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BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma
cancer (PDAC) is a highly lethal malignancy requiring efficient
detection when the primary tumor is still resectable. We pre-
viously developed the MxPancreasScore comprising 9 analytes
and serum carbohydrate antigen 19-9 (CA19-9), achieving an
accuracy of 90.6%. The necessity for 5 different analytical
platforms and multiple analytical runs, however, hindered
clinical applicability. We therefore aimed to develop a simpler
single-analytical run, single-platform diagnostic signature.
METHODS: We evaluated 941 patients (PDAC, 356; chronic
pancreatitis [CP], 304; nonpancreatic disease, 281) in 3
multicenter independent tests, and identification (ID) and
validation cohort 1 (VD1) and 2 (VD2) were evaluated. Tar-
geted quantitative plasma metabolite analysis was performed
on a liquid chromatography–tandem mass spectrometry plat-
form. A machine learning–aided algorithm identified an
improved (i-Metabolic) and minimalistic metabolic (m-Meta-
bolic) signatures, and compared them for performance.
RESULTS: The i-Metabolic Signature, (12 analytes plus CA19-9)
distinguished PDAC from CP with area under the curve (95%
confidence interval) of 97.2% (97.1%-97.3%), 93.5% (93.4%-
93.7%), and 92.2% (92.1%-92.3%) in the ID, VD1, and VD2

http://crossmark.crossref.org/dialog/?doi=10.1053/j.gastro.2022.07.047&domain=pdf


WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Pancreatic cancer is a highly lethal malignancy, in part
due to late-stage presentation, necessitating efficient
and accurate detection when the primary tumor is still
resectable in order to contribute to improved outcomes.

NEW FINDINGS

Investigating 941 patients with and without pancreatic
cancer, split into test and validation cohorts, we
demonstrate that the m-Metabolic signature (comprising
only 4 analytes plus carbohydrate antigen 19-9)
identifies pancreatic cancer with a high overall accuracy.
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cohorts, respectively. In the VD2 cohort, the m-Metabolic
signature (4 analytes plus CA19-9) discriminated PDAC from
CP with a sensitivity of 77.3% and specificity of 89.6%, with an
overall accuracy of 82.4%. For the subset of 45 patients with
PDAC with resectable stages IA-IIB tumors, the sensitivity,
specificity, and accuracy were 73.2%, 89.6%, and 82.7%,
respectively; for those with detectable CA19-9 >2 U/mL,
81.6%, 88.7%, and 84.5%, respectively; and for those with
CA19-9 <37 U/mL, 39.7%, 94.1%, and 76.3%, respectively.
CONCLUSIONS: The single-platform, single-run, m-Metabolic
signature of just 4 metabolites used in combination with serum
CA19-9 levels is an innovative accurate diagnostic tool for
PDAC at the time of clinical presentation, warranting further
large-scale evaluation.
LIMITATIONS

There were relatively small numbers of patients with very
early-stage cancers and a predominance of patients with
a Caucasian background.

IMPACT

The m-Metabolic signature of just 4 analytes used in
Keywords: Metabolic Signature; Pancreatic Cancer; CA19-9;
Chronic Pancreatitis; Diagnostic Signature.

ancreatic ductal adenocarcinoma (PDAC) is a highly

combination with serum carbohydrate antigen 19-9
levels is an innovative diagnostic tool with a potential
major impact on the management of pancreatic cancer.

Abbreviations used in this paper: automl, automated machine learning;
AUC, area under the curve; BMI, body mass index; CA19-9, carbohydrate
antigen 19-9; CI, confidence interval; CP, chronic pancreatitis; ID, identi-
fication cohort; LC-MS/MS, liquid chromatography-tandem mass spec-
trometry; ML, machine learning; NPC, nonpancreatic disease; NPV,
negative predictive value; PDAC, pancreatic ductal adenocarcinoma; VD1,
validation cohort 1; VD2, validation cohort 2.
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Plethal malignancy with 5-year relative survival rates
of only 11% for all stages. PDAC incidence is rising by w1%
per year and now in the United States ranks as the third
commonest cause of cancer death.1 The best results are
achieved with surgical resection and adjuvant chemo-
therapy, with 5-year survival rates of 30% to 50%, but most
patients present with locally advanced unresectable disease
or metastases, or both.2,3 In symptomatic patients, the
diagnosis is often delayed because of the difficulty in
discriminating PDAC from benign pancreatic diseases,
notably chronic pancreatitis (CP), which may also be asso-
ciated with an increased risk of PDAC.4–8

Background inflammatory changes can mask underly-
ing malignancy and reduce the sensitivity and accuracy of
even the most accurate imaging method, such as endo-
scopic ultrasound and ultrasound-guided fine-needle aspi-
ration.9 Establishing a cost-effective biomarker with high
specificity and sensitivity could significantly improve the
treatment and survival in these patients.10,11 We recently
developed a metabolic signature (MxPancreasScore), which
used in conjunction with carbohydrate antigen 19-9
(CA19-9), distinguished PDAC from CP with clinically
relevant higher diagnostic accuracy than CA19-9 alone.10

The MxPancreasScore, however, lacks clinical generaliz-
ability because it requires multiple analytical platforms
and multiple analytical runs using liquid chromatography/
mass spectroscopy, also resulting in reduced cost-
effectiveness.12

We therefore aimed to improve and optimize the
MxPancreasScore to reduce analytical hurdles. To derive an
effective signature with the minimal number of analytes, a
machine learning (ML)–based feature reduction strategy
was used. We tested the performance of the new signa-
ture(s) prospectively in an independent multicenter case-
control study that compared patients with PDAC with
those with CP, as well as with patients with nonpancreatic
diseases (NPC), such as liver cirrhosis and acute cholangitis,
and otherwise healthy individuals due to undergo opera-
tions for benign conditions, including thyroidectomy, hernia
repair, and elective cholecystectomy, in accordance with the
Early Detection Research Network guidelines.13,14
Materials and Methods
Study End Points

The primary end point of the study was discrimination of
PDAC from CP in plasma samples. The secondary end points
were discrimination of resectable PDAC from CP and discrim-
ination of PDAC from NPC controls.
Patient Recruitment and Sample Collection
The study recruited 941 patients with pathologically

confirmed PDAC or CP and patients with NPC due for elective
operations in 3 independent multicenter prospective cohorts
according to the Standards for the Reporting of Diagnostic
Accuracy Studies (STARD) guidelines.15 These were the iden-
tification cohort (ID, October 2002–November 2011), validation
cohort 1 (VD1, January 2009–August 2013), and validation
cohort 2 (VD2, September 2013–September 2015). The ID and
VD1 cohorts were described previously.10 All patients gave
their written informed consent, and the local Ethics Review
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Boards approved the protocol at all participating centers
(Berlin, EA4/085/13; Bochum, 4452-12; Dresden,
EK49022014).

The analyses were performed retrospectively. De-
mographic, clinical, and pathologic variables are reported in
Table 1. Before initiation of cancer treatment and after over-
night fasting, blood samples were collected in EDTA tubes and
processed for plasma isolation, as described previously.10

CA19-9 levels were determined at a centralized certified clin-
ical laboratory with an upper limit of normal of 37 U/mL.

Validation Cohort 2 Power Calculations
For the VD2 study, power analysis was performed to esti-

mate an adequate sample size based on representative metab-
olite profiling standard deviations that were determined in
earlier studies. The primary aim of the study was to determine a
Table 1.Patient Characteristics and Distributions According to

Variable ID (n ¼ 156) VD1 (n

Center
Berlin-Mitte 0 (0.0) 0 (
Berlin-Virchow 0 (0.0) 0 (
Bochum 0 (0.0) 0 (
Dresden 156 (100.0) 235 (

Sex
Female 46 (29.5) 96 (
Male 110 (70.5) 139 (

Age, y
Mean (SD) 60.0 (11.8) 60.9 (
Range 25.0–82.0 20.0–

BMI, kg/m2

Missing 0 1
Mean (SD) 23.9 (3.4) 25.1 (
Range 13.9–34.1 14.5–

CA19-9, U/mL
Mean (SD) 409.1 (1384.5) 749.4 (
Range 0.3–11,622.0 0.6–98

Diabetic status
Missing 1 7
No 85 (54.8) 140 (
Yes 70 (45.2) 88 (

UICC classificationa

Missing or N.A.b 79 15
IA 0 (0.0) 1 (
IB 2 (2.6) 0 (
IIA 16 (20.8) 11 (
IIB 36 (46.8) 28 (
III 18 (23.4) 24 (
IV 5 (6.5) 13 (

Tumor stage
Missing or N.A.b 97 23
T1 0 (0.0) 0
T2 4 (6.8) 0
T3 55 (93.2) 0
T4 0 (0.0) 0
Inoperable 0 (0.0) 0
20% difference of analyte levels at a 5% significance level with a
power of 72% to 99%. The analyte difference was defined as
absolute or relative difference in concentrations of individual
analytes. Power estimates were based on the t test statistic.

m-Metabolic Signature Substudies
To estimate the robustness of the m-Metabolic signature in

clinical routine, 2 independent substudies were undertaken
comprising in each 20 self-reported healthy subjects meeting
the following inclusion criteria: age, 18 to 60 years; body mass
index (BMI), 17.5 to 30.5 kg/m2; and 8- to 12-hour fasting
before blood draw. Ethics approval was obtained under the
protocol 011/1763. CA19-9 levels of these individuals were
simulated between 0 and 37 U/mL, with 100 independent it-
erations to exclude bias. EDTA blood and plasma from the first
group of 20 subjects (median age, 43 years; median BMI,
Project Phases

¼ 235) VD2 (n ¼ 550) Total (N ¼ 941)

0.0) 52 (9.5) 52 (5.5)
0.0) 136 (24.7) 136 (14.5)
0.0) 205 (37.3) 205 (21.8)
100.0) 157 (28.5) 548 (58.2)

40.9) 183 (33.3) 325 (34.5)
59.1) 367 (66.7) 616 (65.5)

13.4) 58.5 (13.8) 59.3 (13.4)
88.0 22.0–90.0 20.0–90.0

0 1
4.8) 25.3 (4.6) 25.0 (4.5)
49.9 15.7–48.9 13.9–49.9

6553.3) 400.9 (2365.8) 489.3 (3781.3)
,060.0 0.6–50,000.0 0.3–98,060.0

9 17
61.4) 405 (74.9) 630 (68.2)
38.6) 136 (25.1) 294 (31.8)

8 349 586
1.3) 4 (2.0) 5 (1.4)
0.0) 2 (1.0) 4 (1.1)
14.3) 33 (16.4) 60 (16.9)
36.4) 64 (31.8) 128 (36.1)
31.2) 30 (14.9) 72 (20.3)
16.9) 68 (33.8) 86 (24.2)

5 352 684
6 (3.0) 6 (2.3)
5 (2.5) 9 (3.5)

99 (50.0) 154 (59.9)
10 (5.1) 10 (3.9)
78 (39.4) 78 (30.4)
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Table 1.Continued

Variable ID (n ¼ 156) VD1 (n ¼ 235) VD2 (n ¼ 550) Total (N ¼ 941)

Lymph node invasion
Missing or N.A.b 97 235 408 740
N0 19 (32.2) 0 44 (31.0) 63 (31.3)
N1 40 (67.8) 0 77 (54.2) 117 (58.2)
X 0 (0.0) 0 21 (14.8) 21 (10.4)

Metastases
Missing or N.A.b 97 235 351 683
M0 54 (91.5) 0 125 (62.8) 179 (69.4)
M1 3 (5.1) 0 67 (33.7) 70 (27.1)
X 2 (3.4) 0 7 (3.5) 9 (3.5)

Tumor grading
Missing or N.A.b 107 235 360 702
G1 0 (0.0) 0 6 (3.2) 6 (2.5)
G2 27 (55.1) 0 69 (36.3) 96 (40.2)
G3 22 (44.9) 0 69 (36.3) 91 (38.1)
G4 0 (0.0) 0 3 (1.6) 3 (1.3)
X 0 (0.0) 0 43 (22.6) 43 (18.0)

Diagnosis
CP 79 (50.6) 79 (33.6) 144 (26.2) 302 (32.1)
NPC 0 (0.0) 79 (33.6) 204 (37.1) 283 (30.1)
PDAC 77 (49.4) 77 (32.8) 202 (36.7) 356 (37.8)

NOTE. Data are presented as n (%), unless indicated otherwise.
N.A., not applicable; SD, standard deviation; UICC, Union for International Cancer Council.
aUICC TNM Classification, 6th Edition.
bN.A. for benign diseases.

1410 Mahajan et al Gastroenterology Vol. 163, No. 5

PANCREAS
23 kg/m2) were analyzed to assess the effect of different blood
collection tubes, short-term room temperature storage, and
storage at �20�C. To understand the influence of fasting or no-
fasting status on metabolic profiles, a second group of 20
subjects (median age, 38 years; median BMI, 24 kg/m2) EDTA
plasma samples were collected after overnight fasting, 1.5 to
2.5 hours after breakfast, and 1.5 to 2.5 hours after a light
lunch. The potential effect of common comedications was
analyzed by using previously collected multicenter samples
obtained from the VD2 cohort.

Plasma Analyte Analysis
Targeted quantitative plasma analyte analysis was per-

formed on a liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS) platform. Human plasma samples were
prepared and were analyzed by LC-MS/MS as follows: 20 mL
human plasma was mixed with 100 mL internal standard
mixture (alanine d4: 12.24 mg/mL and ceramide
[d18:1,C17:0]: 0.154 mg/mL were dissolved in dimethyl sulf-
oxide, methanol, dichloromethane, and water [in a ratio
12.3:2.2:1.1:1, v/v/v/v]), and 700 mL extraction solvent con-
taining methanol and dichloromethane in a ratio of 2:1 (v/v).
After the samples were thoroughly mixed at 20�C for 5 mi-
nutes, the precipitated proteins were removed by centrifuga-
tion for 10 minutes. Then, 150 mL of the liquid supernatant
was transferred to an appropriate glass vial for further
derivatization with dansyl chloride, which allows the dansy-
lation of primary and secondary amine groups. For this pur-
pose, 25 mL of 0.2 mol/L sodium bicarbonate buffer (dissolved
in water), 25 mL of 4 mg/mL dansyl chloride solution
(dissolved in acetonitrile), and 50 mL dimethyl sulfoxide were
added. The dansylation was performed under constant mixing
at 35�C for 150 minutes.

The obtained reaction mixtures were analyzed by LC-MS/
MS. The LC-MS/MS systems consisted of an Agilent 1100 LC
system (Agilent Technologies, Waldbronn, Germany) coupled
with an API 4000 MS (ABSCIEX, Toronto, ON, Canada). High-
performance LC analysis was performed on commercially
available reversed-phase separation columns with C18 sta-
tionary phases (Phenomenex Ascentis Express C18, 2.7 mm,
50 � 2.1 mm). Up to 2 mL of the above-mentioned so-obtained
reaction mixture was injected and separated by gradient
elution using a mixture of solvents consisting of methanol,
water, formic acid, 2-propanol, and 2-methoxy-2-
methylpropane at a flow rate of 600 mL/min (starting from
0% solvent B to 100% solvent B in 7 minutes): Solvent A: 400 g
methanol, 400 g water, 1 g formic acid; solvent B: 400 g 2-
methoxy-2-methylpropane, 200 g 2-propanol, 100 g methanol,
and 1 g formic acid.

MS was performed by electrospray ionization in positive
ion mode using multiple reaction monitoring. Electrospray
ionization detected sphingomyelins with equal numbers of
carbons and double bonds, and these isobaric species were
not separated chromatographically. Quantitative evaluations of
all metabolites with commercially available quantification
standards were achieved by external calibration in delipidized
plasma (ceramide [d18:1,C17:0] was used as the external
standard for sphingomyelins, and ceramide [d4-alanine] was
used as the external standard for amino acids and
ethanolamines).
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Imputation, Scaling, and Predictive Modeling
All analyte profiling data were log10-transformed to achieve

an approximately normal distribution. The log10-transformed,
autoscaled, and median imputed ratios were used for further
analysis.

The elastic-net generalized linear regression modeling, a
linear combination of L1/L2 regularization, was used for
building the predictions to stratify patients with PDAC from CP
and NPC, based on metabolic profiles in the ID cohort obtaining
a predictive model (i-Metabolic signature). The penalties were
determined for both L1 and L2 norms using a cross-validation
grid search with the R glmnet package (R Foundation for Sta-
tistical Computing, Vienna, Austria). Optimal cutoff for the i-
Metabolic signature was analyzed by a cost-sensitive approach
using the cost function16 on the VD1 data set, with approxi-
mation of cost of false positive as 1, whereas the cost of false
negative was set as 2. Performance statistics of the i-Metabolic
signature at optimal cutoff was analyzed using 10-fold cross-
validation and bootstrapping for the VD1 and VD2 cohort.

To optimize the number of variables without compromising
the performance, the base ML model was constructed using the
H2O.ai platform (https://h2o.ai/) automatically selecting (with
h2o.automl) the best suitable ML method on the ID cohort. To
save computational time, the selection of methods was limited
to generalized linear models, random forests, and gradient-
boosting machines. The parameters of each method were
optimized by using an internal 10-fold cross-validation on the
ID cohort. The optimal method was then applied to the VD1
cohort to assess final performance and optimal cutoff using the
F1 score.

In each loop, the best performing predictive model was
identified from all obtained predictive models using the per-
formance measure logloss. Variables associated with the base
ML model were selected according to their scaled importance
>0.05 to obtain an iterated ML model that was based on a
reduced set of variables (n ¼ 11). To obtain the best per-
forming predictive model based on a minimalistic set of vari-
ables, variables of the iterative ML model were ranked
according to their scaled importance. Leaving out the lowest-
ranking variable, a new predictive model was trained on the
ID cohort, and its performance evaluated on the VD1 cohort.
Again, the lowest-ranking variable on the remaining set of
variables was removed and a new predictive model was
generated and tested in the same way. This procedure was
repeated until no variable remained. Out of these predictive
models, the m-Metabolic signature was selected, which best
matched the tradeoff between good performance and minimal
set of variables. Performance statistics of the i-Metabolic
signature at optimal cutoff were analyzed using 10-fold cross-
validation on VD1 and VD2 cohort.

Interference Testing
With the aim to optimize the m-Metabolic signature, the

effect of interference was tested with the Assurance Interfer-
ence kit (Sun Diagnostics, New Gloucester, ME) according to the
manufacturer’s instructions. Interferents included hemolysate,
conjugated and unconjugated bilirubin, total proteins, and
triglyceride-rich lipoproteins. For the interference analysis, 2
different pooled plasma samples were used (pool 1 and pool 2).
Pools were corrected for baseline interferent levels and spiked
by interferent solutions and subjected to metabolic profiling, as
described above. Relative fold-changes of obtained metabolites
were quantified against naïve high and low pools, respectively.
Furthermore, the interferent solution was spiked in saline so-
lution and subjected to metabolic profiling to understand in-
fluence of the interferent on metabolic profiling. The total
allowable error (TAE) was calculated according to the EP07
guidelines (Clinical and Laboratory Standards Institute), sepa-
rately for each metabolite and for each interferent: TAE ¼
Experimentally determined bias ± 3 SD, with SD indicating the
standard deviation. From the total allowable error, the
acceptable limit (Dmin and Dmax) was calculated. If the lower
confidence interval (CI) limit of the fold-change was lower than
Dmin or the upper CI limit of the fold-change was above the
Dmax, the difference was considered clinically significant.17

Statistical Analyses
All data processing, modeling, and assessment of perfor-

mances was performed using R 4.0.4 software (2021-02-15,
“Lost Library Book”) and visualized in RStudio 1.3.959 (Boston,
MA). No unique algorithm was developed for this study. All
data, R scripts, or functions used are outlined under https://
github.com/mayerlelab/assayDevelopment.git. Comparative
receiver operating characteristics curve testing was performed
using bootstrap testing for a difference in the area under the
curve (AUC) of all receiver operating characteristics curves. For
preanalytical and comedication studies, Wilcoxon’s rank sum
test, followed by Bonferroni’s correction, were performed for
comparison with baseline. P values of <.05 were considered
statistically significant if appropriate for the tests used.

Results
Patient Characteristics

The characteristics of the study participants for each
cohort are listed in Table 1 and Figure 1A. There were 356
patients with pathologically confirmed PDAC recruited in 3
independent multicenter prospective cohorts. In the ID
cohort, 79 patients with CP were recruited, and in the VD1
and VD2 cohorts, 79 and 144 patients with CP, balanced for
age and sex, were recruited, respectively. Additionally, in
the VD1 and VD2 cohorts, 77 and 204 patients with NPC or
liver diseases were enrolled. Only EDTA plasma metabolite
profiling from all of the enrolled patients was considered for
the analysis. A cumulative PDAC incidence of 1.95% in pa-
tients diagnosed with CP8,10 was set for the analysis of
model performance.

Improvement and Independent Validation of
Metabolic Signatures

Previously, we delineated the MxPancreasScore that
could distinguish between PDAC and CP with greater ac-
curacy than preexisting conventional tumor markers as well
as microRNA panels.10 Although efficient, the MxPancreas-
Score required 5 different analytical platforms and multiple
analytics runs, thus impeding clinical applicability and
increasing diagnostic test expenditure. Any widely appli-
cable PDAC blood diagnostic test should approach the
screening level at V400 assuming a quality-adjusted life-
year cost of V13,500.18 Taking these criteria into

https://h2o.ai/
https://github.com/mayerlelab/assayDevelopment.git
https://github.com/mayerlelab/assayDevelopment.git
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Figure 1. Consolidated Standards of Reporting Trials diagram of patients recruited for metabolome analysis and downstream
identification of our improved metabolic biomarker signature. (A) All patients were recruited prospectively in three different
independent trials (ID cohort, VD1, and VD2). The best performing model was identified using the ID cohort and tested for its
efficiency in the VD1 cohort. Patients for the VD2 cohort were recruited independently as a second independent cohort to
evaluate model performance. (B) Schematic workflow illustrates the identification of metabolic biomarker signatures using
elastic net regression (i-Metabolic signature) and using automl for the iterative reduction of variables to identify the m-
Metabolic signature.
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consideration we only considered those analytes that could
be measured on a single analytical platform in 1 run to be
included in the metabolic signature. The improved meta-
bolic signature (i-Metabolic signature), using feature
reduction and elastic net regression, consisted of 12 analy-
tes plus CA19-9 (Figure 1B and Figure 2A).

The i-Metabolic signature distinguished PDAC from CP
with an AUC of 0.972 (95% CI 0.971–0.973), significantly
outperforming CA19-9 alone with an AUC of 0.893 (95% CI,
0.891–0.895, P ¼ .003) in the ID cohort (Figure 2B). The
optimum cutoff for the i-Metabolic signature was set to
�0.572 based on the implementation of the cost functions
for the VD1 cohort. The cutoff was then transferred to all
cohorts, and the diagnostic performance was evaluated. This
revealed a sensitivity of 90.8% (95% CI, 90.6%–91.0%) at a
specificity of 87.7% (95% CI, 87.5%–87.9%) for the i-
Metabolic signature, whereas for CA19-9 alone, a sensitivity
of 75.1% (95% CI, 74.8%–75.4%) at a specificity of 75.9%
(95% CI, 75.6%–76.2%; P < .001) was demonstrated for the
VD1 cohort (Figure 2B).
PA
NC

RE
AS
Validation of the Clinical Performance of the i-
Metabolic Signature in the Validation 2 Cohort

In the VD2 study, the i-Metabolic signature distin-
guished between PDAC and CP with an AUC of 0.922
(95% CI, 0.921–0.923), at a specificity of 92.2% (95% CI,
92.1%–92.3%), and a sensitivity of 79.6% (95% CI,
79.4%–79.8%), resulting in a negative predictive value
(NPV) of 99.5% (95% CI, 99.5%–99.5%), when assuming
a cumulative incidence of 1.95% of PDAC in the CP
population (Figure 2B and Table 2). The diagnostic ac-
curacy was calculated with 86.3% (95% CI, 86.2%–
86.4%). In the VD2 cohort, for CA19-9 alone, an AUC of
0.828 (95% CI, 0.826–0.829; P < .001) was detected.
Furthermore, the i-Metabolic signature detected resectable
PDAC (82 of 104) with an accuracy of 85.3% (95% CI,
85.2%–85.5%). Of note, the i-Metabolic signature
demonstrated a diagnostic accuracy of 89.9% (95% CI,
89.7%–90.0%) in a subset analysis of patients with CA19-
9 levels below the clinical cutoff of <37 U/mL (Table 2
and Supplementary Table 1).

When the i-Metabolic signature was analyzed for the
discriminatory strength between PDAC and the different
control cohorts of NPC or CP, no significant difference be-
tween CP and NPC was observed (Figure 2C). Comparison of
the i-Metabolic signature with CA19-9 alone (cutoff, 37 U/
mL19) revealed that using the i-Metabolic signature would
have diagnosed an additional 15.3% of patients with PDAC
(marked in orange) and would have correctly identified
11.8% patients with CP, who would have been mis-
diagnosed as patients with PDAC (marked in green) using
CA19-9 alone in the VD2 cohort (Figure 2D).

Because CA19-9 is an important component of the
i-Metabolic signature, we addressed the question of per-
formance status of the i-Metabolic signature in CA19-9
nonsecretory patients. CA19-9 levels <2 U/mL were
considered likely to be patients negative for Lewis antigen a
and b, and thus may lead to false-negative results.20 We
observed that the i-Metabolic signature distinguished pa-
tients with PDAC from patients with CP with an AUC of
0.938 (95% CI, 0.937–0.939) in Lewis-positive patients with
�2 U/mL CA19-9 levels. The i-Metabolic signature without
CA19-9 in Lewis-negative patients with CA19-9 levels <2 U/
mL stratified PDAC from CP with an AUC of 0.978 (95% CI,
0.977–0.980), with a specificity of 85.4% (95% CI, 84.8%–
86.1%) at a sensitivity of 100% with an optimal cutoff of
�0.362, resulting in accuracy of 91.4% (Figure 3A).
Optimization of the i-Metabolic Signature
To further reduce the analyte number of the i-Metabolic

signature to ease assay generation and to reduce costs, and
so improve generalizability, we compiled an automatic ML-
aided (automl) model incorporating all the analytes from
the i-Metabolic signature. The workflow for h2o-aided
automl is graphically represented in Figure 1B. We
compiled the base ML model by training it on the ID cohort.
To further advance the base ML model generation, we
focused on a smaller set of variables by iteratively reducing
variables with variable importance of <0.05, resulting in a
reduction of variables with least importance. We obtained a
minimalistic ML model (m-Metabolic signature) comprising
4 metabolites plus CA19-9 (Figure 3B). This signature suc-
cessfully discriminated PDAC from controls with an AUC of
0.904 (95% CI, 0.901–0.908) in the VD2 cohort (Figure 3C,
Table 2, and Supplementary Table 2). Hitherto, the optimal
cutoff for the m-Metabolic signature was set to �0.676
based on the performance metric max-F1. On transfer of the
cutoff to the VD2 cohort, the m-Metabolic signature
exhibited an accuracy of 82.4% (95% CI, 82.0%–82.8%) at a
sensitivity of 77.3% (95% CI, 76.5%–78.1%) and specificity
of 89.6% (95% CI, 88.8%–90.4%), with an NPV of 99.5%
(Table 3). Of note, all the metabolites in the m-Metabolic
signature can be measured using a single platform in 1
analytical run and minimizing assay costs without
compromising performance.

The m-Metabolic signature was then evaluated in the
VD2 cohort with respect to our previously published
MxPancreasScore.10 The MxPancreasScore discriminated
PDAC from CP with an AUC of 0.908 (95% CI, 0.907–0.909),
matching the performance of the m-Metabolic signature
(P ¼ .827) (Supplementary Figure 1A). For the m-Metabolic
signature we detected a false-negative rate of 10.4% vs
17.3% (Supplementary Figure 1B) in the MxPancreasScore.

Subsequently, to further evaluate the performance of the
m-Metabolic signature, we performed a subset analysis in
Lewis-negative patients. In this the m-Metabolic signature
distinguished patients with PDAC from patients with CP
with an AUC of 0.924 (95% CI, 0.920–0.927) in “Lewis
positive” patients, whereas the m-Metabolic signature
without CA19-9 in Lewis-negative patients displayed an
AUC of 0.805 (95% CI, 0.79–0.818) and a diagnostic accu-
racy of 74.5% (95% CI, 72.3%–76.7%). Thus, the i-Meta-
bolic signature without CA19-9 did not lose accuracy
(Supplementary Figure 2). To enhance readability of the
different metabolic signatures presented here in Lewis-
negative patients, we delineated a decision tree for the
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Figure 2. Identification of improved metabolic biomarkers signature (i-Metabolic signature). (A) List of metabolites in the i-
Metabolite signature. Direction refers to direction of fold-change of the respective metabolite in PDAC compared with NPC
disease controls. Metabolites marked in blue are part of the m-Metabolic signature. (B) Comparative receiver operating
characteristics (ROC) curves of i-Metabolic signature and CA19-9 levels in the ID, VD1, and VD2 cohorts. P values are reported
for comparative ROC curves. (C) Box plot illustrates distribution of predictive score of the i-Metabolic signature in the VD2
cohort. The diagnostic cutoff of the i-Metabolic signature was set to �0.572 (horizontal dotted line). The horizontal line in the
middle of each box indicates the median; the top and bottom borders of the box mark the 75th and 25th percentiles,
respectively, and the vertical linesmark the minimum and maximum of all the data. Wilcoxon’s rank sum test in the box plot. (D)
Scatter plot demonstrates performance of the i-Metabolic signature. The y-axis depicts the predictive score of the i-Metabolic
signature, whereas the x-axis represents CA19-9 levels. The orange encircled points denote subjects that benefit from the i-
Metabolic signature in predicting PDAC, and green encircled points represent subjects that benefit from the i-Metabolic
signature in prevention of misdiagnosis of PDAC.
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Table 2.Performance Characteristics of the i-Metabolic Signature at the Cutoff of >0.572 and Carbohydrate Antigen 19-9 alone at the Cutoff of >37 U/mL for the
Validation 2 Cohort

Variable (n ¼ PDAC/
Total) Model AUC Sensitivity Specificity PPV NPV Accuracy

All stages (n ¼ 202/346) i-Metabolic
signature

0.922 (0.921–0.923) 0.796 (0.794–0.798) 0.922 (0.921–0.923) 0.178 (0.175–0.180) 0.995 (0.995–0.995) 0.863 (0.862–0.864)

CA19-9 alone 0.828 (0.826–0.829) 0.673 (0.671–0.675) 0.851 (0.849–0.853) 0.085 (0.084–0.086) 0.992 (0.992–0.992) 0.760 (0.759–0.761)

Resectable tumors, stages
IA-IIB (n ¼ 104/248)

i-Metabolic
signature

0.909 (0.908–0.910) 0.853 (0.851–0.854) 0.854 (0.852–0.857) 0.110 (0.108–0.112) 0.996 (0.996–0.996) 0.853 (0.852–0.855)

CA19-9 alone 0.832 (0.830–0.833) 0.777 (0.774–0.779) 0.738 (0.735–0.741) 0.057 (0.056–0.058) 0.994 (0.993–0.994) 0.762 (0.760–0.763)

Detectable CA19-9
(>2 U/mL)

(n ¼ 190/322)

i-Metabolic
signature

0.938 (0.937–0.939) 0.843 (0.841–0.845) 0.922 (0.921–0.923) 0.186 (0.183–0.188) 0.996 (0.996–0.996) 0.887 (0.886–0.889)

CA19-9 alone 0.866 (0.865–0.867) 0.698 (0.696–0.701) 0.852 (0.850–0.853) 0.088 (0.087–0.089) 0.993 (0.992–0.993) 0.779 (0.777–0.780)

CA19-9 (<37 U/mL)a

(n ¼ 58/177)
i-Metabolic

signature
0.879 (0.877–0.882) 0.651 (0.645–0.657) 0.944 (0.942–0.945) 0.204 (0.200–0.209) 0.992 (0.992–0.992) 0.899 (0.897–0.900)

NOTE. Data are presented with the 95% CI.
PPV, positive predictive value.
aCA19-9 alone is not applicable for CA19-9 <37 U/mL class prediction.
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signature or i-Metabolic signature, with and without CA19-9, based on CA19-9 secretion status.
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use the m-Metabolic and i-Metabolic signature based on
CA19-9 levels (Figure 3D).

Evaluation of Preanalytical and Analytical
Confounder Performance of the m-Metabolic
Signature

To evaluate the preanalytical robustness, efficiency, and
practical feasibility of the m-Metabolic signature for clinical
routine use, the influence of different sample collection tube
types, short-term storage at room temperature, storage
at �20�C, influence of shipping, effect of hemolytic, lipemic,
and icteric samples, influence of patients’ fasting status, and
influence of common comedications and comorbidities were
tested.

The influence of different blood collection tubes, as
outlined in Supplementary Figure 3A, was tested in blood
samples of 20 self-reported healthy subjects in the morning
after overnight fasting. On metabolome analysis, we did not
detect a significant deviation on the prediction probability in
blood from different collection tube types (Supplementary
Figure 3B). Because EDTA plasma is the preferred sample
matrix for the m-Metabolic signature, room temperature
storage for up to 48 hours was systematically studied, as
shown in Supplementary Figure 4A. We did not detect sig-
nificant changes in the prediction probability score upon
incubation of plasma (Supplementary Figure 4B) or EDTA
blood (Supplementary Figure 4C) over a period of 48 hours.
To exclude the influence of short-term storage at �20�C,
due to unavailability of ultralow temperature freezers in
some clinical centers, performance of the m-Metabolic
signature after storage over a 6-week period was evaluated.
We did not detect a significant deviation in the prediction
probability score of the m-Metabolic signature after short-
term storage (Supplementary Figure 4D).
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Because most patients with PDAC with a tumor mass in
the head of the pancreas present with obstructive jaun-
dice21 and hemolysis and jaundice and hyperlipemia are the
most common causes of interference for accurate diagnostic
prediction,22 we evaluated changes in metabolites associ-
ated with the m-Metabolic signature in hemolytic, icteric,
lipemic, and high protein–containing samples. We spiked
the 2 different human plasma pools with interferents.
Although we did not observe a significant alteration in
clinically relevant metabolites in hemolytic samples in both
the high and the low pool, we observed significant alter-
ations of complex lipid metabolites and fatty acids after
spiking with triglycerides-containing lipoproteins in both
plasma pools (Figure 4A). After correcting the interference
by analytical methods, as expected, especially, lipoprotein
spiking induces several fold-changes in the abundance of
metabolites associated with the m-Metabolic signature
(ceramide [d18:1,C24:0]), lysophosphatidylethanolamine
[C18:0], phosphatidylethanolamine [C18:0,C22:6], and
sphingomyelin [d17:1,C16:0]) (Figure 4B). We mapped out
the influence of the fasting status on the m-Metabolic
signature by evaluating the predictive potential of the m-
Metabolic signature in 20 self-reported healthy subjects, as
referred to in Figure 4C. We detected in those nonfasted
subjects an w50% decreased m-Metabolic signature prob-
ability prediction score, likely resulting in an increased
number of false-negative subjects (Figure 4D).

According to the European Bioanalysis Forum recom-
mendation, testing potential interference of comedications
during assay development and validation is essential.23 The
potential effect of common comedications on the m-Meta-
bolic signature was analyzed in the VD2 cohort. We
analyzed 8 commonly used classes of drugs: proton pumps
inhibitors, acetylsalicylic acid, pancreatic enzymes, and
antihypertensive, antidiabetes, anticoagulant, lipid-lowering,
and antigout drugs. Hitherto, we observed no relevant and
statistically significant changes in the distribution of the
prediction probability score of the m-Metabolic signature in
discriminating PDAC from CP and NPC in users of these
comedications (Figure 4E). In summary, the m-Metabolic
signature in nonfasted patients may lead to a higher false-
negative rate. With the exemption of lipemic plasma
(triglycerides containing lipoproteins), the m-Metabolic
signature showed robustness and stable performance under
all conditions tested, rendering it a useful tool for clinical
practice.
Discussion
To develop an assay for clinical routine use (Clinical

Laboratory Improvement Amendments of 1988 [CLIA]
application), we wanted to optimize and prospectively
validate our previously described metabolic biomarker
signature (MxPancreasScore),10 which distinguishes pa-
tients with PDAC from those with CP. The medical need of
such an assay is high, because >90% of patients with PDAC
die of the disease, making earlier detection of the disease
critically important.24 Diagnosis of PDAC is further impeded
in the presence of CP. Our findings establish the value of a
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Figure 4. Robustness and optimization of the m-Metabolic signature for use in clinical routine. (A) Bar plot illustrates the
number of clinically and statistically significant metabolites per metabolite ontology class after spiking of interferents in high
concentrations (P0011) and in lower concentrations (P0012). Interferents spiked were hemolysates and conjugated and un-
conjugated bilirubin, proteins, and triglycerides. (B) Influence of spiking of interferents on the composition of the m-Metabolic
signature. Triglycerides exert a considerable influence on the level of lipid metabolites in the m-Metabolite signature. N.D., not
detected; PE, phosphatidylethanolamine. Wilcoxon’s rank sum test for comparative log fold-changes. (C) Schematics and
study design testing the influence of fasting and nonfasting on the m-Metabolic signature. (D) Box plot illustrates the effect of
nonfasting on the distribution of the prediction probability score of the m-Metabolic signature. The diagnostic cutoff of the m-
Metabolic signature is based on the max F1 threshold and set to �0.676 (horizontal dotted line). The connecting lines per dot
depict intrapatient variation. (E) Box plots depict the influence of comedications on the prediction probability of the m-
Metabolic signature in discriminating PDAC from CP and NPC disease controls. Major comedications classes tested are
proton pump inhibitors, acetylsalicylic acid, supplementary pancreatic enzymes, antihypertensive drugs, antidiabetes drugs,
anticoagulants, lipid level–lowering drugs, and antigout medications. The diagnostic cutoff of the m-Metabolic signature is
marked using a horizontal dotted line. The horizontal line in the middle of each box indicates the median; the top and bottom
borders of the box mark the 75th and 25th percentiles, respectively, and the vertical lines mark the minimum and maximum of
all the data. *P < .05 considered significant.
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plasma-based m-Metabolic signature to discriminate PDAC
from CP at the time of presentation. CA19-9 is the only
blood-based tumor marker routinely used in the manage-
ment of PDAC. However, limited sensitivity of CA19-9 in
early-stage PDAC leads to false-negative results in patients,
especially in subjects negative for Lewis antigen a and b.
Suboptimal specificity in benign inflammatory pancreatic
diseases and biliary obstruction limits its use for differential
diagnoses.25–27

Previously, we delineated the MxPancreasScore, which
distinguishes PDAC from CP with much greater accuracy
than achieved by CA19-9 alone.10 Of 477 metabolites from
10 ontology classes, 29 metabolites were significantly
altered between PDAC and CP in the serum and plasma of
the training set. The Elastic Net algorithm identified 9 me-
tabolites plus CA19-9 (MxPancreasScore), which discrimi-
nated PDAC from CP with an AUC of 0.96. The study was
designed to exclude PDAC in patients with CP, with an
emphasis placed on optimizing the NPV.10,28 The prototype
MxPancreasScore necessitated 5 different analytical plat-
forms and multiple runs, resulting in a relatively high
diagnostic test expenditure.

In the present study,we optimized themetabolic signature
using feature reduction and elastic net regression, resulting in
12 metabolites plus CA19-9 (i[mproved]-Metabolic signa-
ture). The i-Metabolic signature in the present study was ac-
quired by using a cost-sensitive approach.16 To this end, we
found that with an optimal cutoff of �0.572, the i-Metabolic
signature discriminates patients with PDAC from those with
CPwith a specificity of 92.2%(NPV, 99.6%)and a sensitivity of
80% in an ID cohort. The i-Metabolic signature was built and
selected on data from the ID cohort (n¼ 158) and VD1 cohort
(n ¼ 233), before the VD2 cohort (n ¼ 550) was analyzed;
therefore, our performance estimates were unbiased.

Variable and model performance optimization is an
essential part of biomarker discovery.29 To reduce over-
fitting and bias as well as to improve diagnostic measures
and provide better informed, personalized patient-specific
recommendations, we constructed h2o, an automatic ML
platform driven to delineate and cross-validate the perfor-
mance of the m(inimalistic)-Metabolic signature in an in-
dependent data set.30 The optimal cutoff of the m-Metabolic
signature was established, characterizing the performance
of the m-Metabolic signature in the VD1 cohort by means of
thresholding the F1 score31 with �0.676 as the cutoff. This
cutoff was transferred to the VD2 cohort.

We recapitulated the performance of the i-Metabolic
signature for the minimalistic ML-derived m-Metabolic
signature, which now consists of only 4 metabolites plus
CA19-9. The m-Metabolic signature distinguished patients
with PDAC from patients with CP with a specificity of 90%
(NPV, 99.5%) and a sensitivity of 78% in the ID cohort,
matching its performance with the previously reported
MxPancreasScore in the VD2 cohort. Of note, caution is
needed because for any validation of diagnostic markers, the
ultimate clinical usefulness of these biomarkers is influ-
enced by the prevalence of the disease in the tested cohort.

We have therefore set up a prospective multicenter trial,
Prospective Study on a Plasma Metabolome Multimarker
Panel MxP® PancreasScore for the Diagnosis of Pancreatic
Cancer in Cohorts at Risk (META-PAC), recruiting patients
with an undefined pancreatic mass on imaging in an
enrichment design to establish the clinical use case (Deut-
sche Register Klinischer Studien registration
#DRKS00010866). The recruitment goal of 1376 patients
was reached in March 2020, and results are awaited after a
follow-up period of 24 months.

The performance of the m-Metabolic signature was
significantly better than CA19-9 alone in distinguishing
PDAC from matched healthy subjects or CP, indicating po-
tential relevance for the detection of early-stage PDAC.
Taking into consideration the relative changes in metabo-
lites associated with the m-Metabolic signature to controls
and CP, the m-Metabolic signature might be suitable for the
assessment of PDAC among patients with increased risk,
such as a family history for PDAC,32 CP,33 new-onset dia-
betes,34,35 and cystic lesions.36

The response of the human plasma metabolome to
preanalytical variation demands implementation of quality
assurance and quality control to guarantee reproducible and
reliable results.37 Although the m-Metabolic signature
showed robust performance, parameters that might jeop-
ardize the quality and performance of the signature needed
to be evaluated. Several important preanalytical factors that
may seriously influence plasma metabolome profiles include
mode of sample collection, collection time, processing de-
lays, particularly at room temperature, repeated freeze/
thaw cycles, and subsequent handling of the samples and
transportation. The preanalytical challenges for metab-
olomics mainly lay in the stability of metabolites and cross-
reactivity of metabolites during handling.38,39 Taking the
differential availability of sample collection tubes and stor-
age facilities in clinical routine into consideration, the m-
Metabolic signature proved to be stable under different
sample processing and transportation conditions.

Interference of hemolysis, jaundice, and lipemia poses
important preanalytical hurdles in metabolome profiling.40

Hemolysis is known to cause frequent problems in meta-
bolic analysis because it leads to the release of proteins,
enzymes, and metabolites in plasma.37,41 The presence of
jaundice is one of the major limiting factors in the
discrimination of PDAC from CP, because jaundice results in
altered hepatic lipid metabolism and reduced biliary
excretion of lipids and glycolipids, including CA19-9.42

Spiking with interferents revealed that although there is a
change in global metabolic profiling in hemolytic and icteric
samples, differences with respect to components of the m-
Metabolic signature were not clinically relevant. Lipemic
samples, considering the lipid-heavy m-Metabolic signature,
can exert significant interference with detection and quan-
tification of components of the m-Metabolite signature. As
such as an expected finding, lipoprotein spiking exerted a
considerable clinically significant bias on the lipid metabo-
lites, and thus performance of the m-Metabolite signature in
lipemic samples should be interpreted with caution.

Fasting status has been shown to contribute only
marginally to the variability in the overall metabolome39;
still, it had a significant influence on lipid metabolites.43
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Because the m-Metabolic signature consists of lipid metab-
olites, fasting status was considered in the study design. We
detected a significant increase in false-positive results in
nonfasted patients using the m-Metabolic signature.

Growing apprehension for the interference of commonly
used comedications on metabolite analytics of the m-
Metabolite signature prompted us to study the impact of
xenobiotics, including various medications and their me-
tabolites, on metabolic homeostasis.44 In our systematic
study, we did not observe significant alterations in perfor-
mance of the m-Metabolic signature in patients treated for
comorbidities with comedications. Systematic studies such
as ours are key for designing and validating diagnostic
metabolic signatures to avoid systematic bias of metabolites
concentration due to interferents.

An important strength of the present study was the large
size of the 3 independent prospective data sets used in
model optimization. Although promising PDAC plasma bio-
markers have been previously reported,45–48 this is the first
independent prospective sequential validation study where
a previously identified metabolite-based signature10 was
optimized for diagnostic and preanalytical performance and
robustness in clinical routine. By applying rigorous statis-
tical ML-based modeling, we were able to delineate a min-
imalistic predictor signature with statistically significantly
improved performance over CA19-9 alone in distinguishing
PDAC from CP in 3 independent cohorts. More importantly,
even in sialyl Lewis-antigen a nonsecreters, the performance
of our i-Metabolic signature remained unchanged. A word of
caution here is the inherent relatively low number of CA19-
9–negative patients, and this finding needs to be validated in
independent prospective cohorts of Lewis-negative patients.

A challenge for our present study is the validation of
earlier PDAC detection with the metabolic signature. To
demonstrate the utility of the m-Metabolic signature for
PDAC screening, further validation of the m-Metabolic
signature in a prediagnostic cohort of patients with a
pancreatic mass lesion of unknown etiology at risk of PDAC
is underway.

To the best of our knowledge, the only other diagnostic
test as advanced as the m-Metabolic signature is the IMMray
PanCan-d assay (Immunovia, Inc, Marlborough, MA), which
was recently approved for CLIA use in the United States.
Although efficient in screening high-risk patients, its per-
formance for differential diagnoses has not been studied.49

In addition, the medical need of identifying the w1% of
patients with newly diagnosed diabetes mellitus in a lean
population aged >50 years has been recognized, and several
important studies have been published.25,34,50–53 Further-
more, relevant prospective trials are underway.54
Conclusions
Our findings demonstrate the utility of an optimized and

validated m-Metabolic signature to discriminate PDAC from
CP and from NPC subjects. The m-Metabolic signature en-
compasses plasma metabolites that can be analyzed in a
single analytical setting and exhibits robust preanalytical
performance in clinical routine. The m-Metabolic signature
keeps its performance in sialyl Lewis antigen a non-
secreters. Further clinical studies are needed to prove its
reliability, particularly in countries or regions with different
ethnicity or resource settings.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2022.07.047.
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