
AUTONOMOUS VEHICLES AS SENSORS: TRAFFIC STATE ESTIMATION1
2
3
4

Yunfei Zhang, Corresponding Author5
Chair of Traffic Engineering and Control, Technical University of Munich (TUM)6
Arcisstrasse 21, 80333 Munich, Germany7
yunfei.zhang@tum.de8
ORCID:0000-0003-1902-18169

10
Jeremias Gerner11
AImotion Bavaria, Technische Hochschule Ingolstadt12
Ingolstadt, Germany13
jeremias.gerner@thi.de14
ORCID:0000-0002-1611-508615

16
Mario Ilic17
Chair of Traffic Engineering and Control, Technical University of Munich (TUM)18
Arcisstrasse 21, 80333 Munich, Germany19
mario.ilic@tum.de20
ORCID: 0000-0003-2457-698X21

22
Stefanie Schmidtner23
AImotion Bavaria, Technische Hochschule Ingolstadt24
Ingolstadt, Germany25
stefanie.schmidtner@thi.de26
ORCID:0000-0003-2300-215927

28
Klaus Bogenberger29
Chair of Traffic Engineering and Control, Technical University of Munich (TUM)30
Arcisstrasse 21, 80333 Munich, Germany31
klaus.bogenberger@tum.de32
ORCID:0000-0003-3868-957133

34
35

Word Count: 5284 words + 3 table(s) × 250 = 6034 words36
37
38
39
40
41
42

Submission Date: August 1, 202443



Zhang, Gerner, Ilic, Schmidtner, and Bogenberger 2

ABSTRACT1
Integrating autonomous vehicles (AVs) as sensors presents a novel approach to traffic state esti-2
mation, leveraging both moving and parked cars to enhance data collection and analysis. This3
paper explores the effectiveness of using AVs as traffic sensors, comparing the performance of4
a Weighted Spatio-Temporal Estimation (WSTE) method against two baseline methods with and5
without complete historical data. We employ a camera-based detection system to identify partici-6
pants in a microscopic traffic simulation, explicitly model the parked vehicles, and gather data from7
moving and parked observers at varying penetration rates. By comparing the estimation accuracy8
of link-level densities from observers and lanes, we demonstrate that moving and parked vehicles9
can complement each other using the new camera-based detection method, especially with differ-10
ent penetration rates. Our Weighted Spatio-Temporal Estimation method has also been proven to11
reach high accuracy, with even one observation from the historical data.12

13
Keywords: Autonomous Vehicles as Sensors (AVaS), Autonomous Vehicles, Traffic State Estima-14
tion, Detection, Extended Floating Car Data (xFCD)15
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INTRODUCTION1
Background and Motivation2
Traffic state estimation plays a critical role in traffic engineering. Precise estimation and predic-3
tion can significantly benefit traffic control measures and long-term planning. Accurate traffic state4
estimation is fundamental for improving road safety, reducing congestion, and optimizing trans-5
portation infrastructure. In recent years, research methodologies have expanded to include both6
model-based and data-driven approaches, mainly due to the huge number of available data sets.7

Collecting traffic data forms the foundation for practical traffic state estimation. Tradi-8
tionally, traffic data collection methods, such as manual counting and loop detectors, have been9
labor-intensive and cost-prohibitive. However, the rise of autonomous vehicles (AVs) and intelli-10
gent transportation systems (ITS) has introduced novel methodologies leveraging sensor data from11
diverse sources. AVs, equipped with advanced sensor technologies such as LiDARs, radars, and12
cameras, can collect variant traffic data. These vehicles typically serve as moving observers, per-13
sistently acquiring real-time traffic data while circulating in complex urban road networks.14

Motivated by the fact that the data from AVs are already there, we propose an innovative15
approach known as Autonomous Vehicles as Sensors (AVaS) (1), given AVs’ inherent data collec-16
tion capabilities. This approach utilizes AVs in both motion and parked states to compile valuable17
data for traffic state estimation, unlike traditional Floating Car Data (FCD) or Extended Floating18
Car Data (xFCD), which relies solely on vehicles in motion and provides information only about19
the ego-vehicle, AVaS benefits from both moving and parked observers within the network. Addi-20
tionally, on-board vehicle sensors offer supplementary information about other road users. Since21
AVs can be centrally regulated, they can be strategically assigned to specific locations to gather22
data, mainly when not privately owned, such as Autonomous Mobility on Demand (AMoD) fleets.23

By applying the AVaS idea, traffic state estimation can be expanded to include microscopic24
and macroscopic scales. On the microscopic scale, AVs can estimate traffic states such as densities25
and link speeds for individual road segments. Concurrently, these data can be aggregated for26
macroscopic traffic parameters like average speed, volume, and density at the cluster or network27
level.28

This study aims to explore the potential of leveraging AVs as sensors for link-level traffic29
state estimation, specifically for density estimation. By simulating the data collection process30
using real sensor attributes (2) and applying the AVaS concept to a real-world traffic network in31
Ingolstadt, Germany, we seek to estimate and predict traffic states using both moving and parked32
vehicles.33

Literature Review34
Traffic state estimation (TSE) methods highly depend on the available data types. While traditional35
TSE methods rely on stationary detector data, more modern approaches use probe vehicle (PV)36
data of different types. Table 1 gives an overview of the use of different sensor types for TSE.37

Using traffic data from moving vehicles for traffic engineering and control originated in38
1954 when Wardrop and Charlesworth (13) introduced the moving observer (MO) method. This39
technique involved estimating speed and traffic flow through manual observations of surrounding40
traffic in both directions, including counting the number of vehicles overtaking or being overtaken41
and oncoming vehicles. With advancements in vehicle sensor technology over the past decades,42
onboard sensors in Connected and Autonomous vehicles (CAVs) can now acquire data on sur-43
rounding traffic conditions, providing extended Floating Car Data (xFCD) for use in ITS applica-44
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Stationary
Detectors

Probe Vehicles (PVs)

Conventional PVs PVs with spacing
measurement

Automated Vehi-
cles

Installed
Sensors

Loop detec-
tors, cameras

Global Positioning
System (GPS)

GPS & Long Range
Radar (LRR)

GPS, LRR, LiDAR,
camera

Collected
Raw Data

Vehicle counts
over time

PV’s trajectory PV’s & proceeding
vehicle’s trajectory

GPS, LRR, LiDAR,
camera

TSE possi-
ble

yes no yes yes

Literature (3, 4) (5–7) (8–11) (1, 12)

TABLE 1: Overview of the usage of different sensor types for traffic state
estimation (TSE)

tions. Table 2 summarizes and classifies simulation studies conducted in the last years on the MO1
method.2

Previous work has expanded the MO method into various aspects. From the perspective3
of transportation modes, Czogalla and Naumann (15) and Kühnel et al. (17) examined the im-4
pact of different types of moving observers on traffic flow estimation, considering both passenger5
cars and public transit. When considering the calculated traffic parameters, most reviewed litera-6
ture primarily focuses on determining instantaneous link-based fundamental traffic flow variables,7
such as traffic volume, speed, and density. Czogalla and Naumann (15) and Schäfer and Hoyer8
(19), Schäfer (28) also explored the calculation of link-based travel times from recorded traffic9
parameters. Additionally, Langer et al. (24) derived queue lengths at intersections from relative10
flow data collected from oncoming traffic flows.11

Regarding estimation methods, Florin and Olariu (18) introduced a data-driven approach12
using machine learning to predict traffic flow characteristics based on continuous data streams from13
mobile sensors. Guerrieri et al. (22) explored data fusion techniques to enhance the accuracy and14
completeness of traffic data through multiple moving observers. Furthermore, Ma and Qian (26)15
integrated machine learning techniques with moving observers to improve prediction accuracy.16

Overall, past studies focus on using moving observers for traffic data collection. These17
studies have offered valuable insights into the potential applications and limitations of MO data18
but have also revealed specific gaps: 1) Current literature emphasizes data collection during mo-19
tion, with limited exploration of stationary scenarios; 2) The estimation is based on the processed20
data, i.e., the data have been collected and are ready for estimation, and 3) Estimation for MFD is21
generally biased, especially for moving observers. To address these research gaps, we introduced22
our approach, Autonomous Vehicles as Sensors (AVaS) (1, 2). In (1), we first introduced this con-23
cept and verified the idea in a grid network using the Macroscopic Fundamental Diagram (MFD).24
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TABLE 2: Literature overview of simulation studies on the moving observer method
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Based on this result, we extended the concept in (2) by simulating the data collection process with1
sensor attributes and multi-level estimation in a calibrated city-level simulation. However, the lim-2
itations include: 1) occlusion is not included, and 2) the point estimation is not accurate enough.3
In this paper, we try to work on these two limitations further.4

Contributions and Research Questions5
To tackle the current research gaps, we utilize an emulation of a camera-based detection within6
the microscopic simulation, model the parked vehicles as observers, and improve our local traffic7
density estimation methods based on spatio-temporal correlations. Therefore, our contributions8
can be summarized as the following three:9

1. Implementation of camera-based detection: we apply an emulation of a camera-based10
detection, a neural network architecture trained on a computer vision-based evaluation11
if vehicles are detectable by the observer based on (12). Compared to distance-based12
detection methods we used in the previous paper (1, 2), it is more realistic as it includes13
occlusion.14

2. Modeling parked vehicles as sensors: We model the parked observers by adding parking15
lots based on real-world demand and use the parked vehicles to detect the surrounding16
traffic.17

3. Estimation density based on spatio-temporal correlations: instead of focusing on the18
road section where our observers are located, we utilize all vehicles within a defined19
area and estimate the link-level density based on the weights from both spatial and20
temporal perspectives. The results are also compared among different penetration rates.21

To achieve these three contributions, we develop our research questions accordingly:22
1. How accurately can the camera-based detection method detect surrounding traffic com-23

pared to distance-based methods?24
2. How much information can parked observers provide to estimate the traffic?25
3. How does our Weighted Spatio-Temporal Estimation (WSTE) method compare to base-26

line methods?27

METHODOLOGY28
The methodology can be summarized in Figure 1. With a well-calibrated SUMO simulation, we29
first simulate both moving and parked observers with different penetration rates. Second, we use30
two data collection methods, distance- and Neural Network (NN)-based detection methods. With31
the outputs from moving and parked observers, we applied different estimation methods for point32
calculation and area estimation. Point estimation targets for the raw data collected from the ob-33
servers. A ‘detected’ dictionary will be returned at each timestamp for an individual observer.34
Point estimation refers to estimating the local density based on these data. Area estimation is35
based on the edges/lanes. Because an edge/lane does not always have an observer, we use an area36
surrounding the edge/lane to estimate its density. All the observers inside this area will be consid-37
ered to estimate the densities. Note that the highlighted modules and parameters in the flowchart38
represent a sensitivity analysis. Therefore, we will compare between:39

1. Moving observers vs. parked observers40
2. Different penetration rates41
3. Distance- vs. NN-based detection42
4. Different area estimation methods43
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FIGURE 1: Flowchart of the methodology

Simulating Moving and Parked Observers1
In our research, we detect other traffic participants from both Moving Observers (MO) and Parked2
Observers (PO). For the MO, we classify each spawned vehicle as an observer or a non-observer3
based on the investigated penetration rate. The vehicle routes remain unchanged and adhere to4
the traffic demand specifications defined in (29). Since the traffic network of Ingolstadt, created5
in (29), does not include parked vehicles, we adapt the network to enable roadside parking on6
all edges, as illustrated in Figure 3. We define a parking density, representing the proportion of7
parking spots randomly occupied by vehicles. During the simulation, parked vehicles do not affect8
the traffic demand of moving vehicles.9

Detection and Data Collection10
To accurately estimate the capabilities of AVaS for traffic state estimation in a microscopic simula-11
tion, it is essential to identify which vehicles can be recognized by the corresponding moving and12
parked observers, as would be the case in a real-world scenario with corresponding sensors and 3D13
object detection algorithms. As the first detection method, we use a distance-based method as in14
the previous work (2). The Distance-based detection computes the Euclidean distance between the15
ego and nearby vehicles. A vehicle is added to the detected list if the distance lies within specific16

thresholds (detection ranges) d f/b
l for lane l in both forward f and backward b directions. In this17

paper, we select three different distances [25,50,100] meters for d f/b
l . This time, we do not differ-18

entiate vehicles from different lanes or even the opposite direction instead of detecting vehicles in19
the same lane. This simplification significantly accelerates the simulation and calculation.20
However, This distance-based detection overestimates real-world sensors’ detection capabilities, as21
analyzed in (30). We apply an alternative approach introduced in (12) to address this. This method-22
ology approximates camera-based detection of other traffic participants, using the KITTI (31)23
thresholds as a reference. We at this moment utilize the NN approach presented in the paper24
for fast inference. To implement this approach, we first generate a dataset, which is subsequently25
used to train the neural networks. Following the methodology outlined in (12), the dataset is cre-26
ated by converting the two-dimensional SUMO simulation into a three-dimensional point-cloud27
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representation. This involves utilizing the polynomial representations of buildings from SUMO1
and employing realistic three-dimensional meshes for the vehicles, as shown in Figure 2. We at-2
tach emulated camera sensors to both parked and moving vehicles within this representation. In3
this study, we have mounted four camera sensors on the observers, specifically at the front, rear,4
left, and right sides. The point cloud data of the vehicles and buildings are subsequently projected5
onto the camera plane of the emulated sensors. This projection produces a depth-image-like rep-6
resentation on the camera plane, including object assignments for the projected points as shown7
in Figure 2. Using the KITTI thresholds, we can approximate which vehicles would be detectable8
in a comparable real-world scenario, utilizing real-world RGB-camera sensors and state-of-the-9
art 3D object detection algorithms. With this so-called computer-vision approach, it is, therefore,10
possible to determine which other traffic participants are detectable and available for the traffic11
state estimation by the moving and parking observers. The projection of the point clouds onto the12
camera plane is computationally expensive, which results in a reduction of the simulation speed of13
up to 10 seconds for each observer. Consequently, we use the computer vision approach solely to14
generate a dataset for training neural networks, which then emulate the computer vision process15
directly from a Bird’s Eye View (BEV) representation of the simulation. Each data point consists16
of the BEV representation, where an example is shown in Figure 2, of the current traffic situa-17
tion centered around the observer, the two-dimensional vector from the observer to the vehicle for18
which detectability is to be determined, and the corresponding binary detectable label derived from19
the computer vision approach. In this fashion, we generate 100,000 data points. With these data20
points, we then train the NNs where we specifically use an adapted version of the Vision Trans-21
former presented in (32). After training, the model achieves an accuracy of over 94% on the test22
split, i.e., in 94% of the cases, the NNs correctly determine if a vehicle is detectable according to23
the computer vision approach. The significant benefit of the NN approach is the inference speed,24
i.e., the duration it takes to determine if a vehicle is detectable by the observer. On average, the25
NN approach requires 0.05 seconds to determine the detectability of all surrounding vehicles per26
observer.27

FIGURE 2: Visualization of the three-dimensional point cloud surrounding the observer under
investigation (left), the corresponding depth image captured by the front camera (center), and the
BEV representation of the same scene utilized for the NN approach (right).

Traffic State Estimation28
Point Calculation Based on previous studies, we have demonstrated that estimating and predict-29
ing speeds v is relatively more straightforward, whereas estimating densities k is generally more30
challenging. Consequently, this affects the accuracy of traffic flow calculations, q = ks. Therefore,31
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this study specifically focuses on estimating and predicting traffic densities at the link level. For1
MO, we estimate the real-time lane density k̂ (vehicles/km) of an individual moving observer as2
Equation 1.3

k̂ =
n̂+1

2× (d + L
2 )×nl

×1000 (1)4

where,5
• n̂: Number of detected vehicles6
• d: Detection distance (m)7
• L: Average car length (m)8
• nl: Number of lanes of the edge9
However, since a point estimation can be unstable, we cap the estimated density k̂ at the10

maximum value kmax to avoid unrealistic high densities. kmax is calculated by the 95% maximum11
density from the data. For PO, the density estimation is nearly identical, except the PO itself is not12
included in the count.13

k̂ =
n̂

2× (d + L
2 )×nl

×1000 (2)14

Area estimation Area estimation refers to predicting the density of a specific lane by analyzing15
the observations from both moving and parked observers within a designated area around that16
lane. Unlike point estimation, which focuses on a single observation from a moving or parked17
observer, area estimation aggregates data from all relevant observations within the specified area.18
To illustrate our Weighted Spatio-Temporal Estimation (WSTE) method, we also develop some19
baseline methods to compare.20

Baseline, All historical data21
For each lane ID i and time interval t, the predicted density ˆki,t is calculated using expo-22

nential decay weights:23

ˆki,t =
∑

N
j=1

ˆki,t− j·t0 ·w j

∑
N
j=1 w j

(3)24

where ˆki,t− j·t0 is the lane density at the past interval t − j · t0 seconds, w j is the exponential25
decay weight for the j-th past interval, and N is the number of past intervals with available data. t026
represents the aggregated estimation interval. The exponential decay weight w j is defined as:27

w j = exp(−λ · j) (4)28
Where λ is the decay constant determining the decay rate.29
If no past densities are available for the lane ID i at the specified past intervals, ˆki,t remains30

at the same density in the last interval. This approach ensures the predicted density is weighted31
more heavily towards recent intervals. This baseline method serves as the high bar for traffic state32
estimation because we have all the historical data to predict the next interval.33

Baseline, No historical data + MO + PO34
For this baseline method, we calculate the predicted density ˆki,t as a weighted mean of the35

densities estimated by MO and PO. The weights are denoted by wmo and wpo, respectively. The36
equation for ˆki,t is given by:37



Zhang, Gerner, Ilic, Schmidtner, and Bogenberger 10

ˆki,t =
ˆki,t,mo ·wmo + ˆki,t,po ·wpo

wmo +wpo
(5)1

Where:2
• ˆki,t,mo is the weighted density estimated by MO.3
• ˆki,t,po is the weighted density estimated by PO.4
The sum of weights wmo and wpo are generated using a Gaussian distribution within a radius5

r. All MO and PO within the radius r are considered. The distance d is calculated between the6
MO/PO and the centroid point of the predicted lane. The weights are then calculated based on the7
distance d using the Gaussian function:8

w(d) = exp
(
− d2

2σ2

)
(6)9

Where:10
• σ is the standard deviation of the Gaussian distribution, often set to a value related to the11

radius r.12
Since this estimation uses the estimation from MO and PO and no historical data have been13

considered, we use this method as the baseline for the low bar for traffic state estimation.14
Weighted Spatio-Temporal Estimation (WSTE)15
This method combines the power from both spatial and temporal perspectives. We start16

with an initial value kt0 , which is the true density at the initial timestamp t0. This initial density17
is from the simulation simulation and is the only information we use from the historical data. We18
also retrieve the initial observations from MO ˆki,t0,mo and/or PO and ˆki,t0,po.19

At each subsequent timestamp, we calculate the difference (∆i,t) between the observed20
density at the current timestamp ˆki,t,mo and ˆki,t,po and the initial density ˆki,t0,mo and PO and ˆki,t0,po,21
then use this difference to adjust the initial density proportionally.22

The formula for the predicted density ˆki,t at timestamp t is given by:23

ˆki,t = kt0 × (1+∆i,t,mo) (7)24
or25

ˆki,t = kt0 × (1+∆i,t,po) (8)26
Where:27
• ˆki,t is the predicted density at timestamp t.28
• ∆i,t,mo is the percentage change in density observed by MO between t0 and t.29
• ∆i,t,po is the percentage change in density observed by PO between t0 and t.30
The percentage delta ∆i,t is calculated as:31

∆i,t,mo =
ˆki,t,mo − ˆki,t0,mo

ˆki,t0,mo
(9)32

or33

∆i,t,po =
ˆki,t,po − ˆki,t0,po

ˆki,t0,po
(10)34
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Also, we combine these two differences using the weighted method we mentioned for the1
baseline. The combined predicted density ˆki,t is given by:2

ˆki,t =
(kt0 × (1+∆i,t,mo)) ·wmo +

(
kt0 × (1+∆i,t,po)

)
·wpo

wmo +wpo
(11)3

By applying these calculations, we can compare the influence from MO-only, PO-only, and4
the combined influence. Since the point estimation is biased, the idea behind the WSTE is to use5
the change of observations instead of the observations to estimate the traffic densities.6

Metrics In this part, we present the equations and explanations for three commonly used error7
metrics in traffic state estimation: Root Mean Squared Error (RMSE), Coefficient of Determination8
(R²), and Mean Absolute Percentage Error (MAPE).9

Root Mean Squared Error (RMSE)10
The RMSE measures the average magnitude of the errors between the predicted values and11

the actual values. It is defined as follows:12

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (12)13

Where:14
• n is the number of observations,15
• yi is the actual value for the i-th observation,16
• ŷi is the predicted value for the i-th observation.17
Coefficient of Determination (R²)18
The R² metric, also known as the Coefficient of Determination, measures the proportion19

of the variance in the dependent variable that is predictable from the independent variable(s), as20
shown here:21

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (13)22

Where:23
• yi is the actual value for the i-th observation,24
• ŷi is the predicted value for the i-th observation,25
• ȳ is the mean of the actual values.26
Mean Absolute Percentage Error (MAPE)27
The Mean Absolute Percentage Error (MAPE) evaluates the accuracy of a predictive model28

by calculating the percentage difference between actual and predicted values. We include MAPE29
alongside Root Mean Square Error (RMSE) to assess errors in terms of absolute volumes and30
relative percentages.31

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (14)32

Where:33
• n is the number of observations,34
• yi is the actual value for the i-th observation,35
• ŷi is the predicted value for the i-th observation.36
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EXPERIMENTS AND RESULTS1
In this section, we first describe the simulation environment. Then, we present and discuss the2
results regarding three research questions.3

Simulation Description4
As in (2), we utilize the SUMO simulation in Ingolstadt, Germany, as the whole network was5
modeled and calibrated in detail (33) as shown in Figure 3. Prior calibrations, including map asso-6
ciation, traffic light program emulation, and traffic flow calibration, have already been performed7
on this network in (29).8

FIGURE 3: SUMO simulation of Ingolstadt, as presented in (29), with the area investigated in
this paper highlighted in blue. Additionally, a close-up view illustrates the parked vehicles within
the simulation.

9
The simulation uses a 5-minute aggregation level to balance efficient results with acceptable10

temporal resolution. We use the exact interval for all prediction methods, which means t0 = 300sec.11
Traffic states are evaluated for lanes and edges. We simulate 6 a.m. to 9 a.m. to capture the12
network accumulation phase while avoiding over-congested networks during the daytime. For13
both the distance- and NN-based detection, we collect the detected vehicles for the penetration14
rates [1, 2, 5, 10, 20]% and for a time from 6 a.m. to 9 a.m. with the traffic demand defined15
in (29). The penetration rates apply to both Moving Observers (MO) and Parked Observers (PO);16
however, for MO, the penetration rate represents the proportion of MO among all vehicles, while17
for PO, it indicates the percentage of available parking spots occupied. For simplicity, we assume18
that 50% of all parking spots are available and then multiply the penetration rates to determine the19
proportion of PO.20

For the Baseline - All historical data method, we select N, which is the number of past21
intervals with available data, as 5. This means we consider the past 25 minutes to predict the next22
5-minute interval. For the Baseline, No historical data + MO + PO, we select the radius r as 50m23
to consider all MO and PO within this distance. And the corresponding standard deviation of the24
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Gaussian distribution σ is one-third of the radius r, which is 50/3 ≈ 13.3m.1

Results of Detection and Data Collection2
First, we compare the point estimation results for different detection methods in Figure 4. Three3
solid lines stand for the distance-based methods and a dashed line for the camera-based NN4
method. For moving observers to the left, distance-based detection methods have better perfor-5
mances as they can detect all vehicles without occlusion; however, we notice two phenomena:6
first, distance-based methods perform the best when considering all the vehicles within 50 meters;7
second, the error increases after reaching the lowest point as 2% penetration rates. It implies that8
with high penetration rates, there could be 1) Repeated Detection, i.e., one vehicle can be detected9
by multiple observers, thus causing overestimating, 2) a short detection distance (25-meter) could10
result in unstable estimation, while a long one (100-meter) could intensify the repeated detection.11
These can be because we do not collect the information on which lane or direction the detected12
vehicle is located, as we explained in Subsection 3.2. The emulation of the camera-based detection13
generally performs worse than the distance-based detection. This is caused by the reduced number14
of detected vehicles since the method considers occlusion as it would occur by real-world sensors.15

However, this trend is different for PO: first, the NN method, which also takes occlu-16
sions into account, can outperform the short (25-meter) and long (100-meter) range distance-based17
methods; second, the errors among different methods drop down the lowest point at roughly 10%18
penetration rate. The most important reason is the vast difference between MO and PO: whether19
the observer counts itself into density calculation. From the previous study (2), we already proved20
that MO is biased, especially during an off-peak time, because the section where one MO is located21
will be at least one vehicle, while most of the section could be empty. This bias can be solved with22
PO, and Repeated Detection could be less common. We also notice that since POs are located at23
roadside parking spaces, they have fewer possibilities for repeated detection.24

Note that, in reality, we can never achieve distance-based detection. AVs still rely on25
cameras and other sensors to detect the surrounding traffic. Therefore, we will only apply the NN26
detection for the remaining analyses.27

28

Results of Point Estimation29
Figure 5 compares the point estimation for MO and PO with different penetration rates. Due to30
the essence that the detected vehicles can be spread among different lanes, the point estimation is31
supposed to be and also proved in the figure to be scattered widely. In general, we can conclude that32
in Figure 5(a), moving observers tend to overestimate the densities, especially when the demand33
is relatively low, while parked observers have a better estimation of the traffic densities in Figure34
5(b).35

Because of the inherent biases in both observers, we do not focus on improving estimating36
densities for a single observation from an observer. Since the ultimate goal is to estimate or predict37
the traffic densities at the link level, we try to include these point estimation results in the traffic38
state estimation with other knowledge.39

Results of Traffic State Estimation40
Following the methods of TSE, which we introduce in Section 3.3, we compare two baseline41
methods and three Weighted Spatio-Temporal Estimation (WSTE) methods in Figure 6. Note that42
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FIGURE 4: Comparison among different detection methods: the NN with occlusion method is
not accurate enough as distance-based methods in MO, while can achieve a similar level using PO

two baseline methods are visualized in both figures, while in the correct figure for R², the R² value1
for Baseline, No historical data + MO + PO is below 0 and is invisible from the visualization area.2

For RMSE, Baseline, All historical data leads with the slightest error. In comparison,3
without historical data, Baseline, No historical data + MO + PO still tends to have not too big4
error thanks to the spatial weights. However, both baselines have no significant improvements in5
accuracy after the penetration rates reach 5%, implying the limitations of both observers. Weighted6
Spatio-Temporal Estimation (WSTE) have entirely different trends. With only the true density at7
the first timestamp, Initial historical data + MO can reduce the error by increasing penetration8
rates to 10%. The error increases again at 20%, most probably due to the Repeated Detection9
thus, overestimation. Initial historical data + PO, on the other hand, constantly reduces errors10
with increased penetration rates. The resulting mixed method Initial historical data + MO + PO11
is more towards the Initial historical data + MO side, implying the higher weights from the MO12
side.13

Results for R² are different, especially for Baseline, No historical data + MO + PO. The14
negative R² indicates that this baseline method might not compete with an estimation based on the15
historical average. This might be because without knowing any true densities, the point estimation16
from AVaS is unstable. For our WSTE method, we can observe that Initial historical data + PO17
benefits from the increased penetration rates, while Initial historical data + MO is the opposite.18
The drop in R² value for MO indicates that the variance due to overestimation (Repeated Detection)19
becomes bigger than the variation of the traffic state. PO always have available spots even with the20
increased penetration rates, and this fact makes PO more reliable in avoiding Repeated Detection.21
That leads to our thinking that we can combine a fleet of MO and PO with different penetration22
rates in the future TSE study.23

24
An overview of all metrics of all scenarios is listed in Table 3. For Initial historical data +25

PO and Initial historical data + MO, the overall best penetration rates are bold, again highlighting26
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((a)) Results of point estimation for moving observers

((b)) Results of point estimation for parked observers

FIGURE 5: Comparison of point estimation for different penetration rates using NN detection
methods: MO tend to be more scattered than PO
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FIGURE 6: Comparison among different estimation methods: compared to two baselines with &
without all historical data, our Weighted Spatio-Temporal Estimation (WSTE) method can reach
high accuracies with RMSE and R² with just initial historical data.

that TSE can benefit from different penetration rates from MO and PO.1

CONCLUSION2
Summary3
Originating from the first concept of AV-as-Sensors (AVaS) (1), we simulated the data collection4
process in (2). Using the collected data, this study has explored various approaches for traffic5
state estimation (TSE). In this study, we 1) implement a new camera-based detection method, 2)6
model the parked vehicles in SUMO, and 3) estimate the traffic densities using Weighted Spatio-7
Temporal Estimation for moving and parked observers (MO and PO), compared to two baseline8
methods. The results show that even with a low penetration rate, MO and/or PO can have a rather9
good estimation of local densities with just one initial true observation. Thus, we answer our10
research questions raised in Section 2.3 as follows:11

1. How accurately can the camera-based detection method detect surrounding traffic com-12
pared to distance-based methods? From the results in 4.2, we can conclude that com-13
pared to distance-based methods, the camera-based detection method can benefit the14
traffic state estimation at the same level, especially for PO.15

2. How much information can parked observers provide to estimate the traffic? Compared16
to the overestimation from MO, PO can modify the estimation from the results presented17
in Section 4.3. Also, from the metrics in Section 4.4, we could see that PO overperforms18
MO, especially with high penetration rates.19

3. How does our Weighted Spatio-Temporal Estimation (WSTE) method compare to base-20
line methods? Compared with two baseline methods with all historical data (high bar)21
and AVaS-only data (low bar), our WSTE method can almost reach the same accuracy22
with ground truth with only one initial true observation.23
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Condition Penetration Rate (%)
Parked Moving Historical Data Metric 1 2 5 10 20

No No All RMSE 14.49 14.93 14.80 14.37 14.22
R² 0.798 0.774 0.772 0.776 0.778

MAPE 0.390 0.400 0.409 0.429 0.428
Yes Yes No RMSE 33.47 31.93 29.96 28.48 27.96

R² -2.809 -2.592 -2.256 -2.519 -2.586
MAPE 0.988 0.950 0.858 0.803 0.800

No Yes Initial (WSTE) RMSE 22.53 24.37 27.79 27.43 58.13
R² 0.667 0.592 0.483 0.466 0.166

MAPE 0.735 0.785 0.990 1.066 1.531
Yes No Initial (WSTE) RMSE 39.63 40.20 34.85 27.24 21.95

R² 0.448 0.396 0.423 0.548 0.623
MAPE 1.024 1.053 1.101 1.096 1.294

Yes Yes Initial (WSTE) RMSE 48.74 47.23 31.68 26.03 54.54
R² 0.322 0.296 0.423 0.497 0.191

MAPE 0.949 0.921 1.017 0.992 1.572

TABLE 3: Sensitivity Analysis considering impact of parked and moving vehicles, historical data,
and penetration rates: our WSTE methods (bold) perform best with high penetration rates for
parked observers and low penetration rates for moving observers.

Future Research1
While this study has addressed all the research questions, we admit that this study focuses on traffic2
densities at the link level, with certain simplifications in the simulation and detection methods.3
Besides, traffic state estimation is limited to randomly selecting moving and parked vehicles. To4
address these limitations, we propose future research with different modules in Figure 1.5

Module - Simulation Now, the parked vehicles are randomly selected for available parking spots,6
which are randomly modeled in the simulation as well. In the future, we plan to investigate the7
amount of contributions to traffic state estimation from different locations. Thus, a future strategic8
vehicle assignment algorithm can be developed, so that idle vehicles can park where they can9
provide the most information and data for traffic state estimation.10

Module - Data collection The current detection status only uses the information on how many11
vehicles can be "detected" by the ego observer without further information on which lane or direc-12
tion they are located. Since the emulation is already based on 3D object detection, in the future,13
we will utilize this information not only for lane-specific but also for the neighboring lane and14
opposite-direction traffic density estimation.15

Module - Traffic state estimation We already notice in Section 4.4 that moving and parked ob-16
servers have different trends of performances with increased penetration rates. In the future, instead17
of using the same penetration rate for both observers, we will conduct the sensitivity analysis for18
different penetration rates between moving and parked observers. Also, since moving observers19
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are outnumbering parked observers now, the weighted estimation always has higher weights and1
influences from moving observers. We will update the weighting system in future research as well.2

By addressing these different modules, our ultimate goal is to use AV-as-Sensors as a sup-3
plementary or even replace the current fixed-location detector system for traffic state estimation.4
We will study the possibilities of using this concept by integrating it into the operation of Au-5
tonomous Mobility-on-Demand systems.6
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