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a b s t r a c t 

Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity (FC) using ei- 

ther seed-based correlation (SBC) or independent component analysis (ICA), with a focus on particular functional 

systems. SBC and ICA both are insensitive to differences in signal amplitude. At the same time, accumulating ev- 

idence indicates that the amplitude of spontaneous BOLD signal fluctuations is physiologically meaningful. We 

systematically compared covariance-based FC, which is sensitive to amplitude, vs. correlation-based FC, which is 

not, in affected individuals and controls drawn from two cohorts of participants including autosomal dominant 

Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. Functional connec- 

tivity was computed over 222 regions of interest and group differences were evaluated in terms of components 

projected onto a space of lower dimension. Our principal observations are: (1) Aging is associated with global 

loss of resting state fMRI signal amplitude that is approximately uniform across resting state networks. (2) Thus, 

covariance FC measures decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In 

contrast, symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as severely 

degraded correlation structure. These results demonstrate a double dissociation between age vs. Alzheimer dis- 

ease and the amplitude vs. correlation structure of resting state BOLD signals. Modeling results suggest that the 

AD-associated loss of correlation structure is attributable to a relative increase in the fraction of locally restricted 

as opposed to widely shared variance. 
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. Introduction 

The literature on resting state fMRI functional connectivity (FC)

n aging and Alzheimer disease (AD) is extensive 1 . The consensus

iew is that FC generally becomes weaker with advancing age, espe-

ially within the default mode network (DMN) ( Spreng and Schacter

012 ; Ferreira and Busatto 2013 ; Dennis and Thompson 2014 ; Sala-

lonch et al., 2015; Damoiseaux 2017 ). Similar findings have been re-

orted in AD ( Greicius et al., 2004 ; Mevel et al., 2011 ), i.e., promi-

ent FC decreases especially within the DMN. Importantly, it is the

MN in which the characteristic distribution of neuropathology is

ost prominent in AD (amyloid beta (A 𝛽)/tau accumulation, atrophy)

 Matthews et al., 2013 ; Sheline and Raichle 2013 ; Dennis and Thomp-

on 2014 ; Forouzannezhad et al., 2019 ). Thus, it has been suggested

hat loss of FC in higher order functional systems, especially the DMN,

ay be more prominent in AD as compared to aging ( Jones et al., 2011 ;

oepper 2017 ; Chhatwal et al., 2018 ; Lin et al., 2018 ). However, this

nference is based on relatively few studies, which leaves open the ques-

ion of whether the effects of healthy aging vs. AD are distinguishable

trictly on the basis of FC. 

Autosomal dominant AD (ADAD), an uncommon variant ( ∼1% of

ll cases), defined by mutations in presenilin 1, presenilin 2, or amy-

oid precursor protein (APP) genes causes symptomatic disease in rel-

tively young patients. Longitudinal studies of ADAD and late onset

D (LOAD) demonstrate similar pathology: A 𝛽 plaques develop early

 Bateman et al., 2012 ; Gordon et al., 2018 ; McDade et al., 2018 ) fol-

owed by tau accumulation, neurodegeneration, and finally cognitive

ecline ( Bateman et al., 2012 ; Potter et al., 2013 ; Almkvist et al., 2017 ).

mportantly, unlike LOAD, ADAD occurs in younger individuals. This

ifference offers a means of disentangling the effects of aging vs. pathol-

gy by studying AD in the absence of advanced age. Apart from age

f onset, ADAD differs from LOAD in the distribution of neuropathol-

gy, specifically, greater subcortical atrophy and A 𝛽/tau deposition

 Tentolouris-Piperas et al., 2017 ; Luckett et al., 2021 ). Notwithstand-

ng this difference, the available evidence suggests that the FC mani-

estations of ADAD and LOAD are similar at comparable disease stages

 Thomas et al., 2014 ; Chhatwal et al., 2018 ). However, a head-to-head

omparison of FC in ADAD vs. LOAD, rigorously controlling for age, has

ot so far been reported. 

Almost all prior work on FC in aging and AD has been cast in

erms of either Pearson correlation, which is normalized, and there-

ore, invariant with respect to signal amplitude, e.g., ( Damoiseaux 2017 ,

alilianhasanpour et al. 2019 ), or ICA of time series normalized to unit

ariance, e.g., ( Chhatwal et al. 2018 , Forouzannezhad et al. 2019 ).

hese analyses remove from consideration systematic differences in the

mplitude of spontaneous fMRI signal fluctuations. However, decreases

n the amplitude of fMRI signal fluctuations have been reported in as-

ociation with old age ( Garrett et al., 2010 ; Grady and Garrett 2014 ;

ieira et al., 2020 ) as well as neurodegenerative disorders including

D ( Luo et al., 2015 ; Mascali et al., 2015 ; Kazemifar et al., 2017 ;

architelli et al., 2018 ) 2 . These prior results suggest that insight can be

ained by systematically comparing FC evaluated with vs. without signal

ormalization. This is most naturally done by comparing correlation-

ased FC to covariance-based FC, which is computationally identical

xcept for omission of normalization ( Varoquaux et al., 2010 ). 
1 As of October 21, 2021, a PubMed search on “resting state fMRI AND ag- 

ng ” returned 1377 hits of which 61 were reviews. “Resting state fMRI AND 

lzheimer disease ” returned 1098 hits of which 89 were reviews. 
2 The amplitude of spontaneous fMRI signal fluctuations has been variably 

valuated as the temporal standard deviation (SD BOLD ) Garrett et al., (2010) . 

Blood oxygen level-dependent signal variability is more than just noise." 

 Neurosci 30 (14): 4914–4921. or as root mean squared power summed over a 

efined spectral range (ALFF) Zuo et al., (2010) .. "The oscillating brain: complex 

nd reliable." Neuroimage 49 (2): 1432–1445. The algebraic distinction between 

hese measures is negligible. 
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We adopt an extant data-driven approach based on whole-brain

ampling of resting state BOLD fMRI signals from 222 regions

f interest (ROIs) representing 12 resting state networks (RSNs;

ig. 1 )( Seitzman et al., 2020 ). Representing FC data in a space of rela-

ively low dimension using established techniques, e.g., principal com-

onent analysis, simplifies distinguishing between the effects of aging

s. AD and ADAD vs. LOAD. This is accomplished by assessing group

ifferences in terms of components ( Madsen et al., 2017 ). As will be

hown below, almost all systems-level structure in 222 × 222 covari-

nce and correlation matrices can be represented with only 30 compo-

ents. A component-based approach to assessing group differences in

C also enables distinguishing between the effects of age vs. AD using

traightforward regression. 

We address three questions: (1) Do the effects of age and AD man-

fest differently in covariance- vs. correlation-base based FC? (2) what

C features distinguish AD (ADAD and LOAD) from healthy aging; (3)

hat FC differences, if any, distinguish ADAD from LOAD across clin-

cal disease stages as measured by Clinical Dementia Rating (CDR 

TM ).

o this end, we analyze covariance- and correlation-based FC evaluated

lobally over the entire brain. 

. Methods 

.1. Participants 

ADAD participants ( Table 1 ) were drawn from 14 international sites

n the Dominantly Inherited Alzheimer Network (DIAN) observational

tudy ( www.dian-info.org ). The DIAN recruits and follows families with

isease-causing mutations in APP, PSEN1, and PSEN2 ( Bateman et al.,

012 ). The DIAN cohort included mutation carriers (MC, N = 123) and

orresponding non-carrier family members (NC; N = 83) who served as

ontrols. Data utilized here were derived from the 11th semiannual data

reeze. 

Institutional review boards at Washington University in Saint Louis

nd participating institutions approved the protocols. 

Data for LOAD participants was drawn from ongoing studies of ag-

ng and AD from the Charles F. and Joanne Knight Alzheimer Disease

esearch Center (ADRC) at Washington University School of Medicine

WUSM). All participants or their legal representative provided written

nformed consent. The institutional review board at Washington Univer-

ity in Saint Louis approved the protocols. 

We analyzed data obtained in cognitively normal participants with

 N = 51) and without ( N = 131) biomarker evidence (amyloid PET) of

reclinical LOAD and cognitively impaired participants with biomarker

vidence of LOAD ( N = 50). Demographics are listed in Table 1 ; 25

articipants were excluded owing to excessive head motion. 

.2. Disease staging 

Disease stage was defined by the Clinical Dementia Rating (CDR 

TM )

 Morris 1993 ). CDR scores of 0, 0.5, and ≥ 1 indicate, respectively, nor-

al cognitive status, very mild dementia, and mild to moderate demen-

ia. Amyloid (A 𝛽) positivity was defined by either [ 11 C]Pittsburgh com-

ound B (PiB)( Klunk et al., 2004 ) or [ 18 F]florbetapir PET ( Wong et al.,

010 ). A 𝛽 positivity was defined, for PiB, as mean cortical binding po-

ential (MCBP) ≥ 0.18 ( Su et al., 2013 ) and, for florbetapir, a standard-

zed uptake value ratio (SUVR) ≥ 1.2 ( Mishra et al., 2017 ). 

.3. Imaging acquisition 

LOAD participants were scanned at WUSM. Imaging of ADAD par-

icipants was conducted at their respective DIAN sites using local scan-

ers. To increase the compatibility between DIAN and WUSM cohorts,

e analyzed only data collected on Siemens 3T scanners (Erlangen, Ger-

any). During resting state fMRI scans, participants were instructed to

aintain visual fixation on a crosshair. fMRI runs were approximately

http://www.dian-info.org
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Fig. 1. Regions of Interest. Centers of the 222 regions 

of interest (ROI) used in this work are projected onto 

an average anatomical surface ( Seitzman et al., 2020 ). 

Cortical and subcortical ROIs are spheres, 10mm and 

8mm in diameter, respectively. Color indicates resting 

state network membership. 

Table 1 

Participant demographics. Total number fMRI frames (volumes) are summed across all runs acquired in each participant. 

N M F Agemean AgeSD Total Frames PercentCensored 

WUSM cohort LOAD A 𝛽- Control 131 41 90 66.0 6.5 164 14.4 

LOAD 

A 𝛽+ 
CDR 0 51 20 31 74.8 6.6 164 13.9 

CDR 0.5 39 21 18 69.0 5.0 164 14.4 

CDR ≥ 1 11 6 5 65.2 7.0 164 20.1 

DIAN cohort Mutation- A 𝛽- Control 83 34 49 39.8 11.3 195 18.2 

Mutation + A 𝛽- CDR 0 40 21 19 31.1 8.6 183 17.6 

A 𝛽+ CDR 0 31 15 16 36.8 6.7 177 16.4 

CDR 0.5 33 13 20 46.8 9.2 212 15.6 

CDR ≥ 1 19 9 10 50.2 8.6 169 18.5 
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v  
 min in duration. “Pre-scan normalize ” was enabled to minimize gain

eld inhomogeneities attributable proximity to the receiver coils. Two

esting state fMRI runs were acquired in the WUSM cohort. The number

f acquired runs in the DIAN cohort varied between 1 and 3. Additional

etails concerning sequences and quantity of data is provided in Sup-

lemental Table S1. 

.4. Initial FC preprocessing 

FC pre-processing generally followed previously described methods

 Laumann et al., 2017 ; Gratton et al., 2019 ) implemented in the 4dfp

uite of tools ( http://4dfp.readthedocs.io ). This included slice timing

orrection and correction of odd versus even slice intensity differences

ttributable to interleaved acquisition (see Supplemental Materials in

acker et al. (2013 )). Head motion was corrected within and across

uns. Intensity inhomogeneity was corrected using the FAST module in

SL ( Zhang et al., 2001 ) followed by intensity normalization (one mul-

iplicative scalar applied to all voxels and volumes) to obtain a whole

rain mode value of 1000. Echoplanar imaging (EPI) distortion due to

agnetization inhomogeneity was corrected using the mean field map

ethod of Gholipour et al. (2008 ). For the DIAN cohort, initial atlas

ransformation was computed by affine registration of the functional

ata to an atlas-representative template via the MP-RAGE (EPI mean →
3 
P-RAGE → template). The final atlas transformation was performed

fter denoising (see below). The WUSM data included a T2-weighted

mage that was inserted in the transform composition chain (EPI mean →
2w → MP-RAGE → template). Volumetric time series were resampled

n (3mm) 3 atlas space in a single step combining head motion correction,

istortion correction, and atlas transformation. Frames corrupted by ex-

essive head motion were identified on the basis of both DVARS (frame-

o-frame signal change over the entire brain); and frame displacement

FD) measures ( Power et al., 2012 ). The DVARS censoring criterion was

ndividually set to accommodate baseline shifts (see Supporting Infor-

ation in White et al. (2020 ); the FD censoring criterion was 0.4mm.

rames were censored if either criterion was exceeded. Censoring statis-

ics are reported in Table 1 . The time series were band-pass filtered to

etain frequencies between 0.005 Hz and 0.1Hz. Censored frames were

pproximated by linear interpolation for purposes of band-pass filtering

ut excluded from all subsequent steps. 

.5. Denoising 

Denoising was accomplished using a CompCor-like strategy

 Behzadi et al., 2007 ). As previously described Raut et al. (2019 ), nui-

ance regressors were derived from three compartments (white matter,

entricles, and extra-axial space) and were then dimensionality-reduced

http://4dfp.readthedocs.io
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o create a matrix for singular value decomposition (SVD). White mat-

er and ventricular masks were segmented in each participant using

reeSurfer ( Fischl 2012 ) and spatially resampled in register with FC

ata. The final set of nuisance regressors also included the six parame-

ers derived from rigid body head-motion correction, the global signal

GS) averaged over the (FreeSurfer-segmented) brain, and the GS tempo-

al derivative. Appendix D shows that omitting regression of the global

ignal minimally impacts the present results. As a final preprocessing

tep, the volumetric time series were non-linearly warped (via each par-

icipant’s MP-RAGE) to Montreal Neurological Institute (MNI) 152 space

(3mm) 3 voxels) using FNIRT ( Andersson et al., 2010 ; Jenkinson et al.,

012 ). 

.6. FC computation 

Pre-processed fMRI time series were extracted from 222 regions

f interest (ROIs) representing 12 previously defined RSNs ( Fig. 1 )

 Seitzman et al., 2020 ). This set of ROIs provides dense coverage of

he cerebral cortex and subcortical structures. ROIs in areas of fMRI

ignal drop out ( Ojemann et al., 1997 ) were excluded. The cerebel-

um was excluded owing to inadequate coverage of this structure in

ome ADAD participants; given the limited role of the cerebellum in

D we elected to forego including this region instead of excluding par-

icipants. FC was conventionally evaluated in terms of Pearson correla-

ion as well as covariance, which is simply un-normalized correlation.

hus, covariance retains sensitivity to signal amplitude whereas correla-

ion does not. Algebraic details are provided in Appendix A. Parallel co-

ariance/correlation analysis constitutes a major feature of the present

ork. 

Evaluating covariance rather than correlation requires minimizing

he impact of artifactual differences in depth of signal modulation unre-

ated to physiology. In addition to enabling “pre-scan normalize ” during

MRI acquisition (see above), residual gain field inhomogeneities were

educed using the FAST module in FSL ( Zhang et al., 2001 ). Further, all

MRI data were intensity normalized (multiplication by a single scalar

ver all brain voxels and volumes) to obtain a consistent mode value of

000 in all participants. Thus, a covariance value of 10 corresponds to

% rms fMRI signal modulation. 

.7. Dimensionality reduction and derivation of fixed bases for covariance 

nd correlation analyses 

Sections 2.7 and 2.8 recapitulate algebra recently described in a dif-

erent context ( Snyder et al., 2022 ). The fixed basis on which all sus-

equent analyses of covariance FC depend was obtained by principal

omponent analysis (PCA) ( Liang et al., 2002 ) applied to the mean co-

ariance matrix, �̄� 𝐶𝑂𝑁𝑇 , obtained in the combined WUSM + DIAN con-

rol participants. Diagonalization of �̄� 𝐶𝑂𝑁𝑇 yields 

̄
 𝐶𝑂𝑁𝑇 = 𝑊 Λ𝐶𝑂𝑁𝑇 𝑊 

𝑇 (1)

here the columns of 𝑊 contain the eigenvectors of �̄� 𝐶𝑂𝑁𝑇 and Λ𝐶𝑂𝑁𝑇 

s a diagonal matrix of eigenvalues. Dimensionality reduction was
Table 2 

Symbols referring to measured quantities in the pr

subgroup, e.g., LOAD CDR1 as well as control par

coefficients (:) depends on model details. 

full dimensionality FC matrix 

eigenvectors of FC matrix 

basis derived by PCA of control group FC matrices 

dimensionality reduced FC matrix 

component values derived by projection on basis 

regression coefficients 

global �̂� ∗ : ̂𝒓 ∗ proportionality constant 

fraction of variance accounted for by the �̂� ∗ : ̂𝒓 ∗ mode

4 
chieved by taking the first 30 eigenvectors of �̄� 𝐶𝑂𝑁𝑇 as a fixed basis

n which to project all covariance evaluations. Thus, 

̂
 𝐶𝑂𝑁𝑇 = �̂� Λ̂𝐶𝑂𝑁𝑇 �̂� 

𝑇 (2) 

s the projection of �̄� 𝐶𝑂𝑁𝑇 onto the covariance FC basis, �̂� . In the

resent data, the first 30 eigenvectors retained a large fraction (60.4%)

f the total variance in �̄� 𝐶𝑂𝑁𝑇 . Projection of participant 𝑖 ’s fMRI data

 𝑋 𝑖 , not necessarily a control) onto the fixed covariance basis was com-

uted as 𝑌 𝑖 = �̂� 

𝑇 𝑋 𝑖 . The covariance matrix of 𝑌 𝑖 is 

1∕ 𝐿 𝑖 

)
𝑌 𝑖 𝑌 

𝑇 
𝑖 

(3) 

here 𝐿 𝑖 is number of retained frames following frame censoring. We

efine the diagonal entries of this matrix, Λ̂𝑖 , as the of 30 covariance

omponents in participant 𝑖 and define �̂� 𝑖 ≡ �̂� Λ̂𝑖 �̂� 

𝑇 as the projection

f participant 𝑖 ’s covariance structure onto the fixed basis. The algebraic

ationale for these definitions is given in Appendix A. Importantly, be-

ause �̂� is fixed, Λ̂𝑖 (a 30 × 30 diagonal matrix) and �̂� 𝑖 (also a 30 × 30

iagonal matrix) are informationally equivalent. Moreover, { ̂Λ𝑖 } , the

ovariance components corresponding to any subgroup of participants,

an be subjected to algebraic operations, e.g., averaging over partici-

ant subgroups and regression operations. For notational simplicity, we

efine Ψ𝑖 ≡ diag ( ̂Λ𝑖 ) as the 30 covariance components in participant 𝑖

eshaped as a 1 × 30 row vector. 

Correlation FC analyses were conducted independently and in par-

llel to covariance FC analyses. The associated algebraic quantites are

enoted in lower case symbols. Thus, for example, the correlation FC

asis set, �̂� , was defined as the first 30 eigenvectors of the mean control

orrelation matrix, �̄� 𝐶𝑂𝑁𝑇 . The 30 retained correlation components ac-

ounted for 54.9% of total variance. In parallel to Ψ𝑖 , ψ 𝑖 ≡ diag ( ̂λ𝑖 ) is the

ow vector of 30 correlation components in participant 𝑖 . All symbols

sed in the presentation of results are listed in Table 2 . Parallel covari-

nce/correlation analysis is implicit in format of Table 2 . Additional

lgebraic details are discussed in Appendix A. 

.8. Covariance:correlation global scalar proportionality 

Inspection of �̂� CONT and �̂� 𝐶𝑂𝑁𝑇 suggested that these forms exhibit

trikingly similar "matrix topographies" (see Results), i.e., differ, to

ood approximation, only by a global scalar factor proportional to the

mplitude of BOLD signal fluctuations. Hence, the model, �̂� 𝐶𝑂𝑁𝑇 ≈
𝐶𝑂𝑁𝑇 ̂𝑟 𝐶𝑂𝑁𝑇 , where 𝜐𝐶𝑂𝑁𝑇 is a scalar. We refer to this scalar quantity as

he global covariance:correlation proportionality constant. Details con-

erning estimation of 𝜐 are given in Appendix A. As 𝜐 is defined in con-

rols as well as participant subgroups, this measure provides a quantita-

ive index of the dissociation between the amplitude vs. the correlation

tructure of spontaneous BOLD signals. 

Table 2 lists the variables used in the presentation of results. Asterisk

ubscripts stand for any subgroup, e.g., LOAD CDR1 + . Note that the

ases, �̂� and �̂� , are fixed (therefore, represented without subscripts). 
esentation of results. Asterisks stand for any 

ticipants. The dimensionality of regression 

covariance correlation dimension 

𝑪 ∗ 𝒓 ∗ 222 × 222 

𝚲∗ 𝝀∗ 222 × 222 

�̂� �̂� 222 × 30 

�̂� ∗ �̂� ∗ 222 × 222 

𝚿∗ 𝝍 ∗ 1 × 30 

B ∗ 𝜷∗ 30 ×: 

𝝊∗ scalar 

l 𝜼∗ scalar 
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Fig. 2. Dimensionality reduction preserves resting state network-dependent features of covariance and correlation matrices. Panel A shows the covariance matrix 

mean in the control subjects ( ̄𝐂 𝐂𝐎𝐍𝐓 ) before dimensionality reduction. The key feature of this matrix is consistently positive covariance within network (diagonal 

blocks) and between network covariance of either sign (off diagonal blocks). Panel B shows the dimensionality reduced covariance matrix mean in control subjects 

( ̂𝐂 𝐂𝐎𝐍𝐓 ). It is evident that �̄� 𝐂𝐎𝐍𝐓 and �̂� 𝐂𝐎𝐍𝐓 are remarkably similar. Quantitatively minor, within block differences between �̄� 𝐂𝐎𝐍𝐓 vs. �̂� 𝐂𝐎𝐍𝐓 could represent sub- 

network structure outside the fixed basis but could also arise from sampling error. To demonstrate that dimensionality reduction minimally impacts network structure, 

the mean within-block covariance values in �̄� 𝐂𝐎𝐍𝐓 and �̂� 𝐂𝐎𝐍𝐓 are shown as a scatter plot in panel C; these values closely approximate the line of identity. Panels D-F 

show parallel results for the corresponding correlation matrices, before ( ̄𝐫 𝐂𝐎𝐍𝐓 ) and after ( ̂𝐫 𝐂𝐎𝐍𝐓 ) dimensionality reduction. Note different covariance vs. correlation 

scales. These scale differences reflect crucial features of the present data, as detailed in subsequent figures. Network label abbreviations: SM – sensorimotor, SM (lat) 

– lateral sensorimotor, DMN – default mode network, FP – frontoparietal, Attn – attention. 
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.9. Estimation of the effects of age and AD using linear regression 

The effects of age and cohort (WUSM vs. DIAN) on FC components

as estimated in the control participants using the regress function in

ATLAB 2020b. For each component ( 𝑗 = 1, 2, …, 30), Ψ𝑖 or ψ 𝑖 were

ntered into the regression model with intercept (column of 1’s), partic-

pant age, and cohort (0 or 1 representing ADRC or DIAN) as regressors.

or covariance FC, regression returned 30 component-specific constants:

hange/year ( B 𝐴𝑔𝑒 
𝑗 

), intercept (component estimate at age 0; B 𝐼𝑛𝑡 
𝑗 

), and

 term accounting for cohort (WUSM vs. DIAN; B 𝐶𝑜ℎ𝑜𝑟𝑡 
𝑗 

). The { B 𝐴𝑔𝑒 
𝑗 
}

ere used construct FC covariance matrices representing the effect of

ge, controlling for cohort. Parallel regression operations on correlation

C returned β𝐴𝑔𝑒 
𝑗 

, β𝐼𝑛𝑡 
𝑗 

, β𝐶𝑜ℎ𝑜𝑟𝑡 
𝑗 

, 𝑗 = 1 , 2 , …30 . Next, the regression model

as applied to all participants to reconstruct group-level FC matrices

t selected CDR stages (0, 0.5, 1 + ) from which the effects of age and
 i  

5 
ohort have been removed by regression. Thus, (corrected Ψ𝑖𝑗 ) = (un-

orrected Ψ𝑖𝑗 ) −B 
𝐴𝑔𝑒 

𝑗 
( 𝐴𝑔𝑒 ) 𝑖 − B 𝐶𝑜ℎ𝑜𝑟𝑡 

𝑗 
( 𝐶𝑜ℎ𝑜𝑟𝑡 ) 𝑖 . The corrected component

esults were averaged over participants to generate group-level com-

onent vectors, e.g., Ψ̄∗ for covariance FC, where the overbar denotes

veraging over participants and the asterisk represents a particular sub-

roup, e.g., LOAD CDR 1 + . 

.10. Statistical significance testing 

Whole-brain, group-level contrasts are represented as the L1-norm

f component differences |ΔΨ̄∗ | and |Δψ̄ ∗ |, where the asterisk repre-

ents a particular group contrast, e.g., LOAD CDR 1 + vs. controls. The

ationale underlying this formulation is that, to the extent that all par-

icipants share the identical FC eigenstructure (see Appendix A), |ΔΨ̄∗ |
s equivalent to the sum of over components of power differences. The
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Fig. 3. Principal component analysis of 

( ̂𝐂 𝐂𝐎𝐍𝐓 ) and correlation ( ̂𝐫 𝐂𝐎𝐍𝐓 ) matrices ob- 

tained in the control participants. Scree plots 

are shown above corresponding eigenvectors. 

The correlation eigenvectors have been mul- 

tiplied by the scalar constant ( 𝝊𝐂𝐎𝐍𝐓 = 2 . 98) 
that minimizes error in the proportionality 

model, ⟨�̂� 𝐂𝐎𝐍𝐓 ⟩𝐤 = 𝝊𝐂𝐎𝐍𝐓 ⟨�̂� 𝐂𝐎𝐍𝐓 ⟩𝐤 . The first 

few eigenvectors exhibit clustered, large load- 

ings within resting state networks, e.g., the 

DMN. Network structure becomes fragmented 

at higher eigenvector indices in both the 

covariance and correlation representations of 

FC. 
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ignificance of group-level contrasts was assessed by comparing the true

alue of |ΔΨ̄∗ | (or |Δψ̄ ∗ |) against a null generated by permutation re-

ampling over participants. 

. Results 

.1. Dimensionality reduction 

Fig. 2 shows the mean control covariance and correlation matrices

efore ( ̄𝐶 𝐶𝑂𝑁𝑇 , �̄� 𝐶𝑂𝑁𝑇 ) and after ( ̂𝐶 𝐶𝑂𝑁𝑇 , �̂� 𝐶𝑂𝑁𝑇 ) projection onto their

espective fixed bases. The block structure of these matrices, before and

fter projection onto the fixed bases, replicates established findings re-

orted in multiple rs-fMRI studies ( Laumann et al., 2015 ; Gotts et al.,

020 ; Seitzman et al., 2020 ). It is visually evident that the major features

f �̄� 𝐶𝑂𝑁𝑇 are preserved in �̂� 𝐶𝑂𝑁𝑇 and similarly for �̄� 𝐶𝑂𝑁𝑇 vs. �̂� 𝐶𝑂𝑁𝑇 .

lthough the projection accounts for only 60.4% of total variance in
̄
 𝐶𝑂𝑁𝑇 , the squared Pearson correlation between the block averages be-

ore vs. after dimensionality reduction, i.e., ⟨�̄� 𝐶𝑂𝑁𝑇 ⟩𝑘 and ⟨�̂� 𝐶𝑂𝑁𝑇 ⟩𝑘 
see Appendix A), is 0.998 ( Fig. 2 C). Similarly, the squared Pearson cor-

elation between ⟨�̄� 𝐶𝑂𝑁𝑇 ⟩𝑘 and ⟨�̂� 𝐶𝑂𝑁𝑇 ⟩𝑘 is 0.997 ( Fig. 2 F). These re-

ults demonstrate that dimensionality reduction preserves the network

tructure of both covariance and correlation FC. 

Anatomical topography of covariance and correlation bases 

Fig. 3 shows scree plots and ROI weights for each of the 30 covari-

nce ( �̂� ) and correlation ( ̂𝑤 ) basis vectors derived by PCA of the com-

ined WUSM + DIAN control participants. Both �̂� and �̂� are struc-

ured according to major functional systems. Thus, for example, the first

omponent of both �̂� and �̂� is dominated by oppositely signed DMN

s. visual system (VIS) weights. The second component includes oppo-
6 
itely signed cingulo-opercular + salience + fronto-parietal weights vs.

IS + DMN weights. Higher components exhibit progressively less RSN

tructure. Fragmentation of RSN-related structure, coupled with asymp-

otically small eigenvalues as component indices approach 30, implies

hat dimensionality reduction largely preserves the functional organiza-

ion of BOLD fMRI time series, reinforcing the result illustrated in Fig. 2 .

imilarity of the covariance vs. correlation bases is addressed also in

ig. S4, which shows �̂� 

𝑇 �̂� , the 30 × 30 matrix of inner products. The

argely diagonal structure of �̂� 

𝑇 �̂� demonstrates substantial similarity

f the bases derived by PCA of �̂� 𝐶𝑂𝑁𝑇 and �̂� 𝐶𝑂𝑁𝑇 . 

.2. Covariance:correlation global scalar proportionality 

Fig. 4 shows the covariance and correlation matrices obtained in

he combined WUSM + DIAN control groups. It is evident that these

atrices exhibit strikingly similar "matrix topographies". The global co-

ariance:correlation ration in the controls is 2.98 ( 𝜐𝐶𝑂𝑁𝑇 ; see Appendix

q. (8)). The proportion of model-consistent variance ( 𝜂2 
𝐶𝑂𝑁𝑇 

) is 0.94.

anel C shows the difference, �̂� 𝐶𝑂𝑁𝑇 − 𝜐𝐶𝑂𝑁𝑇 ̂𝑟 𝐶𝑂𝑁𝑇 , i.e., focal devi-

tions from global proportionality. Such deviations include somewhat

reater covariance:correlation ratios in parts of the DMN and somewhat

esser ratios in somatomotor cortex. Although these deviations are po-

entially of physiological interest, they are quantitatively minor (6% of

xplained variance). Taking into consideration this low proportion of

xplained variance, we defer further analysis of focal deviations from

lobal covariance:correlation proportionality to future work. 

Table 3 lists 𝜐∗ and 𝜂2 ∗ obtained in the ADRC and DIAN participants

tratified by CDR. There are two noteworthy findings. First, the global

ovariance:correlation ratio systematically decreases with disease pro-



J.F. Strain, M.R. Brier, A. Tanenbaum et al. NeuroImage 261 (2022) 119511 

Fig. 4. Blockwise scalar proportionality between covariance and correlation matrices in the control population. Panel A shows Ĉ 𝐂𝐎𝐍𝐓 . Panel B shows 𝝊𝐂𝐎𝐍𝐓 ̂𝐫 𝐂𝐎𝐍𝐓 . 
Panel C shows the difference, �̂� 𝐂𝐎𝐍𝐓 − 𝝊𝐂𝐎𝐍𝐓 ̂𝐫 𝐂𝐎𝐍𝐓 , i.e., focal deviations from block-wise scalar proportionality. These deviations account for only 6% of total variance 

( 𝜼2 𝐂𝐎𝐍𝐓 = 0 . 94 ). Note scale change in panel C. 

Table 3 

Global covariance:correlation ratios ( 𝝊∗ ) and fraction of explained 

variance ( 𝜼2 ∗ ) for ADRC and DIAN participants stratified by CDR. 

𝝊∗ 𝜼2 ∗ 

WUSM cohort LOAD A 𝛽- Control 2.90 0.966 

LOAD 

A 𝛽+ 
CDR 0 2.84 0.967 

CDR 0.5 2.82 0.965 

CDR ≥ 1 2.09 0.965 

DIAN cohort Mutation- A 𝛽- Control 2.41 0.962 

Mutation + A 𝛽- CDR 0 3.14 0.969 

A 𝛽+ CDR 0 2.48 0.955 

CDR 0.5 1.99 0.961 

CDR ≥ 1 1.28 0.973 
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ression, both in the LOAD and ADAD cohorts, albeit more steeply in the

DAD cohort. Second, variance explained by the proportionality model

s remarkably robust ( 𝜂2 ∗ ≈ 0.96 in all groups) and not affected by dis-

ase progression. 

.3. Effect of age in the controls 

Fig. 5 represents the effects age in the combined WUSM + DIAN con-

rols. Covariance FC and correlation FC are shown in Panels A and B,

espectively. The effect of age was estimated by regression of covariance

omponents ( Ψ𝑖𝑗 ) on age, with cohort (ADRC or ADAD) as a regressor of

o interest. This regression yielded coefficients, B 𝐴𝑔𝑒 
𝑗 

, 𝑗 = 1 , 2 , …30 , in
nits of covariance component change per year. The displayed covari-

nce age effect matrix is �̂� [ 𝑑𝑖𝑎𝑔B 𝐴𝑔𝑒 ] �̂� 

𝑇 . Aging leads to weaker within-

SN covariance (blue diagonal blocks) as well as weaker cross-RSN neg-

tive covariance (primarily red off-diagonal blocks). The effect of age on

orrelation FC is qualitatively similar but quantitatively much weaker.

he displayed matrix is 𝜐𝐶𝑂𝑁𝑇 �̂� [ 𝑑𝑖𝑎𝑔β𝐴𝑔𝑒 ] ̂𝑤 

𝑇 . Panel C plots B 𝐴𝑔𝑒 
𝑗 

vs.

 

𝐼𝑛𝑡 
𝑗 

, i.e., change per year in covariance component 𝑗 vs. component 𝑗

alue extrapolated to age 0. The slope of the fitted line is 1.69% loss per

ear. The relatively good fit (Pearson correlation = -0.985; p < 10 − 6 ) in-

icates that all covariance components exhibit approximately the same

roportional loss relative to the starting value. Panel D shows the par-

llel result for correlation components, scaled by 𝜐𝐶𝑂𝑁𝑇 . The model fit

s less good but still quite strong (Pearson correlation = -0.856). Cru-

ially, the fitted line (slope = -0.48%) indicates that correlation FC loss

er year is numerically much less than covariance FC loss (-0.48% vs.

1.69%). This difference between the effects of age on covariance vs.

orrelation FC is discussed theoretically in Appendix B. 
7 
.4. Effects of AD represented as dimensionality-reduced, covariance and 

orrelation difference matrices 

Fig. 6 shows dimensionally reduced, covariance difference matrices

elative to controls at successive clinical disease stages of LOAD (pan-

ls B - D) and ADAD (panels F - H). The effects of age and cohort have

een removed by regression. Corresponding, undifferenced matrices are

hown in Fig. S1. Panel A (effect of age) is reproduced from Fig. 5 A for

omparison. It is visually evident that the impact of AD on covariance

C is minimal prior to CDR stage 1. Weak, non-significant, sign-inverted

ffects are present in older, A 𝛽+ , CDR 0 LOAD participants (panel B)

nd younger, mutation-positive, A 𝛽- ADAD participants (panel E). Note

trikingly similar “matrix topographies ” (e.g., detailed patterning in the

ub-cortical diagonal block), with or without sign inversion, in all ma-

rices. 

Fig. 7 shows dimensionally reduced, correlation difference matrices

arallel to the results shown in Fig. 6 . As in the covariance FC results,

nspection suggest that the impact of AD on correlation FC is minimal

rior to CDR stage 1. This is verified in Table 4 , which reports signifi-

ance tests of group-level contrasts in covariance FC and correlation FC.

ignificance levels were consistently greater for correlation as opposed

o covariance FC. 

.5. Differential impact of LOAD and ADAD on covariance and correlation

omponents 

Fig. 8 addresses the question of whether either variant of AD differ-

ntially impacts particular covariance or correlation components. Each

anel reports a group-level analysis of the 30 component values corre-

ponding to the fixed basis ( ΔΨ̄𝑗 or Δψ̄ 𝑗 ), averaged over selected partic-

pant groups. 

Similar effects are evident in panels A and B, which show covariance

omponent differences (CDR 1 + minus control) for LOAD and ADAD.

lopes of the fitted lines ( − 0.564 and − 0.436) indicate that, at CDR 1 +
mild dementia), component values are, on average, attenuated by a

actor of approximately 1/2 relative to controls. The line fits are some-

hat less tight than in Fig. 5 C, consistent with the possibility that AD

ifferentially impacts certain covariance components. Panel C plots ΔΨ̄𝑗 

or ADAD vs. ΔΨ̄𝑗 for LOAD to address the question of differential com-

onent specificity in ADAD vs. LOAD at CDR 1 + . The relatively tight

orrelation (Pearson correlation = 0.944, p < 10 − 6 ) suggests that ADAD

nd LOAD comparably affect covariance FC components. In other words,

here is no evidence of differential focality in the effects of ADAD vs.

OAD on whole-brain FC. 



J.F. Strain, M.R. Brier, A. Tanenbaum et al. NeuroImage 261 (2022) 119511 

Fig. 5. Effect of age in the control participants. Panel A shows the effects of age on covariance FC, evaluated as �̂� [ 𝐝𝐢𝐚𝐠 B 𝐚𝐠𝐞 ] ̂𝐖 

𝐓 . Panel B shows the corresponding 

correlation FC result, evaluated as 𝝊𝐂𝐎𝐍𝐓 ̂𝐰 [ 𝐝𝐢𝐚𝐠 𝜷𝐚𝐠𝐞 ] ̂𝐰 𝐓 . The scales are identical. The effect of cohort has been removed by regression. Panel C shows B 𝐀𝐠𝐞 𝐣 plotted 

against B 𝐈𝐧𝐭 𝐣 , the intercept term, i.e., the value of covariance component 𝐣 extrapolated to age 0. Note approximately uniform proportional effect of age across 

components (r 2 = 0.970). The slope the fitted line indicates -1.69% covariance component change per year relative to value at age 0. Panel D shows 𝝊𝐂𝐎𝐍𝐓 𝜷
𝐀𝐠𝐞 
𝐣 plotted 

against 𝝊𝐂𝐎𝐍𝐓 𝜷
𝐈𝐧𝐭 
𝐣 , i.e., correlation result parallel to panel C. The slope the fitted line is -0.48% correlation component change per year relative to value at age 0. r 2 

values (variance accounted for by the linear model) are included in insets in panels C and D for comparison to r 2 values reported in Fig. 8 . 

Table 4 

Significance testing of CDR stage on covariance and correlation components. 𝚫�̄�∗ and 𝚫�̄� ∗ represent, respectively, 

covariance and correlation component differences contrasting participant subgroup vs. controls. All comparisons 

are based on data from which the effects of age and cohort have been removed by regression. The test statistic 

is the L1-norm of component differences. Within AD cohort differences are relative to controls. Between cohort 

differences are as labeled. Significance was estimated by comparison of the true test statistic against the distribu- 

tion of nulls obtained by 100,000-fold permutation resampling. The listed p -values are not corrected for multiple 

comparisons. p -values < 0.05 are highlighted. 

Within Cohort Contrasts |𝚫�̄�∗ | p-value |𝚫�̄� ∗ | p-value 

WUSM 

cohort 

LOAD A 𝛽+ CDR 0 0.734 0.859 

CDR 0.5 0.566 0.236 

CDR 1 + 0.00024 < 10 − 10 

DIAN 

Mutation + 
cohort 

A 𝛽- CDR 0 0.589 0.971 

A 𝛽+ CDR 0 0.984 0.919 

CDR 0.5 0.383 0.156 

CDR 1 + 0.045 < 10 − 5 

Between Cohort Contrasts |𝚫�̄�∗ | p-value |𝚫�̄� ∗ | p-value 

WUSM vs. DIAN A 𝛽+ CDR 0 0.785 0.875 

WUSM vs. DIAN A 𝛽+ CDR 0.5 0.808 0.609 

WUSM vs. DIAN A 𝛽+ CDR 1 + 0.707 0.034 

8 
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Fig. 6. Covariance FC matrix changes with age, ADAD, and LOAD. In Panel A, the effect of age ( Fig. 5 A) has been multiplied by 35 years, which is the mean age 

difference in the DIAN vs. WUSM controls. Panels B-D and F-H show A 𝜷 positive CDR 0, CDR 0.5 and CDR 1 + vs. control, dimensionality reduced, difference matrices 

in the WUSM and DIAN participants, respectively, evaluated as �̂� 𝚫�̄�∗ �̂� 

𝐓 . The effects of age and cohort have removed from the AD results. Note consistent “matrix 

topography ” with variable scaling, i.e., absence of CDR-dependent focality evident on inspection. Corresponding undifferenced covariance and correlation matrices 

are shown in Fig. S4. Matrix block labels are identical to those in Figs. 3 and 4 ; they are omitted here to optimize use of space. 

Fig. 7. Correlation FC matrix changes with age, ADAD, and LOAD. This figure is parallel to Fig. 6 . The effect of age (Panel A) has been multiplied by 35 years as in 

Fig. 6 . Panels B-D and F-H show A 𝜷 positive CDR 0, CDR 0.5 and CDR 1 + vs. control, dimensionally reduced, difference matrices in the WUSM and DIAN participants, 

respectively, evaluated as �̂� 𝚫�̄� ∗ ̂𝐰 𝐓 . Correlation values have been scaled by 𝝊𝐂𝐎𝐍𝐓 = 2.98 to facilitate comparison with parallel covariance results shown in Fig. 6 . 

Again, note consistent “matrix topography ” with variable scaling. Corresponding undifferenced covariance and correlation matrices are shown in Fig. S5. 
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Panels D - F show correlation component results. Panel D relates

hange in component value per year ( β𝐴𝑔𝑒 
𝑗 

) to baseline component values

xtrapolated to age 0 ( β𝐼𝑛𝑡 
𝑗 

) in a manner parallel to panel A. Panels D and

 show correlation component differences (CDR 1 + minus control) for

OAD ( ΔΨ̄𝑗 ) and ADAD ( Δψ̄ 𝑗 ) parallel to panels B and C. Correlation

omponents depart from the regression line more than corresponding

ovariance components. Quantitative measures of departure from the

tted line (squared Pearson correlation) are reported as insets in each

anel. These results indicate that correlation FC shows more evidence

f focality in AD than does covariance FC. However, plotting ADAD Δψ̄ 𝑗 
s. LOAD Δψ̄ 𝑗 (panel F) reveals little evidence of differential ADAD vs.

OAD focality (Pearson correlation = 0.872), as in panel C. However,

he difference in slopes of the fitted lines (1.17 vs. 0.75) suggests that,
9 
s assessed at CDR 1 + , ADAD leads to more pronounced correlation FC

ifferences relative to controls than does LOAD. A direct test of this

ontrast yielded a formally significant result ( Table 4 , uncorrected for

ultiple comparisons). 

. Discussion 

.1. Results overview 

We contrasted age, ADAD, and LOAD using dimensionality reduced

ovariance FC and correlation FC projections onto fixed bases. Compari-

on of dimensionally reduced covariance vs. correlation FC at the group

evel revealed that these two measures are, to a good approximation,
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Fig. 8. Change in covariance and correlation component values with LOAD and ADAD at CDR 1 + . Each panel includes 30 symbols corresponding to the dimensionality 

of the fixed bases. Panels A and B show CDR 1 + LOAD and ADAD covariance component differences relative to controls. 𝚫�̄�𝐣 is the mean CDR1 + vs. mean control 

difference in the 𝐣 𝐭𝐡 covariance component. Plotting 𝚫�̄�𝐣 vs. �̄�𝐣 , C 𝐎𝐍𝐓 visualizes differences relative to controls vs. the control mean, i.e., proportional differences. 

Insets report r 2 (fraction of variance accounted for by the linear model), i.e., extent to which all components exhibit the same proportional difference at CDR 1 + 
relative to controls. Non-proportional differences indicate the presence of focality. Panel C plots 𝚫�̄�𝐣 for ADAD vs. 𝚫�̄�𝐣 for LOAD. The effects of LOAD and ADAD 

on covariance FC are very strongly correlated (r 2 = 0.891). The line of identity is dotted. Panels D - F show correlation component results parallel to panels A - C 

(omitting 𝝊∗ ). 𝚫�̄� 𝐣 is the mean CDR1 + vs. mean control difference in the 𝐣 𝐭𝐡 correlation component. Deviation from the linear fit in panels D and E is evident, most 

markedly in the strongest two correlation components. Thus, focality in the effects of AD on functional connectivity is more evident in correlation FC as opposed to 

covariance FC. Panel F is exactly parallel to panel C. The strong Pearson correlation (r 2 = 0.760) suggests approximately comparable effects of LOAD and ADAD on 

correlation FC. 
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elated by a scalar proportionality factor, in controls as well as AD-

ffected participants. Three principal results emerged: (1) Healthy aging

eads to global loss of rs-fMRI covariance with little or no evidence that

pecific RSNs are particularly affected. Hence, conventional correlation

C is comparatively unaffected by healthy aging, as previously reported

 Brier et al., 2014 ). (2) In contrast, both LOAD and ADAD lead to

arked changes in both correlation and covariance FC, but only at CDR

 + . The global covariance:correlation ratio ( 𝜐) systematically declines

n association with clinical progression. (3) 3-way ANOVA of covariance

C ( ΔΨ̄∗ ), parametric in CDR stage returned no statistically significant

ifference between ADAD and LOAD (Table S2). This result supports a

chema in which ADAD is regarded as a model of LOAD ( Bateman et al.,

011 ). However, systematic evaluation of the global covari-

nce:correlation proportionality ratio ( 𝜐∗ ) suggests that loss of BOLD sig-

al amplitude is accelerated in ADAD relative to LOAD ( Tables 3 and 4 ).

.2. Methodology 

Computing both covariance and correlation FC confers enhanced in-

erpretability of resting state fMRI studies ( Cole et al., 2016 ; Duff et al.,

018 ). This principle has been applied mostly in studies contrasting

ask or arousal states within individuals, e.g., ( Bijsterbosch et al. 2017 ,

uff et al. 2018 ). We have recently applied parallel covariance + cor-

elation analysis to a longitudinal study of the effects of mindfulness

raining and exercise in older individuals ( Snyder et al., 2022 ). Here,

e apply this methodology to a cross-sectional study. 
10 
Our approach to covariance analysis assumes a common structure

cross individuals ( Varoquaux et al., 2010 ), which corresponds to the

average ” model in the classification scheme of Madsen et al. (2017 ).

hus, the methodology per se is not novel. However, It is noteworthy

hat group-averaged covariance and correlation matrices exhibit simi-

ar structure ( Figs. 4 ; S4; S5), a result that has been obtained before

 Cole et al., 2016 ). It is this similarity that enables defining the global

ovariance:correlation proportionality scalar ( 𝜐). In should be noted that

ovariance FC theoretically is sensitive to individual variability in the

natomical distribution of functional systems in a manner that correla-

ion FC is not. Potential mechanisms include anatomical variability (de-

pite non-linear atlas registration), individual differences in the repre-

entation of function in relation to gyral anatomy ( Gordon et al., 2017 )

nd variation in neurovascular coupling ( Hillman 2014 ). Appendix C

odels this effect as inter-individual differences in “ROI-level gain vari-

bility ”. Numerical simulations over a range additive noise levels empir-

cally show that such differences average out at the group level (Fig. S6).

The present work applies well-established linear algebraic tools (di-

ensionality reduction and projection) to FC analysis. The principal ad-

antage of analyzing group differences in terms of components is di-

ensionality reduction, hence, preservation of statistical power in data-

riven analyses. Fig. 2 shows that a 30-component basis provides a

early complete representation rs-fMRI covariance at the level of func-

ional systems. Projection of FC onto a space of relatively low dimension

hould be distinguished from dimensionality-preserving approaches to
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A  
C analysis that require regularization of matrix inversion ( Brier et al.,

015 ; Rahim et al., 2017 ). Figs. 2 and 3 suggest that 30 components

re sufficient to capture the principal features of resting state fMRI co-

ariance matrices, i.e., hierarchical structure of limited dimensionality

 Cordes and Nandy 2006 ; Laumann et al., 2017 ; Gotts et al., 2020 ). The

rojection strategy reduces the computational complexity of cross-group

omparisons ( Figs. 5 –8 ) and enables use of straightforward regression

echniques to separate the effects of age vs. pathology while control-

ing for technical differences between participant cohorts (e.g., scanners

nd sequences). While the analysis algebra (principal component anal-

sis and linear regression) is not novel, parallel covariance/correlation

nalysis facilitates new inferences concerning aging vs. AD. 

.3. Covariance and correlation FC functional connectivity in healthy aging

Perhaps the most striking present finding is the uniformity, i.e., non-

ocality, of the age effect across covariance components ( Fig. 5 C). Across

ll components, change per year relative to value extrapolated to age 0

 B 𝐴𝑔𝑒 
𝑗 
∕B 𝐼𝑛𝑡 

𝑗 
) is remarkably constant across components. The fitted line

ndicates ∼1.69% loss per year relative to starting value, estimated on

asis of data in participants over the age range contributing to the

odel (Fig. S3). We recently reported similarly broad, age-related re-

uctions in BOLD fMRI signal variability in the cognitively intact subset

f the LOAD cohort ( Millar et al., 2020 ). The present analysis differs

n that we include the control component of the DIAN cohort as well

nd, crucially, exclude from the aging analysis participants with imag-

ng evidence of pre-clinical AD ( Brier et al., 2014 ). Age-related loss of

OLD signal covariance is consistent with previous findings reported

s multifocal changes in the temporal standard deviation of fMRI data

SD BOLD ) ( Garrett et al., 2010 ; Grady and Garrett 2014 ; Vieira et al.,

020 ; Hrybouski et al., 2021 ). Fig. 5 C suggests that this phenomenon is

natomically global as opposed to multifocal. 

Theoretically, if all covariance components proportionally attenuate

ith age, there should be no effect of age on correlation FC, as discussed

n Appendix B. Fig. 5 shows that there is an effect of age on correlation

C but it is quantitatively minor in comparison to the effect of moder-

tely advanced AD (see Section 4.4 ). This result essentially confirms our

rior finding that correlation FC is minimally affected by age in older in-

ividuals without imaging evidence of preclinical AD ( Brier et al., 2014 ).

odest focality in age-related change in correlation components may

e present in the control participants ( Fig. 5 D). Screening for preclini-

al AD on the basis of A 𝛽 and tau does not exclude other predisposing

actors, e.g., family history of AD ( Wang et al., 2012 ). Thus, it is pos-

ible that low doses of pathology with effects similar to A 𝛽/tau or any

ge-associated condition, e.g., vascular disease, also affected the control

articipants. Viewed from this perspective, the results shown Fig. 5 D are

onsistent with prior reports of age-related changes in correlation FC in

ognitively normal older adults, none of which included any screen-

ng to exclude sub-clinical AD ( Andrews-Hanna et al., 2007 ; Dennis and

hompson 2014 ; Sala-Llonch et al., 2015 ). 

Several potential mechanisms may account for age-related loss

f spontaneous BOLD signal fluctuation amplitude. In principle, age-

elated atrophy could be a contributing factor. However, cross-sectional

natomical studies of healthy young vs. older adults report that cor-

ical thickness changes by only ∼0.1–0.2% per year over the lifespan

 Salat et al., 2004 ; Bakkour et al., 2013 ). This small figure does not ac-

ount for age-related loss of BOLD signal fluctuations even if the present

nding of signal power loss is expressed in terms of amplitude (divide

.69% by 2). Whole brain atrophy has been estimated as 0.5% volume

oss per year between ages 59 and 85 ( Resnick et al., 2003 ). This figure

omes closer to accounting for loss of intrinsic BOLD signal fluctuations

ut raises the question of whether age-associated white matter atrophy

nd cerebrovascular disease play a role. Indeed, it has been reported that

hite matter disease degrades FC within specific RSNs ( Teipel et al.,

010 ; Fjell et al., 2017 ). It appears likely that age-related changes in

etabolic and molecular processes are related to loss of BOLD signal
11 
uctuations ( Bishop et al., 2010 ; Peng et al., 2014 ). Whole brain glucose

tilization is about ∼20% lower in cognitively intact older adults (age

75 years) as compared to young adults (age ∼25 years) ( Goyal et al.,

017 ). 

.4. Covariance and correlation functional connectivity in LOAD and 

DAD 

In contrast to healthy aging, AD (both variants) leads to markedly

ltered correlation FC ( Figs. 6 –8 ). We find no statistically reliable FC ab-

ormalities at CDR stage < 1 ( Ibrahim et al., 2021 ). This result supports

he growing consensus that, unlike A 𝛽/tau PET and structural imaging

 Gordon et al., 2019 ), conventional correlation analysis of resting state

MRI is unlikely to provide an early biomarker of AD. This perspective

s implicit in a recent authoritative review of the topic ( Hampel et al.,

021 ). On the other hand, the close temporal association of FC abnor-

alities with clinical dementia implies that resting state BOLD fMRI is

seful in assessing the functional status of the brain, albeit with limited

tiologic specificity: AD is only one of any number of diverse entities

hat impair cognition in association with FC abnormalities ( Zhang et al.,

021 ). Apart from altered FC, rs-fMRI features that distinguish CDR 1 +
articipants from controls include a lower value of the global covari-

nce:correlation proportionality scalar ( 𝜐; Table 3 ) and departures from

roportional correlation FC component changes relative to controls ( Δψ̄ ;
ig. 8 D,E). A low value of 𝜐 with maintained ⟨�̂� ⟩𝑘 : ⟨�̂� ⟩𝑘 correlation ( 𝜂;

able 3 ) implies loss of BOLD signal fluctuation amplitude in excess of

egraded RSN structure. This finding is consistent with prior reports of

educed ALFF in AD ( Yang et al., 2018 ; Zeng et al., 2019 ). BOLD sig-

al fluctuation amplitude, cerebral blood flow, and glucose metabolism

ll are closely linked in healthy brains ( Wang et al., 2021 ) as well as in

rains affected by AD ( Marchitelli et al., 2018 ). Thus, loss of BOLD signal

uctuation amplitude is an expected correlate of reduced metabolism

n AD. Pathology and atrophy are quantitatively greater and spatially

ore extensive in ADAD in comparison to LOAD ( Cairns et al., 2015 ;

ingman et al., 2016 ; Dincer et al., 2020 ). This difference may underlie

he ADAD vs. LOAD |Δψ̄ ∗ | finding ( Table 4 ) and possibly the acceler-

ted change in 𝜐∗ ( Table 3 ). The results reported in Table 3 reinforce

he recent observation that loss of ALFF is correlated with A 𝛽 burden

 Scheel et al., 2022 ). 

Fig. 8 suggests that there exists a dissociation between correlation

s. covariance FC in the degree of non-uniformity over components (i.e.,

eparture from linear fit; panels D,E vs. A,B). This finding implies that

SN-specific abnormalities are more prominent in conventional corre-

ation FC as opposed to covariance FC. This inference is consistent with

he existence of multiple prior papers describing focal or RSN-specific

C abnormalities in AD, e.g., ( Buckner et al. 2005 , Brier et al. 2012 ,

oepper 2017 , Chhatwal et al. 2018 , Lin et al. 2018 ). A parsimonious

ccount of differential correlation vs. covariance focality can be formu-

ated by invoking a distinction between widely shared vs. locally re-

tricted signals ( Cole et al., 2016 )(Appendix B). This approach to dis-

mbiguating FC has been alternatively articulated in terms of Additive

ignal Change theory ( Duff et al., 2018 ). Thus, because locally restricted

ignals (in the nomenclature of Appendix B) do not contribute to co-

ariance but do depress Pearson correlation, differential correlation vs.

ovariance FC focality can arise from an uneven distribution of locally

estricted signals over the brain. The results shown in Fig. 8 suggest that

his may occur in moderately advanced AD. We do not attempt here to

etail which RSNs or brain regions are particularly susceptible to devel-

ping locally restricted signals as that analysis, as well as detailing local

eviations from scalar covariance:correlation proportionality ( Fig. 4 C),

alls outside the scope of the present work. 

.5. rs-fMRI functional connectivity as a means of localizing pathology 

The notion that there exists an topographic correspondence between

D histopathology and FC changes arguably dates back to 2004, when
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reicius and colleagues reported that AD patients could be separated

rom non-demented controls on the basis of DMN functional connec-

ivity ( Greicius et al., 2004 ). The inference was compelling as impaired

emory is the hallmark of AD while the DMN is the RSN most associated

ith memory ( Buckner and DiNicola 2019 ). The link was subsequently

einforced by several papers highlighting the spatial overlap between

he DMN and A β accumulation as imaged by PiB-PET ( Buckner et al.,

005 ). Importantly, Greicius and colleagues did not claim that AD af-

ects only the DMN. It has since become clear that multiple RSNs are

ffected ( Sheline et al., 2010 ; Brier et al., 2012 ; Fjell et al., 2015 ;

ranzmeier et al., 2020 ; Ripp et al., 2020 ). 

Nevertheless, the topographic correspondence between histopathol-

gy and FC abnormalities in AD is not as straightforward as once

eemed. The staging of neuropathology in AD is well documented

 Braak et al., 2011 ). Crucially, primary sensory cortices are spared until

ater stages of the disease. The distribution of pathology in both LOAD

nd ADAD (A 𝛽/tau deposition, lower flouro-deoxyglucose uptake, at-

ophy) similarly spares primary sensorimotor areas ( Brier et al., 2016 ;

ansson and Gouras 2016 ; Gordon et al., 2019 ). This does not match

s-fMRI findings ( Figs. 6 and 7 , panels D and H). Although the DMN

s affected at CDR 1 + in both LOAD and ADAD, somatomotor, cingulo-

percular and auditory cortices are comparably affected and the greatest

oss of covariance FC occurs in visual areas. Thus, there exists a sub-

tantial discrepancy between the distribution of histopathology vs. the

istribution of FC changes. A similar discrepancy exists in Parkinson

isease ( Gratton et al., 2019 ). The physiological significance of this dis-

repancy remains to be determined but the available evidence excludes

 straightforward relationship between FC changes and the anatomical

istribution of histopathology. 

.6. Caveats and limitations 

Projection of rs-fMRI data onto a fixed space of reduced dimension-

lity constitutes a key feature of the present analysis. This approach im-

licitly ignores features of rs-fMRI correlation structure outside the fixed

rojection (formally, the column space of �̂� and �̂� ). However, as shown

n Fig. S5, the fixed bases reasonably well represent the covariance

nd correlation structures of participant subgroups. Hypothetically, the

resent approach to dimensionality reduction could miss meaningful

roup differences outside the projection. However, Fig. 2 shows that the

ierarchical structure of group-level RSNs is almost completely captured

y 30 components representing 222 ROIs. Thus, if the present analysis

as missed important FC features, they would have to exist at a gran-

larity finer than the block structure illustrated in Fig. 2 . Additionally,

e note that the effects of aging in healthy individuals as well as CDR

tage have been inferred on the basis of exclusively cross-sectional data.

inally, the sensitivity of certain group comparisons is limited by the

ample size of CDR 1 + participants ( Table 1 ). We plan to update the

nalyses as larger samples become available. 
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