
Computers & Graphics 109 (2022) 111–120

a

b

v
a
o
i
c
n
f
a
w
o
d
s
C
a
o
e

w

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

GPU accelerated scalable parallel coordinates plots
Josef Stumpfegger a,∗, Kevin Höhlein a, George Craig b, Rüdiger Westermann a

Technical University of Munich, Boltzmannstraße 3, Garching, 85748, Germany
Ludwig-Maximilians Universität München, Theresienstr. 37, 80333 München, Germany

a r t i c l e i n f o

Article history:
Received 10 August 2022
Received in revised form 24 October 2022
Accepted 28 October 2022
Available online 3 November 2022

Keywords:
GPU scattering
Parallel coordinates
Ensemble analysis

a b s t r a c t

Parallel coordinates are a powerful technique to visually analyze multi-parameter data, i.e., sets of
datapoints with potentially many associated parameter values per datapoint. When these sets are
large, line rendering becomes a severe performance bottleneck, and since many lines fall into the
same pixel the numerical precision of the color buffer is quickly reached. We propose a scalable GPU
realization of parallel coordinates building upon 2D pairwise attribute bins, to significantly reduce
the number of lines to be rendered. Our approach comprises a GPU compute pipeline that combines
shader-based scattering with atomic increment operations to efficiently count how often a line is
drawn. These counts are then used to draw all pairwise sub-plots in the parallel coordinates plot, by
analytically calculating the opacity for each count and rendering a line with end points determined
by the 2D coordinates of the bin. In this way, framebuffer precision issues that are paramount in
classical approaches can be overcome. We demonstrate the efficiency of the proposed realization for
visualizing a weather forecast ensemble comprising 2.7 billion datapoints, each carrying 7 prognostic
floating-point variables like temperature, precipitation and pressure, plus spatial and simulation input
variables. We compare our pipeline to a rasterization-based approach regarding performance, and
demonstrate interactive brushing at 4 s per frame at full HD viewport resolution.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Parallel Coordinates Plots (PCPs) are a powerful technique to
isually analyze large sets of datapoints with multiple associ-
ted parameters [1]. While such plots can be realized efficiently
n GPUs for some millions of datapoints, as this number goes
nto the tens or even hundreds of millions, the line rendering
apabilities of even the strongest GPUs become a severe bootle-
eck. For instance, Kumpf et al. [2] demonstrate the use of PCPs
or the analysis of meteorological ensembles and report inter-
ctive update rates of roughly 0.5 s for 2.5 million datapoints
ith 12 parameters each, with an optimized GPU solution. To
vercome rendering issues of PCPs, Novotny and Hauser [3] intro-
uce binned parallel coordinates, which use pairwise attribute-
catterplots (i.e., 2D histograms) that are precomputed on the
PU, to count how many datapoints draw the same line. For the
nalysis of the Hurricane Isabel dataset, Blaas et al. [4] build up
n this work and include a data compression layer to support
fficient disk-to-CPU streaming.
Others have proposed hierarchical aggregation in combination

ith precomputed and focus + context interactions to decrease

This article has been certified as Replicable by the Graphics Replicability
Stamp Initiative: http://www.replicabilitystamp.org.

∗ Corresponding author.
E-mail address: ga87tux@mytum.de (J. Stumpfegger).
ttps://doi.org/10.1016/j.cag.2022.10.008
097-8493/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
the number of rendered primitives and reduce visual clutter
due to many overlapping lines [6,7]. While it has been shown
that such approaches can achieve high performance on parallel
computing systems, they result in a significant increase of the
required memory due the increase of the number of states of
the visualization. As reported, even on two execution nodes with
12 cores and 31 GB memory each, multiple seconds are required
to perform interactions such as selection and refinement for 200
million datapoints.

In our work, we consider a so-called Grand Ensemble compris-
ing roughly 2.7 billion datapoints, each storing seven prognos-
tic floating-point parameters like temperature, precipitation and
pressure, along with three spatial variables and an additional 180
state simulation input variable (See Fig. 1.). For a single time step,
this amounts to 56 GB of memory. Grand Ensembles are becoming
an invaluable tool for assessing and quantifying the uncertainty in
numerical simulations. An ensemble of simulations, for example
weather forecasts, include members that sample different sources
of uncertainty, which could include different initial conditions,
different physical assumptions, and even different numerical ap-
proximations. A Grand Ensemble collects the data produced by a
number of component ensembles, which have often been created
independently and with different applications in mind, and treats
it as a single dataset that can be analyzed as a whole.

As of today, beyond offline statistical approaches there is no
support for an interactive explorative analysis of a Grand Ensem-
ble on desktop PCs. When PCPs are generated in the classical way,
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cag.2022.10.008
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.10.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.replicabilitystamp.org
mailto:ga87tux@mytum.de
https://doi.org/10.1016/j.cag.2022.10.008
http://creativecommons.org/licenses/by/4.0/


J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120
Fig. 1. Parallel Coordinates Plot (PCP) of one time step of a meteorological Grand Ensemble [5] comprising 2.7 billion datapoints with 11 parameters. The PCP is
generated in roughly four seconds on a desktop PC with a single mid-range GPU. Left: All datapoints render their polylines with very low opacity of 10−7 . Lines
drawn by less datapoints than a selected threshold are rendered with constant color as background. Right: Two ensemble members are emphasized by drawing their
polylines in red and blue on top of all other polylines (rendered in white with medium opacity of 10−4).
in our scenario about 2.7 × 10 billion lines (one line for each of
the 10 variable pairs corresponding to the selected ordering of the
PCP axes) need to be rendered in every frame. Notably, this takes
multiple minutes on a high-range GPU. Rendering that many lines
causes another problem that is related to the precision of the
color buffer. Since lines falling into the same pixel are blended
using either additive blending or α-blending, the numerical pre-
cision of the framebuffer is quickly reached and information is
lost.

Contribution: We propose a scalable GPU realization of PCPs
to enable an interactive visual analysis of large multi-parameter
datasets on high-resolution displays. Scalability in the number
of datapoints is achieved via binned parallel coordinates [3] that
grow with the viewport resolution but not with the number of
datapoints. This viewport-dependent data structure is generated
instantly on the GPU and does not require any pre-baked hi-
erarchical representation in which datapoints are aggregated. It
encodes all possible visible lines in parallel coordinates by the
vertical pixel coordinates of their end points on adjacent param-
eter axes. Then, computing the opacity of visible lines reduces to
counting how often a coordinate pair occurs in all datapoints.

For building the data structure we propose an approach that
is specifically tailored to the capabilities of recent mid- and high-
range GPUs. It exploits the compute capabilities of GPUs to gen-
erate the data structure via parallel scatter and atomic increment
operations. Scattering is performed into multiple render targets,
i.e. one for each adjacent parameter pair in the PCP. The reso-
lution of the render targets depends only on the height of the
parameter axes in the pixel raster. For rendering the final lines
between the PCP axes, a GPU line renderer reads the information
from the render targets and converts it into a set of lines in a
geometry shader.

On a single node CPU equipped with an Nvidia RTX 3090 GPU
with 24 GB on-chip memory, the PCP of the Grand Ensemble
can be generated in roughly four seconds on a 1920 × 1080
viewport, including streaming parts of the data from CPU RAM.
If not all datapoints can be stored in CPU RAM, they need to
be streamed from disk. To reduce the bandwidth requirements
in such a situation, we provide the option to compress the pa-
rameter fields in a preprocess and generate the PCP from the
compressed representation on the GPU. To distinguish between
different members in the Grand Ensemble, the datapoints of se-
lected members are binned separately, and their lines can then be
rendered in different colors and specific orders to emphasize the
ensemble composition. To analyze certain parameter intervals,
the user can disable subsets of datapoints by brushing on the
parameter axes.

Our specific technical contributions are:

• A GPU compute shader-based approach that instantly gen-
erates pairwise attribute-scatterplots using parallel scatter
and atomic increment operations.

• The combination of pairwise attribute-scatterplots with an-
alytical blending to accurately handle transparency.
112
• The realization of priority rendering via atomic minimum
operations, which avoids sorting the datapoints.

Our PCP realization is implemented using the Vulkan Graphics
API. The code is made publicly available under the Apache 2.0
license, and published at [8]. Since we cannot make the Grand
Ensemble dataset publicly available, a synthetic dataset at the
same size is provided. The current program has an importer for
data in network common data format (NetCDF), as commonly
used in atmospheric science workflows, as well as for comma
separated file formats (CSV).

2. Related work

Multi-variate ensemble visualization. A number of different map-
ping techniques exist, which target the visualization of multi-
variate data, including axis-based methods, glyph encodings, as
well as pixel-oriented and hierarchical approaches [9]. Scientific
ensemble data, such as weather forecast ensembles, possess ad-
ditional complexity due to the presence of spatial and temporal
dependence in the data, as well as the uncertainty as conveyed
in the ensemble dimension [10,11].

Wang et al. [12], Kumpf et al. [13] and Kumpf et al. [2] have
shown that parallel coordinate plots (PCPs) are a promising tool
for the comparison of multi-parameter distributions within a
single and between different ensemble members. In PCPs [1,14],
data dimensions are visualized as linear coordinate axes, which
are arranged parallel to one another, and datapoints are repre-
sented as coherent lines crossing these axes. PCPs offer simple
interaction possibilities for data selection, such as brushing [15],
as well as good scalability to high data dimensions, which is
an advantage over alternative visualization methods, such as
scatter-plot matrices or radar charts [16,17]. With a focus on
multi-parameter ensemble visualization, Kumpf et al. [2] present
an optimized GPU-based visual analysis tool, which allows users
to explore spatio-temporal ensemble datasets at interactive frame
rates and with direct linking to secondary visualization tools
such as direct volume rendering or violin charts for statistical
distribution visualization.

Scalable parallel coordinate plots. Besides methods to improve the
information content and visual quality of PCPs, such as optimal
axis layouting, e.g. [18–22], curved polylines, e.g. [23–28], priority
rendering [29], or slope-adaptive line rendering [30], another
research direction has been towards scalable PCPs that can deal
with large numbers of datapoints.

Most of these methods rely on rendering aggregated data
representations instead of the raw data itself. For a review of
methods, see Heinrich and Weiskopf [31]. Moustafa [32] describe
scalability methods which rely on computing and visualizing
summary statistics, which can be rendered faster and with less vi-
sual clutter than the raw data. Palmas et al. [33] cluster datapoints
axis-wise and visualize connections between clusters through
polygonal strips to reduce overplotting. McDonnell and Mueller



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

N
c
t
t
b
b
t
d
c
w
m
b
t
P
m

3

e

e
o
a
d

a
a
i
u
e

Fig. 2. Method overview. Green and gray backgrounds indicate GPU and CPU execution, respectively. Orange background indicates optional stages and data
representations. In a pre-process, the parameter fields are read and structured, optionally compressed, and uploaded to the GPU. On the GPU, the data is read
(requiring decompression if stored compressed), and scattered in a compute shader to multiple render targets to count the number of datapoints drawing the same
line. The GPU line renderer interprets and renders the content of the generated buffers as lines. For the sake of clarity, we illustrate the case where all datapoints
are scattered into the same set of render targets, regardless of the ensemble they come from.
[25] combine edge bundling and clustering of datapoints and
render aggregate data representations with opacity and shading
effects to distinguish between different aggregates. Alternative
bundling techniques have been evaluated by Heinrich et al. [34].
For large sets of multi-parameter points, Fua et al. [35] describe
cluster-based hierarchical extensions of PCPs, which help to iden-
tify structure in large data more easily. Elmqvist and Fekete [36]
discuss hierarchical aggregation approaches for information visu-
alization, with applications to PCPs. More recently, Richer et al. [7]
proposed a hierarchical aggregation framework, which enables
the visual analysis of large datasets on distributed computer sys-
tems, and Sansen et al. [6] discuss the practical implementation
of such systems on big data hardware.

To optimize rendering times, rather than visual display,
ovotny and Hauser [3] and Blaas et al. [4] propose binning
ontinuous data parameters and precomputation of 2D joint his-
ograms for pairs of data parameters. PCPs are then rendered from
he 2D joint histograms. Rubel et al. [37] propose an adaptive
inning approach, and Cui et al. [38] use binning to create a web-
ased parallel-coordinates framework for visual data analysis. In
his paper, we build upon binning and show that even for large
atasets the joint histograms that are required for PCP rendering
an be generated at interactive rates. Similar in spirit to previous
ork on the efficient computation of image histograms Scheuer-
ann and Hensley [39], we employ parallelism and high memory
andwidth to scatter large sets of datapoints into GPU render
argets. In contrast to Cui et al. [38], we demonstrate interactive
CP visualization while not relying on data abstractions, which
ight potentially discard important information in the data.

. Method overview and data

The data is read from a collection of data files, in which the
nsembles Ei are stored in succession as a sequence of their me-

mbers. For each Ei, the parameter values of each member are read
in the order of the datapoints in the input file. The parameters of
each member are stored normalized in 1D half-precision floating-
point arrays in CPU memory. Since these fields become large,
they are internally partitioned into smaller blocks of 226 entries
ach (Fig. 2, data pre-processing). For attributes that are defined
n a subset of the dimensions of the dataset (i.e., a 2D field in
3D dataset), the attribute domain is extruded and values are
uplicated to retrieve attribute arrays of equal size.
Each block is uploaded to the GPU, where it is stored in a stor-

ge buffer. If not all blocks fit into the available GPUmemory, they
re stored on the CPU when sufficient CPU RAM is available. If this
s not the case, the data is first compressed (Fig. 2, compression)
sing the publicly available CUDA compression library by Treib
t al. [40], which we have re-implemented to run with the Vulkan
113
API. It provides lossy GPU-based compression using a combina-
tion of the discrete wavelet transform, coefficient quantization,
run-length encoding, and Huffman coding. GPU decompression
is supported such that either the compressed data can be stored
completely in main memory and streamed to the GPU to avoid
expensive load operations from system drives or the data can be
streamed efficiently from system drives to avoid the file I/O bot-
tleneck. Section 5 shows the timings for differently sized datasets
and different transfer operations. We have slightly modified the
compression scheme to avoid splitting the blocks into smaller
sub-blocks so that memory address indirections introduced by
the use of a block table are avoided. We typically choose a com-
pression ratio of roughly 1:10, resulting in a compression error
below 0.5% of the value range of each parameter. We demonstrate
in Section 5 the visual artifacts that can be introduced by a lossy
compression scheme. Upon decoding a block, the data is stored
in a storage buffer in local GPU memory and handled the same
as uncompressed data by the following pipeline stages.

Assuming a set of K data parameters, plots must be rendered
for K − 1 pairs of adjacent coordinate axes. For each axis pair,
multiple 2D render targets (i.e. storage buffers) are allocated and
used to count the number of lines that are drawn between adja-
cent axes. Counting is realized on the GPU by letting a compute
shader write (i.e., scatter) into the render targets using atomic
increment counters (Fig. 2, scatter shader). We analyze in detail
this approach and demonstrate that it can exploit GPU parallelism
and high memory bandwidth to efficiently count the number of
datapoints – within the currently selected parameter intervals
– drawing the same line. In principle, the scattering operation
can also be realized via point rendering using the GPU rasterizer.
We briefly review and analyze this alternative, yet decided to
not follow it due to its lower performance compared to compute
shader-based scattering.

Eventually, a GPU line renderer (Fig. 2, line renderer) reads
the information from the render targets and renders one line for
every non-empty entry. The value in each entry is used to adjust
a line’s saturation or compute its opacity analytically. If the lines
of different Ei should be distinguished in the final PCP, scattering
and rendering is performed for these Ei consecutively, with their
own user-defined color and opacity.

4. Scalable PCPs

The proposed PCP realization builds up on the observation that
the number of visually distinguishable lines is determined by the
pixel resolution available to display the coordinate axes, rather
than the number of datapoints (see Fig. 3). Assuming that lines
between adjacent parameter axes are rendered onto a screen
region with resolution T × T pixels, where T represents the
u v u



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

a

w
d
a
r
c
t

4

s
w
a
c
a
s
r
r
i
s
u

a
t
n
T
p
t
t
s
o
o
w
t

Fig. 3. Line representation. Left: Parallel coordinates axes for parameters Pi and Pj are shown in the pixel raster by blue pixels. Two lines (black and gray pixels)
re drawn to represent two pairs of values in Pi and Pj , with the values mapped to pixels seven (15) on the axis of Pi and pixels 0 (seven) on the axis of Pj . Right:

The two lines in the corresponding (Pi, Pj) raster.
a
W
c
s
e
o
e

4

s
t
i
p
h
p
f
s
s
t
F
t

l

α

w
r
b
w
T
w
i
c
s
i

4

a
t
t
t
p
g
r

a

height in pixels of the coordinate axes and Tv is the horizontal
spacing in pixels between adjacent axes, then a pair of lines can
hardly be distinguished visually if their end points on either axis
fall into the same pixel. Thus, for large datasets many datapoints
draw very similar lines, and the maximum number of distinguish-
able lines is roughly equal to T 2

u . This observation suggests that a
viewport resolution-dependent discretization and binning of the
datapoints into Tu bins along each coordinate axis can reduce
the maximum number of lines to be rendered to T 2

u at limited
loss of visual quality. Even though rendering lines with end point
positions on sub-pixel scale affect the rasterization marginally,
we show in Section 5 that the visual difference between classical
and binned PCPs is negligible. To let the lines’ appearance, e.g., its
opacity, reflect the number of datapoints drawing each line, this
number has to be counted at run time. In the following, we
describe how to efficiently realize this counting using 2D render
targets (i.e., storage buffers on the GPU) of resolution Tu × Tu,
hich accumulate in element (i, j) the number of datapoints
rawing a line between pixel bins i and j of adjacent coordinate
xes. To distinguish between different ensemble members, sepa-
ate counters are generated for each of them. Then, the line sets
an be rendered in member-specific colors, or in a user-set order
hat shows the lines of a selected member on top of all others.

.1. Compute shader-based scattering

To efficiently count the number of datapoints drawing the
ame line, we utilize the massive data parallelism and I/O band-
idth on recent GPUs to simultaneously write many values to
rbitrary target positions in multiple bound render targets. Re-
ently, Schütz et al. [41] have proposed a compute shader-based
pproach for rendering large sets of 3D spatial points, demon-
trating the extreme performance that can be achieved when
endering pixel-size point primitives. Inspired by the reported
esults, we have implemented a compute shader-based scatter-
ng operation on the GPU. Multiple so-called work groups are
pawned, which are internally mapped to the GPUs compute
nits and can access work group-local memory in a fast way.
The compute shader reads all parameter values of its currently

ssigned datapoint from the parameter buffers and first evaluates
he datapoint’s activation, i.e., it exists if at least one parameter is
ot within the currently selected (brushed) parameter intervals.
hen, for each of the K − 1 pairs of coordinate axes the vertical
ixel position of the first and the second parameter are used as
arget addresses into the currently bound render target. Note that
he compute shader can write to multiple render targets in one
ingle pass, so that the parameter values need to be read only
nce and the activation is computed instantly in the shader. The
peration for the buffer writeout is set to an atomic increment,
hich needs to be executed for every datapoint and render target
his point is written to.
114
Due to the many atomic increment operations, we cannot
chieve the scatter performance reported by Schütz et al. [41].
hen rendering 3D point sets, the number of atomic operations

an be reduced significantly by early depth-tests in the compute
hader, i.e., by testing the depth value in the render target and
xisting when the render target already holds a lower value. In
ur application, the atomic operation needs to be performed for
very value that is scattered into a render target.

.2. Line renderer

On the GPU, we employ the functionality of the geometry
hader stage to spawn a line from each input vertex. Per render
arget a draw call with as many vertices as entries is issued. From
ts position in the render target, every vertex can compute the
osition on both PCP axes for which the current render target
olds the 2D histogram. The vertex shader – in the ith render
ass – reads for each vertex the value of the corresponding entry
rom the ith render target and forwards the value to the geometry
hader. Processing is stopped if this value is zero, otherwise, a
econd vertex is spawned and the positions of both vertices in
he viewport to which the final PCP is rendered are computed (see
ig. 4). The geometry shader then issues a line primitive using the
wo transformed vertex coordinates.

When reading a line count of n, the accumulated opacity of n
ines is first computed analytically in the shader program as

n = 1 − (1 − αL)n (1)

ith αL being the opacity of a single line. Eq. (1) can be de-
ived inductively via iterative application of multiplicative alpha
lending. Finally, a single line is rendered with color CL · αn,
here CL is the selected line color for the current render target.
hus, at most T 2

u lines are blended together in the framebuffer,
hich significantly reduces overdraw and framebuffer precision

ssues arising from this. As another option, the line renderer can
onsider the values stored in the render targets to control the
aturation of each line, i.e., to let the saturation decrease with
ncreasing line count.

.3. Rasterization-based scattering

As an alternative to compute shader-based scattering, we have
lso implemented a rasterization-based approach. Similar in spirit
o early approaches for computing histograms on the GPU [39],
he implementation utilizes the point-rendering capabilities on
he GPU to render many points in parallel at arbitrary target
ositions in the bound render targets. Therefore, we use a sin-
le vertex buffer that is stored in GPU memory and can be
e-rendered in multiple rendering passes.

Initially, a vertex array is generated, which has the same size
s the blocks into which the data has been partitioned (i.e., 226



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

v

e
o
r
s
c
a
f
l
e
a
p
c
a
t
d
3

t
p
t
o
s
r
t
p
p
t
o
i
t

r
3
s
t
c
t
c
s

Fig. 4. GPU line renderer. A vertex buffer is rendered for every render target, and the geometry shader spawns a line for every non-empty entry. P i to Pn are the
iewport x-coordinates of the parameter axes.
ntries). When using point rendering to realize the scattering
peration, an additional bitfield – the datapoint activations – is
equired to indicate for every datapoint whether it is currently
elected, i.e., whether all of its parameter values lie within the
urrently selected intervals. The bitfield is internally represented
s an array of 32 bit units with one bit per datapoint and is reused
or each block of datapoints to keep the memory requirements
ow. The reason for computing and storing the activations in
ach frame is that the pixel shader in the rasterization-based
pproach cannot scatter into multiple render targets at different
ositions simultaneously. Thus, scattering needs to be performed
onsecutively into the render targets, which would require to load
ll attribute values each time to evaluate the activation. By using
he bitfield, the evaluation needs to be performed only once per
atapoint, and the pixel shader needs to read only one single
2 bit element.
For a single pair of adjacent parameters in the PCP, the ver-

ex array is rendered as many times as required to render one
oint primitive for every datapoint. The vertex shader first reads
he point’s activation and performs a bit-wise AND operation to
btain the value for the current vertex. Only if the bit is set, the
hader proceeds by reading the parameter values of the currently
endered datapoint. The parameter values are then mapped to
he discrete set of pixels that are used to represent the vertical
arameter axes, and for the current pair of coordinate axes the
ixel position of the first and the second parameter are used as
arget addresses into the currently bound render target. The state
f the output merger is set so that an atomic addition operation
s performed, and the output from the fragment shader equals 1
o emulate the atomic increment operation.

As reported by Schütz et al. [41] in the context of point cloud
endering, where every point represents an object sample in
D space, rasterization-based point rendering can be accelerated
ignificantly if the point set is laid out in a GPU friendly order. If
he point set is laid out along a space-filling curve so that points
lose to each other in space are projected into pixels lying close
ogether, distributed framebuffer writes and cache misses thereof
an be reduced considerably. Furthermore, by splitting the sorted
equence into blocks and shuffling the processing order of these
115
blocks, even lower rendering times are achieved due to a more
uniform utilization of the GPUs viewport tile units.

In our application, however, these optimizations are prob-
lematic since the placement of a point within the render target
depends on the parameter values. Following space-filling curves
would thus be required in all visible 2D parameter sub-spaces
in the PCP. Thus, multiple ordered sequences, and also one ac-
tivation field per sequence, need to be stored, which significantly
increases the memory requirement. Furthermore, if the axis or-
dering is changed, the whole layout for the affected parameter
pairs has to be recomputed. Due to these reasons, we could not
consider these otherwise effective improvements, resulting in
about 10x lower performance of the rasterization-based approach
compared to the compute shader-based approach.

4.4. Priority rendering

Priority polyline rendering [29,42] is an method to enhance
the perception of proximity between datapoints in dense
datasets. Upon selecting the value of a certain parameter, called
the priority center, the datapoints are sorted with respect to
decreasing distance of their value to the selected one. The poly-
lines are then rendered in this order, so that lines belonging
to datapoints with parameter values closer to the selection are
rendered on top of those with a larger distance. The distance can
be further mapped to color to emphasize those datapoints with a
closer value.

In our approach, priority polyline rendering can be enabled
with only a slight change in the scattering operation that is used
to generate the render targets. Instead of an atomic increment
operation, the write operation is performed with the distance
to the selected parameter value as argument, and an atomic
minimum operation is selected for the render targets. In this
way, all render targets – regardless of which parameter pair
they represent – always keep track of the minimum distance
from the selected priority center. I.e., a value in a render target
indicates that the corresponding line should be rendered, and
states for all datapoints whose polyline contains this line what
the minimum distance of any of these datapoints to the priority



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

m

c
t
l
b
o
s

f
a
a
d

5

t
p
p
v
i
d
d
e

5

w
u
f
o
o
(
o
w
a
o
e
b
i
o
s
d
p
3
s
h
c
h
d
n
v

Fig. 5. Iso-surfaces to a value equal to 7.5 × 107 in NCCLOUD in two different
embers of the Grand Ensemble including a parallel coordinates visualization.

enter is. For rendering the lines, the elements in the 2D render
argets are sorted such that lines with a low distance are drawn
ast and appear in front of all other lines. Notably, this approach
ypasses the need for exhaustive sorting operations on the full set
f datapoints, since sorting is required only for the significantly
maller set of elements in the render targets.
While this approach does generate a correct priority plot for

ully opaque lines, only information about the closest distances
nd no underlying distribution of the distances of all datapoints
re stored and thus when reducing the opacity the resulting plot
iverges from true priority rendering.

. Results and evaluation

In the following, we first describe the dataset that was used
o test the performance and scalability of our approach. We then
rovide a quantitative performance analysis of the stages of the
roposed PCP realization, and continue with an illustration of the
isual quality of the PCPs generated with the proposed methods,
ncluding the supplementary visualization options that have been
iscussed. All experiments have been carried out on a single node
esktop PC with an Intel Xeon CPU at 3.60 GHz with 64 GB RAM,
quipped with an Nvidia 3090 GPU with 24 GB on-chip memory.

.1. Dataset

For the evaluation, we use a Grand Ensemble dataset that
as produced by Matsunobu et al. [5] to study the impact of
ncertainty in cloud microphysics models on convective weather
orecasts. In their original study, the authors examine the effect
f two microphysical model parameters on the uncertainty that is
bserved in ensemble simulations. The parameters are called CCN
density of cloud condensation nuclei) and NU (shape parameter
f a Gamma distribution, describing the size distribution of cloud
ater droplets). For both input parameters three possible values
re considered, and ensembles are generated for all possible pairs
f input values. The dataset thus comprises a total of nine differ-
nt simulation ensembles, with 20 members each. The difference
etween members within each sub-ensemble results from vary-
ng the boundary conditions (BC) used for the simulation. Each
f the 180 ensemble members contains time-variate volumetric
imulation output for 40 prognostic variables over a rectangular
omain in central Europe, from which we select temperature,
ressure, specific humidity, cloud density, total precipitation and
D wind components for the analysis. The simulation data is
tored at time steps of one hour on a (716 × 651)-grid with
orizontal resolution of 2 km and 65 levels in height. In the
urrent work we consider only one single time step including 33
orizontal levels from the ensemble, which amounts to 2.7 billion
atapoints and 56 GB of memory. In addition to the seven prog-
ostic variables, each datapoint is assigned additional descriptor
ariables, providing information about its horizontal (longitude
116
and latitude) and vertical location (level), as well as the index
of the ensemble member it belongs to. In Fig. 5, the 3D distri-
bution of the particle density parameter NCCLOUD is illustrated
via iso-surface renderings for two different ensemble members.
Differences between the members, as well as a clustering of
regions with high NCCLOUDS along the latitude dimension are
clearly visible. To validate the accuracy of the proposed method
for a dataset with smaller size, we use the cars dataset with seven
attributes and 392 datapoints [43].

5.2. Performance evaluation

Reading the data from disk and subdividing each set of param-
eter fields into smaller blocks takes roughly 30 min. On the CPU,
each block is optionally compressed using cudaCompress. This re-
quires additional 15 min for the whole ensemble and reduces the
memory requirement from 56 GB to 5.6 GB, so that even multiple
time steps can be stored on the GPU. Streaming one compressed
time step from the CPU to the GPU takes below one second,
yet decoding the ensemble on the GPU, where a decompression
throughput of approximately 5 GB/sec is achieved, requires about
10 s. Since uploading directly from RAM via PCI-e x16 4.0 yields a
throughput of roughly 15 GB/sec on our hardware, streaming the
uncompressed data is preferable in terms of speed and quality.
However, when the data needs to be streamed from disk, typically
not more than 1 GB/sec sustained bandwidth can be expected,
even on recent SSD technologies. In such scenarios, compression
becomes a useful option.

For different numbers of datapoints and vertical viewport
resolutions, Fig. 6 shows the timings for scattering (i.e. generating
the line counts in the render targets) and line rendering. All
times are measured under the assumption that the uncompressed
parameter fields are available in GPU memory.

As can be seen, the time required by the final line renderer
varies only slightly and, in particular, is negligible compared to
the time consumption of the scatter shader. Given a pixel reso-
lution of Tu × Tv for the rendering of lines between two adjacent
parameter axes, at most Tu × Tu lines need to be rendered for
this parameter pair. Even when Tu equals 210 and all lines are
rendered, line rendering using x2 supersampling requires only
about 100 milliseconds.

One can see that a full PCP update for the Grand Ensemble at
a vertical resolution of up to 2000 pixels can be accomplished in
slightly less than one second when all data can be stored in GPU
memory. Beyond this number, interactivity degrades linearly with
the number of datapoints. Since on our GPU target architecture,
however, only approximately one billion datapoints can be stored
uncompressed in GPU memory, in every frame we stream the
entire dataset from the CPU to GPU memory. This requires about
3 s via PCI-e4 X16, so that an overall frame rate of roughly 4 s
per frame is achieved.

When using priority rendering, once the scattering operation
has been performed, the elements in the generated 2D render
targets need to be sorted to draw the corresponding lines in the
order of decreasing distance to the selected parameter value. In
our current implementation, this is realized by downloading the
render targets to the CPU, sorting the elements, and issuing a
vertex buffer with the sorted sequence of lines to the GPU for
rendering. The extra time that is required for downloading and
sorting is about 380 milliseconds for an axis resolution of 1000
pixels and 11 attributes (i.e., ten 2D render targets). Notably,
when priority rendering is selected, scattering is even faster than
scattering using atomic increment operations, as early out tests
regarding the current values in the render targets can signifi-
cantly reduce the overall number of atomic operations that need
to be performed.



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

d
f
c

Fig. 6. Timing statistics for scalable PCPs, using different numbers of datapoints with 11 parameters each, and different resolutions of the viewport into which lines
are rendered. Blue sub-bar: the time to scatter all datapoints into the render targets. Red sub-bar: the time to render all lines. It is assumed that all data is available
uncompressed in GPU memory.
Fig. 7. Comparison of the standard PCP with one polyline rendered for each
atapoint (top) and our proposed approach (bottom), using 30 million datapoints
rom the Grand Ensemble dataset (left) and a smaller dataset comprising 392
ars with seven attributes [43] (right). Line opacity is set to 10−5 (left) and 1
(right).

Fig. 8. Loss of outliers due to subsampling. Top: one ensemble of the Grand
Ensemble dataset. Bottom: subsampling with a sampling rate of 1:100 is applied.
Left: all datapoints are shown. Right: datapoints are thinned out via the selection
of parameter sub-interval.

5.3. Qualitative analysis

First, we demonstrate that the proposed PCP realization pro-
duces the same results as the conventional approach where all
polylines are rendered consecutively. In Fig. 7, datasets are ren-
dered once with one polyline per datapoint, and once with the
proposed binning approach. Both variants use the same line opac-
ities. We use two different datasets with reduced number of
datapoints to effectively reveal differences. While for the Grand
Ensemble dataset the standard approach requires 32 bits per
channel framebuffer precision to correctly blend the lines, 16 bits
per channel are sufficient for our approach. Even for the smaller
dataset with only NN datapoints, visual differences can hardly be
perceived.

In Fig. 8, we further motivate our approach by demonstrating
that even for large datasets subsampling can remove important
information such as outliers. As can be seen, already a moderate
subsampling rate of 1:100 causes loss of outlying datapoints. Fur-
thermore, when the subsampled data is explored via parameter
117
Fig. 9. Precision issues of standard PCP generation for 2.7 billion datapoints
with a 16 bit framebuffer. Top: Standard PCP where one polyline is rendered
for every datapoint. Bottom: Result of our new approach. Rendering times are
30 s (top) and one second (bottom).

brushing, the selected sub-intervals can become so sparse that a
meaningful visual analysis becomes impossible.

For large numbers of datapoints, numerical inaccuracies due
to insufficient framebuffer precision start to affect the quality of
conventional PCPs (see Fig. 9). When using a 16 bit framebuffer
and rendering all 2.7 billion lines of the Grand Ensemble, the
numerical precision is quickly reached and information is lost,
i.e., the PCP only gets darker when reducing the line opacity. Due
to analytical alpha blending and a significantly reduced number
of rendered lines, the scalable PCP realization shows no artifacts
when reducing the opacity and can clearly reveal the major
structures contained in the data. When rendering all 2.7 billion
lines into a 32 bit framebuffer, visual artifacts disappear in the
conventional PCP, but the rendering time is nearly tripled; it
increases from 500 s to 1300 s for a 2000 pixels wide and 450
pixels high PCP, and rendering lines with one sample per pixel.
In contrast, our approach renders the PCP in the same size and
quality in less than one second.

Fig. 11 demonstrates the effect of lossy data compression on
PCP accuracy, by comparing the quality of PCPs for different
compression rates. Lossy compression is applied to each attribute
separately, with compression ratio of roughly 5:1 and 10:1. The
used compression scheme first transforms the original data into
a wavelet representation to separate low-frequency and high-
frequency signal components, and then performs a quantization
of the resulting wavelet coefficients. To achieve higher com-
pression rates, larger quantization steps are used, which directly
affects the accuracy of the PCP. While a compression ratio of 5:1
shows no noticeable differences, the quantization of the wavelet



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

m
d

Fig. 10. Interactive opacity reduction reveals the major trends in certain
ulti-parameter combinations in the Grand Ensemble comprising 2.7 billion
atapoints.

Fig. 11. Influence of compression rate on quality. From top to bottom: PCP using
the original parameter values, and using the lossy compressed parameter values
with a compression ratio of 5:1 and 10:1. All plots where created with a vertical
pixel resolution of 1000 pixels. Due to compression errors, parameter values are
discretized into false pixels along the parameter axes.

coefficients introduces clearly visible artifacts when the ratio is
increased to 10:1. Even though the compression error on the data
level is low, i.e., a fairly high PSNR of 39 dB with a maximum
point-wise error below 5% of the value domains, line end points
can fall into false pixels due to the quantization. Depending on
the height in pixels of the parameter axes, the quantized pixel
positions can be multiple pixels apart from the correct positions.
On the other hand, since the major structures in the data are
preserved, we see lossy compression as a useful option to quickly
obtain a first overview of the data in scenarios where the original
data cannot be stored on the CPU.

5.4. Use case

Fig. 10 illustrates how interactive opacity control in scalable
PCPs can help to uncover the major trends and reveal local
maxima in the data distribution of the Grand Ensemble. From top
to bottom, all polylines of the Grand Ensemble are blended with
decreasing opacity for each line. With lower opacity, only those
lines drawn by many datapoints survive in the final plot, demon-
strating both the frequency of occurrence of certain parameter
118
Fig. 12. PCP-based comparison of members in the Grand Ensemble. Top: Two
members with specific NU, CCN and BC values are selected and rendered in
blue and red, respectively. Datapoints where the number of cloud particles
(NCCLOUD) is below 7.5 × 107 are discarded via brushing (green box). Bottom:
the drawing order of the selected members has been changed, and brushing
selects datapoints with total precipitation (tp) above 40. Datapoints in the
members that are not selected are shown as background in white.

combinations and suggesting prominent correlation patterns be-
tween different parameters. An example for the latter is seen
in the subplot pressure (pres) vs. temperature (t), where the
majority of lines are parallel to one another, indicating a positive
linear correlation between the parameters.

In the following, we demonstrate the use of the scalable PCP
to analyze different members of the Grand Ensemble. Two ex-
emplary ensemble members are selected by brushing along the
right-most axis of the PCP. The datapoints of the selected mem-
bers are rendered in red and blue, respectively, with the red lines
on top of the blue lines. The same opacity value is used to allow
for a better comparison of the number of datapoints in the ap-
pearing trends. Contextual information is provided by rendering
lines for the complete dataset in white color as background. Note
here, that the opacity value of both the background and the single
members can be changed independently. Green boxes in the fig-
ure correspond to parameter brushes that can be applied either to
the selected ensemble members or to the remaining context. This
allows to quickly compare members regarding certain parameter
ranges simultaneously.

In Fig. 12 (top), datapoints with high number of cloud particles
(NCCLOUD, green box on 3rd axis) are compared between the
selected members. Here one can instantly see, that the number of
datapoints with such high values is larger in the member with a
higher CCN value. Furthermore, the PCP shows that for one mem-
ber there is a region at high latitude where high NCCLOUD values
exist, whereas the other member does not contain datapoints in
this region with the specific NCCLOUD values. The members are
then compared with respect to total precipitation (tp), see Fig. 12
(middle). Since in the original data, precipitation is given only at
a single horizontal layer, the values in this layer are copied across
all other layers. In addition, the drawing order of the red and blue
lines is switched, since the blue lines would have been vastly ob-
scured otherwise. Again, a significant difference in the parameter
domains can be seen. Looking at the spatial coordinate values
a certain region at high latitudinal and low longitudinal values
can be observed for the red member where precipitation above a
value of 40 exists, while in the blue member this region did not
include any high precipitation. Further the equal spread pattern
between longitude and the parameter generalVerticalLayer hints
at the copied values: each layer has the same tp field and thus,
looking at the vertical layer, each layer has an equal amount of
active points.

Finally, in Fig. 13 the entire Grand Ensemble is rendered with
no particular members selected. Instead, brushing is conducted



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

r
N
b
d
r
o
C
v
s
d
p
s
d
l
l
w
c w
Fig. 13. Exploring the Grand Ensemble by interactively applying brushes to
different attributes. In (a) u-wind extremes are selected, (b) shows v-wind
extremes and in (c) high NCCLOUD values are selected.

on different parameter axes. In (a) high absolute wind speeds
in u direction were selected. Here one can see that these high
wind speeds occur in all members (equal spread on the member
axis) and are mainly apparent either in a very high or low vertical
layer. When analyzing the dataset interactively and looking only
at positive or negative wind speeds one can further see that
in the low vertical layers only high positive wind speeds exist
while all negative wind speeds occur in high layers. Also positive
correlations between pressure (pres), temperature (t) and general
vertical layer can be observed for high u wind speeds. In (b) high
absolute wind speeds in v directions are shown. In comparison
to (a), the spatial distributions of high positive and negative
wind directions are not separated when looking at the vertical
position in the 3D domain. Further no noticeable difference wrt.
the simulation input parameters can be observed. In (c) then the
correlation of NCCLOUD values is visualized. By choosing high
NCCLOUD values and reducing the opacity value one can see a
three-fold structure emerging on the simulation parameter axis
(i.e., rightmost axis). Since along this axis the three simulation
parameters CCN, NU and BC are laid out in BC-major order,
it can be seen that high NCCLOUD values are given for three
specific CCN/NU value combinations. Furthermore, the general
trend of the multi-parameter dataset across all members for high
NCCLOUD values is visualized by regions with high opacity. With
this visualization also information about average temperature,
average pressure and other parameters across multiple members
in the dataset can be gained.

In Fig. 14, the Grand Ensemble is visualized using priority
endering in the PCP. The priority center is set to the maximum
CCLOUD value in the top plot and maximum tp value in the
ottom plot. With priority rendering active, it is possible to track
atapoints with respect to a priority center on a single axis which
eveals correlations to attributes which are not direct neighbors
f the priority center axis. Like this one can see that high NC-
LOUD values correspond always to low total precipitation (tp)
alues. Further when looking at the member attribute a certain
tructure is apparent. This shows that high NCCLOUD values are
irectly influenced by certain combinations of simulation input
arameters and are then consistent across the members of a
ingle such combination. In the bottom plot one then can track
atapoints with high tp values, revealing their correlation to
ow NCCLOUD values as well as showing certain latitudinal and
ongitudinal regions with high tp values. Further certain members
ith exceptional high tp values can be easily determined by the
oloring at the member axis.
119
Fig. 14. PCPs of the Grand Ensemble including priority rendering. A value on
a specific axis is selected as priority center (turquoise dots), and polylines are
colored according to the distance of their value to the priority center, i.e., from
low to high distance the color changes from white over red to blue. Polylines
with lower distances are rendered on top of polylines with higher distances.

6. Conclusion and future work

We present a GPU optimized computation pipeline for crea-
ting multiple bi-dimensional histograms that are then used to
generate parallel coordinates plots (PCPs) for large datasets at in-
teractive framerates. Both a compute shader-based and rasteriz-
ation-based approach are described and compared to each other
regarding computational efficiency. By exploiting high memory
bandwidth and compute parallelism on the GPU, PCPs for up to
3 billion datapoints with 11 parameters each can be generated
in less than 1 s when all data fits into GPU memory. Due to
algebraic blending of lines in a GPU shader instead of blending
all lines in the output merger stage, framebuffer precision issues
can be avoided. Thus, PCPs can be rendered into 16 bit frame-
buffers instead of 32 bit framebuffers, which gives a significant
performance improvement.

We demonstrate the use of the pipeline for analyzing a Grand
Ensemble comprising numerical weather forecast simulations,
and show that the limiting factor is the memory available on the
GPU and the CPU. Since not all data can be stored in GPU memory,
the data needs to be streamed from the CPU via PCIe-4 x16. This
reduces the throughput to roughly 0.7 billion datapoints per sec-
ond, including streaming, histogram update and PCP rendering.
To support the analysis of multiple time steps, which cannot even
be stored in CPU-RAM, we provide the possibility to work on a
compressed data representation that can be streamed at much
higher rates from disk to the GPU than uncompressed possible.

In the future, we also aim to investigate the use of alterna-
tive lossy compression schemes like cuSZ [44] to improve the
performance of the GPU decompression stage, at the same time
enforcing upper bounds on the introduced compression errors. By
this, the visual error can be reduced, and the overall runtime for
datasets that need to be streamed from disk can be improved.

Another future direction will be to investigate other PCP vi-
sualizations such as continuous parallel coordinates by [45] and
bundled PCPs, based on the fast bi-dimensional histogram calcu-
lation presented in this work. For continuous parallel coordinates
the bi-dimensional histograms can be used as density estimators
for the numerical integration of the dual line in the data domain.
In this context, it will also be interesting to enable the integration
of spline PCPs, which requires to consider more than 2 adjacent
parameter axis in the scattering operation.

CRediT authorship contribution statement

Josef Stumpfegger: Conceptualization, Methodology, Soft-
are, Validation, Formal analysis, Investigation, Resources, Data



J. Stumpfegger, K. Höhlein, G. Craig et al. Computers & Graphics 109 (2022) 111–120

c
l
D
s
t
F

D

r
i
W

D

s

A

T
t

R

uration, Writing – review & editing, Visualization. Kevin Höh-
ein: Conceptualization, Methodology, Formal analysis, Resource,
ata curation, Writing. George Craig: Investigation, Supervi-
ion, Funding acquisition. Rüdiger Westermann: Conceptualiza-
ion, Methodology, Writing, Supervision, Project administration,
unding acquisition.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Funding by the DFG trans-regio project ‘‘Waves to
eather’’

ata availability

The code will be published via a github link, an alternative
ynthetic dataset will be made available for testing.

cknowledgments

This study was conducted within the subproject B5 of the
ransregional Collaborative Research Center SFB/TRR 165 Waves
o Weather funded by the German Research Foundation (DFG).

eferences

[1] Inselberg A, Dimsdale B. Parallel coordinates: A tool for visualizing multi-
dimensional geometry. In: Proceedings of the first IEEE conference on
visualization: Visualization90. IEEE; 1990, p. 361–78.

[2] Kumpf A, Stumpfegger J, Hartl PF, Westermann R. Visual analysis of multi-
parameter distributions across ensembles of 3D fields. IEEE Trans Vis
Comput Graphics 2021.

[3] Novotny M, Hauser H. Outlier-preserving focus + context visualization in
parallel coordinates. IEEE Trans Vis Comput Graphics 2006;12(5):893–900.

[4] Blaas J, Botha C, Post F. Extensions of parallel coordinates for interactive
exploration of large multi-timepoint data sets. IEEE Trans Vis Comput
Graphics 2008;14(6):1436–51.

[5] Matsunobu T, Zarboo A, Barthlott C, Keil C. Impact of combined microphys-
ical uncertainties on convective clouds and precipitation in ICON-D2-EPS
forecasts during different synoptic control. Weather Clim Dyn Dis-
cuss 2022;2022:1–25. http://dx.doi.org/10.5194/wcd-2022-17, URL: https:
//wcd.copernicus.org/preprints/wcd-2022-17/.

[6] Sansen J, Richer G, Jourde T, Lalanne F, Auber D, Bourqui R. Visual
exploration of large multidimensional data using parallel coordinates on
big data infrastructure. In: Informatics, vol. 4, (3):Multidisciplinary Digital
Publishing Institute; 2017, p. 21.

[7] Richer G, Sansen J, Lalanne F, Auber D, Bourqui R. HiePaCo: Scalable
hierarchical exploration in abstract parallel coordinates under budget
constraints. Big Data Res 2019;17:1–17.

[8] Lachei and inmetak. Wavestoweather/PCViewer: V0.1-alpha. 2022, http:
//dx.doi.org/10.5281/zenodo.7225765.

[9] Liu S, Maljovec D, Wang B, Bremer P-T, Pascucci V. Visualizing high-
dimensional data: Advances in the past decade. IEEE Trans Vis Comput
Graphics 2016;23(3):1249–68.

[10] Obermaier H, Joy KI. Future challenges for ensemble visualization. IEEE
Comput Graph Appl 2014;34(3):8–11.

[11] Wang J, Hazarika S, Li C, Shen H-W. Visualization and visual anal-
ysis of ensemble data: A survey. IEEE Trans Vis Comput Graphics
2018;25(9):2853–72.

[12] Wang J, Liu X, Shen H-W, Lin G. Multi-resolution climate ensemble
parameter analysis with nested parallel coordinates plots. IEEE Trans Vis
Comput Graphics 2016;23(1):81–90.

[13] Kumpf A, Stumpfegger J, Westermann R. Cluster-based analysis of
multi-parameter distributions in cloud simulation ensembles. 2019.

[14] Inselberg A. The plane with parallel coordinates. Vis Comput 1985;1(2):69–
91.

[15] Siirtola H, Räihä K-J. Interacting with parallel coordinates. Interact Comput
2006;18(6):1278–309.

[16] Elmqvist N, Stasko J, Tsigas P. DataMeadow: A visual canvas for analysis
of large-scale multivariate data. Inf Vis 2008;7(1):18–33.

[17] Kandogan E. Star coordinates: A multi-dimensional visualization tech-
nique with uniform treatment of dimensions. In: Proceedings of the IEEE
information visualization symposium, vol. 650, Citeseer; 2000, p. 22.
120
[18] Wegman EJ. Hyperdimensional data analysis using parallel coordinates. J
Amer Statist Assoc 1990;85(411):664–75.

[19] Yang J, Peng W, Ward MO, Rundensteiner EA. Interactive hierarchical di-
mension ordering, spacing and filtering for exploration of high dimensional
datasets. In: IEEE symposium on information visualization 2003 (IEEE Cat.
No. 03TH8714). IEEE; 2003, p. 105–12.

[20] Ferdosi BJ, Roerdink JB. Visualizing high-dimensional structures by dimen-
sion ordering and filtering using subspace analysis. In: Computer graphics
forum. vol. 30, (3):Wiley Online Library; 2011, p. 1121–30.

[21] Long TV, Linsen L. Efficient reordering of parallel coordinates and its appli-
cation to multidimensional biological data visualization. In: Visualization
in medicine and life sciences III. Springer; 2016, p. 309–28.

[22] Lu LF, Huang ML, Zhang J. Two axes re-ordering methods in parallel
coordinates plots. J Vis Lang Comput 2016;33:3–12.

[23] Theisel H. Higher order parallel coordinates. In: VMV. 2000, p. 415–20.
[24] Graham M, Kennedy J. Using curves to enhance parallel coordinate

visualisations. In: Proceedings on seventh international conference on
information visualization, 2003. IV 2003. IEEE; 2003, p. 10–6.

[25] McDonnell KT, Mueller K. Illustrative parallel coordinates. In: Computer
graphics forum, vol. 27, (3):Wiley Online Library; 2008, p. 1031–8.

[26] Zhou H, Yuan X, Qu H, Cui W, Chen B. Visual clustering in parallel co-
ordinates. In: Computer graphics forum, vol. 27, (3):Wiley Online Library;
2008, p. 1047–54.

[27] Luo Y, Weiskopf D, Zhang H, Kirkpatrick AE. Cluster visualization in parallel
coordinates using curve bundles. IEEE Trans Vis Comput Graphics 2008;18.

[28] Yuan X, Guo P, Xiao H, Zhou H, Qu H. Scattering points in parallel
coordinates. IEEE Trans Vis Comput Graphics 2009;15(6):1001–8.

[29] Roberts RC, Laramee RS, Smith GA, Brookes P, D’Cruze T. Smart
brushing for parallel coordinates. IEEE Trans Vis Comput Graphics
2018;25(3):1575–90.

[30] Pomerenke D, Dennig FL, Keim DA, Fuchs J, Blumenschein M. Slope-
dependent rendering of parallel coordinates to reduce density distortion
and ghost clusters. In: 2019 IEEE visualization conference. VIS, IEEE; 2019,
p. 86–90.

[31] Heinrich J, Weiskopf D. State of the art of parallel coordinates. In:
Eurographics (state of the art reports). 2013, p. 95–116.

[32] Moustafa RE. Parallel coordinate and parallel coordinate density plots.
Wiley Interdiscip Rev Comput Stat 2011;3(2):134–48.

[33] Palmas G, Bachynskyi M, Oulasvirta A, Seidel HP, Weinkauf T. An edge-
bundling layout for interactive parallel coordinates. In: 2014 IEEE pacific
visualization symposium. IEEE; 2014, p. 57–64.

[34] Heinrich J, Luo Y, Kirkpatrick AE, Zhang H, Weiskopf D. Evaluation of a
bundling technique for parallel coordinates. 2011, arXiv preprint arXiv:
1109.6073.

[35] Fua Y-H, Ward MO, Rundensteiner EA. Hierarchical parallel coordinates for
exploration of large datasets. IEEE; 1999.

[36] Elmqvist N, Fekete J-D. Hierarchical aggregation for information visualiza-
tion: Overview, techniques, and design guidelines. IEEE Trans Vis Comput
Graphics 2009;16(3):439–54.

[37] Rubel O, Wu K, Childs H, Meredith J, Geddes CG, Cormier-Michel E, et
al. High performance multivariate visual data exploration for extremely
large data. In: SC’08: Proceedings of the 2008 ACM/IEEE conference on
supercomputing. IEEE; 2008, p. 1–12.

[38] Cui W, Strazdins G, Wang H. Confluent-drawing parallel coordinates: Web-
based interactive visual analytics of large multi-dimensional data. 2019,
arXiv preprint arXiv:1906.10017.

[39] Scheuermann T, Hensley J. Efficient histogram generation using scattering
on GPUs. In: Proceedings of the 2007 symposium on interactive 3D
graphics and games. 2007, p. 33–7.

[40] Treib M, Reichl F, Auer S, Westermann R. Interactive editing of Gi-
gaSample terrain fields. Comput Graph Forum 2012;31(2):383–92. http://
dx.doi.org/10.1111/j.1467-8659.2012.03017.x, URL: http://diglib.eg.org/EG/
CGF/volume31/issue2/v31i2pp383-392.pdf.

[41] Schütz M, Kerbl B, Wimmer M. Rendering point clouds with compute
shaders and vertex order optimization. In: Computer graphics forum, vol.
40, (4):Wiley Online Library; 2021, p. 115–26.

[42] Hauser H, Ledermann F, Doleisch H. Angular brushing of extended par-
allel coordinates. In: IEEE symposium on information visualization, 2002.
INFOVIS 2002. IEEE; 2002, p. 127–30.

[43] Xmdvtool homepage. URL: https://davis.wpi.edu/xmdv/datasets/cars.html.
[44] Tian J, Di S, Yu X, Rivera C, Zhao K, Jin S, et al. Optimizing error-

bounded lossy compression for scientific data on GPUs. In: 2021 IEEE
international conference on cluster computing. CLUSTER, Los Alamitos,
CA, USA: IEEE Computer Society; 2021, p. 283–93. http://dx.doi.org/10.
1109/Cluster48925.2021.00047, URL: https://doi.ieeecomputersociety.org/
10.1109/Cluster48925.2021.00047.

[45] Heinrich J, Weiskopf D. Continuous parallel coordinates. IEEE Trans Vis
Comput Graphics 2009;15(6):1531–8.

http://refhub.elsevier.com/S0097-8493(22)00186-8/sb1
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb1
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb1
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb1
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb1
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb2
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb2
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb2
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb2
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb2
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb3
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb3
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb3
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb4
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb4
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb4
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb4
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb4
http://dx.doi.org/10.5194/wcd-2022-17
https://wcd.copernicus.org/preprints/wcd-2022-17/
https://wcd.copernicus.org/preprints/wcd-2022-17/
https://wcd.copernicus.org/preprints/wcd-2022-17/
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb6
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb7
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb7
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb7
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb7
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb7
http://dx.doi.org/10.5281/zenodo.7225765
http://dx.doi.org/10.5281/zenodo.7225765
http://dx.doi.org/10.5281/zenodo.7225765
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb9
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb9
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb9
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb9
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb9
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb10
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb10
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb10
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb11
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb11
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb11
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb11
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb11
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb12
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb12
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb12
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb12
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb12
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb13
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb13
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb13
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb14
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb14
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb14
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb15
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb15
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb15
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb16
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb16
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb16
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb17
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb18
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb18
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb18
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb19
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb20
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb21
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb21
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb21
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb21
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb21
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb22
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb22
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb22
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb23
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb24
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb25
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb26
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb27
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb27
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb27
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb28
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb28
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb28
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb29
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb29
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb29
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb29
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb29
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb30
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb31
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb31
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb31
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb32
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb32
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb32
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb33
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb33
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb33
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb33
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb33
http://arxiv.org/abs/1109.6073
http://arxiv.org/abs/1109.6073
http://arxiv.org/abs/1109.6073
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb35
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb35
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb35
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb36
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb36
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb36
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb36
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb36
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb37
http://arxiv.org/abs/1906.10017
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb39
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb39
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb39
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb39
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb39
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03017.x
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb41
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb41
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb41
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb41
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb41
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb42
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb42
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb42
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb42
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb42
https://davis.wpi.edu/xmdv/datasets/cars.html
http://dx.doi.org/10.1109/Cluster48925.2021.00047
http://dx.doi.org/10.1109/Cluster48925.2021.00047
http://dx.doi.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
https://doi.ieeecomputersociety.org/10.1109/Cluster48925.2021.00047
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb45
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb45
http://refhub.elsevier.com/S0097-8493(22)00186-8/sb45

	GPU accelerated scalable parallel coordinates plots
	Introduction 
	Related Work 
	Method Overview and Data 
	Scalable PCPs
	Compute Shader-based Scattering
	Line Renderer
	Rasterization-based Scattering
	Priority Rendering

	Results and Evaluation 
	Dataset
	Performance Evaluation
	Qualitative Analysis
	Use Case

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


