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A B S T R A C T

This paper presents a portable toolkit, SwitchNet, for extracting relations from textual input.
We summarize four data protocols for relation extraction tasks, including relation classification,
relation extraction, triple extraction, and distant supervision relation extraction. This neural
architecture is modular, so it can take as input data at different stages of the information
extraction process (simple text, text and entities or entity pairs as relation candidates) and
compute the rest of the process (named entity recognition and relation classification). We
systematically design four information flows to integrate the above protocols by sharing network
building blocks and switching different information flows. This framework can extract multiple
triples (subject, predicate, object) in one pass. This framework enhances the use of relation
classification models in end-to-end triple extraction by inferring pairs of entities of interest and
using the shared representation mechanism.

. Introduction

Knowledge Graph (KG) is a technology that can store relational facts in the form of triples. For example, ‘‘The Eiffel Tower
s located in Paris’’ can be represented as a machine-readable triple (The Eiffel Tower, locatedIn, Paris) in a knowledge graph.
nowledge graphs are designed to describe various entities or concepts and their relations that exist in the real world, and ultimately
onstitute a huge semantic network, in which vertices represent entities or concepts, and edges are composed of attributes or
elations, thus determining the semantic relations between entities is a critical task. Relation extraction aims to find the semantic
elation between entities from the textual input. This task can be used to complement missing triples in the knowledge graph.
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Fig. 1. Examples for text-bound RC, RE, and TE tasks.

Fig. 2. Example for DS-RE.

Given the input data  (e.g., simple text and entity mentions), the relation extraction function  (⋅) can automatically generate
 (a set of triples). In practice, when the data protocol of  changes to ̂ (e.g., only simple text), existing model architectures
cannot be easily transformed to ̂ (⋅). Minor changes to the data protocol may lead to poor model performance and even make the
model unusable. Designing different ̂ (⋅) independently to adapt to changing data protocols is costly and inefficient. We introduce
SwitchNet,1 a portable toolkit, to resolve the problem of ‘‘reinventing the wheel’’. The main reason for the ‘‘wheel’’ problem lies in
the independence and uninheritance of many studies. They implement the same relation extraction setup in different programming
ways. Although the basic ideas of different works overlap, there are significant differences in programming implementation that
are incompatible with each other. SwitchNet summarizes different protocols for relation extraction, divides the relation extraction
process into multiple pluggable modules, and integrates different modules through neural network information flow. By choosing
different neural network information flows, the model is adapted to changing data protocols.

This paper investigates the overlap and differences among four relation extraction task forms, including three text-bound tasks,
i.e., relation classification (RC), relation extraction (RE) and triple extraction (TE), and the distant supervision relation extraction
(DS-RE). Then, we propose a modular neural network that works towards real end-to-end relation extraction. Fig. 1 shows the
input–output scheme, where the RC, RE, and TE forms provide the pairs of entity of interest (POEOI), the entity of interest (EOI),
and no label respectively. EOI in the text is equivalent to the region of interest (ROI) [1] in a picture. ROI represents any particular
portion of the image that seems important for the task. EOI means the important entity spans in the representation matrix of text.
POEOI is composed of EOIs, and the holding relation can be inferred from this composition. POEOIs are usually two discontinuous
spans, and it is uncertain whether and what kind of relation exists between the two spans.

‘‘PAD’’ is a special symbol used to fill missing lengths, thus keeping the tensor dimensionality consistent, and allowing program
parallelization. In addition to the benefits of PAD for parallelizing batch operations, it guarantees normal processing even if there
are no entities or relations in the sample. Fig. 2 demonstrates the DS-RE task, where the input is a bag of sentences that contains the
same entity pair. However, there is a noise problem in the data because not all sentences that mention the two entities express the
target relation, e.g., the third sentence does not express ‘‘place founded" relation, so it is important to reduce the impact of wrong
labeling. Traditional approaches for relation extraction rely heavily on engineered natural language processing (NLP) pipelines and
external resources. Recent approaches use deep learning models to jointly extract entities and relations. These methods might need
to design new task schemes or rely on syntactic parsing and separate model training. The new task schemes potentially limit the
performance and versatility of their approaches. Ideally, we would like to overcome these two problems, eliminating the reliance
on a new task scheme and conducting joint extraction in a modular way.

Existing joint extraction models mainly combine named entity recognition (NER) and RC from the subtask level, rarely
considering the overlap and differences between relation extraction tasks. When the data protocol changes, most joint extraction

1 https://nnntt.github.io/SwitchNet/
2
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models cannot be easily applied to individual subtasks because innovative task schemes may not have an architecture to utilize all
the input information or they may choose a simplified relation classification component. Different from them, we use the standard
and effective neural components. Although task-specific neural networks have achieved good performance, it is unclear what the
relationship between different RE tasks is and how to integrate them adaptively. For humans, different brain building blocks and
neural pathways [2] form various cognitive functions. We propose a modular neural network that can share network building
blocks by switching different information flows. We map subtasks/subfunctions to modules and use different strategies to selectively
activate modules for processing information at different stages. Our main effort lies in systematically designing four information
flows that are essential for model integration. In addition, not all triples in the knowledge base are static, e.g., ‘‘place_lived’’ and
‘‘company ’’ relations, and our approach significantly reduces the problem complexity when dealing with multiple data sources for
real-time KB updates.

The secondary problem of this framework is how to extract multiple triples in one pass in the TE protocol. This task consists
of two subtasks, NER and RE. Prior works might train two subtasks separately, which leads to the drawback that the information
between two subtasks cannot be fully exploited. This is because the NER and RE systems are independent of each other during model
training, so they cannot be optimized together in the deep learning framework. In contrast, the differentiability of our multi-stage
model is achieved through the POEOI inference and the shared representation mechanisms.

Not all context words contribute equally to the relation type, and some less informative words may produce noise. To overcome
this issue, we use the attention mechanism [3] to assign different weights to different tokens for relation classification. The RC
task can be further divided into single-relation extraction (SRE) and multiple-relations extraction (MRE). Our model can deal with
MRE in one pass which resolves the inefficient multi-pass issue. Our model supports 1-of-n and multi-label classification forms
corresponding to extracting one or different relations for two entities. Multi-label classification is a generalization of multi-class
classification with no limit to the number of classes an instance can be assigned, it maps the input to a binary vector that assigns
each element a label of 0 or 1, which naturally resolves the overlapping relation issue [4].

In practice, the advantage of using the proposed framework lies in its modular encapsulation of different functionalities. Task
adaptation can be flexibly implemented through the combination of multiple modules and can be applied to a variety of different
data protocols to meet various information extraction settings. From the perspective of theoretical research, it supports improving
the model architecture in modules to achieve a partial or overall performance improvement, and can also further optimize the
collaboration mechanism between different modules. We describe the usage of this toolkit in Section 5. We conduct experiments
of TE, RE, RC, and DS-RE tasks on a large but noisy Riedel New York Times (NYT) dataset, a manually annotated SemEval-2018
dataset, a large TACRED dataset, and the NYT Large dataset respectively, as these datasets are well-known and represent different
forms of relation extraction. Experimental results show the effectiveness of our approach in different data protocols. This model
exhibits a complementary idea for the current model architecture design. In summary, the distinctive properties of this paper can
be summarized below:

(i) We systematically design a modular neural network and four information flows to integrate four relation extraction tasks.
(ii) Our model integrates NER and RE subtasks through the POEOI inference and the shared representation mechanisms. We

integrate DS-RE with the text-bound relation extraction protocols.
(iii) We conduct experiments on 4 relation extraction data protocols, and the experimental results show that our method can

adapt to different data protocols and achieve performance improvements.
The paper is organized as follows: Section 2 presents a literature review on relation classification, joint entity relation extraction,

remotely supervised entity extraction, and open information extraction. Section 3 summarizes the task definitions for the 4 relation
extraction settings. Section 4 describes the proposed SwitchNet framework with novel neural network information flow and POEOI
inference methods in detail. Section 5 describes the toolkit specification and design philosophy. Section 6 presents experimental
results and analysis of different relation extraction task settings. Section 7 analyzes the factors that affect model performance.
Finally, Section 8 presents the conclusions of this study.

2. Related work

2.1. Relation classification

For the fully-supervised methods, Zeng et al. [5] leverage convolutional deep neural networks to extract lexical and sentence-level
features, and to specify entity pairs that should be assigned relation labels, they propose position features to encode the relative
distances of words to target entity pairs in the convolutional neural network. Experimental results show that position features are
crucial for relation classification. Xu et al. [6] propose a new neural network model, called long short term memory networks
along shortest dependency paths (SDP-LSTM), for relation classification. Neural models are necessary to process information in
a direction-sensitive manner, and they divide the SDP into two sub-paths, each from an entity to a common ancestor node. The
model concatenates the features extracted along the two sub-paths for final classification. A highlight feature of this model is
that the shortest dependency path preserves the most relevant information while eliminating irrelevant words in sentences; the
multi-channel long short term memory networks (LSTM) network allows for efficient integration of information from heterogeneous
3

sources through dependency paths. They utilize LSTM cells for information dissemination and integration.
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2.2. Joint entity-relation extraction

Miwa and Bansal [7] propose an end-to-end model to extract relations between word sequences and entities on dependency
tructures. Models based on recurrent neural networks capture word sequences and relying on tree substructure information,
ntities and relations can be represented simultaneously in a single model. The model first detects entities, then extracts relations
etween detected entities using a single incrementally decoded neural network structure, and jointly updates model parameters
ith entity and relation labels. This allows models to collectively represent entities and relations within a single model using shared
arameters. This model detects entities during training and uses entity information in relation extraction through entity pre-training
nd scheduled sampling which replaces the predicted labels with gold labels with a certain probability. Zheng et al. [4] propose a
ew tag scheme that can transform the joint entity-relation extraction task into a sequence labeling problem. Based on this tagging
cheme, they investigated different end-to-end models to directly extract entities and their relations without identifying entities and
elations separately. They also developed an end-to-end model with a bias loss function to adapt to new labels. This method can
nhance the associations between related entities but still falls short in identifying overlapping relations. Zhang et al. [8] propose
graph convolutional network-based neural model for relation extraction, an extension of graph convolutional networks tailored

or relation extraction, which can efficiently aggregate information of arbitrary structures in parallel. They propose path-centric
runing to improve the robustness of dependency models by removing irrelevant content without ignoring key information. To
ncorporate relevant information while maximally removing irrelevant content, they further applied a new pruning strategy to the
nput tree, allowing words to immediately surround the shortest path between two entities that may be related. Sun et al. [9]
ropose a graph convolutional network (GCN) based joint model to perform joint type inference for entity-relation extraction tasks.
binary relation classification task is introduced to explore the structure of entity relation bipartite graphs in a more efficient

nd interpretable manner. To address the joint type inference task, a novel GCN operation on entity-relation bipartite graphs is
roposed. Compared with existing joint extraction methods, it provides a new way to explicitly capture interactions of multiple
ntity types and relation types in a sentence. By introducing the task of binary relation classification, the structure of entity-relation
ipartite graphs can be exploited in a more efficient and interpretable way. Wang et al. [10] propose a scheme to simultaneously
xtract multiple relations and encode the input passages of the MRE task once. They let the self-attention layer know the positions
f all entities in the input paragraph, building on a pre-trained self-attention model (Transformer). A structured prediction and
ntity-aware self-attention layer are proposed on top of BERT. Since all relations are computed at once, it can easily scale to larger
atasets.

Bekoulis et al. [11] propose a joint neural model to simultaneously extract entities and relations from textual data. They model the
ntity recognition task using a conditional random field (CRF) layer, and model the relation extraction task as a multi-head selection
roblem (i.e., potentially identifying multiple relations for each entity). State-of-the-art performance is achieved in different domains
i.e. news, biomedical, real estate) and languages (i.e. English, Dutch) without relying on any human-crafted features or additional
LP tools. The downside is that this method uses a token to represent an entity. Han et al. [12] propose OpenNRE, an open and
xtensible toolkit for relation extraction. OpenNRE strikes a balance between system encapsulation, operational efficiency, model
calability, and ease of use. The toolkit prioritizes operational efficiency based on TensorFlow and PyTorch which support fast model
raining and validation. OpenNRE provides various functional RE modules based on TensorFlow and PyTorch to maintain sufficient
odularity and extensibility so that new models can be easily incorporated into the framework. Online systems can also be used to

atisfy real-time extraction without training and deployment. For developers whose goal is to train a custom model, they can quickly
pin up an OpenNRE-based RE system without knowing too much technical detail and writing tedious glue code. This toolkit did
ot integrate different components in one model. Our model integrates different modules of the information extraction (IE) process,
an jointly optimize the parameters of subtasks, and can extract multiple triples in one pass.

.3. Distant supervision relation extraction

For the distantly-supervised methods [13], a training set is generated by aligning the relations in an existing knowledge base
nto the free text. They address the problem of data annotation. Mintz et al. [13] propose a distant supervision algorithm capable
f extracting high-precision patterns for a large number of relations. The combination of grammatical and lexical features provides
etter performance than separate feature sets. Their algorithms can use large amounts of unlabeled data, and a pair of entities
ay appear multiple times in the test set. Their experiments use Freebase, a large semantic database of thousands of relations, to
rovide distant supervision. Their algorithm combines the advantages of supervised IE (combining 400,000 noise pattern features
n a probabilistic classifier) and unsupervised IE (extracting large numbers of relations from large corpora in any domain). Existing
ethods [14] adopt multi-instance learning to alleviate the wrong labeling problem. However, the above methods rely heavily on the

uality of featuring engineering. Zeng et al. propose the piece-wise max-pooling strategy over multi-instance learning. This approach
an automatically learn features through deep learning models. Lin et al. [15] propose sentence-level attention to alleviate the
rong labeling problem, but the sentence representation needs to be further improved. Reinforcement learning (RL) is also applied

o enhance the instance selection process by proposing innovative schemes for the episode, state, action, reward, and optimization,
ut the stability and computational efficiency of the model are challenges. The DS-RE methods usually compare the precision and
ecall curves and often put precision before the recall, while the supervised methods obtain determined scores. Our research shows
4

he relationship between text-bound RE and DS-RE.
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2.4. Open information extraction

For the Open IE [16], it aims to generate triples from textual input without requiring a pre-specified vocabulary. The subjects and
bjects extracted by Open IE are fragments in the text, not necessarily entities, such as values, dates, prices, etc. The predicates are
lso freer than the predicates of our triple extraction task. Open relation extraction methods can be divided into two categories: (1)
elation extraction using explicit rules. Relation extraction is performed by building a combination of methods including dependency
arsing, part-of-speech tagging, entity linking, and rule templates. (2) Relation extraction using implicit rules. Supervised training
f neural network models on a large human-annotated corpus can learn implicit rules for general triple extraction. However, such
ethods may extract some meaningless triples and require further filtering and completion of the results.

. Task definition

Let  = [𝑤1,… , 𝑤𝑛] denote a sequence of text, where 𝑤𝑖 is the 𝑖th token. A subject entity 𝑠 and an object entity 𝑜 denote two
non-overlapping consecutive spans: 𝑠 = [𝑤𝑠1, 𝑤𝑠1+1..., 𝑤𝑠2] and 𝑜 = [𝑤𝑜1, 𝑤𝑜1+1..., 𝑤𝑜2]. 𝑅 is the set of predefined relations. We
formalize the RC, RE, TE, and DS-RE tasks as follows.

∙ RC Given the textual input  and the positions of all (𝑠, 𝑜) pairs, the goal is to predict the corresponding relation 𝑟 ∈  that holds
between each (𝑠, 𝑜) pair or no relation otherwise.

∙ RE Given the textual input  and the positions of all entity spans 𝑒 = {[𝑤𝑒11, 𝑤𝑒11+1,… , 𝑤𝑒12],… , [𝑤𝑒𝑘1, 𝑤𝑒𝑘1+1,… , 𝑤𝑒𝑘2]}, the
goal is to predict the positions of all (𝑠, 𝑜) pairs and the relation 𝑟 ∈  for each (𝑠, 𝑜).

∙ TE It only takes as input text  , and the goal is the same as the RE task. This task is equivalent to NER plus RE.

∙ DS-RE It takes as input two entities (𝑒1, 𝑒2) and a bag of sentences () that mention 𝑒1 and 𝑒2 and predict the relation 𝑟 ∈ 
(sometimes multiple-relations) that holds between 𝑒1 and 𝑒2, or no relation otherwise. This method assumes that any of the
relations is supported by at least one sentence in . Using distant supervision, relations in KBs can be aligned with plain text
to produce bags of relation mentions for model training.

4. Approach

Fig. 3 shows the architecture of SwitchNet. This framework mainly contains five modules, i.e., the encoder, the NER module,
the RC module, the POEOI inference module, and the DS-RE module. These modules are connected by the designed information
flows. Different information flows correspond to different input data protocols. The input mainly consists of three elements, including
simple text and two optional elements, the entity annotation (EOI) or the relation annotation (POEOI). In the following, we describe
the model architecture, the information flows, and the training methods.

4.1. Model architecture

We divide the model into different modules and then integrate the modules together through neural network information flow
to achieve specific functions. In this section, we first introduce the working mechanism of neural network information flow and
then introduce the composition of each module.

4.1.1. Neural network information flows
Different tasks can be achieved by switching different information flows. We will describe the mechanism of these information

flows to implement adaptive relation extraction, as shown in Fig. 3. We explain the functionality, the location, and the collaboration
of the modules in various relation extraction pathways. By controlling the information flow, this model can selectively activate
specific operations and features at different stages of information extraction. We use 𝑖𝑗 to indicate the information flow, that is,
the functional connection between modules in this neural network. Some information flows may contain specific data operations.
We describe the information flows as follows.

(1) When we process the RC task, this model activates the pathway [11,12] → 13, as detailed in Section 4.1.4. The entity
relation annotation directly indicates the POEOI through 11. Then, the input to the RC layer comes from the path 12→13 which
connects the contextual representation and the POEOI modeling directly.

(2) When we process the RE task, this model activates the pathway [21,22] → 23, as detailed in Section 4.1.5. The input
provides the pre-annotated EOIs through 21, and then the function of 𝛹 (⋅) activates 23 via the generated pair-wise combination
of EOIs (POEOIs). Then, the path 22→23 connects the contextual representation and the POEOI modeling.

(3) When we process the TE task, this model uses the pathway 31 → [32,34] → 33, as detailed in Section 4.1.5. This model
first predicts/infers EOIs via 31 which contains the function of 𝛷(𝑛𝑒𝑟(⋅)). Then, the path 32→33 indirectly generates POEOIs
by the function of 𝛹 (⋅). Then, the path 34→33 connects contextual representation and the POEOIs.

(4) When we process the DS-RE task, this model uses the pathway Distant supervision→ {40 → [41,42] → 43}
×𝑘
→ 44,

as detailed in Section 4.1.6. Suppose there is a knowledge base, the distant supervision technique is used to automatically align
5

the relations in KBs to free text. Each relation will be mapped to a bag of sentences. Then the model takes as input each sentence
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Fig. 3. Neural network architecture overview.

bag via path 40. For each sentence, the information flow that generates the sentence representation is similar to the RC task,
i.e., [41,42] → 43. Each sentence only generates one vector.

×𝑘
→ means this model parallel process 𝑘 sentences in a bag. Then

the model uses MIL to compose a vector representation of the bag.
In the above four pathways, our network adaptively models relation representation based on the POEOIs. The difference among

the above RE pathways is whether there are EOI inference and POEOI inference to predict the positions of EOIs and POEOIs as
relation candidates during model training.

4.1.2. Encoder
This module encodes the textual input into contextual representation. The neural network can be bidirectional LSTM (Bi-LSTM)

or pre-trained language models (e.g., BERT) [17]. Let [𝑤1, 𝑤2,… , 𝑤𝑚] be the sequence of text with 𝑚 tokens. The encoder generates
the hidden states [ℎ1, ℎ2,… , ℎ𝑚] which can be used as the shared representation for different modules, where ℎ𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑤𝑖).
When we use the Bi-LSTM encoder, the ℎ𝑖 = ⃖⃗ℎ𝑖 ⊕ ⃖⃖ℎ𝑖 is generated by the following equation.

⃖⃗ℎ𝑖 = LSTM( ⃖⃗ℎ𝑖−1, 𝑥𝑖) (1)
⃖⃖ℎ𝑖 = LSTM(⃖⃖ℎ𝑖−1, 𝑥𝑖) (2)

where ⃖⃗ℎ0 and ⃖⃖ℎ0 are initialized to zero vectors. 𝑥𝑖 = 𝑣𝑖 ⊕ 𝑡𝑖 is the word representation where ⊕ is the concatenation operation. The
word representation is composed of the word embedding and character-level representation 𝑡𝑖 encoded by a convolutional neural
network (CNN). Word embeddings [18] refer to the technique of encoding the meaning of words in the form of low-dimensional
dense vectors, so that words that are closer in the vector space are also semantically similar. Character-level embeddings [19] learn
vector representations of characters, which are then aggregated through a 1D convolutional neural network or LSTM neural network
to generate an overall representation of the word.

Pre-trained language models are first pre-trained on a large-scale corpus based on self-supervised tasks and then fine-tuned
for downstream tasks. BERT is pre-trained with the masked language model task and the next sentence prediction task. When
we use the BERT as an encoder, [CLS] is a special symbol added in front of each input sample, the hidden state corresponding
to this token is used as the aggregated sequence representation for the classification task, [SEP] is a special separator token
used to separate discontinuous token sequences (e.g., [CLS] question [SEP] answer [SEP]). An input sentence is denoted as
6
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[[CLS], 𝑤1, 𝑤2,… , 𝑤𝑚, [SEP]]. BERT consists of multiple layers of transformer encoders that generate contextual representations
through the multi-head self-attention mechanism.

[ℎ𝑐𝑙𝑠, ℎ1, ℎ2,… , ℎ𝑚, ℎ𝑠𝑒𝑝] = 𝑏𝑒𝑟𝑡([[CLS], 𝑤1, 𝑤2,… , 𝑤𝑚, [SEP]]) (3)

where 𝑏𝑒𝑟𝑡(⋅) denotes the architecture defined in BERT [17]. We only use the hidden representation of each token ℎ𝑖(𝑖 = 1, 2,… , 𝑚).
The core idea of the transformer block is a self-attention mechanism through which contextual representations can be generated,
as shown in Eq. (4).

ℎ𝑎𝑡𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (4)

The above equation shows the scaled dot-product attention where Q, K, and V are the query, key, and value matrices. The input
consists of queries and keys of dimension 𝑑𝑘, and values of dimension 𝑑𝑣.

4.1.3. Named entity recognition
This module aims to discover the EOIs from simple text. BiLSTM-CRF [20] model achieves good performance, and this task can

be modeled as finding an optimal label sequence 𝐲∗ that maximizes the conditional probability 𝑝(𝐲|𝐡;𝜽) as shown below.

𝐲∗ = arg max
𝐲∈(𝐡)

𝑝(𝐲|𝐡;𝜽) (5)

where 𝜃 is the model parameter. 𝐡 = [ℎ1,… , ℎ𝑚] is the output sequence of the encoder and 𝐲 = [𝑦1,… , 𝑦𝑚] is the label sequence.
(𝐡) denotes the set of possible label sequences for 𝐡.

𝑝(𝑦|𝐡;𝑊 , 𝑏) =

∏𝑛
𝑖=1 exp(𝑊

𝑇
𝑦𝑖−1𝑦𝑖

ℎ𝑖 + 𝑏𝑦𝑖−1𝑦𝑖 )
∑

𝑦′∈(ℎ)
∏𝑛

𝑖=1 exp(𝑊
𝑇
𝑦′𝑖−1𝑦

′
𝑖
ℎ𝑖 + 𝑏𝑦′𝑖−1𝑦′𝑖 )

(6)

here {[ℎ𝑖, 𝑦𝑖]}, 𝑖 = 1, 2...𝑛 represents the vector of the 𝑖th word ℎ𝑖 and the 𝑖th label 𝑦𝑖 in the input sequence respectively. (𝐡)
enotes all the possible label sequences for the input sequence 𝐡. 𝑊 and 𝑏 are weight matrix and bias vector, in which 𝑊𝑦𝑖−1 ,𝑦𝑖 and
𝑦𝑖−1 ,𝑦𝑖 are the weight vector and bias corresponding to the successive labels (𝑦𝑖−1, 𝑦𝑖). 𝑝(𝑦|𝐡;𝑊 , 𝑏) is the probability of generating
his tag sequence over all possible tag sequences.

LSTM-based representations and linear layers can be directly used for class labeling of words, and we introduce the following
mprovements to this method. In addition to the current input, the LSTM-RNN takes the hidden state of the previous step as input.
⃖⃗ (𝑛𝑒𝑟)
𝑖 = LSTM( ⃖⃗ℎ(𝑛𝑒𝑟)𝑖−1 , ℎ𝑖 ⊕ ⃖⃗ℎ(𝑛𝑒𝑟)𝑖−1 ) where ⃖⃗ℎ(𝑛𝑒𝑟)𝑖 is the representation of the 𝑖th token in the NER module. The superscript (𝑛𝑒𝑟) is used
or the notation of the NER module. ⃖⃗ℎ(𝑛𝑒𝑟)0 is initialized to a zero vector. This representation is used for classification.

𝑝(𝑦𝑖|𝑦1∶𝑖−1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ⃖⃗ℎ(𝑛𝑒𝑟)𝑖 + 𝑏) (7)

here 𝑊 and 𝑏 are weight and bias parameters.

.1.4. Relation classification
Single-relation extraction For SRE, suppose we have the position of a POEOI (𝑠 and 𝑜), this module generates the triple vector

= 𝑠(𝑟𝑐) ⊕ ℎ𝑟 ⊕ 𝑜(𝑟𝑐), where the superscript (𝑟𝑐) denotes the RC module. The subject 𝑠(𝑟𝑐) ∈ R𝜇 or object 𝑜(𝑟𝑐) ∈ R𝜇 is represented by
he average/max pooling of the corresponding hidden states 𝐡(𝑟𝑐). The hidden states are encoded by a Bi-LSTM.

⃖⃗ℎ(𝑟𝑐)𝑖 = LSTM( ⃖⃗ℎ(𝑟𝑐)𝑖−1 , ℎ𝑖) (8)
⃖⃖ℎ(𝑟𝑐)𝑖 = LSTM(⃖⃖ℎ(𝑟𝑐)𝑖−1 , ℎ𝑖) (9)

here ℎ(𝑟𝑐)𝑖 = ⃖⃗ℎ(𝑟𝑐)𝑖 ⊕ ⃖⃖ℎ(𝑟𝑐)𝑖 . The predicate ℎ𝑟 is calculated by the attention mechanism. Let 𝑎𝑡𝑡 ∶ R𝑛×𝜇 → R𝜇 denote an attention
unction that maps 𝑛 input vectors to a relation vector ℎ𝑟. 𝜇 is the vector dimension. ℎ(𝑟𝑐)0 is initialized to a zero vector.

We introduce the POEOI modeling and the position-aware POEOI modeling. For the POEOI modeling, the most relevant portion
f text to determine the relation type is usually the one contained between and including the entities [21]. Not all words contribute
qually to the relation type, so we use the weighted aggregation of informative hidden states between two entities to represent the
elation. We use a self-attention method [22] to extract informative tokens. This method first captures the main context information
f relation by the average-pooling of hidden states as shown in Eq. (10).

𝑞 = 1
𝑐2 − 𝑐1

𝑐2
∑

𝑖=𝑐1

𝑊𝑄ℎ
(𝑟𝑐)
𝑖 (10)

where 𝑊𝑄 ∈ R𝜇×𝜇 is model parameter. ℎ(𝑟𝑐)𝑖 ∈ R𝜇 is the 𝑖th hidden state of the relation context. 𝑐1 and 𝑐2 ∈ [1, 𝑚] are the start and
end indices of relation context respectively. Then, this method measures the token weights by considering their importance in the
context and obtains the normalized importance weights through a softmax function.

𝛼𝑖 =
exp(𝑞𝑇𝑊𝐾ℎ

(𝑟𝑐)
𝑖 )

∑𝑐2 𝑇 (𝑟𝑐)
(11)
7

𝑗=𝑐1
exp(𝑞 𝑊𝐾ℎ𝑗 )
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where ℎ𝑟 ∈ R𝜇 is the relation representation. 𝑊𝐾 ∈ R𝜇×𝜇 are model parameters.
The relation representation is obtained by calculating the weighted sum of the hidden states. The self-attention mechanism

utputs as many vectors as it inputs as Eq. (4). To obtain the representation of text span, inspired by Hierarchical attention networks
HAN) [23], we use a variant of the self-attention mechanism, where the output vector is a weighted aggregation of contextual
epresentations.

ℎ𝑟 =
𝑐2
∑

𝑖=𝑐1

𝛼𝑖 ⋅𝑊𝑉 ℎ
(𝑟𝑐)
𝑖 (12)

where 𝑊𝑉 ∈ R𝜇×𝜇 are model parameters. This is also known as the single-head attention which is highly extensible, because adding
more heads will generate multi-head attention.2

ℎ𝑟 = ℎ𝑟,1 ⊕ ℎ𝑟,2... ⊕ ℎ𝑟,𝑛 (13)

where 𝑛 is the number of heads. ℎ𝑟,𝑖 represents the 𝑖th head.
For the position-aware POEOI modeling, the input to RC module becomes ℎ(𝑠,𝑜)𝑖 = ℎ𝑖 ⊕𝑝(𝑠)𝑖 ⊕𝑝(𝑜)𝑖 where (𝑠, 𝑜) is a pair of entities.

𝑝𝑖 is the position embedding. Position embedding [5] is a way to encode relative position from current word to 𝑠 and 𝑜. Position
mbedding is a technique for representing the spatial positional relationship of words in a sentence. Relation classification is a
omplex task, and structural features in sentences are important, such as the spatial location relationship between context words
nd entities. Such structural information cannot be captured by word embeddings alone, so position embeddings are needed to
btain spatial positions. For example, as shown in Fig. 1, the relative position of ‘‘based’’ to ‘‘Airbus’’ (𝑠) and ‘‘France’’ (𝑜) are
2 and 4 respectively. Then, the relative position is encoded using a fixed-length vector that is randomly initialized and jointly

rained. This feature explicitly encodes the position of POEOI, so it allows the model to consider the entire token sequence. The
ingle-head position-aware POEOI modeling is similar to the position-aware attention LSTM (PA-LSTM) model to some extent. The
ain difference is that our model can perform MRE in one pass.

This module supports the above two methods. The former is more computationally efficient but may lose some information. The
atter can consider more contexts, but add more computation. The two methods achieve comparable results in the TE and RE tasks
ecause the predicted POEOIs is not always correct. Using position embedding in these tasks may increase noise. When the input
ndicates the POEOI, we prefer to use the latter method because this allows the model to consider more context information. Finally,
he triple vector is input into a single layer neural network for classification.

𝑝(𝑦(𝑟𝑐)) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 (𝑟𝑐)𝑣 + 𝑏(𝑟𝑐)) (14)

here 𝑊 (𝑟𝑐) ∈ R𝜏×𝜌 and 𝑏(𝑟𝑐) ∈ R𝜏 are weight and bias parameters. 𝜌 and 𝜏 are the input dimension and class number respectively.
Multiple-relations extraction For MRE, suppose we have multiple POEOIs. We use the above process to model each triple and

tack them to generate the triple matrix 𝐴, i.e., [𝑣1,… , 𝑣𝑢] where 𝑢 is the number of triple candidates. Then the model classifies all
elation candidates through a softmax function on columns.

𝑝(𝑌 (𝑟𝑐)) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 (𝑟𝑐)𝐴 + 𝑏(𝑟𝑐)) (15)

here 𝑊 (𝑟𝑐) ∈ R𝜏×𝜌 and 𝑏(𝑟𝑐) ∈ R𝜏 are weight and bias parameters. This setting allows the model to update parameters from more
erspectives, and each sample is encoded only once.

.1.5. Inference for pairs of entities of interest
When the POEOI is uncertain, each entity phrase can be a subject or an object, so we consider the relation type and direction

r no relation. The output of NER subtask is completely different from the input of RE subtask. We propose the POEOI inference
cheme to integrate NER and RE subtasks in the joint optimization process by predicting the POEOIs as below.

𝐴 = 𝑟𝑐 (𝐡, 𝛹 (𝛷(𝑛𝑒𝑟(𝐡)))) (16)

here 𝐴 is the triple matrix. The inference of this framework means ‘‘prediction’’ instead of traditional pipeline reasoning. Each
riple can be predicted as a specific relation type (including relation direction) or NA. 𝑛𝑒𝑟(⋅) is the NER function that predicts the
abel sequence. 𝛷(⋅) denotes the function that identifies the EOIs. This can be seen as an action selection process for discovering EOIs.
(⋅) is the function that infers POEOIs as relation candidates. The POEOIs are generated by using all possible pair-wise combinations
f EOIs. POEOI inference is an operation that generates the pair-wise entity combination. For example, for the three entities A, B,
nd C, after this operation, three combinations of AB, AC, and BC will be formed. For 𝑛 entities, 𝐶2

𝑛 combinations will be generated.

𝛹 ({𝐴,𝐵, 𝐶}) = {𝐴𝐵,𝐴𝐶,𝐵𝐶} (17)

The different number of relation candidates leads to different learning speed and performance. Extensive experiments will be
iscussed in Section 7.2. 𝑟𝑐 (⋅) denotes the function of the relation classification module that encodes triple representation. Eq. (15)
an be seen as an action selection process for predicting the relation type. 𝑛𝑒𝑟(⋅) and 𝑟𝑐 (⋅) are cascaded subtasks, and we connect

2 Multi-head attention performs nearly the same as the single-head attention in text-bound RE. For DS-RE, it achieves significant improvement.
8
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them using the POEOI inference and the shared representation mechanisms. The inference function 𝛹 (𝛷(𝑛𝑒𝑟(⋅))) generates a heuristic
o add regularization to the network, similar to the effect of dropout operations. This heuristic selects and emphasizes the locally
ptimal features [24]. However, the function 𝛹 (⋅) is a discrete action selection process, so there is a sort of information loss under
he gradient-based optimization framework. It is difficult to solve the discrete optimization problems [25] using Stochastic gradient
escent (SGD) like optimization algorithms. Other non-SGD optimization mechanisms (e.g., genetic algorithms, ranking mechanisms,
tc.) can be explored to augment the model optimization.

We integrate the process of discovering EOIs and modeling POEOIs. We optimize the model at the end of the forward pass.
he triple matrix contains the memory of all possible relation candidates. Finally, we predict the relations through Eq. (15). This
ethod works towards minimizing the loss function based on the ground truth, so it is supervised learning with inference. The POEOI

nference scheme makes the RC module widely compatible with other SRE models, e.g., PCNN and the PA-LSTM. This expansion
nhances the use of existing SRE/MRE methods to make them conduct joint entity and relation extraction.

We introduce the techniques for controlling the ratio of candidate relations in detail in Section 7.2, and this paper does not control
he ratio of entities, and related work can be further studied in the future. There are two ways to implement batch processing. (1)
avorable way for program parallelization. It is to first determine the coordinates of each entity, then generate a combination of
oordinates, and obtain slices of tensors according to the coordinates (for example, using functions such as torch.index_select()
r tensorflow.gather()), which is realized by carefully designed tensor dimension expansion and reshape. (2) Unfavorable way of
rogram parallelization. This method is relatively simple and is implemented through a ‘‘for loop’’. The entity vector set of each
ample is processed separately, combined according to the entity pair, and finally all the relation candidate vectors are concatenated,
nd then the gradient of the batch samples is accumulated by gradient accumulation. To reduce the computational complexity, we
bandon the POEOIs that have a distance longer than 50 words.

.1.6. Distant supervision relation extraction
The distant supervision assumption is that if two entities preserve a relation in a KB, then all sentences that mention the two

ntities express this relation. This assumption improves the efficiency of automatic data annotation but introduces noise into the
raining data. In order to alleviate the wrong labeling problem, multi-instance learning (MIL) is a reasonable choice for DS-RE. We
urther describe how to expand the RC information flow to the DS-RE task.

Suppose there is a bag 𝐶 containing 𝑛 sentences, each of which mentions 𝑒1 and 𝑒2, i.e. 𝐶 = {𝑠1, 𝑠2,… , 𝑠𝑛}. This model takes as
nput 𝐶 and generates the representation 𝑉 = {𝐴1, 𝐴2,… , 𝐴𝑛}. Note that each 𝐴𝑖 contains only one POEOI. This task can be seen as
parallel RC processes. Sentence-level attention approach [15] is reasonable and achieves high performance to de-emphasize the

oisy sentences, so we use this method as the base. This method aims to calculate the bag representation by weighted aggregation
f sentences as Eq. (18). The bag representation is derived from all sentences that mention the two entities.

𝑐 =
∑

𝑖
𝛽𝑖𝐴𝑖 (18)

here 𝛽𝑖 is the weight of each sentence vector 𝐴𝑖 as shown in Eq. (19). This weight is calculated by the softmax function. 𝐴𝑖 is
alculated by the word-level attention mechanism in the RC module.

𝛽𝑖 =
exp (𝑒𝑖)

∑

𝑘 exp (𝑒𝑘)
(19)

where 𝑒𝑖 is calculated by Eq. (20) which reflects how well the input sentence 𝑠𝑖 matches the relation 𝑟. We use the bilinear form as
follows.

𝑒𝑖 = 𝐴𝑇
𝑖 𝑀𝐫 (20)

where 𝑀 is a weighted diagonal matrix, and 𝐫 is the query vector associated with a relation r. 𝐨 is the output of this module and
it represents the scores for all relation types, as shown below.

𝐨 = 𝑂𝑐 + 𝑏(𝑑𝑠) (21)

where 𝑂 is the representation matrix of relations. 𝑏(𝑑𝑠) is a bias vector. Finally, we compute the conditional probability of 𝑝(𝑦𝑖|𝐶; 𝜃)
through a softmax function.

𝑝(𝑦𝑖|𝐶; 𝜃) =
exp (𝑜𝑖)

∑𝑘
𝑗=1 exp (𝑜𝑗 )

(22)

where 𝑘 is the total number of all relations. In the RC module, the single/multi-head attention first extracts informative tokens
for instance representation. Then, the MIL selects high-quality instances for bag representation. The entire process constructs
hierarchical attention.

4.2. Training methods

Different tasks require different training objectives because the modules have different collaborative methods in various relation
xtraction pathways. This framework needs to optimize the model to adapt to the corresponding tasks. This framework supports all
9
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the training objectives for different tasks. For the TE and RE tasks, we can optimize the combined objective function at the end of
the forward pass.

min
𝛩

 =
|D|
∑

𝑖=1
((𝑛𝑒𝑟)

𝑖 + 𝜆(𝑟𝑒)
𝑖 ) (23)

where (𝑛𝑒𝑟)
𝑖 and (𝑟𝑒)

𝑖 are the objectives of two subtasks respectively. |D| is the dataset size. 𝛩 is the model parameter. 𝜆 is a
hyper-parameter to weight the influence of RE subtask. The training loss is to sum the deviation of the relation prediction and the
deviation of entity prediction. We adopt the negative log-likelihood as the objective, as shown below.

(𝑛𝑒𝑟) = −
∑

𝑗
log 𝑝(𝑛𝑒𝑟)(𝑦(𝑛𝑒𝑟)𝑗 |𝐱;𝛩) (24)

(𝑟𝑒) = −
∑

𝑘
log 𝑝(𝑟𝑒)(𝑦(𝑟𝑒)𝑗 |𝐱;𝛩) (25)

where 𝑝(𝑛𝑒𝑟)(⋅) and 𝑝(𝑟𝑒)(⋅) represent the probabilities of true class of NER and RE subtasks respectively. 𝐱 denotes the input sequence.
𝑗 and 𝑘 denote the indices of entity and relation respectively. We can train the two tasks jointly, and they interact with each other
through the encoder. The POEOI inference and the shared representation mechanisms enable the cascaded subtasks to learn together.

By learning the multi-label classification model, we can also predict different relations between two entities. This model will
perform binary classification for each relation type separately. The objective of (𝑟𝑒) becomes the log loss in Eq. (26).

(𝑟𝑒) = −
∑

𝑘

∑

𝑐
𝑦(𝑟𝑒)𝑘,𝑐 log 𝑝(𝑟𝑒)(𝑦(𝑟𝑒)𝑘,𝑐 |𝐱;𝛩) + (1 − 𝑦(𝑟𝑒)𝑘,𝑐 ) log(1 − 𝑝(𝑟𝑒)(𝑦(𝑟𝑒)𝑘,𝑐 |𝐱;𝛩)) (26)

where 𝑘 and 𝑐 are the triple index and class index respectively. The output gives a probability distribution over all labels, and a
threshold is used to determine the final subset of labels.

For RC task, we already know the POEOIs in the sentence, so we can model POEOIs directly. The training objective is shown
blew.

min
𝛩

 =
|D|
∑

𝑖
(𝑟𝑒)
𝑖 (27)

For DS-RE task, each sentence bag is used to model one POEOI. The training objective is shown blew.

min
𝛩

 = −
|K|

∑

𝑖
log 𝑝(𝑦(𝑟𝑒)𝑖 |𝐶𝑖;𝛩) (28)

where |K| is the number of sentence bags. 𝐶𝑖 is a bag of sentences. By selecting different information flows and corresponding
training objectives, we can train different functional neural networks for relation extraction tasks.

The relation extraction task can be viewed as solving a mathematical problem. Indicating all entities in advance can reduce the
number of independent variables, making the task more deterministic, which is also in line with the laws of solving mathematical
problems. The final result is obtained by continuously solving the unknowns. In cases where entities are not indicated, intermediate
results need to be inferred from existing information during model training, which can lead to noise. The limitation of this framework
is that first of all, the programming of the whole framework is very difficult. Although this version implements basic functions, there
is still a large room for optimization in performance. It can be achieved by using better design patterns and programming tricks.
When the framework cannot extract entities and contains nested entities, the relation extraction module will be deactivated. A
low-quality dataset makes the model learn the wrong rules. Noise in the training set interferes with the model getting a high-quality
representation. These noises are harmful, but the model itself is unaware of these mistakes. For relation extraction tasks, it relies on
hidden state representations of deep learning models, so high-quality representations are critical. Training a model on low-quality
data can cause the model to fail to track the cause of the error, thereby exacerbating the black-box nature of the model.

Integrating existing models is an important function, and in fact, we provide a new perspective, rethinking the contributions
of previous research. By reorganizing and improving previous methods, making them suitable for new relation extraction tasks.
The data format is a very important issue, especially when agents want to achieve big data intelligence, they need to face various
changes and uncertainties in the network environment. When faced with special data that needs to be processed, a single approach
will fail, allowing the agent to adapt to a variety of complex data. The work of this paper is an effort to solve this important problem.
Joint extraction methods often change the form of the task, which leads developers to lose sight of a standardized entity recognition
and relation extraction pipeline. For the two-stage relation extraction pipeline, although the standardized entity recognition and
relation extraction pipelines are retained, it may be difficult to jointly optimize the subtasks. Few methods can clearly conform
to standardized named entity recognition and relation extraction pipelines while enabling joint optimization of subtasks, and our
method addresses this problem. This model is potential to be expanded to consider the longer context in other tasks, e.g., coreference
resolution and document-level relation extraction.

5. Toolkit instructions

The working mode of this toolkit is determined by the data protocol. This toolkit can automatically switch to the corresponding
10
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Table 1
Description of input data fields.

Fields Description

token Token sequence of text.
pos Part-of-speech tagging sequence of text.
dep Dependency parsing tree of text, including the edge types.
relation Ground truth triple labels, expressed in the form of [(𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑘, (𝑒𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑒𝑛𝑑𝑖 ), (𝑒𝑠𝑡𝑎𝑟𝑡𝑗 , 𝑒𝑒𝑛𝑑𝑗 )), . . . ]
ner Ground truth NER label sequences of text.
ner-feature NER tags extracted by using other toolkits such as Stanford CoreNLP, Spacy, etc.
text The original input text.
relation-set List of all predefined relation types.
entity-set List of all predefined entity types.

the main data fields include ‘‘token, pos, dep, relation, ner, ner-feature, text, relation-set, entity-set’’.
he description of these fields is shown in Table 1. We chose the JSON format because it is a common data transfer format for Internet
ata, including the response data returned after an agent requests a service.

The working mode is mainly determined by ner and relation fields. For model prediction, when the ner field is None, it
means that the data protocol does not provide entity tags, so it is a TE task. When the ner field contains entity labels, the RE or
RC tasks will be executed. When the ner labels contain only two entities, the model works in the RC mode. When the ner labels
contain three or more entities, the model works in the RE mode. When the input data fields contain head and tail, the model
works in the DS-RE mode. For model training, when the ner labels contain three or more entities, the model is trained in the TE
mode.

In the model configuration, the main parameters related to word vectors are word_representation and fine_tune. The
word_representation parameter can be set to the path of the context-independent word vectors, e.g. GloVe, FastText, etc. or
the path of the BERT model. Setting the fine_tune parameter to True means that the word vectors or the BERT will be fine-tuned
during the training process, and vice versa. In addition, we can choose whether to use the CRF model to decode NER results. The
head_number parameter can be used to set the number of heads used for relation representation. For the DS-RE model, we mainly
use the OpenNRE [12] framework as the baseline and integrate our sentence-level multi-head relation representation.

6. Experiments

6.1. Experimental settings

6.1.1. Dataset
NYT dataset3 is developed by [14] by aligning Freebase relations with New York Times news articles. Provided for public

access from March 2007, Freebase4 is an open, shared world knowledge sharing database, which consists of a large number of
collaboratively edited cross-linked data (currently 1.9 billion triples). Freebase is constructed by extracting entities and relations
from knowledge bases such as Wikipedia, WordNet, etc. to form a structured Wikipedia. The training data5 contains 1.18M sentences
with 47 entity types, e.g., person, location, organization, etc. and 24 relation types, e.g., nationality, place_founded, employee_of. For
more detailed dataset structures, please refer to Appendix A and Figure A.1. We exclude the None label (NA) relation, as [4],
since the relation positions are uncertain. The test set contains 395 samples manually annotated by Hoffmann et al. This dataset is
created for DS-RE, but the data format satisfies the settings of the text-bound TE. We use this dataset to evaluate the performance
of sentence-level TE. This enhances the use of automatically annotated data in supervised relation extraction. NYT Large dataset is
further developed by Zeng et al. and Lin et al.6 based on Riedel NYT. This dataset has 53 relation labels including the NA labels.
The training set contains 522,611 sentences, 279,786 pairs of entity, and 18,252 facts which cover all sentences in Riedel NYT. We
use this dataset to evaluate the DS-RE task.

SemEval-2018 Task 7 dataset is provided for the task of semantic relation extraction and classification in scientific papers. This
dataset defines 6 relation types, e.g., PART_WHOLE, USAGE. We adopt the dataset for subtask 2. The training/test data is composed
of 350/150 abstracts of scientific publications from the Association for Computational Linguistics (ACL) Anthology with manually
annotated entities and relations. For more detailed dataset structures, please refer to Appendix A and Figure A.2. One of the main
challenges is the limited size of the training data. To overcome it, we also select a part of the data from the noisy data of subtask
1.2 to extend the training set which finally contains 3419 sentences.

TACRED dataset is introduced in Zhang et al.. It contains 106k sentences with entity mention pairs drawn from the yearly
Text Analysis Conference (TAC) Knowledge Base Population (KBP)7 challenge. They organized crowdsourced annotations on the
Mechanical Turk platform, enabling the annotation of subject and object entity spans and relation types. Sentences are annotated

3 http://iesl.cs.umass.edu/riedel/ecml/
4 https://en.wikipedia.org/wiki/Freebase_(database)
5 https://github.com/shanzhenren/CoType
6 https://github.com/thunlp/NRE
7 https://tac.nist.gov/2017/KBP/index.html
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with 41 person- and organization-oriented relation types, e.g., per:employee_of, org:founded, and no relation for negative examples.
The advantage of TACRED is that it contains a large number of high-quality relation instances, which enables adequate training
of model parameters, and that these entity and relation types are more generic to downstream applications. They annotated all
negative instances that emerged during data collection, making the data fit the contextual complexity of relational expressions in
the real-world text. For more detailed dataset structures, please refer to Appendix A and Figure A.3. Entity mentions are typed, with
subjects classified into person and organization, and objects classified into 16 fine-grained types (e.g., date and location).

6.1.2. Hyper-parameters
We conduct experiments based on the 200-D pre-trained GloVe, the 300-D pre-trained FastText, the 300-D randomly initialized

word vectors, and the bert-base-uncased8 representation respectively. For the SemEval-2018 dataset, we train the domain-specific
word embeddings, like (Rotsztejn et al. 2018), using GloVe and Fasttext respectively. Our corpus is composed of all the abstracts
since 2001 (5.4 million tokens) collected using the application programming interface (API)9 on arXiv.org and the ACL Anthology
Reference Corpus (ARC)10 (90 million tokens). We trained word embeddings for 500 epochs with 60 threads. We use 50-D randomly
initialized character embeddings. For the TACRED and NYT Large datasets, we use the 300-D GloVe embeddings, like Zhang et al..

For regularization we apply dropout with 𝑝 = 0.5. The output dimension of character CNN is 100-D. We set the hidden size of
the LSTM unit to 300D. We set 𝜆 = 1.0. To select better models, we divide each training epoch of NYT into 100 subdivisions and the
training epoch of SemEval-2018 into 4 subdivisions randomly and evenly, and each subdivision retains a model for model selection,
as this method can generate better models within the epoch. For the NYT and SemEval-2018 dataset, we use the Adam optimization
algorithm to update the model parameters with an initial learning rate = 0.001, decay rate = 0.9, batch size = 32 and epoch = 30.
For the TACRED dataset, we use Stochastic Gradient Descent (SGD) with the initial learning rate = 0.3, decay rate = 0.9, batch size
= 64, cutoff = 5.0 for gradient clipping and epoch = 50. For NYT Large, we use SGD with the learning rate = 0.5, batch size = 64
and epoch = 30. When we fine-tune the model using BERT representation, we set learning rate = 3e−5, batch size = 8 and epoch =
5. We conduct experiments on an Intel(R) Xeon(R) CPU E7-4830 v3 @ 2.10 GHz (Mem: 976G) and the GPU Tesla K40c and TITAN
RTX.

6.1.3. Evaluation
For the NYT dataset, we adopt the standard micro F1 score, recall (R), and precision (P) as metrics for NER and RC subtasks. A

correct prediction is that the extracted triple matches the ground truth including two entities, relation direction, and type. For the
SemEval-2018 dataset, we use the official script. The evaluation is carried out in two steps. First, the relation label and directionality
are ignored, so it only evaluates the quality of entity pairs by the F1 score. Second, the evaluation of relation classification is the
macro-average F1 score. For the TACRED dataset, we report the micro F1 score as Zhang et al.. For the DS-RE task, we adopt the
held-out evaluation as [15], which is an effective evaluation method for a large dataset without costly human intervention. We
compare the precision and recall curve. The curve is drawn by ranking all predicted instances according to their confidence scores
and traversing the ranking list from the high score to the low score to measure the precision and recall at each position.

6.2. Results of triple extraction

The first part of Table 2 lists some baseline systems for joint entity and relation extraction. The other part is our methods based
on context-independent and context-dependent representation. To eliminate the influence of random factors, we did 3 separate
runs and took the average. When there is massive training data, our model can achieve good results even without using pre-
trained word embeddings. This is because our model enhances the relation classification module. The joint training scheme enables
two subtasks to interact with each other through shared representation. Pre-trained word embeddings generally improve model
performance. Using GloVe embedding in this model can increase the F1 by 3.42%. Feature-based (BERT-FB) and fine-tuning (BERT-
FT) based representation further improve results. BERT representation helps the model consider context information of different
granularities. Table 3 lists the results of two subtasks. Pre-trained word embeddings also help to improve the NER subtask. BERT-
based representation brings more improvements to the performance of the RE subtask. This indicates that the RE subtask needs to
consider more context information.

To observe the training process, we divide the first training epoch into 25 intervals and evaluate the model on the test set. Fig. 4
shows the model performance. We observe that using pre-trained word embeddings achieves a faster learning speed than using the
randomly initialized word vectors. The result of the RE subtask changes more significantly because the context of RE is more diverse.
Our model learns the two subtasks jointly, making the learning process effective. The training set of the NYT dataset contains a lot
of noise introduced by automatic data annotation, and denoising methods can be further studied in the future. Our method could
be a reasonable choice when the training data is noisy. The benefits of deep learning lie in its powerful representation capabilities
and end-to-end learning schemes. Deep learning can combine pre-trained word embeddings with the capacity to model contextual
representations. When using word embeddings, it can achieve significant improvement. Even with randomly initialized word vectors,
the deep learning model can update the parameters of the model through downstream tasks to obtain acceptable results. Without
pre-annotated entities, the relation extraction results may be unstable, and the problem of enhancing model stability will be further
studied in the future.

8 https://huggingface.co/bert-base-uncased
9 https://arxiv.org/help/api/index

10 http://acl-arc.comp.nus.edu.sg/
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Table 2
Results on the NYT dataset.

Methods P R F1

MultiR 33.8 32.7 33.3
DS-Joint 57.4 25.6 35.4
Line 33.5 32.9 33.2
FCM 55.3 15.4 24.0
SPTreea 37.3 15.4 23.4
CoType 42.3 51.1 46.3
LSTM-LSTM-Bias 61.5 41.4 49.5
Transition 64.3 42.1 50.9
MRT 67.4 42.0 51.7

SwitchNet+Random 55.09 49.66 52.23
SwitchNet+GloVe 60.28 52.27 55.95
SwitchNet+FastText 58.61 53.11 55.66
BERT+TE 50.68 56.20 53.30
SwitchNet+BERT-FB 64.27 52.35 57.69
SwitchNet+BERT-FT 62.82 57.49 60.02

aThis experiment is conducted by Wu et al. in the ReQuest System.

Table 3
Results of subtasks on the NYT dataset.

Tasks NER RE

Metrics P R F1 P R F1

SwitchNet+Random 91.00 87.22 89.06 55.09 49.66 52.23
SwitchNet+GloVe 92.44 91.77 92.10 60.28 52.27 55.95
SwitchNet+FastText 92.01 91.55 91.76 58.61 53.11 55.66
SwitchNet+BERT-FB 89.73 91.03 90.37 64.27 52.35 57.69
SwitchNet+BERT-FT 91.13 93.43 92.26 62.82 57.49 60.02

Fig. 4. Learning process in the first epoch (average sampling of 25 intervals).

6.3. Results of relation extraction

To evaluate the performance of the RE task, we conduct experiments on the SemEval-2018 dataset. Entity mentions in each
sample are available, so our model does not need to predict the EOIs actively. Formulation (16) becomes 𝐴 = 𝑟𝑐 (𝐡, 𝛹 (𝐲)) where 𝐲
is the label sequence. Our model achieves good performance as shown in Table 4. The first part of Table 4 lists baseline models and
the second part is our approach. For the RC subtask, our model score is higher than the second (UWNLP) on the official leaderboard.
For the RE subtask, our model score is higher than the third (SIRIUS-LTG-UiO). However, the official results were obtained within
a limited time and the number of submissions. Their systems used NLP pipelines to extract some features, while the CNN-based
system that did not use much feature engineering achieved 18.46% Macro-F1 on the RC subtask. Feature engineering can provide
much prior knowledge directly when the model did not fully learn the features. ETH-DS3Lab system achieves the highest score, but
this system relies heavily on feature engineering and data augmentation, while our model is jointly trained.
13
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Table 4
Results on the SemEval-2018 dataset.

Systems Relation instance Relation classification

Metrics P R F1 P R Marco-F1

UC3M-NII (5th) – – 35.4 – – 18.5
Bf3R (4th) – – 33.4 – – 20.3
SIRIUS-LTG-UiO (3rd) – – 37.4 – – 33.6
UWNLP (2nd) – – 50.0 – – 39.1
ETH-DS3Lab (1st) – – 48.8 – – 49.3
BERT+RE – – 40.86 – – 42.10

SwitchNet+Random 47.19 ± 2.46 19.52 ± 3.22 27.39 ± 2.80 30.45 ± 1.09 23.57 ± 0.97 26.57 ± 0.95
SwitchNet+GloVe 35.25 ± 0.88 49.77 ± 3.49 41.18 ± 0.66 43.50 ± 2.12 41.05 ± 3.86 42.04 ± 1.30
SwitchNet+FastText 34.63 ± 0.70 50.59 ± 6.81 40.87 ± 1.94 44.99 ± 8.63 36.39 ± 4.13 39.34 ± 0.94
SwitchNet+BERT-FB 34.62 ± 2.60 59.76 ± 2.18 43.84 ± 2.61 52.93 ± 3.19 49.83 ± 5.81 45.58 ± 0.71

Table 5
Results of relation classification.

Settings P R Marco-F1

SwitchNet+Random 66.44 ± 1.40 72.85 ± 1.81 69.46 ± 0.41
SwitchNet+GloVe 74.53 ± 1.89 79.16 ± 2.82 77.35 ± 1.80
SwitchNet+FastText 75.96 ± 0.67 79.98 ± 1.04 77.91 ± 0.62
SwitchNet+BERT-FB 71.20 ± 0.34 73.83 ± 2.37 72.01 ± 0.94

Fig. 5. Class-level comparison of RC and RE.

We only input tokens of simple text and entities. Compared with the models not using much feature engineering, our model
achieves significant improvements (8.44% F1 and 27.12% Macro-F1) on RE and RC results respectively. This is because our model
generates more relation candidates by using POEOI inference and joint training. These candidates provide rich supervision signals
that can update model parameters from more perspectives. The SemEval-2018 dataset is manually annotated but still noisy, so
mechanisms to improve data annotation can be investigated in the future. The experimental results are affected by hyper-parameter
tuning. In addition, programming skills also directly affects the process of data processing and model parameter learning. In the
future, we will further optimize the design patterns and programming tricks. Other systems do a lot of optimization in hyper-
parameter tuning, feature engineering, model selection, model integration, etc. To win the competition, these systems require a lot
of data processing and model optimization work. Unlike their motivations, this paper mainly focuses on evaluating the adaptability
of the proposed framework to different data protocols. We simplify many processes, and the model sometimes achieves relatively
good but not optimal results. We do not delve into data optimization strategies and techniques beyond the model, and such work
can be further investigated in the future.

6.4. Results of multiple relation classification

To evaluate the influence of pre-annotated relation instances for the RC task, we conduct experiments based on Section 6.3.
Note that this is a MRE task because each sentence may preserve multiple relations. Formulation (16) becomes 𝐴 = 𝑟𝑐 (𝐡,POEOIs)
because POEOIs are provided in the input sample. Compared with Table 4, the pre-annotated POEOIs significantly improve the
results of relation extraction.

For the BERT-FB, domain adaption of context-dependent representation requires more supervision signals than other pre-trained
word embeddings, while the supervision signals are more sparse in this task. We visualize the prediction results of each class in RE
14
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Table 6
Results on the TACRED.

Systems P R F1

LR 73.5 49.4 59.4
SDP-LSTM 66.3 52.7 58.7
Tree-LSTM 66.0 59.2 62.4
PA-LSTM 65.7 64.5 65.1
C-GCN 69.9 63.3 66.4
C-GCN+PA-LSTM 71.3 65.4 68.2
TRE 70.1 65.0 67.4
BERT 67.23 64.81 66.00
ERNIE 69.97 66.08 67.97
SwitchNet 71.6 61.1 65.9
SwitchNet+C-GCN 73.3 62.9 67.6

and RC tasks in Fig. 5 where the x- and y- axes are the relation type and the F1 score respectively. The RE and RC results are from
Table 4 (blue bars) and Table 5 (green bars) respectively. This figure shows that the RC task achieves a more balanced result than
the RE task. This is because, during model training, using the pre-annotated POEOIs enhances the correlation of the entity pairs
and improves the quality of supervision signals. During testing, the input explicitly indicates the relation positions so the prediction
uncertainty is reduced and the false positive prediction also decreases.

6.5. Results of single relation classification

To analyze the generality of the RC component, we also conduct experiments on the TACRED. Note that this is the SRE task
ecause each sentence only focuses on one POEOI. Following Zhang et al. we concatenate word embedding, position embedding,
OS tag, and entity label embedding and consider the entire sentence. Our model achieves a higher result than the PA-LSTM as
hown in Table 6. This is because the query vector 𝑞 of our attention captures the global context of a sentence and the hidden

representation contains position information.
The RC result is slightly lower than GCN, and this indicates that the POEOI inference scheme has more contribution. GCN has

proven very effective in relation classification because its representation captures long-range syntactic relations by encoding the
dependency structure. We added GCN to encode syntactic features, that is, 𝑦 = 𝑟𝑐 (𝐡 ⊕ 𝑔𝑐𝑛(𝐱),POEOIs) where 𝐡 and 𝐱 are the
idden states and the dependency tree respectively. 𝑔𝑐𝑛(⋅) denotes the GCN model. In this setting, the F1 score is increased by
.7%, because syntactic information can provide complementary benefits when we extract informative tokens by a sequence model.
RNIE achieves a higher score because it incorporates entities in KGs to enhance the pre-trained language model, but the downside
s the computation costs.

We observe that ‘‘per:age’’, ‘‘per:title’’and ‘‘org:founded’’ relations are easier to extract. ‘‘org:member_of ’’ and ‘‘per:country_of_death’’
re more problematic because model performance is concerned with the class imbalance problem and the context length (𝑠 − 𝑜
istance) of the input text. There are few instances of these missing relations, e.g., ‘‘per:country_of_death’’ only has 63 samples, so
hese relations are not fully learned. The context length of each relation type also influences the result. We observe that relations
ypically expressed in a longer context tend to be more difficult to extract. We visualize this dataset in Appendix A in supplementary
aterial.11 It is promising to introduce entity embedding of knowledge graphs or explore the few-shot learning to alleviate this
roblem. Our proposed method does not achieve the best results because the prototype proposed in this paper may not be good
nough in program implementation. C-GCN and PA-LSTM have many optimizations in data preprocessing, dropout and gradient
lipping, and these projects are also better organized in terms of design patterns and programming techniques. In the future, we
an further optimize the design patterns and programming implementation of the framework.

.6. Results of distant supervision relation extraction

For DS-RE, prior works show that sentence-level attention effectively reduces the effects of noisy instances. Following [15], we
oncatenate the position embeddings. For all the methods, we use the common GloVe word embeddings. Table 7 lists the precision
f the top-ranked relations and the area under the curve (AUC) of the model. AUC can measure model performance, as shown in
ig. 6. The higher the AUC, the better the model. We observe that the single-head SwitchNet (S-SwitchNet) and multi(12)-head
witchNet (M-SwitchNet) both achieve significant improvements in terms of P@N and AUC. As the recall increases, our methods
ave higher precision than other settings. This means that our methods can extract more high-quality relations.

We observe that SwitchNet+ONE achieves a higher AUC than CNN/PCNN+ONE because the word-level attention enhances
he sentence representation. Sentence-level attention (SwitchNet+ATT) further improves model performance because sentence-level
ttention can alleviate the effects of noisy instances, making the model more robust. After we add multi-head attention, this model
mproves 1.8% AUC value. This is because the multi-head attention can generate relation representation by attending to different
okens from multiple perspectives. Ablation studies can be found in Section 7.1.2. In summary, our model uses hierarchical attention
o better encode bag representation.

11 https://github.com/nnntt/SwitchNet/blob/master/Appendix/appendix.pdf
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Table 7
P@N for relation extraction in the entity pairs with different number of top-ranked predictions.
P@N(%) 100 200 300 Mean AUC(%)

CNN+ONE 77.2 72.1 69.1 72.8 33.6
CNN+ATT 74.3 72.1 66.1 70.8 33.5
PCNN+ONE 79.2 79.1 71.1 76.5 34.0
PCNN+ATT 73.3 71.1 66.8 70.4 34.1

SwitchNet+ONE 81.1 75.1 68.4 74.9 35.0
SwitchNet+ATT 82.2 77.1 71.4 76.9 36.1

+Multi-head 81.2 74.1 72.1 75.8 37.9

Fig. 6. Precision and recall curves of different settings.

7. Analysis

In this section, we performed ablation studies on the text-bound and distant supervision relation extraction respectively. Then,
we analyze the influence of relation candidate selection on model training. Finally, we use a case study to visualize the model’s
attention distribution.

7.1. Ablation study

7.1.1. Text-bound relation extraction
Table 8 shows an ablation study of multi-task training and pipeline training on the NYT dataset. Two systems denote a fine-tuned

NER system and a SwitchNet system. We use a BERT model as the NER system. We first compare the multi-task training in different
settings. A first observation is that relying on the fine-tuned NER system slightly reduces the final results by 1.72% F1. Although
the NER system is enhanced, some entities still hurt the final precision. Because extracting more entities does not always help the
relation extraction subtask and some entities may increase the risk of predicting false positives. The above training process is a
multi-stage pipeline and relation candidates are determined by the NER system. We first fine-tune the NER system and then predict
the label sequence 𝑌𝑛𝑒𝑟 which are also written to disk. Then we train the joint entity and relation extraction model that can use
the 𝑌𝑛𝑒𝑟 information. When we replace 𝑌𝑛𝑒𝑟 with the ground truth NER labels, the result is significantly improved (5.03% F1). This
means that a high-quality label sequence can help improve the final results.

Removing the multi-task training degrades the performance by 0.94% F1. This means that multi-task training benefits the RE
subtask from the NER subtask. After removing the NER system, the joint optimization process does not rely on the NER system, and
the performance improves by 1.72% F1. Then, we remove the NER system and multi-task training. We first train the NER subtask,
then freeze the parameters of the shared layer, and then train the RE subtask. The F1 score drops by 2.51% because the RE subtask
cannot be encoded at the lower layer to interact with the NER subtask. This means that multi-task joint training is critical for
subtask interaction. When we do not freeze the lower layer, the result drops significantly. Because when we train the RE subtask,
the memory of the NER subtask is weakening. This phenomenon is also known as catastrophic forgetting.

We also apply our training pipeline to BERT. We fine-tune a simple BERT model for TE. Table 9 shows the results. When only
using multi-task training, BERT achieves slightly lower results than our SwitchNet. When we remove the multi-task, NER system,
and Frozen NER, this model almost forgets all the NER memory, so the RE subtask fails. Fine-tuning models can achieve different
functions, which also means that BERT is sensitive to parameter changes.
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Table 8
SwitchNet setting ablation.

Model P R F1

Two systems + multi-task 56.78 51.89 54.23
+ NER label 61.18 57.46 59.26
− multi-task 55.64 51.13 53.29
− NER system 60.28 52.27 55.95
− multi-task, NER system 50.33 56.96 53.44
− multi-task, NER system, Frozen NER 55.88 43.29 48.78

Table 9
BERT model setting ablation.

Model P R F1

Two systems + multi-task 51.30 54.93 53.05
+ NER label 54.89 61.01 57.79
− multi-task 50.46 54.43 52.37
− NER system 50.68 56.20 53.30
− multi-task, NER system 46.46 54.93 50.34
− multi-task, NER system, Frozen NER – – –

Fig. 7. Class-aware result.

Fig. 7 shows the class-aware prediction result. Fig. 7(a) and 7 (b) denote the model with or without the ground truth NER labels
hen extracting triples. We observe ‘‘place_lived’’, ‘‘nationality ’’, ‘‘place_of_death’’, ‘‘contains’’ and ‘‘company ’’ relations are easier to

extract. Other relations in the test set sometimes are not extracted. This is because some sparse relations are not fully learned and
there is a class imbalance problem in the training data. We visualize and analyze this dataset in Appendix A. We observe that
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Table 10
SwitchNet setting ablation.

Model 100 200 300 Mean AUC(%)

M-SwitchNet+ATT 81.2 74.1 72.1 75.8 37.9
+ subject, object 79.2 72.1 69.8 73.7 35.0
− Multi-head 82.2 77.1 71.4 76.9 36.1
− Multi-head, ATT 81.1 75.1 68.4 74.9 35.0
− Multi-head, Single-head 73.3 73.6 69.8 72.2 35.1
− Multi-head, Single-head, ATT 75.2 71.6 70.8 72.6 34.7

Fig. 8. Precision and recall curves of different settings.

7.1.2. Distant supervision relation extraction
We performed ablation studies on DS-RE. Table 10 shows the results of different settings. A first observation is that adding

representations of subject and object to the multi-head attention reduces the results. This is because all positive and noisy samples
in the bag contain the same subject and object, so using this information may hurt model training. When we remove the multi-head
attention and keep only one head, the AUC decreases, but the P@N of the top-ranked relations improves. When we also remove the
sentence-level attention, the result drops. This means that sentence-level attention is important in this framework. When we remove
only the word-level attention, the result also drops. This means the word-level and sentence-level attention mechanisms complement
each other to form the hierarchical attention mechanism. When we remove the two-level attention, the results will drop further.

Fig. 8 shows the precision and recall curves of different settings. We observe that when we do not use the word-level attention
(wATT), the curves generally move down. Precision drops faster as recall increases. This means that word-level attention can help
achieve higher performance. When we remove the sentence-level attention (ATT), the curve fluctuations increase. This means that
the sentence-level selection enhances the stability of the model.

7.2. Analysis of relation candidates selection

Candidates’ feedback can be positive and negative and both types of feedback have great potential to boost recall and precision.
However, the number of possible relations is (𝑛2), where 𝑛 is the number of entities, which potentially increases computational
complexity and may lead to the class imbalance problem. Existing approaches for this question typically perform random sampling,
which might include some inefficient relation candidates.

The relation extraction task is also a mathematical model. When there are too many candidate relationships in a sample, the
generalization of the model will be affected during the learning process, and it will face the problems mentioned in the support
vector machine (SVM). SVM is based on the VC dimension theory of statistical learning and the principle of minimum structural
risk to obtain the best generalization ability. Inspired by the idea of the optimal hyperplane, we can think of these indistinguishable
relation candidates as an approximation of the support vectors. This setting not only reduces the computational complexity but also
helps to enhance the generalization performance of the model, especially for noisy datasets.

Inspired by the idea of SVM, a few support vectors are effective to decide the classification hyperplane. We assume that difficult
candidates that are closer to the classification hyperplane can improve the classifier more effectively. This can reduce computational
complexity. During model training, we rank the negative candidates according to their prediction probability of being a None relation
and only keep top-𝑘 negative ones with the least probabilities. These relations are more likely not to be predicted as NA. 𝑘 is a
18
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Fig. 9. Prediction results on SemEval-2018 based on different selection strategies for relation candidates.

hyper-parameter, and we experimented with 𝑘 ∈ {1, 2,∞}. ∞ denotes all candidates. This ranking mechanism filters a vast number
of negative candidates leaving the classifier with a small set.

We compared several selection strategies, i.e. random selection (RANDOM), top-𝑘 selection (TOP-K), and all candidates (ALL),
as shown in Fig. 9. We find that using top-𝑘 selection can achieve comparable F1 scores to using all candidates, but the precision
and recall might be not balanced enough. When more negative candidates are retained, the recall will decrease and the precision
will increase. This method potentially enhances the use of the ranking mechanism to reduce the computational complexity of RE
models.

7.3. Case study

It is instructive to analyze which words the model attends to when classifying relations. We hand-picked some examples in the
SemEval-2018 dataset and visualize the attention patterns of these samples. Fig. 10 shows how our model extracts informative
words for relation representation. The first column is the sample id. The second column contains the extracted triples, and the
third column shows the textual input. The first sentence shows that this model is capable of focusing on informative words to
identify the ‘‘PART_WHOLE ’’ relation type for ‘‘English-Chinese Bitexts’’ and ‘‘Web’’. The second sentence shows this model resolves
the comparative relation by attending to ‘‘narrower than’’. The third sentence shows that ‘‘are described in’’ means the ‘‘TOPIC ’’
relation.

The fourth sentence shows that ‘‘produced by means’’ for ‘‘Translations’’ and ‘‘beam search decoder ’’ denotes the ‘‘MODEL-FEATURE ’’
relation, while the fifth sentence shows this model extracts the relation type ‘‘RESULT ’’ by attending to ‘‘produce best ’’. This suggests
19
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Fig. 10. Visualization of some cases where the underlined phrase represents an entity in the extracted triple and the red degree denotes the word weight for
the relation representation.

that this model considers entity semantics and sentence context. The sixth sentence shows that this model can extract informative
tokens ‘‘resource for ’’ instead of the important verb in a long context. These results indicate that the model considers the entity
semantics and the relational context while attending to the informative words for relation representation.

This model also extracts some wrong results. For the sentence ‘‘In essence this can start to rewrite the history of photography’’, said
Grant Romer, director of the advanced residency program in photograph conservation at the George Eastman House in Rochester., George
Eastman House in Rochester implies that (Rochester, contains, George Eastman House). However, the result is (Rochester, place_lived,
George Eastman House). ‘‘Grant Romer ... at George Eastman House in Rochester’’ indicates a state but does not mean the relation type
‘‘place_lived’’. The understanding of the temporal state of the relation needs to be further improved. There are still some errors when
extracting the relation of the spatial position, such as neighbor_of. The understanding of the spatial relations needs to be further
improved.

8. Conclusion

Our SwitchNet is implemented for different information extraction configurations, namely NER, RC, RE, TE, and DS-RE. This
framework designs a modular neural architecture and uses different information flows to tackle different relation extraction tasks,
which significantly reduces the problem complexity for relation extraction tasks. Our model predicts EOIs using a standard NER setup
and uses an attention-based classifier to classify relations of POEOIs. Reducing the unknowns of model prediction by indicating the
POEOIs can help improve the performance. We also address the secondary problem of jointly learning NER and RE through the
POEOI inference and the shared representation mechanisms. However, the challenge is that there is a sort of information loss in
the discrete entity detection process. Extensive experiments are conducted on multiple datasets, and our framework achieves good
performance.

The relation classifier of this framework is highly extensible, and the joint optimization method is beneficial to upgrade the
pipeline method to an end-to-end information extraction model. The systematic design of information flow and modular neural
networks is a promising way to reduce the problem complexity when designing an artificial intelligence (AI) system with diverse
functions. In the future, we will combine this framework with entity linking technology so that the extracted knowledge can be
directly used in the knowledge base. Furthermore, we plan to extend this framework to open information extraction.
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