the Voigt–Reuss
estimate is significantly lower than the one based on the Halpin–Tsai
or the FE-based models, the tangential stresses in this layer, 𝜎11, are
also found to be significantly lower (see Table 3).

As only the finite element-based approach results in acceptable
errors, the following analyses will only use these material properties,
i.e. the two most right columns of Table 2.
6

2.6. Domain extension for the realistic case

From a modeling perspective, the realistic case distinguishes itself
from the regular case through the absence of symmetry. Hence , instead
of the quarter model, a full model has to be considered. An example of
the deformed crack profile from Fig. 6 (crack 3) at an orientation of
𝜃 = 30◦ is shown in Fig. 9. It is observed, that the opening of the crack
could lead to local sliding contact between crack surfaces normal to
the 𝑥2 direction during the crack opening. This is however neglected in
the current study. The implication of a contact situation is a higher
critical energy release rate, due to the contribution of friction. The
impact on the energy release rate would, however, be limited, except in
special cases such as friction locking, which is deemed highly unlikely
in the encountered situation. The extent of the contact is dependent on
the crack shape and the off-axis orientation 𝜃. To take this effect into
account a contact formulation is required, which would complicate the
comparison with the contactless situation of the regular cases, Fig. 8.
Contact on the entire crack surface, i.e. non-locally, may also occur
at lower orientations 𝜃, as discussed in [16,21], where an in-depth
discussion is provided.

2.7. Evaluation of the energy release rate

The lack of symmetry also introduces shear cracking out of the
modeling plane, i.e. Mode III, as the displacements in the 𝑥2-direction
are no longer symmetric. Thereby all three crack modes can be ob-
served. Hence, Eq. (1) has to be extended with the corresponding term
for the Mode III energy release rate, 𝐼𝐼𝐼 , computed with the tangential
crack opening in the modeling plane, 𝛿𝑡′ , aligned with the 𝑥2-axis, see
Fig. 4, and the corresponding stress 𝜎 0

𝐿𝑇 ′ from the uncracked state. The
steady-state energy release rate for non-interacting cracks extended
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Fig. 9. The crack profile of crack 3 (see Fig. 6) for the realistic case with 𝜃 = 30◦. The contour plot shows 𝜀11 under an applied uni-axial strain 𝜀̄11. The scaling factor of the
displacement is approximately 10.6 at an applied strain of 𝜀̄11 = 0.01.
from [16] for Mode III is then expressed as

𝑠𝑠 = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼

= 1
4ℎ ∫

ℎ

−ℎ
𝜎 0
𝑇𝑇 (𝑥2)𝛿𝑛(𝑥2)𝑑𝑥2 +

1
4ℎ ∫

ℎ

−ℎ
𝜎 0
𝐿𝑇 (𝑥2)𝛿𝑡(𝑥2)𝑑𝑥2

+ 1
4ℎ ∫

ℎ

−ℎ
𝜎 0
𝐿𝑇 ′ (𝑥2)𝛿𝑡′ (𝑥2)𝑑𝑥2.

(3)

Furthermore, the integration is carried out over the entire height from
−ℎ to ℎ in global coordinates 𝑥2, due to the lack of symmetry, also
leading to an adjustment in the denominator by a factor of two. The
integration performed along the full crack height 2ℎ for each energy
release rate mode 𝐼 ,𝐼𝐼 ,𝐼𝐼𝐼 , only considers the global crack orienta-
tion. Hence a global mode decomposition is used. Details on this choice
are provided below. Note also, that the stresses are expressed in local
coordinates 𝑥𝐿, 𝑥𝑇 , 𝑥𝑇 ′ , as in Eq. (1).

Due to the arbitrary shape of the crack, it is not trivial to define
the mode-mixity. The crack surface is generally not smooth, and mode-
mixity varies along the crack front. Furthermore, the normal directions
at vertices are not unique and require special treatment. The energy
release rate computation via Eq. (3) assumes, that the energy release
rate at the crack front, shown in Fig. 1, can be approximated by the
stress state far in front of the crack and the crack opening displacement
far behind the crack front. For a detailed explanation of this energy
balance method, see [6,7]. This implies, that the exact crack tip shape
does not have to be considered, which in turn also means, that the
variation of mode-mixity along the crack front cannot be determined,
which is why a global mode decomposition is employed in Eq. (3).
Essentially only the average value of the entire energy release rate
is determined rigorously. A pragmatic approach to determining the
mode-mixity is based on the evaluation relative to a vertical plane
determined by the mean positions of the crack shape. Thus, a distinc-
tion is made between the average Mode I energy release rate and the
average combined Mode II and Mode III energy release rates. The lack
of detailed knowledge of the contributions to the Mode II and Mode
III energy release rates is only a concern if there is a great disparity
between the fracture resistances with respect to the different modes
of fracture. Nevertheless, the average Mode II and Mode III energy
release rates are computed separately in the presented approach and
shown separately for illustration purposes. These are however only
computational quantities and only become physically meaningful when
considered in combination.

A further complication arises, due to the increased stress gradients,
caused by the abrupt changes in stiffness. In the previous studies [16,
18] as well as for the present regular microstructure cases the energy
release rate is computed based on Eq. (1), where small numerical
7

errors are introduced, due to interpolation errors caused by the stress
extrapolation to the nodes. The errors decrease with mesh refinement,
which was previously exploited to ensure accurate results. A computa-
tionally cheaper alternative is a consistent and equivalent computation
to eliminate the interpolation error, where the nodal reaction forces
and displacements are used. The change in potential energy 𝑑𝛱 per
unit depth can be expressed via the change in elastic energy per unit
depth, which is half of the external work per unit depth according
to Clapeyron’s theorem [25]. The same approach was also presented
in [6],

𝑑𝛱 = 𝑑𝛱𝐼 + 𝑑𝛱𝐼𝐼 + 𝑑𝛱𝐼𝐼𝐼 = −1
2

(

∑

𝑖
𝐹 0
𝑛𝑖
𝛿𝑛𝑖 +

∑

𝑖
𝐹 0
𝑡𝑖
𝛿𝑡𝑖 +

∑

𝑖
𝐹 0
𝑡′𝑖
𝛿𝑡′𝑖

)

,

(4)

where 𝐹 0 are the reaction forces at the crack seam of the uncracked
state and 𝛿 are the crack opening displacements for the normal direc-
tion 𝑛, transverse direction 𝑡 out of the modeling plane, and transverse
direction 𝑡′ in the modeling plane. The change in crack area 𝑑𝐴 is
defined through the effective crack height, 𝑙𝑐 , as

𝑑𝐴 =
𝑙𝑐

sin(𝜃)
𝑑𝑥3, (5)

where the increase in crack area due to the off-axis direction is taken
into account via the denominator sin(𝜃). Combining Eqs. (4) and (5),
the energy release rate, , can be computed as

 = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 = −
𝑑𝛱𝐼 + 𝑑𝛱𝐼𝐼 + 𝑑𝛱𝐼𝐼𝐼

𝑑𝐴

=
sin(𝜃)
2𝑙𝑐

(

∑

𝑖
𝐹 0
𝑛𝑖
𝛿𝑛𝑖 +

∑

𝑖
𝐹 0
𝑡𝑖
𝛿𝑡𝑖 +

∑

𝑖
𝐹 0
𝑡′𝑖
𝛿𝑡′𝑖

)

𝑑𝑥3, (6)

where in the case of the straight crack, the effective crack height 𝑙𝑐 = 2ℎ
is the total height of the cross-section of the tunneling crack in the
(𝑥1, 𝑥2)-plane. By approximating the normal directions of the crack with
the macroscopic horizontal crack and using Eq. (6) instead of Eq. (3),
the energy release rates of the realistic case may now be evaluated in
a more simple manner, while producing the same results.

3. Results

Four investigations have been conducted using the regular case from
Fig. 7 and realistic case from Fig. 6. The first three are all inspired
by similar studies conducted without the inclusion of a fiber–matrix
microstructure in [16,18] and conducted with regular microstructures
and straight cracks. First, the influence of the length, 𝐿, of the domain
with the microstructure is analyzed (see Fig. 4). Secondly, the crack
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profiles are compared with crack profiles from the corresponding ho-
mogenized models without the microstructure. Thirdly, the influence of
neighboring cracks in the proximity of the growing tunneling crack is
investigated (see also Fig. 6). Finally, non-straight cracks in a realistic
microstructure are considered.

3.1. Effect of the size of the embedded regular microstructure domain on
the energy release rate

For 𝜃 = 30◦ Fig. 10 shows the energy release rate for the straight
transverse crack, 𝑠𝑠, as well as the corresponding components, 𝐼 and
𝐼𝐼 for different lengths, 2𝐿, of the embedded regular microstructure
domain, see Fig. 4. The length is normalized by the domain height, 2ℎ,
and the energy release rate is normalized by 𝜀011𝜎

0
112ℎ, as previously

in [16,18]. As stated in Table 1 the regular microstructure contains
four discrete fibers through the half-height ℎ of the cracked layer (see
Fig. 8). In Fig. 10a the energy release rate 𝑠𝑠 is shown with and
without taking the regular microstructure into account and Fig. 10b
provides the components, 𝐼 and 𝐼𝐼 , together with 𝑠𝑠 from Fig. 10a.

he homogenized properties obtained from the FEM estimation for the
egular case, Table 2, are used.

As expected, if only a small domain is represented by a microstruc-
ure, i.e. for 𝐿∕ℎ → 0, 𝑠𝑠 obtained with a microstructure converges
n direction of the result obtained with the homogenized model .
owever, if the microstructure is taken into account the normalized 𝑠𝑠

ncreases but saturates at a value approximately 6% greater, i.e. from
little below 0.069 to 0.073 (see Fig. 10a). Obviously, no effect of
∕ℎ on 𝑠𝑠 is seen if the microstructure is excluded (𝐿∕ℎ = 0), as
∕ℎ is a direct measure of the microstructure domain. It is noted that

or 𝜃 = 90◦ the same trend is observed, but with a slightly smaller
ncrease of approximately 5%. If the homogenized properties obtained
rom the Halpin–Tsai estimation, Table 2, are used instead, the case
or 𝜃 = 30◦ will differ by 17% and 11% for the case of 𝜃 = 90◦,
hich further emphasizes that the choice of homogenization model is
ssential for the accuracy of the results. It is found from Fig. 10a that
or 𝜃 = 30◦ the size of the embedded microstructure domain needs to
xtend approximately five times the height, i.e. 𝐿∕ℎ > 5, corresponding
o the domain length being five times the layer thickness with the
unneling crack. For 𝜃 = 30◦ an error of less than 1% is obtained for
𝐿
ℎ ≳ 1.0 and for an error less than 0.1% 𝐿

ℎ ≳ 6.5 is required. For 𝜃 = 90◦

an error of less than 1% is obtained for 𝐿
ℎ ≳ 3.5 whereas an error less

than 0.1% can be obtained for 𝐿
ℎ ≳ 15.4 . Unless very high accuracy

s needed, it is therefore only necessary to model the microstructure
n the proximity of the crack in the study of the energy release rate.
ig. 10b shows, that the contribution from 𝐼𝐼 to 𝑠𝑠 dominates over
he Mode I contribution in accordance with results presented in [18].
8

.2. Effect of the regular microstructure on crack face relative displacements
nd stress distributions

For 𝜃 = 30◦, Fig. 11 shows the tunnel crack opening as well as the
ncracked stress distribution through the thickness (i.e. along the 𝑥2-
irection). Both results for the case with a regular microstructure (solid
ine) as well as the case without the microstructure (dashed line) using
traight transverse cracks are shown for 𝐿∕ℎ = 15.4. Again, the regular
icrostructure contains four discrete fibers through the half-height ℎ of

he cracked layer (see Fig. 8). These four fibers in the vertical direction
re indicated by the four black ellipses illustrating distribution and the
ross-section at an angle of 𝜃 = 30◦. Fig. 11a and b show the normal,
𝑛, and the tangential, 𝛿𝑡, opening of the tunnel crack, respectively.
imilarly, Fig. 11c and d show the transverse stress, 𝜎𝑇𝑇 , and the
hear stress, 𝜎𝐿𝑇 , respectively. Especially, for the normal opening in
ig. 11a, very small differences are observed between the two cases.
he tangential opening in Fig. 11b shows a slightly larger variation
ompared to the case without the microstructure. In both cases, the
icrostructure tends to perturb the crack opening profile in accordance
ith the presence of the fibers. It is noted, that the tangential opening,
𝑡, is approximately three times larger than the normal opening, 𝛿𝑛. The
tress distribution in Fig. 11c and d shows, that the shear stress is larger
han the normal stress. As expected, the case without the microstructure
hows that both stress components are constant through the thickness
f the uncracked layer (dashed line). However, when accounting for the
icrostructure, both stress components oscillate significantly around

he solution without the microstructure, and the peaks of the oscillating
olutions coincide with the locations of the stiff fibers.

.3. Tunnel crack interaction

Fig. 12 shows the energy release rates, 𝑠𝑠, 𝐼 and 𝐼𝐼 , calculated
or different spacing, 𝐿crack, between two straight adjacent transverse
racks, for the case of 𝜃 = 30◦, i.e. three cracks in total. Note that
he spacing is normalized by the half thickness of the layer containing
he tunnel crack, ℎ, such that an infinite crack spacing corresponds to
∕𝐿crack → 0. Also note, that the first axis is logarithmic as a large
pan of crack spacings has been evaluated. The steady-state energy
elease rate, 𝑠𝑠, for the case of a single isolated crack in a regular
icrostructure from Fig. 10 is included by the blue horizontal dashed

ine (with value 0.07). As expected, an asymptotic approach to the
ingle crack solution is observed, and for ℎ∕𝐿crack ≲ 0.1, the two
olutions are almost identical. As for Fig. 10, it is noted, that 𝐼𝐼
ominates over 𝐼 for the small layup angle of 𝜃 = 30◦.

The homogeneous case (without microstructure) and the inhomoge-
eous case (with regular microstructure) exhibit the same tendencies
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Fig. 11. The crack opening and stress profiles for 𝜃 = 30◦. (a) and (b) Crack opening displacements. (c) and (d) Stress distributions.
with only minor differences, as can be seen by comparing curves with
cross-marks to curves with dot-marks in Fig. 12. If the energy release
rate close to zero is neglected, the largest relative error between the
cases with or without the microstructure is 5.6%. It can thus be ob-
served, that the influence of nearby cracks is much more important than
accounting for an accurate microstructure. Hence, the macroscopic
features seem to dominate over the microscopic features in terms of
the fiber–matrix microstructure.

3.4. Realistic case

For the realistic case of fiber distribution in Figs. 5 or 6, the
homogenized constitutive parameters employed for the layers without
microstructure were estimated via finite element-based homogeniza-
tion based on the microstructure shown in Fig. 6. The properties
are provided in Table 2. The length of the embedded fiber–matrix
microstructure domain presented in Fig. 4, is approximately 𝐿 = 9.8ℎ,
while the length extending the model beyond the embedded model
is about 𝑙 = 5𝐿 = 49ℎ, which is determined to be sufficiently large
through a convergence study monitoring the displacements, the stresses
and the energy release rates.

In a first study, all four cracks presented in Fig. 6 are considered
individually. Essentially, this reflects four different realistic cases of
microstructure allowing an introduction of some statistical assessment.
Averaging the results can alleviate the effect of idealizing the fibers and
tunnel cracks as being perfectly parallel. Computations were conducted
for the orientations 𝜃 = 30◦, 𝜃 = 60◦, and 𝜃 = 90◦ for each crack. For the
sake of comparison, three cases are presented with increasing complex-
ity; one treats a homogenized material with a straight crack, a second
investigates a homogenized material with a non-straight crack taken
9

from Fig. 5, and finally, the fiber–matrix microstructure is analyzed
Table 4
The energy release rate values behind the data shown in Fig. 13a.
𝜃 = 30◦ 𝐼

𝜎̄11 𝜀̄112ℎ𝑐

𝐼𝐼

𝜎̄11 𝜀̄112ℎ
𝐼𝐼𝐼

𝜎̄11 𝜀̄112ℎ
𝑠𝑠

𝜎̄11 𝜀̄112ℎ

Straight crack All cracks 0.0063 0.075 0 0.081

crack 1 0.0052 0.061 0 0.066
Non-straight crack 2 0.0048 0.058 0 0.063
crack crack 3 0.0049 0.058 0 0.063

crack 4 0.0047 0.057 0 0.061

Non-straight crack 1 0.0060 0.082 0.00027 0.088
crack with crack 2 0.0057 0.075 0.00012 0.081
realistic crack 3 0.0056 0.075 0.00019 0.080
microstructure crack 4 0.0056 0.085 0.00024 0.091

with the non-straight crack also from Fig. 5. The results are summarized
by bar-plots in Fig. 13 showing the mean of the computed energy
release rates of each crack. Additionally, the standard deviations are
indicated and it is noted, that only small variations are seen. Individual
modeling results are shown in Table 4 for 𝜃 = 30◦, where it can be
seen, that the small Mode III contribution only occurs for the case with
a microstructure.

The first important conclusion can be drawn, by reconsidering the
results of the regular case as e.g. in Fig. 10, where a convergence of
the normalized energy release rate towards 𝑠𝑠 = 0.073 is observed for
𝜃 = 30◦. In contrast, the non-straight crack with the homogenization
based on the realistic case yields an energy release rate of 𝑠𝑠 = 0.085,
as seen in Fig. 13, leading to a discrepancy of approximately 10%.
Therefore, the idealization of the realistic case by using the regular case
is deemed insufficient.

Yet another important conclusion can be drawn when solely con-

sidering the bar-plots in Fig. 13, where the straight crack without the
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Fig. 12. Influence of the crack spacing ℎ
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considering three cracks for 𝜃 = 30◦ exploiting symmetry. Note that the value at an infinite spacing (horizontal blue dashed line) is
reused from Fig. 10 which was computed with the regular microstructure to be 0.07.
Fig. 13. Energy release rate of straight and non-straight crack in both homogenized and the realistic fiber–matrix microstructure in Fig. 6 for the three orientations 𝜃 = 30◦,
= 60◦, and 𝜃 = 90◦.
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icrostructure (most left bar) and non-straight crack with microstruc-
ure (most right bar) yield similar results for all three orientations
onsidered. On the other hand, the cases of non-straight cracks with-
ut microstructure (bar in middle) show significantly reduced energy
elease rates. In other words, the realistic case of a non-straight crack
ith a microstructure (most right bar) results in a much higher energy

elease rate than that of the corresponding ‘‘realistic’’ non-straight
rack without a microstructure (bar in middle). Hence, it is suggested
imply to replace the complex case of the non-straight crack with
he microstructure by a straight crack without the microstructure. In
n attempt to explain this, the crack profile is investigated in detail.
pecifically, crack 3 in Fig. 6 is considered at an orientation of 𝜃 =
0◦, and the two crack face relative displacements, 𝑢, and the crack
pening, 𝛿, are illustrated in Fig. 14a and b, respectively. Interestingly,
he differences in crack openings are relatively small and not sufficient
o explain the differences in the energy release rates. In fact, the
on-straight crack cases have greater crack openings, suggesting larger
nergy release rates. In the absence of a microstructure and in the
bsence of a crack, the models are identical and thus the stress states
s well. Due to the lack of disparity in the crack opening profiles, a
imilar change in potential energy 𝑑𝛱 should be expected. Thus, the
ain factor giving rise to the decrease in the energy release rate seen in

ig. 13 is the change in the crack surface area due to crack growth, see
q. (6), where a larger effective crack height, 𝑙𝑐 , yields a smaller energy
elease rate. For the cracks 1, 2, 3 and 4, the normalized crack height in
he (𝑥 , 𝑥 )-plane, 𝑙 ∕(2ℎ), can be found from Fig. 6 to be 1.25, 1.33, 1.32
10

1 2 𝑐
nd 1.37, respectively. The average value is 1.32, which for the non-
traight crack suggests a value of about 1/1.32 or 76% of the energy
elease rate for the corresponding straight crack. In fact a value of 78%
s found from the results presented in Fig. 13, and the discrepancy may
hus be explained by the increased crack area together with a slight
ncrease in the crack opening profiles. Note, that in the presence of

microstructure and a non-straight crack the nodal reaction forces,
nd consequently the stresses, are not identical to the nodal reaction
orces and stresses without a microstructure. In the presence of the
icrostructure, the stresses are larger than without a microstructure.
his leads to a similar energy release rate as for the straight crack
ithout a microstructure, despite a similar crack face relative opening
nd a difference in the crack surface area.

To support the conclusion, that the length of the crack is the most
mportant factor for determining the change in the energy release rate,
n additional idealized study is conducted with angled cracks, which
ould not occur in reality, as straight cracks yield the highest energy

elease rate. As illustrated in red in Fig. 15(a), the angled crack is
onsidered in the middle layer of the layup [04∕𝜃∕04∕ − 𝜃]s, i.e. the
wo −𝜃-layers. The material in the layers is based on the homogenized
roperties of the realistic case found in Table 2. The crack is defined by
he dimensionless inclination parameter 𝑎. Hence, the effective crack
eight in the (𝑥1, 𝑥2)-plane can be computed as

𝑐 (𝑎) = 2ℎ
√

1 + 𝑎2
4

(7)

If the change of the energy release rate caused by the variation in
the crack opening is neglected, the energy release rate at an arbitrary
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Fig. 15. Parametric study with the inclination parameter 𝑎 to showcase its effect on the energy release rate 𝑠𝑠.
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inclination , 𝑠𝑠(𝑎), can be related to the energy release rate without
inclination , 𝑠𝑠(0), through

𝑠𝑠(𝑎) =
2ℎ
𝑙𝑐

𝑠𝑠(0) =
1

√

1 + 𝑎2
4

𝑠𝑠(0). (8)

This relation is confirmed by a simulation, taking the difference in
crack opening into account in Fig. 15(b) at an orientation of 𝜃 = 30◦.
nterestingly, the energy release rate is slightly lower than the predicted
urve, indicating a smaller crack opening, which is opposite to the
ehavior observed in the non-straight crack in Fig. 14. However, if the
resented simplified case is extended with a single ‘‘zig-zag’’, indicated
n blue in Fig. 15(a) and with an effective crack height parametrized
y the inclination 𝑎 of

𝑐 (𝑎) = 2ℎ
√

1 + 𝑎2, (9)

larger crack opening is observed. Thus both smaller and larger crack
penings are possible when compared to a straight crack. The blue zig-
ag crack also shows, that the change in energy release rate cannot
lways be attributed solely to the change of crack surface area, as large
eviations occur for greater inclination values 𝑎.

Finally, a macroscopic disturbance in the realistic microstructure is
onsidered. For this, the propagation of crack 2 is considered in the
resence of neighboring cracks. Four cases are compared, the isolated
rack 2, and crack 2 in combination with each of the remaining three
racks individually. Consequently, the energy release rate of crack 2 is
stimated, while the other cracks are already preexisting in the model.
11

ogether with the normalized averaged crack distances between crack o
and the other cracks 𝐿crack
ℎ , the computed energy release rates with a

preexisting neighboring crack can be associated with a crack distance
𝐿crack. The results are shown in Fig. 16 for 𝜃 = 30◦ and 𝜃 = 60◦.
The non-straight cracks embedded in the microstructure are compared
to straight cracks without a microstructure. While small differences
are observable, the overall tendencies are similar. For smaller crack
spacings 𝐿crack these discrepancies do not increase between the two
models, as also shown in Fig. 12 for the regular case. Thus, not only the
choice of homogenization is more important than the accurate model
of a fiber–matrix microstructure and non-straight crack, but also the
consideration of macroscopic defects, such as neighboring cracks.

4. Conclusion

The energy release rate 𝑠𝑠 for tunneling cracks was investigated
ased on inhomogeneous models of a regular and realistic distribution
f fibers and compared to a homogeneous case. The layup considered
s [04∕𝜃∕04∕ − 𝜃]s. The homogenized material properties were ob-
ained based on three different approaches, the Voigt–Reuss model, the
alpin–Tsai model, and a finite element-based method. Only the finite
lement-based method leads to results of acceptable precision. The
ifference between the energy release rates based on inhomogeneous
nd homogeneous models was found to be below 6% when using the
inite element-based homogenization.

The effect of the length of the microstructure domain was investi-
ated, and it was found, that for the given layup the microstructure
omain must be seven times longer than the off-axis layer height, to
btain errors less than 1%. Additionally, the influence of neighboring
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racks was investigated. It was shown, that the distance of the neigh-
oring cracks has an important impact, that exceeds that of detailed
odeling of the microstructure. Thus it is concluded, that the mi-

rostructure details do not have a great influence on the overall energy
elease rate if an accurate homogenization approach is employed.

A realistic distribution of fibers based on a scanning electron mi-
roscopy scan of a fiber–matrix microstructure was analyzed. Several
omplications were discussed. A highly local contact may be encoun-
ered, which was neglected in the present study. Additionally, the
omputation of the energy release rate via the stress extrapolation pre-
ented in [16] is not accurate enough, due to the high displacement and
tress gradients, which leads to extrapolation errors. This was resolved
y employing an energetically consistent approach based on nodal
eaction forces and displacements. By extending the evaluation of the
nergy release rate to include Mode III contributions, it is possible to
ompute the energy release rate for arbitrary crack shapes embedded in
iber–matrix microstructures. It is shown, that approximating complex
rack shapes within realistic microstructures with homogenized models
nd straight cracks yields accurate results, as long as an appropriate
omogenization is employed. On the other hand, it is an inappropriate
odeling choice to use a realistic non-straight crack in a homogenized
odel. Additionally, it was found that using a regular distribution of

ibers as an approximation of a real fiber distribution is insufficient.
urthermore, the impact of macroscopic features, such as neighboring
racks is shown to be more important than a detailed model of the
icrostructure and crack shape.
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ppendix. Homogenization Methods

.1. Voigt-Reuss model

The Voigt–Reuss model (see e.g. [20,26]) is an analytical method
ased on an iso-strain assumption for the Voigt model, also known
s the rule of mixtures, and an iso-stress assumption for the Reuss
odel, known as the inverse rule of mixtures. The Voigt method is

ypically applied to the longitudinal Young’s modulus, 𝐸𝐿, and the
oisson’s ratios, 𝜈𝐿𝑇 and 𝜈𝐿𝑇 ′ . The Reuss model is applied to the

transverse Young’s moduli, 𝐸𝑇 and 𝐸𝑇 ′ , as well as the shear moduli,
𝐺𝐿𝑇 and 𝐺𝐿𝑇 ′ . The fiber alignment in the longitudinal direction leads to
transverse isotropy, which makes the shear modulus, 𝐺𝑇𝑇 ′ , computable
from the remaining parameters, such that

𝐸𝐿 = 𝐸𝑓𝜑 + 𝐸𝑚(1 − 𝜑) 𝐺𝐿𝑇 =
𝐺𝑚𝐺𝑓

𝐺𝑚(1 − 𝜑) + 𝐺𝑓𝜑
𝜈𝐿𝑇 = 𝜈𝑚(1 − 𝜑) + 𝜈𝑓𝜑

𝑇 =
𝐸𝑚𝐸𝑓

(1 − 𝜑)𝐸𝑓 + 𝜑𝐸𝑚
𝐺𝐿𝑇 ′ = 𝐺𝐿𝑇 𝜈𝐿𝑇 ′ = 𝜈𝐿𝑇

𝐸𝑇 ′ = 𝐸𝑇 𝐺𝑇𝑇 ′ =
𝐸𝑇

2(1 + 𝜈𝑇𝑇 ′ )
𝜈𝑇𝑇 ′ > 𝜈𝑚

No analytical expression exists for the Poisson’s ratio, 𝜈𝑇𝑇 ′ , although
it is known to be larger than 𝜈𝑚, i.e. 𝜈𝑇𝑇 ′ > 𝜈𝑚.

A.2. Halpin–Tsai model

The Voigt–Reuss model is simple, but often not sufficiently accurate
for the transverse stiffness properties. The Halpin–Tsai model [27] (or
see e.g. [20]) is a semi-empirical method extending the Voigt–Reuss
model, where the adjustments lie in the Reuss model for the transverse
Young’s moduli, 𝐸𝑇 , 𝐸𝑇 ′ , and the shear moduli, 𝐺𝐿𝑇 , 𝐺𝐿𝑇 ′ . Thus, some
f the parameters are still computed by the Voigt–Reuss model given
bove, but 𝐸𝑇 , 𝐸𝑇 ′ , 𝐺𝐿𝑇 and 𝐺𝐿𝑇 ′ are instead computed as

𝐸𝑇 = 𝐸𝑇 ′ = 𝐸𝑚
1 + 𝜁𝜂𝐸𝜑
1 − 𝜂𝐸𝜑

𝜂𝐸 =

𝐸𝑓
𝐸𝑚

− 1
𝐸𝑓
𝐸𝑚

+ 𝜁

𝐺𝐿𝑇 = 𝐺𝐿𝑇 ′ = 𝐺𝑚
1 + 𝜁𝜂𝐺𝜑
1 − 𝜂𝐺𝜑

𝜂𝐺 =

𝐺𝑓
𝐺𝑚

− 1
𝐺𝑓
𝐺𝑚

+ 𝜁
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The shape of the fibers is taken into account via the shape parameter,
which for round fibers is 𝜁 = 2. Note also, that due to the change of the
ransverse Young’s moduli, the shear modulus 𝐺𝑇𝑇 ′ is also modified.

A.3. Finite element based homogenization

A third alternative is a homogenization via finite element analysis
using a three-dimensional model of the microstructure. Here, a model
for the material system consisting of fibers and matrix is loaded for each
stress component. From these simplified load cases, the homogenized
constitutive matrix and the material properties can be extracted, as
described in [20] for fiber-reinforced composites. The method can be
used for arbitrarily complex structures such as those shown in [28]. In
this work a plugin [24] for Abaqus is used, automating the homoge-
nization process on three-dimensional models. This is shown to be the
most accurate homogenization method out of the three discussed in
the present paper, as it accounts for both the fiber geometry and the
fiber distribution. The Abaqus plugin has been used both for the regular
case sketched in Fig. 7 using a representative volume element and
the realistic case using the entire fiber–matrix microstructure domain
illustrated in Fig. 6.
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