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The human odorant receptor OR10A6 is tuned
to the pheromone of the commensal
fruit fly Drosophila melanogaster
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SUMMARY

All living things speak chemistry. The challenge is to reveal the vocabulary, the
odorants that enable communication across phylogenies and to translate them to
physiological, behavioral, and ecological function. Olfactory receptors (ORs) inter-
face animals with airborne odorants. Expression in heterologous cells makes it
possible to interrogate single ORs and to identify cognate ligands. The cosmopol-
itan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on
human resources and housing for survival. Curiously, humans sense the pheromone
(Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human
ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females
of an ancestralAfrican fly strain release a blendof Z4-11Al andZ4-9Al that produces
a different aroma, which is how we distinguish these fly strains by nose. That flies
and humans sense Z4-11Al via dedicated ORs shows how convergent evolution
shapes communication channels between vertebrate and invertebrate animals.
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INTRODUCTION

Volatiles from animals, microorganisms, and plants are yielded by basic metabolic pathways, they inform

about resources and habitats, and reveal identities and social context. Communication via volatile

chemicals is reliable and inclusive, for all living beings across the kingdoms.

Volatiles are aired tweets for those equipped with receptors and sensory circuits to capture and interpret

them. Animals possess olfactory receptors (ORs) for peripheral detection of volatiles, and for filtering out

scents that make ecological and behavioral sense, from a noisy chemical airspace. Functional evolution and

adaptation of ORs to ecosystem and habitat cues and to social and sexual signals reflects their importance

in interfacing animals with the chemical environment (Hayden et al., 2010; Fleischer et al., 2018; Robertson,

2019; Saraiva et al., 2019; Auer et al., 2020; Marcinek et al., 2021; Prieto-Godino et al., 2021). Olfaction has

developed independently in invertebrates and vertebrates, but the overarching organization and

functional logic of the olfactory system, building on rapidly evolving ORs, expressed in peripheral olfactory

sensory neurons, feeding into a hierarchy of central olfactory circuits, is convergent (Ache and Young, 2005;

Su et al., 2009; Bear et al., 2016; Wang et al., 2021).

A principal, current objective, and fascinating challenge in vertebrate and invertebrate olfaction research is

to explore the receptive range of ORs and to set landmarks in chemical space, for comprehension of olfac-

tory codes and the functional analysis of olfactory systems. Expression of ORs in heterologous cell systems,

for example in human embryonic kidney (HEK) cells, enables experimental access and makes it possible to

interrogate individual ORs and to identify their cognate ligands (Krautwurst et al., 1998; Corcoran et al.,

2014). Human ORs are seven-transmembrane domain G-protein coupled receptors and the first challenge

is to achieve fully functional membrane expression (Noe et al., 2017b). The ensuing step is to compose

comprehensive and manageable, yet representative panels of biologically relevant compounds for

investigating their receptive range. One strategy is to use key food odorants, identified from food and bev-

erages (Krautwurst and Kotthoff, 2013; Dunkel et al., 2014). Odorant panels will, however, always remain

notoriously incomplete – in comparison with an overwhelmingly diverse odorscape, containing countless
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chemicals. In vitroOR screenings do afford active ligands, but most human ORs remain in the orphan state

(de March et al., 2015; Block, 2018; Haag and Krautwurst, 2021).

Chemicals we perceive in very small amounts, and which are not strictly associated with food, are inspiring

targets for OR screenings. One such candidate compound is (Z)-4-undecenal (Z4-11Al), the volatile female

pheromone of the commensal fruit fly D. melanogaster. In Drosophila, two isoforms of DmelOR69a

(Robertson et al., 2003), with dual specificity for food odorants and pheromone, are co-expressed in the

same OSNs. Intriguingly, we ourselves readily perceive Z4-11Al, which is released at subnanogram

amounts per hour. As only females produce this scent, we reliably distinguish between male and female

flies (Lebreton et al., 2017; Becher et al., 2018).

Cosmopolitan D. melanogaster flies are strictly anthropophilic. They accompanied the human expansion

from out of Africa around 10.000 ya, and have been isolated from African flies, such as the Zimbabwe strain

(Lachaise and Silvain, 2004; Arguello et al., 2019; Sprengelmeyer et al., 2020). The cosmopolitan fly pher-

omone Z4-11Al is an oxidation product of the aphrodisiac cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene

(Z7,Z11-27Hy) (Billeter et al., 2009; Lebreton et al., 2017). Because Zimbabwe females produce more (Z,Z)-

5,9-heptacosadiene (Z5,Z9-27Hy) than Z7,Z11-27Hy (Dallerac et al., 2000; Grillet et al., 2012), consequently

these flies would release another aldehyde. Posing that our perception of Z4-11Al is not only sensitive but

also specific, we asked whether we are able to olfactorily discriminate between females of the cosmopol-

itan and Zimbabwe strains of D. melanogaster. A sensory panel corroborated this idea by comparing

synthetic compounds and fly odors.

Naturally, this invites thequestion – howdohumans smell the scent of the fly? A rangeof humanORs is tuned

to straight-chain aldehydes, which are commonly found in fruit and vegetable aromas (Schmiedeberg et al.,

2007; Saraiva et al., 2019; Nara et al., 2011; Li et al., 2014; deMarch et al., 2015; Block 2018) and perception of

Z4-11Al might be encoded by one or even several of these aldehyde-responsive ORs. We hence submitted

Z4-11Al to an in vitro screening of all human ORs and their most frequent genetic variants, using heterolo-

gous expression in HEK-293 cells and a luminescence-based assay (Noe et al., 2017a, 2017b). This screening

renders OR10A6 the single most responsive receptor for Z4-11Al. A subsequent olfactory panel test

confirmed the results of an in vitro dose-response test of synthetic aldehyde analogs, showing that we

discriminate between structurally related aldehydes and that our olfactory perception of Z4-11Al is remark-

ably sensitive and specific. The scent of the fly illustrates how chemical ecology research inspires the discov-

ery of OR ligands and provides an account for convergent chemical communication across phylogenies.
RESULTS

Sensory evaluation of fly odor

Comparative chemical analysis of volatiles released by D.melanogastermale and female flies, followed by

sensory evaluation of fly odor and synthetic compound by a professional wine panel, strongly suggest that

Z4-11Al is the scent of the female fly (Lebreton et al., 2017; Becher et al., 2018).

To substantiate these findings, we compared females vs males painted with Z4-11Al. For this particular

experiment, assessors were chosen according to their capacity to recognize the scent of synthetic

Z4-11Al, at 10 ng formulated in water, during preliminary experiments. Assessors evaluated fly odor

emanating from glass vials, which contained 10 males and 10 females, respectively, during 30 min, 1 h

before the experiment. All assessors readily distinguished male and female vials. After adding 10 or

100 ng of Z4-11Al, discrimination was no longer significant (Figure 1A).

We further asked whether females transmit Z4-11Al or its precursor Z7,Z11-27Hy (Figure 2B) to males during

mating. All assessors readily distinguished between vials impregnated with the odor of mated and unmated

males, respectively (Figure 1B) and all assessors recognized the scent of Z4-11Al in vials impregnated by

mated males.

We next compared synthetic Z4-11Al with the scent of D. melanogaster females, of the cosmopolitan and

the Zimbabwe strains, in water and wine, providing a rich odorant background (Figure 2A). A professional

wine panel was employed for this test, with no previous experience with Z4-11Al. Vials, where five fly fe-

males had been kept and released before testing, and vials formulated with 10 ng Z4-11Al, were filled

with water or wine, respectively. In vials with water, panelists found the odor of Z4-11Al to resemble
2 iScience 25, 105269, November 18, 2022
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Figure 1. Fly painting with Z4-11Al

Assessors participating in these experiments sensed 10 ng synthetic Z4-11Al formulated in water, according to a

preliminary test.

(A) All assessors distinguished the odor of 10 males vs 10 females emanating from glass vials, where flies had been kept

during 30 min, 1 h before the onset of the experiment (n = 10 and 12 assessors in upper and lower panel, respectively;

Chi2 = 10.0752, p = 0.001503 and Chi2 = 12.0, p = 0.005). Sex discrimination was no longer significant, when 10 and 100 ng

Z4-11Al, respectively, was added to the male vials (Chi2 = 0.5952, p = 0.4404; Chi2 = 0.1777, p = 0.6733).

(B) All assessors discriminated the odor of mated vs unmatedmales, emanating from glass vials, where flies had been kept

during 30 min, 1 h before the experiment (n = 11 assessors; Chi2 = 10.9925, p = 0.0009). The control experiment with

unmated males did not show differences (Chi2 = 1.0017, p = 0.3169).
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cosmopolitan, but not Zimbabwe flies. Even in wine, most panelists readily perceived cosmopolitan fly odor

and found it to resemble synthetic Z4-11Al. In contrast, the evaluation of Zimbabwe fly odor vs Z4-11Al was

impaired in wine (Figure 2A).
Aldehyde emission by cosmopolitan and African flies

Cosmopolitan D. melanogaster females produce the courtship pheromone Z7,Z11-27Hy, which affords

Z4-11Al as an oxidation product (Billeter et al., 2009; Lebreton et al., 2017). Females of the Zimbabwe strain

producemainly Z5,Z9-27Hy instead (Dallerac et al., 2000), and consequently these flies would therefore also

release Z4-9Al (Figure 2B).

Headspace analysis of D. melanogaster confirmed that females of the cosmopolitan strain released

Z4-11Al, whereas Z4-9Al was not detected in cosmopolitan fly effluvia collections. Zimbabwe females, on

the other hand, produced Z4-9Al, in addition to Z4-11Al, at a 2.6 G 0.7-fold amount (n = 10) (Figure 2C).
iScience 25, 105269, November 18, 2022 3
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Figure 2. Sensory discrimination between cosmopolitan and Zimbabwe D.melanogaster females by humans, and

production of Z4-11Al and Z4-9Al by these fly strains

(A) Olfactory resemblance of 10 ng synthetic Z4-11Al and the odor of cosmopolitan or Zimbabwe female flies, in water and

wine. Judges, who had not sensed synthetic Z4-11Al before, were asked whether or not the odors of two vials bear

resemblance. Bars marked with asterisks are significantly different (n = 21 assessors; Chi2 = 6.9146, p = 0.0085; Chi2 =

10.5061, p = 0.0012; Chi2 = 4.9082, p = 0.0267; Chi2 = 0.0288, p = 0.8652, from left to right).

(B) Z7,Z11-27Hy is the hydrocarbon precursor of the cosmopolitan D.melanogaster female pheromone Z4-11Al. Females

of the Zimbabwe strain further produce Z5,Z9-27Hy and the corresponding oxidation product is Z4-9Al.

(C) Chromatograms of headspace collections from batches of 60 females, with Z4-9Al and Z4-11Al highlighted. Zimbabwe

flies produce a 2.6 G 0.7-fold amount of Z4-9Al, compared with Z4-11Al (n = 10).

(D) Olfactory discrimination of cosmopolitan vs ZimbabweD.melanogaster females, of 10 ng Z4-9Al vs 10 ng Z4-11Al, and

a 10:3-ng blend of Z4-9Al and Z4-11Al vs 10 ng Z4-11Al. Bars marked with asterisks are significantly different (n = 45 judges

chosen at random, Chi2 = 8.7154, p = 0.0032; Chi2 = 5.4206, p = 0.0199; Chi2 = 11.4387, p = 0.0007, from left to right).
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OR10A6 is tuned to Z4-11Al

OR10A6 L287P, the only known functional OR10A6 variant (Olender et al., 2012, 2013; Trimmer and Main-

land, 2017), showed by far the strongest response to 30 mmol/L of Z4-11Al beyond a 2s-threshold, in a

screening of 616 human OR variants expressed in HEK-293 cells (Figure 3A). Screening the aldehyde

analog Z4-9Al at 100 mmol/L revealed two responding receptors beyond a 2s-threshold, OR2W1 and

OR10A6 L287P, with comparable amplitudes (Figure 3B). At 100 mmol/L Z4-11Al, OR2W1 showed an

about six-fold lower response, compared with OR10A6 L287P (Figure 3C), despite a slightly better surface

expression of OR2W1 as compared with OR10A6 L287P, in both HEK-293 and NxG 108CC15 cells

(Figure S1).

A dose-response assay further confirmed that Z4-11Al was the most potent agonist for OR10A6 L287P,

compared with the analog Z4-9Al and the positional isomer Z6-11Al (Figure 4A). The EC50 values for these

three aldehydes on OR2W1 haplotypes were about 2- to 3-fold higher, throughout, compared with

OR10A6 L287P (Table 1, Figure 4B). All other ORs that responded to Z4-11Al or Z4-9Al beyond a

2s-threshold in the screening experiments could not be validated in concentration-response assays

(Figures S2, S3, and S4), suggesting <2% false positives. Among the most abundant OR10A6 haplotypes

(Olender et al., 2012), OR10A6 L287P was functional (Figures 4A and S4).

For the ensuing panel test, 31 assessors were chosen at random. The odorant panel corroborated that we

aremore sensitive to Z4-11Al than to Z4-9Al or Z6-11Al (Figure 4C). A significant number of panelists sensed

Z4-11Al already at 1 ng/mL in water (0.006 mmol/L). In comparison, the response to Z4-9Al or Z6-11Al was

not significant, at the amounts tested.

A low response threshold to Z4-11Al in vitro (Figures 3 and 4) corroborates our remarkable sensitivity to the

female pheromone of cosmopolitan D. melanogaster, which is only a minor compound of fly headspace

(Figure 2C; Lebreton et al., 2017). Most panelists who discriminated Z4-11Al from control (Figure 4C)

perceived the aroma of the pure compound to be fruity and pleasant, whereas a fly female or synthetic

Z4-11Al was found to disturb wine aroma (see also Becher et al., 2018).

According to the triangle test shown in Figure 4C, 21 of 31 panelists (68%) sensed Z4-11Al at 1 ng.

In a large human population, only 35% individuals carry the functional haplotype OR10A6 L287P

(Olender et al., 2012, 2013), (Table 2) which is contradictory at first sight. We therefore genotyped

29 of the 31 panel members for OR10A6 and OR2W1. The functional variant OR10A6 L287P was

found in 14 individuals (48.3%), and OR2W1 D296N was found in 26 individuals (89.7%), among the 29

panelists.

In a triangle test (3 vials), where 2 vials are the same, panelists are asked to pick the odd vial. The 29 anon-

ymously genotyped panelists produced 20 correct answers (Figure 4C shows results for 31 panelists).

Assuming that the 14 panelists carrying OR10A6 L287P picked the odd vial because they sensed Z4-11Al,

and that every third of the remaining 15 panelists picks the odd vial by chance, we expect 19 correct

answers, which is appreciably close to the 20 correct answers obtained with 1 ng Z4-11Al. The number

of correct answers, from these 29 panelists, increased to 24 at 10 ng Z4-11Al. This might be owing to

OR2W1 D296N, which shows a 43% higher EC50 value in response to Z4-11Al in the HEK assay, compared

with OR10A6 L287P (Table 1).
iScience 25, 105269, November 18, 2022 5
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Figure 3. Screening of 616 recombinant human IL-6-HaloTag�-OR variants, with Z4-9Al and Z4-11Al, using an HEK-293 cell-based GloSensor�
cAMP-luminescence assay

The cDNA expression plasmid OR library is shown in Table S1.

(A) OR10A6 L287P emerges as the sole OR responding to 30 mmol/L of Z4-11Al, beyond a 2s-threshold (red line). OR2W1 (dashed arrow) became activated

only at higher concentrations (see Figures 3C and 4).

(B) Both OR2W1 and OR10A6 L287P were activated by 100 mmol/L of Z4-9Al. Data for both screenings (relative luminescence units, RLU) were normalized to

the signal amplitude of OR1A1 in response to 30 mmol/L R-(�)-carvone. OR families are color-coded and sorted in an ascending numerical order. The

negative controls were cells transfected with a ‘‘mock’’ plasmid lacking any receptor coding region; false positives (FP) are indicated.

(C)OR2W1 shows a significantly lower amplitude thanOR10A6 L287P in response to Z4-11Al, but not in response to Z4-9Al. Data showmock control-subtracted

raw data (luminescence units, LU) in response to 100 mmol/L of the respective aldehyde (meanG SD, n = 3), the asterisk shows a significant difference (paired

two-tailed t-test; t = �4.14887, p = 0.0142).
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Discrimination between Z4-11Al and a blend of Z4-9Al and Z4-11Al

As we perceive Z4-11Al at the amounts produced by females, and not Z4-9Al, Zimbabwe and cosmo-

politan flies should smell the same (Figures 2A and 2D; 4C). Females of these flies are expected to

differ only with respect to odor intensity, not quality – unless a blend of Z4-11Al and Z4-9Al produces

a different aroma than Z4-11Al alone. This is indeed the case. A triangle test involving 45

randomly selected panelists at SLU Alnarp shows a clear distinction between Z4-11Al and a 3:10-blend
6 iScience 25, 105269, November 18, 2022
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Figure 4. Dose-response effect of synthetic Z4-11Al, Z4-9Al, and Z6-11Al on the most frequent OR10A6 and

OR2W1 haplotypes in an HEK-293 cell-based GloSensor� cAMP-luminescence assay and an odorant panel

(A) Z4-11Al is the most potent agonist for OR10A6 L287P, the other two OR10A6 variants were not functional (no response

detected up to 1.000 mmol/L).

(B) The response of OR2W1 variants was throughout weaker, compared with OR10A6 L287P. Relative luminescence units

(RLU) were mock control-subtracted, normalized to the highest response of either OR10A6 L287P or OR2W1 ref, and the

respective aldehyde (meanG SD, n = 3). Letters show significant differences of the response of OR10A6 L287P (p = 0.0061)

and OR2W1 D296N (p = 0.0048) to the test compounds, according to ANOVA followed by Friedman’s test. Responses of

OR2W1 ref were not different (p = 0.3519).

(C) A significant number of panelists (n = 31) detected Z4-11Al at 1 and 10 ng (Chi2 = 7.3459, p = 0.0067; Chi2 = 14.1607,

p = 0.0002, respectively).
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of Z4-11Al and Z4-9Al mimicking the scent of cosmopolitan and Zimbabwe flies, respectively

(Figures 2C and 2D).
DISCUSSION

Z4-11Al is a ligand for the highly expressed OR10A6

Human olfactory perception of Z4-11Al, the female pheromone of cosmopolitan D.melanogaster is highly

sensitive and specific. An odorant panel sensed synthetic Z4-11Al at 1 ng/mL (0.006 mmol/L) and at subna-

nogram amounts released by single flies, and distinguished Z4-11Al from the structurally similar aldehydes

Z4-9Al and Z6-14Al, or a blend of Z4-11Al and Z4-9Al. In vitro screening showed that the functional variant

of OR10A6, which ranks among the most highly transcribed ORs in the olfactory epithelium (Saraiva et al.,

2019; Verbeurgt et al., 2014), is most sensitively tuned to Z4-11Al. OR10A6may also be tuned to other odor-

ants, such as cyclamen aldehyde (Duroux et al., 2020), and further experiments are needed to map its entire

agonist space.

OR2W1, the other receptor that showed a significant response to the Drosophila aldeydes in our OR

screening, is a most broadly tuned human OR (Saito et al., 2009; Geithe et al., 2017a; Haag et al., 2021).
iScience 25, 105269, November 18, 2022 7



Table 1. EC50 values for OR10A6 and OR2W1 haplotypes in response to Z4-9Al, Z4-11Al, and Z6-11Al

Z4-9Al

Z4-11Al

EC50 [mmol/L]a Z6-11Al

OR10A6 ref NDb ND ND

OR10A6 L287P 41.15 G 14.24 28.21 G 12.65 34.78 G 9.21

OR10A6 A117V/V140G/L287P ND ND ND

OR2W1 ref 119.31 G 23.09 65.11 G 35.75 103.73 G 27.01

OR2W1 M81V 142.09 G 92.38 ND ND

OR2W1 D296N 91.82 G 46.19 40.42 G 11.98 137.89 G 54.98

aMean G SD (n = 3).
bNo response detected up to 1000 mmol/L.
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A combination of highly selective and broadly tuned ORs is the basis for sensing a diverse odorant environ-

ment with only a limited number of ORs (Geithe et al., 2017a; Block, 2018; Saraiva et al., 2019; Kurian et al.,

2021). Theoretical and data-based models predict that mixed OR populations of different receptive ranges

enable greater odor coverage (Alkasab et al., 2002; Fonollosa et al., 2012). OR2W1 may accordingly partic-

ipate together with OR10A6 in enabling receptor activity patterns in response to aldehydes, even though

the transcript levels of OR2W1 in the olfactory epithelium are low, in comparison with the highly expressed

OR10A6 (Verbeurgt et al., 2014; Saraiva et al., 2019). Other humanORs with an affinity to various odor-active

aldehydes (Nara et al., 2011; de March et al., 2015; Block, 2018) did not respond significantly to Z4-11Al and

Z4-9Al.

Remarkably, the panel reliably discriminated between Z4-11Al and a blend of Z4-11Al and Z4-9Al. That the

blend afforded an entirely different hedonic quality explains how we distinguish between cosmopolitan

and Zimbawe flies. Response of OR2W1 to Z4-9Al and of OR10A6 to both compounds, Z4-9Al and

Z4-11Al, suggests that input from 2 ORs produces a different perception. On the other hand, as

OR10A6 was responsive to both compounds, it is even possible that modulation at the OR level encodes

this blend discrimination. Processing of odorant interactions is not restricted to higher olfactory circuits,

but occurs even peripherally, owing to synergistic and antagonistic responses of olfactory neurons to

odor mixtures. Odorant interaction and encoding of mixtures at the OR level substantially extends the

receptive range of ORs (Brann and Datta, 2020; De March et al., 2020; Inagaki et al., 2020; Xu et al., 2020).

It is further intriguing that we sense the small amounts of Z4-11Al released by single flies against the rich

bouquet emerging from a glass of wine. Z4-11Al is only a minor compound among the volatiles released

by Drosophila females (this study; Lebreton et al., 2017; Becher et al., 2018), whereas the bouquet of

wine is overwhelmingly complex and comprises many volatiles at far larger amounts, including a suite of

aldehydes (Swiegers et al., 2005; Cullere et al., 2007).

Single ORs and their key ligands play indeed a central role in olfactory object recognition, especially

against heterogeneous backgrounds. Olfactory sensory neurons expressing high-affinity ORs with low acti-

vation thresholds have been shown to become activated early during a sniff and thus accentuate the

response to behaviorally salient signals, whereas input from other ORs is temporarily tuned down (Wilson

et al., 2017; Arneodo et al., 2018; Bolding and Franks, 2018; Dewan et al., 2018). The odorant panel attrib-

uted a pleasant, fruity aroma to Z4-11Al as a single compound. That the admixture of Z4-11Al to wine is

perceived as unpleasant may accordingly be owing to a reduced or modulated perception of wine volatiles.

Similarly, wine aroma is disturbed by larger amounts of (E)-2-decenal, a component of a hemipteran bug

defensive secretion (Mohekar et al., 2017). Conversely, a suite of unsaturated, odor-active aldehydes

from coriander, including (E,E)-2,4-undecadienal, had a deodorizing effect on the malodor of porc intes-

tines (Kohara et al., 2006; Ikeura et al., 2010).

Taken together, our observations illustrate how a key compound contributes to olfactory perception via a

single OR, in addition to combinatorial coding of odorant blends by arrays of several ORs (Mainland et al.,

2014). Sensitivity is, in addition to ligand affinity, a function of OR expression in olfactory sensory neurons

(van der Linden et al., 2020) and OR10A6 is among the most highly expressed ORs in our nose (Verbeurgt

et al., 2014; Saraiva et al., 2019).
8 iScience 25, 105269, November 18, 2022



Table 2. OR10A6 and OR2W1 variants and their frequencies according to human genome databases (Olender et al., 2012, 2013; Howe et al., 2021)

Accession number [1] or variant ID [2] Minor allele frequency (%) [2] Frequency (%) [3]

OR10A6 ref NM_001004461.2 21.81

OR10A6 V140G rs7933807 41.3

OR10A6 A117V rs7928451 39.4 0.08

OR10A6 L287P rs4758258 21.2 35.02

OR10A6 A117V/V140G/L287P 37.33

OR10A6 V140G/L287P 1.92

OR10A6 A117V/L287P 0.15

OR2W1 ref NM_030903.3 72.43

OR2W1 M81V rs34892006 3.9 3.61

OR2W1 D296N rs35771565 24.9 23.96

[1] NCBI Resource Coordinators (2017).

[2] Howe et al. (2021).

[3] Olender et al. (2012, 2013).
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Occurrence of Z4-11Al in human odor scenes

Highly abundant ORs are plausibly dedicated to odorants of critical physiological, behavioral or ecological

function. This raises the question of what Z4-11Al may mean to us. Perception of the same odorant by in-

sects and vertebrates is convergent, as the respective ORs share ligand affinity, but are built differently and

lack a common phylogenetic root (Su et al., 2009; Bear et al., 2016). If the convergent evolution of the verte-

brate and invertebrate olfactory systems reflects an underlying logic rather than shared developmental

principles (Wang et al., 2021), it would follow that convergent perception of messenger chemicals points

to a behavioral role.

What is the source of Z4-11Al in a human odorscape? Animals, plants, and associated microbes each

release many hundreds of compounds and these volatile emissions change with age, phenology, and phys-

iological state (Knudsen et al., 1993; El-Sayed, 2020; Lemfack et al., 2018; Ljunggren et al., 2019). Z4-11Al

has not been searched for, synthetic standards are not available commercially, and we can therefore safely

assume that the occurrence of Z4-11Al is only incompletely known.

Although Z4-11Al is not considered to be a key food odorant (Dunkel et al., 2014), it has been found in cori-

ander and clementine (Chisholm et al., 2003; Eyres et al., 2005), and similar aldehydes are typical for other

fruit (e.g. Fischer et al., 2008; Chai et al., 2012). Monoenic aldehydes are perceived as ‘‘citrusy,’’ but also as

‘‘tallowy’’ as they contribute to the flavor of cooked or roast food andmeat, including rice, oils, fish, chicken,

and beef (Cha et al., 1992; Siegmund and Pfannhauser, 1999; Rochat and Chaintreau, 2005; Roh et al., 2006;

Yang et al., 2008; Oueslati et al., 2018; Giuffre et al., 2020), and Z4-11Al has also been found in oxidized

tallow (Shi et al., 2013).

Intriguingly, Z4-11Al and close analogs appear even in a pheromonal context, in several animals and

humans. The crested auklet, a colonial breeding sea bird, releases a tangerine-scented, social odor

that signals mate quality and contains (Z)-4-decenal as the main compound (Douglas et al., 2001;

Hagelin et al., 2003). Unsaturated aldehydes are part of human scent profiles and serve as diagnostic

and forensic cues (Curran et al., 2007; Li, 2014; Duffy et al., 2018; Tavares et al., 2019). Milk from humans

and rabbits contains 2-nonenal and 2-undecenal, respectively (Schaal et al., 2003; Sandgruber et al.,

2012), and newborn mice emit 4-nonenal (Lacalle-Bergeron et al., 2021). (E)-2-undecenal occurs, with

several other 2-unsaturated aldehydes, in anogenital gland secretions in Pandas (Zhou et al., 2021)

and Z4-11Al has been found in rabbit anal glands, accelerating heartbeat upon perception (Goodrich

et al., 1978).

Taken together, Z4-11Al is found in human food, it might even be produced by ourselves and could

manifest food, social context, or both. A dual function of certain pyrazines as key food odorants and

semiochemicals, selectively activating the same, single human OR, has recently been demonstrated (Mar-

cinek et al., 2021).
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Role of Z4-11Al in D. melanogaster

The vinegar fly is our involuntarily domesticated animal, since it accompanied the human global expansion

out of Africa. Cosmopolitan vinegar flies are associated with us on all continents and most climate zones,

they are strictly anthropophilic, depend on our food and dwellings for survival and we share a taste for fer-

menting food (Lachaise and Silvain, 2004; Nielsen et al., 2017; Arguello et al., 2019). D. melanogaster fe-

males, not males, produce dienic hydrocarbons that give rise tomonoenic aldehydes, which is why we smell

the female flies (Everaerts et al., 2010; Lebreton et al., 2017).

The sibling species Drosophila simulans has also attained worldwide distribution in association with

humans, but is, unlike D. melanogaster, not a strict commensal and more rarely found in households or

buildings (Lachaise and Silvain, 2004). D. simulans females do not produce dienic hydrocarbons, which is

a main element of the mating barrier between these species. The cuticular hydrocarbon Z7,Z11-27Hy pro-

motes courtship in cosmopolitan D. melanogaster, and suppresses interspecific matings with D. simulans,

owing to differential, species-specific coding of Z7,Z11-27Hy in neural circuits mediating reproductive

behavior (Billeter et al., 2009; Billeter andWolfner, 2018; Seeholzer et al., 2018; Sato and Yamamoto, 2020).

Cosmopolitan and African D. melanogaster strains also differ with respect to cuticular hydrocarbons. The

female-specific desaturase gene desat2, which affords Z5,Z9-27Hy and Z4-9Al, is functional only in African

and not in cosmopolitan flies (Dallerac et al., 2000; Grillet et al., 2012). This hydrocarbon polymorphism

yields a distinctive aldehyde blend, which is how we differentiate the scent of these two fly strains.

Species-specific differences in hydrocarbons align with corresponding aldehyde signatures, that entail

behavioral consequences. Z4-11Al attracts D. melanogaster, but not males of the Zimbabwe strain, and

has an antagonistic effect on upwind flight attraction in D. simulans. This underlines the role of female-pro-

duced volatile pheromones in long-range mate communication in Drosophila (Lebreton et al., 2017;

Borrero-Echeverry et al., 2022).

Panel tests evaluating male and female fly odor unexpectedly discovered that Z4-11Al, in addition to its

hydrocarbon precursor, is among the ‘‘chemical words exchanged by Drosophila during courtship and

mating’’ (Jallon, 1984). At close range, Z4-11Al stimulates courtship in males (Borrero-Echeverry et al.,

2022), whereas the transfer of Z4-11Al may be a factor in reducing courtship success of freshly mated males

(Scott et al., 1988). That Z4-11Al by itself is attractive to females (Lebreton et al., 2017; Borrero-Echeverry

et al., 2022), even points to an antagonistic interaction with a male-produced compound, such as 11-cis-

vaccenyl acetate.
Sensory drive and convergence

Convergent perception of Z4-11Al in humans and flies could be coincident or interconnected. ORs readily

adapt to habitats and to dietary or social chemosensory niches, in insects and vertebrates alike (Bear et al.,

2016; Hughes et al., 2018; Saraiva et al., 2019). Transcript variants of the fly receptor DmelOR69a (Robertson

et al., 2003) are tuned to food odorants and the female pheromone, respectively, and are co-expressed in

the same OSNs (Lebreton et al., 2017). These twin ORs yield a degree of freedom for the acquisition of new

ligands, if only they match the food and mate-finding theme.

Habitat selection and specific mate recognition are tightly interconnected (Paterson, 1985; Endler, 1992;

Boughman, 2002), and the interaction between natural and sexual selection has been shown to affect cutic-

ular hydrocarbon composition and mate recognition in D. melanogaster (Blows, 2002). We are food and

home to the flies, they depend on us for survival. A commensal lifestyle is expected to generate a sensory

drive and select for odorants to mediate fly aggregation and premating communication – if these odorants

are produced by the flies, and if they are, in addition, characteristic elements of human odor scenes.

Convergent perception of Z4-11Al is reminiscent of dedicated olfactory channels for geosmin that alert

flies and humans about the presence of mold, which is detrimental for all animals (Maga, 1987; Stensmyr

et al., 2012).
Conclusion

Sensing the scent of a single fly is out of the ordinary, especially as the cue is the fly’s sex pheromone . Yet,

only the discovery that a most highly expressed human OR is tuned to this pheromone underlines the

biological significance of this observation. Sensitive and specific perception encourages the hypothesis
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that Z4-11Al is found in human habitats, where humans, domesticated animals, or shared food resources,

including associated microorganisms, could be the source.

Ambient odorscapes contain countless chemicals of yet unknown activity. Our study highlights how the

identification of key OR ligands leads to the discovery of messenger chemicals and delivers insights into

how chemical communication interconnects species across phylogenies. Regrettably, we can barely spec-

ulate what the fly pheromonemaymean to us and whether it signals food, social context, or both. Satisfying

our curiosity is an excellent reason to pursue, as the vinegar fly continues to afford fundamental discoveries

and studying fly sex perfumes may perhaps teach us about our own.

Limitations of the study

The significance of Z4-11Al for humans is yet unknown. Z4-11Al and close analogs are found in in food, and

mediate communication between animals. In the search for sources in human environments, close atten-

tion must be paid to occurrence of trace amounts of Z4-11Al, in view of our sensitivity. Screening for other

ligands, combined with structure-activity studies, will help to elucidate the behavioral relevance of the

OR10A6 channel. Last but not least, we cannot entirely exclude that yet other ORs or OR variants may

participate in the perception of Z4-11Al.
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Agricultural Sciences, Alnarp
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see Table S2
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Recombinant DNA
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Plasmid: pGloSensorTM-22F Promega CAT#E2301
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Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

d Data generated by this study are available at Mendeley (https://doi.org/10.17632/dkpxj9ckkv.1).

d This study did not generate code.

d Additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Insects

Cosmopolitan (Dalby) and Zimbabwe (S-29, Bloomington) strains of D. melanogaster were reared on a

standard sugar-yeast-cornmeal diet at room temperature (25 G 2�C) and 50 G 5 rH under a 12:12-h L:D

photoperiod. When preparing experiments, eclosing flies were collected every 4 h and sexed, according

to the sex comb on the third segment of the male forelegs. Flies were tested when 3 days old. Presence

of meconium was used as a distinguishing feature for virgin flies. Females and males were kept separately

in 30-mL Plexiglas vials with fresh food.
Sensory panel

The Swedish Alcohol Retailing Monopoly (Systembolaget) continuously monitors product quality. A sen-

sory panel of professional assessors at Systembolaget consisted of 9 women and 12 men, with an average

age of 41.8 G 10.9 y. At SLU Alnarp, panel members were recruited from personnel at the Department of

Plant Protection Biology and the Department of Biosystems and Technology, 18 women and 27 men, with

an average age of 38.4 G 14.3 years.

Panel members were informed about experimental hypotheses and protocols, the scope of the study, and

potential risks. Results cannot be traced to individual persons and the study is therefore exempt from

ethical review. Informed consent was obtained from all subjects and the study was approved by a local

ethics committee and the Legal Affairs Unit at the Swedish University of Agricultural Sciences.
METHOD DETAILS

Chemicals

Isomeric purity of (Z)-4-undecenal (Z4-11Al) was 98.6%, according to gas chromatography coupled to mass

spectrometry (6890 GC and 5975 MS, Agilent Technologies, Santa Clara, CA, USA). Isomeric purity of (Z)-4-

nonenal (Z4-9Al) and (Z)-6-undecenal (Z6-11Al) were 97.4 and 96%, repectively. Chemical purity of these

synthetic aldehydes was >99.9%. Ethanol (redistilled; Merck, Darmstadt, Germany) was used as solvent.

For the OR screening assays, the following chemicals were used: Dulbecco’s MEM medium (#F0435), FBS

superior (#S0615), L-glutamine (#K0282), penicillin (10000 U/ml)/streptomycin (10000 mg/mL) (#A2212),

trypsin/EDTA solution (#L2143) (Biochrom, Berlin, Germany), CaCl2*2H2O (#22322.295), D-glucose

(#101174Y), dimethyl sulfoxide (DMSO) (#83673.230), HEPES (#441476L), potassium chloride (#26764.230),

and sodium hydroxide (#28244.295) (VWR Chemicals BDH Prolabo, Leuven, Belgium), sodium chloride

(#1064041000, Merck, Darmstadt, Germany), ViaFect� Transfection Reagent (#E4981, Promega, Walldorf,

Germany), D-luciferin (beetle) monosodium salt (#E464X, Promega, Walldorf, Germany), Pluronic� PE

10500 (#500053867, BASF, Ludwigshafen, Germany), (R)-(�)-carvone (#W224908, Sigma-Aldrich, Steinheim,

Germany).
Pheromone collection and chemical analysis

Sixty unmated 3-d-old cosmopolitan and Zimbabwe females (n = 9 and n = 10, respectively) were trans-

ferred to standard glass rearing vials (24.5 3 95 mm, borosilicate glass; Fisher Scientific, Sweden), which

had been baked at 350�C overnight. After 24 h, the flies were removed and the vial was rinsed with

200 mL of hexane, containing 100 ng decanal as internal standard, in an ultrasonic water bath for 3 min.

The solvent was transferred to 1.5 mL GC-MS vials with insert and condensed to ca. 5 mL in a fume hood.
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Two mL of the solvent rinses were analyzed by gas chromatography-mass spectrometry (GC-MS) (6890 GC

and 5975 MS, Agilent, Santa Clara, CA, USA) on a fused silica capillary column (60 m 3 0.25 mm), coated

with HP-5MS UI (df = 0.25 mm; Agilent). Injections were made in splitless mode (30 s), at 275�C injector tem-

perature. The GC oven was programmed from 50 to 250 �C at 8 �C/min (2 and 10min hold, respectively) and

a final temperature of 275�C, the mobile phase was helium (34 cm/s). The MS operated in scanning mode.

Aldehydes were identified by direct comparison of mass spectra and retention data with synthetic

standards.
OR expression and screening

Cell culture and transient DNA transfection

Human embryonic kidney (HEK-293) cells were cultivated in Dulbecco’s MEM medium (DMEM: w 3.7 g/L

NaHCO3, w 4.5 g/L D-glucose, w/o L-glutamine, w/o Na-pyruvate) supplemented with 10% fetal bovine

serum (FBS superior), 2 mM L-glutamine, 100 units/mL penicillin, and 100 mg/mL streptomycin in 10 cm

cell culture dishes at 37�C, 5% CO2, and 100% humidity, as test cell systems for the functional expression

of recombinant ORs (Geithe et al., 2015, 2017b; Noe et al., 2017a). One day before transfection, HEK-293

cells were transferred with a density of 12000 cells per well in white 96-well plates (Thermo Scientific�
Nunc� F96 MicroWell�, white, #136102, Thermo Fisher Scientific, Waltham, USA). The transfection was

done by the cationic lipid-transfection method using 100 ng OR plasmid-DNA, 50 ng olfactory

G-protein Gaolf (Jones and Reed, 1989; Shirokova et al., 2005), 50 ng RTP1S (Saito et al., 2004), 50 ng

Gg13 (Li et al., 2013), and 50 ng genetically modified cAMP-luciferase pGloSensor�-22F (Binkowski

et al., 2009) (Promega, Madison, USA), each with ViaFect� Transfection Reagent. As negative control,

transfection of an empty pFN210A-vector-plasmid (mock) was employed. As positive control OR1A1 was

transfected on each plate. For concentration-response relations, each transfection was done in triplicate

on the same 96-well plate. For receptor screening experiments, all 391 human OR wild-types plus 225 of

their most frequent haplotypes (altogether 616 OR variants) were transfected in duplicates. The entire

OR library, including official gene symbols, haplotypes, and sequence accession numbers is given in

Table S1. The cells were taken into experiment 42 h post-transfection (Geithe et al., 2015, 2017b; Noe

et al., 2017a).

cAMP luminescence assay

Cell culture media of the transfected HEK-293 cells in the 96-well plates was replaced 1 h prior to the lumi-

nescence measurement with physiological salt solution containing 140 mmol/L NaCl, 10 mmol/L HEPES,

5 mmol/L KCl, 1 mmol/L CaCl2, 10 mmol/L D-glucose and 2% D-luciferin, pH 7.4. After this incubation,

basal luminescence signals for each well (three consecutive data points, 60 s intervals) were recorded

with the GloMax� Discover Microplate Reader (Promega, Madison, USA) before odorant application. As

positive control, 30 mmol/L (R)-(�)-carvone was applied on the OR1A1 transfected cells. Odorant stock so-

lutions were prepared in DMSO, and diluted 1:1000 into the physiological salt solution containing 0.05%

Pluronic� PE 10500, as solvent mediator. Final DMSO concentration on the cells was 0.1%. Four min after

odorants were applied to the cells, three consecutive data points at 60 s intervals were recorded for each

well with the GloMax� Discover Microplate Reader.

Data analysis of cAMP luminescence measurements

OR library screenings. The raw luminescence data obtained from Spark�multimodemicroplate reader was

transferred to Excel. Data points of basal level and data points after odorant application were each aver-

aged. From each luminescence signal, the corresponding basal level was subtracted and afterwards

normalized to the amplitude of the reference odorant-receptor pair (OR1A1 vs. 30mM R-(�)-carvone) on

each 96-well plate. The normalized values for each receptor measured in duplicates were averaged and

plotted alongside with the signal derived from mock-transfected cells. Signals above a 2s-threshold

(average of all signals plus 2-times Standard Deviation) were considered as positive hits and objected to

further analysis, such as concentration-response relations. False positives were defined as signals R 2s,

which did not show a concentration-dependent activation in subsequent experiments.

Concentration-response relations. The raw luminescence data obtained from the GloMax� Discover

Microplate Reader were processed as followed. For each well, the average of the three data points before

odorant addition was subtracted from the average of the three data points after stimulation (Dsignal). Then,

the corresponding mock of each substance/concentration was subtracted from each Dsignal value. All
18 iScience 25, 105269, November 18, 2022
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mock-subtracted Dsignal-values were then normalized to the positive control of each plate, or to the

respective maximum signal (max) of each concentration-response relation. EC50 values were obtained

by fitting the function f(x)=((min-max)/(1+(x/EC50)
Hillslope)+max) to the data.

Flow cytometry

Cell surface expression of OR10A6 and a selected number of other ORs, and non-olfactory GPCR, was

investigated in HEK-293 cells, as well as in the neuronal cell line Neuroblastoma x Glioma (NxG) hybrid cells

(Noe et al., 2017a). Cells were cultivated in 12-well plates with a density of 96,000 or 80,000 cells per well, for

HEK-293 or NxG cells, respectively. On the next day the transfection was performed as described above.

Cells were washed twice with serum free medium prior to FACS analyses (MACSQuant Analyzer, Miltenyi

Biotec, Bergisch Gladbach, Germany). To quantify cell surface expression of recombinant ORs, cells were

harvested 42 h post transfection and stained with the cell-impermeant HaloTag� Alexa Fluor� 488 Ligand

(ex/em = 499/518 nm) for 30 min at 37�C in a cell culture incubator with humidified atmosphere, and 5% or

7% CO2 for HEK-293 or NxG cells, respectively. A cell line-specific forward- and side-scatter gate was set to

exclude dead cells, and a fluorescence detection channel was defined. For HEK-293 cells, the forward- and

side-scatter channels were set to 240 and 395V, respectively. The Alexa Fluor� 488 signal (FITC or B1-chan-

nel) was detected with 195V. For NxG cells, the forward- and side-scatter channels were set to 235 and

360V, respectively. The Alexa Fluor� 488 signal (FITC or B1-channel) was detected with 175V. In each

case, 10,000 cells were measured. The analysis was performed with the FlowLogic� analysis software (inivai

Technologies, Mentone, Victoria, Australia). The gating of the AlexaFluor� 488 signal of each mock control

defined the distinction between negative and positive cells. Membrane expression of receptors was

determined in at least three independent transfection experiments (Figure S1).
Molecular cloning of human OR10A6

The protein-coding region of human OR10A6 and OR2W1 (for accession numbers see Table 2) was ampli-

fied from human genomic DNA by polymerase chain reaction (PCR), using gene-specific primers (Table S2),

ligated with T4-DNA ligase (#M1804, Promega, Madison, USA) either MfeI/NotI (#R3589S/ # R0189S, New

England Biolabs, Ipswich, UK) or EcoRI/NotI (#R6017/ #R6435, Promega, Madison, USA) into the expression

plasmid (#pFN210A SS-HaloTag� CMV-neo Flexi�-Vector, Promega, Madison, USA), and verified by

Sanger sequencing (Eurofins Genomics, Ebersberg, Germany) using vector internal primers (Table S3).
PCR-based site-directed mutagenesis

We generated variants of OR10A6 andOR2W1 (Table 2) by two-step PCR-based site-directed mutagenesis

(Noe et al., 2017c) using gene-specific primers and overlapping mutation primers, carrying the changed

nucleotides (Table S4). Final amplicons were then sub-cloned as described above, and verified by Sanger

sequencing (Eurofins Genomics, Ebersberg, Germany) using vector internal primers (Table S3).
Sensory evaluation

Sensory panels are described above, they were of balanced sex ratio and even age distribution. Judges

worked in separate fume hoods, they were given 15 min for each test. They were asked to fill protocol

sheets that listed vial numbers or experimental questions with tick boxes, a scale for hedonic quality, inten-

sity, familiarity and edibility for the respective odour stimuli, and a free text field. Judges were asked to not

consume beverages or food during 1 h before the test, and to not wear perfume.

Synthetic chemicals were diluted in redistilled ethanol (Sigma-Aldrich). One h prior to testing, 10-mL

aliquots were pipetted into 20-mL screw-top glass vials (Genetec) containing 2 mL redistilled water, or

2 mL white wine (Ruppertsberger Riesling, Systembolaget, 72038-01). Control vials contained 2 mL redis-

tilled water and 10 mL ethanol. Vials were used between 1 and 2 h following formulation.

For evaluation of fly strain odour, 5 live D. melanogaster females, of the cosmopolitan (Dalby) and

Zimbabwe (S-29, Bloomington) strains, respectively, were placed during 3 h in 20-mL vials, they were

released ca 30 min before testing, and 2 mL of redistilled water or wine was added to the vial. A pairwise

comparison comprised vials containing either 10 ng synthetic Z4-11Al or fly odour, in 2 mL water or wine.

Panelists (n = 21), members of a professional wine panel at Systembolaget (Stockholm), were asked

whether or not the odours in the vials bear resemblance to each other.
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For comparison of cosmopolitan and Zimbabwe D. melanogaster females with Z4-9Al and Z4-11Al in a

triangle test, batches of 5 flies were kept during 3 h in 20-mL vials, and released ca 30 min before testing,

and 2mL redistilled water was added to the vial (n = 45 judges; SLU Alnarp). Tests with synthetic compound

comprised 10 ng Z4-9Al or 10 ng Z4-11Al alone, and a blend of 10 ng Z4-9Al and 3 ng Z4-11Al and employed

the same panel (n = 45 judges). Further triangle tests evaluated increasing amounts, 0.1, 1 and 10 ng of

synthetic Z4-9Al, Z4-11Al and Z6-11Al, respectively (n = 31 judges; SLU Alnarp). Of three stimuli in each

triangle, two were the same and judges were asked to point out the odd sample.

For comparison of cosmopolitan (Dalby) males painted with Z4-11Al vs females, and unmated vs mated

males, batches of 10 flies were kept in empty glass vials during 30 min, they were released 1 h prior to

the experiment and 2 mL water was added to the vials. Judges (n = 10 to 12) at SLU Alnarp, who were

each given a triangle of 2 male and 1 females vials, were first asked to identify the female vial. After adding

10 ng or 100 ng Z4-11Al, in 10 mL ethanol, to themale vials, and 10 mL ethanol to the female vial, judges were

again asked to identify the female vial. For comparison of mated vs unmated males, only water was added

to the vials. For the painting experiments, judges were selected according to their capacity to sense 10 ng

Z4-11Al, according to preliminary experiments.
OR10A6 and OR2W1 genotyping in panelists

Spit samples were collected from 29 anonymized judges evaluating the dose response test with synthetic

Z4-9Al, Z4-11Al and Z6-11Al. Genomic DNA samples were collected (ORAgene Dx, DNA GENOTEK) and

purified (prepIT-L2P, DNA GENOTEK) from 500 mL of saliva, following the manufacturer’s instructions. The

following primers were used in PCR (Q5 High-Fidelity DNA polymerase, New England Biolabs) to amplify

an 850 base-pair OR10A6 fragment covering all polymorphic sites (OR10A6f: 5-TATGCCTGAAATG

CTGGTGG-3’; OR10A6r: 5’-ACAATCAAACTTGGAGAACACA-3’) and a 977 base-pair OR2W1 fragment

covering all polymorphic sites (OR2W1f: 5’- CTGTCAGGAGTTGTCGCCAT-3’; OR2W1r: 5’- TGGATCTCC

ATGACCTAGGAA-3’). Both amplicons were produced using the following cycling conditions (initial dena-

turation at 98�C for 30 s, 35 cycles at 98�C for 10 s, 58�C for 20 s and 72�C for 30 s, and final extension at 72�C
for 2 min), with each reaction including 1 mL of purified genomic DNA and 1 mL of each primer (at 10 mM) in a

final volume of 25 mL. The PCR products were purified (QIAquick PCR Purification Kit, Qiagen) and

sequenced (Eurofins Genomics, Germany). The sequence chromatograms were manually analyzed for

determining individual OR10A6 and OR2W1 haplotypes.
Ethics statement

Participants were informed about the aim of the study, potential risks, the experimental protocol and

they all provided formal consent. The study was conducted in accordance with the ethical principles for

research involving human subjects developed in the Declaration of Helsinki (WMA). The study is exempt

from ethical review, according to the Legal Affairs Unit at the Swedish University of Agricultural Sciences

(SLU.ua.2022.2.2–3234).
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests for significance were calculated with a paired, two-tailed t-test and a Chi2-test, using Prism

9.3 (GraphPad) and ANOVA followed by Friedman’s test (SAS). Statistical significance was defined as a

p-value <0.05. p-values and sample sizes are given in the results section or the figure legends.
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