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A B S T R A C T   

Weeds are undesired plants in agricultural fields that affect crop yield and quality by competing for nutrients, 
water, sunlight and space. For centuries, farmers have used several strategies and resources to remove weeds. 
The use of herbicide is still the most common control strategy. To reduce the amount of herbicide and impact 
caused by uniform spraying, site-specific weed management (SSWM) through variable rate herbicide application 
and mechanical weed control have long been recommended. To implement such precise strategies, accurate 
detection and classification of weeds in crop fields is a crucial first step. Due to the phenotypic similarity between 
some weeds and crops as well as changing weather conditions, it is challenging to design an automated system 
for general weed detection. For efficiency, unmanned aerial vehicles (UAV) are commonly used for image 
capturing. However, high wind pressure and different drone settings have a severe effect on the capturing 
quality, what potentially results in degraded images, e.g., due to motion blur. In this paper, we investigate the 
generalization capabilities of Deep Learning methods for early weed detection in sorghum fields under such 
challenging capturing conditions. For this purpose, we developed weed segmentation models using three 
different state-of-the-art Deep Learning architectures in combination with residual neural networks as feature 
extractors. 

We further publish a manually annotated and expert-curated UAV imagery dataset for weed detection in 
sorghum fields under challenging conditions. Our results show that our trained models generalize well regarding 
the detection of weeds, even for degraded captures due to motion blur. An UNet-like architecture with a ResNet- 
34 feature extractor achieved an F1-score of over 89% on a hold-out test-set. Further analysis indicate that the 
trained model performed well in predicting the general plant shape, while most misclassifications appeared at 
borders of the plants. Beyond that, our approach can detect intra-row weeds without additional information as 
well as partly occluded plants in contrast to existing research. 

All data, including the newly generated and annotated UAV imagery dataset, and code is publicly available on 
GitHub: https://github.com/grimmlab/UAVWeedSegmentation and Mendeley Data: https://doi. 
org/10.17632/4hh45vkp38.4.   
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1. Introduction 

Weeds are undesired plants in agricultural fields that affect crop 
yield and quality by competing for nutrients, water, sunlight and space 
(Patel and Kumbhar, 2016). For centuries, farmers have used several 
strategies and resources to remove weeds. Some of these strategies 
include mechanical (mowing or tilling) and chemical (herbicides) con
trol. The use of herbicides remains the most common control strategy as 
it is less time consuming and labor-intensive (Aktar et al., 2009). 
However, recent studies show that this strategy can impact negatively 
on the biota and the surrounding environment over time (Holt, 2004; 
Who, 1990). These disadvantages lead to a social pressure requesting 
less usage (Ridgway et al., 1978). To reduce the amount of herbicide and 
impact caused by uniform spraying, site-specific weed management 
(SSWM) through variable rate herbicide application and mechanical 
weed control using an autonomous field robotic system have long been 
recommended (Fernández-Quintanilla et al., 2018). These approaches 
heavily depend on weed sensing and mapping technology. To achieve 
this, an accurate as well as efficient detection and classification of weeds 
in crop fields is a crucial first step (Liu and Bruch, 2020). 

Owing to the phenotypic similarity between some weeds and crops as 
well as the dynamic weather conditions, designing an automated system 
for general weed detection in crop fields is challenging (Hasan et al., 
2021). Furthermore, variability in the emergence time of different 
weeds at various crop growth stages makes it rather complicated to 
design a generalized model. Most studies in weed detection have 
leveraged plant vegetation indices (Hamuda et al., 2016; Meyer and 
Neto, 2008) and hand-engineered features with a focus on classical 
Machine Learning (ML) methods, such as Support Vector Machines 
(SVM) and Random Forests (RF) (Zheng et al., 2017). For example, 
Kazmi et al. employed conventional image processing based on vegeta
tion indices for creeping thistle weed detection in sugar beet fields 
(Kazmi et al., 2015). Relatedly, Islam et al. reported weed detection in 
chili plants using a similar technique (Islam et al., 2021). 

Deep Learning (DL), particularly Convolutional Neural Networks 
(CNNs), are capable of extracting relevant features from raw images and 
were used extensively in image classification in recent years (LeCun and 
Bengio, 1998). They generalize well across illuminations and obstruc
tions and were applied for several agricultural tasks (Genze et al., 2020; 
Kussul et al., 2017; Grinblat et al., 2016; Chen et al., 2017). These 
properties make them well suited for weed classification using drone 
images from fields, which comprise several changing conditions, such as 
illumination. Furthermore, recent surveys show a superiority of DL-based 
approaches compared to classical ML (Liu and Bruch, 2020; Kamilaris 
and Prenafeta-Boldu, 2018; Kamilaris et al., 2017; Alom et al., 2019). 
Additionally, several authors have concluded that hand engineered 
features tend to be less precise and hard to generalize compared to DL- 
based approaches (Penatti et al., 2015; Huang et al., 2018). 

One downside of CNNs is the amount of data needed for general
ization (Sun et al., 2017). There are several publicly available datasets 
for weed detection, as summarized in a recent review (Lu and Young, 
2020). However, most of these datasets were collected using high- 
resolution cameras mounted on field robots or pulled carts. DL models 
have been applied for the task of weed detection on different crops. For 
example, Ramirez et al. used a dataset called WeedMap (Sa et al., 2018), 
consisting of high-resolution orthomosaic images of a sugar beet field in 
Germany. The authors compared SegNet (Badrinarayanan et al., 2015) 
and a modified U-Net (Ronneberger et al., 2015) with a recent seg
mentation architecture called DeepLabv3 (Chen et al., 2017). Deep
Labv3 led to a higher classification accuracy due to a greater spatial 
context (Ramirez et al., 2020). Huang et al. studied weeds in rice fields 
and showed that Fully Convolutional Networks (FCNs) (Long et al., 
2015) outperform other methods in accuracy and efficiency for drone 
imagery with a ground sampling distance (short: GSD, distance between 
adjacent pixel centers) of 0.3 cm (Huang et al., 2018; Huang et al., 
2018). 

Regarding data generation, most weed detection studies rely on 
object-based image analysis (OBIA) (Lam et al., 2021; Hay and Castilla, 
2006), unsupervised (Dian Bah et al., 2018; dos Santos Ferreira et al., 
2017) or semi-supervised (Pérez-Ortiz et al., 2015; Lottes and Stachniss, 
2017) approaches for semantic segmentation. The main reason for this is 
the large effort of a manual pixel-based labeling. Beyond that, additional 
information like the spatial distribution of the crop rows (Lottes and 
Stachniss, 2017; Onyango and Marchant, 2003; Milioto et al., 2018) or 
different sensors (e.g. near infrared (NIR) and multispectral) are widely 
used (Lottes et al., 2018). By using different light spectra, it is easier to 
separate vegetation from soil (Yeom et al., 2019), thus making the 
ground truth generation faster. One downside of current NIR and mul
tispectral sensors is their low GSD compared to RGB sensors. Although 
NIR and multispectral sensors provide more information about the 
vegetation compared to RGB sensors, the GSD is one of the most critical 
parameters for accurate weed detection. Besides the difficulty of 
detecting small weeds captured by drones with low GSD, it is more time- 
consuming and error-prone to generate the ground truth. 

For a real-world application, an efficient way for image capturing is 
needed, for which drones can be utilized (Mukherjee et al., 2019). On 
the one hand, a higher throughput and temporal resolution are the main 
advantages compared to ground robots. On the other hand, image 
capturing using drones is prone to motion blur, e.g. due to wind-related 
displacements. This is an additional challenge for a robust weed classi
fication. Only a limited number of datasets have been generated using 
drone captures, due to the time-consuming generation and labeling of 
such datasets. 

In this study, we investigate weed segmentation capabilities of DL- 
based approaches using real-world motion blurred drone captures in 
sorghum fields. For this purpose, we generated a manually curated and 
expert-labeled UAV dataset of early weeds and sorghum plants. Our 
dataset is fully and manually annotated with the highest precision 
possible without relying on OBIA or threshold-based segmentation 
techniques. This dataset enabled us to evaluate state-of-the-art DL ar
chitectures in combination with residual neural networks of different 
sizes as feature extractors for early weed and sorghum segmentation. We 
further, evaluated the generalization abilities of our trained models with 
respect to different growth stages of sorghum. 

2. Material and methods 

In the next section, we provide insights into the data acquisition and 
annotation. Afterwards, we outline the machine learning models, the 
hyperparameter optimization as well as all used evaluation metrics. 
Finally, we describe the experimental setup. 

2.1. Data acquisition and annotation 

Images collected by an UAV on an experimental sorghum field in 
Southern Germany provided data for this study. The sorghum variety 
“Farmsugro 180” was sown at 37.5 cm row spacing with a seeding 
density of 25 seeds per m2. During image capture, several weed species 
were present on the field. These weeds comprised mostly of dicotyledons 
namely, Goosefoot (Chenopodium album L.), Field pennycress (Thlaspi 
arvense), Wild chamomile (Matricaria chamomilla), Common gypsyweed 
(Veronica officinalis) and Cotton thistle (Onopordum acanthium). Beyond 
that, a consumer-grade drone “DJI Mavic 2 Pro” fitted with a 20 MP 
Hasselblad camera (L1D-20c) that captures images with a resolution of 
5472x3648 pixels2 was used. Automated drone flight with camera 
pointing nadir and a capture overlap of ten percent was carried out at a 
flight altitude of five meters above ground level. At this altitude, the 
corresponding GSD was one millimeter, and therefore precise enough to 
recognize sorghum and weeds in early growth stages. A set of 60 high 
resolution images was captured in late spring when sorghum was at the 
growth stage 17 (according to the BBCH scale (Hess et al., 1997). 
Thereby, a time- and battery-efficient setting was selected with a non- 
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stop capturing at 60 points of equal distance along the flight path, which 
leads to motion blur in the collected images. 

In this work, we defined the weed detection task as distinguishing 
weeds from sorghum plants and soil pixel by pixel (weed segmentation). 
To enable supervised ML, we assigned one of these three classes (weed, 
sorghum, soil) to every pixel of each collected image. For the annotation 
process, we used the open-source GNU Image Manipulation Program 
(GIMP). Agronomy experts guided the labeling process to ensure a high- 
quality ground truth. Fig. 1 shows an example of a drone capture and its 
related pixel-wise ground truth. 

About 6.300 patches from 19 images were annotated resulting in 
over 3.000 sorghum and 3.000 weed instances, as summarized in 
Table 1. We divided each image in non-overlapping patches with a 
resolution of 256x256 pixel for an efficient training process. Addition
ally, all non-square patches (image and labels) were padded with zeros. 

Several factors influenced the degree of motion blur in the images, e. 
g. the current velocity of the drone or external factors such as wind. The 
blurriness of images varied between different captures, e.g. some cap
tures were slightly sharper after the rotation of the drone at an edge of 
the flight plan, because the drone was flying slower and stabilized itself 
after the rotation. A detailed evaluation of the blurriness of our captures 
can be found in Supplementary Text 1. Another challenge in this real- 
world datasets are overlapping plants. This might lead to multiple 
plants being labeled and counted as one instance. 

To evaluate the generalization capabilities of our model, we labeled 
two additional UAV missions, as shown in Table1. These images were 
captured during different UAV flights on another part of the field and 
show sorghum at the growth stages BBCH 15 and 19. More detailed 
information and statistics about the dataset can be found in the Sup
plementary Figure S1. 

Due to the pixel-wise annotation of the datasets, it can be easily 
adapted to other tasks, such as patch-based classification or object 
detection using bounding boxes. These additional labels can be gener
ated automatically using our fine-grained labeled segmentation masks. 

2.2. Machine learning and experimental setup 

The architecture of our weed segmentation model consists of a 
feature extractor and a semantic segmentation architecture. 

For our weed segmentation model, we combined these six semantic 
segmentation architectures with four residual neural networks of 
different sizes as feature extractors (He et al., 2016; Veit et al., 2016). 
Residual networks combat the vanishing gradient problem by intro
ducing identity skip connections and allowing data to flow from any 
layer directly to any subsequent layer. This enabled researchers to build 
deeper networks with hundreds of layers efficiently. In addition, they 
utilize convolutions with strides instead of pooling layers for 

downsampling. The feature extractors ResNet-18, 34, 50 and 101 were 
used in this study, which consist of 18, 34, 50 and 101 layers, 
respectively. 

With respect to the semantic segmentation architecture, we investi
gated six state-of-the-art DL architectures, namely UNet (Ronneberger 
et al., 2015), DeepLabv3+ (Chen et al., 2017) and four variants of FCN 
(Long et al., 2015), since these models have already been successfully 
used for other crops (Ramirez et al., 2020; Huang et al., 2018). The main 
aspects of the model architectures are illustrated in Fig. 2. 

FCNs perform convolutions, pooling and upsampling and can pro
duce a spatial segmentation map of the same size as the input image and 
scale across different image sizes, as indicated in Fig. 2a-d. Semantic 
information from deep and coarse layers can be combined with 
appearance information from shallow and fine layers in the network. 
The FCN-32s model does not combine information of different layers, 
but predicts one segmentation mask from the last layer of the network 
and then calculates the result using bilinear interpolation with a factor 
of 32 (Fig. 2a). In the FCN-16s model, the predictions of the last two 
layers are combined. Therefore, the predictions from the last layer must 
be upsampled by a factor of two first and then combined with the feature 
maps of the second-last layer. In addition, one-by-one convolutions are 
used to match the depth of both feature maps before combining them. 
Finally, the result is upsampled by a factor of 16 (Fig. 2b). In the FCN-8s 
model, the two last feature maps are concatenated first (as in the FCN- 
16s model). This result gets upsampled by a factor of two again to 
combine it with the third-last layer. Finally, this output can only be 
upsampled by eight to match the spatial resolution of the input image 
(Fig. 2c). The FCN-8s model is able to predict more fine-grained seg
mentation maps by combining predictions from three different layers. 
This helps in training a model that is able to predict finer details. 
Alternatively, dilated (atrous) convolutions (Fisher and Koltun, 2016) 
can be used to preserve the spatial resolution. In addition, they use a 
greater receptive field to cover more information in the layer. This led to 
the architecture FCN-8s+ dilation, as shown in Fig. 2d. This architecture 
is similar to FCN-32s, as no information from intermediate layers is used, 
but it only needs to interpolate the predictions bilinear with a factor of 
eight. 

The UNet architecture was initially developed for biomedical tasks 
and has been adapted to different domains. Existing research shows that 

Fig. 1. Example drone capture and related ground truth for the dataset sorghum_17. a UAV capture from one of our sorghum fields b Pixel-wise ground truth 
with background in gray, sorghum plants in blue and weed plants in orange. 

Table 1 
Summary statistics of the datasets used in this study.  

Dataset 
Name 

Sorghum 
BBCH 

Annotated 
Patches 

Sorghum 
Instances 

Weed 
Instances 

sorghum_17 17 6270 3056 3060 
sorghum_15 15 110 115 429 
sorghum_19 19 110 99 981  
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this model achieved good segmentation results even with little training 
data by relying on a vigorous data augmentation pipeline. Skip con
nections between encoder and decoder are used to fuse information of 
all layers of the encoder with the corresponding layers in the decoder 
(Fig. 2e). In addition, the feature maps are upsampled more gradually in 
the decoder compared to FCN. Finally, the upsampling is done using 
learnable filters instead of a fixed bilinear interpolation. 

DeepLabv3+ is a model architecture presented by Chen et al. that 
improves the coarse spatial resolution - caused by repeated pooling 
layers - by using dilated (atrous) convolutions. These special operations 
adjust the field-of-view of the filter, as indicated in Fig. 2f. The Atrous 

Spatial Pyramid Pooling (ASPP) module uses multiple parallel-dilated 
convolutions with different rates to consider objects at different scales 
(Chen et al., 2017). Similar to FCN and UNet, an encoder-decoder ar
chitecture is used to recover the lost spatial information and refine the 
predictions at the object boundaries. 

Furthermore, early stopping (Prechelt et al., 2012) and a learning 
rate scheduler were implemented to lower the computational cost and 
avoid overfitting. The Adam (Kingma and Ba, 2014) optimizer was used 
with different initial learning rates. Following the principles of risk 
minimization (Vapnik, 1992), a differentiable version of the Sørensen- 
Dice Coefficient (DS) was used as a loss function to update the weights in 

Fig. 2. Model diagrams of the different semantic segmentation architectures used in this study. Numbers indicate the spatial resolution of the feature maps. 
Skip connections are shown as gray arrows. The concatenation of feature maps is shown as plus. Upsampling operations before the concatenation is omitted for 
readability. Final bilinear interpolation is shown in a green box indicating the upsampling factor. a-c Modifications of the FCN architecture with different strides. 
d FCN architecture using dilated convolutions, preserving the spatial resolution in the last layers. e UNet architecture using skip connections. f DeepLabv3+ ar
chitecture using Atrous Spatial Pyramid Pooling (ASPP) with atrous rates of r = 12, 24 and 36. 
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the training process. The same loss was applied to validate the perfor
mance of the trained models. This metric is commonly used to measure 
the similarity of two samples in the evaluation of semantic segmentation 
tasks (Bertels et al., 2019) and has been shown to be robust to class 
imbalance (Sudre et al., 2017). It is defined as follows: 

DS =
2*TP

2*TP + FP + FN
(1)  

where TP is the number of true positives, FP is the number of false 
positives and FN is the number of false negatives. The batch size was 
fixed to 100 for each combination of feature extractor and segmentation 
architecture. 

Hyperparameters can greatly influence the predictions of a DL-based 
model. There are several strategies for optimizing these, e.g. Grid or 
Random Search (Bergstra and Bengio, 2012). Contrary to these strate
gies, Tree-structured Parzen Estimator (TPE) (Bergstra and Bengio, 
2012) selects a new set of hyperparameters based on previous experi
ments conducted in an optimization study. Using an objective function, 
a new set of hyperparameters is sampled to achieve a high probability of 
a good score. This strategy requires the construction of a probabilistic 
model for the optimization process, but is efficient due to the automatic 
selection of promising settings. For this reason, we employed this 
strategy to optimize the hyperparameters summarized in Table 2. 

All models were trained and evaluated based on patches of 256x256 
pixel2. We excluded patches that contained only background or small 
plant instances (>99% only background pixels). This resulted in 2156 
patches from 12 UAV captures. Patches that were zero-padded in an 
earlier step made up 143 patches (=6.63%). Padding does not affect the 
classification accuracy (Hashemi, 2019) itself, but is needed to use the 
whole dataset more efficiently. The data was split into four folds for 
cross validation and an additional hold-out test-set for estimating the 
final model performance, as shown in Fig. 3. The averaged performance 
on the validation sets was used to determine the best performing 
hyperparameter combinations for each weed segmentation model. A 
total of 50 different hyperparameter sets were evaluated. The setup 
leading to the smallest error averaged over all validation sets was 
trained again on the complete training and validation data. Finally, we 
evaluated the performance of the resulting model on the hold-out test- 
set. 

We report the evaluation metrics precision, recall and the F1-score 
on a pixel basis: 

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1 − score =
Precision*Recall

Precision + Recall
(4) 

Further, as we observed a high-class imbalance, we calculate the 
macro-averaged metrics, as weight-averaged metrics favor the majority 
class (background). Weight-averaged metrics consider the proportion 
for each label in the dataset. As the weed class is occurring the least, but 
is the most important one, macro-averaged metrics are more suitable, as 
they reflect the arithmetic mean of all classes. 

The final performance was calculated after combining all patches 
into individual images. This procedure is independent of the batch size 
and the size of the patches, thus ensures the comparison to different 
other weed detection approaches in future studies. 

Beyond that, data augmentation (Shorten and Khoshgoftaar, 2019) is 
a common technique in image processing to enlarge the amount of 
training data. It is widely used, as the performance of a ML-based model 
depends on the amount of available data. We used several ways to 
augment data, which are summarized in Table 3. In addition to the 
standard translational augmentations, we used Contrast Limited Adap
tive Histogram Equalization (CLAHE) (Zuiderveld, 1994) to enhance the 
local contrast of the image patches together with a channel-wise 
normalization. 

We trained our weed segmentation models using Transfer Learning 
(TL) (He et al., 2016). We initialized the feature extractors using weights 
pre-trained on ImageNet (Deng et al., (2009–2009)). The decoder was 
initialized using He initialization as proposed by He et al. (He et al., 
(2015–2015)). 

All code is implemented in Python 3.8 using the packages numpy 
(Mukherjee et al., 2019); pytorch (Hess et al., 1997); torchvision (Marcel 
and Rodriguez, 2010); albumentations (He et al., 2016); optuna (Veit 
et al., 2016); kornia (Fisher and Koltun, 2016) and scikit-learn (Prechelt 
et al., 2012). Optimizations were conducted using an Ubuntu 20.04 LTS 
machine with 104 CPU Cores, 756 GB memory and four GeForce RTX 
3090 GPUs. Each model was trained on a single GPU. Models that did 
not fit on this GPU were trained on another machine using a NVIDIA A40 
GPU with 48 GB VRAM. 

3. Results 

In this section, we first provide an overview of our results. Then, we 
analyze the predictions of our best performing weed segmentation 
model in more details. Finally, we discuss our results. 

3.1. Results overview 

First, we evaluated the architecture choice of the segmentation 
model in combination with four ResNet feature extractors employing a 
fourfold cross-validation. In Table 4, we show the results on the vali
dation sets for these experiments using the Sørensen-Dice Coefficient 
(DS) summarized over all 50 trials, see Section 2.2. In summary, UNet 
with ResNet-34 as feature extractor performed best. 

In general, the deepest feature extractor ResNet-101 performed 
worse for all segmentation models. The best performing feature 
extractor was dependent on the selected segmentation architecture. We 
observed minor differences in the objective value when comparing 
different feature extractors while using the same semantic segmentation 
model. In addition, there were minor differences in the objective values 
between different segmentation models UNet and DeepLabv3+. When 
using dilated convolutions in the feature extractor with the FCN-8s ar
chitecture (no concatenation of intermediate feature maps), the objec
tive values had only minor differences compared to UNet and 
DeepLabv3+. This indicates a minor effect of the selection of the se
mantic segmentation model. 

Both, FCN-16s and FCN-8s combined multiple output layers together 
and then upsampled the result. Here we observed a higher objective 
value in general, meaning worse predictions. In addition, the standard 

Table 2 
Summary of the hyperparameters used and optimized in this study.  

Hyperparameter optimized Range Description 

initial learning rate yes 10− 4 −

10− 2 
learning rate at the start of 
model training. It is sampled 
from a log-uniform distribution. 

learning rate decay yes 0.9–0.1 rate of the learning rate decay 
used when the loss function 
plateaus. The step size was set to 
0.1. 

learning rate 
scheduler patience 

no 5 reduce the learning rate, if the 
validation loss did not improve 
over this number of epochs 

batch size no 100 Number of patches that can be 
sent through the network in one 
forward pass 

early stopping 
patience 

no 10 stop the training loop, if the 
validation loss did not improve 
over this number of epochs  
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deviation between the trials is approximately 28 times higher for FCN- 
16s and FCN-8s compared to FCN-32s. This holds true for all feature 
extractors examined in this study. 

The best combination UNet with ResNet-34 was more robust during 
hyperparameter optimization, indicated by a small standard deviation of 
0.0022. 

3.2. Best performing model 

Furthermore, the final performance was estimated on the above- 
described hold-out test-set using the best performing weed segmenta
tion model (UNet with ResNet-34), which we re-trained on the complete 

training and validation data using the hyperparameter values that led to 
the lowest error. The final model has high macro-averaged evaluation 
values on the hold-out test-set, as shown in Table 5. Every metric is 
above 86% indicating sufficient generalization capabilities. 

Fig. 4a shows the model’s accuracy more precisely on a per-class 
basis by using a normalized confusion matrix. The soil was almost 
correctly predicted with high accuracy of 99.9%. The model classified 
86.1% of all sorghum pixels correctly while misclassified 11.3% as 
background and 2.6% as weed. More importantly, 72.7% of all weed 
pixels were classified correctly, while predicting 23.2% as background 
and only 4.1% as sorghum. Additional per-class metrics can be found in 
Supplementary Table S5. 

In addition, we tested the generalization abilities of our model 
(trained on sorghum at BBCH 17) using two different growth stages of 
sorghum (BBCH 15 and 19). Most importantly, our weed segmentation 
model trained on BBCH 17 is still able to detect weeds at least as well on 
images with lower or higher growth stages of sorghum (see Fig. 4b and 
4c). Interestingly, for sorghum at BBCH 19, 77.6% of all weed pixels 
were classified correctly (i.e. an increase of 4.8% compared to results 
shown in Fig. 4a). However, the predictions on sorghum for different 
growth stages dropped to 50.0% for BBCH 15 (a decrease of 36.9%), 
mostly predicting weeds correctly. However, for BBCH 19 there was a 
decrease of only 1.1% to 85.8%, indicating consistent high performance 
on larger BBCH stages of sorghum. 

Beyond that, we performed a qualitative analysis of the results on the 
hold-out test set and the additional patches from different growth stages. 
In general, the predictions of our weed segmentation model are accurate 
for the hold-out test set (as shown in Fig. 5a-f). 

Most plants were segmented correctly, capturing the general shape of 
the plants. However, we observed most confusions at the borders of the 
plants. Unfortunately, these misclassifications of mainly the borders 
cannot be captured by the used evaluation metrics. Furthermore, most 
pixels belonging to “old weeds” (i.e. larger weeds that have been already 
present when sowing the crop) are predicted correctly, as shown in 
Fig. 5b, i and k. Only some parts of these instances were mis-classified as 

Fig. 3. Overview of the model selection and evaluation process conducted for each weed segmentation model.  

Table 3 
Data augmentation techniques used in this study.  

Augmentation Transform Description 

Horizontal flip Flips the image horizontally 
Vertical flip Flips the image vertically 
RandomRotate90 Randomly rotates the image by a factor of 90 degrees 
Transpose Swaps rows and columns of the image 
CLAHE Applies CLAHE to the input image  

Table 4 
Best evaluation results on the validation sets for each weed segmentation model 
based on the Sørensen-Dice Coefficient for 50 trials. Standard deviation is pro
vided in brackets. The best performing feature extractor for each segmentation 
architecture is denoted in bold.   

ResNet-18 ResNet-34 ResNet-50 ResNet-101 

FCN-32s 0.0281 
(0.0061) 

0.0285 
(0.0061) 

0.0275 
(0.0056) 

0.0278 
(0.0059) 

FCN-16s 0.0226 
(0.16) 

0.0232 (0.16) 0.0255 (0.16) 0.0270 
(0.16) 

FCN-8s 0.0134 
(0.16) 

0.0136 (0.17) 0.0159 (0.17) 0.0160 
(0.18) 

FCN-8s +
dilation 

0.00999 
(0.0095) 

0.0101 
(0.0044) 

0.00951 
(0.0062) 

0.00963 
(0.0052) 

UNet 0.00923 
(0.0041) 

0.00910 
(0.0022) 

0.00913 
(0.0033) 

0.00926 
(0.0035) 

DeepLabv3+ 0.0118 
(0.0018) 

0.00945 
(0.0022) 

0.00939 
(0.0022) 

N.A.* 

* More than 48 GB of GPU memory were required. 

Table 5 
Macro-averaged results on the hold-out test-set in percent for the best per
forming weed segmentation model with UNet and ResNet-34.  

DS Precision Recall F1-score  

99.69  93.01  86.25  89.37  
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sorghum, even though not many “old weed” instances were in the 
training set. Additionally, intra-row weeds were correctly detected, even 
if they are in close proximity or overlapping the crop (see Fig. 5c). 

Plants in patches with a higher relative sharpness (for the sharpness 
calculations see Supplementary Text 1) were also predicted correctly, as 
shown in Supplementary Figure S5 and Fig. 5d-f. This indicates a high 
generalization ability between different degrees of motion blur. 

For the additional growth stages, the main drawback of this model 
was the prediction of sorghum plants as weeds for BBCH 15 (Fig. 5g and 
5i). This might be because of morphological changes due to growth (i.e. 
additional leaves were visible in BBCH 17 compared to BBCH 15). Here, 

in most of the examples only a part of the plant was misclassified, but 
occasionally there were also complete sorghum plants predicted as 
weed. The general weed distribution and the shape of large weeds was 
predicted correctly. Only some parts of weeds were predicted as sor
ghum. For BBCH19, the model was still able to predict weeds correctly, 
despite the fact, that they had grown larger than the weeds the model 
was trained on. In addition, “old weeds” that grew even larger were 
mostly predicted correctly, as shown in Fig. 5k. Some artifacts are visible 
especially for larger plants, which are due to the patching process, as one 
plant was partly cut in different patches resulting in small parts present 
on the patch border. These small parts were then not predicted correctly, 

Fig. 4. Normalized confusion matrix by support size in percent shows the pixel-based classification results on the hold-out test-set. Background/soil is 
denoted by BG, sorghum by S and weed by W. a Sorghum at growth stage BBCH 17. b Sorghum at growth stage BBCH 15. c Sorghum at growth stage BBCH 19. 

Fig. 5. Qualitative results on the hold-out test-set. Image patches of size 400x400 pixel2 are cropped from each test image to show more details. Background (BG) 
is colored in gray, sorghum (S) in blue and weed (W) pixels in orange. The difference map shows only the misclassifications between ground truth and prediction.a-c 
Examples with a high degree of motion blur. a The general shape of weeds is predicted correctly. b Large weed plants that could not be removed before sowing the 
field. Most pixels are predicted correctly. There are small artifacts visible, which are due to the patching process. c Weeds intersecting with sorghum plants were 
predicted correctly. d-f Examples with a low degree of motion blur showing weeds and sorghum plants from different captures. The general shape is predicted 
correctly, where d is a patch from test_04, e from patch test_05 and f from patch test_06. g-k Comparison of two additional drone flights with different growth stages 
and different illumination. g Weed infestation when sorghum was at BBCH15, showing leaves of sorghum being predicted as weed. h The same excerpt as in c when 
sorghum was at BBCH 19. i Large weed plants that could not be removed before sowing the field is predicted mostly correct. Sorghum was at BBCH 15. k The same 
patch when sorghum was at BBCH 19. 
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as denoted in yellow in Fig. 5i and k. 
Finally, the images of BBCH 15 and BBCH 19 were captured with 

different illumination settings than the model was trained on. Interest
ingly, weeds in these captures were still predicted with high precision. 
This indicates that our model might be applicable to captures of different 
image quality. 

The complete dataset and code are publicly available on Mendeley- 
Data1 and in our GitHub repository.2 

3.3. Discussion 

In this paper, we present a DL-based approach to weed detection and 
segmentation in sorghum fields under real-world conditions using mo
tion blurred UAV images. Our dataset was generated with a high GSD of 
one millimeter by conducting drone missions from a low altitude (five 
meters) in sorghum fields. This might be contrary to several other ap
proaches, which employed a higher flight altitude to ensure higher 
throughput. Yet, this high GSD allowed us to label and predict smaller 
weeds potentially resulting in a more accurate weed detection model. In 
addition, the ground truth was generated using a precise approach with 
a pixel-based semantic segmentation and expert-curated annotations for 
the complete dataset. There are several color- or threshold-based ap
proaches, as discussed in a recent survey (Hamuda et al., 2016). The 
quality of those segmentations might vary considerably with the imag
ing and weather conditions, potentially resulting in a wrong ground 
truth, especially when using drone captures degraded by motion blur. As 
mentioned in this survey, changing weather and imaging conditions 
should not influence DL-based approaches, as one could use data 
augmentation to adjust the exposure and saturation. 

Due to wind-related displacements, motion blur is a common chal
lenge in drone imagery of agricultural landscapes. However, the effect of 
real motion blur on weed detection models is not studied widely. In this 
work, we show that DL models are able to accurately segment weeds 
from crop in blurry drone images independent on the degree of motion 
blur. The main bottleneck when developing new supervised DL models is 
the amount of data to label. We show that sorghum plants were 
segmented with a high precision in general when using around 3.000 
labeled instances. One reason for this might be the size and the shape of 
the sorghum plants in comparison with weed instances. The crop plants 
were larger and had a smaller variance in shape. Additionally, over
lapping sorghum plants were predicted sufficiently. Sharp edges were 
not visible due to motion blur and therefore the model could not detect 
any edges to predict the correct class. It had to focus on different features 
of the plants to discriminate between sorghum and weed. The model 
learned the background class well and was able to generalize on 
different backgrounds. Our dataset had few instances of “old weeds” 
(large weeds already present when sowing the crop) that were outliers 
from the normal weed’s distribution. Although the shape was not pre
dicted correctly, still most of these weed pixels were correct. Our model 
did not segment small weeds, as this is also a general bottleneck in DL 
approaches and implies that conducting UAV missions with a higher 
GSD is favorable. However, the overall spatial weed distribution still 
matches the ground truth, which is the main objective in SSWM. More 
important, our model is not dependent on the detection of crop rows and 
is able to detect intra-row weeds, as shown in Fig. 5c and d. Conse
quently, crops that were not sown in precise rows could be detected 
using our model. 

In this study, UNet with ResNet-34 performed best. This indicates 
that a large feature extractor (ResNet-101) is overfitting towards the 
training data more easily. There were slight differences in performance 
when comparing the architectures of the segmentation models. UNet 
was only slightly better than DeepLabv3+ and FCN-8s with dilated 

convolutions, indicating that the choice of the semantic segmentation 
model is not important when using UAV captures with a high GSD of 0.1 
cm. The design choice of using dilated convolutions in the FCN-8s model 
achieved the highest relative improvement. The UNet architecture 
yielded the best results, indicating that a more gradual upsampling with 
skip connections is more favorable than atrous convolutions used in 
DeepLabv3+. 

In our study, we observed a discrepancy between evaluation metrics 
and a qualitative assessment of the actual predictions. The confusion 
matrix treats every pixel equally, which might not be useful in weed 
segmentation approaches. By further analyzing the model’s predictions, 
we could conclude that most mis-classified pixels were on the border of 
plants. However, with a real-world SSWM application in mind, plant 
borders are not that important, as the general shape is sufficient to 
generate accurate weed maps. A correct classification of crop and weed 
pixels is more important, as this is the main challenge. Furthermore, rare 
occurring but large weeds and the high percentage of the background 
class distorted the results obtained from the confusion matrix, as 
misclassification of those weeds had a higher impact. In our dataset, 
98% of all pixels were background, which had a significant impact on 
per-pixel metrics and the confusion matrix. 

The main goal of weed detection for SSWM is to generate a weed 
density map, so weeds can be removed in downstream tasks. These tasks 
(i.e., weed removal by a field robot or herbicide application) are not 
pixel-precise, so arguably a coarser ground truth might be also sufficient 
while lowering the annotation cost and time. Our dataset could act as a 
base for further weed research using drones, as a coarser ground truth (i. 
e. for object detection or patch-based classification) could be generated 
automatically. One major difficulty in using a pixel-based segmentation 
approach is the ambiguity of the ground truth labels due to a subjectivity 
in the labeling process. This ambiguity is challenging for model training 
and evaluation especially when using real-world motion blurred 
imagery. 

The application of our model on other BBCH stages showed good 
generalization capabilities towards the larger growth stage (BBCH 19). 
When presented with imagery of a smaller growth stage (BBCH 15), our 
model wrongly predicted around 39% of sorghum pixels as weed. 
Further analysis showed that a majority of the misclassifications were 
present on smaller sorghum plants where only two or three leaves were 
visible. This indicates that our model needs to be re-trained with UAV 
imagery of different growth stages in order to be more robust and 
applicable for SSWM. 

Some errors in the predictions were also due to the patch generation 
process. They happen only, when there is a small part of a plant present 
on a patch border. The network was trained on mostly intact plants, so 
when presented with a partly cut plant, it might misclassify it. In addi
tion, background pixels are mostly predicted in close proximity of the 
patch borders. These errors are not severe, as they only occur for larger 
plants that were separated in the patching process and might be solved 
by using a sliding window approach and generating patches with 
overlap. 

While our model performed sufficiently well on our hold-out test-set, 
there are several factors that were not evaluated in this study. Our test- 
set was captured on a certain agricultural field. However, the weed flora 
might be different in other regions or fields. Thus, it is likely that there 
are several other weed species growing on different agricultural land
scapes. In addition, the sampling time (time of the capture) of the 
different datasets is similar, as we conducted the drone missions at noon. 
Different sampling times (morning, noon or evening) and different 
weather conditions (sunny, cloudy) might have an effect on the illumi
nation (white balance, color temperature) of the resulting captures, 
which might have a negative effect on the model’s performance. 
Nevertheless, our experiments on the datasets sorghum_15 and sor
ghum_19 with different illuminations indicate good generalization of 
our model. In this study, we briefly investigate the generalization ca
pabilities of our model on two different growth stages. Our results 

1 https://doi.org/10.17632/4hh45vkp38.4.  
2 https://github.com/grimmlab/UAVWeedSegmentation. 
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suggest that it might be necessary to fine-tuning our model on different 
growth states which would improve the overall performance. A larger 
dataset with additional growth stages could be beneficial to yield a 
unified model for early weed detection across different stages. Addi
tionally, drone settings, i.e. flight speed and altitude might play an 
important role on the quality of the captures and might influence the 
predictions as well. Therefore, we plan to generate a more diverse 
dataset to evaluate different model architectures on a wider scope, 
dealing with a more diverse weed flora, weather conditions and drone 
settings. 

4. Conclusion 

In this study we present a machine learning framework enabling 
early weed and sorghum detection and segmentation in real-world, 
degraded drone images. The model has high segmentation abilities 
and can detect intra-row weeds as wells as overlapping plants in cap
tures with different degrees of motion blur. Further, a qualitative anal
ysis of the actual predictions indicates that the general form of most 
plants can be detected accurately, with minor problems at borders of the 
plants. As discussed, plant borders are not that important in a down
stream application for site specific weed management. 

Additionally, we show that our method can be applied on different 
BBCH stages of sorghum. However, the predictions on smaller sorghum 
plants in an early growth stage dropped and might lead to an over
estimation of weed instances. Nevertheless, our work shows promising 
results and give first insights that we plan to extend in future research. 

With this study, we publish the first dataset for weed detection in 
sorghum, which can be used as a basis for future research. Additionally, 
we made the code of our proposed method publicly available to ensure 
the reproducibility of results and allow the comparison in future studies. 
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