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A B S T R A C T

On-demand ride-pooling systems have gained increasing attention in science and practice in
recent years. Simulation studies have shown an enormous potential to reduce fleet sizes and
vehicle kilometers traveled if private car trips are replaced with ride-pooling services. However,
existing simulation studies assume operation with autonomous vehicles, with no restrictions on
operational tasks required when the vehicles are operated by manual drivers.

In this article, we simulate and evaluate the operational challenges of non-autonomous ride-
pooling systems through driver shifts and breaks and compare their capacity and efficiency to
autonomous on-demand services. Based on the existing ride-pooling service MOIA in Hamburg,
Germany, we introduce shift and break schedules and implement a new hub return logic to
perform the respective tasks at different types of vehicle hubs. This way, currently operating
on-demand services are modeled more realistically and the efficiency gains of such services
through autonomous vehicles are quantified.

The results suggest that operational challenges substantially limit the ride-pooling capacity
in terms of served rides with a given number of vehicles. While results largely depend on the
chosen shift plan, the presented operational factors should be considered for the assessment
of current operational real-world services. The contribution of this study is threefold: From
a technical perspective, it is shown that the explicit simulation of operational constraints of
current services is crucial to assess ride-pooling services. From a policy perspective, the study
shows the operational challenges of a ride-pooling service with non-autonomous vehicles and
the potential of future autonomous services. Lastly, the paper adds to the literature a practical
ride-pooling simulation use case based on observed real-world demand and shift data.

. Introduction

Over the past years, research interest has evolved around new mobility options such as ride-hailing and -pooling. Several app-
ased dynamic ride-pooling services such as UberPool,1 GrabShare,2 Clevershuttle3 or MOIA4 have been introduced and promise to
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reduce traffic volumes and resources consumed in urban areas, as several car trips can be bundled and replaced by a single pooled
trip. Although several simulation studies have shown the great potential of pooled mobility services to reduce vehicle fleets and
vehicle kilometers traveled (VKT) in urban environments, ride-pooling services are not yet widely available. One reason for this
are the high operating costs of large-scale ride-pooling services, especially for non-autonomous fleets, which are largely defined by
labor costs (Bösch et al., 2018). This makes operators and transit planners all the more hopeful that autonomous vehicles (AVs)
can reduce costs and increase ridership and service coverage. Under these conditions, large-scale ride-pooling systems have a large
potential to provide a reliable and convenient mobility service that is more sustainable than the current urban transport system.

While even experts during the initial euphoria predicted a very early introduction of AVs around the year 2020 (in which the New
ork Times published an article titled ‘‘This Was Supposed to Be the Year Driverless Cars Went Mainstream’’, (Metz and Griffith,
020)), current (public) voices on the introduction of autonomous vehicles seem more conservative, as can be seen in various
tatements (Gessner, 2020; Valdes-Dapena, 2021; Hagon, 2019; Bubbers, 2019; Blouin, 2021). In a study on future implementations
f fully autonomous services, Kannan and Lasky (2020) concluded that ‘‘fully autonomous vehicles are several decades away’’.
he authors base this on shortcomings of current artificial intelligence (AI) technologies and difficulties in fully designing and
esting AVs. Leonard et al. (2020) claim that widespread autonomous driving will take at least a decade. Similarly, Litman (2017)
redicts that AVs will only be introduced in the 2030s or 2040s with limited performance and at high prices. Shladover (2016)
ven goes as far as saying that level 5 autonomous driving might even need until around 2075 to become fully available. In a
ore recent article Shladover (2022) acknowledges that after a ‘hype-cycle’, recent statements have become more realistic. It is

xpected that market entry will now be gradual and that it may take decades for widespread adoption in U.S. cities. The ride-hailing
rovider Uber recently shifted focus from autonomous taxis to easier-to-implement autonomous trucks because of financial and legal
hallenges (Metz and Conger, 2020). MOIA’s latest timeline does not call for AVs to be introduced until 2025 (MOIA, 2021).

As such, current ride-hailing and -pooling companies are likely to continue their service with non-autonomous vehicles and
rivers for at least a few more years. This includes operational challenges such as driver shifts and breaks that have to be taken
nto account for a more realistic modeling perspective of current services. In this study, we present an extension to an existing
ide-pooling extension in the simulation framework MATSim (Horni et al., 2016) to reflect the impact of human driver shifts and
esulting operational trips toward break or hub facilities. In addition, we have adapted the existing MATSim extension for electric
ehicles (EVs) to include charging procedures during the operational breaks.

Using the new extension, we assess the impact of operational challenges faced by on-demand mobility services in a world of non-
utonomous vehicles and compare them to a fully autonomous system. This way, on-demand mobility operators, public authorities
nd transport researchers are able to reassess the introduction of large-scale ride-pooling services, which in the past have been
valuated mainly with simplified assumptions regarding operational complexity.

. Related ride-pooling studies

In order to assess operational challenges, fleet and user behavior or implications on the transport system of a new on-demand
obility system, a common approach is to simulate the proposed service within a transport model. The minimum requirement for

uch simulations is a street network, demand and supply and an assignment logic that matches requests and vehicles.
In recent years, numerous such simulation studies have been conducted in the field of on-demand mobility, often also described

s Autonomous Mobility on-Demand (AMoD) or Shared Autonomous Vehicle (SAV) systems. A broad overview of these simulation
tudies has been provided by Pernestål and Kristoffersson (2019) and Jing et al. (2020), who reviewed 26 and 44 simulation studies
f (autonomous) on-demand services, respectively. While many of these studies deal with unpooled systems, we focus on ride-pooling
ystems here.

.1. Demand and supply characteristics

Table 1 provides an overview of a few selected ride-pooling simulation studies assessing different demand and supply character-
stics. We classify the studies into four demand categories with toy demand being the least and historical on-demand requests being the

most realistic representation of real-world ride-pooling systems. The supply categories Static fleet and Pseudo shifts show if temporal
limitations of vehicles were taken into account.

In the majority of the existing ride-pooling simulation studies, a static vehicle fleet is employed, meaning that the number of
employed vehicles is constant throughout the simulation. Vehicles are assumed to operate autonomously and are constantly available
to transport passengers or to rebalance to areas with high expected demand. In some of the listed studies the impact of varying fleet
sizes is investigated in different scenarios, but during one simulation run the fleet size is static. Some simulation studies evaluated
the on-demand systems using example scenarios with artificially generated demand (Fagnant and Kockelman, 2014; Zhang et al.,
2015; Farhan and Chen, 2018) in toy scenarios. In recent years, more and more studies were conducted in real-world scenarios
taking demand from synthetic populations in transport models. Demand was defined either by a certain proportion of previous
trips being made with ride-pooling or by a mode-choice model. We found by far most studies in these two categories, which seems
to be plausible given the availability of data. Nevertheless, the spatio-temporal distribution of demand may differ from real on-
demand mobility services, so using historical taxi or ride-pooling requests as input to the simulation provides additional realism.
For instance, Alonso-Mora et al. (2017), Ruch et al. (2020), and Ruch et al. (2021) used open taxi data from New York City, Chicago,
and San Francisco. Zwick and Axhausen (2020a) used demand data from the ride-pooling operator MOIA in Hamburg, which also
301

serves as a data source here.
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Table 1
Demand and supply characteristics in existing ride-pooling studies.

Demand

Toy demand Static synthetic
demand

Synthetic demand
based on mode
choice model

Historical
ride-pooling
/taxi requests

Supply

Static fleet Fagnant and Kockelman
(2014)*
Zhang et al. (2015)
Farhan and Chen
(2018)

Merlin (2017)
Fagnant and Kockelman
(2018)
Engelhardt et al.
(2019)
Loeb and Kockelman
(2019)
Vosooghi et al. (2020)
Ruch et al. (2020)
Zwick et al. (2021b)

Hörl (2017)
Martinez and Viegas
(2017)
Vosooghi et al. (2019a)

Gurumurthy et al.
(2020)
Wilkes et al. (2021)
Kaddoura and
Schlenther (2021)
Zwick et al. (2021b)

Alonso-Mora
et al. (2017)
Ruch et al.
(2020)
Zwick and
Axhausen
(2020a)

Pseudo-shifts Martinez
et al. (2015)
Bischoff et al.
(2017)
Lokhandwala
and Cai
(2018)
Zwick and
Axhausen
(2020b)

Fewer studies taking into account shift times of drivers were found. Bischoff et al. (2017) used historical taxi demand and supply
rom Berlin, and Zwick and Axhausen (2020b) used historical demand and shift plans of MOIA in Hamburg to assign a service time
o each simulated vehicle with begin and end times according to the data. While the temporal distribution of vehicles approximate
he real-world systems, there are no operational duties for shift breaks or hub returns at an end of a shift taken into account. The
ame accounts for a study of Martinez et al. (2015) who extracted taxi demand from a mobility survey and employed shared taxis
ith drivers weighing up the benefits of cruising or heading to a taxi rank to find new customers. Driver shifts were modeled in

hat a cab becomes inactive as soon as the shift ends and returns either to the cab company or, in the case of an independent cab, to
randomly chosen network node. The model did not include an actual dynamic traffic assignment and assumed fixed travel times.

okhandwala and Cai (2018) modeled taxi shifts in New York City based on aggregated vehicle availability data. They compared the
ystem with driver shifts with an autonomous service where all vehicles are active during the entire simulation time. They reported a
ower coverage of low-demand areas in the shift service due to the restricted fleet size, since vehicles tend to stay in areas with high
emand. However, operational challenges that come with driver shifts such as hub returns for breaks and shift changes were not
odeled. Additionally, we found two simulation studies with unpooled fleets where pseudo shifts are applied: Wittmann et al. (2020)
resent a study dealing with taxi fleet optimizations. Here, the authors dynamically adjust fleet sizes based on observed numbers
f active taxis. Similarly, Jäger et al. (2017) simulate taxis that sample a desired shift duration at their respective operation start
ime. Long durations are possible to represent two-shift operations. However, breaks, changeover times and hub returns are ignored
n both studies.

Overall, we did not find any studies simulating the operational challenges of hub returns for breaks and shift changes for on-
emand mobility services. A general lack in the existing infrastructure is that analyses mostly focus on single-day evaluations, while
perational differences over a longer time span (such as a full week) are neglected.

.2. Electric vehicles

Another operational challenge of mobility systems arises when electric vehicles (EVs) are used instead of internal combustion
ngine vehicles due to their shorter range and longer charging times compared to refueling. Electric vehicles were taken into account
n multiple ride-pooling simulation studies.

Vosooghi et al. (2020) assessed the impact of different charging policies and battery capacities on an autonomous ride-pooling
leet in MATSim (Horni et al., 2016). Vehicles were constantly operating and only sent to a charging facility once the state of
harge (SoC) was below 20%. The authors found a substantially lower performance of electric fleets with less passenger kilometers
ransported and more empty vehicle kilometers traveled compared to non-electric fleets. System performance improvements may
e achieved through rapid chargers and a battery swapping policy.

Loeb and Kockelman (2019) come to a similar conclusion. They evaluated the costs of different pooled and shared autonomous
lectric vehicle (SAEV) fleets and state that ‘‘starting an SAEV fleet from the ground up is not financially advantageous over a
302

raditionally-fueled SAV fleet’’. Main reasons for this conclusion are the higher costs of EVs, replacement batteries and charging
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stations and additional empty VKT in operation. Profits are found to be highest with fast-chargers and long-range fleets. Similar
to Vosooghi et al. (2020), vehicles are only sent to charge if their SoC is below 5% and they have no other operational duties.

Farhan and Chen (2018) compared a long-range and a short-range pooled SAEV fleet to an unpooled fleet and found substantial
fficiency gains through pooling with a reduced fleet size of roughly 50% and 30% less required charging stations. Long-range EVs
ead to less required charging stations and lower waiting times.

An operational optimization potential of unpooled SAEVs was studied by Iacobucci et al. (2019). They optimized the charge
cheduling by considering historic electricity price data in Tokyo and also evaluated the vehicle-to-grid potential. By using two
odel-predictive control optimization algorithms in parallel, one optimizing the transport service and one optimizing charging,

harging cost reductions of 10% are found while service quality reduction is small.

.3. Cost implications of (non-)autonomous vehicles

The cost of on-demand services is critical for their utilization and must be competitive with existing mobility offerings to
ttract customers. The expected emergence of autonomous vehicles will change the current cost structures of human-driven mobility
ervices drastically and multiple studies agree on the increased societal, ecologic and economic benefit through centrally organized,
onnected, and shared AV systems (Burns et al., 2013; Fagnant and Kockelman, 2015; Lempert et al., 2021).

Bösch et al. (2018) provided a comprehensive breakdown of the cost structures for conventional and future on-demand services
taxi in their case) in Switzerland, distinguishing ten different cost types. They found that salaries are the main driver of current taxi
perations, accounting for 88% of the total cost of 1.61 CHF per passenger kilometer (PKM). For an autonomous taxi service, salaries
re no longer considered, and the main cost drivers are cleaning, overhead and vehicle operations, and depreciation, resulting in
cost of 0.29 CHF per PKM. The cost is lower than for autonomous private cars (0.5 CHF/PKM) and only slightly higher than for

utonomous buses (0.24 CHF/PKM), making fleets of pooled on-demand services a very competitive alternative mode of transport.
Negro et al. (2021) analyzed the cost structures of on-demand ride-hailing services in the context of automation and electrification

n Munich, Germany. Like Bösch et al. (2018), they found a substantial cost drop with autonomous vehicles due to saved driver
osts. They consider so-called teleoperators to support autonomous vehicles remotely at 1% of their operating time. Costs per vehicle
ilometer (VKM) are expected to drop from more than 1 e to less than 0.5 e. With pooling, the costs per PKM could even be reduced.

The reduced costs of future autonomous on-demand services are expected to trigger their competitiveness and enable large-
scale operations. Hörl et al. (2021) used a mode-choice model developed for Zurich, Switzerland, to estimate and simulate the
interdependences of price, customer behavior and operations for an automated unpooled taxi system. They found a maximum
demand of 150,000 daily requests, representing a distance-based mode share of almost 20%, served by 4,000 vehicles with
cost-covering operations at a fare of 0.75 CHF/km.

Kagerbauer et al. (2021) estimated a mode-choice model with users of the ride-pooling service MOIA in Hamburg, Germany, and
simulated multiple scenarios with conventional and fully autonomous ride-pooling vehicles. They found a demand increase from
current 0.1% trip-based mode share to almost 3% mode share when the current MOIA fares are halved and additional policies are
introduced.

While the costs play a decisive role for the competitiveness of future ride-pooling services, they are only marginally addressed
in this study for the following reasons:

• We use historical ride-pooling requests to illustrate a realistic non-autonomous service. Thus, mode choice effects across
scenarios are difficult to model as real-world requests are not available for a comparable autonomous service.

• We focus on the comparison of operational policies with and without AVs and aim to isolate those effects. A varying demand
pattern would hinder a structured comparison.

• Operational costs are subject of constant change and depend on a variety of factors (wages, operational scheme, vehicle costs,
energy costs, etc.) that require detailed analyses, which would go beyond the scope of this study.

2.4. Contribution

In summary, we find that existing simulation studies usually consider AVs and do not explicitly account for operational constraints
in non-autonomous ride-pooling services. Challenges of EVs have been studied more frequently.

In order to translate the learnings of the numerous simulation studies to today’s non-autonomous ride-pooling systems, we aim
to consider the most relevant operational constraints that were learned from the real-world ride-pooling operator MOIA. For this
purpose, we are able to use historical shift and demand data of the service in Hamburg. This way we can investigate how well
simulations with AVs or pseudo shifts (i.e. vehicles may be active for limited time windows but without driver breaks and shift
changeovers at hubs) can be used to describe current driver-based services by comparing against an explicit simulation of driver
shifts and breaks. In addition, by direct comparison, this study quantifies the impact that future AVs may have on quality and
efficiency of ride-pooling services.

Our contribution to existing ride-pooling studies is threefold:

• We add the technical functionality to consider operational duties such as shift breaks and shift changes with charging processes
303

to an existing ride-pooling simulation environment.
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• We evaluate the operational potential of future autonomous services in direct comparison with non-autonomous services that
are currently in operation. This way, we also assess the comparability of most existing ride-pooling studies and currently
operating services.

• We present a realistic ride-pooling simulation for an entire week based on real-world demand and shift data of the ride-pooling
operator MOIA. We assess how the operation of the service can be improved by adding operational facilities.

3. Methodology

3.1. Simulation framework

The simulation is carried out by the Multi-Agent Transport Simulation MATSim (Horni et al., 2016), which has been frequently
sed to study the impact of dynamic transport services (Gurumurthy et al., 2019; Vosooghi et al., 2019b; Kaddoura et al., 2020;
an et al., 2020; Hörl et al., 2021). It is an agent-based transport simulation framework that utilizes an iterative, co-evolutionary

earning approach in which each agent tries to maximize their daily score for a given plan of activities. Agents obtain positive scores
or performing scheduled activities (such as working) and negative scores for traveling or arriving late at an activity. After every
teration, agents evaluate their last executed plan with a resulting score. While some agents modify their plan by, e.g., choosing a
ew route or another mode of transport, the remaining agents choose from existing plans based on their scores. MATSim eventually
eads to a stochastic user equilibrium in which no agent can unilaterally increase their perceived score by adapting their plan.
ATSim is an open-source Java program.

In our setup we use MATSim as a pure dynamic traffic-assignment model with a fixed trip-based demand, which is not represented
y full activity schedules but by individual historic trip requests of the real-world ride-pooling service MOIA. As we are only
oncerned with the ride-pooling service in this study, we ignore other modes such as private cars, public transport or walking
nd any user adaptation between iterations.

.2. DRT extension

There are several MATSim extensions to simulate on-demand mobility systems (Maciejewski, 2016), out of which the DRT
demand responsive transit) extension developed by Bischoff et al. (2017) has been predominantly used in recent simulation studies.
he extension handles incoming requests and assigns them to available vehicles in the system based on an insertion heuristic. When
trip request with pick-up and drop-off coordinates is submitted, the algorithm searches for all vehicles that can serve the request
nder consideration of a maximum wait time and maximum detour time for the waiting customer and all customers traveling
n the vehicle. The algorithm then inserts the new request into the route of the vehicle where the least travel delay is imposed
n all on-board and planned requests along the route. Once selected, the assignment of a customer to a vehicle is binding. If no
ehicle is found that can serve an incoming request considering the defined service constraints, the request is rejected. The detailed
unctionality of the algorithm is described in Bischoff et al. (2017).

The pre-defined service constraints are shown in Table 2. Previous studies (Bischoff et al., 2017; Zwick and Axhausen, 2020b)
ave shown their high impact on the DRT system performance and the necessity to select the parameters wisely. The maximum wait
ime is set to 10 minutes to ensure a good balance between an efficient and a user-friendly service. Zwick and Axhausen (2020b)
ave shown for a similar historic MOIA scenario in Hamburg that a further increase of the maximum wait time leads to higher
verage wait times but does not increase the system efficiency substantially.

A similar issue arises for the maximum allowed detour time. Long detours are inconvenient for customers, but they increase the
ooling potential and thus the efficiency of the system. The maximum allowed detour time, 𝑡detour, is defined by

𝑡detour = min(𝑡constant + 𝛼 ⋅ 𝑡direct, 𝑡max), with 0 <= 𝑡constant <= 𝑡max and 𝛼 >= 0 (1)

where 𝑡constant denotes the constant detour time, 𝛼 denotes the relative detour factor, 𝑡𝑑𝑖𝑟𝑒𝑐𝑡 denotes the direct travel time without any
detours and 𝑡max denotes the maximum allowed absolute detour time. The stop duration for each pick-up or drop-off of a customer
is assumed to be 30 seconds. A potential additional duration for groups is not considered.

The pooling algorithm includes a repositioning strategy developed by Bischoff and Maciejewski (2020) to ensure that idle vehicles
are sent to areas with high expected demand. Every 10 minutes, the demand (based on previous iterations) and supply (idle and
soon-idle vehicles) in each zone of a 500 m × 500 m grid is calculated and vehicles are dispatched from zones with a surplus of
vehicles to zones with a lack of vehicles to serve all requests. This has shown to substantially improve the system capacity in terms
of acceptance rate (Zwick and Axhausen, 2020a).

All relevant input parameters of the pooling algorithm are summarized in Table 2.

3.3. Driver shift and break implementation

We build upon the existing (electric) DRT extension of MATSim and further extend it with a representation of driver shifts and
breaks. Therefore, the simulation assumes the following input as exogenous input:

• A description of driver shifts with their start and end times, as well as optionally planned breaks. Each driver shift is linked
to a hub where it start and ends.
304
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Table 2
Summary of DRT input parameters.

Input variable Symbol Value

Max. wait time 10 min
Absolute detour time 𝑡constant 5 min
Relative detour factor 𝛼 0.5
Maximum absolute detour 𝑡max 15 min
Stop duration 30 s
Repositioning interval 10 min
Repositioning grid size 500 m × 500 m

Table 3
Shift extension parameters.
Parameter Value

Changeover duration 900 s
Break duration 1800 s
Start-of-shift look-ahead 1800 s
End-of-shift look-ahead 3600 s

• A description of hubs and possible in-field break facilities with equipment for charging and driver breaks. In-field break
facilities can be, for instance, existing parking lots at grocery stores or gas stations with optional charging plugs.

While shift starts and ends are fixed, breaks are defined more flexibly inside a given corridor (earliest start time–latest end time)
ith a fixed duration. The typical break duration is set to the in Germany legally required break duration of 30 min. Each operational

acility is of the type hub or in-field. In addition, each facility has a capacity for parked vehicles and, optionally, a number of chargers
or electric vehicles.

The basic functionality is provided by a central shift dispatcher that assigns shifts to suitable vehicle agents in MATSim. Vehicles
an only serve ride-pooling requests as long as they have an active shift. Shift start and end times are accounted for in the scheduling
f requests and may lead to the rejection of requests that would lead a driver to exceed the shift end time. Similarly, no requests can
e served during driver breaks. Breaks have to be scheduled within their defined corridor. Passengers may be picked up/dropped
ff at the beginning/end of breaks. When a shift ends, a changeover period of 15 min has to be scheduled for the vehicle, in which
o new shift can be started. During breaks and changeover times, electric vehicles may be charged if chargers are available. Idle
ehicles located at hubs with no shift assigned may also be charged.

The shift dispatcher applies the following basic procedure in each time step (see Fig. 1):

1. Check end of shifts
One hour (‘End-of-shift look-ahead’, configurable) before the end of a shift, a changeover task including a relocation to the
designated hub is created. The remaining trips are still served, and additional requests may be accepted if the planned shift
end is not exceeded.

2. Check assignment of shifts
Planned shifts are assigned to suitable vehicles 30 min (‘Start-of-shift look-ahead’, configurable) ahead of their start time.
Preferably, an already active vehicle that is about to end its shift and has a minimum state of charge (SoC) is assigned. Shifts
can only be assigned to vehicles within their service time (i.e. their operation time in the autonomous use case). If no suitable
vehicle is found, the shift remains in the queue and is checked again in the next time step.

3. Check start of shifts
The queue of assigned shifts is checked for shifts starting in the given time step. The shift start may be delayed by previously
delayed shift ends and only starts once the assigned vehicle is idle.

4. Check breaks
For all active shifts, it is checked whether a break corridor has started. In that case, an operational facility is identified. The
break is scheduled for the end of the current vehicle’s schedule. New requests along the route may be served as long as the
whole duration of the break inside the break corridor is ensured. The vehicle may be charged during the break if it is required
and charger capacity permits it.

5. Check charging at hubs
For all idle vehicles that do not have a shift assigned and are parked at hubs, the dispatcher checks whether they require
re-charging. If a vehicle is not planned to serve a shift until the estimated end of charging, a charging task is set up. This
step is omitted if conventional cars with internal combustion engines (ICE) are simulated.

Table 3 summarizes the parameters of the shift logic.
For the planning of shift breaks, the identification of the facility tries to minimize empty mileage. Consider 𝑆(𝑡, 𝑣) =

{𝑠1,𝑡,𝑣, 𝑠2,𝑡,𝑣,… , 𝑠𝑛,𝑡,𝑣} as the scheduled sequence of stops for a vehicle 𝑣 of the fleet of vehicles 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} at time 𝑡. At the
beginning of the break corridor 𝑡 , the vehicle chooses among the set of operational facilities (hub or in-field) 𝐹 = {𝑓 , 𝑓 ,… , 𝑓 }.
305
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Fig. 1. Basic steps of the central shift dispatcher.

Thereby, the expected travel time 𝑡travel(𝑠, 𝑓 ) from a stop 𝑠 to the facility 𝑓 should be minimized. The travel time equals the current
routed path travel time. As stated above, only facilities with sufficient capacity 𝑐𝑓 (𝑡) at time 𝑡 may be selected:

𝑓selected(𝑣, 𝑡bs) = arg min
𝑓∈𝐹

𝑡travel(𝑠𝑛,𝑡bs ,𝑣, 𝑓 ) (2)

s.t. 𝑐𝑓 (𝑡𝑏𝑠) > 0 (3)

The capacity 𝑐𝑓 (𝑡) is reduced as soon as a vehicle plans to perform an operational task at the facility. It is released as soon
as vehicles start shifts or end breaks at the facility. While the scheduled break location is fixed, the arrival time is not. Instead,
vehicles may accept new passengers along the route. However, the break stop is assigned a detour constraint defined in Eq. (1),
with 𝑡 = 𝑡 (𝑠 , 𝑓 (𝑣, 𝑡 )) and 𝑡 = 𝑡 − 𝑡 (𝑠 , 𝑓 (𝑣, 𝑡 )). Here, 𝑡 is the remaining buffer
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Fig. 2. Illustrative implementation of driver shifts for a single DRT vehicle.

Table 4
Electric fleet parameters.
Parameter Value

Request assignment battery threshold 15%

Shifts: Shift assignment battery threshold 60%
Shifts: Charge at hub threshold 80%
Shifts: Charge during break threshold 80%

Autonomous: relocate to charge battery threshold 15%

time until the break has to start the latest, such that it still fits into the break corridor: 𝑡remaining = 𝑡be − 𝑡bd − 𝑡bs, where 𝑡be is the
end time of the break corridor and 𝑡bd is the break duration.

Given this basic functionality, an illustrative timeline for a vehicle is depicted in Fig. 2. For the scheduling of requests, additional
hard constraints have been added to the DRT scheduler:

• Passengers cannot be picked up/dropped off after a shift changeover task.
• Passengers cannot be picked up/dropped off if the request would violate the break corridor of a planned upcoming break task.
• Passengers cannot be picked up/dropped off if the request would delay the end of a shift (i.e. drivers should not work overtime).

3.4. Electric fleet behavior

For the scenarios in this study, we also consider services with electric vehicles. It is recommended to avoid very high and very
low SoC’s to decrease the batteries’ degradation and ensure efficient charging (Kostopoulos et al., 2020). This is why the SoCs in
this study represent the net-capacity to which vehicles are charged at maximum, below which operation becomes harmful to the
battery, and for which the charging curve is almost linear. The hubs are equipped with slow and fast chargers with a charging power
of 7 kW and 100 kW, respectively. The in-field break facilities are always equipped with fast chargers only. The numbers are based
on the ride-pooling service MOIA (see Section 4.1).

The behavior of electric fleet has been implemented as follows. For request insertion, only vehicles above 15% SoC are considered,
to avoid vehicles running out of battery. While, in theory, it could be allowed to let the battery reach an SoC of 0% (as the SoC
represents the net-capacity) the threshold is set to a higher value as the vehicles will still need to return to a hub or facility for
charging. In addition, air condition and engine power are throttled at low SoC’s which should be avoided. In the scenarios that
use the newly developed explicit representation of driver shifts, three additional parameters were introduced. The shift assignment
battery threshold is the required SoC for vehicles to be eligible to be assigned a driver shift. This is set to 60% to ensure vehicles
have enough capacity to serve a whole shift. The charge at hub threshold is set to 80% and represents the SoC at which electric
vehicles will (continue to) charge when being idle at the hub. Similarly, the charge during break threshold, below which vehicles
will try to charge during a break, is also set to 80%. These thresholds have been set rather high to avoid overcrowding at chargers
and reduce charging actions overall. In the autonomous electric scenarios, vehicles will move to a hub and charge once the SoC falls
below 15%, which should be enough to ensure that the vehicle can make it back to the hub. The parameters related to the electric
fleet behavior are summarized in Table 4.

The default MATSim e-DRT extension for AVs comes with the assumption that idle vehicles always return to their depot as soon
as they do not have any passenger action scheduled. This is to ensure that vehicles visit the hub regularly to charge. However, this
assumption introduces a lot of unnecessary empty mileage caused by large amount of hub returns.

As AVs in the simulation so far do not have other operational tasks that can be combined with charging, we implemented a
simpler alternative logic in which vehicles only relocate to charge once their SoC is below a certain threshold (see Table 4). In the
case an electric AV requires to charge, a selection logic similar to the one defined in Eq. (2) is employed. However, in this case the
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Table 5
Description of base case hubs including number of plugs per charger type.
Name Vehicle capacity Slow chargers Fast chargers

Horn 65 52 4
Wandsbek 100 90 12
Stellingen 100 83 7

of type 𝑐𝑓,𝑙 ∈ 𝐶 = {𝑐𝑓1 ,slow, 𝑐𝑓1 ,fast, 𝑐𝑓2 ,slow, 𝑐𝑓2 ,fast,… , 𝑐𝑓𝑛 ,slow, 𝑐𝑓𝑛 ,fast} of charger types 𝑙 ∈ {‘slow’, ‘fast’} located at one of the facilities
∈ 𝐹 . Therefore, the expected total operational task time

𝑡total(𝑣, 𝑐𝑓,𝑙 , 𝑡) = 𝑡travel(𝑠𝑛,𝑡,𝑣, 𝑐𝑓,𝑙) + 𝑡wait(𝑐𝑓,𝑙) + 𝑡charge(𝑣, 𝑐𝑓,𝑙) (4)

for vehicle 𝑣 at facility 𝑓 using a charger type 𝑐𝑓,𝑙 at time 𝑡 includes the travel time from last stop 𝑠𝑛 to charger-type-at-facility
𝑓,𝑙, expected waiting time 𝑡𝑤𝑎𝑖𝑡 and expected remaining time to charge 𝑡𝑐ℎ𝑎𝑟𝑔𝑒. Consider 𝑉𝑓,𝑙 as the set of vehicles 𝑣 currently plugged
r queued at facility 𝑓 for a charger of type 𝑙 and 𝑛𝑓,𝑙 as the number of charging plugs of type 𝑙 at facility 𝑓 (see Table 5). Then
𝑤𝑎𝑖𝑡 is approximated by

𝑡wait(𝑐𝑓,𝑙 , 𝑡) =

∑

𝑣∈𝑉𝑓,𝑙 𝑡charge(𝑣, 𝑐𝑓,𝑙)

𝑛𝑓,𝑙
(5)

Note that this approximation does not include newly assigned vehicles that are still on the way to the facility. The approximation
of 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 depends on the charger type and the current SoC of a vehicle. For simplification in our simulations, we assumed linear
charging curves which were observed for the net-battery capacity range. Consequently, the charger type and facility combination
𝑐𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is selected by minimizing the total operational task time:

𝑐selected(𝑣, 𝑡) = arg min
𝑐𝑓,𝑙∈𝐶

𝑡total(𝑣, 𝑐𝑓,𝑙 , 𝑡) (6)

In addition, the constraint of Eq. (3), which ensures sufficient capacity at the facility, applies. Autonomous vehicles relocating
to charge are not allowed to serve passengers along the way. It is assumed that all further operational tasks such as cleaning, etc.
are performed during the charging processes.

4. Data preparation and scenario setup

We demonstrate the application of shifts using the stop network, demand and shift data from Europe’s largest ride-pooling
provider MOIA in Hamburg, Germany. MOIA operates since its launch in 2019 with up to 500 vehicles in a 198 km2 service area
covering large parts of the city shown in Fig. 3. Although the input data reflects the real-world service, it should be noted that the
ride-pooling simulation, the used algorithms and the results only remotely resemble MOIA’s real-world operation.

The street network is based on OpenStreetMap5 data and MOIA’s more than 10,000 virtual pick-up and drop-off stops are matched
on it. We only simulate the ride-pooling service and thus observe no congestion through car traffic in the system. In order to obtain
realistic travel times throughout the day, we use GPS-based speed data of all weekdays in November 2019 from TomTom6 and
match it to our MATSim network with the help of a map-matching algorithm described by Yang and Gidófalvi (2018). Based on
these matches, the network links’ attributes are updated throughout the simulation to reflect current travel times based on a 60 min
resolution. Thereby, each link’s freespeed has been set to the average travel time of the respective GPS data in each given time bin.

4.1. Demand and supply data

We draw upon recorded ride-pooling requests from MOIA to generate the demand. Requests from one week between 17/01/2022
and 23/01/2022 have been collected. In order to avoid clustered requests from the same person, which would then be easily poolable
in the simulation, we excluded all requests from a person within a time range of 30 min after the first request. In total, the dataset
contains 59,784 requests with an average trip length of 6.8 km.

The MOIA shift plan of the same week is used to define the shift supply. The shift plan is designed to fit the expected demand.
However, the actual operational shift plan of MOIA deviates due to short-term changes in the planning. The shifts are assigned to 280
available 6-seater vehicles. The fleet size is defined by the maximum number of shifts that are active at the same time (254) plus 10%
to ensure vehicle availability even if some vehicles are unavailable due to operational tasks such as shift changes. The pseudo-shift
and autonomous service are operated with 254 vehicles as these vehicles are always in service and have no additional operational
tasks besides charging. In this way, we ensure the maximum comparability across scenarios as all services have a maximum number
of 254 vehicles in service.

Lastly, three hubs with chargers have been defined based on MOIA’s real-world hub locations (see Fig. 5). A description of hub
capacities and chargers is presented in Table 5.

5 www.openstreetmap.org
6 www.tomtom.com
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Fig. 3. Study and service area of the Hamburg scenario, including road network and water areas.

Table 6
Autonomous vs. shift services.

Autonomous service Pseudo-shifts service Explicit-shifts service

Initial vehicle
location

Vehicle hub Vehicle hub Vehicle hub

Final vehicle
location

Anywhere in-field Anywhere in-field Vehicle hub

Vehicle service
times

No limitation According to shift service
times

According to shift service
times

Rebalancing Yes Yes Yes
Service breaks in
hubs

No No Yes

4.2. Scenarios

We compare multiple service set-ups to evaluate the impact of the operational challenges that come with non-autonomous ride-
ooling systems. After comparing two autonomous services with the shift service, we have a closer look on the impacts of charging
nd additional hubs or in-field break locations.

.2.1. Autonomous vs. shift service
In order to evaluate the impact of operational duties with non-autonomous ride-pooling services compared to autonomous

ide-pooling services, we apply three different service designs as shown in Table 6.
In the autonomous service, the entire fleet of 254 6-seater vehicles is available to pick up and drop off passengers and to be

ebalanced throughout the simulated day. All vehicles start their day at one of the hub locations but do not need to return to an
309
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Fig. 4. Qualitative representation of the three service set-ups. Vehicles are only able to serve requests when active.

operational facility. This kind of service has been predominantly investigated in existing ride-pooling simulation studies as shown
in Section 2.

In the pseudo-shifts scenario, one AV is generated for each driver shift of the input shifts. These vehicles will have a limited
service time that equals the planned shift start/end times. As such, it mimics a service with driver shifts but without driver breaks
and shift changeover times including respective hub returns.

In the explicit-shifts service we consider the shift restrictions, a mandatory break of 30 min in one of the hubs or in-field break
locations and the mandatory return to one of the hubs by the end of each shift. This service mimics existing non-autonomous
ride-pooling systems including their operational constraints.

Fig. 4 summarizes the technical setup of the vehicle fleets in the three simulation scenarios.

4.2.2. Conventional vs. electric fleets
After identifying the impacts of explicitly simulating shifts of the ride-pooling service, we add additional operational constraints

by employing an electric fleet with the assumptions given in Section 3.4. We do this after the analysis of the impact of explicit shifts
to extract the individual contributions of these operational constraints.

We implement the charging restrictions for the autonomous and the explicit-shift scenario. While the AVs are only charged when
the battery is low, vehicles in the shift scenario are charged during breaks and in between shifts. Thus, the effects are expected to be
different with each service. Based on MOIA’s special purpose vehicles, the net-battery capacity is set to 77 kWh. Energy consumption
is assumed to be 0.25 kWh/km on average for an assumed ambient temperature of 20 ◦C. See the Appendix for a sensitivity analysis
of different battery capacities and consumption levels in the autonomous and the explicit-shift service. Changes in consumption levels
could be attributed to technological advancements or changes in ambient temperature.

4.2.3. Shift and break optimization
Lastly, we investigate the potential to optimize the electric explicit-shifts service with additional infrastructural facilities. We

therefore add a new type of facility, in-field break facilities, where drivers can do their break and vehicles can be charged. Still, shifts
need to be started and finished at one of the three hubs. The in-field locations are meant to be designated areas for parking vehicles
during a break and could represent, e.g., gas stations which have a contract with the service provider that permits temporary parking
of a small number of vehicles.

We incrementally add more in-field break facilities to the existing 3 hubs to obtain scenarios with 2, 4, 8, 16, 32 and 64 facilities,
all equipped with two 100 kW fast chargers. While the location of the initial three hubs is kept fixed, the location of the additional
break facilities is selected randomly among all links in the network within the service area. We ensure that each facility is at least
1 km away from every other hub or in-field break facility to distribute them equally across the service area. The final distribution
of hubs and the additional in-field break facilities are shown in Fig. 5.

5. Results

The system performance of the ride-pooling system is evaluated in multiple directions. Besides the number of rides and rejections,
we measure the average service quality of the system through the average detour and the average wait time customers experience.
Those are two important indicators quantifying the convenience of the system, which is necessary for a broad user acceptance.

The fleet size, vehicle operating hours and vehicle revenue hours show how many vehicles are assumed in the service and for how
long they operate and generate revenue. During revenue hours, the vehicle performs a revenue generating performance (e.g. driving
a customer), whereas operating hours also include all operational tasks like repositioning the vehicle or driver breaks. The traffic
impact may be measured through the VKT, empty km and the share of empty km. However, these indicators do not take into account
how many customers are transported and how well the system pools multiple travel parties.

Through the average occupancy, the number of passengers traveling on each vehicle kilometer is measured. This indicator
generally shows an efficient system but does not take into account the negative effect of long detours, which lead to a higher
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Fig. 5. Original MOIA hubs and locations of additional, fictional break facilities resulting from the random sample. Each facility increase includes all facilities
of the scenarios with fewer facilities.

occupancy. Therefore, Liebchen et al. (2020) proposed a performance indicator for ride-pooling systems that takes into account the
factors mean detouring, mean occupancy and ratio of occupied km, which we introduced as 𝜂RP in a former study (Zwick et al.,
2021a). Using a mathematical simplification, 𝜂RP can be calculated through the division of passenger kilometers booked (PKB) by
VKT. The result is also comparable to other modes like car or taxi.

The variable PKB per vehicle shows how many passenger kilometers are transported by each vehicle throughout the week. It
can be directly compared to existing modes like car or taxi and is an indicator for how many (parked) vehicles can be replaced by
the on-demand system.

5.1. Autonomous vs. shift services

Table 7 shows the simulation results obtained by the three different scenarios defined in Section 4.2.1. Obviously and as expected,
a service running with fully autonomous vehicles is able to serve considerably more ride requests when compared to services with
constrained vehicle availability due to driver shifts and breaks. As such, the rejection rate increases from 1% for the autonomous
service to 13% and 19% for the pseudo-shift and explicit-shift simulations, respectively. We can therefore observe that, in terms of
served/rejected rides, the pseudo-shift simulation is closer to the explicit simulation of shifts, even though a significant difference
persists which would lead to a more optimistic evaluation of the service.

The average detour is larger in the autonomous service with more served rides, which may be caused by more pooling options
due to the higher trip density. The average wait time is substantially lower with a static autonomous fleet, which can be explained
by a better distribution and availability of empty vehicles throughout the entire service area. The pseudo-shift service shows similar
patterns in terms of detours and waiting times as the explicit-shift service.

The fleet size is smallest in the autonomous service with 254 vehicles. The explicit-shifts service requires a buffer of 10% more
vehicles to be able to operate with the same number of vehicles in peak times. In the pseudo-shift service, each vehicles represents
a shift and thus substantially more vehicles (1793) are employed in the simulation.

The vehicle operating hours represent the time vehicles are available to serve a request or actively performing an operational
task, e.g. serving customers, repositioning, or returning to a hub. In contrast, the vehicle revenue hours represent the time vehicles
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Table 7
Simulation results for the autonomous, pseudo-shifts and explicit-shift services.

Autonomous service Pseudo-shifts service Explicit-shifts service

Rides 59,136 52,244 48,555
Rejections 648 7540 11,229
Avg. detour [%] 15.2 11.7 10.1
Avg. wait time [min] 4:35 6:05 6:40
Fleet size 254 1793 280
Vehicle operating hours 42,672 14,312 14,714
Vehicle revenue hours 10,336 9784 9433
VKT [x1000 km] 311.5 303.9 322.0
Empty km [x1000 km] 52.5 67.8 96.1
Empty km share [%] 16.9 22.3 29.9
Avg. occupancy 1.48 1.32 1.16
PKB/vehicle 1580 201 1204
𝜂RP 1.29 1.18 1.05

PKB: Passenger kilometers booked excluding detours; 𝜂𝑅𝑃 = PKB/VKT.

are actively performing a revenue-generating task, e.g. serving customers or driving to a pick-up. Times in which vehicles are idle
are not counted as revenue hours.

In the autonomous service, all vehicles are constantly performing a task or are available to serve requests throughout the week.
The vehicle revenue hours are substantially lower (10,336) as most of the time, vehicles are idle. The discrepancy of operating and
revenue hours is much lower in the shift services. The pseudo-shift approach has the lowest amount of operating hours (14,312)
even though more revenue hours are observed (9784) and more rides are served than in the explicit-shifts simulation. This can be
explained by the additional empty relocations of vehicles returning to a hub for breaks and changeover activities.

The vehicle kilometers traveled (VKT) are similar across all services, but the explicit-shifts service causes most mileage, even
though fewer trips are served than with the two other services. To assess the impact on the transport system, one must also report
the empty kilometer share, which indicates how much of the vehicle kilometers are driven without (paying) customers. Again, the
explicit-shift simulation leads to the worst results, with the highest share of 29.9%. The pseudo-shifts service has a substantially
lower share of empty km (22.3%). The vehicles start at one of the hubs and need to drive to be distributed at the beginning of the
shift, but do not require relocation at the end of the shift. The autonomous service has the lowest percentage of empty km because
the large number of available vehicles means that there is a high probability that a vehicle will be near an incoming request, and
empty pick-up drives are substantially shorter.

In addition to the overall number of rides/requests, the average vehicle occupancy and the performance indicator 𝜂RP may be
overestimated if shifts are not explicitly modeled. This can be explained by the fact that the explicit consideration of shifts includes
hub returns for vehicles that need to schedule a break or a driver changeover. This leads to more empty kilometers and detours,
and consequently to a reduced average occupancy. During these relocations, the vehicles are also less likely to serve requests that
would violate the time or detour constraints. In addition, the actual breaks will make the vehicles unavailable for passenger requests.
Lastly, during both, relocation and breaks, the vehicles cannot be used for strategic fleet rebalancing to serve anticipated demand,
rendering this strategy less effective. These factors impact both, the average occupancy and the service efficiency indicator 𝜂RP. In
act, it can be seen that the simulation of an autonomous and a pseudo-shifts service, which disregard hub returns and breaks, result
n a more optimistic efficiency value of 1.29 and 1.18, respectively. The explicit-shifts simulation lead to an efficiency of 1.05. A
imilar pattern is observed for the average occupancy.

We observe that far more than 1,000 person kilometers are transported per week by each ride-pooling vehicle, which is
ubstantially more than a private car transports. This indicates a potential to reduce the number of vehicles in a city, if car trips are
eplaced by ride-pooling or other on-demand services. In the pseudo-shifts simulation, each vehicle only operates for one shift and
hus only transports 201 booked passenger kilometers.

Fig. 6 shows the vehicle occupancy throughout the simulated week for all three services. Overall, the occupancy is highest on
eekends. It can also be observed that MOIA’s service is paused during night times on workdays. The autonomous service operates
ith the entire fleet throughout the week, which explains the large amount of idle vehicles that would be available to serve additional
emand.

The pseudo-shift and the explicit-shift service have similar patterns. The low share of idle vehicles shows that the shift plan is
uitable to meet the demand and that there is no oversupply of vehicles. In the explicit-shift service, break and shift end drives are
bserved that contribute to the empty km share. In Section 5.3 we analyze the potential to reduce the empty drives by providing
ore break facilities in the city.

An overview of the occupation of hubs and employed shifts including breaks in the explicit-shift scenario can be seen in Fig. 7.
he pattern of employed shifts is similar to the demand observed in Fig. 6 and most of the shifts are employed during the peak
emand times on weekends at night. We observe that there are a lot of vehicles at the hubs during most times of the week. However,
lmost all vehicles are required for the peak times. One of the hubs runs out of available vehicles during some of the peak times,
hich underlines the importance of having some spare vehicles as a buffer and an elaborated shift-vehicle assignment.
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Fig. 6. Vehicle occupancy over the course of a simulated day for two autonomous services with (a) a static fleet and (b) pseudo shifts, and (c) for a service
with explicit shifts.

5.2. Impact of charging restrictions

Next, the simulations with battery electric vehicles and the charging behavior defined in Section 3.4 are analyzed for the
autonomous and the explicit-shifts service. The pseudo-shifts service is not considered since each vehicle operates for one shift
only and charging or hub returns are not considered anyways.

The results in Table 8 show the performance comparison of both non-electric services and their respective electric service.
The electric autonomous service serves slightly less customers than the conventional service although the number of vehicle

revenue hours increases. To recharge, the vehicles must travel to the hubs from time to time and then be distributed across the city
again. A substantial increase of VKT and empty km are observed (21.1% compared to 16.9%), which is also explained by the empty
rides towards hubs for charging. This also affects the average occupancy and the service efficiency negatively and the introduced
efficiency indicator 𝜂RP decreases from 1.29 to 1.2.

In the explicit-shifts service, we also observe a decrease of served rides when electric vehicles and charging are considered.
Only 45,079 rides are served while 48,555 rides are served when charging is not considered. This is due to a lower availability of
vehicles (reflected by less vehicle revenue hours) and suggests that the introduced buffer of vehicles of 10% is not sufficient to have
a charged vehicle available at all times.

However, despite the lower availability the electric service is almost as efficient as the conventional service and the average
occupancy and 𝜂RP are only slightly lower.

Fig. 8 presents plugged vehicles per charger type and location over time. It can be observed that the fast chargers are only used
for a short amount of time because vehicles are fully charged quickly or drivers return to the field after a 30-minute break. The
slow chargers are mostly occupied in off-peak-times at night.

A comprehensive sensitivity analysis of different battery and energy consumption configurations with the autonomous and
explicit-shifts service can be found in the Appendix. It shows that the simulation results presented here are stable, but a certain
minimum battery capacity and maximum energy consumption are required to provide service without major interruptions. It is
expected that battery sizes will further increase in size and decrease in price in future thanks to technological developments (König
et al., 2021).

5.3. Operational facility optimization

In a next step, we add in-field break facilities to reduce long relocation drives for charging and shift breaks. Each new facility
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Fig. 7. Hub occupation over time (top) and histogram showing the number of shifts starting/ending and being active as well as being on break (bottom). Both
plots represent the base case with explicit shifts.

Table 8
Simulation results for the conventional and the electric shift service.

Autonomous
– conventional

Autonomous
– electric

Explicit shifts
– conventional

Explicit shifts
– electric

Rides 59,136 58,454 48,555 45,079
Rejections 648 1330 11,229 14,705
Avg. detour [%] 15.2 14.5 10.1 9.7
Avg. wait time [min] 4:35 4:49 6:40 6:55
Fleet size 254 254 280 280
Vehicle operation hours 42,672 42,672 14,714 13,805
Vehicle revenue hours 10,336 10,506 9433 9053
VKT [x1000 km] 311.5 330.4 322.0 304.9
Empty km [x1000 km] 52.5 69.8 96.1 89.8
Empty km share [%] 16.9 21.1 29.9 29.4
Avg. occupancy 1.48 1.38 1.16 1.14
PKB/vehicle 1580 1565 1204 1135
𝜂RP 1.29 1.20 1.05 1.04

PKB: Passenger kilometers booked excluding detours; 𝜂𝑅𝑃 = PKB/VKT.

increased number of in-field charging facilities are summarized for the autonomous services in Table 9 and for the explicit-shifts
services in Table 10. Fig. 9 shows the evolution of four system performance indicators with an increasing number of in-field facilities
with both service types.

In the autonomous service, it can be observed that the overall number of rides and rejections as well as detours and wait times do
not change substantially and are only marginally improved. However, the total number of VKT and the (share of) empty kilometers
decrease with an increasing number of in-field charging facilities, which can be explained by the fact that vehicles require shorter
relocations to be charged as hubs are on average nearer to their current location. Consequently, the average occupancy and efficiency
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Fig. 8. Plugged vehicles per charger type and location over time. The blue lines depict the number of plugs per type and location. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 9
Impact of in-field charging facilities increase in the autonomous service.

Number of in-field charging facilities

0 2 4 8 16 32 64

Rides 58,454 58,626 58,684 58,695 58,707 58,693 58,764
Rejections 1330 1158 1100 1089 1077 1091 1020
Avg. detour [%] 14.5 14.5 14.4 14.6 14.7 14.8 14.7
Avg. wait time [min] 4:49 4:42 4:46 4:44 4:40 4:41 4:40
Vehicle revenue hours 10,506 10,466 10,510 10,471 10,458 10,480 10,456
VKT [x1000 km] 330.4 325.3 326.3 322.4 319.3 318.8 317.1
Empty km 69.8 64.4 64.9 61.4 58.3 57.2 55.9
Empty km share [%] 21.1 19.8 19.9 19.0 18.3 17.9 17.6
Avg. occupancy 1.38 1.40 1.40 1.42 1.43 1.44 1.45
PKB/vehicle 1565 1569 1571 1571 1570 1571 1572
𝜂RP 1.20 1.23 1.22 1.24 1.25 1.25 1.26

PKB: Passenger kilometers booked excluding detours; 𝜂𝑅𝑃 = PKB/VKT.

𝜂RP of the system improves from 1.38 to 1.45 and from 1.20 to 1.26, respectively. These values are close to the values of the non-
electric service (1.48 and 1.29). The effects diminish with an increasing number of hubs, as can be seen in Fig. 9, which indicates
a saturation effect.

The results of scenarios with an increased number of in-field break and charging facilities for the explicit-shift service is
summarized in Table 10.

We find that the number of trips with more in-field charging and break facilities is increasing. In this context, we observe that
although the operating hours of the vehicles with more facilities decrease, the revenue hours of the vehicles increase and the vehicles
are available longer for transporting customers.
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Table 10
Impact of in-field charging and break facilities increase in the explicit-shift service.

Number of in-field charging and break facilities

0 2 4 8 16 32 64

Rides 45,079 45,463 45,493 45,802 45,901 46,244 46,003
Rejections 14,705 14,321 14,291 13,982 13,883 13,540 13,781
Avg. detour [%] 9.7 9.6 9.8 9.8 9.6 9.8 9.9
Avg. wait time [min] 6:55 6:54 6:54 6:53 6:53 6:49 6:49
Vehicle operating hours 13,805 13,811 13,848 13,837 13,883 13,823 13,779
Vehicle revenue hours 9053 9094 9104 9145 9195 9183 9165
VKT [x1000 km] 304.9 304.1 304.6 305.2 303.5 302.3 300.3
Empty km 89.8 88.1 88.0 87.0 84.5 83.3 81.7
Empty km share [%] 29.4 29.0 28.9 28.5 27.9 27.5 27.2
Avg. occupancy 1.14 1.15 1.16 1.16 1.17 1.18 1.18
PKB/vehicle 1135 1143 1146 1153 1155 1162 1155
𝜂RP 1.04 1.05 1.05 1.06 1.07 1.08 1.08

PKB: Passenger kilometers booked excluding detours; 𝜂𝑅𝑃 = PKB/VKT.

This indicates a more efficient usage of the shift times with less operational (empty) rides. This is also reflected in the number of
VKT and empty km, which are both substantially lower with more in-field facilities. The empty km share of 27.2% with 64 facilities
is even lower than with the non-electric service because of the shorter rides to do breaks. For shift ends, drivers still have to drive
to the hub where they started the shift. A higher flexibility of driver shift end locations and in-field driver changes could improve
the results further and are part of further investigations.

The evolution of four system performance indicators for both services are shown in Fig. 9. The fitted curve based on a square
root function and its 90% confidence interval shows a saturating effect for all four indicators with an increasing number of facilities.

Depending on the aim of the service, the costs for each operational facility, and the calculated gains through reduced VKT and
higher efficiencies, operators and policy makers must evaluate how many operational facilities are suitable for the service. Due to
the manifold cost structures of on-demand services outlined in Section 2.3 and many competing interests of users, operators and
policy makers, we do not calculate an optimal number of break facilities here. If the costs of in-field charging facilities are low or
the facilities are available anyways (e.g. public chargers), the amount of facilities should be as high as possible to reduce VKT and
increase service efficiency.

In summary, we find that the proposed in-field facilities improve the overall system with electric vehicles in an autonomous and
a non-autonomous service.

6. Discussion

We find that the application of shifts in the existing ride-pooling extension of MATSim supports the necessity to study existing
on-demand services more realistically and to account for operational challenges. Existing simulation studies, as shown in Section 2.1,
do not take into account these operational constraints. Only a few studies (Martinez et al., 2015; Bischoff et al., 2017; Lokhandwala
and Cai, 2018; Zwick and Axhausen, 2020b) take into account pseudo shifts that limit vehicle availability but do not take into account
certain operational tasks. Our study helps to understand the limitations of transferring their findings to existing non-autonomous
on-demand ride-pooling services.

The example scenario with real-world requests and driver shifts applied here shows that operational challenges have major
impacts on the number of served rides and efficiency. However, due to multiple fictional parameters such as battery size, energy
consumption, in-field break facilities or charging infrastructure, the simulation results are not directly comparable with MOIA’s
real-world service. This shows the high complexity when assessing on-demand ride-pooling systems.

It is evident that existing simulation studies of ride-pooling, while providing valuable insights, tend to underestimate the required
number of vehicles and kilometers traveled to transport a given number of customers when applied to current operating services. The
results reported here do not only show the importance of explicitly modeling operational challenges but also quantify the impact of
future autonomous applications. It becomes apparent that service efficiency and the number of served rides increases considerably.

Given the demand and supply of a real-world electric ride-pooling service, we observe that with autonomous vehicles almost
30% more requests can be served and the share of empty km decreases from 29.4% to 21.1% compared to the current service set-up
with shifts. In comparison, the conventional taxi fleet of Hamburg had a share of empty km of 53.4% in 2016 (Hamburg, 2017),
showing that the current ride-pooling system already adds value to the transport system. Also, the number of PKB that each vehicle
transports in a week is noteworthy. With over 1,000 PKB, each vehicle potentially replaces the mobility of several cars, which
reduces parking space and vehicle production costs. As operation costs of AVs are expected to be lower than for current services, for
which drivers need to be paid, it is clear that future autonomous fleets may yield a high economic potential for service providers.

The introduction of in-field break and charging facilities has shown to improve the ride-pooling in many ways. With more
facilities less time and VKT is spent to reach a facility to perform an operational task. In this way, we quantified how many VKT
and empty km are saved but also how many more customers can be served with the same number of vehicles and drivers. Also
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Fig. 9. Service results with increased number of in-field break locations in the autonomous and explicit-shifts service. The colored areas show the 90% confidence
interval of the fitted curve based on a square root function. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

is not performed here, but simulation-based approaches such as presented by Vosooghi et al. (2020) could be applied in the future.
The cost of each facility is to some extent arbitrary and the economic benefits of service efficiency and VKT saved are difficult to
measure because multiple stakeholders (operator, customers, city) need to be considered.

The lack of economic evaluation of the service and subsequent differential user behavior is a strong limitation of our study. The
introduction of autonomous vehicles is expected to reduce the overall costs of the service (see Section 2.3, which attracts additional
customers. The additional customers are expected to increase the efficiency of the autonomous service even further and allow to
scale the fleet size.

A common tool to take into account mode choice effects are discrete choice models (McFadden, 1974), which have been used in
multiple previous studies (Kagerbauer et al., 2021; Hörl et al., 2021; Martinez and Viegas, 2017; Wilkes et al., 2021; Zwick et al.,
2021b). The mode choice of individual agents depends on multiple parameters like travel time, wait time and costs and add a high
complexity to the simulation scenarios, which is why we decided to exclude them from this study. In this way, we can isolate the
impacts of simulating operational aspects in ride-pooling and do not mix them with other side effects. The mode choice effects need
to be further investigated in future studies.

The simulation of AVs in this study considers charging as only operational task that takes place at hubs. However, it is expected
that there will be additional tasks required such as cleaning, maintenance, damage check, sensor calibration among others. We do
not consider these tasks here because we assume that most of the tasks can be done during charging and more time-consuming tasks
occur less often than on a weekly base. Nevertheless, the additional operational tasks may be studied in future.

Another limitation is that the decision of where to start a break is solely based on the distance to the nearest operational facility.
However, in some cases, it could be worth driving to a more distant facility to anticipate higher demand after the break. Dean
et al. (2021) recently introduced and evaluated this joint optimization and found first promising results. The absence of this feature
should, however, not limit the validity of our results.

Given the newly developed extension, a future use case could be the investigation of optimizing shifts throughout iterations
in MATSim. Similar to the co-evolutionary approach in MATSim, shifts could be optimized using a genetic algorithm, as has been
shown by Li and Kwan (2003), Kwan et al. (1999), Ramli et al. (2013), Kwan et al. (2001), Dias et al. (2002). An interesting feature
would be that shifts co-evolve with ride-pooling demand - i.e., shifts adapt to current demand, and user adaptation of agents can
in return lead to adaption of shifts.
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Table 11
Sensitivity analysis of battery capacity and discharging for the autonomous service.

Energy consumption
[kWh/100 km]

50 kWh battery 77 kWh battery 100 kWh battery

15 25 35 15 25 35 15 25 35

Rides 58,512 57,947 57,329 58,882 58,454 58,013 58,888 58,721 58,249
Rejections 1272 1837 2455 902 1330 1771 896 1063 1535
Avg. detour [%] 14.3 13.9 13.3 14.7 14.5 14.0 14.9 14.6 14.4
Avg. wait time [min] 4:50 5:01 5:15 4:41 4:49 4:59 4:39 4:45 4:51
Vehicle revenue hours 10,534 10,609 10,676 10,445 11,506 11,575 10,400 10,447 10,492
VKT [x1000 km] 333.2 343.2 355.8 323.8 330.4 338.9 320.3 325.5 330.8
Empty km 72.0 81.3 93.3 63.5 69.8 77.2 60.5 65.3 70.3
Empty km share [%] 21.6 23.7 26.3 19.6 21.1 22.8 18.9 20.1 21.3
Avg. occupancy 1.37 1.31 1.25 1.42 1.38 1.33 1.44 1.41 1.37
PKB/vehicle 1567 1553 1540 1575 1565 1556 1575 1571 1561
𝜂RP 1.19 1.15 1.10 1.24 1.20 1.17 1.25 1.23 1.20

PKB: Passenger kilometers booked excluding detours; 𝜂𝑅𝑃 = PKB/VKT.

Table 12
Sensitivity analysis of battery capacity and discharging for the explicit-shift service.

Energy consumption
[kWh/100 km]

50 kWh battery 77 kWh battery 100 kWh battery

15 25a 35a 15 25 35a 15 25 35

Rides 45,875 30,165 13,243 47,707 45,079 38,113 48,442 46,582 44,422
Rejections 13,909 29,619 46,541 12,077 14,705 21,671 11,342 13,202 15,362
Avg. detour [%] 9.7 8.1 6.8 9.9 9.7 9.0 10.1 9.8 9.6
Avg. wait time [min] 6:54 7:38 8:08 6:57 6:55 7:16 6:41 6:51 6:59
Vehicle operating hours 13,970 13,797 13,861 14,451 13,805 13,445 14,657 14,169 13,636
Vehicle revenue hours 9168 6775 3369 9388 9053 8064 9447 9240 8965
VKT [x1000 km] 309.0 231.1 135.2 318.4 304.9 270.6 321.4 312.1 300.9
Empty km 90.9 77.0 61.3 94.4 89.8 83.1 95.1 92.0 88.1
Empty km share [%] 29.4 33.3 45.3 29.6 29.4 30.7 29.6 29.5 29.3
Avg. occupancy 1.15 1.03 0.79 1.15 1.14 1.10 1.16 1.15 1.15
PKB/vehicle 1155 787 357 1193 1135 973 1207 1167 1124
𝜂RP 1.05 0.95 0.74 1.05 1.04 1.01 1.05 1.05 1.05

PKB: Passenger kilometers booked excluding detours; 𝜂𝑅𝑃 = PKB/VKT.
aScenarios for which the assignment threshold and the minimum SoC had to be adjusted to ensure operations without vehicles running out of energy in the
field.

7. Conclusion

We present updates to current existing ride-pooling simulations to improve realism of results. The technical functionality was
added to the open-source simulation framework MATSim and allows the detailed simulation of existing ride-pooling services with
any operational limitations. The code of our extension is available in MATSim’s open-source repository7.

With the updated functionality, we assess the operational aspects of current on-demand ride-pooling systems on the example of
MOIA in Hamburg, operating a large-scale service with more than 200 vehicles in service. We show that the operational constraints
through shifts with fixed start and end locations, breaks and charging tasks limit the efficiency of the ride-pooling fleet. Drivers are
occupied performing the operational tasks and spend less of their working time for revenue generating tasks. Additionally, more VKT
are caused since vehicles need to drive towards the operational facilities. We found that the introduction of additional decentralized
operational facilities helps to reduce VKT and quantified the effect.

Our study contributes to the quickly evolving field of on-demand mobility in urban environments and supports future service
introductions with or without autonomous vehicles. It is expected that it will take decades for autonomous vehicles to become
widely accepted, so the operational aspects of a human-driven service will need to continue to be considered in the future.

The economic evaluation of the service needs to be followed up in future studies and is critical for user acceptance and a
sustainable business model. We have presented several studies that consider the impact of mode choice, which must be taken into
account for a comprehensive economic evaluation.
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