
Computers and Chemical Engineering 167 (2022) 108015

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Multi-objective optimization of equation of state molecular parameters:
SAFT-VR Mie models for water
Edward J. Graham a, Esther Forte b,1, Jakob Burger c, Amparo Galindo a, George Jackson a,
Claire S. Adjiman a,∗

a Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, United Kingdom
b Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Erwin-Schrödinger-Str. 44, Kaiserslautern 67663, Germany
c Laboratory of Chemical Process Engineering, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse
16, 94315 Straubing, Germany

A R T I C L E I N F O

Keywords:
Multi-objective optimization
Equation of state
Parameter estimation
Sandwich algorithm
SAFT-VR Mie
Water

A B S T R A C T

The determination of a suitable set of molecular interaction parameters for use with an equation of state
(EoS) can be viewed as a multi-objective optimization (MOO) problem, where each objective quantifies the
quality of the description for a particular type of thermodynamic property. We outline a methodology for the
determination of a set of Pareto-optimal interaction parameters. The Pareto front is generated efficiently using
a sandwich algorithm where one solves a sequence of weighted-sum scalarized single objective optimization
problems. The algorithm presented can be used for any number of objective functions, allowing for the
consideration of multiple thermodynamic property types as competing objectives in the MOO. The methodology
is applied to the determination of suitable parameter sets for models of water within the SAFT-VR Mie
framework. Three competing property targets are considered as objective functions: saturated-liquid density,
vapour pressure and isobaric heat capacity. Two different types of molecular models are considered: spherical
models of water, and non-spherical model of water. We analyse the two- and three-dimensional Pareto surfaces
and parameter sets obtained for different property combinations in the MOO. The proposed methodology can
be used to provide a rigorous comparison between different model types. Numerous Pareto-optimal parameter
sets for SAFT-VR Mie water models are documented, and we recommend two new models (one spherical model
and one non-spherical model) with an appropriate compromise between the competing objectives.
1. Introduction

The typical approach to determining the intermolecular parameters
for use with an equation of state (EoS) is to solve a single objec-
tive optimization, where the objective function is constructed using
a weighted-sum of various error functions, each representing the de-
viation between the prediction of a target thermodynamic property
and the experimental measurement. The weighted-sum optimization,
(WSP(𝒘)), is defined as

minimize
𝒙

𝒘𝑇 𝒇 (𝒙) =
𝑁dim
∑

𝑖=1
𝑤𝑖𝑓𝑖(𝒙)

subject to 𝒙 ∈ 𝑋,

(WSP(𝒘))
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where 𝑓𝑖 is the error function for property type 𝑖, 𝑁dim is the number
of property types, 𝑤𝑖 is the weight given to property type 𝑖, and 𝒙
is the vector of molecular parameters for the model which are to be
estimated. 𝑋 refers to the feasible set of parameters, which implicitly
includes any inequality constraints, such as lower and upper bounds on
the molecular parameters, or equality constraints, e.g., with the use of
combining rules. There are various factors to consider in constructing
a (WSP(𝒘)), and the final molecular EoS model (to be used in e.g., a
process simulation) will depend on the choice of the specific form
of (WSP(𝒘)). In particular, the definition of 𝑓𝑖, the choice of which
property types to use, and the choice of 𝒘.

The precise definition of 𝑓𝑖 is important as it not only affects the
values of the parameters but also their statistical properties (Englezos
and Kalogerakis, 2000). An example of 𝑓𝑖 is a relative least-squares
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𝑓

objective function,

𝑓𝑖(𝒙) =
𝑁𝑖
∑

𝑗=1

[

𝑌 exp.
𝑖,𝑗 (𝒌) − 𝑌 model.

𝑖,𝑗 (𝒌,𝒙)

𝑌 exp.
𝑖,𝑗 (𝒌)

]2

, (1)

where 𝑁𝑖 is the number of data points for each property type 𝑖, 𝒌 is
a vector of independent variables that are fixed in the model and the
experiment (e.g., temperature and pressure), 𝑌 exp.

𝑖,𝑗 is the experimental
value for property type 𝑖 and data point 𝑗, and 𝑌 model.

𝑖,𝑗 is obtained
with the EoS with the corresponding molecular parameters for property
type 𝑖 and data point 𝑗. Typically, 𝑓𝑖 is averaged over 𝑁𝑖 such that 𝑓𝑖
epresents the average deviation for each property type, e.g.,

𝑖(𝒙) =
1
𝑁𝑖

𝑁𝑖
∑

𝑗=1

[

𝑌 exp.
𝑖,𝑗 (𝒌) − 𝑌 model.

𝑖,𝑗 (𝒌,𝒙)

𝑌 exp.
𝑖,𝑗 (𝒌)

]2

. (2)

One should note that the objective functions defined in Eqs. (1) and (2)
lead to the same functional form of (WSP(𝒘)), so the constant prefactor
(1/𝑁𝑖) present in Eq. (2) may either be used in the definition of 𝑓𝑖 or
subsumed into the weight 𝑤𝑖.

Due to the highly nonlinear behaviour of the more sophisticated
thermodynamic models, finding the solution to (WSP(𝒘)) can be chal-
lenging because the objective function may have a non-convex be-
haviour and exhibit many local optima. The use of global optimization
routines in the model development can therefore lead to better solu-
tions than local optimization methods (Costa et al., 2000). Furthermore,
the calculation of fluid-phase equilibrium properties can be challeng-
ing as it is important to ensure that the results correspond to stable
equilibria during the parameter estimation procedure. This becomes
particularly challenging in the case of multi-component mixtures. So-
phisticated methods have been developed to deal with this problem
(see, e.g., Glass et al., 2018).

The values of the parameters and the individual 𝑓𝑖 at the optimal
solution to (WSP(𝒘)) depend on the choice of weights, but it is gener-
ally difficult to decide which weight to assign to each property a priori.
One class of methods suited for the determination of a suitable weight
vector are Bayesian-type approaches. Common methods include the
error-in-variables-measured (EVM), the weighted least squares (WLS)
approach, and the maximum-likelihood estimator (Bard, 1974; Wang
et al., 2018), where one seeks to find the set of parameters that are most
statistically significant with respect to the experimental data. These
methods require prior knowledge of the experimental uncertainty, such
as the variance and distribution of measurement errors, which are
sometimes not known or reported. Furthermore, if the equation of
state does not predict the experimental data to within the range of
experimental uncertainty, then weighting properties according to the
inverse of their variance can lead to an unfair weighting towards certain
thermodynamic properties.

For these reasons, the weight vector is often chosen arbitrarily in
the development of EoS model parameters. In the majority of cases,
an equal weight is given to each property type. In other cases, a small
number of weight vectors are chosen and the thermodynamic model
is picked by looking at the 𝑓𝑖 obtained from the different models
and judging which one gives the best balance between the different
properties (see, e.g., Lafitte et al., 2007). Systematically choosing the
most appropriate weight vectors is however not straightforward. It is
often not apparent how changes in the weight vector will affect the
individual 𝑓𝑖, particularly when the number of property types increases,
as the dependence of 𝑓𝑖 on the weights can be highly non-linear (Marler
and Arora, 2009). Furthermore, there may not be an ‘optimal’ set of
parameters for a particular compound or mixture. This will depend
upon the intended use of the model, and a single set of parameters may
not suffice.

An alternative approach is to formulate the parameter estimation
as a multi-criteria (or multi-objective) optimization problem. Within
this approach, the different thermodynamic properties are treated as
2

competing objectives, and the output is a set of non-dominated (or
Pareto-optimal) models, from which a model may be chosen after
the parameter estimation procedure. Importantly, the multi-objective
optimization approach removes any arbitrariness in the selection of
the weight vector. Examples are parameter estimation for force-field
models used in molecular simulation (Stöbener et al., 2014, 2016;
Kulkarni et al., 2020), Gibbs energy models (Forte et al., 2020), or
molecular parameters used in equations of state (Forte et al., 2017).
The latter authors have developed Pareto-optimal models for water
using the PC-SAFT EoS (Gross and Sadowski, 2000, 2001), using ex-
perimental data for the saturated-liquid density and vapour pressure
as two competing objectives. They considered models for water which
differ in their association scheme (2-site, 3-site and 4-site models), and
whether or not to include a dipolar term (PCP-SAFT (Gross and Vrabec,
2006)). It was shown that knowledge of the Pareto front provides a
useful means of comparison between different model types, as one is
able to simultaneously compare the full set of Pareto-optimal solutions.
They concluded that the 2- and 4-site association schemes provide
very similar predictions, and that the addition of a dipolar term offers
only a small improvement in the Pareto front if the literature value of
the dipole moment is used, while a vast improvement in the Pareto
front is seen if one treats the dipole moment of water as an adjustable
parameter. Recently, Rehner and Gross (2020) used multi-objective
optimization to develop PCP-SAFT parameters for water and alcohols.
Two competing objective functions were considered, one incorporating
data for the saturated-liquid density and vapour pressure with equal
weights, and another incorporating interfacial-tension data modelled
using predictive density gradient theory (pDGT (Rehner and Gross,
2018)). The description of properties was found to be improved signif-
icantly when a dipole moment is included in the molecular model. The
Pareto fronts obtained using different association schemes for water (2-,
3- and 4-site) were compared, and it was found that every one of the
three schemes considered dominates the other two in some part of the
diagram, thus it is inconclusive which scheme is best for this particular
set of objectives.

Typically, it is difficult to determine the complete set of Pareto
points since a closed-form solution to the multi-objective optimization
problem is not always available. The single objective optimization
problem (WSP(𝒘)) can be highly nonlinear and non-deterministic-
polynomial (NP) hard. For such problems and for approaches that
incorporate a scalarization method, the MOO is at best an infinite set of
single-objective-optimization (SOO) problems. Thus, various methods
have been developed to efficiently approximate the non-dominated set,
the outputs of which are a finite number of Pareto points. The two
main classes of approaches are stochastic and deterministic. Stochastic
methods such as evolutionary algorithms work by sampling a large area
of the parameter space and are not typically gradient based (Rangaiah,
2009). They can therefore be applied to any problem, regardless of the
nature of the objective functions and constraints (Marler and Arora,
2004). A recent comparative study of various MOO methods applied
to mixed-integer nonlinear problems has shown that stochastic meth-
ods do not always lead to the identification of the true Pareto front
when non-convexities are present (Lee et al., 2020). Most deterministic
methods make use of a particular type of scalarization, whereby the
MOP is converted into an SOO, allowing for gradient-based techniques
as solution methods. Common examples of scalarization techniques
include: the 𝜀-constraint method (Haimes, 1971), whereby inequal-
ity constraints are added to the individual objective functions; the
Pascoletti–Serafini scalarization (Pascoletti and Serafini, 1984) which
relates the objectives via an equality constraint; and the weighted-sum
method (Zadeh, 1963). The latter scalarization method, as described in
(WSP(𝒘)) is commonly used for the parametrization of thermodynamic
models.

In addition to specifying suitable weight vectors as an input to
(WSP(𝒘)), the choice of the particular data types used is of cru-
cial importance. In the context of modelling of industrial processes,

it is preferable that the equation of state can be used to predict
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accurately both the fluid-phase equilibria and second-derivative ther-
modynamic properties, in particular, the caloric properties such as the
heats of vaporization and isobaric heat capacities (Hendriks et al.,
2010). The more recent versions of molecular-based SAFT EoSs that
incorporate an adjustable repulsive interaction have been shown to
provide an excellent simultaneous description of the fluid-phase equi-
libria and second-derivative properties, allowing for the possibility of
including more data types in the model parametrization (Lafitte et al.,
2007, 2013). A good representation of the experimental properties
included in the objective function is, however, not the only concern.
In molecular-based EoSs, where the parameters characterize the in-
termolecular potential, one needs to ensure that the model correctly
captures the physics of the interactions in order for the equation to
have any predictive capability with respect to, e.g., properties at other
thermodynamic conditions, mixture properties, or the transferability
of some potential parameters to chemically similar compounds. When
SAFT parameters are estimated for real molecules, the identification
of molecular models that provide a good approximation of a physically
sound intermolecular potential becomes challenging if there is degener-
acy in the parameters; in this case the experimental data do not provide
enough information to distinguish between different models. Typically
the extent of degeneracy increases with the number of parameters of
the molecular model.

When chemical association is present and is explicitly accounted
for in the molecular model, e.g., in the SAFT family of equations of
state, it is clear from the literature that data types in addition to
the vapour pressure and saturated-liquid density alone are required
in order to decouple the degeneracy between the energy due to dis-
persive interactions from that due to association (hydrogen bonding
or other short range directional interactions). This is apparent in the
work of Clark et al. (2006) for the SAFT-VR SW equation of state,
and Dufal et al. (2015) for the SAFT-VR Mie equation of state, when
developing SAFT models for water. Using a weighted-sum of saturated-
liquid density and vapour-pressure data, the authors observed large
shallow regions in the objective function space when plotted against
discretized pairs of parameters, particularly the dispersive energy and
association energy. This indicates a high degree of degeneracy between
these two parameters. Their discretization method allows for a visual-
ization of the parameter space and allows one to generate a variety
of models that do not necessarily minimize the objective function but
are within a certain acceptable tolerance. By analysing these water
models, Clark et al. (2006) found that the heat of vaporization was not
a suitable data type to discriminate between the different SAFT models
due to the similar prediction of this property for models along the
‘‘optimal’’ valley. The authors found that the use of the vapour–liquid
surface tension calculated using the SAFT-VR DFT of Gloor et al. (2004)
allowed one to discriminate between the different models, but the
theoretical description overestimated the experimental surface tension
in all cases due to the overestimate of the critical temperature with the
theory. The predictions of the fraction of association sites not bonded
between the different models were much more varied, and hence the
authors were able to discriminate between models by comparison with
the spectroscopic data of Luck (1980). Similarly, Dufal et al. (2015)
were able to validate their water models (regressed to vapour–liquid
equilibrium (VLE) data only) by comparison to the degree of associa-
tion. In this case the authors used the degree of association predicted
with Monte Carlo simulations of the SPC/E and TIP4P/2005 force fields
as pseudo-experimental data, given issues with the interpretation of
the spectroscopic data of Luck (1980). Cripwell et al. (2018) used a
similar discretization approach to determine models for the SAFT-VR
Mie-GV (polar variant of SAFT-VR) equation of state, whereby near-
optimal solutions were discriminated with respect to their ability to
predict vapour–liquid equilibria. Gloor (2003) found that the vapour–
liquid interfacial tension is a useful property to determine the balance
between dispersive and associative forces when coupling SAFT-VR SW
3

with a suitable density functional theory (SAFT-VR DFT). Oliveira p
et al. (2016) demonstrated that in the case of strongly associating
molecules, using only saturated-liquid density and vapour pressure as
target properties (using the soft-SAFT equation of state (Blas and Vega,
1997)), one is unable to obtain a good prediction of various derivative
properties (the speed of sound, isochoric heat capacity, thermal expan-
sion coefficient, isothermal compressibility, and isobaric heat capacity).
In their work they showed that the isobaric heat capacity, 𝐶𝑃 , is much
better described by a water model that accounts for non-sphericity.

The isobaric liquid heat capacity is a promising data type to use
in the objective function as it can be measured accurately, and its
accurate prediction is vitally important for the modelling of chemical
processes. It also provides specific information on the nature of the
liquid due to its relationship with entropy (𝐶𝑃 = 𝑇 (𝑑𝑆∕𝑑𝑇 )𝑃 ). Cerdeir-
ña et al. (2007) showed that a simple two-state association model,
SAM (Cerdeiriña et al., 2004) is able to capture the various trends
f the temperature dependence of 𝐶𝑃 (𝑇 ), for specific isobars, and ob-
erved that this dependence for associating molecules is only sensitive
o the ideal and association contributions to the isobaric heat capacity.
his provides a good indication that one may be able to use this
roperty to decouple the effect of the dispersive and associative forces.
ote that in when one uses 𝐶𝑃 to regress EoS models one also requires
xperimental information of the ideal gas heat capacity (or some means
o estimate it accurately).

In summary, different property types (beyond the saturated-liquid
ensity and vapour pressure alone) may be required for the estimation
f equation-of-state model parameters from target experimental data.
y constructing an optimization problem of the form described by
WSP(𝒘)) for the regression, it is clear that increasing the number
f property types makes it even more difficult for the user to define
hich weights should be specified in the optimization problem. In

he current work, we extend the application of the multi-objective
pproach to EoS model parameter estimation as proposed by Forte et al.
2017) by considering more than two data types (or two objectives,
𝑖). The methods required to approximate the Pareto front are sig-
ificantly more complex when dealing with more than two objective
unctions. We therefore provide a detailed description of the MOO
roblem and the algorithm used to approximate the Pareto front, along
ith graphical explanations to aid the explanation. The method is
pplied to the generation of a number of Pareto-optimal models for
ater using the SAFT-VR Mie (Lafitte et al., 2013; Dufal et al., 2015)
nd SAFT-𝛾 Mie (Papaioannou et al., 2014) equations of state. We
irst discuss in detail the theory behind multi-objective optimization
nd methodologies for providing an efficient approximation of the
areto front. We propose an algorithm in which a series of single
bjective optimizations (SOOs) is solved. It is ideally suited for the
arametrization of EoS models, and can be retrofitted with existing
ethods and code bases, provided that the objective function in the

OOs is of the form described by (WSP(𝒘)). The sandwich algorithm
e implement for the determination of an efficient sequence of weight
ectors used in (WSP(𝒘)) is closely related to that of Bokrantz and
orsgren (2013), and is applicable to any number of dimensions (𝑁dim).
e include three data types in the parameter estimation procedure:

aturated-liquid density, vapour pressure, and isobaric heat capacity.
he thermodynamic properties of water are notoriously difficult to
redict with any EoS due to the complex interplay between associative,
ispersive, and polar forces. This means the objectives are indeed
onflicting, so that Pareto fronts are generated. Finally, we choose
particular model for water that represents a good compromise be-

ween the objectives, and we assess the ability of the model to predict

roperties that are not included in the objective function.
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2. Methodology

2.1. Definition of the multi-objective optimization problem and
non-dominance

The following multi-objective optimization problem (MOP) is con-
sidered:
minimize

𝒙
𝒇 (𝒙) = [𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑁dim (𝒙)]

subject to 𝒙LB ≤ 𝒙 ≤ 𝒙UB,
(MOP)

where 𝒇 is a vector of individual objective functions, in our case, some
scalar functions 𝑓𝑖, 𝑖 = 1,… , 𝑁dim, that characterize the deviations
between model and experiment for property type 𝑖; 𝒙 is a vector of
equation-of-state parameters that describe the molecular interactions,
which we refer to as a ‘‘model’’ throughout; 𝑁dim ≥ 2 is the number of
objectives; and superscripts LB and UB represent the lower and upper
bound constraints on the model parameters, respectively. Throughout
our work, the vector inequalities imply that the inequalities hold at the
component-wise level. If it is possible to minimize all 𝑓𝑖 simultaneously,
i.e., the objective functions do not conflict, then the solution is a single
optimal model. Otherwise, the solution is a (potentially infinite) set of
models that are non-dominated. A model with parameters �̃� is non-
dominated if there exists no other feasible set of parameters 𝒙 such
that:

𝒇 (�̃�) ∈ 𝒇 (𝒙) + 𝐶 ⧵ {0}, (3)

where 𝐶 is an ordering cone that is closed and pointed.
We follow the approach of Bokrantz and Forsgren (2013) by consid-

ering polyhedral ordering cones of the form 𝐶 = {𝐐𝝁 ∶ 𝝁 ≥ 0}, whereby
we specify the maximum admissible trade-offs between pairs of objec-
tives to obtain 𝐐. Let 𝑡𝑖𝑗 (𝑡𝑖𝑗 ≥ 0) be the reciprocal of the maximum
admissible increase in 𝑓𝑖 per unit decrease in 𝑓𝑗 . Then 𝐶 can be
represented by a set of inequality constraints, 𝐶 = {𝒛 ∶ 𝐓𝒛 ≥ 0}, where
𝐓 is a matrix with dimensions 𝑁dim, with ones on the diagonal and
off-diagonal elements 𝑡𝑖𝑗 . The dual cone to 𝐶, 𝐶∗, is the cone generated
by 𝐓: 𝐶∗ = {𝐓𝝁 ∶ 𝝁 ≥ 0}.

To find the generating matrix 𝐐, we use Minkowski’s theorem for
closed convex pointed cones (Blekherman et al., 2012; Fawzi, 2017),
which requires that any point in 𝐶 can be described by the conical
hull of its extreme rays. The extreme rays of 𝐶 can be found by setting
(𝑁dim−1) inequality constraints that define 𝐶 to be active. In our work,
we set all maximal admissible trade-offs between objective pairs to be
equal and remove the subscripts: 𝑡𝑖𝑗 = 𝑡. This allows us to simplify the
extreme ray representation of 𝐶. In three dimensions:

𝐶 =

⎧

⎪

⎨

⎪

⎩

𝒛 ∶
⎡

⎢

⎢

⎣

1 𝑡 𝑡
𝑡 1 𝑡
𝑡 𝑡 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3

⎤

⎥

⎥

⎦

≥
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

. (4)

Taking the first two inequality constraints to be active, we obtain 𝑧1 =
𝑧2 = −𝑡

1+𝑡 𝑧3. Setting 𝑧3 = 1 (the length of the extreme ray is arbitrary),
e obtain an extreme ray and row of 𝐐: [ −𝑡

1+𝑡 ,
−𝑡
1+𝑡 , 1]. The other extreme

ays can be found in an equivalent manner by appealing to symmetry:

=

⎡

⎢

⎢

⎢

⎣

1 −𝑡
1+𝑡

−𝑡
1+𝑡−𝑡

1+𝑡 1 −𝑡
1+𝑡−𝑡

1+𝑡
−𝑡
1+𝑡 1

⎤

⎥

⎥

⎥

⎦

. (5)

Using similar arguments for 𝑁dim dimensions, 𝐐 is given by a matrix
with ones along the diagonal and −𝑡

1+(𝑁dim−2)𝑡 as the off-diagonal ele-
ments. If 𝑡 = 0 then 𝐐 and 𝐓 are both identity matrices, which leads
to the conventional Pareto ordering, i.e., a model 𝒙 is Pareto-optimal if
there is no other feasible model �̃� such that 𝒇 (�̃�) ≤ 𝒇 (𝒙) with at least
one strict inequality. In Fig. 1a we demonstrate this concept: a model is
dominated if it lies anywhere above and to the right of another model.

Throughout, we refer to the complete set of Pareto-optimal models
as the Pareto front, and refer to a discrete set of non-dominated models,
4

e.g., as generated by an algorithm, by a matrix Θ, where the 𝑘th
row (𝑘 = 1,… , 𝑁P) corresponds to a non-dominated point which we
refer to as 𝜽𝑘. 𝑁P is the number of Pareto points in Θ. The algorithm
proposed in our paper will always produce points that are Pareto-
optimal in the conventional sense, but some Pareto-optimal points may
be discarded when 𝑡 > 0 due to the dominance criterion, which removes
parts of the Pareto front where trade-offs are unfavourable. While in
Fig. 1a, we provide a visual interpretation of non-dominance and Pareto
dominance in two dimensions for an ordering cone 𝐶 generated by 𝑡 =
0, in Fig. 1b, we illustrate how Pareto-optimal models are dominated
when a broader ordering cone is chosen.

2.2. The weighted-sum scalarization and sandwich algorithms

In this section we first show how weighted-sum scalarizations of
the MOP can be used to generate Pareto-optimal solutions and provide
outer approximations to the Pareto front. We then show how inner
approximations to the Pareto front can be constructed based on a
discrete set of Pareto points Θ, and the ordering cone 𝐶, in the case that
the MOP is a convex problem. Finally, we describe sandwich algorithms
and how they can be used to generate Pareto points and inner (in the
case of convex Pareto fronts) and outer approximations to the Pareto
front efficiently.

2.2.1. The weighted-sum scalarization
We define the region 𝑍 as the set of all feasible vectors 𝒛 in objective

space, 𝑍 = {𝒛 = 𝒇 (𝒙) | 𝒙 ∈ 𝑋}. The minimization of a weighted-sum
scalarization of the MOO can be interpreted geometrically as shifting a
hyperplane (a line in 2 dimensions, a plane in 3 dimensions, etc.), with
a normal vector which is equal to the weight vector, as close as possible
to the origin in the feasible objective space. Solving the weighted-sum
scalarized problem with the 𝑘th weight vector 𝒘𝑘 that lies in 𝐶∗ will
give an optimal solution 𝒙∗, corresponding to the 𝑘th non-dominated
Pareto point, 𝜽𝑘 = 𝒇 (𝒙∗). We can then define a hyperplane that has
normal vector 𝒘𝑘, and passes through 𝜽𝑘, by 𝒘𝑇

𝑘 𝒇 = 𝒘𝑇
𝑘 𝜽𝑘 = 𝑏𝑘, and

its associated positive half space, {𝒛 | 𝒘𝑇
𝑘 𝒛 ≥ 𝑏𝑘, 𝒛 ∈ 𝑍}.

2.2.2. Definition of the outer approximation
By solving the weighted-sum scalarization with a single weight

vector to global optimality, not only do we always obtain a Pareto-
optimal solution, but we also obtain a positive half-space that provides
a lower bound on the feasible region, and thus a lower bound on the
Pareto front. Equivalently, there is no feasible solution that lies in the
associated negative half-space. With multiple Pareto points and their
associated weight vectors, we define an outer approximation to the
feasible objective space, 𝑍 ⊆ 𝑍out , by the set of positive half-spaces:

𝑍out = {𝒛 | 𝐖𝑇 𝒛 ≥ 𝒃}, (6)

where 𝐖 is a matrix with each row corresponding to a particular weight
vector, and 𝒃 is a column vector where the 𝑘th element is obtained by
the scalar product between the 𝑘th row of 𝐖 and the 𝑘th row of Θ.
One should note that 𝑍out is an outer approximation even if the Pareto
front is non-convex.

2.2.3. Definition of the inner approximation
An inner approximation to the Pareto front can be found via polyhe-

dral approximations if the Pareto front is convex. Sufficient conditions
for the convexity of (MOP) are that all 𝑓𝑖, 𝑖 = 1,… , 𝑁dim are convex, the
inequality constraint functions are convex, and the equality constraints
are affine (Boyd and Vandenberghe, 2004). However, the convexity
of the Pareto front only requires that the feasible region, 𝑍, be p-
directionally convex (Holtzman and Halkin, 1966), for any definitely
negative vector 𝒑 (𝒑 < 𝟎), as demonstrated by Lin (1976). This
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Fig. 1. Schematic illustrating Pareto-optimality and dominance in two dimensions. We show two Pareto points, 𝜽1 and 𝜽2 (open circles), that lie on the Pareto front (continuous
black curve). The region shaded in red is 𝜽1 + 𝐶; any model that lies in this region (e.g., the black circle) is dominated by 𝜽1. In (a), the ordering cone 𝐶 (𝑡 = 0) implies the
conventional Pareto ordering between objectives 𝑓1 and 𝑓2, where models are dominated if they are above and to the right of a Pareto-optimal model. In (b) we illustrate the
dominance criterion for a broader ordering cone 𝐶 when 𝑡 > 0. We specify 1∕𝑡, the maximum acceptable increase in 𝑓2 (𝛥𝑓2) for a unit decrease in 𝑓1 (-𝛥𝑓1), which corresponds
to the gradient of the left-most extreme ray of 𝐶. This broader ordering cone leads to 𝜽2 becoming dominated.
is because the Pareto front is always on the boundary of 𝑍 (Mar-
ler and Arora, 2009). The definition of 𝑝−directionally convex is as
follows (Marler and Arora, 2009):

Given a nonzero vector 𝒑, 𝑍 is said to be 𝑝-directionally convex if
given any two distinct points in 𝑍, 𝒛𝟏 and 𝒛𝟐, and any two positive
scalars, 𝛼1 and 𝛼2, with 𝛼1 + 𝛼2 = 1, there is a positive number 𝛽 such
that 𝛼1𝒛𝟏 + 𝛼2𝒛𝟐 + 𝛽𝒑 ∈ 𝑍.

The Pareto front may be convex even if 𝑓𝑖, 𝑖 = 1,… , 𝑁dim, are
non-convex functions. Assuming convexity of the Pareto front, an in-
ner approximation can be defined by convex combinations of the
Pareto points plus the ordering cone, 𝐶 = {𝐐𝝁 ∶ 𝝁 ≥ 0}. The inner
approximation is given by the set 𝑍 in (Bokrantz and Forsgren, 2013):

𝑍 in = {𝒛 | Θ𝑇 𝝀 +𝐐𝑇𝝁 ∶ 𝝀,𝝁 ≥ 0 and 𝒆𝑇 𝝀 = 1}, (7)

where 𝒆 is a vector of ones with the same dimensions as 𝝀. Any feasible
choice of parameters (𝝀,𝝁) defines a point in objective space that
must lie either above or on the Pareto front. In Fig. 2, we provide a
geometric interpretation of 𝑍 in and 𝑍out . For non-convex surfaces, the
inner approximation described here will provide an upper bound to
points that lie in the convex hull of the feasible region.

As every weight vector provides a Pareto-optimal solution to
(WSP(𝒘)), one may naively choose to run several optimizations with
many weight vectors to produce the Pareto front, e.g., by using a
grid of equally distributed weights. However, it is well known that
an even distribution of weights does not typically produce an evenly
distributed set of points on the Pareto front (Das and Dennis, 1997),
i.e., points become clustered towards certain regions. A grid search
may become numerically intractable, particularly as the number of
dimensions increases.

Sandwich algorithms provide an efficient way to approximate the
Pareto front. The output is a finite number of non-dominated points,
and a polytope (or collection of facets) that approximates the true
Pareto front to within a known degree of accuracy. In essence, sandwich
algorithms provide increasingly tighter inner and outer approximations
to the Pareto front by iteratively solving a sequence of weighted-sum
scalarizations of the MOO, and they terminate once a user-defined
convergence criterion is met. Assuming convexity of the MOO problem,
the true Pareto front is ‘sandwiched’ between the inner and outer
5

Fig. 2. Schematic illustrating the region described by the inner and outer approxima-
tions, 𝑍 in and 𝑍out respectively, for three Pareto points, 𝜽1, 𝜽2, and 𝜽3 (white circles).
The continuous black curve is the Pareto front which is convex. 𝑍 in is defined by Eq. (7)
. The lower edge of 𝑍 𝑖𝑛 is shown by the straight blue lines, some of which connect
the Pareto points, the others lie on the extreme ray of 𝐶 that originates from the two
extreme Pareto points 𝜽2 and 𝜽3. The blue shaded region is the convex hull of 𝑍 𝑖𝑛. The
thick red dashed lines represent the lower region of 𝑍out , defined by Eq. (6), the thin
red dashed lines represent redundant inequality constraints. The whole region defined
by 𝑍out lies on or above the red lines. The Pareto front is ‘sandwiched’ in the region
𝑍out ⧵𝑍 in.

approximations. At each iteration of the algorithm, a new weight vector
is selected so as to formulate the weighted-sum problem that leads to
the largest improvement in the approximation quality. In this way, the
algorithm is designed to obtain the desired approximation quality in
as few weighted-sum optimizations as possible. In Fig. 3 we show the
general idea behind the sandwich algorithm for two objectives, where
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Fig. 3. Geometric interpretation of the sandwich algorithm for objectives 𝑓1 and 𝑓2 when there are nonconvex regions within the Pareto front. The continuous black curves
epresent the true Pareto front, discrete Pareto points are shown as white circles, the dashed red lines represent the outer approximation, the blue lines represent the inner
pproximation of the convex regions of the Pareto front, the black circles are the extreme vertices of the outer approximation. In (a), we start with an initial selection of Pareto
oints by solving the weighted-sum problem with three weight vectors and construct the inner and outer approximations. The Utopia point, a vector with the minimum value of
ach objective in the set of non-dominated solutions, is shown here. The area with the largest error between the inner and outer approximation (represented by the dotted line
ith double-headed arrows) is chosen and the normal vector to the facet of the inner approximation in this area is chosen as the scalarization vector for the next weighted-sum
ptimization. The error measure 𝜂 is some scalar quantity that characterizes the distance between the inner and outer approximations, and the specific error measure (the Hausdorff
istance) used in our work is defined in step 3 of the sandwich algorithm described in Section 2.3. This creates a new Pareto point (𝜽4) in (b). Note that in (b) parts of the
areto front that lie outside of the ‘inner’ approximation. In (c) a new Pareto point, 𝜽5 is created in the convex region of the Pareto front. The next largest error measure is then
ssociated with the inner and outer approximations close to the non-convex region. In (d) the algorithm terminates since 𝜂 ≤ 𝜂max.
s
r
a

arts of the Pareto front are non-convex. Although the Pareto front is
on-convex, the sandwich algorithm still converges.

.3. Description of the sandwich algorithm used in our current work

In this work we use a sandwich algorithm that closely follows that
f Bokrantz and Forsgren (2013). The reader is referred to section
.2.4 of Graham (2020) for a comparison between different available
6

andwich algorithms and the reason we choose this particular algo-
ithm. In Algorithm 1 we summarize the essential steps of the sandwich
lgorithm:

1. Determining initial Pareto points
The first step is to compute an initial set of Θ Pareto points from
which we can then construct 𝑍 in and 𝑍out. The first 𝑁𝑑𝑖𝑚 Pareto
points are found by solving a weighted-sum optimization with
weight vectors equal to the extreme rays of 𝐶∗ (the rows of 𝑇 ),
with ∑𝑁𝑑𝑖𝑚 𝑤 = 1. We next compute a single Pareto point with
𝑖=1 𝑖
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Fig. 4. Geometric interpretation of the minimization of the error measure in two dimensions. The white circles are the computed Pareto points; the region patterned with green
dots is the convex hull of the Pareto points, 𝐻 = {Θ𝑇 𝝀 ∶ 𝝀 ≥ 0, 𝒆𝑇 𝝀 = 1}; the region shaded in blue is the obtainable region when adding the ordering cone to each point in the
convex hull. In (b) we zoom in on an extreme vertex of the outer approximation, 𝒗, to show the geometric interpretation of the error measure, 𝜂, where 𝜂 = max(𝑑1 , 𝑑2).
Algorithm 1 Sandwich algorithm, based on that of Bokrantz and
Forsgren (2013)
input:
- A multi-objective optimization problem.
- A quality threshold, 𝜂max (default 0.01).
- Reciprocal of the maximum admissible trade-offs between objective
pairs, 𝑡 (default 0.01).
output:
- A set of non-dominated points, 𝚯.
- A polyhedron that approximates the Pareto front.
begin

1. Generate initial Pareto points:
Solve (WSP(𝒘)) with 𝒘 equal to the extreme rays of 𝐶∗.
Solve (WSP(𝒘)) with an equal weight vector.
Initialize 𝑍 in and 𝑍out.
Set 𝜂 = ∞.

2. Main loop:
while 𝜂 > 𝜂max do ⊳ Terminate if quality criteria is met

3. Compute the extreme vertices, 𝐕, of the outer approximation.
For each 𝒗 in 𝐕, compute 𝜂′ by solving (PLP(𝒗)) and set
𝜂 = max(𝜂, 𝜂′).

4. For the solution of (PLP(𝒗)) corresponding to 𝜂, set the next
weight vector, 𝒘∗, to be normal to 𝑍 in at the optimal solution.

5. Solve (WSP(𝒘)) with 𝒘∗ and update 𝚯 and 𝑍out.
6. Remove Pareto points from 𝚯 and inequality constraints from

𝑍out that correspond to sub-optimal solutions to (WSP(𝒘)).
end while

end

equal weights and ∑𝑁𝑑𝑖𝑚
𝑖=1 𝑤𝑖 = 1. The 𝑁𝑑𝑖𝑚 + 1 Pareto points and

their corresponding weights are appended to matrices Θ and 𝐖
respectively, and 𝒃 is initialized for the outer approximation.

2. Main loop
The algorithm enters the main iteration loop, which runs until
the desired error tolerance 𝜂max is achieved.

3. Determining the error measure between 𝑍out and 𝑍 in
7

The error criterion 𝜂 that defines the deviation between 𝑍 in and
𝑍out is the smallest value of 𝜖 such that 𝑍out ⊆ (𝑍 in − 𝜖𝒆), where
𝒆 is the vector of ones. This error measure is equivalent to the
Hausdorff distance. Since 𝑍out ⊃ 𝑍 in, the Hausdorff distance is
given by Bokrantz and Forsgren (2013)

𝑑Hausdorff = max
𝒛∈𝑍out

min
𝒛′∈𝑍in

𝑑(𝒛, 𝒛′), (8)

where 𝑑 is the distance function representing the maximum
positive distance between two points in any dimension of the
objective space,

𝑑(𝒛, 𝒛′) = max
𝑖=1,…,𝑁𝑑𝑖𝑚

(0, 𝑧′𝑖 − 𝑧𝑖). (9)

One should note that the norm used in Eq. (9) is a design
choice and may be replaced with a different norm (e.g., the Eu-
clidean norm). 𝜂 can then be determined by solving the bi-level
optimization problem (Bokrantz and Forsgren, 2013),

max
𝒛∈𝑍out

min
𝜂,𝝀,𝝁

𝜂

s.t. 𝜂𝒆 ≥ Θ𝑇 𝝀 +𝐐𝑇𝝁 − 𝒛

𝒆𝑇 𝝀 = 1

𝜂,𝝀,𝝁 ≥ 0,

(BLP)

where 𝒆 is a row vector of ones with length defined by its
context, 𝝀 is a column vector corresponding to the weights used
in a convex combination of the Pareto points, 𝝁 is a column
vector corresponding to the weights used in a conic combination
of the extreme rays of the ordering cone 𝐐. Here, we solve (BLP)
by enumerating candidate values for 𝒛 in the outer problem.
As 𝑍out is represented as a set of linear constraints, it can be
shown (Bokrantz and Forsgren, 2013) that the values of 𝒛 that
are optimal in (BLP) lie on the extreme vertices of the outer
approximation, i.e., points where the hyperplanes that define the
outer approximation intersect. Denoting an extreme vertex by 𝒗,
the following linear programming problem is solved for each 𝒗:

min
𝜂,𝝀,𝝁

𝜂

s.t. 𝜂𝒆 ≥ Θ𝑇 𝝀 +𝐐𝑇𝝁 − 𝒗

𝒆𝑇 𝝀 = 1
(PLP(𝒗))
𝜂,𝝀,𝝁 ≥ 0.
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The extreme vertices are calculated using the ‘‘CON2VERT’’
function available on MATLAB file exchange (Kleder, 2005) ,
which returns a set of vertices given a system of inequalities (in
our case, 𝐖𝑇 𝒛 ≥ 𝒃). The function employs a primal–dual poly-
tope method, which requires that the constraints are bounded.
To ensure this, we provide a lower bound 𝒛 ≥ 0, and a large
upper bound, 𝒛 ≤ 1010. The extreme vertices that lie at the upper
bound are removed from the function output.
A geometric interpretation of (PLP(𝒗)) for a particular 𝒗 is shown
in Fig. 4. In Fig. 4a, we show the region (in blue) defined by the
convex hull of the Pareto points, 𝐻 = {Θ𝑇 𝝀 ∶ 𝝀 ≥ 0, 𝒆𝑇 𝝀 = 1 and
the same region augmented by the ordering cone defined by 𝐶 =
{𝐐𝑇𝝁 ∶ 𝝁 ≥ 0}. In Fig. 4b, we show a geometric interpretation
of the right-hand side of the first set of inequality constraints in
(PLP(𝒗)), where 𝑑1 and 𝑑2 are the 𝑧1 and 𝑧2 components of the
vector Θ𝑇 𝝀 + 𝐐𝑇𝝁 − 𝒗. It is clear that because 𝜂 is minimized,
the optimal solution will lie on an inner edge of Θ𝑇 𝝀 + 𝐐𝑇𝝁,
and 𝜂 = max(𝑑1, 𝑑2). Additionally, 𝜂 ≥ 0, so both 𝑑1 and 𝑑2 vary
between 0 and some positive value, so there is a solution where
𝑑1 = 𝑑2. At this point of equality of the two distance metrics,
any reduction in either 𝑑1 or 𝑑2 leads to an increase in the
other distance, hence, at the solution, the first set of inequality
constraints in (PLP(𝒗)) is active and 𝜂 = 𝑑1 = 𝑑2. In general, the
first set of inequality constraints will always be active, as the
supporting hyperplane of 𝑍 in at the optimal solution will have
a normal vector with only positive elements by construction.
Hence, at a point on a hyperplane where all 𝑑𝑖 are equal, it is
not possible to choose another point on the hyperplane without
increasing at least one of the 𝑑𝑖s.
Let 𝒗∗ be the extreme vertex that gives the largest value of
𝜂 in (PLP(𝒗)). If this value is below a user-defined tolerance
𝜂max, then the algorithm terminates here, as the inner and outer
approximations are suitably close. Otherwise we continue to step
4.

4. Choosing the next weight vector to run
After finding 𝒗∗, the next step is to find the weight vector that
is normal to 𝑍 in at Θ𝑇 𝝀∗ + 𝐐𝑇𝝁∗, where 𝝀∗ and 𝝁∗ are the
optimal solutions to PLP(𝒗∗), to use in the next weighted-sum
problem. In Bokrantz and Forsgren (2013), the dual problem
to (PLP(𝒗)) is solved in order to find the next weight vector.
Instead, we use the property that the first set of inequality
constraints in (PLP(𝒗)) are active, and therefore the vector of
Lagrange multipliers (or dual variables) for these constraints,
provided by the linear optimization programme, is precisely the
normal vector needed. This avoids having to solve a separate
linear programming problem. We denote the next weight vector
to be run by 𝒘∗.

5. Solving (WSP(𝒘))
If (WSP(𝒘)) is a non-convex problem the output of the chosen
optimization routine can be highly dependent on the initial pa-
rameter guess, as one may get trapped in minima that are locally
but not globally optimal. To address this issue, we use a multi-
start approach whereby initial guesses for 𝒙 are chosen, which
lie within the parameter bounds 𝒙LB and 𝒙UB, based on a Sobol’
sequence (Sobol’, 1967). A Sobol’ sequence is chosen as opposed
to random sampling as its use leads to a more even coverage
of the domain of the parameter space for a given number of
generated points. Lee et al. (2020) showed that generating
initial parameter guesses using a Sobol’ sequence is an effective
way to solve the weighted sum SOO to global optimality, thus
generating points on the Pareto front. We choose to use pow-
ers of 2 for the number of Sobol’ points due to local minima
observed in the ‘‘discrepancy’’, a measure of how uniformly the
parameter space is sampled (Morokoff and Caflisch, 1994). The
default value of Sobol’ points is 2048.
8

Once an initial number, 𝑁𝑠 (default 40), of Pareto points and
their corresponding parameters are determined with a large
number of Sobol’ points, subsequent optimizations are run by
using parameters already obtained from previous Pareto points
(nearby solutions in objective space) and their convex combina-
tions. This implicitly assumes that nearby points on the Pareto
front will have similar parameters. The point Θ𝑇 𝝀∗ +𝐐𝑇𝝁∗ lies
on a hyperplane that connects the points 𝜽𝑘, where 𝑘 corre-
sponds to the indices of the non-zero elements of 𝝀∗. We expect
that this point will lie close to the true Pareto point obtained
in the next weighted-sum optimization. Hence, sensible initial
guesses to solve (WSP(𝒘)) are 𝒙𝑘 and the convex combination:
𝝀∗𝑇𝒌 𝒙𝑘. Note that this technique may lead to sub-optimal points
being identified if there are discontinuities in the optimal set of
Pareto-optimal parameters. The likelihood of this issue arising
can be mitigated by increasing 𝑁𝑠.
After solving (WSP(𝒘)), the new Pareto point is appended to Θ

and 𝒘∗ is appended to 𝐖.
6. Removing Pareto points

At each addition of a new Pareto point, we perform checks to
ensure that all of the Pareto points in Θ lie within 𝑍out. If this
is not the case, then some of solutions to (WSP(𝒘)) obtained in
previous iterations are not globally optimal, or at least optimal
with respect to the other Pareto points. For each weight vector
𝒘𝑘 in 𝐖 we compute the scalar product of this weight vector
and all of the Pareto points. If the minimum scalar product does
not correspond to 𝒘𝑇

𝑘 𝜽𝑘, i.e., another Pareto point lies below the
hyperplane associated with 𝒘𝑘 in the outer approximation, then
we remove the 𝑘th row from Θ and 𝐖. Note that this check
will also remove any dominated points from Θ, and will help
with the convergence of the sandwich algorithm. At this point
we return to step 2 of the algorithm.

The following bullet points summarize how our algorithm differs
rom that of Bokrantz and Forsgren (2013):

• In step 4, a different method is used in order to determine
the weight vector to be used in (WSP(𝒘)), making use of the
properties of the solutions to (PLP(𝒗)).

• A global optimization routine is used to solve (WSP(𝒘)) since
the objective function may be highly non-convex, and a strategy
is developed in order to provide good initial guesses to the
optimization and reduce the computational effort in finding the
optimal solution to (WSP(𝒘)). These points are addressed in step
5. of the algorithm.

• After solving (WSP(𝒘)) and appending the new point to Θ, we
check if all Pareto points lie within 𝑍out. If this is not the case,
we remove Pareto points 𝜽𝑘 for which their lower-bounding half-
space {𝒛|𝒘𝑻

𝒌 𝒛 ≥ 𝑏𝑘} lies above any of the other Pareto points. This
is to ensure that solutions to (WSP(𝒘)) are globally optimal, or at
least optimal with respect to the other Pareto points generated.
This is detailed in step 6 of the algorithm.

. Application of the MOO approach to parameter estimation of
quation-of-state models

In this section we first present an appropriate form of the objective
unctions 𝑓𝑖, and then apply the sandwich algorithm to develop accu-
ate SAFT-VR Mie models for water in order to illustrate the benefits
f the MOO approach for this challenging task.

.1. Definition of 𝑓𝑖

The individual objective functions are defined as follows:

𝑖(𝒙) =
104
𝑁

𝑁𝑖
∑

[

𝑌 exp.
𝑖,𝑗 (𝒌) − 𝑌 model.

𝑖,𝑗 (𝒌,𝒙)
exp.

]2

, (10)

𝑖 𝑗=1 𝑌𝑖,𝑗 (𝒌)



Computers and Chemical Engineering 167 (2022) 108015E.J. Graham et al.

o
t
p
b
t
o
i
r
d
m
i

A

3

f
p
a
t
p
𝑃
w

3

e
c
d
M
p
s
a
s

i
s
t
r

t
b
b
e
b
o
t
h
a
t
s
o
a
a
s
(
e
i
1
(

m
t
F
n
s
d

m
t
n

w
(
r
t
t
s
d
o
b
p
e
t
s
E

a
t
a
A
t
o

w
p
i
G
e
c
I
w
t
t
v
m
e
(
P
a
f
t
w
a
w
(
t
a
K
t

w
e
S
i
1

where the notation is defined as in Eq. (1). For each experiment, an
equal weight is given to each data point. In our work this is a valid
assumption since a constant relative error is quoted for the data consid-
ered. The prefactor of 104 is used in this instance so that the values of 𝑓𝑖
n the Pareto surface are of a suitable order of magnitude. It is common
o normalize the objectives after determining the initial set of Pareto
oints in step 1 of the algorithm, but we decide not to normalize here
ecause the 𝑓𝑖, described in Eq. (10), are non-dimensional and we want
o avoid any bias towards particular objectives. This least-squares type
f objective function is chosen as it is mathematically well-behaved and
t is typically used in the estimation of EoS model parameters. We also
eport the absolute average deviation (AAD(𝑖)%) for property type 𝑖 to
escribe the accuracy of the fit to experimental data since it provides a
ore intuitive indication of the deviation, although we stress that this

s not used within the objective function:

AD(𝑖)%(𝒙) = 100
𝑁𝑖

𝑁𝑖
∑

𝑗=1

|

|

|

|

|

|

𝑌 exp.
𝑖,𝑗 − 𝑌 model.

𝑖,𝑗 (𝒙)

𝑌 exp.
𝑖,𝑗

|

|

|

|

|

|

. (11)

.2. Application of the MOO approach to SAFT-VR Mie models for water

We will now apply the proposed algorithm to develop a water model
or use within SAFT-VR Mie (or SAFT-𝛾 Mie) EoS using up to three
roperties. In the introductory Section 1 we outlined the benefits of
dding property types in the parameter estimation, and explained why
he heat capacity 𝐶𝑃 is a suitable property to add above the standard
roperties such as the saturated-liquid density 𝜌𝑠𝑎𝑡𝐿 and vapour pressure
𝑣𝑎𝑝. We will therefore develop models using these three property types
ithin the MOP.

.2.1. Review of SAFT models for water
In this section we provide a brief overview of how SAFT-type

quations of state can be used to model water, the archetypal asso-
iating fluid. We will review some of the proposed models and their
evelopment. This will help decide which particular set of SAFT-VR
ie parameters can be defined before the parameter estimation, in

articular the parameters that define the association scheme and the
phericity of the model. A review of the existing models will also give us
n idea of the values the parameters will take, and will help us specify
uitable parameter bounds 𝒙LB and 𝒙UB.

Within SAFT approaches, molecules are modelled as chains of spher-
cal segments with repulsive cores, which may be either hard (e.g., the
quare-well potential), or soft (e.g., the Mie or Lennard-Jones poten-
ial). Association is mediated by adding off-centre, spherically symmet-
ical square-well bonding sites with short-range attractive interactions.

In the case of water, these association sites are chosen to represent
he directional, short-range interactions representative of a hydrogen
ond. It is widely known that water can form up to four hydrogen
onds, as seen in hexagonal ice, and water is therefore typically mod-
lled using a four-site association scheme (4C in the notation proposed
y Huang and Radosz (1990)). With a 4C model, two association sites
f type e and two association sites of type H are used, which correspond
o the two lone pairs of electrons on the oxygen atom and the two
ydrogen atoms, respectively. In such a model, only e–H interactions
re allowed to represent the hydrogen bonding. Due to the symmetry of
he association scheme, all sites have the same fraction of nonbonded
ites (𝑋e = 𝑋H). This represents the statistical consideration that all
f the sites are equally likely to participate in hydrogen bonding,
nd thus effects such as bond cooperativity (Sear and Jackson, 1996)
re typically neglected in SAFT models for water. Other association
chemes have been proposed to model water with SAFT using the 2B
one e and one H) or 3B (one e and two H) association schemes (Clark
t al., 2006). The 4C scheme is generally chosen, however, since it
s verified by molecular orbital calculations (Wolbach and Sandler,
997), it is successful in representing pure component VLE properties
see e.g., Clark et al., 2006), and transferring the parameters for this
9

w

odel to aqueous mixtures generally provides a better representation
han the other association schemes (Kontogeorgis and Folas, 2010).
urthermore, it is apparent from the work of Forte et al. (2017) that the
on-polar 4C association scheme outperforms the 2B and 3B association
chemes for the majority of the Pareto front, with objective functions
efined by AAD(𝜌𝑠𝑎𝑡𝐿 )% and AAD(𝑃 𝑣𝑎𝑝)%.

Another important parameter to consider when defining a water
odel is 𝑚, the number of fused spherical segments used to represent

he non-sphericity of the molecule. In Fig. 5 we show a spherical and
on-spherical SAFT model for water using a 4C association scheme.

In Table 1 we summarize some of the parameters reported for SAFT
ater models, extending on the review by Kontogeorgis and Folas

2010) by including some of the more recently developed models of
elevance to our current work. When the value of 𝑚 is fixed, it is
ypically set to 𝑚 = 1, representing a spherical model. In such cases,
he chain contribution to the SAFT free energy (used to describe non-
pherical molecules) is omitted. This model type is generally chosen
ue to its simplicity and due to its rigorously defined geometry. The
ther models are non-spherical and have values of 𝑚 that vary quite
roadly 0.98 ≤ 𝑚 ≤ 3.792. Quantum mechanical calculations can
rovide an approximate indication of the value 𝑚 should take: Sheldon
t al. (2006) derived values of 𝑚 for water by mapping the shapes of
he electron orbitals obtained from Hartree–Fock calculations onto a
phero-cylinder, and estimated a value of 𝑚 = 1.0968 for the SAFT-VR
oS.

In Table 1 we report the values of the dispersion energy and associ-
tion energy for the various water models. There is a large variation in
he values of the dispersion energy (between 42.8 K and 740.5 K), and
large variation in association energy (between 825 K and 2507 K).
lthough one cannot directly compare the parameter values between

he different SAFT theories, these ranges provide a rough guide of the
rder of magnitude the parameters should take.

An additional choice when defining a SAFT model for water is
hether or not to explicitly include the long-range dipolar interactions
resent in water. Extensions to the theory to include this type of
nteraction have been proposed (see e.g., Müller and Gubbins, 1995;
ross and Vrabec, 2006). In earlier work, Müller and Gubbins (1995)
xtended the original SAFT EOS (Huang and Radosz, 1990) to ac-
ount for multipolar interactions, and developed a model for water.
n the recent work of Forte et al. (2017), a variety of water models
ere obtained for PC-SAFT (Gross and Sadowski, 2000, 2001) and

he polar version PPC-SAFT (Gross and Vrabec, 2006) to account for
he dipolar interaction. They developed non-polar water models for
arious association schemes (2B, 3B and 4C) and developed polar water
odels for the 2B and 4C schemes. The authors showed that using the

xperimental value of the dipole moment of water in the gas phase
𝜇 = 1.86 D), the polar 2B model outperforms the non-polar 2B model
areto surface with objective functions AAD(𝜌𝑠𝑎𝑡𝐿 )% and AAD(𝑃 𝑣𝑎𝑝)% at
ll points. However, they found that there is a region of the Pareto
ront (close to the Pareto-knee where there is a large curvature in
he Pareto front), where the two Pareto fronts essentially coincide,
ith AAD(𝜌𝑠𝑎𝑡𝐿 )% and AAD(𝑃 𝑣𝑎𝑝)% ∼ 0.5. The authors found that by
djusting 𝜇 to 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝 for the polar 2B and 4C models they
ere able to capture a good agreement with respect to both properties

AAD(𝜌𝑠𝑎𝑡𝐿 )% and AAD(𝑃 𝑣𝑎𝑝)% < 0.1). In our work we will not consider
he explicit treatment of the dipolar interaction; the orientational and
verage energetic features of a dipolar fluid (which give rise to a
eesom–Lennard-Jones like interaction) will be accounted for through

he regression of the typical SAFT parameters to the experimental data.
Following the arguments made in this brief review and in Section 1,

e consider the development of water models for the SAFT-VR Mie EoS
mploying the 4C association scheme. For the specific version of the
AFT-VR Mie EoS that we consider, there is only one existing model
n the literature, where water is treated as a spherical molecule (𝑚 =
) (Dufal et al., 2015). In our current work, we also consider models

here 𝑚 ≥ 1 by treating 𝑚 as an adjustable parameter, supported by
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Fig. 5. Schematic for two possible SAFT models for water. The molecule is represented by a number of spherical segments (𝑚), which interact via a potential (in SAFT-VR Mie
this is the Mie potential) with a repulsive core diameter 𝜎. The Mie potential is characterized by a repulsive exponent (𝜆r ), an attractive exponent (𝜆a), and a well depth 𝜖. These
segments are indicated by the spheres shaded red. In (a) the molecule is assumed to be spherical with just one segment (𝑚 = 1). In (b) the molecule is non-spherical and 1 < 𝑚 < 2,
represented by two fused spheres. In (a) and (b) the hydrogen bonding is represented by a 4-site association scheme (2 e sites and 2 H sites), corresponding to the two lone pairs
of electrons on the oxygen atom and the two hydrogen atoms, respectively. These association sites interact via a square-well potential with an association interaction −𝜖HBe,H and
bonding volume 𝐾HB

e,H . Only e–H interactions are allowed.
Table 1
Selected parameters reported for various SAFT models of water.
Source: The table is adapted from Kontogeorgis and Folas (2010) and extended to include the more recent models.

SAFT Variant Reference Non-sphericity Dispersion Association
𝑚 energy/ K energy/ K

Original SAFT 4c (+ polar) Müller and Gubbins (1995) 1 224.0 1415.3
Original SAFT 4c Müller et al. (1996) 1 90 3600
SRK-CPA Kontogeorgis et al. (1999) – – 2003
CK-SAFT Huang and Radosz (1990) 1.179 528.2 1809
SAFT 3 site Economou and Tsonopoulos

(1997)
1.179 528.2 1809

SAFT 4 site Economou and Tsonopoulos
(1997)

1.236 431.7 1368

Simplified SAFT Fu and Sandler (1995) 2 188.2 826
CK-SAFT Button and Gubbins (1999) 1.047 504.4 1365
Original SAFT, 4 site Li and Englezos (2004) 0.980 433.9 1195
PSAFT Karakatsani et al. (2005) 1 52.1 1982
PC-PSAFT Karakatsani et al. (2005) 1 42.8 1973
CK-SAFT Boulougouris et al. (2001) 2.850 167.0 1634
PR-CPA Wu and Prausnitz (1998) – – 1477
SAFT-VR Patel et al. (2003) 1 253.0 1366
CK-SAFT 3 site HF Wolbach and Sandler (1997) 1.278 385.1 2286
CK-SAFT 4 site HF Wolbach and Sandler (1997) 1.406 212.9 1809
CK-SAFT 3 site DFT Wolbach and Sandler (1997) 1 615.9 1627
CK-SAFT 4 site DFT Wolbach and Sandler (1997) 1 546.6 1237
APACT 2 site Economou and Donohue

(1992)
2418

APACT 3 site Economou and Donohue
(1992)

2618

Original SAFT 4C Li and Englezos (2003) 0.982 433.9 1195
SRK-CPA Voutsas et al. (2000) – 1794
CK-SAFT Voutsas et al. (2000) 2.853 167.1 1635
PC-PSAFT Karakatsani and Economou

(2006)
1.750 169.5 1131

tPC-PCAFT Karakatsani and Economou
(2006)

1.600 58.1 1640

tPC-PSAFFT 4C Karakatsani et al. (2006) 2.815 150.7 1575
PC-SAFT 2B Gross and Sadowski (2002) 1.066 366.5 2501
sPC-SAFT 4C Grenner et al. (2006) 1.500 180.3 1804
sPC-SAFT 4C Grenner et al. (2007) 2.610 140.4 1695
PC-SAFT 3B Kleiner and Sadowski (2007) 3.254 196.2 1801
PC-SAFT 4C Kleiner and Sadowski (2007) 3.792 138.6 1718
PC-SAFT 4C Forte et al. (2017) 2.500 147.9 1582
PC-SAFT 2B Forte et al. (2017) 1.785 233.8 2507
PCP-SAFT 2B Forte et al. (2017) 2.216 214.5 1544
SAFT-VR Mie (LJ Kernel) 4C Dufal et al. (2015) 1 266.7 1985
SAFT-VR Mie (Mie Kernel) 4C Dufal et al. (2015) 1 418.0 1600
SAFT-VR SW 4C Clark et al. (2006) 1 250.0 1400
SAFT-VR SW 4C Sheldon et al. (2006) 1.0968 740.5 367
evidence from quantum mechanics (Sheldon et al., 2006) and from
the majority of reported models which have a value of 𝑚 different to
1. Through application of the proposed MOO approach and analysis
of the Pareto fronts this provides a rigorous comparison between the
two model types, and will make clear if it is beneficial to choose a
non-spherical model over a (simpler) spherical model.
10
3.3. The SAFT-VR Mie EoS

For a comprehensive description of the SAFT-VR Mie EoS, the
reader is referred to Lafitte et al. (2013), and the modifications to the
association term described in Dufal et al. (2015, 2018). Specifically,
the equations used to model the association contribution are those
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Table 2
Description of the parameters used to characterize water.

Units Description

𝑚 – Number of spherical segments
𝜎 Å Size of each spherical segment
𝜆r – Repulsive exponent of the Mie potential
𝜆a – Attractive exponent of the Mie potential
𝜖∕𝑘B K Depth of the Mie potential
𝜖HBe,H∕𝑘B K Depth of association potential between sites e and H
𝐾HB

e,H Å3 Bonding volume between sites e and H
𝑁𝑆𝑇e – Number of site types of type e
𝑁𝑆𝑇H – Number of site types of type H

Table 3
Upper and lower bounds on parameters.

𝑚 𝜎/Å 𝜆r 𝜆a (𝜖∕𝑘B)/K (𝜖HBe,H∕𝑘B)/K 𝐾HB
e,H/Å3

Lower bound 1 2.5 8 6 100 1000 0.1
Upper bound 2 3.5 40 6 500 2500 500

which use the Lennard-Jones reference fluid as the basis for the free
energy perturbation, as opposed to using the generalized Mie fluid as
in Dufal et al. (2015). The representation of molecules with the SAFT-
VR Mie EoS is identical to the group-contribution counterpart, SAFT-𝛾

ie (Papaioannou et al., 2014), when the molecules consist of identical
unctional groups. The ideal gas contribution to the heat capacity is
alculated using the third order polynomial of Poling et al. (2001).

.4. The choice of water model

The SAFT parameters that characterize the water model, along with
heir physical descriptions, are summarized in Table 2.

The attractive exponent of the Mie potential, 𝜆a, is fixed to 6,
orresponding to the attractive range of the London dispersion force
s expected from a simple quantum-mechanical description of the
ispersion forces. Furthermore, it has been shown that a conformal
escription of the thermodynamics can be achieved with an interre-
ationship between 𝜆r and 𝜆a (Ramrattan et al., 2015), negating the
eed to consider the attractive and repulsive ranges independently.
ollowing the arguments made in Section 3.2.1, we choose to use a
our-site association scheme to model water, where 𝑁𝑆𝑇e = 2 and
𝑆𝑇H = 2. A schematic for this model type is shown in Fig. 5. For

pherical models of water, the value of 𝑚 is fixed to 1. In Table 3 we
efine the lower and upper bounds for each parameter.

. Results

The multi-objective optimization technique is applied to two types
f water model: ‘spherical’ models, where 𝑚 = 1, and ‘non-spherical’
odels where 𝑚 ≥ 1 following the arguments made in Section 3.2.1.
hese two model types are considered as one may prefer to choose a
impler spherical model over a non-spherical model. Here we show in
etail the level of improvement that one may obtain by treating 𝑚 as
djustable.

We apply the MOO technique to the development of water models
here three different experimental property types are considered as

ompeting objectives: saturated-liquid density (𝜌𝑠𝑎𝑡𝐿 ), saturated vapour
ressure (𝑃 𝑣𝑎𝑝), and isobaric heat capacity (𝐶𝑃 ) data.

In the first scenario, we analyse the two-dimensional Pareto fronts
or spherical and non-spherical models of water when the two typically
onsidered experimental properties, saturated-liquid density (𝜌𝑠𝑎𝑡𝐿 ) and
apour pressure (𝑃 𝑣𝑎𝑝), are used as objective functions in the MOP.
hese are the most common data types used to regress pure component
oS parameters (Kontogeorgis and Folas, 2010), and therefore provide
ome insight into the objective space and the models typically obtained
hen solving (WSP(𝒘)).
11

c

In the second scenario, we analyse the three-dimensional Pareto
fronts where 𝐶𝑃 is included in the MOP. This will highlight how the
ddition of a second-derivative caloric property affects the objective
unctions and the corresponding water models.

Finally, some preferable Pareto-optimal water models are chosen
rom the Pareto front and the level of agreement with respect to the ex-
erimental data is analysed, including the prediction of thermodynamic
roperties not included in the objective function.

.1. Calculation details

The experimental data for water is taken from the National Institute
f Standards and Technology (NIST) database (Lemmon et al., 2018).
aturation property data are taken for temperatures between the triple
oint of water, 273.16 K, and 613.16 K, to ensure that temperatures
o not exceed 95% of the critical point. This is the same range of tem-
eratures considered by Dufal et al. (2015) and therefore the models
btained in our current work provide a useful comparison with the
reviously reported SAFT-VR Mie model. We choose data points with
emperature intervals of 10 K following Forte et al. (2017). The experi-
ental values for the isobaric liquid-phase heat capacity are taken at 1

tm, between the triple point and 10 K below the saturation tempera-
ure, i.e., 273.16 K–363.16 K. We choose only one isobar at 1 atm since
he liquid-phase isobaric heat capacity does not vary significantly with
ressure over this temperature range. As the heat capacity function
sed here requires temperature and pressure as inputs, temperatures
lose to the saturation temperature are not included in the estimation
o limit the risk of evaluating a gas-phase heat capacity. This prevents
aving large discontinuities in the objective function. The uncertainties
n the experimental values of the thermodynamic properties examined
re expected to be below 0.1% within the temperature and pressure
anges considered (Lemmon et al., 2018).

The sandwich algorithm is implemented in MATLAB R2018a, whilst
he optimization problems are solved externally using a Levenberg–
arquardt algorithm as implemented in the ‘lmfit’ module in Python

Newville et al., 2016), with the default options. The thermodynamic
roperties within the optimization routine are evaluated with gSAFT
Lafitte et al., 2017), which has an in-built flash algorithm to solve for
hase equilibria for the SAFT-VR Mie EoS. To determine the convex
ull of the set of Pareto points and the normal vectors to the facets, the
++ implementation of Qhull (Barber et al., 1996) is used.

In all cases, we set the reciprocal of the maximum admissible trade-
ff between objective pairs to be 𝑡 = 0.01. This represents a relatively

narrow ordering cone, but limits the non-dominated solutions to have
reasonable trade-offs, and limits the 𝑓𝑖 such that they do not take on
extremely large values that would not be acceptable for thermodynamic
modelling. Furthermore, fixing 𝑡 > 0 as opposed to 𝑡 = 0 avoids
generating weight vectors with zero elements which can lead to weakly
dominated solutions.

The maximum admissible error is set to 𝜂max = 0.1 in all cases,
eaning that any point on the inner edge of 𝑍 in will not be further

han 0.1 from the true Pareto front in any dimension of the objective
pace, assuming that the Pareto front is convex. To solve (WSP(𝒘)),
total of 2048 Sobol’ points are used for the first 40 Pareto points

alculated (𝑁𝑠 = 40 in step 5 of the algorithm). This number of Sobol’
points has been found to be sufficiently large to provide a high degree
of confidence that a global solution to (WSP(𝒘)) is found. Specifically,
we have solved (WSP(𝒘)) with an equal weight given to 𝜌𝑠𝑎𝑡𝐿 , 𝑃 𝑣𝑎𝑝,
nd 𝐶𝑃 , i.e., 𝒘 = [1∕3, 1∕3, 1∕3]𝑇 , and allowing 𝑚 to vary, using 2048
obol’ points. Of these, 712 of the solutions have an objective function
hat is within 0.01% of the best known objective function. The first
odel within 0.01% of the best known objective function value is found
sing the third initial guess generated by the Sobol’ sequence. This
rovides confidence that the first 40 Pareto points are globally optimal.
or the remaining 1336 Sobol’ points, a number result in failure to
onverge as the corresponding initial parameter values yield a phase
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envelope that is very far from the experimental data (specifically with
many temperatures at which a single phase is predicted instead of
the experimentally-observed vapour–liquid equilibrium); other points
result in convergence to higher objective function values, typically
corresponding to a bound-constrained solution.

Further optimizations are run using the initial guesses for the pa-
rameters of the previous Pareto points and their convex combinations
as described in step 5.

4.2. Scenario 1: Two-dimensional MOP with data types 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝

In Fig. 6a, we display the inner edge of 𝑍 in for the two Pareto fronts
and in Fig. 6b we display the corresponding AAD% for the saturated-
iquid density and vapour-pressure objectives. In
ppendix A.1 we provide information attributed to each Pareto point

n Table A.6 (spherical) and Table A.7 (non-spherical). It is clear from
ig. 6 that the proposed sandwich algorithm works efficiently as the
areto points are equally distributed along the Pareto front. This equal
istribution is achieved with a sequence of weight vectors generated
y the sandwich algorithm, and these weight vectors are not evenly
istributed (particularly in the case of the non-spherical models, c.f.
able A.7). This suggests that the sandwich algorithm is more efficient
han a brute-force approach (e.g., solving (WSP(𝒘)) with uniformly

distributed weight vectors). The true Pareto front appears to be convex
in both cases as there are no obvious areas with large gaps in the Pareto
front. We are therefore confident that we have efficiently captured a
good approximation of the full set of non-dominated solutions for the
two dimensional MOP of both of the model types, and any model that
lies on the Pareto front will be acceptable. By visual inspection of the
Pareto fronts, it is possible to make rigorous comparisons between the
two model types. It is clear that by relaxing the constraint on 𝑚, we are
ble to obtain significantly lower values of 𝑓𝜌𝑠𝑎𝑡𝐿

where the deviation in
apour pressure is also small. For example, if we desire a water model
ith a description of the vapour pressure within AAD(𝑃 𝑣𝑎𝑝)% ≤ 0.5%

hen the non-spherical model is able to capture the liquid density within
AD(𝜌𝑠𝑎𝑡𝐿 )% ≤ 1%, whereas for the spherical model the corresponding
escription is AAD(𝜌𝑠𝑎𝑡𝐿 )% ≥ 3%. The Pareto fronts coincide at the
owest values of 𝑓𝜌𝑠𝑎𝑡𝐿

because 𝑚 hits the lower bound of 1 where the
wo model types are identical.

In Figs. 7 and 8, we show the predictions of 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝 in addition
o the isobaric heat capacity 𝐶𝑃 , for the non-dominated models that
nly consider 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝 in the objective function. These figures
orrespond to the Pareto points as labelled in Fig. 6b.

For spherical models (Fig. 7), the prediction of the isobaric liquid-
hase heat capacity is relatively poor, with 𝑓𝐶𝑃

and AAD(𝐶𝑃 )% ex-
ceeding 110 and 10%, respectively, at points towards the centre of
the Pareto front. If we consider the ‘standard’ model that is ob-
tained by weighting the two objectives equally (point 8), we obtain
a model with an AAD% vector [AAD(𝜌𝑠𝑎𝑡𝐿 )%, AAD(𝑃 𝑣𝑎𝑝)%, AAD(𝐶𝑃 )%]
= [0.88,1.50,10.45]%. This corresponds to a fairly significant deviation
of 𝐶𝑃 . At point 24, corresponding to a weight vector of [𝑤𝜌𝑠𝑎𝑡𝐿

, 𝑤𝑃 𝑣𝑎𝑝] =
[0.0335,0.9665], where most of the weight is given to the vapour pres-
sure, we obtain the AAD% vector [3.51,0.16,0.45]%. Comparing point
24 with point 8, point 24 comes with a small sacrifice in AAD(𝜌𝑠𝑎𝑡𝐿 )%
an increase of 2.63 percentage points) against a small improvement
n AAD(𝑃 𝑣𝑎𝑝)%, with an increase of 1.34 percentage points and a vast
mprovement in AAD(𝐶𝑃 )% of 10 percentage points. This illustrates
hat a model that is potentially preferable may be obtained by assigning
n extreme weight vector in (WSP(𝒘)) (i.e., a weight vector that would

generally not be chosen a priori). Numerous Pareto points obtained
using the proposed technique may be evaluated against other properties
not included in the regression (e.g., property types that are practically
difficult to include within the objective function).

For the Pareto-optimal non-spherical models (Fig. 8) we find that
the prediction in 𝐶𝑃 (AAD(𝐶𝑃 )%) is between 0.4% and 7.8%. The point
12

obtained with equal weighting of the two objective functions is point 𝑤
Fig. 6. (a) Pareto frontiers for the two objectives 𝑓𝑃 and 𝑓𝜌𝑠𝑎𝑡𝐿
. The blue diamonds

re the calculated Pareto points for spherical models of water where 𝑚 = 1, the blue
curve is the inner approximation of the Pareto front. The red circles are the calculated
Pareto points for non-spherical models for water where 𝑚 ≥ 1 and the red curve is the
inner approximation of the Pareto front. (b) The corresponding AAD% for each point
is shown, and the curves are a guide to the eye joining the Pareto points. The black
star is the result obtained when using the parameters for the spherical model reported
by Dufal et al. (2015).

17 with [AAD(𝜌𝑠𝑎𝑡𝐿 )%, AAD(𝑃 𝑣𝑎𝑝)%, AAD(𝐶𝑃 )%] = [0.89,0.17,3.68]%.
Note that AAD(𝑃 𝑣𝑎𝑝)% is fairly close to the expected experimental
ncertainty (relative error 0.1%) reported by NIST (Lemmon et al.,
018). Depending on the application, model 12 is potentially preferable
ith an AAD% vector [0.80,0.71,0.41]%, and is obtained with [𝑤𝜌𝑠𝑎𝑡𝐿

,
] = [0.85,0.16].
𝑃 𝑣𝑎𝑝
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(

Fig. 7. The individual objectives 𝑓𝑖 and the corresponding AAD(𝑖)% for saturated-liquid density 𝜌𝑠𝑎𝑡𝐿 and vapour pressure 𝑃 𝑣𝑎𝑝 of the non-dominated models of spherical water
𝑚 = 1) where only 𝑓𝜌𝑠𝑎𝑡𝐿

and 𝑓𝑃 𝑣𝑎𝑝 are considered in the MOP. The deviation of the prediction of the isobaric heat capacity 𝐶𝑃 is also shown.
Fig. 8. The individual objectives 𝑓𝑖 and the corresponding AAD(𝑖)% for saturated-liquid density 𝜌𝑠𝑎𝑡𝐿 and vapour pressure 𝑃 𝑣𝑎𝑝 of the non-dominated models of non-spherical water
(𝑚 ≥ 1) where only 𝑓𝜌𝑠𝑎𝑡𝐿

and 𝑓𝑃 𝑣𝑎𝑝 are considered in the MOP. The deviation of the prediction of the isobaric heat capacity 𝐶𝑃 is also shown.
c

From the analysis of the Pareto fronts obtained when 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝

are used in (WSP(𝒘)), 𝐶𝑃 is predicted accurately for some Pareto points
but other points present significant deviations. This may serve as an
indication that VLE data alone does not provide sufficient information
in predicting this second-derivative caloric property, and that there is
some degeneracy in the parameter space.

In Fig. 9 we show the trends in parameters versus the Pareto point
number, with indices indicated in Fig. 6b. Along the Pareto front
for spherical models, the values of the dispersion energy 𝜖∕𝑘B vary
between ∼270 K and ∼440 K and those of the association energy
13

a

𝜖HBe,H∕𝑘B between ∼1550 K and ∼1980 K. These represent relatively large
ranges for the two energetic parameters, and there is a clear inverse
relationship between the two along the Pareto front, which is again
indicative of degeneracy. The value of the segment size parameter 𝜎
remains fairly constant at just over 3 Å. The size 𝜎 and energy 𝜖 are
characterized by an almost identical curvature, and similarly with the
repulsive range 𝜆r and bonding-volume 𝐾HB

e,H parameters, indicating a
lose relationship between these two pairs of parameters and how they
ffect the individual objectives.
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Fig. 9. Pareto fronts in parameter space. 𝑚 is the non-sphericity, 𝜖 is the dispersion energy, 𝜎 is the size, 𝜆r is the repulsive exponent, 𝐾 is the bonding volume, and 𝜖HBe,H is the
association energy. The numbers on the 𝑥 axis correspond to the Pareto points labelled in Fig. 6b. (a) Pareto-optimal parameters for the spherical water models where 𝑚 = 1. The
black stars correspond to the set of parameters in Dufal et al. (2015). (b)Pareto-optimal parameters for the non-spherical water models where 𝑚 ≥ 1.
The model of Dufal et al. (2015) lies close to the calculated Pareto
curve for spherical models of water, and these models are close to
the Pareto knee. We obtain very similar parameters to those of Dufal
et al. (2015) in this region. The parameters for models of water where
𝑚 ≥ 1 are shown in Fig. 9. There is a clear correlation between
the non-sphericity parameter 𝑚 and the segment size 𝜎. The value of
the repulsive exponent 𝜆r remains fairly constant and exhibits both a
minimum and a maximum along the Pareto front.
14
4.3. Scenario 2: Three-dimensional MOP with data types 𝜌𝑠𝑎𝑡𝐿 , 𝑃 𝑣𝑎𝑝, and
𝐶𝑃

In the second scenario, we analyse the Pareto fronts when we
include the liquid-phase isobaric heat capacity 𝐶𝑃 as an additional
property in the MOP.

Before proceeding with the MOP, the effect of adding 𝐶𝑃 on a single
weighted-sum objective function compared to the two-dimensional case
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Fig. 10. The weighted-sum objective function for water models where the dispersion and association energy parameters 𝜖 and 𝜖HBe,H are discretized in a 200 𝑥 200 grid with
each parameter varying between the upper and lower bounds defined in Table 3. Each point represents an individual optimization where 𝜖 and 𝜖HBe,H , are fixed and the other
parameters are optimized. The weight vectors are normalized to sum to 1 and an equal weighting is given to each property type. The value of the objective function at the optimal
solution, 𝑓 obj = 𝒘𝑇 𝒇 (𝒙∗), is indicated by colour. The global minimum is indicated by a white circle. The four sub-figures are different in the type of water model and the types of
experimental data used in the optimization: (a) Spherical water with 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝 used as experimental data types. (b) Non-spherical water with 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝 used as experimental
data types. (c) Spherical water with 𝜌𝑠𝑎𝑡𝐿 , 𝑃 𝑣𝑎𝑝, and 𝐶𝑃 used as experimental data types. d) Non-spherical water with 𝜌𝑠𝑎𝑡𝐿 , 𝑃 𝑣𝑎𝑝 and 𝐶𝑃 used as experimental data types.
is investigated. In Fig. 10 we show a contour plot of the weighted-sum
objective function (with equal weighting given to 𝜌𝑠𝑎𝑡𝐿 , 𝑃 𝑣𝑎𝑝, and 𝐶𝑃
if included) versus discretized pairs of the dispersion and association
energy parameters 𝜖 and 𝜖HBe,H. A similar analysis was conducted by Clark
et al. (2006) and Dufal et al. (2015). It is apparent that the objective
function surface consisting of only saturated-liquid density and vapour
pressure has a large shallow region of relatively similar values. The
addition of 𝐶𝑃 data in panels b and d reduces the size of the region with
similar values, and reduces the degeneracy between 𝜖 and 𝜖HBe,H. We also
observe that treating the non-sphericity 𝑚 as an adjustable parameter
reduces the parameter degeneracy. The combination of adding 𝐶𝑃 as
an objective and treating 𝑚 as adjustable has the most dramatic effect
on reducing the size of the region with low values of the weighted sum.

In Fig. 11, we show the Pareto front as a contour plot, along with
the corresponding AAD% for each parameter. When the Pareto front
is plotted in 3 dimensions, the inner edge of 𝑍 in is shown without the
addition of the ordering cone, which is equivalent to plotting the facets
of the convex hull of Θ that consist of only positive inward-facing
normals. This is to ensure that models in-between the Pareto points
can be determined from the convex combinations of the parameters
at the facet vertices. Information on each Pareto point is tabulated in
Table A.8. We first note that the Pareto points are evenly distributed
throughout the Pareto front and that the Pareto front appears to be
convex since there are no obvious regions with large gaps. Thus, the
sandwich algorithm allows one to efficiently identify a series of weight
vectors in (WSP(𝒘)). The Pareto front highlights the trade-offs that are
involved in choosing a particular model, and it is clear that the three
objectives are indeed conflicting. The Pareto-optimal solutions of the
two dimensional MOP when the heat capacity is not considered in the
objective function is also shown. These models are not found on the 3D
front because the gradients between objective functions are extremely
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steep within this area, and hence the models become dominated with
respect to the specified ordering cone.

In Fig. 12 we show the Pareto front for the non-spherical water
models for the three objectives, and display information for each Pareto
point in Table A.9. The surface is extremely steep at the inner edge,
so the same Pareto front by swapping the 𝑓𝐶𝑃

and 𝑓𝑃 𝑣𝑎𝑝 coordinate
axes is shown in Fig. 13. This steepness provides a good indication
that liquid-phase isobaric heat capacity as a data type is highly suited
to reducing the parameter degeneracy, since providing a very small
weight to 𝐶𝑃 leads to a highly accurate prediction of this property
with a negligible decrease in the quality of the representation of the
vapour pressure and saturated-liquid density. We also note that all of
the parameters are within a relatively small range. The non-spherical
models can be used to predict all three properties extremely well (all
properties to within AAD%=0.8), and the deviations are well below
those attainable with spherical water models. It is apparent that in some
regions of the Pareto front, the heat capacity is not conflicting with the
other two objectives. For example, in the region where 𝑓𝜌𝑠𝑎𝑡𝐿

∼ 1, the
3D Pareto front essentially coincides with the 2D Pareto front where
𝐶𝑃 is not considered in the objective function. If we consider the 2D
Pareto point number 7 in Table A.7 with an AAD(𝑃 𝑣𝑎𝑝)% of 0.7% in
vapour pressure, the corresponding AAD(𝐶𝑃 )% is ∼5. We can choose a
model that does equally well in terms of vapour pressure and saturated-
liquid density but with an AAD(𝐶𝑃 )% = 0.2 with a small weight given
to 𝐶𝑃 of 0.07 (Pareto point 9 in Table A.9). In Fig. 13, this region
where 𝐶𝑃 does not conflict with the other two objectives is visible
where 𝑓𝜌𝑠𝑎𝑡𝐿

is approximately 1 due to the white area above this value.
Points in this region of the Pareto front are dominated due to the limit
of steepness defined in the ordering cone 𝐶, rather than the surface
being non-convex in this area. Although not shown here, we are able
to obtain Pareto-optimal points within this region by specifying a very
small value for 𝑤 .
𝐶𝑃
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Fig. 11. Pareto front for three objectives, the vapour pressure 𝑓𝑃 vap , the saturated-liquid density 𝑓𝜌𝑠𝑎𝑡𝐿
, and the liquid-phase isobaric heat capacity 𝑓𝐶𝑃

, for spherical models of water.
The white circles are the individual Pareto points obtained with the sandwich algorithm. The black curve corresponds to the Pareto front when only 𝑓𝑃 𝑣𝑎𝑝 and 𝑓𝜌𝑠𝑎𝑡𝐿

are considered,
i.e., the blue curve in Fig. 6a. The Pareto front is indicated by the coloured region. The white areas indicate either that there are no models with such combinations of objective
function values or that such models are dominated. The Pareto point labelled WS is the model that we will analyse further as described in Section 4.3.1. In (a) we plot the Pareto
front for objectives 𝑓𝑖 while in b) we plot the corresponding AAD% for each property type.
It is apparent from Table A.9 that the values of 𝑚 vary only slightly
above unity (between 1.12 and 1.33) and close to what one would
expect from the quantum-mechanical predictions (𝑚 = 1.1) of Sheldon
et al. (2006).

4.3.1. Choice of Pareto point
The solution of MOP provides a plethora of models and one model

must be chosen for a given application. There is no rigorous way of
16
defining the process by which a Pareto point should be chosen. In
part this is because each Pareto point is equally optimal to the MOP
from a mathematical perspective. However, in practical applications
the decision maker tends to choose points ‘in the middle and near the
bulge’ of the Pareto front (Das, 1999). Among other methods, a simple
yet effective metric to characterize a point on this ‘bulge’ is to find the
Pareto point that minimizes the Euclidean distance between the Utopia
point (a vector with the minimum value of each objective in the set
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Fig. 12. Pareto front for three objectives, the vapour pressure 𝑓𝑃 vap , the saturated-liquid density 𝑓𝜌𝑠𝑎𝑡𝐿
, and the liquid-phase isobaric heat capacity 𝑓𝐶𝑃

, for non-spherical models
of water. The white circles are the individual Pareto points obtained with the sandwich algorithm. The black curve corresponds to the Pareto front when only 𝑓𝑃 𝑣𝑎𝑝 and 𝑓𝜌𝑠𝑎𝑡𝐿

are
considered, i.e., the red curve in Fig. 6a. The Pareto front is indicated by the coloured region. The white areas indicate either that there are no models with such combinations
of objective function values or that such models are dominated. The Pareto point labelled WNS is the model that we analyse further as described in Section 4.3.1. In (a) we plot
the Pareto front for objectives 𝑓𝑖 while in (b) we plot the corresponding AAD% for each property type.
of non-dominated solutions, as shown in Fig. 3) (Cheikh et al., 2010)
and the Pareto front. We therefore assign a distance measure 𝑑𝑘 to each
Pareto point 𝜽𝑘 according to

𝑑𝑘 =

√

√

√

√

𝑁𝑑𝑖𝑚
∑

𝑖=1
(𝜃𝑘𝑖 − 𝑓 ∗

𝑖 )2, (12)

where 𝑓 ∗
𝑖 is the minimum value of objective 𝑖 in the non-dominated set

and 𝜃 represents the 𝑖th index of Pareto point 𝜽 . 𝑑 represents the
17

𝑘𝑖 𝑘 𝑘
distance between each Pareto point 𝜽𝑘 and the Utopia point 𝒇 ∗. Using
this metric we can rank the Pareto points.

Other considerations may be taken into account when choosing
suitable Pareto points, considering aspects not included in the MOP.
SAFT-type equations of state may exhibit unrealistic or non-physical
predictions at certain thermodynamic conditions, due to the empirical
functional forms required to approximate statistical mechanical theo-
ries with no exact solutions. Non-physical predictions include negative
heat capacities at very high pressures and multiple pure component
critical points (Kalikhman et al., 2010; Polishuk, 2010). More than
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Fig. 13. Pareto front for three objectives, the vapour pressure 𝑓𝑃 vap , the saturated-liquid density 𝑓𝜌𝑠𝑎𝑡𝐿
, and the liquid-phase isobaric heat capacity 𝑓𝐶𝑃

, for non-spherical models
of water. The white circles are the individual Pareto points obtained with the sandwich algorithm. The black curve corresponds to the Pareto front when only 𝑓𝑃 and 𝑓𝜌𝑠𝑎𝑡𝐿

are
considered, i.e., the red curve in Fig. 6a. The Pareto front is indicated by the coloured region. The white areas indicate either that there are no models with such combinations
of objective function values or that such models are dominated. The red arrows indicates model WNS as detailed in Section 4.3.1. This figure differs from Fig. 12 in that 𝐶𝑃 and
𝑃 𝑣𝑎𝑝 have been swapped.
three volume roots can be present, requiring sophisticated algorithms to
solve for phase equilibria (Privat et al., 2010; Alsaifi et al., 2019). After
determining the set of Pareto points, models that exhibit unfavourable
behaviour can be discarded. In the case of the water models identi-
fied here, negative values of the residual isochoric heat capacity are
predicted at pressures above 30,000 bar and a second critical point is
observed at 𝑇𝑐 ≈ 4500 K and 𝑃𝑐 ≈ 1000 bar for all models developed.
These non-physical predictions are not an issue in our work since
18
the thermodynamic conditions at which they occur are not relevant
for current practical application. We do however observe models that
exhibit an anomaly in the saturated-density envelope, in the form of
a shallow nonconvex region (c.f., section Appendix A.2). For a given
modelling strategy 𝑗, corresponding to a choice of 𝑚 = 1 or 𝑚 ≥
1, and 2 or 3 objective functions, we therefore select Pareto points
from the subset 𝜽𝑝,𝑗 of physical models from the corresponding Pareto
front. The models that we recommend in our current work, 𝜽 , are
ref ,𝑗
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Table 4
Promising water models chosen for further analysis. The models are labelled with WD representing the literature model (Dufal et al., 2015), WS representing spherical model
picked from the three-dimensional Pareto front, and WNS representing the non-spherical model picked from the three-dimensional Pareto front. The number in brackets indicates
the model number as defined in Tables A.6 and A.7. The temperature range used for the saturated-liquid density 𝜌𝑠𝑎𝑡𝐿 and vapour pressure 𝑃 𝑣𝑎𝑝 is 273.16 K–613.16 K (from the
riple point to 95% of the critical point). The temperature range used for the isobaric liquid heat capacity at 1 atm (𝐶𝑃 ) is 271.16 K–363.16 K.
Model 𝑤𝑖 𝑓𝑖 AAD(𝑖)% 𝑇𝑐/K AAD(𝑇𝑐 )% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

WS (136) 0.23 0.70 0.08 12.73 0.78 3.07 2.93 0.76 1.71 668.4 3.31 1.0000 406.56 3.0912 23.097 137.87 1640.1
WNS (29) 0.19 0.22 0.59 1.14 0.34 0.04 0.87 0.50 0.16 653.5 1.00 1.2566 351.23 2.8024 25.126 177.62 1630.6
WD – – – 2.62 2.40 120.52 1.06 1.28 10.52 673.9 4.16 1.0000 266.68 3.0063 17.020 101.69 1985.4
Table 5
Deviations of the chosen water models for other properties not included in the objective function. Saturated-liquid isochoric
heat capacity (𝐶𝑉 ), heat of vaporization (𝛥𝐻𝑣𝑎𝑝), saturated-liquid speed of sound (𝑢), and vapour–liquid interfacial tension
(𝛾). The latter property is obtained with the SAFT-VR Mie mean-field density functional theory (DFT) developed by Graham
(2020). All deviations are computed with respect to correlated experimental data from NIST (Lemmon et al., 2018).

Property 𝑖 𝐶𝑉 𝛥𝐻𝑣𝑎𝑝 𝑢 𝛾
Temperature range (K) 273.16–613.16 273.16–613.16 273.16–613.16 453.9–613.16

Model AAD(𝑖)%

WS (136) 7.94 3.31 18.23 17.29
WNS (29) 17.57 2.20 49.36 3.27
WD 8.23 3.01 37.53 10.06
thus determined by finding 𝑘 that corresponds to the solution of the
optimization:

𝑘 = argmin
𝑘

𝑑𝑘

s.t. 𝜽𝑘 ∈ 𝜽𝑝,𝑗 .
(PS𝑗)

It is important to note that the optimum value of this problem is
sensitive to the scaling of the objectives, i.e., objectives spanning a
larger range on the Pareto front will be more important than others. We
now select some interesting models for further analysis. Information on
these Pareto points can be found in Table 4.

1. Model WS: A model chosen from the three-dimensional Pareto
front for spherical water models by solving (PS𝑗).

2. Model WNS: A model chosen from the three-dimensional Pareto
front for non-spherical water models by solving (PS𝑗).

3. Model WD: The existing SAFT-VR Mie model for water reported
by Dufal et al. (2015).

The deviations for other thermodynamic properties not considered in
the objective function for each Pareto point are summarized in Table 5.
Models for the spherical WS and non-spherical WNS representations of
water are indicated with arrows on the Pareto front in Figs. 11 and
13 respectively. By visual inspection, the reference points offer a good
compromise between the three objectives.

We note that the parameters obtained in our current study are
somewhat different to those determined by Dufal et al. (2015). Never-
theless, they are physically reasonable and are well within the range
of values for other reported SAFT models for water. In comparison
with model WD, our selected models have a significantly higher value
of the dispersion energy 𝜖: (406 K for model WS) and 351 K for
model WNS, versus 267 K for model WD. The association energy 𝜖HBe,H is
noticeably lower, with the models developed in our work all ∼ 1600 K
compared with 1985 K for model WD. This may indicate that the
consideration of heat-capacity data provides suitable information on
how the dispersive and associative attractive energies are partitioned.
The repulsive range parameter 𝜆r is higher for the models developed
here compared to model WD (values above 23 compared with 17 for
model WD). The values of the segment diameter 𝜎 are similar for
the spherical models, all slightly above 3 Å, but the non-spherical
model has a slightly lower value of about 2.80 Å, consistent with the
larger value of the non-sphericity parameter 𝑚 and yielding very similar
molecular volumes.

We analyse these models of water by comparing the description of
various thermodynamic properties, including the prediction of prop-
erties that are not considered in the parameter estimation. The level
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of agreement between the models and the experimental data for the
saturated-liquid density and saturated-vapour densities is shown in
Fig. 14a. Model WS is seen to under predict the saturated-liquid density
at temperatures between the triple point and 500 K, with a maximum
relative deviation of 3% with respect to the experimental data at 350 K.
Models WNS and WD are in better agreement with the experimental
data over this temperature range, with a maximum relative deviation
of less than 0.5% for both models. We also note that all models give rise
to a similar curvature close to the experimental triple point, and that
none of these models captures the experimentally observed maximum
in the saturated-liquid density at 273 K.

The prediction of the experimental critical temperature with the
SAFT-VR Mie EoS for models WS, WNS and WD is within to 3.2%, 0.9%,
and 4.0%, respectively. Model WNS allows one to capture the near-
critical region much more accurately than the other models providing
the correct curvature of both the saturated-liquid and saturated-vapour
densities, and is quantitatively accurate between 500 K and 600 K with
a maximum deviation of 0.17% at 600 K.

The corresponding description of the vapour pressure is shown in
Fig. 14b. All models provide fairly good agreement with the experimen-
tal data; the models are indistinguishable from the experimental data in
the Clausius–Clapeyron representation. The only noticeable deviation is
seen with model WS in the near-critical region with an overprediction
of the critical pressure of 24.7%.

The description of the isobaric-liquid heat capacity along a single
isobar (1 atm) obtained from the SAFT-VR Mie EoS with models WS,
WNS, and WD is shown in Fig. 15a; the corresponding description of
the saturated-liquid heat capacity between the experimental triple point
and temperatures close to the experimental critical point is given in
Fig. 15b. The use of model WD leads to an underprediction of the heat
capacity by an average of 10.5% across the isobar, with the highest
deviation of 15% at 273 K. Models WS and WNS provide a very good
description of the experimental heat capacity at 1 atm; the lowest
average deviation of AAD(𝐶𝑃 )% = 0.16% is found for model WNS.
A low-temperature minimum in the saturated-liquid heat capacity is
predicted with models WS and WNS but not with model WD; the tem-
perature at which this minimum occurs is predicted with remarkable
accuracy with model WNS (311 K compared with the experimental
value of 310 K).

In Fig. 16, we show the predictions obtained with the SAFT-VR
Mie EoS for the heat of vaporization 𝛥𝐻𝑣𝑎𝑝; this property was not
included in the parameter estimation procedure. All models are seen
to provide an accurate representation of the property away from the
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Fig. 14. (a) The saturated vapour- and liquid-phase densities, and (b) the vapour pressure (including the Clausius–Clapeyron representation) for water compared with the
escription obtained with the SAFT-VR Mie EoS with models WS, WNS, and WD. The theoretical description obtained with model WS is represented by the dashed red curve, that
ith model WNS by the continuous blue curve, and that with model WD by the dotted black curve. The white circles are the correlated experimental data from NIST (Lemmon

t al., 2018). All these data points are used in the parameter estimation, apart from those above 95% of the experimental critical temperature.
ritical region, with a better near-critical description seen for model
NS. The values for AAD(𝛥𝐻𝑣𝑎𝑝)% are shown in Table 5.
In Fig. 17, we show the predictions of the different models

or the vapour–liquid interfacial tension, obtained with the SAFT-VR
ie mean-field density functional theory (DFT) developed by
raham (2020). This provides a stringent test of the models in terms of

he partitioning of the dispersion (long-range) and association (short-
ange) attractive energies. Model WS provides a good prediction of the
ear-critical interfacial tensions well, but it leads to an overprediction
f the interfacial tension at lower temperatures. Model WD leads to a
oor overall description of the temperature dependence of the inter-
acial tension, with moderate (0.05 N m−1) under-predictions at the
owest temperatures considered. The most accurate overall prediction
20
of the interfacial tension is obtained for model WNS over the entire
range of temperatures considered. The values for AAD(𝛾)% are shown
in Table 5.

Owing to the superior performance of model WNS, we assess it
further by evaluating some other thermodynamic properties not con-
sidered in the parameter estimation, to ensure that the parameters are
physically sound. In Figs. 18 and 19, we show the SAFT-VR Mie predic-
tions obtained with model WNS for the density, isobaric heat capacity,
speed of sound, and isochoric heat capacity over pressures varying by
several orders of magnitude. The single-phase densities are predicted
accurately apart from the curvature seen experimentally in the low-
temperature region. The heat capacity in the liquid and vapour phases

is predicted very well over the full pressure range (varying by several



Computers and Chemical Engineering 167 (2022) 108015E.J. Graham et al.

m
m
p
t
w
m
a

Fig. 15. (a) The isobaric liquid-phase heat capacity at 1 atm and (b) the saturated-liquid heat capacity for water compared with the description obtained with the SAFT-VR Mie
EoS with models WS, WNS, and WD. The theoretical description obtained with model WS is represented by the dashed red curve, that with model WNS by the continuous blue
curve, and that with model WD by the dotted black curve. The white circles are the correlated experimental data from NIST (Lemmon et al., 2018). The data points used in the
parameter estimation are the experimental data shown in (a).
orders of magnitude), and the model is able to capture the maximum in
𝐶𝑃 , which is more pronounced at near-critical/ super-critical pressures.
Though the speed of sound in the gas phase is accurately represented,
that in the liquid phase is not predicted well (e.g., it is over-predicted
by approximately 85% at 273 K). In Table 5, we show that using
model WS the speed of sound is predicted more accurately than with
the other models, with an AAD(𝑢)% of 18.23 compared to 49.36 for

odel WNS and 37.53 for model WD. The experimentally observed
aximum is however not captured by any of the models. The relatively
oor agreement for all models is due to the inability of the model
o capture the anomalous curvature of the saturated-liquid density of
ater at low temperatures. The isochoric heat capacity is predicted
oderately well with model WNS, with an average AAD of 17.57%

cross the full temperature range. This is slightly worse than models
21
WS and WD, which give rise to AADs of 7.49% and 8.23% respectively,
as shown in Table 5.

As discussed in Section 1, the degree of hydrogen bonding is fre-
quently analysed with respect to the values estimated from spectro-
scopic data when developing SAFT models for water (Clark et al., 2006;
Dufal et al., 2015). The fraction of total possible O–H hydrogen bonds
that are free 𝑓OH

free is shown in Fig. 20. This is calculated from the
fraction of association sites of type e and H not bonded, which can be
determined implicitly with the SAFT EoS:

𝑓OH
free = 𝑋H = 𝑋e, (13)

where 𝑋H and 𝑋e are the fraction of sites H and e not associated to other
sites. The reader is referred to the work of Clark et al. (2006) for a more
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Fig. 16. The heat of vaporization for water compared with the description obtained with the SAFT-VR Mie EoS with models WS, WNS, and WD. The theoretical description
obtained with model WS is represented by the dashed red curve, that with model WNS by the continuous blue curve, and that with model WD by the dotted black curve. The
white circles are the correlated experimental data from NIST (Lemmon et al., 2018).
Fig. 17. The vapour–liquid interfacial tension of water compared with the description obtained with the SAFT-VR Mie mean-field DFT developed by Graham (2020) with models
WS, WNS, and WD. The theoretical description obtained with model WS is represented by the dashed red curve, that with model WNS by the continuous blue curve, and that
with model WD by the dotted black curve. The white circles are the correlated experimental data from NIST (Lemmon et al., 2018).
detailed discussion. Model WNS provides a description of the extent of
association which is in good agreement with the data obtained from
molecular simulations of the TIP4P/2005 distributed charge model of
water (Dufal et al., 2015). This provides confidence that the balance
between dispersive and association forces is physically sound, as the
degree of association is directly related to the hydrogen-bonding energy
and volume. Several authors have compared the association fractions
of SAFT water models to the experimental data of Luck (Müller and
Gubbins, 1995; Aparicio-Martínez and Hall, 2007; Clark et al., 2006;
von Solms et al., 2006; Grenner et al., 2007; Kontogeorgis and Folas,
2010; Tsivintzelis et al., 2014; Liang et al., 2014; Dufal et al., 2015). In
particular, Kontogeorgis et al. (2010) used the monomer fraction data
22
directly in the parameter regression. Whilst some models predict the
experimental data well, such agreement requires a compromise on the
accuracy of the description of other thermodynamic properties, e.g., the
phase behaviour of mixtures (Liang et al., 2014). For this reason and
due to the non-trivial analysis of the spectroscopic data of Luck and
the debate around the accuracy of such data (Dufal et al., 2015), we
choose not to use these data to discriminate further between the Pareto-
optimal water models. While the description of the IR data of Luck
(1980) with the models in the current work is relatively poor, with
an average relative deviation of 23.5% for temperatures between the
triple point and 95% of the critical point, there is good agreement
with respect to the molecular simulation results, where the evaluation
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Fig. 18. (a) The density at and (b) the heat capacity of water compared with the description obtained with the SAFT-VR Mie EoS with model WNS. The theoretical description
obtained with model WNS is represented by the continuous curves at different pressures with colours shown in the legend. The white circles are the correlated experimental data
from NIST (Lemmon et al., 2018).
of association fractions is straightforward. This indicates the proposed
models are consistent with previous models for this property.

5. Conclusion

We have proposed and implemented a multi-objective optimization
algorithm for parameter estimation of thermodynamic models using
any number of property types. As shown by Forte et al. (2017), we
find that the multi-objective approach is beneficial over the common
approaches used to parameterize the models employed in SAFT EoSs.

Careful attention is paid to minimizing the computational effort
involved and providing a framework that can be retrofitted to exist-
ing parameter estimation methods. We have applied the method to
23
two- and three-dimensional problems, but the proposed algorithm is
generally applicable to any number of dimensions. This allows for
an efficient estimation of the convex parts of a Pareto front where
numerous property types may be considered as competing objectives.
We have demonstrated that this technique can be used as a platform
for the rigorous comparison between different model types.

The MOO technique is applied to the development of models for
water for use with the SAFT-VR Mie EoS: we consider models where
water is treated as a spherical molecule (𝑚 = 1), or non-spherical
by treating the number of segments 𝑚 as an adjustable non-sphericity
parameter. Numerous Pareto-optimal models for water are obtained in
this manner. By analysing the Pareto front and predictions of various
thermodynamic properties, we have identified that the most preferable
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Fig. 19. (a) The speed of sound, 𝑢, and (b) the isochoric heat capacity, 𝐶𝑣, of water compared with the description obtained with the SAFT-VR Mie EoS with model WNS.
he theoretical description obtained with model WNS is represented by the continuous curves at different pressures with colours shown in the legend. The white circles are the
orrelated experimental data from NIST (Lemmon et al., 2018).
on-dominated models can be found using a weight vector that would
ot typically be chosen a priori (i.e., not an equal weight vector). For
he MOP we consider three property types as competing objectives:
he saturated-liquid density (𝜌𝑠𝑎𝑡𝐿 ), the vapour pressure (𝑃 𝑣𝑎𝑝), and the
iquid isobaric heat capacity (𝐶𝑃 ). It is shown that if only 𝜌𝑠𝑎𝑡𝐿 and
𝑃 𝑣𝑎𝑝 are considered in the optimization problem (as is typically the
case in regressing EoS model parameters), a variety of non-dominated
models are obtained that lead to predictions of 𝐶𝑃 with varying degrees
of accuracy (some which are quite poor). This exemplifies that the
determination of a Pareto front using an MOO approach is a useful
way of generating candidate models which can be tested against other
properties not considered in the parameter regression.
24
We have also considered the three-dimensional MOP including the
three properties 𝜌𝑠𝑎𝑡𝐿 , 𝑃 𝑣𝑎𝑝, and 𝐶𝑃 of water as objective functions. We
have shown that 𝐶𝑃 is a particularly useful property to reduce the
parameter degeneracy in this case, and that one is able to achieve a
good description of 𝐶𝑃 with a negligible compromise in the quality of
the description of 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝. The three-dimensional Pareto fronts are
computed and preferable models are chosen through analysis of these
fronts. We find that the non-spherical water model (WNS) outperforms
the spherical model developed in our current work (model WS) for all of
the thermodynamic properties considered. The models developed when
including 𝐶𝑃 are able to capture the key thermodynamic properties
with better accuracy than the previously reported spherical model WD
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Fig. 20. The fraction of free OH hydrogen bonds, 𝑓OH
free for the saturated-vapour and saturated-liquid states of water compared with the description obtained with the SAFT-VR

Mie EoS with models WNS and WD. The theoretical description obtained with model WNS is represented by the continuous blue curve, and that with model WD by the dotted
black curve. The open red circles are the spectroscopic data provided by Luck (1980). The open green squares are the SPC/E simulation results of Dufal et al. (2015) and the
open purple diamonds are the TIP4P/2005 simulation results of Dufal et al. (2015).
((Dufal et al., 2015), which describes 𝐶𝑃 relatively inaccurately), with
a negligible effect on the description of 𝜌𝑠𝑎𝑡𝐿 and 𝑃 𝑣𝑎𝑝.

In further work, it would be useful to explore the effect of consid-
ering further thermodynamic properties in the parameter estimation.
It would be particularly useful to investigate the effect of including
different second derivative properties, e.g., the speed of sound or
isochoric liquid heat capacity in the MOP. Since the proposed MOO
technique is applicable to dimensions higher than three, it will be useful
to investigate the Pareto fronts obtained when a larger number of prop-
erties (or objective functions) are included. Furthermore, the proposed
approach is readily extended to multicomponent mixtures (Graham,
2020) and it would be useful to explore the effect of including mixture
properties at an earlier stage of the parameter development.
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Appendix

A.1. Tabulated Pareto points

See Tables A.6–A.9.

A.2. Anomalous density profiles

Some of the Pareto-optimal spherical water models found during
the optimization produced saturated-density phase diagrams appear
unphysical at near-critical temperatures. This behaviour of the near-
critical region contrasts with the well-known law of the rectilinear
diameter, which states that the average of the densities 𝜌𝑠𝑎𝑡𝐿 and 𝜌𝑠𝑎𝑡𝐺 is a
linear function of temperature (Zollweg and Mulholland, 1972) . After a
detailed parametric investigation on the near-critical region of the 𝜌−𝑇
phase diagram, we find that these shapes, which we may define as a
non-convex vapour–liquid envelope, occur for relatively high values of
𝜆r . The 𝐴1 term in SAFT-VR Mie is parametrized for two Sutherland
potentials with exponents ranging between 𝜆 = 5 and 𝜆 = 100 (where 𝜆
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Table A.6
Pareto-optimal spherical models of water (𝑚 = 1), when only 𝑓𝜌𝑠𝑎𝑡𝐿

and 𝑓𝑃 𝑣𝑎𝑝 are treated as objectives. We also provide the deviations in 𝐶𝑃 . The models are sorted with 𝑓𝜌𝑠𝑎𝑡𝐿
in

increasing order.
𝜽𝑘 𝑤𝑖 𝑓𝑖 AAD(𝑖)% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

1 0.9901 0.0099 0.0000 0.6194 6.9906 52.4530 0.5905 2.1887 7.0610 1 337.80287 3.03114 28.25278 147.08527 1840.58221
2 0.9616 0.0384 0.0000 0.6550 5.0907 64.7120 0.6204 1.9510 7.8490 1 328.31646 3.02607 26.88362 143.95944 1857.10720
3 0.9267 0.0733 0.0000 0.6876 4.5189 74.9030 0.6480 1.8467 8.4340 1 318.42870 3.02106 25.29042 137.44404 1880.16773
4 0.8741 0.1259 0.0000 0.7364 4.0619 87.3960 0.6840 1.7517 9.0220 1 306.88405 3.01552 23.56082 129.91951 1907.25622
5 0.8004 0.1996 0.0000 0.8033 3.7071 100.3040 0.7237 1.6721 9.6610 1 294.44697 3.00995 21.87371 122.29255 1935.95367
6 0.6971 0.3029 0.0000 0.8927 3.4351 111.0290 0.7665 1.6054 10.1700 1 283.92050 3.00609 20.49043 116.05522 1959.13400
7 0.5852 0.4148 0.0000 1.0140 3.2155 119.1040 0.8127 1.5488 10.5090 1 275.18560 3.00363 19.36393 110.97833 1977.48461
8 0.5000 0.5000 0.0000 1.1923 3.0124 114.2610 0.8802 1.4975 10.2860 1 278.38985 3.00784 19.23058 111.01864 1968.60269
9 0.4471 0.5529 0.0000 1.3328 2.8831 121.1450 0.9191 1.4604 10.5620 1 271.38001 3.00598 18.43544 107.29818 1983.02618
10 0.4002 0.5998 0.0000 1.5199 2.7475 118.8330 0.9725 1.4233 10.4400 1 272.52796 3.00816 18.26557 106.86603 1979.14882
11 0.3282 0.6718 0.0000 1.9784 2.4878 115.2320 1.0941 1.3520 10.3090 1 272.82700 3.01162 17.79038 105.19051 1975.79311
12 0.2774 0.7226 0.0000 2.5976 2.2211 109.5830 1.2423 1.2752 10.0370 1 275.05570 3.01619 17.43385 104.10442 1967.92583
13 0.2389 0.7611 0.0000 3.3213 1.9723 102.0180 1.4091 1.2000 9.7090 1 279.87340 3.02155 17.28108 103.97918 1954.51768
14 0.2067 0.7933 0.0000 4.1621 1.7331 94.8840 1.5841 1.1223 9.3810 1 283.68725 3.02633 17.05033 103.35989 1943.15761
15 0.1817 0.8183 0.0000 5.1357 1.4994 85.7140 1.7757 1.0413 8.8730 1 289.93519 3.03195 16.97441 103.48767 1926.46549
16 0.1602 0.8398 0.0000 6.2878 1.2653 72.6770 1.9977 0.9579 8.1860 1 300.83182 3.03935 17.17551 104.99422 1899.64923
17 0.1407 0.8593 0.0000 7.3675 1.0736 66.5060 2.1755 0.8776 7.8200 1 304.85362 3.04354 16.96611 104.23066 1887.73446
18 0.1246 0.8754 0.0000 8.7460 0.8624 54.7030 2.3886 0.7844 7.0530 1 315.19019 3.05012 17.08512 105.13793 1861.65890
19 0.1088 0.8912 0.0000 10.1938 0.6715 42.8890 2.5931 0.6901 6.3230 1 326.33165 3.05670 17.24536 106.13407 1833.72872
20 0.0945 0.9055 0.0000 11.5457 0.5170 32.8000 2.7710 0.6034 5.5560 1 337.28783 3.06262 17.43693 107.16714 1806.39249
21 0.0807 0.9193 0.0000 13.3992 0.3371 19.2640 2.9982 0.4872 4.2440 1 356.71533 3.07200 17.99663 109.97873 1758.92134
22 0.0667 0.9333 0.0000 15.0471 0.2059 9.5340 3.1857 0.3820 3.0430 1 374.43513 3.07992 18.50414 112.34087 1714.95475
23 0.0514 0.9486 0.0000 16.6635 0.1038 3.5050 3.3585 0.2737 1.7210 1 394.07641 3.08829 19.12669 115.12702 1665.66220
24 0.0335 0.9665 0.0000 18.1875 0.0352 1.1050 3.5123 0.1618 0.4500 1 415.04273 3.09678 19.84072 118.21748 1612.01748
25 0.0099 0.9901 0.0000 19.5617 0.0035 2.9880 3.6441 0.0523 1.3710 1 437.19481 3.10538 20.66490 121.75049 1553.92136
Table A.7
Pareto-optimal non-spherical models of water (𝑚 ≥ 1), when only 𝑓𝜌𝑠𝑎𝑡𝐿

and 𝑓𝑃 𝑣𝑎𝑝 are treated as objectives. We also provide the deviations in 𝐶𝑃 . The models are sorted with 𝑓𝜌𝑠𝑎𝑡𝐿

in increasing order.
𝜽𝑘 𝑤𝑖 𝑓𝑖 AAD(𝑖)% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

1 0.9901 0.0099 0.0000 0.6194 6.9883 52.0250 0.5904 2.1886 7.0730 1.00000 337.75987 3.03112 28.24623 147.05562 1840.69549
2 0.9798 0.0202 0.0000 0.6373 5.7063 57.4990 0.6041 2.0442 7.4160 1.00000 334.47266 3.02930 27.87635 147.35113 1844.03705
3 0.9690 0.0310 0.0000 0.6481 5.2840 61.5330 0.6136 1.9820 7.6770 1.00000 330.86469 3.02739 27.30268 145.51528 1851.44217
4 0.9560 0.0440 0.0000 0.6615 4.9475 63.6970 0.6258 1.9250 7.7770 1.00237 328.04744 3.02341 26.77826 143.97359 1856.12122
5 0.9468 0.0532 0.0000 0.7030 4.1577 51.1990 0.6494 1.7661 6.9870 1.02857 330.13712 2.99679 26.51523 146.76066 1835.48255
6 0.9392 0.0608 0.0000 0.7456 3.4518 36.4470 0.6712 1.6094 5.9060 1.05883 335.18845 2.96860 26.66534 152.06939 1804.62657
7 0.9304 0.0696 0.0000 0.7920 2.7810 24.0180 0.6946 1.4439 4.8070 1.09064 339.65932 2.93978 26.72327 157.38033 1773.53096
8 0.9189 0.0811 0.0000 0.8409 2.1768 13.4560 0.7180 1.2768 3.5790 1.12425 345.24842 2.91109 26.95946 164.17938 1737.41107
9 0.9066 0.0934 0.0000 0.8850 1.7131 6.8800 0.7385 1.1335 2.5710 1.15290 349.28501 2.88723 27.06414 169.71561 1707.85087
10 0.8914 0.1086 0.0000 0.9313 1.2993 2.6340 0.7597 0.9883 1.5860 1.18193 353.02710 2.86375 27.13743 175.37069 1678.21288
11 0.8709 0.1291 0.0000 0.9766 0.9625 0.4850 0.7794 0.8514 0.5910 1.21049 357.16610 2.84169 27.30995 181.81064 1647.03618
12 0.8450 0.1550 0.0000 1.0241 0.6731 0.2610 0.7996 0.7131 0.4050 1.23866 360.34800 2.82020 27.34463 187.57936 1618.31453
13 0.8075 0.1925 0.0000 1.0738 0.4349 2.0290 0.8213 0.5737 1.3660 1.26817 363.97545 2.79858 27.45117 194.37886 1586.67667
14 0.7523 0.2477 0.0000 1.1241 0.2535 5.1900 0.8432 0.4387 2.2370 1.29678 366.91760 2.77802 27.47369 200.71517 1557.14185
15 0.6638 0.3362 0.0000 1.1774 0.1205 9.7150 0.8664 0.3045 3.0290 1.32500 368.82805 2.75787 27.34959 206.10767 1530.64678
16 0.5960 0.4040 0.0000 1.2049 0.0732 12.3330 0.8784 0.2386 3.3660 1.33907 369.60073 2.74796 27.25961 208.64714 1517.84524
17 0.5000 0.5000 0.0000 1.2332 0.0382 14.5810 0.8907 0.1739 3.6830 1.35249 369.67963 2.73832 27.07443 210.27491 1507.73458
18 0.3192 0.6808 0.0000 1.2682 0.0126 16.5710 0.9060 0.1022 3.9700 1.36756 368.91007 2.72724 26.73373 210.97036 1499.17827
19 0.0099 0.9901 0.0000 1.3051 0.0044 16.9690 0.9292 0.0575 4.0240 1.37826 367.22287 2.71932 26.17634 209.07780 1496.33243
is the repulsive or attractive exponent), and the 𝐴2 term is a function of
2𝜆r . Hence, the theory is strictly only applicable for values of 𝜆r ≤ 50, as
has been previously pointed out (Lafitte et al., 2013). However, when
association is introduced, the critical temperature and the range of VLE
coexistence increases, and non-convex density profiles occur for lower
values of 𝜆r . We illustrate this point in Fig. A.21 by changing the value
of 𝜆r while keeping other variables fixed to values that are similar to the
values obtained for the water models developed in our current work.
Non-convex envelopes occur at values of 𝜆r above 30 for this particular
set of parameters.

We attribute this phenomenon to the increase in the number of
density roots that appear in the near-critical region, which can lead
to practically unrealistic predictions such as multiple critical points
for pure compounds. Multiple density roots have been reported for
SAFT-type equations of state (Koak et al., 1999; Aslam and Sunol,
2006; Privat et al., 2010; Polishuk, 2010; Alsaifi and Englezos, 2011;
26
Alsaifi et al., 2017, 2019). In the recent work (Alsaifi et al., 2019)
have shown that as many as 10 density roots may occur in the SAFT-
VR Mie description, via a sophisticated use of bifurcation diagrams to
analyse rigorously the metastable region of the equation of state. In
our test, we found that 5 volume roots can appear at temperatures
close to the critical point. Alsaifi et al. (2019) note that these non-
physical predictions are inevitable in more sophisticated equations of
state due to the empirical functional forms (e.g., an empirical analytical
expression for the pair distribution function at contact) required to
approximate statistical mechanical theories with no exact solutions. It
is possible to follow a rigorous method such as that proposed by Alsaifi
et al. (2019) to identify models with non-physical regions, or simply
to inspect the van der Waals loop on a pressure–volume diagram at
various temperatures. It is possible to include such checks as constraints
within the MOP to avoid the generation of anomalous models, but such
checks are not included in our current implementation as they would
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Table A.8
Pareto points and parameters for water models with 𝑚 = 1, derived using all three objective functions. The models are sorted with 𝑓𝜌𝑠𝑎𝑡𝐿

in increasing order.

𝜽𝑘 𝑤𝑖 𝑓𝑖 AAD(𝑖)% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

1 0.9804 0.0098 0.0098 0.6517 14.1300 25.2830 0.6499 2.8436 4.9834 1 367.53841 3.04818 33.56824 164.62466 1774.31730
2 0.9494 0.0399 0.0108 0.6628 7.9364 34.8796 0.6459 2.3360 5.8595 1 361.58200 3.04495 32.92614 168.30664 1775.11750
3 0.8800 0.1102 0.0098 0.6664 5.8178 48.5804 0.6631 2.0639 6.8659 1 345.59187 3.03663 29.48471 156.03468 1812.52240
4 0.7777 0.2125 0.0098 0.7337 4.7058 60.4582 0.7105 1.8761 7.6107 1 332.18496 3.03049 26.69834 144.87712 1844.95346
5 0.8154 0.1611 0.0235 0.7607 6.5204 37.6405 0.7489 2.1637 6.0801 1 358.50354 3.04517 31.35607 164.56748 1779.18382
6 0.9113 0.0591 0.0296 0.7632 10.2025 23.7610 0.7352 2.5588 4.8673 1 377.46647 3.05490 36.14391 180.85571 1734.37307
7 0.9552 0.0098 0.0350 0.7733 33.0080 9.2640 0.7525 4.2015 3.0415 1 390.45510 3.06182 38.21938 175.05650 1729.54724
8 0.8430 0.1240 0.0330 0.7983 8.0673 28.6943 0.7748 2.3537 5.3372 1 370.68664 3.05199 34.01176 174.70272 1748.80367
9 0.9291 0.0287 0.0422 0.8151 16.7503 15.0339 0.7757 2.9879 3.8759 1 388.10231 3.06104 38.41947 184.60724 1716.34650
10 0.8881 0.0098 0.1021 0.8388 65.8909 2.6647 0.7984 6.0660 1.6236 1 400.83947 3.06840 39.53367 171.16408 1722.28340
11 0.7189 0.2583 0.0228 0.8780 5.2975 44.6224 0.8106 1.9739 6.5885 1 349.24593 3.04145 28.88369 155.31290 1801.47944
12 0.8818 0.0616 0.0566 0.8949 12.9829 16.7848 0.8244 2.7504 4.0952 1 387.90028 3.06186 38.07096 187.14218 1709.88976
13 0.9003 0.0278 0.0719 0.8965 23.8938 10.0560 0.8215 3.4318 3.1648 1 394.73430 3.06555 39.34556 184.85993 1706.21829
14 0.7091 0.0098 0.2811 0.9354 92.3154 0.5325 0.8511 7.3942 0.7062 1 405.25596 3.07184 38.92119 163.73707 1725.71258
15 0.8739 0.0212 0.1048 0.9401 37.8256 5.7241 0.8506 4.4073 2.3778 1 399.82207 3.06875 39.82501 181.13267 1705.04996
16 0.8223 0.1169 0.0608 0.9875 10.1984 19.4775 0.8810 2.5505 4.4119 1 384.49597 3.06090 36.63574 184.66905 1714.14202
17 0.6215 0.3641 0.0144 0.9933 4.0708 60.9243 0.8415 1.7493 7.6289 1 330.54564 3.03250 25.38992 140.40301 1847.45812
18 0.7341 0.2238 0.0421 1.0280 6.7488 29.9651 0.8933 2.1822 5.4468 1 368.01105 3.05256 32.17302 169.24478 1753.88890
19 0.8528 0.0602 0.0870 1.0424 15.7297 12.6042 0.9046 2.9003 3.5426 1 393.75167 3.06618 38.70085 188.24054 1698.22077
20 0.8378 0.0346 0.1276 1.0990 28.6982 6.6959 0.9354 3.7725 2.5662 1 400.52266 3.07024 39.58270 184.63964 1695.03693
21 0.7976 0.0232 0.1792 1.1092 47.0912 3.1832 0.9428 5.0175 1.7517 1 404.27868 3.07239 39.63630 178.04883 1700.43663
22 0.7540 0.1879 0.0581 1.1156 8.1056 23.0267 0.9387 2.3396 4.7925 1 378.45360 3.05861 34.38438 177.83569 1727.53435
23 0.5518 0.4384 0.0098 1.1259 3.4693 74.8018 0.8759 1.6181 8.4021 1 316.10525 3.02599 23.12063 130.18223 1881.91932
24 0.7269 0.0179 0.2551 1.1299 64.5210 1.4154 0.9537 6.0471 1.1498 1 406.18339 3.07359 39.17057 171.43850 1707.73228
25 0.8242 0.0510 0.1248 1.1992 20.9022 8.6144 0.9792 3.2097 2.9148 1 399.21583 3.07009 39.17561 187.38935 1690.26536
26 0.7988 0.1096 0.0915 1.2086 11.8553 14.5645 0.9815 2.6522 3.8100 1 392.18082 3.06636 37.72349 188.41622 1695.91795
27 0.6162 0.0160 0.3678 1.2268 74.0940 0.6601 0.9954 6.6117 0.7605 1 407.42564 3.07481 38.47438 166.75764 1711.31176
28 0.5994 0.3756 0.0249 1.2321 4.4280 46.4877 0.9480 1.8118 6.7082 1 345.76636 3.04213 27.11424 148.99007 1808.91810
29 0.4028 0.0098 0.5874 1.2371 91.4259 0.1420 0.9991 7.5397 0.3229 1 407.10232 3.07478 37.36208 158.93433 1723.54118
30 0.6375 0.3206 0.0419 1.3599 5.4924 32.6586 1.0110 1.9918 5.6709 1 363.11144 3.05187 30.00203 161.72254 1765.08853
31 0.7358 0.1775 0.0867 1.4126 9.2841 16.8757 1.0543 2.4421 4.1057 1 388.35290 3.06536 35.91562 184.10770 1702.29862
32 0.7828 0.0867 0.1306 1.4386 14.8970 10.2017 1.0681 2.8197 3.1722 1 398.71468 3.07095 38.46849 189.40948 1683.48647
33 0.7751 0.0498 0.1750 1.4462 24.9968 5.8813 1.0729 3.5083 2.3852 1 403.70739 3.07370 39.16294 185.88775 1683.01538
34 0.5121 0.4700 0.0178 1.4666 3.6023 56.7316 1.0072 1.6471 7.3644 1 333.58441 3.03717 24.69590 138.56834 1838.38428
35 0.6117 0.0226 0.3657 1.4840 58.9976 1.0146 1.0876 5.8359 0.9340 1 408.70348 3.07663 38.37843 170.71434 1698.95451
36 0.7422 0.0400 0.2178 1.5059 32.8709 3.8486 1.0937 4.1194 1.9066 1 406.25100 3.07534 39.15667 182.44843 1684.14493
37 0.6557 0.2860 0.0583 1.5144 6.3977 25.0884 1.0719 2.1169 4.9940 1 374.03576 3.05832 31.94133 169.98481 1737.14733
38 0.4736 0.0195 0.5070 1.6899 64.4619 0.4800 1.1565 6.2428 0.5993 1 409.47510 3.07787 37.31564 165.54182 1702.30452
39 0.6313 0.0306 0.3381 1.7039 46.1878 1.5847 1.1591 5.0811 1.1725 1 409.46196 3.07784 38.44533 175.18116 1687.87326
40 0.7492 0.0761 0.1748 1.7112 17.9210 7.1957 1.1551 2.9960 2.6394 1 403.49265 3.07460 38.62423 188.51207 1675.25631
41 0.4284 0.5618 0.0098 1.7205 2.9346 73.4015 1.0582 1.4876 8.3131 1 315.61931 3.02955 21.98910 126.07180 1880.77022
42 0.6763 0.0384 0.2852 1.7479 36.8614 2.5259 1.1713 4.4467 1.5098 1 408.89055 3.07766 38.72825 179.63578 1681.43071
43 0.6610 0.2602 0.0788 1.7573 7.2545 19.2839 1.1531 2.2137 4.3889 1 383.34324 3.06414 33.51921 176.66211 1713.16647
44 0.7245 0.1454 0.1301 1.7662 11.2734 11.4185 1.1685 2.5738 3.3582 1 397.92591 3.07184 37.37644 189.15692 1679.45883
45 0.3090 0.0137 0.6773 1.8330 71.4861 0.1798 1.1996 6.7251 0.3397 1 408.83142 3.07813 36.04581 159.17708 1710.47521
46 0.7003 0.0543 0.2454 1.8969 26.2407 3.9673 1.2132 3.6491 1.9161 1 408.13504 3.07774 38.72168 184.51861 1673.11548
47 0.5152 0.4529 0.0319 1.9018 4.0065 39.7148 1.1526 1.7222 6.2140 1 352.34639 3.04867 26.76551 148.99702 1790.88175
48 0.6534 0.2359 0.1108 2.1778 8.1864 13.8505 1.2747 2.2979 3.7143 1 392.82544 3.07051 34.84933 182.36931 1688.78659
49 0.6964 0.1275 0.1761 2.1832 12.7704 8.1133 1.2863 2.6419 2.7979 1 404.06364 3.07644 37.78233 190.21733 1665.72376
50 0.6857 0.0737 0.2406 2.1879 20.0945 4.7282 1.2904 3.1494 2.0911 1 408.55347 3.07884 38.40002 187.15315 1664.99720
51 0.4793 0.0292 0.4915 2.1938 47.5620 0.8083 1.2959 5.2981 0.7639 1 411.57671 3.08058 37.08806 170.15071 1685.59555
52 0.5860 0.3453 0.0687 2.2169 5.7054 21.7131 1.2665 1.9999 4.6503 1 377.96409 3.06288 31.12577 168.32929 1725.62337
53 0.6317 0.0519 0.3164 2.2424 28.7606 2.6559 1.3060 3.8936 1.5167 1 411.04173 3.08034 38.23327 181.93216 1668.77334
54 0.4059 0.5780 0.0161 2.2734 2.9139 56.4887 1.2195 1.4837 7.3336 1 331.93560 3.03995 23.17861 132.78927 1840.27056
55 0.5228 0.4316 0.0455 2.2767 4.3890 30.1785 1.2628 1.7890 5.4488 1 364.40408 3.05617 28.19810 156.08461 1759.81283
56 0.6525 0.1928 0.1547 2.5311 9.6975 9.6120 1.3660 2.4143 3.0643 1 401.46561 3.07605 36.28701 187.60016 1667.70478
57 0.1426 0.0098 0.8476 2.5383 65.0754 0.0806 1.3853 6.5642 0.2362 1 408.39688 3.08018 33.82458 152.97294 1710.94382
58 0.6636 0.1061 0.2304 2.5465 14.9914 5.6002 1.3758 2.7646 2.2774 1 408.83489 3.07996 37.94123 189.48842 1657.03087
59 0.5960 0.3055 0.0985 2.6433 6.5617 15.2557 1.3760 2.0985 3.9031 1 389.05973 3.06986 32.78701 175.66967 1696.89830
60 0.5032 0.0433 0.4535 2.6757 33.9959 1.3284 1.4107 4.3810 0.9795 1 413.62013 3.08291 37.17836 175.97739 1668.70481
61 0.5273 0.4123 0.0604 2.6961 4.7051 23.4377 1.3703 1.8354 4.8225 1 374.14479 3.06231 29.36757 161.83788 1734.43563
62 0.4395 0.5279 0.0327 2.7852 3.3731 36.3826 1.3667 1.5838 5.9483 1 354.88070 3.05288 25.73817 145.74172 1782.79099
63 0.3004 0.0243 0.6753 2.7954 47.8816 0.3868 1.4442 5.4718 0.4838 1 412.13258 3.08263 35.21583 163.38949 1687.12696
64 0.3980 0.0358 0.5662 2.9203 38.0467 0.7911 1.4705 4.7531 0.6995 1 413.92632 3.08375 36.15728 170.55471 1673.10753
65 0.6051 0.0850 0.3099 2.9313 18.3792 3.4707 1.4650 3.0241 1.7178 1 413.03259 3.08314 37.76290 186.76992 1651.49463
66 0.6210 0.1649 0.2141 3.1180 10.8929 6.3751 1.5007 2.4645 2.4356 1 408.69023 3.08127 36.81349 189.41695 1650.60082
67 0.5329 0.0699 0.3972 3.2267 21.8412 2.2206 1.5325 3.3821 1.2898 1 415.41625 3.08509 37.29487 182.99613 1650.57203
68 0.5842 0.2765 0.1393 3.3259 7.1861 10.2429 1.5336 2.1460 3.1769 1 399.02243 3.07666 33.84917 180.69125 1670.91174
69 0.5148 0.4066 0.0786 3.4142 4.7917 17.4969 1.5331 1.8337 4.1784 1 382.98105 3.06860 29.93445 165.31156 1710.88355
70 0.4341 0.0546 0.5113 3.4888 26.3679 1.3101 1.5903 3.8480 0.9057 1 416.25988 3.08619 36.31751 176.76322 1655.19039
71 0.5848 0.1329 0.2823 3.5143 12.6873 4.3176 1.5867 2.5674 1.9250 1 413.55061 3.08467 37.07605 189.19244 1641.22981
72 0.2901 0.7001 0.0098 3.6259 2.0944 61.1259 1.5065 1.2584 7.5883 1 323.58414 3.04067 20.77653 122.26775 1856.82544

(continued on next page)
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Table A.8 (continued).
𝜽𝑘 𝑤𝑖 𝑓𝑖 AAD(𝑖)% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

73 0.4630 0.4788 0.0582 3.6502 3.8511 21.9174 1.5686 1.6685 4.6615 1 374.73374 3.06499 27.89445 156.73278 1731.45219
74 0.5342 0.3561 0.1097 3.7787 5.5230 12.4230 1.6143 1.9295 3.5181 1 393.06105 3.07453 31.52018 172.38175 1684.77867
75 0.5755 0.2303 0.1941 3.8190 8.2438 6.8554 1.6376 2.2257 2.5434 1 407.29658 3.08197 34.98792 185.13888 1650.34092
76 0.3250 0.0424 0.6326 3.8228 30.1471 0.7658 1.6589 4.2495 0.6902 1 415.72941 3.08672 34.87544 169.36151 1662.56659
77 0.5240 0.1021 0.3739 3.8569 15.3673 2.7653 1.6572 2.7784 1.4379 1 416.85139 3.08712 36.85030 186.18742 1637.88463
78 0.3932 0.5687 0.0381 4.0356 2.9334 28.5506 1.6293 1.4751 5.2861 1 363.56833 3.06037 25.44993 145.83762 1759.12927
79 0.3263 0.6534 0.0203 4.0917 2.3038 41.4280 1.6237 1.3197 6.3054 1 345.95004 3.05212 22.89436 133.37934 1802.65450
80 0.5235 0.1324 0.3441 4.2403 12.2262 3.2201 1.7256 2.5061 1.5744 1 416.89497 3.08782 36.34828 187.14235 1632.60446
81 0.1163 0.0142 0.8695 4.2881 43.9780 0.1134 1.7572 5.4484 0.2740 1 409.66125 3.08467 31.12231 149.29987 1695.08949
82 0.4528 0.0916 0.4557 4.3542 16.0887 2.0049 1.7505 2.8904 1.1290 1 418.63662 3.08902 36.01962 182.46593 1635.63635
83 0.3964 0.0718 0.5318 4.3922 19.3217 1.4390 1.7624 3.2629 0.9507 1 418.40946 3.08905 35.40724 177.63445 1641.98856
84 0.1977 0.0280 0.7743 4.5192 33.7775 0.3275 1.7984 4.6738 0.4468 1 413.05510 3.08675 32.17799 157.24511 1676.18812
85 0.5351 0.1923 0.2725 4.5414 9.0513 4.3447 1.7729 2.2498 1.9221 1 414.24622 3.08691 35.30756 186.22877 1633.75992
86 0.3169 0.0557 0.6274 4.6704 22.3658 0.9336 1.8198 3.6262 0.7693 1 417.41979 3.08912 34.06994 170.36699 1650.33334
87 0.5197 0.3276 0.1527 4.6919 5.7647 8.0364 1.7884 1.9327 2.7960 1 402.72591 3.08116 32.20298 176.15816 1659.13130
88 0.4442 0.4810 0.0748 4.7806 3.6666 15.4910 1.7876 1.6152 3.9308 1 384.66083 3.07218 28.15369 159.16011 1704.65130
89 0.3937 0.5536 0.0527 5.0337 2.9222 19.9209 1.8239 1.4607 4.4410 1 375.71969 3.06825 26.21479 150.41691 1727.12604
90 0.4767 0.1593 0.3640 5.1893 9.7667 2.8932 1.8945 2.2730 1.4431 1 418.48273 3.09020 34.98466 184.30014 1625.10892
91 0.4211 0.1145 0.4643 5.2319 12.3148 2.0125 1.9088 2.5167 1.1305 1 419.92773 3.09113 34.86609 181.12136 1627.20873
92 0.3629 0.0884 0.5487 5.3646 14.6127 1.4520 1.9369 2.8244 0.9547 1 419.68797 3.09130 34.11544 175.90624 1633.16638
93 0.4581 0.4377 0.1042 5.3665 4.0181 10.6537 1.8973 1.6646 3.2563 1 394.53862 3.07809 29.30187 164.84241 1678.68728
94 0.2306 0.0434 0.7260 5.4251 23.4757 0.5486 1.9563 3.8362 0.5860 1 415.60155 3.08947 31.82485 160.61768 1658.96538
95 0.5023 0.2833 0.2144 5.4312 6.2118 5.1687 1.9232 1.9535 2.1654 1 410.77144 3.08645 32.86660 179.22706 1638.47093
96 0.3369 0.6270 0.0361 5.4955 2.3030 24.3928 1.8952 1.3115 4.8884 1 367.53146 3.06516 24.40619 142.00772 1747.23448
97 0.2781 0.0677 0.6542 6.0339 16.0922 0.9044 2.0519 3.0890 0.7613 1 418.29670 3.09165 32.09899 166.22003 1641.75722
98 0.2826 0.6941 0.0233 6.0776 1.8164 29.0682 1.9870 1.1716 5.3057 1 359.28778 3.06237 22.73142 133.95104 1766.86533
99 0.2217 0.7685 0.0098 6.1798 1.4410 44.6497 1.9936 1.0444 6.4995 1 337.20676 3.05292 20.21743 120.92786 1819.45372
100 0.4599 0.3796 0.1605 6.2922 4.3814 6.1658 2.0542 1.6955 2.4268 1 405.95453 3.08515 30.37620 170.22729 1648.60204
101 0.4537 0.2249 0.3214 6.2963 6.7194 3.0671 2.0699 1.9548 1.5176 1 417.79950 3.09132 33.00602 179.52341 1621.71492
102 0.3972 0.1499 0.4529 6.3485 8.7529 2.0318 2.0876 2.1438 1.1333 1 420.62464 3.09300 33.25622 177.95029 1619.96347
103 0.3894 0.5357 0.0749 6.3618 2.8325 12.3667 2.0493 1.4240 3.5125 1 388.80932 3.07673 26.88627 154.68731 1692.14959
104 0.3190 0.1021 0.5789 6.6430 10.9500 1.2989 2.1414 2.4628 0.9109 1 420.24395 3.09334 32.13402 170.51363 1627.68677
105 0.1057 0.0210 0.8732 6.7768 26.4505 0.1454 2.1886 4.2634 0.3044 1 410.96104 3.08901 28.15059 143.57129 1677.88097
106 0.3354 0.6142 0.0504 6.7989 2.1876 15.7803 2.1167 1.2686 3.9562 1 380.77418 3.07350 25.04272 146.05747 1712.17569
107 0.4023 0.1948 0.4029 7.0037 6.6773 2.2457 2.1823 1.9140 1.1873 1 420.26317 3.09353 32.27886 176.19869 1616.65611
108 0.4088 0.4690 0.1223 7.2438 3.1557 6.9075 2.1977 1.4702 2.6006 1 401.87891 3.08429 28.20532 161.46067 1657.64701
109 0.2877 0.6778 0.0346 7.3033 1.7180 19.2302 2.1945 1.1354 4.3457 1 373.29513 3.07072 23.46589 138.34927 1730.53036
110 0.4231 0.3285 0.2484 7.6145 4.2859 3.3481 2.2645 1.6335 1.6603 1 415.14880 3.09142 30.41234 171.01197 1624.33576
111 0.1704 0.0453 0.7844 7.6336 16.3857 0.3872 2.3162 3.2798 0.4913 1 414.94972 3.09197 28.46866 149.94940 1654.75947
112 0.2431 0.0807 0.6762 7.6943 11.0445 0.8160 2.3160 2.5798 0.7203 1 418.65737 3.09385 29.79935 159.75708 1635.00003
113 0.3284 0.1572 0.5144 7.9621 6.5567 1.5235 2.3398 1.8730 0.9782 1 421.24822 3.09523 30.73827 168.87542 1616.56438
114 0.3767 0.2423 0.3810 8.1756 4.8164 2.1108 2.3588 1.6601 1.1468 1 420.24994 3.09474 30.55253 170.72278 1613.36277
115 0.2327 0.7460 0.0213 8.2195 1.2651 22.2627 2.3301 0.9800 4.6482 1 366.19228 3.06883 21.82404 130.16754 1746.86423
116 0.3377 0.5871 0.0751 8.2553 2.0647 8.9370 2.3455 1.2185 2.9835 1 394.15444 3.08167 25.62217 149.76887 1676.37167
117 0.3805 0.4269 0.1926 8.8987 2.8610 3.4204 2.4471 1.3715 1.7286 1 412.68542 3.09138 28.16691 162.14349 1628.36055
118 0.2840 0.6662 0.0498 8.9739 1.5104 10.9567 2.4464 1.0572 3.3005 1 387.69785 3.07946 23.92676 141.47286 1692.20108
119 0.1742 0.8160 0.0098 9.1606 0.9119 27.7951 2.4605 0.8315 5.1490 1 354.49801 3.06528 19.98670 120.60527 1773.25014
120 0.3463 0.5347 0.1189 9.2860 2.1099 4.8696 2.4953 1.2105 2.1642 1 405.54359 3.08818 26.41597 154.15871 1646.01850
121 0.2531 0.1275 0.6194 9.3029 5.9892 0.9806 2.5413 1.8572 0.7888 1 420.33208 3.09617 28.39240 157.83966 1621.01754
122 0.3129 0.2288 0.4583 9.6211 3.7930 1.4954 2.5687 1.4632 0.9585 1 421.36256 3.09670 28.65216 162.51983 1610.23038
123 0.1948 0.0849 0.7203 9.7176 7.5810 0.5953 2.6071 2.1889 0.6124 1 417.96782 3.09544 27.03840 149.29199 1632.89044
124 0.0337 0.0098 0.9565 9.8384 18.4750 0.0578 2.6457 3.6694 0.2093 1 408.64571 3.09119 24.30685 128.89563 1677.43894
125 0.3333 0.3333 0.3333 10.1088 2.7515 1.8215 2.6222 1.3004 1.0667 1 419.76158 3.09607 27.89070 160.65411 1610.56455
126 0.2867 0.6360 0.0773 10.3863 1.3927 5.5845 2.6406 1.0039 2.3467 1 400.79016 3.08686 24.48329 144.83885 1657.21115
127 0.3272 0.5007 0.1721 10.5181 1.8788 2.7669 2.6638 1.1285 1.5436 1 413.13974 3.09291 26.29528 153.95257 1625.37918
128 0.2444 0.1828 0.5728 10.9319 3.3171 0.9772 2.7507 1.3683 0.7813 1 420.97197 3.09766 26.73006 152.71020 1612.98799
129 0.0919 0.0351 0.8729 10.9952 10.3433 0.1621 2.7845 2.7135 0.3244 1 412.59384 3.09383 24.25039 132.76548 1654.98893
130 0.2030 0.7688 0.0281 11.0751 0.8241 10.4258 2.7248 0.7910 3.2072 1 384.89974 3.08029 21.82214 130.80256 1696.84541
131 0.2827 0.6012 0.1162 11.4371 1.2828 3.0916 2.7775 0.9529 1.6915 1 409.43161 3.09173 24.72057 146.31240 1633.93705
132 0.1759 0.1274 0.6967 12.2828 3.2558 0.5477 2.9280 1.4396 0.5853 1 418.74971 3.09757 24.63408 140.93526 1621.68645
133 0.1344 0.8558 0.0098 12.3123 0.4930 13.8278 2.8749 0.6133 3.6545 1 373.28226 3.07676 19.85287 120.09880 1723.20404
134 0.2735 0.5039 0.2225 12.3354 1.2533 1.5628 2.8938 0.9211 1.0401 1 417.67711 3.09630 25.00930 147.71856 1612.29768
135 0.2444 0.2965 0.4591 12.3497 1.6935 1.0210 2.9137 1.0091 0.7872 1 421.21464 3.09842 25.39218 148.29559 1606.47089
136 0.2263 0.6986 0.0751 12.7278 0.7768 3.0739 2.9313 0.7557 1.7140 1 406.56050 3.09117 23.09716 137.86527 1640.14137
137 0.1173 0.0728 0.8099 13.0295 4.3111 0.2660 3.0243 1.7414 0.3983 1 415.31995 3.09643 23.16076 131.30275 1635.36247
138 0.1600 0.8093 0.0308 13.6999 0.4408 4.4079 3.0402 0.5811 2.0869 1 397.91599 3.08792 21.32724 128.10920 1661.04567
139 0.2209 0.4267 0.3525 13.7289 0.8864 0.9280 3.0664 0.7642 0.7318 1 420.43040 3.09851 23.94856 141.74233 1605.12276
140 0.2192 0.6455 0.1352 13.7294 0.6753 1.4720 3.0508 0.6966 1.0737 1 414.87535 3.09552 23.26273 138.69506 1617.90032
141 0.1584 0.1965 0.6451 14.3337 1.2598 0.4947 3.1584 0.8965 0.5507 1 418.99854 3.09865 22.93060 133.97819 1614.09426
142 0.1654 0.6162 0.2184 15.4225 0.3561 0.7142 3.2455 0.5095 0.6334 1 418.69554 3.09807 22.23318 132.60271 1606.94409
143 0.0876 0.0985 0.8139 15.8594 1.4618 0.1985 3.3361 1.0493 0.3595 1 414.12353 3.09738 20.99247 121.57431 1628.94425
144 0.1355 0.3002 0.5643 15.8827 0.4561 0.4306 3.3206 0.5473 0.5060 1 418.52538 3.09894 21.70424 128.21162 1610.43494
145 0.0868 0.9020 0.0112 15.9004 0.1628 2.7274 3.2804 0.3544 1.6324 1 399.08175 3.08974 19.97264 120.07966 1654.98762

(continued on next page)
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Table A.8 (continued).
𝜽𝑘 𝑤𝑖 𝑓𝑖 AAD(𝑖)% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

146 0.0098 0.0098 0.9804 16.2254 3.5659 0.0716 3.4262 1.6809 0.2276 1 407.27064 3.09634 19.92167 112.86677 1653.84095
147 0.0779 0.5524 0.3698 17.7383 0.0734 0.3085 3.5067 0.2443 0.4323 1 416.34854 3.09855 20.23600 120.25753 1610.89222
148 0.0373 0.1234 0.8393 18.9514 0.2569 0.1190 3.6633 0.4608 0.2962 1 408.78085 3.09743 18.82192 110.33025 1631.46323
149 0.0098 0.9804 0.0098 19.0067 0.0140 0.4702 3.6008 0.1051 0.6125 1 421.77481 3.09985 19.83148 117.56479 1594.06433
150 0.0098 0.4712 0.5189 20.2645 0.0408 0.1285 3.8982 0.1703 0.3089 1 408.65723 3.10253 18.56456 109.98060 1626.91189
Table A.9
Pareto points and parameters for water models with 𝑚 ≥ 1, derived using all three objective functions. The models are sorted with 𝑓𝜌𝑠𝑎𝑡𝐿

in increasing order.

𝜽𝑘 𝑤𝑖 𝑓𝑖 AAD(𝑖)% Parameters, 𝒙

𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝜌𝑠𝑎𝑡𝐿 𝑃 𝑣𝑎𝑝 𝐶𝑃 𝑚 (𝜖∕𝑘B)∕K 𝜎∕Å 𝜆r 𝐾HB
e,H∕Å

3
(𝜖HBe,H∕𝑘B)∕K

1 0.9804 0.0098 0.0098 0.7719 6.2275 2.2512 0.6706 1.8767 1.4957 1.11773 371.50797 2.93110 31.39086 180.15540 1680.81699
2 0.9716 0.0100 0.0184 0.7942 6.0024 0.7286 0.6813 1.8259 0.8388 1.13396 374.29928 2.91758 31.53519 184.00066 1662.19418
3 0.9738 0.0140 0.0122 0.8012 4.5335 1.4220 0.6852 1.6365 1.1844 1.13182 372.68108 2.91864 31.49293 185.44185 1663.85288
4 0.9586 0.0098 0.0316 0.8034 6.0970 0.3072 0.6856 1.8424 0.5154 1.14215 375.24596 2.91063 31.48800 185.07336 1654.66835
5 0.9061 0.0098 0.0841 0.8132 6.1915 0.0932 0.6901 1.8877 0.2508 1.15264 374.71137 2.90089 31.07680 184.53258 1650.27798
6 0.9665 0.0237 0.0098 0.8219 3.2685 1.6589 0.6956 1.4586 1.2811 1.13972 370.49508 2.91021 31.07029 186.93011 1660.53970
7 0.9555 0.0178 0.0267 0.8338 3.6252 0.3955 0.7004 1.4727 0.5724 1.15216 374.38711 2.90107 31.43029 190.19240 1643.37314
8 0.6677 0.0098 0.3225 0.8376 5.2910 0.0265 0.7023 1.7994 0.1495 1.17033 370.33900 2.88287 29.87199 181.76605 1650.75594
9 0.8271 0.0156 0.1574 0.8510 3.7632 0.0673 0.7088 1.4755 0.2207 1.17053 371.89983 2.88348 30.38047 186.85978 1641.21627
10 0.9180 0.0223 0.0597 0.8572 2.9603 0.1639 0.7120 1.3439 0.3259 1.16687 373.43135 2.88748 30.94974 191.25963 1635.00362
11 0.9468 0.0299 0.0234 0.8583 2.6154 0.3821 0.7137 1.3084 0.5616 1.16296 372.32603 2.89034 30.93058 191.54188 1638.44977
12 0.9485 0.0416 0.0098 0.8592 2.3294 1.0237 0.7165 1.2694 1.0017 1.15960 368.18918 2.89112 30.26195 187.95819 1651.19855
13 0.4141 0.0098 0.5761 0.8820 3.3107 0.0169 0.7239 1.4225 0.1193 1.18904 366.09880 2.86437 28.91049 181.88390 1646.51051
14 0.8674 0.0341 0.0986 0.8895 2.0923 0.0976 0.7291 1.1723 0.2585 1.18306 370.23201 2.87165 30.07703 190.93115 1630.99619
15 0.6954 0.0230 0.2816 0.8958 2.2775 0.0383 0.7311 1.1876 0.1743 1.19017 367.46658 2.86409 29.30879 186.55900 1637.18188
16 0.9259 0.0589 0.0152 0.8980 1.7620 0.3140 0.7358 1.1172 0.5291 1.18131 367.25982 2.87162 29.64280 189.41987 1638.23797
17 0.8747 0.0602 0.0651 0.9210 1.5172 0.0782 0.7465 1.0348 0.2357 1.19494 367.29650 2.85995 29.36376 190.49775 1629.04797
18 0.8972 0.0930 0.0098 0.9421 1.2451 0.1747 0.7607 0.9561 0.3968 1.20015 362.74795 2.85320 28.45624 186.66266 1637.88933
19 0.5412 0.0317 0.4272 0.9435 1.3911 0.0217 0.7569 0.9705 0.1373 1.20797 363.25104 2.84681 28.33412 185.77280 1634.52741
20 0.1783 0.0098 0.8119 0.9537 1.4074 0.0142 0.7593 0.9685 0.1005 1.21334 361.16260 2.84118 27.87938 183.40497 1638.35826
21 0.7810 0.0743 0.1447 0.9563 1.1438 0.0327 0.7657 0.9108 0.1637 1.21004 363.54923 2.84528 28.40757 188.02054 1629.43721
22 0.8528 0.1374 0.0098 0.9989 0.8186 0.0164 0.7888 0.7849 0.1146 1.22488 359.53340 2.83100 27.44930 185.49637 1630.24497
23 0.0098 0.0098 0.9804 1.0399 0.6499 0.0141 0.7956 0.6968 0.0902 1.23882 356.32783 2.81742 26.92255 185.37793 1628.94752
24 0.7522 0.1887 0.0591 1.0546 0.5356 0.0243 0.8179 0.6421 0.1391 1.24449 354.64271 2.81267 26.31932 182.01214 1631.30549
25 0.7606 0.2296 0.0098 1.0871 0.4029 0.2020 0.8325 0.5591 0.4325 1.25995 354.52660 2.80032 26.06227 183.18016 1621.17614
26 0.2473 0.1709 0.5818 1.0972 0.4172 0.0285 0.8448 0.5610 0.1348 1.25175 352.54771 2.80630 25.66531 179.91774 1630.85291
27 0.6383 0.2689 0.0928 1.1145 0.3352 0.0644 0.8479 0.5108 0.2313 1.26341 349.64239 2.79527 25.24397 178.31599 1633.23677
28 0.6737 0.3039 0.0224 1.1349 0.2717 0.1904 0.8562 0.4620 0.4206 1.27398 349.76269 2.78703 25.13530 179.35368 1625.95602
29 0.1940 0.2199 0.5861 1.1434 0.3379 0.0382 0.8712 0.5037 0.1596 1.25656 351.23210 2.80242 25.12615 177.6236 1630.62645
30 0.3333 0.3333 0.3333 1.1590 0.2525 0.0802 0.8724 0.4359 0.2482 1.27100 347.26919 2.78867 24.58727 175.71894 1633.94231
31 0.6273 0.3629 0.0098 1.1678 0.1845 0.7386 0.8703 0.3822 0.8494 1.29083 350.70344 2.77456 25.03419 181.71037 1611.65480
32 0.5834 0.3896 0.0270 1.1820 0.1793 0.2584 0.8782 0.3738 0.4870 1.28850 346.01617 2.77410 24.38553 176.59154 1627.40023
33 0.1408 0.2689 0.5903 1.2078 0.2671 0.0501 0.8970 0.4431 0.1913 1.26180 350.09497 2.79832 24.59792 175.39033 1629.39518
34 0.3189 0.4707 0.2104 1.2095 0.1628 0.1503 0.8930 0.3450 0.3438 1.28750 343.03392 2.77389 23.80463 172.75207 1635.85910
35 0.0663 0.1502 0.7835 1.2301 0.3345 0.0259 0.9058 0.4952 0.1227 1.24979 353.63873 2.81008 25.00890 176.81948 1625.75383
36 0.4343 0.5158 0.0499 1.2326 0.1203 0.2645 0.9012 0.2969 0.4693 1.30134 341.29706 2.76227 23.53922 172.66032 1632.77546
37 0.4401 0.5501 0.0098 1.2434 0.0812 1.1175 0.9038 0.2465 1.0419 1.31622 345.84190 2.75321 24.00988 178.64380 1609.24096
38 0.1449 0.4028 0.4523 1.2594 0.1906 0.0845 0.9162 0.3702 0.2548 1.27272 347.18776 2.78863 23.96077 172.76385 1630.55164
39 0.2569 0.7333 0.0098 1.2865 0.0495 1.5611 0.9224 0.1950 1.2355 1.33137 344.13926 2.74139 23.56392 177.92134 1604.01163
40 0.1890 0.6630 0.1480 1.2879 0.0960 0.2418 0.9257 0.2625 0.4390 1.30408 339.17107 2.76008 22.90371 169.10635 1635.57306
41 0.2379 0.7315 0.0306 1.2920 0.0702 0.5083 0.9259 0.2302 0.6650 1.32142 338.52033 2.74616 22.91348 171.28099 1627.59867
42 0.1469 0.5461 0.3070 1.2999 0.1275 0.1464 0.9301 0.2972 0.3372 1.28741 343.27997 2.77543 23.28348 170.05583 1632.65640
43 0.0510 0.9392 0.0098 1.3347 0.0386 1.7523 0.9472 0.1725 1.3100 1.33780 343.61283 2.73734 23.11968 176.17845 1599.75877
44 0.0098 0.0412 0.9490 1.3358 0.3683 0.0179 0.9352 0.5186 0.0949 1.24010 356.69676 2.81991 25.13331 176.91324 1621.50113
45 0.0503 0.9279 0.0218 1.3654 0.0521 0.7279 0.9576 0.1996 0.7961 1.32823 339.36753 2.74286 22.50439 170.11667 1618.20145
46 0.0804 0.8240 0.0956 1.3818 0.0704 0.2976 0.9595 0.2301 0.4943 1.31173 338.08926 2.75489 22.32681 166.58421 1631.96313
47 0.0778 0.3268 0.5953 1.4157 0.1869 0.0564 0.9661 0.3620 0.2043 1.26343 350.03607 2.79864 23.80916 171.41937 1625.60122
48 0.0897 0.4801 0.4302 1.4243 0.1359 0.0962 0.9680 0.3048 0.2730 1.27539 346.75094 2.78763 23.30379 169.40713 1627.82656
49 0.0758 0.7006 0.2235 1.4728 0.0848 0.1765 0.9822 0.2459 0.3749 1.29299 342.27345 2.77211 22.54882 166.38978 1629.52166
50 0.0249 0.9178 0.0573 1.6804 0.0578 0.2760 1.0449 0.2094 0.4864 1.30275 342.09295 2.76614 21.95364 164.07908 1621.24596
51 0.0168 0.9582 0.0250 1.6859 0.0488 0.5119 1.0532 0.1926 0.6752 1.30796 344.38607 2.76350 22.14716 166.41554 1610.77227
52 0.0544 0.5448 0.4007 1.6910 0.1021 0.0932 1.0357 0.2641 0.2702 1.27346 347.58920 2.79104 22.76179 166.21902 1623.83739
53 0.0393 0.2812 0.6795 1.7121 0.1701 0.0387 1.0411 0.3459 0.1619 1.25378 353.03633 2.80925 23.54388 169.24769 1620.36697
54 0.0098 0.9804 0.0098 1.7899 0.0335 1.4370 1.0905 0.1599 1.1899 1.31059 351.06132 2.76552 22.63659 171.23157 1587.38629
55 0.0161 0.1409 0.8430 1.9643 0.1871 0.0246 1.0987 0.3634 0.1056 1.24216 356.50974 2.82109 23.61552 168.80043 1616.06082
56 0.0288 0.8031 0.1682 1.9921 0.0639 0.1376 1.1123 0.2185 0.3398 1.28230 345.88046 2.78494 21.93198 162.04784 1620.55440
57 0.0284 0.3835 0.5881 2.1755 0.1092 0.0446 1.1446 0.2724 0.1768 1.25372 353.30379 2.81116 22.74299 164.61070 1616.47529
58 0.0249 0.6222 0.3529 2.3623 0.0724 0.0713 1.1831 0.2271 0.2365 1.26301 350.82493 2.80339 22.08567 161.38225 1616.34056
59 0.0098 0.9501 0.0401 2.4376 0.0482 0.2323 1.2274 0.1915 0.4677 1.27927 350.10681 2.79158 21.72572 161.10134 1606.75502
60 0.0098 0.1709 0.8193 2.6561 0.1190 0.0268 1.2297 0.2827 0.1129 1.23831 357.82540 2.82658 22.76946 163.52130 1611.06279
61 0.0098 0.8565 0.1337 3.2295 0.0514 0.0724 1.3709 0.1974 0.2486 1.25473 353.81957 2.81451 21.39144 156.39127 1608.35986
62 0.0098 0.3253 0.6649 3.3565 0.0730 0.0318 1.3620 0.2259 0.1251 1.23661 358.25215 2.83008 21.96677 158.37690 1607.70377
29
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Fig. A.21. Effect of 𝜆r on the saturated-liquid density and saturated-vapour density obtained with the SAFT-VR Mie EoS (Lafitte et al., 2013). The values of the other parameters
re fixed to the typical values for water 𝑚 = 1, 𝜆a = 6, 𝐾HB

e,H = 180 Å
3
, 𝜎 = 3 Å, 𝜖∕𝑘B = 390 K and 𝜖HBe,H = 1700 K.
require significant computational effort. From a chemical engineering
perspective, the spherical models of water that we have identified
during the course of the MOO solution are suitable for typical process
operating conditions that are away from the critical point of water, but
one must be careful when using these models to calculate properties at
near-critical conditions.
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