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a b s t r a c t 

This paper presents a bi-level optimization framework to compute the maximum-distance stint and 

charging strategies for a fully electric endurance race car. Thereby, the lower level computes the 

minimum-stint-time Powertrain Operation (PO) for a given battery energy budget and stint length, whilst 

the upper level leverages that information to jointly optimize the stint length, charge time and number of 

pit stops, in order to maximize the driven distance in the course of a fixed-time endurance race. Specifi- 

cally, we first extend a convex lap time optimization framework to capture multiple laps and force-based 

electric motor models, and use it to create a map linking the charge time and stint length to the achiev- 

able stint time. Second, we leverage the map to frame the maximum-race-distance problem as a mixed- 

integer second order conic program that can be efficiently solved to the global optimum with off-the- 

shelf optimization algorithms. Finally, we showcase our framework on a 6 h race around the Zandvoort 

circuit. Our results show that a flat-out strategy can be extremely detrimental, and that, compared to 

when the stints are optimized for a fixed number of pit stops, jointly optimizing the stints and number 

of pit stops can increase the driven distance of several laps. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of European Control Association. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The electrification of race cars has been increasing in popularity 

ver the last years, owing to the adven of hybrid electric Formula 

 cars and Le Mans Hypercars, and battery electric vehicles in 

ormula E. In a setting where every millisecond counts, it is of 

aramount importance to profit the most of the energy stored on- 

oard via optimized Energy Management Strategy (EMS). In this 

ontext, the possibility of recharging the battery in the course of 

he race further complicates the problem, requiring race engineers 

o strike the best trade-off between reducing consumptions and 

it-stops at the cost of lap-time, or driving faster with more pit- 

tops. This conflict becomes particularly imminent in endurance 

acing, where the objective is to maximize the driven distance 

n a fixed amount of time, which can range up to 24h [1] . In

his setting, the car has to be strategically recharged during pit 

tops in order to maintain a competitive performance, maximizing 

he distance driven. This calls for algorithms to compute the 
� Recommended by T Parisini 
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aximum-distance race strategies that provide the number of 

it stops during the race, the number of laps driven per stint 

referred to as stint lengths) and charge time (which is directly 

orrelated to charge energy), whilst accounting for the optimal 

nergy management strategies and Powertrain Operation (PO). 

gainst this backdrop, this paper presents a bi-level optimization 

ramework to compute the maximum-distance race strategies with 

lobal optimality guarantees. 

.0.1. Related literature 

This work pertains to two main research streams: single-lap op- 

imization of the EMSs jointly with the vehicle trajectory or for a 

iven race line, and full-race optimization via simulations. 

Several authors optimized the minimum-lap-time race line for 

 single race lap using both direct and indirect optimization meth- 

ds [2–8] . Some of these studies also include a maximum energy 

onsumption per lap to approach racing conditions [9] . Similar ap- 

roaches extend the minimum-lap-time problems to minimum- 

ace-time problems. They consider temperature dynamics, and op- 

imize for multiple consecutive race laps to enable a variable 

mount of energy consumed per lap, but formulate the optimiza- 

ion problem in space domain for an a priori known number of 
Association. This is an open access article under the CC BY-NC-ND license 
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Fig. 1. InMotion’s fully electric endurance race car. 

Fig. 2. Schematic layout of the electric race car powertrain topology consisting of 

a battery (BAT), inverter (INV), electric machine (EM) and final drive (FD). The ar- 

rows indicate positive power flows of the auxiliary power P aux , the electrical inverter 

power P dc , the electrical electric motor(EM) input power P ac and mechanical output 

power P m , and the propulsion power P p . 
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aps [10,11] . Finally, considering the race line to be fixed, multi- 

ap EMSs are optimized, leveraging nonlinear optimization tech- 

iques [12] or artificial neural networks [13] . However, these pa- 

ers lack global optimality guarantees. 

Against this backdrop, assuming the race line to be available 

n the form of a maximum speed profile, convex optimization 

as been successfully leveraged to compute the globally optimal 

MSs for hybrid and fully electric race vehicles [14,15] , also in- 

luding gear shift strategies [16] , different transmission technolo- 

ies [17] and thermal limitations [18] . Yet these methods are fo- 

used on single-lap problems and do not capture pit-stops and 

echarging processes. 

A final relevant research stream involves race simulations, in 

hich entire races are optimized on a per lap basis [19,20] . How- 

ver, these studies mainly focus on optimal tire strategies by mod- 

ling their degradation as a lap time increase and do not capture 

he charging and PO strategies. In conclusion, to the best of the 

uthors’ knowledge, there are no methods specifically focusing on 

ace strategies in endurance scenarios, whereby the PO within a 

tint and the stints themselves are jointly optimized. 

.0.2. Statement of contributions 

This paper presents a bi-level mixed-integer convex opti- 

ization framework to efficiently compute the globally optimal, 

aximum-distance endurance race strategies and the correspond- 

ng PO in the individual stints. Our low-level algorithm computes 

he optimal stint time for a given number of laps and different 

evels of recharged battery energy. To preserve convexity, we de- 

cribe the EM efficiency by using speed-dependent in- and out- 

ut forces. Subsequently, we fit the relationship between the stint 

ength, the charged energy, and the achievable stint time as a 

econd-order conic constraint, which we leverage in the high-level 

lgorithm. Thereby we frame the maximum-distance race problem 

s a mixed-integer second-order conic program which jointly op- 

imizes the stint length, the charge time—i.e., the charge energy—

nd the number of pit stops. The resulting problem can be rapidly 

olved with off-the-shelf numerical solvers with global optimality 

uarantees. Finally, we showcase our framework on the Zandvoort 

ircuit for the vehicle shown in Fig. 1 , highlighting the importance 

f jointly optimizing the number of pit stops with the stint lengths 

nd charging strategies. 

.0.3. Organization 

The remainder of this paper is structured as follows: Section 2 

resents the minimum-stint-time control problem, after which 

ection 3 frames the maximum-race-distance control problem. 

e showcase our framework for a 6 h race in Section 5 . Finally,

ection 6 draws the conclusions and provides an outlook on future 

esearch. 

. Low-level stint optimization 

This section illustrates the minimum-stint-time control problem 

n space domain, since minimizing the stint time given a fixed dis- 

ance represents the dual problem of maximizing distance within a 

xed time period. We extend an existing convex framework [17] to 

llow multi-lap optimization, whilst improving the EM model ac- 

uracy by considering a pre-defined fixed-gear transmission ratio. 

hereby we separate the EM and inverter model to allow future 

xtensions to temperature models. From the time-optimal con- 

rol problem, we obtain the minimum stint time for a given stint 

ength and available battery energy (which can be equivalently ex- 

ressed in terms of charging time). 

Fig. 2 shows a schematic representation of the powertrain 

opology of the electric race car. The EM propels the rear wheels 

hrough a fixed Final Drive (FD), while receiving energy from the 
2 
attery pack via the inverter. As with most electric vehicles, the 

M can also operate as a generator, thus we account for a bi- 

irectional energy flow between the battery and the wheels. In 

ddition, we consider auxiliary components that are powered from 

he main battery as a uni-directional energy flow. 

In reality, the driver controls the EM torque through the accel- 

rator pedal and as such we define the mechanical EM power P m 

s the input variable. As state variables, we choose the battery en- 

rgy E b and the kinetic energy of the vehicle E kin . The remaining 

nergy flows between the powertrain components are the propul- 

ion power P p , electrical EM power P ac , electrical inverter power P dc 

nd auxiliary supply P aux . Since we formulate the control problem 

n space domain, we ultimately define the model in terms of forces 

ather than power. Thus we divide power by the vehicle velocity, 

ince the space-derivative of energy is defined with respect to the 

ehicle. 

.1. Objective and longitudinal dynamics 

In racing, the objective is to minimize the lap times over the 

ntire race. Since we only consider a stint in the low-level control 

roblem, the objective is to minimize the stint time t stint , which is 

efined as 

in t stint = min 

∫ S stint 

0 

d t 

d s 
(s ) d s, (1) 

here S stint is the stint length in terms of distance and 

d t 
d s 

(s ) is the

ethargy, which is the inverse of the vehicle velocity v (s ) ≥ 0 . To

mplement the lethargy as a convex constraint, we define 

d t 

d s 
(s ) ≥ 1 

v (s ) 
, (2) 

hich is a convex relaxation that holds with equality in case of an 

ptimal solution [14] . 

Since the goal of this paper is to study the optimal race strat- 

gy and PO rather than studying the effect of vehicle dynamics, 

e model the vehicle as a point mass, for which the longitudinal 

ynamics are written as 

d 

d s 
E kin (s ) = F p (s ) − F d (s ) − F brake (s ) , (3)

here F p (s ) is the propulsion force, F d (s ) is the drag force and

 brake (s ) is the force from the mechanical brakes. The drag force is 

efined as the sum of the aerodynamic drag, the rolling resistance 

nd the gravitational force as 
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Fig. 3. A speed- and torque-dependent model of the EM. The normalized root- 

mean-square error (RMSE) of the model is 1.49 % w.r.t. the maximum motor input 

force F ac . 
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 d (s ) = 

c d · A f · ρ
m tot 

· E kin (s ) + c r · (m tot · g · cos (θ (s ))+ 

F down (s )) + m tot · g · sin (θ (s )) , (4) 

here m tot is the total mass of the vehicle, c d is the air drag coef-

cient, A f is the frontal area of the vehicle, ρ is the air density, c r 
s the rolling resistance coefficient, g is the gravitational constant, 

(s ) is the inclination of the track and F down (s ) is the aerodynamic

ownforce defined by 

 down (s ) = 

c l · A f · ρ
m tot 

· E kin (s ) , (5) 

here c l is the aerodynamic lift coefficient. To account for the 

osses in the final drive under bi-directional power flow, we write 

3) as two inequality constraints according to 

d 

d s 
E kin (s ) ≤ F m 

(s ) · ηfd − F d (s ) − F brake (s ) , (6)

d 

d s 
E kin (s ) ≤ F m 

(s ) · 1 

ηfd 

− F d (s ) − F brake (s ) , (7)

here F m 

(s ) is the mechanical output force from the EM and ηfd 

s the efficiency of the final drive, assumed constant. Due to the 

bjective (1) , in case of traction, (6) will hold with equality, whilst 

n case of regenerative braking, (7) will hold with equality, thus 

apturing the bi-directional power flow. 

The relation between the kinetic energy and velocity of the ve- 

icle is defined by a convex relaxation as 

1 

2 

· m tot · v 2 (s ) ≤ E kin (s ) ≤ 1 

2 

· m tot · v 2 max (s ) , (8) 

here v max (s ) is the maximum velocity possible without exceed- 

ng the tire grip limitations on the race track. This maximum ve- 

ocity profile can be pre-computed according to the method shown 

n [17] . 

In contrast to single-lap scenarios, a stint is represented by the 

ehicle starting and stopping at the pit box with a certain number 

f flying laps in between. However, since we are working in space 

omain, the lethargy would diverge to infinity for zero velocity. To 

olve this issue, we define a minimal velocity v min close to stand- 

till and enforce this value to the initial and final velocity with 

 kin (0) = E kin (S stint ) = 

1 

2 

· m tot · v 2 min . (9) 

When driving through the pit lane, the vehicle should adhere 

o a strict speed limit, of which the exact value is track-dependent. 

herefore, we define an upper bound v pit , max on the vehicle veloc- 

ty when the vehicle is exiting or entering the pit as 

 kin (s ) ≤ 1 

2 

· m tot · v 2 pit , max ∀ s ∈ S pit , (10) 

here S pit is the set of distance-based positions that are part of 

he pit lane. Finally, we have to consider the maximum decelera- 

ion of the vehicle whenever the maximum velocity profile is not 

n active constraint, e.g., during braking before the pit entry. As- 

uming straight line braking, we can express the maximum decel- 

ration as a lower bound on the kinetic energy with 

d E kin 

d s 
(s ) ≥ −F d (s ) − μ · (m tot · g + F down (s )) , (11) 

here μ is the friction coefficient of the tires. 

.2. Electric machine 

This section derives a convex representation of the operating 

imits and power losses of the EM. In general, we can distinguish 
3 
etween a maximum torque and maximum power operating re- 

ion for an EM. Translating this to constraints in space domain re- 

ults in a lower and upper bound on the mechanical output force 

f the EM for the maximum torque region as 

 m 

(s ) ∈ 

[ 
−T m , max · γfd 

r w 

, 
T m , max · γfd 

r w 

] 
, (12) 

here T m , max is the maximum torque the EM can deliver, γfd is the 

nal drive ratio and r w 

is the radius of the rear wheels. Note that 

e include the final drive ratio, as we define the space-derivatives 

ith respect to the vehicle reference frame. Similarly, the mechan- 

cal output force of the EM within the maximum power region is 

ounded as 

 m 

(s ) ∈ 

[
−P m , max · d t 

d s 
(s ) , P m , max · d t 

d s 
(s ) 

]
, (13) 

here P m , max is the maximum power the EM can deliver. 

We model the EM force losses F m , loss (s ) rather than the power 

osses as a function of the vehicle velocity and force of the EM. 

n general, an EM efficiency map shows large losses at low rota- 

ional velocities. Therefore, we want to include a term in our losses 

t that is inversely proportional to the vehicle velocity. To ensure 

onvexity, we model the EM losses as 

 m , loss (s ) = x � m 

(s ) Q m 

x m 

(s ) , (14) 

here x m 

(s ) = 

[ 
1 √ 

v (s ) 

√ 

v (s ) F m 

(s ) √ 

v (s ) 

] � 
and Q m 

is a symmetric pos- 

tive semi-definite matrix of coefficients, of which the values are 

etermined through semi-definite programming. Fig. 3 shows the 

M input force as a function of the EM output force and vehicle 

peed for the convex model and for the reference data. To imple- 

ent the losses in a convex manner, we take the relation of the 

lectrical EM input force F ac (s ) to the mechanical output force as 

 ac (s ) = F m 

(s ) + F m , loss (s ) , (15) 

ubstitute the loss model, relax it and rewrite to a convex relax- 

tion as 

F ac (s ) − F m 

(s )) · v (s ) ≥ y � m 

(s ) Q m 

y m 

(s ) , (16)

here y m 

(s ) = [ 1 v (s ) F m 

(s ) ] 
� 

. 

.3. Inverter 

In this section, we derive a quadratic model for the inverter 

osses. We apply the general quadratic power loss model of the 

orm 

 dc (s ) = α · P 2 ac (s ) + P ac (s ) , (17) 
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here α is an efficiency parameter, subject to identification. Con- 

erting this constraint to forces, rewriting and relaxing results in 

F dc (s ) − F ac (s )) · d t 

d s 
(s ) ≥ α · F 2 ac (s ) , (18) 

here F dc (s ) is the force equivalent to the electrical inverter input 

ower. 

.4. Battery 

This section derives a model for the battery efficiency and the 

ower-split between the electrical inverter power and the auxiliary 

omponent power. The latter can be observed from Fig. 2 and is 

ritten as 

 b (s ) = P dc (s ) + P aux , (19) 

here P b (s ) is the battery power at the terminals. Here, the 

uxiliary component supply is assumed to be constant and uni- 

irectional, while the other powers are bi-directional. Converting 

19) to forces results in 

 b (s ) = F dc (s ) + P aux · d t 

d s 
(s ) , (20) 

here F b (s ) is the force equivalent of the battery power at the ter-

inals. 

The battery efficiency is mostly determined by its internal resis- 

ance R 0 and open-circuit voltage V oc . We derive the battery losses 

rom a Thévenin model [21] as 

 i (s ) = 

1 

P sc 
· P 2 i (s ) + P b (s ) , (21) 

here P sc = 

V 2 oc 
R 0 

is the short-circuit power [22] , which can be ob- 

ained from manufacturer data and which we assume to be con- 

tant. P b (s ) is the power at the battery terminals and P i (s ) is the

nternal battery power, which ultimately dictates a change in bat- 

ery energy. Translating (21) to forces and relaxing results in 

F i (s ) − F b (s )) · d t 

d s 
(s ) · P sc ≥ F 2 i (s ) , (22)

here F i (s ) is the internal battery force and F b (s ) is the battery

orce at the terminals. 

The energy consumption of the battery is modeled as 

d 

d s 
E b (s ) = −F i (s ) . (23) 

We constrain the battery energy as 

 b (0) = E b , 0 , (24) 

 b , min ≤E b (s ) ≤ E b , max , (25) 

here E b , 0 is the initial battery energy. Furthermore, E b , min and 

 b , max correspond to the battery energy at the lower and upper 

tate of Energy (SOE) bound, respectively. We leverage a lookup 

able with input charge time t charge and output E b , 0 for a given 

harging profile during pre-processing. 

.5. Low-level optimization problem 

This section presents the minimum-stint-time control problem 

f the electric race car. Given a predefined stint length and charge 

ime we formulate the control problem using the state variables 

 = (E kin , E b ) and the control variables u = (F m 

, F brake ) as follows: 

roblem 1 (Minimum-stint-time Control Strategy) . The minimum- 

tint-time control strategies are the solution of 

in 

∫ S stint d t 

d s 
(s ) d s, 
0 

4 
s.t. (2) , (4) − (13) , (16) , (18) , 

(20) , (22) − (25) . 

Since the constraint set and the cost function are convex, the 

ow-level control problem is fully convex and therefore we can 

ompute the globally optimal solution with standard nonlinear 

rogramming methods. 

. High-level race optimization 

In this section, we present the high-level maximum-race- 

istance control problem. First, we formulate the maximum-race- 

istance control problem that optimizes the stint length and 

harge time for a pre-defined number of pit stops. Second, we 

odel the minimum stint time by leveraging the low-level control 

roblem and optimizing for various combinations of stint length 

nd initial battery energy. Finally, we extend the maximum-race- 

istance control problem to allow joint optimization of the stint 

ength, charge time, and number of pit stops. 

.1. Mixed-integer control problem 

We define the high-level control problem for a pre-defined 

umber of pit stops in stint domain , so that we have a fixed and

nite optimization horizon. Here, each index in the optimization 

ariables represents a stint. The goal is then to maximize the 

riven distance as the sum of all completed laps during the stints 

s 

ax S race = max 

N stops ∑ 

k =0 

S lap · N laps (k ) , (26) 

here S race is the total race distance, N stops is the pre-defined num- 

er of pit stops, N laps (k ) ∈ N , ∀ k ∈ 

[
0 , . . . , N stops − 1 

]
is the stint

ength and N the set of natural numbers, and S lap is the length of 

ne lap. Since the vehicle starts and stops at the pit box, the stint 

ength should be an integer number of laps. As it is unlikely that 

he vehicle is exactly at the finish line when the race time limit is 

eached, we allow the final stint length to be a non-integer number 

f laps. This way, we have N stops + 1 stints for N stops pit stops and

hus we have N stops integer stint lengths and one final non-integer 

tint length. 

The race can be divided into the car driving a stint and recharg- 

ng the battery during pit-stops. Given the total race time t race , we 

an link it to the time to complete the stint t stint (k ) ≥ 0 and the

ime spent charging t charge (k ) ≥ 0 as 

 race = 

N stops ∑ 

k =0 

t stint (k ) + 

N stops ∑ 

k =1 

t charge (k ) . (27) 

We then decompose the total race into blocks consisting of a 

it stop followed by a stint. By assuming that a stint is always 

nergy limited, the charge time uniquely defines the initial bat- 

ery energy for the subsequent stint and is not influenced by prior 

tints. To ensure that the battery is not overcharged, we apply an 

pper bound on the charge time through 

 charge (k ) ≤ t charge , max , (28) 

here t charge , max is the maximum charge time corresponding to a 

ull battery, assuming that the battery is always charged starting 

rom the lower energy bound. Since we start the race with a full 

attery, we set t charge (0) = t charge , max and do not count it in the ob-

ective. Finally, the time to complete the stint is obtained by solv- 

ng the low-level control problem, which we explain in the subse- 

uent section. 
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Fig. 4. Fit of optimization data for a combination of stint lengths and charge times. 

The normalized RMSE of the fit is 0.80 % w.r.t. the maximum stint time. 
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.2. Stint time model 

In this section, we derive a method for modeling the stint time 

s a function of the stint length and charge time during the pit 

top prior to the stint. We solve the low-level control Problem 1 for 

 combination of stint lengths and initial battery energy to ob- 

ain the respective achievable minimum stint time. This way, we 

an create the lookup table with stint time as a function of stint 

ength and charge time, as shown in Fig. 4 . Thereby the charge 

ime and initial battery energy are linked through a pre-defined 

harging current profile, cf. Section 2.4 . As the stint time increases 

or larger stint lengths and shorter charge times, similar to the EM 

oss fit in Section 2.2 above, we approximate the low-level opti- 

ization results via the continuous function 

 stint (k ) = x � s (k ) Q s x s (k ) , (29) 

here x s (k ) = 

[ 
1 √ 

t charge (k ) 

√ 

t charge (k ) 
N laps (k ) √ 

t charge (k ) 

] � 
and Q s is a sym- 

etric positive semi-definite matrix of coefficients. The result of 

he fit is shown in Fig. 4 . For a convex implementation, we relax

nd rewrite (29) to 

 stint (k ) · t charge (k ) ≥ y s (k ) � Q s y s (k ) , (30)

here y s (k ) = 

[
1 t charge (k ) N laps (k ) 

]� 
, and convert this relaxation 

o a conic constraint [23] as 

 stint (k ) + t charge (k ) ≥
∥∥∥∥ 2 · z s (k ) 

t stint (k ) − t charge (k ) 

∥∥∥∥
2 

, (31) 

here z s = C s y s (k ) with C s being the Cholesky factorization of

 s [23] . Since it is optimal to minimize stint time, this constraint 

ill hold with equality at the optimum. 

.3. Optimal pit stop strategy 

In the previous sections, we introduced the objective and con- 

traints for the high-level control problem when optimizing the 

ace strategy for a pre-defined number of pit stops. In this section, 

e apply some modifications in order to jointly optimize the stint 

engths, charge times and number of pit stops, thereby removing 

he need to search over a large space of pre-defined number of pit 

tops. 

We define a binary variable b pit (k ) that indicates whether pit 

top and stint k is taken or skipped as 

 pit (k ) = 

{
0 , if stop and stint skipped 

1 , if stop and stint taken , 
(32) 

nd include it in (29) via the big-M formulation [24] 

 stint (k ) ≥ x s (k ) � Q s x s (k ) − M · (1 − b pit (k )) , (33)
5 
here M 	 t stint , max . This way, we obtain the original constraint if 

 pit (k ) = 1 and we obtain a negative lower bound when b pit (k ) = 0

hich, together with t stint (k ) ≥ 0 , will push the k -th stint time to

ero, hence skipping the stint. We convert (33) to a cone as 

 · (1 − b pit (k )) + t stint (k ) + t charge (k ) ≥∥∥∥∥∥
2 · z s (k ) 

M · (1 − b pit (k )) + t stint (k ) − t charge (k ) 

∥∥∥∥∥
2 

. (34) 

Hence, whenever a stint is skipped, the corresponding stint 

ime and charge time will be zero if an optimal solution is ob- 

ained. To prevent the stint length from diverging to infinity when- 

ver the stint is actually skipped, i.e., b pit (k ) = 0 , we define an up-

er bound on stint length as 

 laps (k ) ≤ N laps , max · b pit (k ) , (35) 

here N laps , max is the maximum stint length that was used to 

btain the lookup table. This will ensure N laps (k ) = 0 whenever 

 pit (k ) = 0 . Finally, we enforce b pit (0) = 1 since the first stint at

he start of the race is always taken, and place driven stints first 

s 

 pit (k + 1) ≥ b pit (k ) , ∀ k ∈ [1 , N stops ] (36)

.4. High-level optimization problem 

This section presents the maximum-race-distance control prob- 

em of the electric race car. Given a predefined race time 

e formulate the control problem using the control variables 

t charge , N laps , b pit ) as follows: 

roblem 2 (Maximum-race-distance Strategies) . The maximum- 

ace-distance strategies are the solution of 

max 

N stops ∑ 

k =0 

S lap · N laps (k ) , 

s.t. (27) , (28) , (34) − (36) . 

Since Problem 2 can be solved with mixed-integer second-order 

onic programming solvers, we can guarantee global optimality 

pon convergence. 

. Discussion 

A few comments are in order. First, we assume that endurance 

acing tires do not degrade significantly and can be changed ev- 

ry stint due to the long pit stop time. Yet the high-level control 

roblem can be readily extended to capture these dynamics if the 

ookup table is devised accounting for tire degradation. Second, we 

ssume that the time gained from starting the race from the grid 

ompared to the pit lane is negligible on a full endurance race. 

hus we do not separately optimize the first stint. Similarly, we do 

ot separately optimize the final stint, since we assume that the 

ehicle can push the SoE below the lower limit to complete the fi- 

al lap of the race, as battery degradation would no longer be an 

ssue. Third, we assume that the cooling system can cope with the 

equested power from the battery and EM and devote temperature 

odeling to future research. Yet again, the high-level control prob- 

em can capture temperature effects if the map is devised account- 

ng for the temperatures and by assuming that the temperatures at 

he start of the stint are always the same. Finally, it might occur 

hat the vehicle can recuperate more energy, compared to what is 

eeded to drive to the pit box, during braking before pit entry. Yet 

his amount of energy can be neglected, since it does not affect the 

O and stint time. 
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Fig. 5. Velocity, EM power and battery SoE trajectories per lap for a 10 lap stint. 

The battery energy is an active constraint, thus the stint is energy limited. The EM 

power shows a gradual decrease at high velocities, thus indicating energy manage- 

ment. The zoom window corresponds to the final 500 m of the stint. 
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Fig. 6. Evolution of the completed laps as a function of time for the optimal strat- 

egy (black) and the strategies optimized for a fixed number of pit stops. The dashed 

data show a baseline strategy and a repetition strategy of the global optimal stint. 

The zoom window corresponds to the final 5 min of the race and illustrates the 

difference in race distance between the optimized strategies, showing that jointly 

optimizing the number of stints can significantly outperform other strategies by 

multiple laps. 
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. Results 

This section presents numerical results for both the low- and 

igh-level control problem. We base our use case on the electric 

ndurance race car of InMotion [25] , shown in Fig. 1 , perform- 

ng a 10 lap stint at the Zandvoort circuit for the low-level con- 

rol problem and a 6 h race at the same circuit for the high-level

ontrol problem. First, we discuss the numerical solutions for both 

ontrol problems. Second, we validate the high-level control prob- 

em by comparing the optimal race strategy against fixed-pit-stop- 

umber strategies and calculate the theoretical optimal combina- 

ions of stint length and charge time. 

For the discretization of the model, we apply the Euler For- 

ard method except for the lethargy, where we apply the trape- 

oidal method, with a fixed step-size of �s = 4 m . We parse the

ow-level control problem with CasADi [26] and solve it using 

POPT [27] combined with the MA57 linear solver [28] , whilst we 

arse the high-level control problem with YALMIP [29] and solve it 

sing MOSEK [30] . We perform the numerical optimization on an 

ntel Core i7-4710MQ 2.5 GHz processor and 8 GB of RAM. Thereby, 

he computation time for solving the low-level problem was about 

.6 s of parsing and 25 s of solving, whereas the high-level problem 

eeded 0.04 s of parsing and 0.57 s of solving. 

.1. Low-level optimization 

In this section, we compute the optimal trajectories for a stint 

f 10 laps around the Zandvoort circuit. We set the initial battery 

apacity to the upper bound corresponding to a 7.5 min charge 

ime. The total stint time is about 946 s with an average flying lap

ime of 93 s. 

The velocity profile together with the EM power and SoE per 

ap is shown in Fig. 5 . First, we observe that the velocity profiles

f consecutive free-flow laps are equivalent, as there are no lap- 

ependent dynamics. Second, the EM power decreases gradually 

efore the vehicle reaches a corner and full regenerative braking 

s applied, which defines the optimal PO. Finally, we observe that 

he pit lane speed limit is adhered to, but the power at pit exit 

nd pit entry are slightly different. From the lower plot, we notice 

hat the lower battery limit is reached before the end of the stint, 

ndicating that the recuperated energy during pit entry is larger 
6 
han the required energy for driving through the pit lane. However, 

his does not affect the stint time or the PO. 

.2. High-level optimization 

This section presents the optimal race strategy in terms of num- 

er of pit stops, stint length and charge time, and we compare it 

gainst the strategies optimized for a fixed number of pit stops. We 

elect a 6 h race, yet longer races can be solved as well with our

pproach, considering the very low computational times needed by 

ur high-level framework to converge. To link the initial battery 

nergy E b , 0 to the charge time t charge , we apply constant current 

harging starting from the lower limit. 

Fig. 6 shows the evolution of the completed laps as a function 

f time for various fixed-pit-stop-number strategies. We observe 

hat the optimal strategy of 11 stops results in the largest num- 

er of completed laps, thereby confirming that it is indeed op- 

imal in terms of number of pit stops. The difference in covered 

ace length between the optimal and fixed-pit-stop-number strate- 

ies can exceed multiple laps and hence significantly affect the fi- 

al race outcome in terms of finishing position, highlighting the 

mportance of jointly optimizing the number of pit stops. Further- 

ore, we compare the optimal race strategy against a strategy that 

epeats the global optimal stint of 15 laps and 7.5 min charging, un- 

il the race ends. Although the stints used in this strategy are glob- 

lly optimal from a stint perspective, it does not cover the largest 

istance within the 6 h time window, which makes the strategy 

ub-optimal from a race perspective. This is because a pure rep- 

tition of the optimal stint does not fit perfectly within the 6 h 

ace. Instead, it is beneficial to slightly deviate from the optimal 

tint, so that the stints fit better within the race, as done by the 

ptimal race strategy. This shows that the optimal race strategy is 

ot necessarily the same as the optimal stint, thereby highlight- 

ng the importance of jointly optimizing the stint lengths, charge 

imes and number of pit stops. Lastly, to show the importance of 

he bi-level approach, we compare the optimal strategy against a 

aseline flat-out strategy whereby no energy management is ap- 

lied to limit energy consumption, but the EMs are rather operated 

t maximum power whenever possible. This results in 6lap stints 

nd a total race distance of 132 laps, whilst the globally optimal 
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Fig. 7. Optimal race strategy (black) in terms of stint length, charge time and stint 

time with t charge , max = 7 . 5 min . For comparison, we show other optimal fixed pit 

stops strategies together with the relaxed solution in gray. Stint length, charge- and 

stint time are related and the optimal integer solution minimizes the differences to 

the relaxed solution. 
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Fig. 8. The average stint velocity for a combination of stint length and charge time 

together with the optimal combinations and actual numerical solutions. The opti- 

mal combinations of stint length and charge time show a clear (linear) correlation, 

to which the numerical solutions are aligned. The dashed circles indicate the first 

stints for the 13 and 15 stop strategies. 
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olution is about 172 laps, which is about 30 % better compared to 

he baseline. 

Fig. 7 shows the individual stints in terms of length and charge 

ime, together with the relaxed non-integer solution. We can con- 

lude that a constant stint length over the race is optimal, since all 

tints in the relaxed solutions are equal, with the only exception 

eing the first stints. In this use case, the optimal integer solution 

onsists of the stint lengths that minimize the difference to the 

elaxed solution, namely, of a stint length between 14 and 15 laps 

ogether with a charge time of almost 7.5 min and 11 pit stops in

otal. For strategies with more stops, both the stint lengths and 

harge times are reduced, thus showing that partly charging the 

attery is optimal for more than 11 stops. For strategies with fewer 

han 11 stops, the charge time is already maximized and no com- 

ensation is possible for increasing stint lengths. From the afore- 

entioned observations, we conclude that the stint length, stint 

ime and charge time are closely related in the case of an optimal 

olution. Thereby, all the stints consist of a unique and lap-wise 

qual globally optimal PO. 

.3. Validation 

In this section, we validate the numerical combinations of stint 

ength and charge time for the various strategies. To this end, we 

alculate the average stint velocity v stint (k ) for every strategy as 

 stint (k ) = 

S stint (k ) 

t charge (k ) + t stint (k ) 
, ∀ k > 0 . (37) 

Arguably, the globally optimal stint should maximize the aver- 

ge stint velocity. Fig. 8 shows the average stint velocity for all pos- 

ible combinations of stint length and charge time together with 

he theoretical optimal charge times that maximize the average 

tint velocity for a given stint length, to which we refer as the op- 

imal combinations. These optimal combinations show an almost 

inear relation between charge time and stint length until the max- 

mum charge time is reached. The globally optimal stint consists 

f 15 laps and 7.5 min charging, which is the exact same combi- 

ation that we obtained as the optimal strategy in the previous 
7 
ection. Furthermore, we observe that the average stint velocity 

ecreases in sensitivity around the optimal combinations for in- 

reasing stint length and charge time, until the maximum charge 

ime is reached. Thereby, increasing the stint length beyond 15 laps 

uickly becomes less favorable, explaining why the 7 stop strat- 

gy is significantly worse than the others. Finally, we note that 

he numerical solutions align well with the theoretically optimal 

ombinations. The outliers at 14 laps and 7.5 min charging corre- 

pond to the first stints, for which the charge time is not part of 

he race and thus the calculation of the stint velocity in (37) is not

alid. 

. Conclusion 

In this paper, we devised a bi-level optimization framework 

o efficiently solve the maximum-distance endurance race strat- 

gy problem for a fully electric race car. In order to tackle the 

arge problem size stemming from the length of an endurance race, 

e decomposed the problem into separate stints which we solved 

y extending a minimum-lap-time convex optimization framework 

hat can rapidly deliver the globally optimal solution to account for 

ultiple laps and include more accurate force-based models. This 

ay, we were able to compute the optimal number of pit stops, 

he charging time per stop and the individual stint lengths via 

ixed-integer second-order conic programming with global opti- 

ality guarantees. Our bi-level framework could solve the problem 

f a 6 h race around the Zandvoort circuit with low computation 

imes below 1 s for the high-level framework. Our results showed 

hat, from a stint perspective, there is a clear correlation between 

ptimal stint length and charge time, which corresponds to the 

aximization of the average stint velocity. Moreover, the optimal 

ace strategy showed a 30 % increase in the overall race distance, 

ompared to a baseline flat-out strategy. Finally, we highlighted the 

mportance of optimizing both levels and that, compared to the 

trategies optimized for a pre-defined number of pit stops, jointly 

ptimizing the number of pit stops can significantly increase the 

otal distance driven by multiple laps, hence considerably improve 

he achievable race outcome. 

This work opens the field for the following possible extensions: 

irst, we want to account for the temperature dynamics of the EM 

nd the battery during driving and charging, since they can play 

n important role in endurance racing scenarios [10,18] . Second, 

e want to study the impact of the vehicle dynamics [9,31] and 

ire degradation on the achievable stint time and the resulting race 

trategies. 
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